
1	
	

University	of	Strathclyde	

Department	of	Pure	and	Applied	Chemistry	

	

	

	

	

	

Investigating	the	use	of	Attenuated	Total	Reflection	Fourier-Transform	

Infrared	(ATR-FTIR)	Spectroscopy	for	the																																																						

Rapid	Diagnosis	of	Brain	Tumours	using	Human	Blood	Serum	

	

	

	

	

By	

James	R.	Hands	

	

	

	

A	thesis	presented	to	the	Department	of	Pure	and	Applied	Chemistry,	
University	of	Strathclyde,	in	fulfilment	of	the	requirements	for	the	
degree	of	Doctor	of	Philosophy.	

December	2015



I	
	

	

	

	

	

	

	

	

	

	

	

	

This	 thesis	 is	 the	 result	 of	 the	 author’s	 original	 research.	 It	 has	 been	

composed	 by	 the	 author	 and	 has	 not	 been	 previously	 submitted	 for	 examination	

which	has	led	to	the	award	of	a	degree.	

	

The	 copyright	 of	 this	 thesis	 belongs	 to	 the	 author	 under	 the	 terms	 of	 the	

United	Kingdom	Copyright	Acts	as	qualified	by	University	of	Strathclyde	Regulation	

3.50.	 Due	 acknowledgement	 must	 always	 be	 made	 of	 the	 use	 of	 any	 material	

contained	in,	or	derived	from,	this	thesis.	

	

Signed:		 	 	 	 	 	 	 Date:											/					/	

	

	

	

	

	



II	
	

ACKNOWLEDGEMENTS	

First	and	foremost,	I	would	like	to	thank	my	supervisor	Dr	Matthew	J	Baker	

for	his	endless	support,	guidance	and	all	of	the	excellent	opportunities.	

I	 would	 like	 to	 thank	 Brain	 Tumour	 North	 West	 for	 providing	 funding	 to	

make	 this	 research	possible.	 I	would	 like	 to	 acknowledge	Professor	Charles	Davis,	

Dr	Katherine	Ashton,	Dr	Carol	Walker	and	Professor	Timothy	Dawson	for	their	help.	

I	give	thanks	to	Dr	Caryn	Hughes	and	Dr	Konrad	Dorling	for	their	advice	and	

invaluable	 knowledge	 of	 Matlab.	 Special	 thanks	 to	 Dr	 Graeme	 Clemens	 for	 his	

patience,	superb	Matlab	knowledge	and	for	chats	over	coffee.	 I	would	also	 like	 to	

thank	current	and	past	members	of	the	Spectral	Analytics	group.	

Thank	you	to	my	friends	at	the	University	of	Central	Lancashire,	particularly	

to	 Jaida	 her	 support	 and	 to	Antony	 and	 Fiona	 for	 being	 excellent	 friends.	 Cypriot	

potatoes!	 Thanks	 also	 to	Hayleigh	May	 for	 being	my	 Strathclyde/Glaswegian	 tour	

guide	and	for	always	having	answers	to	my	questions.	

Finally,	I	would	like	to	thank	my	Mum,	Dad,	Jenna,	Dean	and	Jaycie	for	their	

love	and	endless	encouragement.	 Thank	 you	 to	Auntie	 Ina	 and	Uncle	George	and	

my	 family	 in	 Edinburgh,	 Scotland,	 for	 always	 making	 me	 so	 welcome.	 I	 am	 so	

fortunate	to	have	such	an	amazing	family.	

I	dedicate	this	thesis	to	my	Gran	-	without	her	unconditional	love,	generosity	

and	patience	I	would	not	be	where	I	am	today.	Words	alone	simply	cannot	express	

my	appreciation	of	everything	she	has	done	for	me.	Thank	you	for	always	believing	

in	me	and	encouraging	me	to	pursue	my	dreams.			

	



III	
	

ABSTRACT	

The	ability	to	diagnose	brain	cancer	rapidly	from	human	serum	would	allow	

for	 short	 testing	 times	 and	 prompt	 results	 providing	 a	 responsive	 diagnostic	

environment.	 This	 study	 demonstrates	 a	 new	method	 for	 primary	 and	metastatic	

brain	 cancer	 diagnosis	 using	 1	 μl	 volumes	 of	 human	 serum	 and	 attenuated	 total	

reflection	 Fourier-transform	 infrared	 (ATR-FTIR)	 spectroscopy.	 To	 the	 best	 of	 our	

knowledge,	 this	 is	 the	 largest	 study	 on	 mid-infrared	 spectroscopy	 in	 relation	 to	

cancer	 research	 with	 a	 433	 patient	 cohort	 consisting	 of	 3,897	 ATR-FTIR	 spectra.	

Spectral	data	from	whole	serum,	100	kiloDalton	(kDa),	10	kDa	and	3	kDa	molecular	

weight	 cut-off	 filtrate	 samples	 to	 investigate	which	 fraction	 allowed	 for	 optimum	

differentiation	of	disease	state	and	brain	tumour	severity	(high	grade	vs.	low-grade	

glioma)	 from	non-cancer.	 The	 fingerprint	 region	 (1800-1000	 cm-1)	 of	 the	 acquired	

data	 was	 combined	 with	 an	 RBF-SVM	 and	 achieved	 optimum	 sensitivities	 and	

specificities	 from	 whole	 serum	 averaging	 93.75	 and	 96.53	 %	 respectively	 when	

distinguishing	between	brain	tumour	severities.	The	1	μl	serum	spots	dried	after	8	

minutes	and	the	acquired	spectra	exhibited	minimal	variance,	especially	after	pre-

processing.	Expanding	the	research	to,	for	the	first	time,	detect	from	cancer	vs.	non-

cancer	 to	 organ	 of	 origin	 of	 metastatic	 disease	 from	 the	 same	 serum	 sample	

achieved	 optimum	 sensitivities	 and	 specificities	 of	 between	 80.0	 and	 100	 %	

respectively.	 Furthermore,	 feature	 extraction	 fed	 SVM	 analysis	 of	 the	 cancer	 vs.	

non-cancer	spectral	model	was	performed	to	maximise	classification	accuracies	 to	

achieve	 improved	 sensitivities	 and	 specificities,	 in	 contrast	 to	 fingerprint	 region	

based	SVM,	of	91.5	and	83.0	%	respectively.		
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Chapter	1	

INTRODUCTION	

1.	 General	Cancer	

1.1	 Introduction	and	Epidemiology	

Cancer	is	a	collective	term	for	a	group	of	malignant	neoplasms	which	is	used	

to	 describe	 an	 extensive	 collection	 of	 diseases.	 Cancers	 are	 characterised	 by	 the	

anatomical	region	and	cell	type	involved	in	uncontrollable	cell	division	(1).	

In	 the	 United	 Kingdom	 (UK),	 one	 in	 two	 people	 born	 after	 1960	 will	 be	

diagnosed	with	some	form	of	cancer	during	their	life	(2).	In	2012,	14.1	million	new	

cases	of	cancer	and	8.2	million	deaths	due	to	the	disease	were	recorded	worldwide.	

In	 the	 same	 year,	 some	 161,823	 individuals	 died	 from	 cancer	 in	 the	 UK;	 this	

devastating	disease	is	responsible	for	more	than	440	deaths	every	day	in	the	UK,	a	

reported	 one	 death	 every	 four	minutes	 (3).	 The	 ever	 increasing	 global	 burden	 of	

cancer	is	predicted	to	soar	to	some	21	million	diagnoses	worldwide	by	2030	as	older	

aged	 individuals	 are	 more	 susceptible	 to	 the	 disease	 and	 an	 increasing	 aging	

population	continues	in	many	countries	(4).	

Malignant	 tumours	 are	 recognised	 as	 they	 display	 evidence	 of	 abnormal	

proliferation	and	lack	of	normal	cell	control	mechanisms,	such	as	the	cell	cycle	(5).	

Malignant	 tumours	 are	 highly	 likely	 to	 grow	 fast,	 spread	 into	 and	 damage	

surrounding	 tissues	 and	have	 the	potential	 to	 spread	 to	other	 anatomical	 regions	

via	 the	circulatory	and	 lymphatic	systems	to	 form	secondary	tumours	 in	a	process	
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called	metastasis	(5).	In	contrast,	benign	tumours	are	usually	slow	growing,	do	not	

spread	 to	 other	 anatomical	 regions	 and	 individuals	 can	 often	 lead	 a	 healthy	 life	

without	the	need	for	treatment	(6).		

1.1.1 Risk	Factors	

As	with	many	diseases,	 there	 are	 a	number	of	 factors	which	 contribute	 to	

the	 progression	 of	 cancer.	 The	 major	 risk	 factors	 which	 contribute	 to	 the	

development	of	cancer	include,	but	are	not	limited	to;	the	exposure	to	carcinogens,	

genetic	factors	(inherited	or	lifestyle	influenced),	tobacco/alcohol	use,	body	weight,	

diet,	physical	activity,	exposure	to	bacteria/viruses	and	age.	As	the	population	ages	

and	life	expectancy	increases	many	types	of	cancer	become	more	common	due	to	

the	 accumulation	 of	 mutations	 present	 in	 the	 deoxyribonucleic	 acid	 (DNA),	 the	

molecule	that	contains	genetic	information	(5).	Figure	1.1	shows	the	age	of	death	in	

people	 for	 all	 cancers	 combined	 in	 the	 UK	 (2010-2012).	 Individuals	 aged	 60+	 are	

more	likely	to	develop	cancer	(3).	

Figure	 2.1	 –	 Cancer	 deaths	 by	 age	 in	 the	UK	 (2010-2012).	 Reproduced	
from	(3).	
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1.2 Brain	Cancer	

1.2.1 Introduction	and	Statistics	

Brain	cancer	is	the	biggest	cancer	killer	of	children	and	adults	under	40	years	

of	age	(7).	Gliomas	are	the	most	frequent	brain	tumours	in	adults	and	they	account	

for	 some	70.0	%	of	 all	 adult	malignant	 primary	brain	 tumours.	Malignant	 gliomas	

are	the	most	common	and	lethal	of	brain	tumours	with	approximately	9,100	newly	

diagnosed	 patients	 each	 year	 in	 the	 UK	 (8).	 The	 UK	 annual	 incidence	 rate	 for	 all	

brain	 tumours	 is	 approximately	 7	 per	 100,000	 in	 the	 population	 (8).	 	 Patients	

diagnosed	with	 a	 Glioblastoma	multiforme	 (GBM)	 -	 the	most	 aggressive	 grade	 of	

glioma	 with	 a	 dismal	 prognosis	 -	 on	 average	 have	 expected	 survival	 duration	 of	

approximately	8-14	months	(9).	

	 The	latest	incidence	and	mortality	rates	published	by	the	Office	for	National	

Statistics	 (England)	 show	 that	 unlike	 most	 other	 cancers,	 brain	 tumour	 mortality	

rates	have	increased	significantly	within	the	last	32	years	by	15.0	%	and	10.0	%	for	

men	and	women	respectively.	Incidence	rates	have	also	increased	within	the	last	32	

years	 by	 23.0	 %	 and	 25.0	 %	 for	 men	 and	 woman	 respectively.	 However,	 due	 to	

better	 treatments	 and	 early	 diagnosis	 42.0	 %	 of	 all	 men	 and	 women	 currently	

diagnosed	survive	at	least	one	year	compared	to	24.0	%	thirty	years	ago	(10).	Figure	

1.2	shows	how	incidence	and	mortality	rates	for	males	and	females	have	increased	

since	1979-2010	in	England.	

	



4	
		

	

Although	the	incidence	of	brain	tumours	is	 low	in	contrast	to	breast	cancer	

or	 lung	 cancer	 incidence	 rates	 (Figure	 1.3),	 on	 average	 brain	 and	 central	 nervous	

system	 (CNS)	 cancers	 account	 for	 the	 largest	 number	 of	 years	 of	 life	 lost	 due	 to	

cancer	(Figure	1.4)	(3).	The	brain	is	a	major	secondary	site	to	a	number	of	primary	

site	cancers	including	the	lungs,	breast	and	bowel,	thus	the	development	of	a	brain	

tumour	following	metastasis	is	likely	(11).	Figure	1.3	shows	the	20	most	commonly	

diagnosed	cancers	 in	the	UK	(2010)	and	figure	1.4	the	average	number	of	years	of	

life	 lost	 for	various	types	of	cancer.	Brain	and	CNS	cancers	are	responsible	 for	 the	

greatest	number	of	years	lost	(7).	As	the	incidence	of	cancer	throughout	the	world	

dramatically	increases	in	upcoming	years,	a	significant	proportion	of	these	tumours	

will	 metastasise	 to	 the	 brain,	 thus	 increasing	 the	 clinical	 occurrences	 of	 brain	

Figure	1.2	–	Brain	cancer	incidence	and	mortality	rates	in	England	(1979-2010).	
Reproduced	from	(10).	
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This image cannot currently be displayed.

cancer	(4).	 The	 earlier	 most	 cancers	 are	 diagnosed,	 the	 greater	 the	 chance	 of	

survival;	the	requirement	for	a	rapid	diagnostic	test	is	currently	emerging	as	GPs	are	

encouraged	 to	 suspect	 cancer	 sooner	 in	 line	with	 new	 guidelines	 updated	 by	 the	

National	 Institute	of	Health	and	Care	Excellence	(NICE)	(12).	As	of	June	2015,	NICE	

recommend	 that	 GPs	 refer	 patients	 to	 specialist	 centres	 via	 a	 symptom-based	

approach,	a	change	to	the	traditional	referral	procedure	of	referring	a	patient	based	

on	which	type	of	cancer	they	may	have.	NICE	suggests	that	around	5,000	lives	could	

be	 saved	 each	 year	 in	 England	 following	 early	 cancer	 diagnosis	 (12).	 Detecting	

disease	 early	 has	 many	 benefits,	 including	 the	 early	 intervention	 of	 therapeutic	

treatments	 and	 a	 reduction	 in	mortality	 and	morbidity	 rates	 (13).	 A	 simple,	 rapid	

and	 reliable	diagnostic	 test	would	enable	healthcare	providers	 to	diagnose	cancer	

sooner	and	would	relieve	demand	on	already	burdened	hospital	facilities.		

	

	

	

	

	

	

	

	

	

	

Figure	1.3	-	The	20	most	commonly	diagnosed	cancers	in	the	UK	
[excluding	melanoma	skin	cancer]	(2010).	Reproduced	from	(3).	
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1.2.2	 The	Anatomy	and	Function	of	the	Human	Brain	

The	 human	 brain	 is	 one	 of	 the	 most	 sophisticated	 results	 of	 biological	

evolution	 and	 it	 is	 responsible	 for	 all	 essential	 functions	 of	 the	 body.	 The	 nerves	

exiting	the	base	of	the	brain	to	the	body	via	the	spinal	cord	allow	for	the	control	of	

organ	 function,	 the	 ability	 to	 receive/send	 and	 interpret	 external	 stimuli	 (pain,	

touch	etc.)	and	limb	movement,	to	name	but	a	few	(14).	

The	brain	 is	 the	 control	 centre	of	 the	body	and	 this	 soft,	 jelly-like	organ	 is	

protected	within	the	cranium.	For	simplicity,	 the	brain	 is	anatomically	divided	 into	

three	 general	 regions;	 the	 forebrain	 (cerebrum),	 midbrain	 (cerebellum)	 and	 the	

hindbrain	(brainstem).	Figure	1.5	shows	the	main	areas	of	the	human	brain.	

Figure	1.4	-	The	average	years	of	life	lost	for	various	sites	of	cancer.	
Reproduced	from	(7).	
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The	forebrain	consists	of	the	two	cerebral	hemispheres	and	accounts	for	the	

major	 portion	 of	 the	 brain.	 Located	 within	 the	 cerebral	 hemispheres	 lies	 the	

diencephalon,	 the	 region	 of	 the	 thalamus	 and	 other	 glandular	 structures.	 The	

midbrain	is	located	between	the	diencephalon	and	the	hindbrain.	The	latter	consists	

of	 the	 pons,	 cerebellum	 and	 medulla	 oblongata,	 commonly	 referred	 to	 as	 the	

brainstem;	the	region	which	controls	critical	life-sustaining	functions.	

Each	 half	 of	 the	 brain	 (medially	 spliced	 in	 relation	 to	 the	 anterior	 of	 the	

body’s	 trunk)	 represents	 a	 cerebral	 hemisphere.	 These	 two	 halves	 are	 commonly	

referred	 to	as	 the	 left	and	right	hemispheres.	The	extent	of	 the	complexity	of	 the	

brains	 regional	 functions	 remains	 largely	 unknown;	 however,	 it	 is	 known	 that	 the	

cerebrum	 controls	 movements,	 memory,	 speech,	 emotional	 behaviour	 and	

senses	(14).		

Figure	1.5	-	Diagram	showing	the	major	areas	of	the	human	brain.	Adapted	
from	(19).	
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The	 left	 and	 right	 hemispheres	 are	 each	 divided	 into	 4	 general	 areas:	 the	

frontal	 lobe,	 temporal	 lobe,	 parietal	 lobe	and	 the	occipital	 lobe.	 Figure	1.6	 shows	

the	lobes	of	the	human	brain.	

	

	

	

	

	

The	frontal	lobe	areas	are	responsible	for	all	skeletal	muscle	movements	on	

the	opposite	side	of	the	body	to	its	region	in	the	cerebral	hemisphere.	For	example,	

the	right	cerebral	hemisphere	controls	 the	movement	of	 the	 left	half	of	 the	body.	

This	area	is	also	involved	with	speaking	and	some	personality	traits.		

The	 temporal	 lobe	 is	 the	 area	where	 sounds	 are	 processed	 and	memories	

stored.	As	 is	the	case	with	the	frontal	 lobes,	the	parietal	 lobes	are	the	registration	

points	of	the	opposite	half	of	the	body’s	sensory	 inputs	 (temperature,	touch	etc.).	

Finally,	 the	 occipital	 lobes	 house	 visual	 function	 and	 allow	 the	 determination	 of	

distances,	colours	and	shapes.	A	tumour	in	any	one	of	these	four	lobes	can	affect	a	

person’s	 perception	 of	 external	 stimuli,	 understanding	 of	 speech	 and	 text,	 and	

Figure	1.6	-	Diagram	showing	the	lobes	of	the	human	brain.	Replicated	from	(19).	
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changes	to	their	senses;	the	list	of	symptoms	due	to	the	presence	of	a	brain	tumour	

is	exhaustive	(14).	

1.2.3 Fundamentals	of	Brain	Cancer	

1.2.3.1 Primary	Brain	Tumours	

1.2.3.1.1 Gliomas	

Primary	 brain	 tumours	 can	 be	 broadly	 divided	 into	 primary	 glial	 tumours,	

medulloblastoma,	 ependymoma,	 germ	 cell	 tumours	 (germinoma	 and	 teratoma),	

meningioma,	nerve	sheath	and	pituitary	tumours.	More	than	120	different	types	of	

tumour	 can	 be	 found	 in	 the	 brain,	 of	 which,	 gliomas	 account	 for	 30-40%	 of	 all	

intracranial	neoplasms	(15).	Gliomas	occur	in	the	cerebral	hemispheres	in	>	90.0	%	

of	cases	(16),	thus	numerous	physical	and	neurological	symptoms	often	occur	when	

a	tumour	affects	the	function	of	a	particular	lobe.	

The	term	glioma	refers	to	a	primary	site	tumour	which	originates	from	glial	

cells	 (neuroglia)	 within	 the	 brain	 and	 CNS.	 The	 two	 main	 types	 of	 glial	 cells	 -	

astrocytes	 and	 oligodendrocytes	 -	 outnumber	 neuron	 cells	 and	 occupy	

approximately	half	of	the	brain	(17).	The	three	main	types	of	malignant	glioma	are	

astrocytomas,	 ependymomas	 and	 oligodendrogliomas	 (18);	 the	 most	 common	

primary	brain	tumour	in	adults,	GBM,	derives	from	anaplastic	astrocytomas	through	

a	process	whereby	cells	undergo	anaplasia	causing	them	to	rapidly	divide	and	have	

very	 few	morphological	 features	of	normal	 cells	 (19).	A	mixed	glioma	 is	 a	 tumour	

with	 a	 mixture	 of	 cell	 types	 which	 occur	 in	 the	 three	 most	 frequently	 observed	
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tumours	(19).		Table	1.1	shows	the	sub-types	of	high-grade	gliomas	(HGG)	and	low-

grade	gliomas	(LGG)	described	by	the	World	Health	Organisation	(WHO)	(20).	

	

General	Tumour	Grade	 WHO	Grade	 Grade	Sub-type	

Low	Grade	
I	
II	
II	

Pilocytic	astrocytoma	
Oligodendroglioma	

Astrocytoma	

High	Grade	
III	
III	
IV	

Anaplastic	astrocytoma	
Oligodendroglioma	

Glioblastoma	multiforme	

	

The	most	 aggressive	 and	 commonly	 diagnosed	 brain	 tumour,	 GBM,	 rarely	

metastasises	beyond	 the	 cranium	 (reported	0.44	%	 frequency	of	 all	 cases)	 due	 to	

the	 absence	 of	 lymphatic	 vessels	 in	 the	 brain	 and	 the	 difficulty	 for	 rogue	 cells	 to	

penetrate	blood	vessels	(21).	

1.2.3.1.2 Meningioma	

Meningiomas	are	neoplasms	that	 form	from	arachnoid	cap	cells	 located	 in	 the	

villi	of	the	meninges,	a	layer	of	3	connective	tissues	which	covers	the	organs	of	the	

CNS.		Approximately	90.0	%	of	all	diagnosed	meningiomas	are	benign,	5-7	%	atypical	

(cells	 which	 are	 morphologically	 abnormal),	 and	 1-3	 %	 malignant.	 Atypical	 and	

malignant	 meningiomas	 are	 aggressive	 and	 rapidly	 progress	 into	 serious	 life-

Table	1.1	 -	Primary	brain	 tumour	sub-types	with	WHO	grade	classification.	Adapted	
from	(20).	
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threatening	tumours.	A	reported	40.0	%	of	all	atypical	meningiomas	have	a	5-year	

recurrence	rate	(22).	

1.2.3.2 Metastatic	Brain	Tumours	

	 Metastatic	 brain	 tumours	 are	 intracranial	 neoplasms	 that	 originate	 from	

cancers	outside	the	CNS.	The	likelihood	of	a	metastatic	brain	tumour	occurring	from	

a	malignant	tumour	elsewhere	in	the	body	is	extremely	contingent	on	the	location	

of	the	primary	site	tumour.	Lung	cancer	is	the	most	common	primary	site	which	will	

metastasise	 to	 the	 brain	 and	 is	 responsible	 for	 a	 reported	 50.0	 %	 of	 all	 brain	

metastases;	in	addition,	breast	cancer	and	malignant	melanomas	are	responsible	for	

some	15-25	%	 and	 5-20	%	of	 all	 brain	metastases,	 respectively	 (11).	 The	 cerebral	

hemispheres	 are	 the	 location	 of	 80-85	 %	 of	 all	 brain	metastases	 due	 to	 the	 rich	

blood	supply	and	large	tissue	mass	(23).	Fewer	brain	metastases	are	located	outside	

of	the	cerebral	hemispheres;	10-15	%	occur	in	the	cerebellum	and	a	meagre	1-3	%	in	

the	brain	stem	(24).	

	 The	 metastatic	 process	 occurs	 when	 cancer	 cells	 from	 a	 primary	 tumour	

detach	to	form	a	deposit	at	a	remote	site	via	a	haematogenous	or	lymphatic	route.	

Figure	 1.7	 shows	 the	 process	 of	 metastasis	 from	 a	 primary	 site	 cancer	 (25).	

Approximately	 50.0	 %	 of	 metastatic	 brain	 cancer	 patients	 eventually	 have	 their	

primary	sites	diagnosed	(26).	

	

	



12	
		

	

	

	

	

	

	

	

	

	

	

	

	

1.2.3.3 Programmed	Cell	Death	

Apoptosis	 and	 regulated	 necrosis	 -	 termed	 generally	 as	 programmed	 cell	

death	 (PCD)	 -	 are	 essential	 for	 normal	 cell	 life	 cycle	 turnover	 in	 multicellular	

organisms	 (27).	 Programmed	 cell	 death	 is	 a	 vital	 anti-cancer	 process;	 a	 cellular	

dysfunction	may	potentially	prevent	the	elimination	of	harmful	cells,	thus	allowing	

them	to	continue	to	develop	various	diseases	such	as	cancer	(28).	Tissue	displaying	

neoplasia	 -	 the	 growth	 of	 abnormal	 tissue	 -	 often	 exhibits	 chromosomal	

disorganisation,	 ineffective	 cellular	 proliferation	 and	 unmonitored	 apoptosis	 (29).	

Figure	 1.8	 shows	 a	 schematic	 of	 the	 apoptotic	 process	which	 can	potentially	 lead	

onto	harmful	cells	replicating	uncontrollably	(30).	

	

Figure	1.7	-	Diagram	showing	the	process	of	metastasis	from	a	primary	
site	cancer.	Adapted	from	(25).	
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	 In	 addition	 to	 the	 latter,	 another	 accepted	 model	 of	 cancer	 development	

involves	stromal	cell	damage	leading	to	the	initiation,	growth	and	progression	of	a	

tumour.	A	tumour	cell’s	interaction	with	its	surrounding	stroma	allows	for	vascular	

and	 tumour	 cell	 growth.	 The	 stroma	 is	 composed	 of	 a	 network	 of	 cellular	 tissues	

that	 surround	 and	 interact	 with	 the	 tumour;	 upon	 cellular	 proliferation,	 growth	

factors	 and	 angiogenesis	 factors	 that	 promote	 carcinogenesis	 and	 the	 process	 of	

uncontrollable	cell	division	are	released	(27,	29).	

	

	

	

Figure	1.8	-	Diagram	showing	the	process	of	cellular	apoptosis.	Adapted	from	(30).	
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1.2.3.4 Carcinogenesis	

The	 development	 of	 a	 tumour	 is	 a	 multistage	 process	 which	 is	 generally	

divided	 into	 three	 stages:	 initiation,	 promotion	 and	 progression.	 Initiation	 occurs	

when	cellular	DNA	is	damaged	or	destroyed	due	to	the	exposure	of	a	carcinogen.		

	

The	 purpose	 of	 initiation	 is	 to	 rapidly	 create	 irreversible	 genetic	 damage	 that	

possesses	 the	 potential	 to	 replicate	 under	 the	 influence	 of	 promoting	 agents.	

Promotion	 involves	 the	 clonal	 expansion	 of	 initiated	 cells	 due	 to	 the	 genetic	

alterations	 accumulated,	 thus	 resulting	 in	 the	 formation	 of	 a	 benign	 tumour.	

Tumour	 promotion	 agents	 are	 generally	 non-mutagenic	 but	 possess	 the	 ability	 to	

activate	 cell	 division.	 Tumour	 progression	 allows	 for	malignant	 transformation	 to	

occur	 and	 for	 malignant	 cells	 to	 become	 more	 aggressive	 (invading	 surrounding	

tissue).	 Progression	 enables	 further	 genetic	 alterations	 to	 occur	 and	 the	potential	

for	metastasis	(31-32).	Figure	1.9	shows	the	basic	process	of	carcinogenesis	(33).	

	

Figure	1.9	-	Diagram	showing	the	process	of	carcinogenesis.	Adapted	from	(33).	
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1.3 Diagnostic	Modalities	of	Primary	Brain	Tumours	

1.3.1	 Symptoms	of	Brain	Cancer	

The	term	brain	oedema	is	defined	as	an	increase	in	the	brain’s	water	content	

(>80.0	 %)	 which	 is	 a	 response	 to	 a	 primary	 brain	 injury	 or	 disease	 (34).	 Brain	

oedema	leads	to	changes	 in	 intracranial	pressure	and	cerebral	blood	flow	in	many	

diseases	and	is	a	prominent	feature	of	brain	cancer	(35).	An	increase	of	intracranial	

pressure	often	contributes	to	neurologic	dysfunction	and	has	a	negative	impact	on	a	

patient’s	 quality	 of	 life	 with	 symptoms	 including	 worsening	 headaches,	 nausea,	

vomiting,	 abnormal	 eye	 movements,	 seizures	 and	 strokes	 (36).	 Approximately	

60.0	%	 of	 patients	 with	 brain	 tumours	 report	 having	 a	 headache;	 intracranial	

metastasis	 were	 found	 in	 more	 than	 30.0	 %	 of	 cancer	 patients	 whose	 main	

symptom	 was	 a	 headache	 (37).	 The	 list	 of	 symptoms	 linked	 to	 brain	 cancer	 is	

extensive,	 thus	 no	 one	 symptom	 is	 solely	 linked	 to	 the	 presence	 of	 a	 tumour.	

Currently,	the	diagnosis	of	a	brain	tumour	is	carried	out	via	a	“differential	diagnosis”	

process,	 primarily	 to	 rule-out	 any	 underlying	 illnesses	 which	 symptoms	 overlap	

those	 of	 a	more	 sinister	 diagnosis.	 An	 initial	 patient	 assessment	 includes	medical	

history	 investigations,	 physical	 examinations,	 imaging	 studies	 conducted	 and	

laboratory	 investigations	 (38).	 Due	 to	 the	many	 symptoms	 of	 cancer,	 the	 current	

diagnostic	regime	is	extremely	non-specific	and	subjective.	In	the	majority	of	brain	

cancer	cases,	early	diagnoses	are	not	made	due	to	the	patient	presenting	symptoms	

deemed	as	minor	and	less	significant,	such	as	headaches	or	dizziness	(37).	The	grade	

of	 the	brain	 tumour	 is	an	 important	 factor	when	considering	how	the	tumour	will	
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respond	 to	 treatment.	 Generally,	 faster	 growing,	 high-grade	 tumours	 are	 much	

more	 likely	 to	 metastasise	 and	 recur	 following	 treatment	 compared	 to	 slower-

growing,	 low-grade	 tumours	 (39).	 An	 example	 of	 a	 patient’s	 symptoms	 being	

misinterpreted	could	be	with	the	eyes;	the	choroid,	the	eyes	vascular	structure,	is	a	

common	 site	 for	 ocular	 metastasis.	 The	 highest	 incidence	 of	 ocular	 metastatic	

cancer	occurs	from	a	breast	primary	site	tumour	in	40-70	%	of	cases	(40).	Patients	

present	with	symptoms	 including	visual	acuity	and	 image	distortion	which	may	be	

misdiagnosed.	In	a	number	of	cases,	the	first	healthcare	provider	a	patient	visits	is	

the	optician	 (41)	 due	 to	 eyesight	 problems;	 the	optician	 refers	 the	patient	 to	 the	

hospital	for	further	investigation	(42).	

1.3.2	 Preoperative	Diagnosis		

If	a	patient’s	general	practitioner	 (GP)	suspects	a	brain	 tumour	 the	 routine	

procedure	 would	 be	 to	 perform	 one	 or	 more	 radiological	 imaging	 studies.	 Brain	

tumours	 are	 initially	 detected	 using	 a	 non-invasive	 imaging	 technique,	 such	 as	

computed	 tomography	 (CT)	 or	magnetic	 resonance	 imaging	 (MRI).	 Imaging	 of	 the	

brain	 allows	 for	 mass,	 location	 and	 tumour	 margins	 to	 be	 determined	 (43).	 The	

following	section	describes	the	current	modalities	for	the	preoperative	diagnosis	of	

brain	tumours.	
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1.3.2.1	Magnetic	Resonance	Imaging	(MRI)	

Magnetic	resonance	imaging	is	often	the	primary	imaging	technique	used	to	

evaluate	 the	 presence	 of	 a	 brain	 tumour.	 MRI	 scanners	 utilise	 a	 combination	 of	

radiowaves,	 magnetic	 fields	 and	 specialised	 computer	 software	 to	 allow	 for	 the	

body’s	 internal	 structures	 to	 be	 visualised	 as	 a	 3-dimensional	 (3D)	 image.	MRI	 is	

highly	 sensitive	 for	 the	 detection	 of	 abnormalities,	 however;	 it	 provides	 a	 large	

number	of	false	positives;	is	costly	and	requires	a	scarce	resource,	liquid	helium,	to	

cool	the	magnet	(44).	False	positives	occur	 in	a	reported	11.0	%	of	metastatic	and	

primary	 cancer	 lesions,	 solely	 based	 on	 the	 MRI	 scan	 (45).	 In	 addition	 to	 MRI,	

functional	magnetic	 resonance	 imaging	 (fMRI)	 is	 increasingly	 becoming	 used	 pre-

operatively	 to	 investigate	 patient	 brain	 function	 and	 pathology.	 fMRI	 may	 be	

advantageous	over	MRI	 in	cases	where	presumed	tumour	 localisation	 is	 located	 in	

or	 near	 vital	 neurological	 structures.	 The	most	 commonly	 used	 fMRI	 technique	 is	

blood	 oxygenation	 level-dependent	 (BOLD)	 which	 takes	 advantage	 of	 the	 link	

between	 neuronal	 activity	 and	 blood	 flow,	 thus	 allowing	 the	 localisation	 of	 brain	

structures	 (46).	 Evidence	 of	 a	 tumour	 by	 MRI	 or	 fMRI	 requires	 confirmatory	

diagnosis	via	biopsy	or	tumour	resection	(47).		

1.3.2.2	Computed	Tomography	(CT)	

Computed	tomography	differs	between	healthy	tissue	and	tumour	tissue	by	

examination	 of	multiple	 highly	 detailed	 images	 of	 the	 brain.	 Specialised	 software	

combines	the	highly	detailed	images	to	generate	a	picture	of	the	brain	which	can	be	
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explored	 as	 required	 for	 preoperative	 diagnosis.	 A	 CT	 scan	 uses	 X-rays	 to	 create	

tomograms	 of	 the	 structures	 in	 the	 body,	 including	 bones,	 tumours	 and	 blood	

vessels.	 The	 circular	 structure	 around	 the	 bed	 on	 which	 the	 patient	 lays	 down	

houses	 an	 X-ray	 unit	which	 rotates	 to	 capture	 scans	 of	 the	 internal	 structures.	 In	

some	cases	concerning	the	brain	or	abdomen,	visualisation	is	aided	by	injecting	an	

iodine-based	 contrast	 dye	 into	 the	 patient’s	 circulatory	 system	 beforehand	 to	

enable	clearer	differentiation	between	tissues	and	blood	vessels	(48).	As	is	the	case	

with	many	imaging	techniques,	CT	scans	can	be	misinterpreted	by	the	radiographer	

resulting	 in	 patients	 undergoing	 the	 incorrect	 treatments,	 excessive	wasted	 costs	

through	further	testing	and	unnecessary	surgeries.	CT	is	not	always	available	due	to	

costly	breakdowns	nor	can	it	provide	histological	evidence	of	tumour	presence	(49).	

The	general	lack	of	awareness	with	regards	to	knowledge	of	lifetime	cancer	risk	to	

patients	 following	 a	 CT	 scan	 is	 relatively	 unknown	 to	 clinicians,	 despite	 their	

familiarity	 to	 the	procedure;	although,	 it	has	been	deemed	that	CT	procedures	do	

not	 increase	 the	 incidence	of	 cancer	 in	patients	who	undergo	 the	procedure	 (50).	

The	greatest	risk	with	CT	scanning	comes	when	it	is	performed	on	children.	Children	

have	an	increased	risk	of	low-dose	radiation	causing	fatal	cancer	with	an	estimated	

1	in	1000	paediatric	fatalities	occurring	following	a	CT	scan	(51).	

1.3.2.3	Additional	Imaging	Techniques	

Other	 imaging	 techniques	 exist	 to	 provide	 clinicians	 with	 additional	

information	regarding	a	tumours	mass,	precise	location	and	exact	tumour	margins.	

Positron	 emission	 tomography	 (PET)	 is	 often	 used	 following	 a	 CT	 or	MRI	 scan	 to	
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allow	 surgeons	 to	 prepare	 for	 biopsy	 collection	 by	 localising	 a	 specific	 area	 of	

interest;	 guided	 biopsy	 collection	 allows	 the	 surgeon	 to	 be	 more	 specific	 when	

taking	 a	 representative	 sample	 of	 the	 tumour,	 rather	 than	 collecting	 one	 which	

displays	no	tumour	presence	creating	discrepancies	between	biopsy	results	and	the	

medical	 imaging	 findings	 (52).	 Single-photon	 emission	 computed	 tomography	

(SPECT)	 can	 be	 used	 to	 differentiate	 between	 various	 grades	 of	 astrocytomas	 for	

example,	whereby	specific	 treatment	plans	affect	overall	patient	outcomes;	SPECT	

involves	 injecting	 the	 patient	 with	 a	 radioactive	 substance	 which	 interacts	 with	

healthy	and	cancerous	cells	 followed	by	 imaging	with	a	standard	CT	scanner.	Prior	

to	surgery,	a	magnetic	resonance	angiography	(MRA)	scan	would	be	performed	to	

allow	 surgeons	 to	 visualise	 the	 blood	 vessels	 supplying	 a	 highly	 vascular	 brain	

tumour.	

In	addition	to	the	discussed	imaging	techniques,	it	is	routine	for	a	chest	X-ray	

to	be	performed	to	determine	whether	the	patient	has	a	primary	lung	cancer	that	

has	metastasised	 to	 the	brain	 (38).	 Lung	 cancer	 is	 the	most	 common	primary	 site	

which	will	metastasise	 to	 the	brain	and	 is	 responsible	 for	a	 reported	50.0	%	of	all	

brain	metastases	(11).	

1.3.2.4	Biological	Markers	

Biological	markers	(biomarkers)	directly	reflect	a	spectrum	of	diseases	from	

initial	 manifestation	 to	 more	 advanced	 stages.	 Biomarkers	 have	 previously	 been	

defined	as	 “cellular,	 biochemical	 or	molecular	 alterations	 that	 are	measureable	 in	

biological	 media	 such	 as	 human	 tissues,	 cells	 or	 fluids”	 (53),	 thus	 biomarkers	
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secreted	 from	 tumours	 can	 be	 objectively	 measured	 to	 assist	 clinicians	 when	

identifying	tumour	development	and	aid	 in	decision	making	 for	 the	most	effective	

therapeutic	pathway	(54).		

Biomarkers	are	 invaluable	tools	 for	early	disease	diagnosis	when	combined	

with	 medical	 imaging	 techniques	 or	 when	 a	 multiple	 biomarkers	 assessment	 is	

performed;	 alone	 they	 are	 not	 universally	 accepted	 due	 to	 their	 low	 diagnostic	

ability	 and	 frequent	 false-positive	 results	 (55).	 Table	 1.2	 shows	 the	 glioma	

biomarkers	routinely	used	for	diagnosis	and	biological	matter	the	biomarker	can	be	

found	in.	Biomarkers	are	used	in	hospitals	for	diagnostic	and	screening	methods	to	

identify	 a	 specific	 type	 of	 cancer	 in	 patients,	 thus	 biomarker	 analysis	 is	 only	

routinely	given	to	patients	whereby	a	specific	type	of	cancer	is	suspected;	however,	

with	 the	 complex	 mixture	 of	 symptoms	 that	 may	 arise	 with	 a	 brain	 tumour	 the	

possibility	 of	misidentifying	 these	 symptoms	 is	 likely.	 Biomarkers	 are	 expected	 to	

have	 results	with	 high	 sensitivities	 and	 specificities	 (54).	 Research	 has	 found	 that	

biomarkers	 for	 brain	 tumours	 can	 have	 sensitivities	 and	 specificities	 ranging	 from	

40-88	 %	 and	 59-81	 %	 respectively	 (56),	 although	 current	 diagnoses	 based	 on	

biomarkers	generally	provides	high	sensitivities	and	low	specificities,	followed	by	an	

array	 of	 advantages	 and	 disadvantages	 including	 highly	 labour	 intensive	

analysis	(57).		
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Target	Gene/Protein	 Biomarker	Localisation	

	Methlyguanine	methyl	transferase	(MGMT)	 Tumour	tissue	

Human	cartilage	glycoprotein-39	(YKL-40)	 Serum	or	tumour	tissue	

	Matrix	metallopeptidase-9	(MMP-9)	 Serum	

Glial	fibrillary	acid	protein	(GFAP)	 Serum	or	tumour	tissue	

Exosomes	 Serum	or	tumour	tissue	

Growth	arrest	and	DNA-damage-inducible	
protein	(Gene:	GADD45a)	 Tumour	tissue	

Rad	GTPase-activating-like	protein	(IQGAP1)	 Tumour	tissue	

Insulin-like	growth	factor	binding	protein-
2(IGFBP2)	 Serum	or	tumour	tissue	

Receptor	tyrosine	phosphatase	β	(RPTPβ)	 Tumour	tissue	

	

1.3.2.5	Histopathological	Confirmatory	Diagnosis	

Following	medical	imaging,	confirmatory	diagnosis	is	necessary	to	determine	

whether	the	tumour	present	is	malignant	or	benign.	A	biopsy	is	collected	from	the	

brain	tumour	by	drilling	into	the	skill	and	collecting	a	specimen	(58),	commonly	via	a	

Table	 1.2	 -	 Glioma	 biomarkers	 used	 for	 diagnosis	 and	 biological	 matter	 the	
biomarker	is	identified	in.	Adapted	from	(54)	.	
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stereotactic	technique	which	is	known	for	its	limitations.	Stereotactic	biopsies	have	

been	reported	to	 lead	to	diagnostic	errors	 resulting	 in	patients	being	treated	with	

incorrect	therapies.	A	diagnosis	based	on	a	stereotactic	biopsy	is	reported	to	be	no	

greater	 than	 that	 of	 a	 diagnosis	 established	 based	 on	 patient	 history	 and	 other	

clinical	 findings	 (59).	 Following	 staining	of	 the	 tissue	with	haematoxylin	 and	eosin	

(H&E)	 to	 ease	 visualization	 of	 cellular	 components,	 the	 biopsy	 specimen	 is	

microscopically	 examined	 by	 a	 histopathologist	 to	 assess	 tissue	 morphology	 and	

architecture.	 The	 internationally	 accepted	 brain	 tumour	 grading	 system	 from	 the	

WHO	 provides	 histopathologists	 with	 guidelines	 when	 microscopically	 assessing	

tissue	samples.	The	WHO	describes	the	four	grades	of	brain	tumours	as	(60);	

• Grade	I	-	low	proliferation;	possibility	of	a	cure	following	surgical	resection	

• Grade	 II	 -	generally	 infiltrative	(spreading	 into	surrounding	healthy	tissues);	

relatively	 low-levels	 of	 proliferation;	 tends	 to	 possess	 lower	 and	 higher	

grades	of	malignancy	depending	on	proliferation	rate	

• Grade	III	-	definite	evidence	of	histological	malignancy	(nuclear	atypia)	

• Grade	 IV	 -	 abundance	 of	malignant	 cells;	mitotically	 active;	 necrosis-prone	

neoplasms.	

Figure	 1.10	 shows	 the	 histopathological	 progression	 from	 healthy	 brain	 tissue	 to	

WHO	grade	IV	-	glioblastoma	multiforme.	In	grade	II	the	astrocytoma	cells	present	

signs	 of	multiplication	 and	 infiltration;	 grade	 III	 the	 cells	 begin	 to	 proliferate	 and,	

present	 signs	 of	 mass	 multiplication	 and	 become	 anaplastic;	 grade	 IV	 the	 cells	

present	hyperplasia	and	mass	necrosis	(61).	
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Histological	grading	does	not	provide	clinicians	with	accurate	prognostic	and	

therapeutic	details	on	an	individual	patient	basis	(62).	The	grading	of	a	brain	tumour	

is	 potentially	 underestimated	 or	 overestimated	 depending	 on	 the	 region	 of	 the	

tumour	 at	 which	 the	 biopsy	 was	 collected	 from	 (63).	 The	 location	 of	 the	 brain	

tumour	 determines	 which	 technique	 is	 performed	 to	 collect	 the	 biopsy.	 If	 the	

tumour	 is	 operable	 then	 a	 craniotomy	 to	 access	 and	 debulk	 the	 tumour	may	 be	

conducted;	 however,	 if	 the	 tumour	 is	 located	 in	 an	 area	 classed	 as	 unsafe	 or	

inoperable	 then	 an	X-ray	 guided	 stereotactic	 biopsy	would	be	performed	 instead,	

whereby	 a	 small	 hole	 is	 drilled	 and	 a	 thin	 needle	 is	 guided	 to	 collect	 a	 tissue	

specimen	(38).	

The	 current	 diagnostic	 regime	 relies	 heavily	 on	 histopathological	

examination	thus,	diagnosis	via	histological	examination	of	tissue	is	highly	subjective	

(64);	pathologic	errors	occur	in	a	reported	1-43	%	of	all	pathological	specimens	(65).	

Figure	 1.10	 -	 Histopathological	 progression	 of	 WHO	 grade	 gliomas	 from	
normal/healthy	 brain	 tissue	 (left)	 to	WHO	 grade	 IV	 Glioblastoma	multiforme	
(right).	Adapted	from	(61)	.	
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Treatment	pathways	are	reliant	on	histopathological	diagnosis;	the	misdiagnosis	of	

a	 tumour	 could	 potentially	 severely	 affect	 a	 patient’s	 overall	 prognostic	 outcome	

(38).	

The	 ability	 to	 rapidly	 and	 accurately	 diagnose	 brain	 tumours	 has	 many	

benefits,	 including	 the	 early	 intervention	 of	 therapy	 leading	 to	 improved	 patient	

prognostic	outcomes	and	relieving	the	burden	on	economic	resources	(13).	

	

1.4	 Problems	with	Current	Brain	Cancer	Diagnosis	

At	present,	England	falls	below	many	European	countries	in	terms	of	overall	

cancer	survival.	The	increased	number	of	deaths	due	to	cancer	in	England	is	due	to	

delays	 in	 presentation,	 primary	 and	 secondary	 care	 delays,	 and	 delays	 in	

communication	 between	 the	 latter.	 Patients	 are	 commonly	 diagnosed	 following	 a	

visit	to	their	GP	via	a	two-week	wait	(TWW)	referral	system,	whereby	patients	can	

expect	 to	visit	a	specialist	oncologist	 for	 further	 investigation	within	two	weeks.	A	

reported	38.0	%	of	people	living	with	a	brain	tumour	visited	their	GP	on	more	than	5	

occasions	 before	 finally	 being	 diagnosed	 (66),	 this	 suggests	 that	 the	 GP	 referral	

route	 is	 dangerously	 ineffective	 for	 brain	 tumours	with	 opportunities	 to	 diagnose	

their	 tumour	 being	 missed	 (66).	 A	 GP	 consultation	 is	 a	 common	 route	 for	 brain	

tumour	diagnosis,	however,	in	many	cases	individuals	are	diagnosed	via	one	of	the	

following;	 an	 emergency	 presentation	 at	 an	 accident	 and	 emergency	

(A&E)/emergency	room	department;	an	urgent	referral	from	a	GP	not	made	under	
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the	 TWW;	 detected	 via	 screening	 programmes	 (bowel,	 cervical,	 breast)	 or	 self-

referral	 to	a	hospitals	out-patient	department.	A	study	assessing	739,667	tumours	

from	a	 range	of	 cancers	 (prostate,	ovary,	CNS,	 to	name	a	 few)	 found	 that	24.0	%	

were	 diagnosed	 following	 emergency	 presentation;	 TWW	 and	 routing	 GP	 referral	

accounted	 for	 26.0	 and	 21.0	 %	 respectively.	 The	 one-year	 survival	 rate	 was	

significantly	 lower	 for	 those	 diagnosed	 at	 an	 emergency	 presentation	 compared	

with	other	diagnostic	routes	(67).		

The	point	at	which	a	brain	tumour	diagnosis	occurs	has	a	significant	impact	

upon	 the	patient’s	prognosis	and	overall	outcomes.	Unfortunately	 for	 the	patient,	

symptoms	 of	 brain	 cancer	 are	 absent	 or	 minor	 during	 low-grade	 tumour	

development.	Symptoms	are	more	pronounced	and	troublesome	when	the	tumour	

is	 advanced,	 high-grade	 and	when	 prognosis/therapeutic	 intervention	 options	 are	

poor.	Patients	diagnosed	at	emergency	presentations	are	commonly	diagnosed	with	

an	 advanced	 stage	 tumour,	 hence	 the	 poor	 one-year	 survival	 rate	 -	 treatment	

options	 may	 be	 limited,	 therapies	 ineffective	 or	 no	 treatments	 available	

whatsoever.	 The	 Brain	 Tumour	 Charity	 -	 the	 UK’s	 largest	 dedicated	 brain	 tumour	

charitable	 organisation	 -	 reported	 that	 nationally	 some	 62.0	 %	 of	 people	 are	

diagnosed	 at	 an	 emergency	 presentation.	 Figure	 1.11	 shows	 the	 percentage	 of	

people	 in	 the	 UK	 who	 attended	 healthcare	 services	 available	 prior	 to	 diagnosis,	

including	NHS	walk	in	centres,	opticians	with	eyesight	problems	and	others	referring	

to	alternative	diagnostic	routes,	such	as	outpatient	appointments	(66).		
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	 Although	 routinely	 performed,	 medical	 imaging	 has	 many	 benefits	 and	 a	

number	of	limitations.	MRI	is	excellent	for	visualising	the	structures	of	the	brain	and	

other	 internal	 organs	 for	 tumour	 detection;	 however,	 false	 positives	 are	 not	

uncommon	with	the	procedure	(63).	Furthermore,	CT	scans	allow	for	highly	detailed	

images	 of	 internal	 structures	 to	 be	 visualised,	 typically	 following	 iodine-based	

contrast	 dye	 being	 injected	 into	 the	 patient’s	 blood	 stream	 to	 create	 contrast	

between	 tissues	 and	 blood	 vessels.	 Like	 MRI/fMRI,	 CT	 scans	 are	 subject	 to	 the	

experience	and	competency	of	the	radiographer	who	is	fallible.		

	 Biological	markers	 for	 brain	 tumour	 diagnosis	 are	 used	 to	 identify	 specific	

types	 of	 cancer	 following	 the	 presentation	 of	 symptoms	 suspected	 of	 cancer,	

although	 no	 marker	 is	 exactly	 specific	 for	 one	 type	 of	 disease.	 When	 used	 for	

diagnosis	in	isolation,	biomarkers	are	not	accepted	universally	due	to	their	frequent	

false-positive	 results	 (55).	 Tumour	 markers	 have	 the	 potential	 to	 be	 elevated	 in	

patients	who	have	a	benign	tumour,	likewise,	those	who	do	have	a	malignant	high-

Figure	 1.11	 -	 The	 percentage	 of	 individuals	 with	 a	 brain	 tumour	 who	
attended	a	healthcare	service	on	at	least	one	occasion.	Adapted	from	(66).	

%	
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grade	 tumour	 may	 not	 necessarily	 present	 markers	 in	 their	 tissue	 or	 blood	 to	

indicate	 the	 presence	 of	 a	 tumour.	 Biomarkers	 are	 best	 used	 when	 multiple	

biomarker	analysis	is	performed	alongside	patient	history,	symptoms	presented	and	

medical	 imaging	 techniques.	 Despite	 the	 major	 limitations	 of	 tumour	 markers,	

researchers	 continue	 to	 focus	on	 the	discovery	of	 new	markers	 and	 the	potential	

role	 they	 may	 have	 in	 screening,	 early	 cancer	 detection	 and	 treatment	

planning	(68).		

	 Patient	 treatment	 pathways	 are	 extremely	 reliant	 on	 histopathological	

analysis	of	a	biopsy	specimen;	however,	as	previously	discussed,	these	examinations	

are	highly	 subjective	with	errors	occurring	 in	1-43	%	of	cases	 (65).	Overall	patient	

prognostic	outcomes	rely	on	the	correct	treatment	for	the	exact	type	and	grade	of	

tumour	 present	 within	 the	 brain	 of	 the	 suffering	 patient.	 Errors	 occurring	 with	

histopathological	analysis	can	severely	affect	a	patient’s	life	(47).		

	 Regardless	of	the	problems	with	current	brain	tumour	diagnoses,	it	is	widely	

accepted	 that	 early	 diagnosis	 and	 early	 intervention	 of	 therapy	 greatly	 benefits	

patient	survival	prognostic	outcomes	and	healthcare	systems	(13).	As	the	majority	

of	 patients	 primarily	 attend	 a	 GP	 appointment	 (66)	 with	 symptoms	 not	 always	

suggestive	 of	 brain	 cancer,	 it	would	 be	 extremely	 beneficial	 to	 both	 patients	 and	

healthcare	providers	 if	a	 rapid	diagnostic	 tool	was	 implemented	 in	 the	GP’s	office	

for	brain	cancer	detection.	The	diagnostic	 regime	proposed	 throughout	 this	 thesis	

describes	 a	 rapid	 diagnostic	 methodology	 that	 would	 greatly	 reduce	 diagnosis	
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times,	 reduce	 mortality	 rates	 and	 has	 the	 potential	 to	 revolutionise	 the	 clinical	

environment	(69).		

	

1.5 Use	of	Human	Serum	for	Biological	Analysis	

1.5.1 Human	Serum	 	

Biofluids	 such	 as	 serum	 are	 easily	 accessible,	 collection	 is	 relatively	 non-

invasive	and	can	be	performed	worldwide.	Human	serum	is	a	ubiquitous	fluid	that	is	

routinely	 collected	 from	patients	 for	medical	 observations	 and	 investigations;	 the	

collection	of	serum	 is	minimally	 invasive	and	 its	high	availability	makes	 it	 ideal	 for	

analysis.	 Serum	contains	more	 than	20,000	different	proteins,	 the	majority	of	 the	

concentration	from	serum	albumin	(50g	l-1)	and	minute	concentrations	of	1ng	l-1	of	

troponin.	The	 low	molecular	weight	 fraction	of	human	serum	is	 referred	to	as	 the	

“peptidome”	and	 it	contains	small	biomolecules	which	are	of	particular	 interest	 in	

cancer	diagnoses	(70).	The	level	of	these	proteins	directly	relates	to	specific	disease	

states,	 thus	 human	 serum	 is	 highly	 suitable	 for	 cancer	 diagnostic	 purposes	 (71).	

Small	 molecules	 carried	 by	 blood	 serum	 contain	 a	 large	 amount	 of	 biological	

information,	 enabling	 this	 readily-accessible	 biofluid	 to	 be	 used	 for	 the	 early	

detection	 of	 a	 wide	 range	 of	 diseases.	 Serum	 has	 many	 advantages	 over	 other	

biological	samples;	repeat	sampling	and	 large	sample	quantities	are	both	possible.	

The	biochemical	composition	of	serum	is	highly	complex	and	it	holds	the	ability	to	

define	 function	and	phenotype,	 thus	 the	potential	 to	 interpret	or	 gain	 a	 chemical	
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signature	 unique	 to	 an	 individual’s	metabolome	 paves	way	 for	 disease	 diagnosis,	

predictions	 and	 environmental	 factors	 contributing	 to	 disease.	 The	 biomarkers	

housed	 within	 serum	 are	 the	 focus	 of	 early	 detection,	 diagnosis,	 monitoring	 for	

disease	recurrence,	and	efficiency	monitoring	of	therapy	(72).	

Combining	 both	 human	 serum	 and	 ATR-FTIR	 spectroscopy	 offers	 point-of-

care	testing	with	minimal	interpretation,	thus	allowing	for	serum	spectroscopy	to	be	

welcomed	within	the	clinic.	ATR	allows	for	biological	fluids,	such	as	blood	serum,	to	

be	placed	and	dried	directly	on	the	crystal	prior	to	spectral	measurement.	ATR-FTIR	

spectroscopy	 is	 ideal	 for	 the	analysis	of	blood	serum;	 it	 is	well	 suited	 for	 thin	 film	

analysis	 which	 could	 potentially	 be	 directly	 translated	 into	 the	 clinical	 to	make	 a	

real-world	 impact	 to	 patient	 health.	 In	 addition	 to	 its	 clinical	 suitability,	 ATR-FTIR	

spectroscopy	 is	 rapid,	 easy-to-use,	 cost	 effective	 and	 hand-held	 versions	 are	

available.	 The	 spectroscopic	 technique	 and	 proposed	 diagnostic	 procedure	

described	 within	 this	 thesis	 meets	 the	 requirements	 to	 allow	 it	 to	 be	 functional	

within	the	appropriate	healthcare	environments.	Figure	1.12	shows	a	schematic	of	

the	 potential	 use	 of	 ATR-FTIR	 spectroscopy	 in	 a	 clinical	 environment.	 When	 a	

patient	visits	their	GP	with	symptoms	suggestive	of	cancer,	or	for	a	routine	medical	

evaluation,	a	spectroscopic	measurement	could	be	collected	from	a	minute	volume	

of	 blood	 serum	 for	 cancer	 detection.	 Following	 analysis,	 if	 required,	 the	 patient	

could	 be	 referred	 to	 the	 hospital	 for	 specialist	 oncology	 care	 where	 specific	

treatment	plans	and	therapies	can	be	determined	(69).	
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1.5.2 Problems	Associated	with	Serum	Analysis	

Although	human	 serum	 is	 easily	 accessible,	 routinely	 collected	and	 is	 ideal	

for	rapid	disease	diagnoses,	the	biofluid	 is	subject	to	a	number	of	problems	which	

the	 analyst	 should	 be	 aware	 of	 prior	 to	 spectral	 collection	 to	 avoid	 spectral	

distortions	which	are	not	characteristic	of	disease	state.	The	issues	surrounding	the	

use	 of	 serum	 include	 the	 following:	 hemolysis	 (73),	 dilution	 (74),	 freezing,	

thawing/storage	 and	 transportation	of	 the	 samples	 (75),	 sample	preparation	 (76),	

histopathological	diagnoses	impacting	upon	disease	grade	of	the	serum	sample	(65)	

and	a	drying	effect	(77)	known	as	the	“coffee	ring	effect”	(78).	

The	 metabolome	 of	 human	 serum	 is	 varied	 in	 samples	 collected	 from	

patients	 who	 have	 different	 diets,	 exercise	 regimes,	 drug	 use,	 stress	 levels,	 age,	

gender,	body	mass	 index	(BMI)	and	cardiac	rhythm	(73),	thus	these	factors	should	

be	 accounted	 for	 as	 much	 as	 possible	 when	 creating	 patient	 spectra	 datasets	 to	

avoid	 biases.	 Dunn	 et	 al.	 found	 metabolite	 relative	 concentration	 differences	 to	

Figure	1.12	-	Schematic	showing	the	potential	use	of	ATR-FTIR	spectroscopy	in	the	
clinic	(69).	
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range	 from	 5-200	 %	 across	 1200	 patients;	 these	 differences	 could	 potentially	 be	

related	to	gender,	age,	BMI	and	smoking	status	of	the	blood	donors	(79).	

Hemolysis	is	a	large	risk	involved	during	the	drawing	of	blood	from	a	patient.	

This	 pre-analytical	 error	 can	 be	 avoided	 by	 careful	 drawing	 and	 handling	 of	 the	

blood	 sample.	 Hemolysis	 is	 caused	 through	 vigorous	 shaking	 of	 the	 sample	 tube,	

rough	handling	during	 transit,	 centrifuged	 at	 a	 too	high	 speed	and	 fluctuations	 in	

the	environmental	temperature	at	which	the	sample	is	being	stored	(75).	Hemolysis	

is	a	process	whereby	the	metabolites	and	enzymes	of	a	sample	are	released	 from	

intracellular	 compounds,	 thus	 potentially	 altering	 the	 metabolomic	 profile	 of	 a	

blood	 sample.	 The	 increase	 in	 concentration	 of	 tryptophan	 and	 lipids	 in	 a	 blood	

sample	 could	potentially	be	due	 to	hemolysis.	 Yin	et	al.	 report	 that	 in	~18.0	%	of	

their	 acquired	 spectral	 data	 the	 signals	 were	 due	 to	 the	 presence	 of	 extra	

metabolites	 and	 enzymes	 released	 during	 hemolysis	 (73);	 the	 impact	 of	 this	

occurring	 during	 vibrational	 spectroscopic	 analysis	 could	 significantly	 alter	 the	

research	findings.	The	analyst	who	is	conducting	the	spectral	collection	of	the	serum	

should	be	alert	to	the	colour	of	all	serum	samples;	haemolytic	and	non-haemolytic	

samples	are	easily	distinguishable	by	their	colour.	The	presence	of	free	haemoglobin	

changes	 the	 colour	 of	 the	 serum	 from	 a	 straw-yellow	 to	 a	 bright	 red.	 Following	

blood	 collection	 from	 a	 patient,	 the	 handling	 and	 storage	 of	 the	 samples	 has	 the	

potential	to	alter	quantitative	and	qualitative	spectral	observations	(73).		

Sample	 preparation	 including	 the	 dilution	 of	 whole,	 undiluted	 serum	

samples	(74)	 is	an	area	whereby	research	has	been	conducted	(80).	 In	their	study,	
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Zhang	et	 al.	 diluted	 each	 serum	 sample	 2-fold	with	 distilled	water	 and	 allowed	 a	

volume	 of	 5	μl	 microlitres	 to	 dry	 for	 30	 minutes.	 Sensitivities	 and	 specificities	 of	

82.0	%	 and	 82.5	%	were	 achieved	 respectively	 for	 the	 diagnosis	 of	 hepatocellular	

carcinoma	(80).	Furthermore,	 it	was	found	that	a	3-fold	dilution	was	most	suitable	

for	high-throughput	Fourier	transform	spectroscopy	(HT-FTIR)	due	to	good	spectral	

reproducibility	 and	 absorbance	 intensity	 (74).	 Further	 dilution	 of	 a	 serum	 sample	

past	a	3-fold	dilution	 induces	the	risk	of	a	 low	spectral	 response,	 thus	 it	would	be	

unsuitable	for	the	analysis	of	serum	whereby	small,	yet	significant,	molecules	would	

be	 at	 a	 low	 concentration.	 HT-FTIR	 found	 that	 undiluted	 whole	 serum	 samples	

saturate	at	the	Amide	I	and	Amide	II	bands	(1700-1500	cm-1)	and	at	the	H2O	band	at	

~3280	cm-1	(74).	However	useful	HT-FTIR	maybe	in	a	pathological	laboratory	for	the	

spectral	analysis	of	multiple	patients,	the	protocol	would	not	be	suitable	for	use	in	a	

doctor’s	 office	 whereby	 time	 is	 limited	 and	 the	 extra	 steps	 needed	 for	 the	

implementation	 would	 deem	 the	 procedure	 as	 possibly	 troublesome,	 hence	 the	

drive	 for	 whole	 undiluted	 serum	 analytics	 for	 rapid	 spectral	 brain	 cancer	

diagnostics.	 In	 addition	 to	 dilution,	 the	 filtration	 of	 serum	 using	 molecular	

centrifugal	devices	has	an	impact	upon	spectral	collection.	The	use	of	commercially	

available	 centrifugal	 devices	 allows	 for	 protein	 purification	 and	molecular	 weight	

cut-off	to	create	fractions	with	specific	molecular	weights.	Bonnier	et	al.	found	that,	

when	 using	 Amicon®	 0.5	 devices,	 contaminants	 were	 introduced	 to	 the	 serum	

sample.	 Contaminants	 deriving	 from	 glycerine	 were	 observed	 in	 spectral	 data	

collected	after	 the	use	of	 the	 centrifugal	 filters,	 thus	 the	authors	 recommend	 the	

careful	washing	of	the	filters	prior	to	analysis	of	bodily	fluids	(81).	
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Prior	 to	 the	analysis	of	 serum	samples,	 it	 is	assumed	that	 the	 tumour	 type	

and	 grade	 of	 tumour	within	 the	 patient	 from	whom	 the	 blood	was	 draw	 from	 is	

correct.	 However,	 as	 previously	 discussed,	 the	 error	 rates	 with	 histopathological	

diagnosis	 remain	an	 issue	with	 treatment	plans	and	overall	patient	diagnosis	 (65),	

thus	 the	 incorrect	 diagnosis	 of	 a	 tumour	 has	 a	 direct	 impact	 upon	 the	 cancerous	

state	 of	 a	 serum	 sample.	 When	 a	 serum	 sample	 from	 a	 hospital	 tissue	 bank	 is	

received,	it	is	classed	as,	for	example,	a	cancerous	WHO	grade	IV	GBM;	the	spectral	

data	from	this	sample	would	be	grouped	and	classed	to	reflect	this	histopathological	

diagnosis.	 Furthermore,	 when	 a	 non-cancerous	 sample	 is	 collected,	 the	 process	

which	the	person	donating	the	blood	had	prior	to	blood	drawing	is	also	of	important	

consideration.	Whether	the	person	was	in	hospital	for	surgery	unrelated	to	cancer;	

the	person	donated	blood	at	a	charity	event	to	increase	blood	sample	numbers	and	

are	 unaware	 of	 any	 developing	 illnesses	 such	 as	 cancer,	 or	 whether	 the	 person	

donating	blood	does	 infact	have	a	disease	but	 it	 is	unreported	on	hospital	records	

and	is	classed	as	‘healthy	non-cancerous’	to	name	just	a	few,	are	issues	surrounding	

non-cancerous	 samples.	 At	 present,	 all	 serum	 samples	 are	 received	 with	

histopathological	 diagnosis	 and	 often	 patient	 information	 (age,	 sex	 and	 disease	

grade	etc.);	 trust	 is	 extended	 to	 the	histopathologists	who	diagnose	disease	 state	

and	tumour	grade	(or	severity).	

A	 volume	 of	 serum	 dries	 in	 a	 non-homogenous	 fashion,	 raising	 concerns	

regarding	the	reproducibility	and	reliability	of	 the	data	collected	 from	the	sample.	

This	phenomenon	is	referred	to	as	the	“coffee-ring	effect”	(77)	via	capillary	action	

as	 it	displays	an	 increased	edge	height	and	a	 significantly	 thinner	 surface	 towards	
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the	centre	(78).	During	the	evaporation	of	water	from	the	droplet,	the	induction	of	

the	 Marangoni	 flow	 occurs	 leaving	 a	 concentrated,	 dense	 and	 ring-like	 structure	

along	 the	perimeter	of	 the	 sample	 (82).	 The	effect	of	 the	 coffee-ring	 formation	 is	

more	pronounced	during	the	drying	of	diluted	serum	samples,	although	the	deposit	

of	the	drops	morphology	when	drying	is	due	to	the	hydrophobicity	of	the	substrate,	

rather	 than	 the	 chemical	 composition	 of	 the	 serum.	 The	 cracks	 within	 the	 dried	

serum	samples	should	be	avoided	when	using	FTIR	and	Raman	microscopy	due	to	

the	collection	of	abnormal	Amide	I	and	Amide	II	bands,	and	baseline	issues	(74).	The	

inhomogeneous	crater-shaped	(coffee-ring)	serum	spot	has	a	deep/broad	outer	ring	

which	becomes	increasingly	shallower	towards	the	centre	point	of	the	dried	sample.	

The	 outer	 ring	 and	 inner	 surface	 has	 a	 depth	 of	 typically	 8	 and	 5	 microns	

respectively,	determined	via	white	light	interferometry.	Attenuated	total	reflection	

Fourier-transform	 infrared	 spectroscopy	 (ATR-FTIR)	 allows	 for	 acquired	 spectra	 to	

be	 representative	 of	 the	 sample	 upon	 the	 crystal,	 provided	 that	 the	 sample	

thickness	exceeds	the	penetration	depth	of	the	evanescent	wave.	The	1	microlitre	

volume	 of	 serum	 extended	 over	 the	 area	 of	 the	 1.8	mm	ATR	 diamond	 crystal.	 In	

contrast	 to	 the	 ATR	 sampling	 method,	 transmission	 and	 transflection	 FTIR	

spectroscopy	may	give	 rise	 to	 standing	wave	artefacts	and	 scattering	effects	 from	

salt	crystals	formed	during	the	drying	process.	Transmission	and	transflection	mode	

FTIR	also	require	specific	sample	thicknesses	(76).	

Ideally,	the	serum	film	on	the	ATR	crystal	would	be	homogenous;	however,	

this	 is	 rarely	met	 with	manual	 pipetting	 devices.	 Ollesch	 et	 al.	 have	 developed	 a	

methodology	 whereby	 the	 homogeneity	 of	 a	 sample	 is	 extremely	 high	 due	 to	
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pipetting	in	nanolitre	volumes	with	a	costly,	yet	compact	bench-top	robotic	system.	

The	 robotic	 system	 creates	 50	 nl	 serum	 films	 which	 avoid	 the	 formation	 of	 the	

coffee-ring	 effect.	 Following	 robotic	 serum	 deposition,	 the	 serum	 films	 were	

vacuum	dried	for	10	minutes.	The	dried	serum	films	were	~3	μm	in	thickness	(76),	

thus	 allowed	 the	 penetration	 of	 the	 2-3	μm	 evanescent	 wave	 to	 penetrate	 the	

sample	(83).	

The	 advancement	 of	 robotic	 pipetting	 is	 exciting	 for	 a	 largely	 automated	

infrared	 (IR)	 diagnostic	 procedure,	 however,	 the	 suitability	 of	 this	 costly	 robotic	

device	in	a	doctor’s	office	remains	to	be	seen.	

1.6 Vibrational	Spectroscopic	Bioanalysis	Applications	

IR	 and	 Raman	 spectroscopy	 are	 both	 contenders	 to	 be	 implemented	 as	

routine	point	of	care	devices	 to	aid	diagnoses.	Raman	spectroscopy	measured	the	

exchange	 of	 energy	 with	 electromagnetic	 radiation	 of	 a	 certain	 wavelength.	 The	

exchange	 of	 energy	 with	 the	 sample	 results	 in	 a	 quantitative	 Raman	 shift	 in	 the	

same	wavelength	as	 that	of	 the	 incident	 laser;	 this	phenomenon	 is	 referred	 to	as	

inelastic	Raman	scattering,	a	process	whereby	the	incident	particles	energy	is	lost	or	

increased	 (13).	 Molecular	 information	 can	 be	 obtained	 from	 a	 Raman	 spectrum,	

likewise,	 the	 conformation	 and	 composition	 of	 the	 sample	 is	 represented	 on	 the	

spectrum	(84).	A	spectrum	displaying	the	intensities	and	frequencies	of	the	Raman	

bands	 are	 characteristic	 of	 the	 molecules	 within	 the	 analysed	 sample.	 The	

molecules	within	a	 sample,	 their	 concentrations	within	a	molecule,	 conformations	
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and	 chemical	 bonding	 environments	 allowed	 for	 a	 Raman	 spectrum	 to	 be	 unique	

and	characteristic	to	the	particular	sample	being	analysed	(85).		

	 The	 potential	 use	 of	 Raman	 spectroscopy	 as	 a	 diagnostic	 tool	 has	 been	

demonstrated	 by	 a	 range	 of	 studies	 with	 tissues,	 cells	 and	 biofluids	 for	 disease	

diagnosis	 involving:	 breast	 (86-88),	 brain	 (11,	 89),	 asthma	 (90),	 liver	 (91-92)	 and	

skin	(93),	to	name	but	a	few.	Harris	et	al.	report	the	ability	of	Raman	spectroscopy	

to	 discriminate	 between	 cancer	 and	 non-cancerous	 biological	 samples	 with	

sensitivities	 and	 specificities	 of	 88.0	 and	 91.0	%	 respectively.	 Although	 successful	

when	discriminating	between	disease	states,	Harris	et	al.	note	that	they	support	the	

use	 of	 optical	 diagnosis	 to	 aid	 cancer	 diagnoses	 rather	 than	 replace	 the	 current	

pathological	 diagnostic	 route	 (94).	 Gajjar	 et	 al.	 observed	 significant	 spectral	

differences	between	brain	 tumour	 tissue	and	non-cancerous	 (healthy)	brain	 tissue	

when	 using	 Raman	 spectroscopy.	 The	 spectral	 regions	 discriminating	 between	

cancer	 and	 non-cancerous	 samples	 include,	 but	 are	 not	 exclusive	 to,	 glycogen	

(~849	cm-1),	Amide	 I	 (1650	cm-1)	and	phospholipids	 (~997	cm-1)	 (89).	 Likewise,	 the	

potential	of	Raman	spectroscopy	as	a	diagnostic	tool	has	been	demonstrated	using	

breast	 cancer	 patient	 serum	 samples	 combined	with	multivariate	 analysis	 (MVA).	

Pichardo	 et	 al.	 achieved	 a	 sensitivity	 of	 97.0	 and	 a	 specificity	 of	 78.0	 %	 when	

distinguishing	between	non-cancerous	serum	and	breast	cancer	patient	serum	(95).	

An	 exciting	 development	 for	 Raman	 spectroscopy	 includes	 the	 use	 of	 an	 in	 vivo	

spectroscopic	probe	for	surgical	margin	evaluation.	An	example	of	the	use	of	Raman	

spectroscopy	for	tumour	margin	evaluation	is	with	breast	cancer	surgery;	the	risk	of	

local	recurrence	is	strongly	correlated	with	the	presence	of	a	malignant	tumour	to	
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just	1-2	millimetres	(mm)	of	the	surgical	margin	on	the	excised	specimen,	thus	it	is	

vital	 that	 the	 tumour	 is	 completely	 removed	 during	 surgery	 to	 prevent	

recurrence	(96).	

	 Like	 Raman,	 Fourier	 transform	 infrared	 (FTIR)	 spectroscopy	 is	 a	 rapid,	

reagent	 free,	 relatively	 inexpensive	 and	 non-destructive	 technique.	 FTIR	

spectroscopy	is	based	on	the	molecular	absorption	of	 infrared	(IR)	radiation	which	

caused	 the	 functional	 groups	 within	 a	 sample	 to	 vibrate	 in	 one	 of	 the	 following	

fashions:	stretching,	bending,	deformation	or	combination,	thus	each	molecule	can	

produce	 a	 different	 spectrum	 which	 can	 be	 thought	 of	 as	 a	 fingerprint	 of	 the	

sample.	 The	 vibrations	 created	 due	 to	 the	 absorption	 of	 IR	 radiation	 will	 be	

discussed	 in	 an	 upcoming	 chapter.	 The	 absorptions	 and	 vibrations	 exhibited	 on	 a	

spectrum	can	be	directly	correlated	to	chemical	species.	Typically,	the	mid-infrared	

(mid-IR)	 region	 of	 the	 electromagnetic	 spectrum	 (4000-600	 cm-1)	 is	 the	 focus	 of	

many	 diagnostic	 studies.	 Spectra	 collected	 from	 the	 mid-IR	 region	 exhibit	 sharp,	

information-rich	 peaks	 due	 to	 the	 detection	 of	 the	 fundamental	 vibrations,	 in	

contrast	 to	 the	 near-infrared	 (NIR)	 region	 (14000-4000cm-1)	 where	 overtone	 or	

harmonic	vibrations	would	be	detected	(13).	

	 Biological	 research	 performed	 with	 IR	 spectroscopy	 has	 focused	 on	 the	

diagnosis	of	scrapie	infection	(97),	antemortem	identification	of	bovine	spongiform	

encephalopathy	 (98),	 fibromyalgia	 (99),	 arthritis	 (100),	 lung	 cancer	 (101),	prostate	

cancer	(102-105),	cervical	cancer	(106),	skin	cancer	(107),	brain	cancer	(89,	108)	and	

lung	cancer	diagnosis	using	sputum	(109),	to	name	just	a	few.	
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Backhaus	 et	 al.	 distinguished	 between	 non-cancerous	 (healthy)	 serum	

samples	 from	 serum	 collected	 from	 patients	 diagnosed	 with	 breast	 cancer;	 a	

sensitivity	of	98.0	%	and	a	 specificity	of	95.0	%	was	achieved	when	distinguishing	

between	the	cancerous	and	non-cancerous	state	serum	samples.	Backhaus	et	al.	in	

the	 same	study	had	shown	 the	ability	of	 IR	 spectroscopy	 to	discriminate	between	

breast	cancer	from	other	disease	states	such	as	Alzheimer’s	disease,	hepatitis	C	and	

coronary	 heart	 disease	 using	 minute	 volumes	 of	 serum	 with	 sensitivities	 and	

specificities	 of	 98.0	 %	 and	 100	 %	 respectively	 (110).	 Disease	 states	 can	 be	

distinguished	between	with	IR	spectroscopy;	Scaglia	et	al.	successfully	discriminated	

between	 serum	 spectra	 collected	 from	 patients	 with	 various	 degrees	 of	 hepatic	

fibrosis	and	normal	(healthy)	patients	with	a	sensitivity	of	95.2	%	and	a	specificity	of	

100	 %	 (111).	 Furthermore,	 whole	 serum	 and	 serum	 filtrate	 samples	 prepared	

following	blood	collection	from	patients	diagnosed	with	one	of	the	following:	acute	

myocardial	 infarction,	 angina	 pectoris	 or	 other	 chest	 pain.	 The	 discrimination	

between	these	illnesses	achieved	a	sensitivity	and	specificity	of	88.5	%	and	85.1	%	

respectively	 (112).	 The	 application	 of	 attenuated	 total	 reflectance	 (ATR),	 an	 FTIR	

sampling	method	suitable	to	dehydrate	liquid	serum	due	to	the	intense	absorption	

of	water,	has	been	used	by	Gajjar	et	al.	who	was	successfully	able	to	differentiate	

between	serum	samples	collected	from	patients	diagnosed	with	either	endometrial	

cancer,	ovarian	cancer	or	non-cancer.	Results	from	this	study	were	as	high	as	81.7	%	

for	endometrial	cancer	and	96.7	%	for	ovarian	cancer	when	discriminating	against	

non-cancer	 control	 serum	 samples	 (108).	 One	 of	 the	 first	 studies	 using	 IR	

spectroscopy	to	diagnose	disease	with	blood	samples	was	able	to	achieve	results	up	
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to	97.6	%;	whole	blood	samples	were	used	in	a	proof-of-principle	study	to	diagnose	

basal	 cell	 carcinoma.	 This	 study	 found	 that	 the	 most	 significant	 spectral	 band	

indicating	 the	 difference	 between	 cancer	 and	 non-cancer	 was	 the	 Amide	 at	

1650	cm-1.	In	another	study,	Petrich	et	al.	observed	spectral	differences	from	serum	

obtained	from	healthy	control	samples	and	patients	diagnosed	with	diabetes.	It	was	

determined	that	the	significant	spectral	contributions	when	discriminating	between	

diabetes	patient	serum	from	healthy	controls	 is	around	1026	cm-1,	assigned	as	the	

glucose	absorption	peak.	A	sensitivity	and	specificity	of	80.0	%	was	achieved	for	the	

distinction	between	healthy	controls	and	diabetes	patient	serum	samples.	(113).	In	

addition	 to	 biofluid	 analysis,	 the	 potential	 of	 IR	 spectroscopy	 being	 used	 during	

surgery	has	been	shown;	Sobottka	et	al.	shown	that	glioma	grading	is	possible	with	

IR	 spectroscopy	and	demonstrated	 its	 suitability	when	deciding	whether	or	not	 to	

continue	with	surgical	tumour	resection.	Tumour	margins	can	be	defined	using	this	

intraoperative	 tool	 during	 cerebral	 glioma	 surgery	 which,	 if	 implemented,	 would	

save	many	lives	due	to	the	detection	of	tumour	residues	which	may	otherwise	not	

have	been	removed	leading	to	a	recurrence	of	the	tumour.	Sobottka	et	al.	achieved	

sensitivities	and	specificities	of	100	%	and	96.9	%	respectively	when	distinguishing	

between	 glioma	 residue	 tissues	 from	 healthy	 non-cancerous	 tissues	 (114).	

Khoshmanesh	et	al.	used	ATR-FTIR	spectroscopy	to	diagnose	malaria	using	parasite	

infested	 blood	 samples.	 The	 use	 of	 ATR-FTIR	 spectroscopy	 demonstrated	 the	

potential	of	 its	use	as	a	rapid	detective	and	quantitative	tool	 for	parasitic	malarial	

infections.	Upon	deposition	of	the	blood	sample	to	the	ATR	diamond	(Di),	the	blood	

was	rapidly	dried	for	1	minute	(for	sample	dehydration)	using	a	blow	drier	(83).	
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The	 use	 of	 IR	 spectroscopy	 as	 a	 routine	 method	 of	 diagnoses	 would	

significantly	 reduce	 mortality	 and	 morbidity	 rates	 as	 well	 as	 freeing	 up	 vital	

economic	 resources.	 The	 ability	 to	 identify	 a	 disease	 such	 as	 brain	 cancer	 early	

would	allow	for	the	early	intervention	of	therapy,	thus	improving	patient	prognosis	

rates.	IR	spectroscopy	is	a	rapid,	reagent	free	and	non-destructive	technique	which	

has	potential	for	routine	use	in	a	clinical	practice	(13)	(Figure	1.12).	

	

1.7 Aims	of	Research	Project	

The	 fundamental	 aim	 of	 the	 research	 described	 within	 this	 thesis	 is	 to	

develop	a	spectroscopic	methodology	to	rapidly	diagnose	a	cancerous	disease	state	

from	a	serum	profile.	

The	 initial	 intention	 of	 this	 research	 in	 the	 developmental	 stage	 is	 to	

primarily	determine	whether	it	 is	possible	to	differentiate	between	serum	samples	

collected	 from	 either	 glioma	 or	 non-cancer	 patients	 with	 a	 high	 sensitivity	 and	

specificity	using	ATR-FTIR	spectroscopy.	Building	upon	the	success	of	 the	ability	 to	

differentiate	 between	 cancer	 and	 non-cancerous	 state	 serum	 samples,	 the	

conduction	of	a	number	of	studies	to	determine	the	potential	use	of	the	regime	in	a	

clinical	 environment	 is	 priority,	 thus	 serum	 drying;	 spectral	 variance	 and	 serum	

filtration	studies	are	to	be	investigated.	

Progressing	 the	 study	 would	 involve	 the	 addition	 of	 patients	 with	 various	

grades	of	brain	 tumour.	 The	ability	 to	 rapidly	differentiate	between	brain	 tumour	
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grade	 (high	 grade	 glioma	 and	 low	 grade	 glioma)	 from	 non-cancer	 would	 have	 a	

significant	 impact	 upon	 patient	 mortality	 and	 morbidity	 rates	 and	 the	 early	

intervention	of	therapy	(13).	Furthermore,	the	successful	demonstration	to	identify	

a	 metastatic	 brain	 tumour	 which	 originated	 from	 outside	 of	 CNS	 from	 a	 simple	

spectroscopic	 method	 is	 exciting	 and	 would	 allow	 clinicians	 to	 intervene	 with	

therapy	and	have	an	understanding	of	the	primary	tumour	location	prior	to	medical	

imaging;	 currently	 50.0	%	 of	metastatic	 brain	 tumour	 patients	 have	 their	 primary	

site	diagnosed	at	a	later	date	(26).		

To	 determine	 the	 spectroscopic	 regimes	 potential	 use	 in	 the	 clinical	

environment	 with	 unseen	 patient	 serum	 samples,	 the	 technique	 will	 be	

implemented	 with	 new,	 blind	 samples	 from	 a	 clinical	 collaborator	 whereby	 the	

serum	 samples	 have	 never	 been	 analysed	 previously.	 The	 creation	 of	 spectral	

datasets	 to	 diagnose	 disease	 state	 from	 a	 patient’s	 blood	 serum	 is	 an	 exciting	

concept	with	many	real-world	applications.	

Spectroscopic	 data	 collected	 from	 a	 wide	 range	 of	 patients	 with	 various	

types	and	grades	of	cancer	or	non-cancer	will	be	used	to	evaluate	the	use	of	ATR-

FTIR	 spectroscopy	 as	 a	 diagnostic	 tool	 utilising	multivariate	 analysis	methods	 and	

novel	feature	extraction	processes.		
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Chapter	2	

FUNDAMENTALS	AND	THEORY	OF	EXPERIMENTATION	

This	chapter	will	discuss	the	fundamental	principles	of	infrared	spectroscopy	

and	of	the	pre-processing/data	analysis	methods	used	during	this	project.	The	

fundamental	principles	of	infrared	spectroscopy	will	be	linked	to	the	process	where	

interpretable	spectra	are	acquired.	

	

2		 Infrared	Spectroscopy	

2.1	 Fundamentals	of	the	Electromagnetic	Spectrum	

	 A	 wave	 of	 electromagnetic	 radiation	 (EMR)	 is	 composed	 of	 electric	 and	

magnetic	waves,	 commonly	 referred	 to	 as	 the	 electric	 and	magnetic	 vectors.	 The	

electric	 and	 magnetic	 waves	 undulate,	 the	 two	 waves	 travel	 in	 planes	 mutually	

perpendicular	to	one	other.	Figure	2.1	shows	the	electric	vector	travelling	in	a	sine	

wave.	 The	 amplitude	 of	 the	 electric	 vector	 changes	 over	 time;	 the	 sine	wave	 has	

positive	and	negative	troughs	to	reflect	how	the	wave	changes	(1).	

	

	

	

	

	

	

Figure2.1	–	The	electric	vector	of	a	light	wave.	The	horizontal	
arrow	at	zero	on	the	y-axis	is	the	direction	of	the	undulating	
wave.	Replicated	from	(1).	
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The	motion	of	the	sine	wave	is	repetitive,	hence	the	wave	undergoes	cycles.	A	cycle	

occurs	when	the	sine	wave	begins	with	an	amplitude	of	zero	and	crosses	the	zero	

amplitude	point	for	a	third	time.	Figure	2.1	illustrates	the	cycle	of	a	wave.		

	 Wavelength	(λ)	defines	the	distance	travelled	by	a	wave	during	a	cycle;	the	

speed	 of	 each	 particular	 wave	 is	 constant.	 The	 mid-infrared	 region	 of	 the	

electromagnetic	 (EM)	spectrum	 involves	 radiation	of	approximately	10	microns.	 In	

contrast	to	wavelength,	wavenumber	measures	the	number	of	cycles	which	a	wave	

encounters	per	unit	length	(measured	in	units	of	cycles	per	centimetres	(cm))(1).	

	 Wavelength	is	measured	in	distance	per	cycle	and	wavenumber	in	cycles	per	

distance,	thus	the	two	terms	are	reciprocals	of	one	another.	Equation	2.1	presents	

how	 wavenumber	 and	 wavelength	 are	 reciprocals	 of	 one	 another	 where	 𝑣	 =	

wavenumber;	λ	=	wavelength)	(1):	

𝑣 =
1
λ 																																																														Eq. 2.1	

Wavenumber	 is	 proportional	 to	 the	 energy	 of	 a	 light	 wave.	 A	 high	

wavenumber	 peak,	 for	 example,	 has	 a	 higher	 energy	 resulting	 in	 the	 wave	

undergoing	more	cycles	(1).	A	mid-infrared	spectrum	has	wavenumber	frequencies	

between	 4000-400	 cm-1	 (3-30	 microns),	 however;	 it	 is	 the	 fingerprint	 region	 at	

approximately	1800-1000	cm-1	which	much	research	focuses	on	due	to	it	being	the	

region	where	complex	molecular	stretches	and	bends	occur.	Every	compound	has	a	

different	 absorption	 pattern	 in	 this	 region,	 giving	 rise	 to	 the	 term	 “fingerprint	

region”	(1).	
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	 The	 velocity	 of	 a	 single	wave	 is	measured	 in	 centimetres	 per	 second	 as	 it	

travels	at	the	speed	of	light	(c	=	~3.0	X	1010	cm/second).	A	wave	can	be	represented	

by	its	wavelength	(λ)	or	frequency	(v).	Frequency	is	a	measure	of	how	many	cycles	a	

wave	encounters	per	unit	of	time	measured	in	cycles/second	(sec-1)	or	Hertz	(Hz).	

	 The	different	properties	of	 light	discussed	are	all	 linked	to	each	other	with	

the	following	equations:	

c = λ𝑣																																																																					Eq. 2.2	

	 			 			𝑣 = 	 +
,
																																																																						Eq. 2. 3	

λ = 	
c
𝑣 																																																																							Eq. 2.4	

	

	 Experiments	have	 shown	 that	EMR	behaves	 like	waves;	Young’s	 single	and	

double	 slit	 experiments	 demonstrated	 the	 wave-like	 nature	 of	 light.	 Max	 Planck	

theorised	 that	 the	 energy	 of	 an	 oscillator	 is	 discontinuous	 and	 that	 changes	 in	

energy	must	occur	by	means	of	jumping	between	two	distinct	energy	states.	Planck	

proposed	 that	 these	 oscillators	 have	 a	 specific	 energy	 (E)	 that	 is	 related	 to	 the	

frequency	(v)	of	the	oscillator,	hence:	

𝐸 = h𝑣																																																																					Eq. 2.5	

where	h	=	Planck’s	constant	(6.63	x	10-34	Joules/second).	

In	 brief,	 Einstein	 applied	 Planck’s	 equation	 (E	 =	 hv)	 to	 light	 itself	 and	

suggested	that	light	of	a	particular	frequency	has	a	given	amount	of	energy.	Einstein	
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concluded	 that	 light	 acts	 like	 as	 particle	 of	 energy	 (or	 “packet”	 of	 energy)	 and	 so	

gave	rise	to	the	term	“photon”	to	describe	a	particle	of	light	(2).	

	 Equation	2.5	proposes	that	each	frequency	of	EMR	has	a	specific	energy	that	

is	proportional	to	frequency	and	wavelength.	As	previously	mentioned,	a	wave	can	

be	represented	by	 its	wavelength	(λ)	or	 frequency	(v),	but	also	 its	energy.	The	EM	

spectrum	 is	 composed	of	a	number	of	 regions	based	on	 increasing	 frequency	and	

energy,	as	well	as	a	decrease	in	the	wavelength	of	the	photon.		

2.2	 Interaction	of	Infrared	Light	and	Matter	

The	 interaction	 of	 IR	 radiation	 with	 a	 sample	 (or	 matter)	 is	 a	 fundamental	

concept	within	IR	spectroscopy.	Molecular	stretches,	bends	and	rotations	that	occur	

in	a	molecule	 following	 the	absorption	of	 IR	 radiation	arise	at	 specific	 frequencies	

characteristic	 of	 the	 frequency	 of	 the	 vibration.	 Following	 the	 absorption	 of	 a	

photon,	whose	energy	matches	 the	energy	difference	between	 two	energy	 levels,	

the	 molecule	 can	 transition	 to	 a	 higher	 energy	 level	(3).	 The	 energy	 of	 these	

molecular	vibrations	is	quantised	allowing	for	the	measurement	of	the	energy	level	

differences	following	the	absorption	of	a	finite	amount	of	energy	(3).		

The	 two	 atoms	 of	 a	 stable	 covalent	 molecule	 settle	 at	 a	 mean	 internuclear	

distance,	 thus	 the	 total	 energy	 of	 a	molecule	 is	 at	 a	minimum	 (4).	 The	 squeezing	

together	and	pulling	apart	motions	of	these	molecules	causes	the	repulsive	force	to	

rise	 rapidly	 and	 attractive	 force	 to	 resist	 separation	 respectively.	 Equation	 2.6	

explains	 the	 vibrational	 energies	 (Ev)	 of	 a	 molecule	 from	 a	 mean	 internuclear	
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distance	 (Req)	 following	 simple	 harmonic	 motions	 (𝑣	 is	 the	 vibrational	

quantum	number)p(3):																																										

															𝐸2 		= 𝑣 +	
1
2 𝑣cm56																																										Eq. 2.6	

Consideration	of	this	allows	us	to	understand	that	a	molecule	can	never	be	

at	a	zero	vibrational	energy	state	due	to	the	atoms	never	being	completely	at	rest	

relative	 to	 one	 another.	 The	 lowest	 vibrational	 energy	 of	 a	 molecule	 at	 a	 zero	

vibrational	 energy	 state	 (ground-state)(E0),	with	 a	 vibrational	 quantum	number	of	

zero,	still	gives	rise	to	molecular	vibrations	according	to	equation	2.7	(3).	

																							𝐸8 		=
1
2 𝑣	cm

56																																															Eq. 2.7	

The	 distortion	 of	 a	 bond	 length	 requires	 an	 energy	 input	 which	 may	 be	

plotted	against	 internuclear	distance	 (Figure	2.2).	 Figure	2.2	 shows	a	hydrochloric	

acid	(HCl)	molecule,	whereby	the	chlorine	atom	has	been	permanently	fixed	against	

the	 y-axis	 and	 the	 hydrogen	 loosely	 placed	 on	 the	 x-axis.	 A	 larger	 push	 or	 pull	

motion	 of	 the	 hydrogen	 atom	 in	 relation	 to	 the	 chlorine	 results	 in	 an	 increasing	

energy.	 Increasing	 the	 energy	 of	 the	 HCl	 molecule	 from	 𝑣0	 to	 𝑣1	 allows	 for	 the	

displacement	 of	 the	 hydrogen	 atom,	 thus	 increasing	 Req.	 During	 simple	 harmonic	

oscillation,	 the	displacement	of	 the	hydrogen	molecule	will	 remain,	given	that	 the	

vibrating	frequency	of	the	molecule	remains	constant.	
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The	 pushing	 and	 pulling	 motion	 of	 the	 bond	 during	 simple	 harmonic	

oscillation	behaves	accordingly	to	Hooke’s	law	(Equation	2.8).	According	to	Hooke’s	

law,	the	frequency	of	a	bonds	vibration	is	related	to	the	mass	and	force	constant	of	

the	 bond	 (or	 spring	 in	 Hooke’s	 well-known	 “ball	 on	 a	 string”	 example).	 The	

application	 of	 Hooke’s	 law	 allows	 us	 to	 understand	 the	 frequency	 of	 IR	 radiation	

required	 to	 successfully	 quantise	 a	 diatomic	molecule,	 such	 as	 HCl,	 to	 allow	 it	 to	

move	to	a	higher	vibrational	energy	level	(𝑣0	to	𝑣1)	(3).	k	is	the	force	constant,	m	is	

the	mass	and	v	is	the	frequency	of	the	vibration.	

𝑣		 =
1
2π

k
m 																																																						Eq. 2.8	

Hooke’s	 law	 shows	 us	 that	 each	 molecule	 has	 a	 frequency	 which	 is	

characteristic	of	 its	 atomic	 structure.	The	change	 to	 the	masses	of	 the	atoms	and	

Figure2.2	–	Energy	of	the	HCl	molecule	as	the	hydrogen	is	in	
a	push	and	pull	motion	in	relation	to	the	chlorine	atom.	
Replicated	from	(3).	
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bond	 forces	has	 the	potential	 to	alter	a	molecules	wavenumber	position	on	an	 IR	

spectrum.	

During	 the	 absorption	 of	 IR	 radiation,	 a	molecule	 is	 promoted	 to	 a	 higher	

vibrational	 energy	 level	 (Figure	 2.3).	 In	 order	 for	 the	molecule	 to	 absorb	 specific	

wavelengths	of	light,	there	are	rules	which	describe	whether	certain	transitions	are	

allowed	or	 not.	 Firstly,	 the	primary	 selection	 rule	 states	 that	 the	 absorption	of	 IR	

radiation	 must	 allow	 for	 an	 electric	 dipole	 moment	 to	 occur	 following	 the	

displacement	of	atoms	and	change	in	vibrational	motion.	The	second	selection	rule	

involves	 quantum	 energy	 states	 (𝑣);	 the	 transitions	 between	 energy	 states	 must	

adhere	to	equation	2.9.	Transitions	between	vibrational	energy	states	must	not	be	

greater	than,	or	less	than	1.		

∆𝑣		 = ±1																																																											Eq. 2.9	

Transitions	 between	 vibrational	 energy	 levels	 are	 allowed	 according	 to	

equation	2.9,	so	long	as	the	transitions	are	±1.	The	Maxwell-Boltzmann	distribution	

law	states	that	the	majority	of	molecules	are	found	at	the	ground	state	(𝑣0)	and	that	

the	 dominant	 transition	 would	 be	 from	 𝑣0	 to	 𝑣1	 at	 room	 temperature(6).	 Real	

molecules	do	not	obey	the	laws	of	simple	harmonic	motion,	thus	Hooke’s	law	is	not	

obeyed	with	real,	non-theoretical	bonds.	The	displacement	of	atoms	in	a	molecule	

gets	 larger	 as	 the	 vibrational	 energy	 from	 IR	 radiation	 increases.	 If	 the	 bond	

between	the	atoms	is	stretched,	there	comes	a	point	whereby	it	will	break	resulting	

in	the	molecule	dissociating	into	its	atoms.	Hooke’s	law	becomes	redundant	in	place	

of	real	molecules,	thus	the	anharmonic	oscillator	supersedes	Hooke’s	concept	and	it	
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is	more	appropriate	to	explain	the	motion	of	real	atoms.	The	anharmonic	oscillator	

(Figure	2.3)	shows	a	decrease	in	energy	between	the	vibrational	energy	levels,	thus	

decreasing	the	oscillation	frequency	as	quantum	state	numbers	increase.	Figure	2.3	

shows	 the	Morse	 curve	 -	 the	 anharmonic	 potential-well.	 The	 energy	 required	 for	

transitions,	 hv,	 becomes	 smaller	 allowing	 for	 overtones	 to	 be	 lower	 in	 energy	 in	

comparison	to	overtones	based	on	the	harmonic	oscillator	theory.	The	intensity	of	

overtone	 bands	may	 sometimes	 be	 increased	 (accidental	 overtones)	 considerably	

due	to	2	vibrational	modes	having	frequencies	very	close	to	each	other	(3,	7).	

	

	

	

	

	

	

	

	

	

	

Figure2.3	-	A	potential	energy	diagram	comparing	the	harmonic	and	
anharmonic	oscillators	(7).	

E	
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The	selection	rules	for	the	anharmonic	oscillator	are	found	to	be	related	to	

equation	 2.9,	 but	 with	 the	 added	 possibility	 of	 promotion	 to	 higher	 vibrational	

energy	levels.	Equation	2.10	shows	the	anharmonic	oscillator	energy	transitions.	

∆𝑣		 = ±1,±2,±3,±4,±5,±6,… 																												Eq. 2.10	

Normally	 the	 potential	 energy	 well	 levels∆𝑣 = ±1,±2	and	 ± 3have	 the	

most	observable	intensities	(3).	The	transition	from	𝑣0-	𝑣1	is	called	the	fundamental	

absorption,	 while	 those	 from	 𝑣0-	𝑣2	 and	 𝑣0-	𝑣3	 are	 called	 the	 first	 and	 second	

overtones	 respectively	 (3).	 For	 example,	 the	 HCl	 molecule	 has	 an	 intense	

fundamental	absorption	band	at	2886	cm-1,	a	 significantly	weaker	band	at	around	

5660	cm-1	and	a	very	weak	band	at	around	8350	cm-1.	

Figure	2.4	considers	a	molecule	which	transitions	E0	to	E1	(E	=	energy).	E0	to	E1	is	

the	phase	whereby	IR	radiation	is	absorbed	by	the	sample	and	E1	to	E0	is	when	the	

molecule	emits	the	absorbed	radiation.	The	Jablonski	diagram	(Figure	2.4)	relates	to	

Raman	elastic	(Rayleigh)	and	inelastic	scattering;	IR	absorbance	occurs	from	E0	to	E1	

(vibrational	 energy	 states)	 (4).	 Elastic	 (Rayleigh)	 and	 Stokes	 scattering	 are	 Raman	

scattering	processes	-	elastic	(Rayleigh)	scattering	occurs	when	the	molecule	returns	

to	 the	 same	 state	 following	 scattering	 of	 the	 excitation	 energy;	 Stokes	 scattering	

occurs	when	the	photon	has	lost	energy	to	the	molecule	and	Anti-stokes	when	the	

photon	has	gained	energy	from	the	molecule	(5).	

	

	



62	
		

	

	

	

	

	

	

	

2.3	 Fundamental	Vibrations	

All	 molecules	 have	 3N	 degrees	 of	 freedom,	 with	 N	 representing	 the	 total	

number	of	atoms	 in	a	molecule.	Each	atom	 is	placed	according	 to	3	Cartesian	co-

ordinates	(x,	y	and	z).	A	molecule,	such	as	water	(H20),	has	9	degrees	of	freedom.	Six	

of	these	9	degrees	of	freedom	include	3	rotational	and	3	translational	degrees;	the	

remaining	 3	 belong	 to	 the	 fundamental	 vibrational	 modes	 of	 the	 molecule.	 For	

linear	molecules	3N-5	(Eq.	2.11)	and	non-linear	molecules	3N-6	(Eq.	2.12)	are	used	

to	determine	the	vibrational	modes	of	a	molecule.	

Linear	Molecule = 3𝑁 − 5																																								Eq. 2.11	

Non − Linear	Molecule = 3𝑁 − 6																											Eq. 2.12	

	 There	 are	 2	 fundamental	 types	 of	 molecular	 vibration:	 stretching	 and	

bending.	 Stretching	 vibrations	 are	 either	 symmetric	 or	 asymmetric,	while	 bending	

Figure2.4	–	The	absorption	and	emission	of	infrared	
radiation	and	Raman	scattering.	Adapted	from	(4).	
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vibrations	 can	 be	 split	 up	 into	 4	 further	 modes	 (Figure	 2.5).	 Bending	 vibrational	

modes	 include	 twisting,	 rocking,	wagging	and	scissoring.	Carbon	dioxide	 (CO2)	 is	a	

linear	molecule	 (3N-5)	 and	 has	 4	 fundamental	 vibrations.	 Figure	 2.5	 shows	 the	 4	

vibrational	modes	of	CO2	-	1	asymmetrical	stretching,	1	symmetrical	stretching	and	

2	modes	of	scissoring)	(7).	

	

	

	

	

	

	

The	symmetric	stretch	vibrational	mode	of	CO2	is	IR	inactive	due	to	the	vibration	

causing	 no	 change	 in	 dipole	 moment.	 During	 symmetric	 stretching	 of	 the	 CO2	

molecule,	 the	 2	 oxygen	 atoms	 are	 pulled	 away	 from	 and	 pushed	 towards	

(compressed)	the	carbon	atom	concurrently	resulting	in	no	dipole	moment.	CO2	has	

4	 fundamental	 vibrations	 but	 only	 2	 (asymmetrical	 stretch	 and	 a	 degenerate	

vibration	from	2	bending	modes)	are	visible	on	the	IR	spectrum.	A	degenerate	band	

occurs	 when	 a	molecule	 has	 equivalent	modes	 of	 the	 same	 frequency	which	 are	

present	at	the	same	𝑣	region	on	the	IR	spectrum	(3,	7).	

	

Figure2.5	–	The	four	vibrational	modes	of	CO2.	Replicated	from	(7).	
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2.3.1	Complementarity	of	Infrared	and	Raman	Spectroscopy	

	 In	molecules	with	 a	 centre	 of	 symmetry,	 it	 is	 observed	 that	 vibrations	 are	

either	IR	or	Raman	active	or	inactive,	or	vice-versa	-	this	is	commonly	referred	to	as	

the	 principle	 of	 mutual	 exclusion.	 The	 rule	 of	 mutual	 exclusion	 states	 that	 if	 a	

molecule	 has	 a	 centre	 of	 symmetry,	 then	 no	 transition	 is	 allowed	 in	 both	 IR	

absorption	of	Raman	scattering,	but	only	in	one	or	the	other.	A	molecule	which	has	

as	 centre	of	 symmetry	 is	 carbon	dioxide	 (CO2).	 CO2	 is	 IR	 active	with	 asymmetrical	

stretching	and	bending	vibrations	but	it	is	IR	inactive	with	symmetric	stretching	due	

to	there	being	no	change	in	dipole	moment.	In	comparison,	symmetric	stretching	of	

CO2	is	Raman	active	whilst	asymmetric	and	bending	modes	are	Raman	inactive	due	

to	there	being	no	change	in	the	molecules	polarisability	(1).		

	 CO2	 has	 2	 peaks	 on	 the	 IR	 spectrum	 (1	 asymmetric	 and	 2	 degenerative	

stretching	peaks)	and	just	1	peak	(symmetric)	on	a	Raman	spectrum.	The	CO2	peaks	

present	in	the	IR	are	at	2349	cm-1	(asymmetric	stretching)	and	at	667	cm-1	(bending)	

and	in	Raman	at	at	1330	cm-1	(symmetric).	Figure	2.6	shows	IR	and	Raman	spectra	

displaying	2	IR	peaks	and	1	Raman	peak	(8).	
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2.4	 Beer-Lambert	Law	

	 Beer-Lambert	 law	 relates	 concentration	 to	 a	 samples	 property	 (thickness),	

absorbance	 and	 spectral	 property	 (absorptivity)	 for	 quantitative	 analysis	 using	 a	

transmission	sampling	method.	Beer-Lambert	law	is	the	equation	which	relates	the	

amount	of	IR	radiation	absorbed	by	a	sample	according	to	equation	2.13.	

A = 	ϵ	l	c																																																																		Eq. 2.13	

	

Figure2.6	 –	 Two	 spectra	 displaying	 single	 bands	 related	 to	 the	 vibrational	
transitions	of	CO2	(hypothetical	example	ignoring	the	rotational	transitions	of	
CO2).	Adapted	from	(8).	
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Equation	 2.13	 shows	 the	 absorbance	 of	 IR	 radiation	 (A),	 the	 molar	

absorptivity	of	a	sample	 (ϵ),	 the	pathlength	of	a	sample	 (l),	and	the	concentration	

(c).	A = 	ϵ	l	c	 relates	 to	 the	 concentration	 of	molecules	 in	 a	 sample,	whereas	 the	

absorbance	of	light	within	a	sample	can	be	calculated	using	equation	2.14.	Equation	

2.14	 can	be	 used	 to	 calculate	 the	 absorbance	of	 a	 sample	 according	 to	 the	Beer-

Lambert	law.	

A = log	
𝐼8
𝐼 																																																																Eq. 2.14	

	 Equation	2.14	and	Figure	2.6	show	the	absorbance	of	 IR	radiation	(A),	 I0	as	

the	 intensity	 in	 the	 background	 spectrum	 and	 I	 as	 the	 intensity	 in	 the	 sample	

spectrum.	

	

	

	

	

	

	

	

	

Figure	 2.7	 shows	 a	 beam	 of	 IR	 radiation	 being	 aimed	 at	 a	 sample	 with	 a	

length	of	l.	Some	of	the	IR	beam	is	absorbed	by	the	sample.	Light	which	does	pass	

Figure2.7	–	Transmission	example	of	 the	Beer-Lambert	 law.	
Adapted	from	(1).	
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through	 the	 sample	 is	 focused	upon	a	detector	 to	obtain	a	 sample	 spectrum.	The	

Beer-Lambert	 law	 can	 be	 used	 to	 perform	 a	 calibration	 using	 the	 straight	 line	

equation	 (y=	 mx	 +	 c)	 when	 known	 standard	 concentrations	 are	 created	 from	 a	

known	 sample	 source,	 thus	 unknown	 sample	 can	 be	 quantitatively	 analysed	 to	

determine	 their	 concentration	 (1).	 Limitations	 causing	 non-linearity	 of	 the	 Beer-

Lambert	 law	 include	 too	 high	 concentrations,	 scattering	 of	 light	 in	 the	 sample,	

fluorescence	of	the	sample,	stray	light	and	non-monochromatic	radiation	(9).	

	

2.5	 Absorption	Bands	on	a	Biospectrum	

The	 absorption	 of	 IR	 radiation	 is	 caused	 by	 the	 interaction	 between	 the	

electric	vector	 (Figure	2.1)	and	the	dipole	moment	of	a	molecule	produced	during	

molecular	vibration.	 In	addition,	equation	2.8	shows	that	 the	oscillating	 frequency	

of	a	bond	during	harmonic	oscillation	 is	related	to	the	mass	and	force	constant	of	

the	 bond,	 thus	 absorption	 bands	 on	 an	 IR	 spectrum	 are	 assigned	 to	 particular	

molecular	vibrations	(3).	The	most	discriminatory	spectral	region	to	measure	for	the	

interrogation	of	biological	samples,	such	as	human	serum,	is	the	fingerprint	region	

(1800-1000	 cm-1)	 and	 the	 amide	 I	 and	 amide	 II	 region	 (1700-1500	 cm-1),	 due	 to	

spectral	 contributions	 from	 carbohydrates,	 nucleic	 acids	 and	 proteins.	 The	 higher	

wavenumber	region	of	a	spectrum	(3500-2500	cm-1)	is	the	region	for	O-H,	N-H	and	

C-H	stretching	vibrations;	the	lower	wavenumber	region	absorption	bands	typically	

correspond	to	carbon	skeletal	molecular	vibrations	(10).	Figure	2.8	shows	a	typical	

IR	spectrum	of	a	biological	sample.	
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The	 hydrogen	 bonding	 of	 a	 molecule	 plays	 a	 significant	 role	 when	

determining	 its	position	on	an	IR	spectrum.	A	molecules	bond	frequency	 increases	

depending	 on	whether	 it	 has	 single,	 double	 or	 triple	 bonds;	 single	 bonds	 are	 the	

weakest	 with	 lower	 frequencies	 compared	 to	 triple	 bonds	 which	 have	 high	

frequencies.	Amide	 I	and	amide	 II	primary	 (alpha)	and	secondary	 (beta)	structures	

can	be	distinguished	between	each	other	due	 to	 their	hydrogen	bonding.	Primary	

alpha	 amide	 structures	 are	 placed	 at	 a	 higher	 wavenumber	 region	 on	 the	 IR	

spectrum	due	to	them	having	a	higher	level	of	hydrogen	bonding	(higher	frequency)	

in	comparison	to	beta	structures	(11).	

Figure2.8	–	A	typical	IR	spectrum	collected	from	a	biological	sample.	
Replicated	from	(10).	
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2.6	 Gaseous	Contaminants	on	the	IR	Spectrum	-	Carbon	

Dioxide	(CO2)	and	Water	(H2O)	Vapour		

Carbon	dioxide	and	water	vapour	are	present	in	the	environment	in	gaseous	

states	 and	 they	 absorb	 IR	 radiation	 allowing	 both	 rotational	 and	 vibrational	

rotational	 transitions	 to	 occur.	 Small	 molecules	 in	 a	 gaseous	 phase	 show	

considerable	 fine	 structure	 due	 to	 the	 transitions	 between	 quantised	 rotational	

energy	levels.	These	fine	structures	are	rarely	seen	in	spectra	of	larger	molecules	of	

a	 gaseous	 phase	 or	 in	molecules	 in	 a	 liquid	 state.	 Figure	 2.9	 shows	 a	 rotational-

vibrational	spectrum	of	H2O	vapour	(3).		

	

	

	

	

	

	

	

	

Figure2.9	 –	 Vibrational	 rotation	 spectrum	 of	 H2O	 which	 can	 potentially	 be	 an	
interference	 in	 a	 spectrum.	 It	 is	 good	 practice	 to	 eliminate	 all	 traces	 of	 these	
molecules	in	the	beam	path	of	an	IR	spectrometer	by	purging	the	instrument	(3).	
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The	 interference	 of	 these	 spectral	 contaminants	 may	 interfere	 with	 the	

acquired	 data	 during	 statistical	 analysis/data	 processing.	 The	 collection	 of	 a	

background	spectrum,	to	allow	for	atmospheric	correction	of	CO2	and	water	vapour,	

is	 routinely	 performed	 to	 account	 for	 these	 gaseous	 spectral	 contaminants.	

Subtracting	 the	 background	 spectrum	 from	 the	 sample	 spectrum	 allows	 for	 the	

removal	of	the	gaseous	state	molecules	from	a	spectrum.	

Purging	 an	 FTIR	 system	 is	 an	 excellent	 way	 of	 dealing	 with	 the	 problems	

associated	with	gaseous	CO2	and	water	vapour	present	 in	 the	atmosphere	around	

the	 instrument.	A	purge	provides	 an	 FTIR	 instrument	with	 a	 constant	 flow	of	CO2	

free,	 water	 vapour	 removed	 (dry	 via	 desiccation),	 IR	 inactive	 nitrogen	 gas.	 The	

purpose	of	a	purge	 is	 to	maintain	a	constant	gaseous	environment	 inside	the	FTIR	

instrument	 to	 eliminate	 inconsistencies	 in	 background	 levels	 of	 CO2	 and	 water	

vapour	(12).		

2.7	 Spectral	Pre-processing	and	Multivariate	Analysis	(MVA)	

	 Prior	to	exploratory	studies	with	supervised	MVA,	it	is	necessary	to	prepare	

the	 data.	 Multivariate	 analysis	 refers	 to	 the	 analysis	 of	 multiple	 variables	

(dependent	variables	to	test	and	 independent	variable	to	determine	whether	they	

are	the	cause),	whereby	each	variable	is	linked	to	one	another	in	some	form	(13).	It	

is	common	practice	for	raw	spectral	data	to	be	pre-processed	which	may	involve	the	

creation	 of	 new	 variables	 of	 the	 raw	 data.	 This	 section	 focuses	 on	 the	 pre-

processing	 and	 multivariate	 analysis	 methods	 performed	 during	 this	 research	

project.	
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2.7.1	Noise	Reduction	

	 Noise	 reduction	 (NR)	 is	 used	 following	 spectral	 collection	 to	 improve	 the	

signal-to-noise	ratio	(SNR)	of	the	acquired	spectra.	NR	was	performed	using	an	 in-

house	written	Matlab	function	which	is	based	on	transforming	the	spectral	data	into	

principal	 components	 (PCs),	 explained	 further	 in	 3.4.	 The	 NR	 function	 allows	 the	

interpreting	 user	 to	 select	 the	 number	 of	 PCs	 they	wish	 to	 use;	 few	PCs	 selected	

leads	to	the	greatest	NR	but	also	increases	the	risk	of	removing	important	spectral	

features	 (13).	 The	 principal	 component	 analysis	 (PCA)	 portion	 of	 the	 NR	 function	

produces	scores	and	loadings	vectors	(discussed	shortly	in	3.4),	thus	allowing	for	the	

number	of	PCs	chosen	by	the	interpreter	to	be	restored	to	the	original	vector	size	of	

the	 initial	 spectral	 dataset.	 A	 chosen	 number	 of	 PCs	 should	 explain	 the	 relevant	

chemical	information	of	the	entire	dataset.	Generally,	the	first	20-40	PCs	of	the	data	

hold	the	majority	of	the	spectral	information	(13);	however,	within	this	research	the	

number	of	PCs	used	was	decided	upon	by	95.0	%	of	the	variance	explained.		Noise	

reduction	 can	 account	 for	 any	 instrumental	 factors	 which	 may	 have	 had	 an	

influence	on	the	IR	spectra	collected	(14).	

2.7.2		Standard	Normal	Variate	(Vector	Normalisation)	

	 The	 use	 of	 standard	 normal	 variate	 is	 a	 common	 pre-processing	 step	 to	

normalise	 the	 acquired	 spectral	 data.	 Vector	 normalisation	 (VN)	was	 used	 during	

this	 project;	 VN	 reduces	 the	 gross	 variance	 (thickness/width)	 between	 the	

maximum	and	minimum	spectra	on	the	absorbance	axis	of	all	of	the	sample	spectra.	
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The	in-house	written	Matlab	VN	function	used	initially	averages	each	wavenumber	

variable.	 The	 value	 of	 each	 average	 is	 then	 subtracted	 from	 the	 spectrum	 from	

which	 it	 was	 calculated	 to	 give	 a	 value	 equalling	 zero.	 Following	 this,	 each	

wavenumber	 variable	 is	 squared.	 The	 total	 sum	 of	 the	 squared	 wavenumber	

variables	 is	 calculated	 to	give	x.	 Each	wavenumber	variable	 is	 then	divided	by	 the	

square	root	of	x,	thus	normalising	the	spectral	dataset	to	a	magnitude	of	one.	Other	

means	 of	 normalisation	 do	 exist.	 Row	 scaling	 normalisation	 includes:	 ratioing	 to	

landmarks	(ratioing	the	remainder	of	the	spectra	based	upon	a	single	intensity	on	a	

spectrum);	scaling	rows	to	a	constant	total	(VN);	block	scaling;	column	scaling,	scale	

based	 on	 a	 minimum	 and	 maximum	 intensity	 and	 scale	 0	 to	 1	 etc.	 	 Vector	

normalisation	was	selected	to	be	used	so	that	all	of	the	original	spectral	data	could	

be	 normalised	 together	 for	 every	 wavenumber	 variable,	 rather	 than	 landmark	

normalising	 for	example,	 resulting	 in	 the	output	matrix	always	 totalling	a	value	of	

one.		

	

2.7.3			Principal	Component	Analysis	(PCA)	

PCA	 involves	 the	 transformation	 of	 the	 original,	 raw	 spectral	 data	 matrix	

according	to	equation	2.15	(13)	and	its	purpose	is	to	reduce	the	dimensionality	of	a	

dataset:	

		𝑥 = TP + E																																																																Eq. 2.15	

where	x	is	the	original	data	matrix	with	dimensions	I	x	J;	T	is	the	scores	matrix	and	

has	 as	many	 rows	as	 the	original	 data	matrix	 (I	 x	A);	P	 is	 the	 loadings	 and	has	 as	
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many	columns	as	the	original	data	matrix	(A	x	J).	A	refers	to	the	number	of	principal	

components.	Figure	2.10	illustrates	the	PCA	process.	PCA	is	a	powerful	unsupervised		

method	used	to	explore	patterns	in	data	and	it	is	used	to	create	scores	and	loadings		

matrices,	T	and	P	respectively.		

	

Scores	is	a	numerical	value	given	to	each	sample	spectrum	for	each	principal	

component	 (PC),	 and	 loadings	 numerically	 describe	 the	weight	 of	 the	 PC	 of	 each	

Figure2.10	–	The	PCA	process	from	the	original	dataset	to	obtaining	scores	
(T)	and	loadings	(P).	Adapted	from	(13).	
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input	sample	spectrum.	A	PC	describes	the	pattern	of	co-variation	between	classes	

of	data.	A	given	number	of	PCs	for	analysis	describes	a	datasets	co-variation,	i.e.	the	

first	PC	describes	the	most	important	pattern	of	co-variation,	whereas	the	second,	

third	 etc.	 represents	 the	 remaining	 patterns	 of	 co-variation	 (15).	 PCA	 allows	 for	

large	datasets	 to	be	 reduced	 into	a	number	of	PCs	which	are	characteristic	of	 the	

original	dataset.	The	fundamental	aim	of	PCA	is	to	discover	components	of	the	data	

which	 best	 explain	 the	 major	 variations	 of	 the	 data	 matrix,	 for	 example	

Khanmohammadi	et	al.	(2007)	discusses	the	use	of	the	first	two	PCs	of	their	studies	

spectral	dataset	to	describe	80.8	%	of	their	datasets	variance	(16).	

In	 addition	 to	 discovering	 PCs	 to	 explain	 the	 data,	 PCA	 involves	 finding	

mathematical	 functions	that	are	related	to	the	chemical	properties	of	a	spectrum,	

thus	the	PCs	which	are	found	to	explain	the	datasets	variance	can	be	considered	as	

mathematical	 structures	 (17).	 Following	 PCA,	 the	 original	𝑣	 variables	 are	 reduced	

significantly,	allowing	for	a	 large	dataset	to	be	much	smaller	and	manageable.	The	

original	 dataset	 is	 mathematically	 modelled	 by	 the	 PCs,	 which	 are	 vectors	 in	 a	

multidimensional	 space.	Due	 to	 the	PC	vectors	being	 in	a	multidimensional	 space,	

the	covariance	 is	measured	to	determine	the	relationship	between	the	 IR	spectra.	

An	important	step	involved	with	PCA	is	the	determination	of	how	significant	each	PC	

is	in	relation	to	the	data	matrix.	Eigenvalues	numerically	represent	the	contribution	

of	each	PC	to	the	entire	dataset	and	they	describe	the	size	of	each	PC,	whereby	the	

larger	 the	size	of	 the	component	 the	more	significant	 it	 is	 (17).	The	 loadings	 from	

PCA	can	be	plotted	to	show	the	𝑣	regions	which	contribute	to	the	separation	along	

the	 PC	 axis.	 A	 loadings	 plot	 can	 be	 used	 to	 observe	 which	 spectral	 features	 are	
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responsible	 for	 separation	 of	 classes	 on	 a	 PCA	 plot	 (13).	 Previous	 research	 in	 the	

field	of	biospectroscopy	has	used	PCA	as	a	dimensionality	reduction	method	prior	to	

analysis	(18-19).	

	

2.7.4	 			Support	Vector	Machine	(SVM)	

	 A	 SVM	 is	 a	 supervised	 method	 which	 can	 produce	 complex	 curved	

boundaries	with	indefinite	complexities	-	the	more	complex	the	boundary,	the	more	

likely	 it	 is	 to	 perfectly	 separate	 test	 and	 train	 datasets	 (13).	 A	 highly	 complex	

boundary	between	x	number	of	classes	allows	for	separation;	however,	overfitting	

is	possible	 if	 careful	 consideration	 is	not	 taken	when	selecting	 the	parameters	 for	

the	complexity	of	a	boundary;	boundaries	can	be	set	around	datasets	where	there	is	

no	real	significance,	hence	this	occurring	when	distinguishing	between	disease	state	

datasets	could	result	in	misleading	outcomes.	In	this	project,	a	radial	basis	function	

(RBF)	 SVM	 was	 used	 to	 separate	 disease	 classes.	 A	 RBF	 kernel	 is	 well-suited	 to	

classes	of	data	where	a	linear	hyperplane	(e.g.	used	in	linear	learning	machines	for	

simple	linear	problems)	is	inadequate	to	separate	the	data.	A	kernel	is	essentially	a	

similarity	function	that	allows	us	to	observe	how	similar	classes	are	to	one	another;	

previous	research	has	found	that	a	RBF	kernel	coupled	with	SVM	analysis	provides	

excellent	 classification	 rate	 accuracies	 	 of	 80.0	 %	 (±18.92	 %)when	 using	 complex	

datasets	 (20).	 In	 addition,	 previous	 research	 in	 the	 field	 of	 biospectroscopy	 has	

achieved	 high	 sensitivities	 and	 specificities	 when	 using	 RBF-SVMs	 to	 distinguish	

between	cell	lines	(21)	and	for	lymph	node	diagnostics	(22).	
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An	SVM	projects	the	classes	of	data	into	a	new	higher	dimensional	(feature)	

space	where	a	RBF	is	employed	to	find	complex	separating	hyperplanes	around	the	

classes.	 The	 non-linear	 nature	 of	 an	 RBF	 is	well-suited	 for	 complex	 datasets	 (13).	

Figure	2.11	shows	 two	 inseparable	classes	 (left)	which	are	projected	 into	a	hyper-

dimensional	 feature	 space	 (middle)	 where	 a	 plane	 successfully	 separates	 the	

classes.	Finally,	the	successful	discrimination	of	the	classes	using	a	RBF	is	projected	

back	into	a	2-dimentional	plot	with	the	plane	intact	(right)	(13).	

	

	

	

	

	 The	parameter,	cost	(C),	is	used	to	determine	the	level	of	tolerance	which	a	

model	 has	 to	misclassification	 (13).	 A	 larger	C	 value	 represents	 a	model	 having	 a	

lower	tolerance	of	misclassification	and	more	complex	boundaries,	thus	a	trade	off	

exists	 between	 the	 complexity	 of	 the	 boundary	 and	 the	 samples	 misclassified	 or	

those	which	are	near	to	the	boundary,	as	illustrated	in	Figure	2.12	(23).	High	values	

of	C	 tend	 to	 represent	 hard	margin	 SVMs	 resulting	 in	 high	misclassification	 error	

rates	(13).	

Figure2.11	 –	 Two	 linearly	 inseparable	 classes	 (left);	 projection	 of	 the	 2	
inseparable	 classes	 into	 a	 higher	 dimensional	 feature	 space	 where	 a	 plane	
successfully	 separates	 the	 classes	 (middle);	 projecting	 the	 classes	 from	 the	
feature	space	back	to	2-dimensions	(right).	Reproduced	from	(13).	
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Another	 parameter	 used	 in	 RBF-SVM	 is	 the	 gamma	 (γ)	 value.	 The	 gamma	

value	is	related	to	the	curvature	of	the	SVMs	plane	between	classes.	If	the	value	of	γ	

is	 increased	 or	 decreased	 then	 the	 curvature	 of	 the	 decision	 boundary	 is	 altered.	

The	result	of	different	γ	values	 is	 illustrated	 in	Figure	2.13	 (24).	Figure	2.14	shows	

the	influence	of	a	high	γ	value	on	the	curvature	of	a	separating	boundary	(24).	

	

	

	

	

	

Figure2.12	 –	 The	 larger	 the	 value	 of	 C	 represents	 the	 models	 tolerance	 of	
misclassification	 with	 more	 complex	 boundaries.	 For	 example,	 the	 highlighted	
space	around	each	data	point	is	more	frequent	in	C	=	0.1	where	the	model	has	a	
high	tolerance	to	misclassification	(23).	

Figure2.13	 –	 The	 γ	 parameter	 influences	 the	 curvature	 of	 the	 SVM	 boundary	
between	the	classes	(24).	
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The	 consequence	of	 decreasing	 the	 value	of	 γ	 is	 that	 the	 curvature	 of	 the	

separating	SVM	boundary	 is	 reduced;	however,	 if	 the	value	of	C	 is	 increased	 then	

the	 separating	boundary	 is	 forced	 to	curve	accordingly	 to	accommodate	 the	 large	

error	rate	(24).	

The	most	 common	 SVM	 kernels	 available,	 apart	 from	RBF,	 are	 polynomial	

and	 sigmoidal	 (24).	 The	 lowest	degree	of	 flexibility	a	polynomial	 classifier	has	 is	 a	

linear	kernel,	thus	the	use	of	a	linear	kernel	is	unsuitable	with	a	dataset	with	a	non-

linear	relationship	between	classes	(24).	These	kernels	can	be	used	for	data	which	is	

better	 suited	 to	 their	 purpose,	 such	 as	 with	 data	 which	 is	 not	 highly	 complex	 or	

where	a	linear	plane	would	be	best	to	separate	classes	of	data.	The	use	of	hard	SVM	

Figure2.14	 –	 A	 high	 γ	 value	 leads	 to	 overfitting	 due	 to	 the	
increased	flexibility	of	the	separating	plane	(bottom	left	and	
right).	 A	 small	 γ	 value	 allows	 for	 a	 soft-margin	 decision	
boundary	(24).	
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margins,	 as	 opposed	 to	 soft,	 to	 define	 complex	 class	 boundaries	 may	 result	 in	

overfitting.	SVMs	can	be	divided	into	two	general	categories;	hard	and	soft	margin	

SVMs.	Hard	margin	 SVMs	 require	 two	 classes	 of	 data	 to	 be	 completely	 separable	

with	 the	margin’s	 aim	 being	 to	 find	 the	maximum	possible	 distance	 between	 the	

two	 classes.	 To	avoid	overfitting,	 it	 is	 common	practice	 to	use	a	 soft	margin	 SVM	

which	allows	for	a	degree	of	misclassification	whilst	balancing	the	complexity	of	the	

model	against	the	degree	of	misclassification.		

	

2.8	 SpecToolbox	for	Feature	Extraction	

The	 SpecToolbox,	 written	 in	 collaboration	with	 Dr	 Ryan	 Stables	 (Birmingham	 City	

University),	 is	 an	 in-house	written	piece	of	 software	developed	 to	work	 in	Matlab	

for	 the	analysis	of	 spectroscopic	data.	 Feature	extraction	 (FE)	 enables	 the	user	 to	

extract	 the	 relevant	 discriminatory	 spectral	 information	 into	 smaller	 vectors	 of	

information,	 while	 removing	 redundant	 data.	 Although	 highly	 correlated,	 PCA	

vectors	do	not	necessarily	explain	the	key	regions	of	the	spectrum.	Data	reduction	is	

performed	prior	to	using	the	SpecToolbox	by	using	PCA,	however,	determining	the	

important	spectral	changes	between	groups	of	data	can	be	difficult	when	evaluating	

loading	plots,	thus	variable	ranking	is	performed.	FE	may	also	improve	classification	

accuracies.	The	main	function	of	the	SpecToolbox	is	to	provide	FE	to	elucidate	and	

rank	 the	 relevant	 spectral	 information	 from	 recorded	data.	 Figure	2.15	 shows	 the	

graphical	user	interface	(GUI)	of	the	SpecToolbox.	
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Following	the	input	of	spectral	data	in	the	SpecToolbox,	the	user	can	extract	

features	 based	 upon	 the	 𝑣	 regions	 of	 interest,	 thus	 allowing	 for	 redundant	

information	to	be	removed	from	analysis.	Figure	2.16	shows	IR	data	loaded	into	the	

SpecToolbox.	

	

Figure2.15	 –	 The	 graphical	 user	 interface	 (GUI)	 of	 the	
SpecToolbox	for	feature	extraction.	

Figure2.16	 –	 A	 3-dimensional	 plot	 of	 multiple	 IR	
spectra	in	the	SpecToolbox.	
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	 Variable	 ranking	 via	 information	 gain	 highlights	 the	 wavenumber	

regions	to	the	user	which	are	most	discriminatory	between	the	spectral	classes	by	

means	 of	 Pearson’s	 coefficient	 correlation	 and	 entropy.	 Variable	 ranking	 lists	 the	

wavenumber	 features	 in	descending	order	based	upon	 their	 role	 in	discriminating	

between	various	classes	-	the	top	variable	ranking	feature	is	the	most	discriminatory	

between	the	classes.	Pearson’s	correlation	coefficient	 is	 frequently	used	 in	clinical	

chemistry	 when	 comparing	 between	 the	 strength	 associations	 between	 spectral	

bands	 (5).	 The	 similarities	 between	 spectra	 can	 be	 determined	 with	 spectral	

numerical	 values.	 All	 points	 of	 the	 user	 selected/highlighted	 spectral	 bands	 are	

taken	 into	 consideration	 during	 the	 coefficients	 calculation	 of	 similarity,	 thus	 the	

approach	 is	 more	 efficient	 than	 visual	 comparison	 based	 on	 band	 intensity.	 A	

Pearson	coefficient	value	 is	a	numerical	 indication	of	the	strength	and	direction	of	

the	linear	relationship	between	variables.	Coefficient	values	are	varied	between	-1	

and	 1,	 with	 -1	 representing	 a	 perfect	 negative	 relationship,	 +1	 a	 perfect	 positive	

relationship	 and	 0	 representing	 no	 relationship	 (25).	 Furthermore,	 entropy	

measures	the	level	of	impurity	in	a	group.	The	higher	the	entropy	of	a	wavenumber	

region,	 the	more	 information	 rich	 the	 region	 is.	 Performing	 information	gain	on	a	

spectral	 dataset	 allows	 for	 the	 understanding	 of	 how	 important	 a	 given	

wavenumber	 region	 (feature)	 is	 (26).	 Following	 this	 step,	 the	 regions	 of	 the	

spectrum	upon	which	 the	user	wishes	 to	perform	FE	 can	be	 selected.	 Figure	2.17	

shows	the	selection	of	spectral	bands	on	a	2-dimensional	plot	of	the	mean	spectra.	
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Following	the	selection	of	the	discriminatory	bands,	FE	is	performed.	During	

FE	 spectral	 descriptors	 such	 as	 peak	 kurtosis,	 peak	 skew,	 peak	 centroid,	 peak	

frequency,	peak	amplitude	and	RMS	energy	from	each	selected	band	are	captured.	

The	feature	information	is	ranked	and	scored	in	descending	order	to	best	describe	

how	 each	 feature	 explains	 the	 variance	 between	 the	 classes.	 The	 feature	 data	

matrix	 can	be	exported	 to	 the	Matlab	workspace,	 saved	and	used	 for	FE-fed	SVM	

analysis.	 The	peak	 shapes/descriptors	 and	 FE-fed	 SVM	will	 be	discussed	 in	 a	 later	

chapter	of	this	thesis.	Alternative	methods	of	FE	include	random	forests	which	have	

been	 found	 to	 increase	 classification	 accuracies	 and	 reduce	 redundant	 data	 from	

analysis	(27).	The	SpecToolbox	was	designed	with	a	user-friendly	GUI	for	simplicity;	

its	use	as	a	tool	for	FE	in	disease	detection	is	presented	within	this	thesis.	

	

	

Figure2.17	 –	 The	 selection	 of	 spectral	 bands	 for	 feature	
extraction.	
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Chapter	3	

INSTRUMENTATION	

This	 chapter	 will	 discuss	 the	 Michelson	 interferometer	 and	 describe	 the	

factors	which	 influence	optimal	 spectral	acquisition,	commonly	known	as	 the	FTIR	

trading	rules.	The	ATR	sampling	method	will	be	described	and	the	FTIR	instruments	

used	 to	 collect	 spectral	 data	 from	 patient	 serum	 samples	 will	 be	 presented.	

Additionally,	this	chapter	will	discuss	background	spectra	and	the	JASCO	and	Agilent	

FTIR	instruments	used	during	this	project	will	be	presented.	

	

3	 Instrumental	Theory	

3.1	 Michelson	Interferometer	

FTIR	spectroscopic	instrumentation	is	fundamentally	based	on	the	use	of	an	

IR	 globar	 source,	 a	 detector,	 a	 reference	 laser	 and	 a	 Michelson	 interferometer;	

however,	 recently	 broadly	 tunable	 mid-infrared	 quantum	 cascade	 lasers	 (QCLs)	

have	 been	 integrated	 into	 spectroscopic	 imaging	 systems	 allowing	 for	 simpler	

instrumentation	as	no	interferometer	is	required	(1).	The	Michelson	interferometer	

is	 a	 beam-splitting	 device	which	 divides	 the	 beam	of	 IR	 radiation	 into	 two	 paths,	

followed	by	recombining	them	both	after	a	path	difference	has	been	introduced	(2).	

The	 range	 of	 IR	 intensities	 exiting	 the	 interferometer	 is	 measured	 by	 a	 detector	

based	 upon	 path	 difference	 (3).	 Figure	 3.1	 shows	 a	 schematic	 diagram	 of	 a	

Michelson	interferometer	and	its	internal	components.		
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The	Michelson	interferometer	is	composed	of	a	fixed	mirror	and	a	movable	

mirror.	The	IR	beam	is	collimated	by	a	lens	as	it	exits	the	source,	to	allow	the	light	

rays	to	be	parallel	to	each	other,	prior	to	it	being	split	in	to	two	separate	beams	by	

the	 beamsplitter	 -	 partially	 onto	 the	movable	mirror	 and	 partially	 onto	 the	 fixed	

mirror.	The	beams	of	 IR	radiation	return	to	the	beamsplitter	where	they	interfere,	

thus	 producing	 an	 interferogram,	 and	 again	 are	 further	 partially	 reflected	 and	

transmitted.	 Ideally,	 a	 beamsplitter	 would	 consist	 of	 non-absorbent	 films	 and	

transmit/reflect	 at	 50	 %).	 	 The	 moving	 mirror	 can	 either	 be	 set	 to	 move	 at	 a	

constant	 velocity	 or	 paused	 for	 equal	 amounts	 of	 time	 and	 stepped	 rapidly;	 a	

moving	mirror	moving	at	a	velocity	of	>0.1	cm.s-1	is	common	place	to	allow	for	rapid	

continuous	scanning	(4).		

In	 an	 ideal	 scenario,	 IR	 radiation	 would	 be	 perfectly	 collimated	 and	 the	

beamsplitter	described	as	above;	in	such	a	case,	the	path	difference	between	O-M	

Figure3.1-	Schematic	diagram	showing	the	Michelson	interferometer.	O-M	
and	O-F	show	the	optical	path	difference	(retardation).	Replicated	from	(3).	
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and	O-F	on	Figure	3.1	is	described	as	the	optical	path	difference	(OPD)	(retardation).	

Since	 the	 optical	 path	 difference	 is	 uniform	 for	 every	 parallel	 input	 beams,	 it	

compensates	for	IR	radiation	which	is	not	perfectly	collimated.	When	the	moveable	

and	 fixed	 mirrors	 are	 at	 an	 equal	 distance	 from	 the	 beamsplitter,	 the	 beams	

recombining	 at	 the	 beamsplitter	 interfere	with	 one	 another	 perfectly.	 In	 such	 an	

instance,	every	 intensity	 from	the	source	reaches	the	detector	and	there	 is	a	zero	

path	difference	(zero	retardation).	It	is	at	the	point	of	zero	retardation	whereby	the	

centreburst	on	an	interferogram	is	produced	(3).	The	purpose	of	the	beamsplitter	is	

to	split	an	 infrared	beam	 in	 to	 two	and	recombine	 it	again	 in	 to	one	single	beam.	

The	vast	majority	of	beamsplitters	consist	of	a	 film	of	Ge	 in-between	two	 infrared	

transparent	 windows	 which	 transmit	 and	 reflect	 equal	 measures	 of	 IR	 radiation.	

Many	of	these	infrared	inactive	windows	are	composed	of	potassium	bromide	(KBr)	

due	to	its	transparency	across	a	wide	spectral	range	(400	cm-1	in	to	the	NIR);	below	

400cm-1	the	KBr	windows	strongly	absorb	IR	radiation,	therefore,	this	region	of	the	

spectrum	is	not	collected.	Another	reason	for	a	water	vapour	free	purge	is	that	KBr	

windows	 are	 hygroscopic	 (atmospheric	water	 absorbing),	 which	would	 eventually	

lead	 to	 water	 collecting	 on	 the	 KBr	 windows	 resulting	 in	 the	 limiting	 of	 IR	 light	

reaching	 the	 sample	and	detector.	 Zinc	 selenide	 (ZnSe)	 is	 a	 suitable	alternative	 to	

KBr	as	it	is	not	hygroscopic,	however,	it	is	significantly	more	expensive	per	window	

(£120-£1350	depending	on	thickness)	compared	to	KBr	(£50-£160)	(5).		

An	 interferogram	 is	 a	 plot	 of	 IR	 intensity	 against	 OPD;	 a	 samples	

characteristic	 absorptions	 are	 contained	 within	 the	 wavelengths	 of	 an	



89	
		

interferogram.	When	a	sample	 is	placed	 in	 the	path	of	 the	 IR	beams	 interference,	

the	loss	of	a	beams	intensity	due	to	the	absorption	of	the	frequencies	of	light	to	the	

sample	 are	 measured	 by	 the	 detector.	 In	 summary,	 Fourier-transform	 is	 a	

mathematical	 function	 which	 is	 used	 to	 produce	 an	 IR	 spectrum	 from	 an	

interferogram.	

	

3.2	 Background	Spectrum	

If	no	sample	is	placed	in	the	path	of	the	interfering	beam	then	the	resulting	

spectrum	 is	 called	 a	 background	 spectrum.	 Figure	 3.2	 gives	 an	 example	 of	 a	

background	spectrum	(2).	

	

	

	

	

	

	

	

	

Figure3.2	-	An	example	of	a	background	spectrum	
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A	background	spectrum	represents	the	environment	from	inside	and	around	the	

instrument	and	 it	 is	 collected	 to	allow	 for	atmospheric	correction.	As	described	 in	

chapter	 2,	 an	 IR	 spectrum	 contains	 environmental	 spectral	 contributions	 from	

atmospheric	gases	such	as	CO2	and	H2O	vapour	(2).	Figure	3.3	shows	the	peaks	of	

the	described	gaseous	molecules.	The	 two	 interferograms	acquired	 from	both	 the	

background	and	the	sample	are	divided	together,	followed	by	the	Fourier-transform	

calculation,	 thus	 resulting	 in	 a	 spectrum	 where	 environmental	 influences	 on	 the	

spectrum	the	have	been	accounted	for	(2).	

	

3.3		Attenuated	Total	Reflectance	(ATR)	-	FTIR	Spectroscopy	

Attenuated	 total	 reflectance	 (ATR)	 is	 as	 sampling	 mode	 used	 in	 IR	

spectroscopy	based	upon	the	internal	reflection	of	IR	radiation	through	an	internal	

reflection	element	(IRE)	such	as	Di	or	Germanium	(Ge).	The	major	benefit	of	ATR	use	

in	the	analysis	of	human	serum	is	that	it	is	easy	to	use,	cost	effective	and	has	rapid	

spectral	acquisition	times	(6).	The	ATR	crystal	 is	 ideal	 for	drying	biological	samples	

onto	to	allow	for	sample	dehydration	to	occur,	thus	reducing	the	spectral	inhibition	

of	 highly	 absorbent	 water.	 During	 the	 drying	 process,	 intimate	 contact	 occurs	

between	 the	 sample	 and	 the	 IRE,	 enabling	 the	 evanescent	 wave	 to	 successfully	

penetrate	 the	 sample	 (7).	 ATR-FTIR	was	 used	 over	 transmission	 and	 transflection	

sampling	modes	as	they	have	major	disadvantages.	Transmission	and	transflection	

sampling	modes	suffer	from	Mie	scattering	and	an	effect	known	as	the	electric	field	

standing	 wave	 during	 measurement	 due	 to	 sample	 thicknesses	 (height	 above	
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surface)	due	to	particle	size,	respectively	(8).	ATR	was	used	throughout	this	project	

however;	 a	 limitation	 of	 using	 the	 ATR	 sampling	 mode	 is	 that	 high-throughput	

sampling	is	not	currently	an	option	due	to	no	accessory	yet	being	available.	Unless	a	

multi-ATR	crystal	sampling	device	was	created,	however,	single	crystal	ATR	sampling	

is	unlikely	to	be	used	for	high-throughput	in	the	clinical	due	it	its	impracticality	(9).		

A	beam	of	IR	light	travels	through	a	crystal	of	high	refractive	index	(RI)	(nc),	

which	then	interacts	with	the	sample	placed	upon	the	surface	(ns).	θi	represents	the	

angle	 of	 incidence	 and	 θR	 	 the	 angle	 of	 refraction;	 as	 the	 angle	 of	 incidence	

increases,	 so	does	 the	 angle	 of	 refraction.	 In	 order	 for	 total	 internal	 refraction	 to	

occur,	 the	 angle	 of	 refraction,	 θR,	must	 exceed	 the	 critical	 angle	 (θC).	 The	 critical	

angle,	 θc,	 is	 calculated	 based	 upon	 the	 RI	 of	 the	 sample	 and	 the	 ATR	 crystal	

(equation	3.1)	(2).		

θC	=	sin-1	
XY
X6
																																											Equation	3.1																								

	 where	 n1	 =	 RI	 of	 ATR;	 n2	 =	 RI	 of	 sample.	 High	 refractive	 materials	 are	

selected	 for	 the	ATR	crystal	 to	allow	for	a	minimal	critical	angle.	Figure	3.3	shows	

the	process	of	ATR	with	the	aim	being	total	internal	refraction.	
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If	the	RI	of	the	ATR	crystal	is	higher	than	the	RI	of	the	sample	placed	on	top	

of	 the	 crystal,	 then	 internal	 reflectance	 occurs.	 Internal	 reflectance	 creates	 an	

evanescent	wave	which	 extends	 upwards	 above	 the	 ATR	 crystal	 into	 the	 sample.	

When	the	sample	placed	upon	the	crystal	absorbs	IR	energy,	the	evanescent	wave	is	

attenuated.	Following	attenuation,	the	IR	beam	continues	to	the	detector	showing	

specific	 IR	 wavelengths	 where	 the	 sample	 has	 absorbed	 energy	 (2).	 Figure	 3.4	

presents	an	example	of	an	ATR	crystal	with	a	path	of	IR	radiation.	

	

	

	

	

Figure3.3	-	An	example	of	an	ATR	crystal	displaying	the	critical	angle.	
Adapted	from	(2).	Figure3.4	-	An	example	of	an	ATR	crystal	with	an	IR	beam.	Adapted	from	(2).	
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The	distance	which	the	evanescent	wave	can	penetrate	a	sample	 is	around	

2-3	microns	(10).	The	depth	of	penetration	is	an	important	consideration	with	ATR-

FTIR	 as	 the	 evanescent	 wave	 extends	 from	 the	 IRE	 and	 penetrates	 into	 the	

sample	(2).	Equation	3.2	shows	the	equation	for	depth	of	beam	penetration.	

	

																																													DP = 										6											
Y[[]^_ `a^bθ5^bsc 6/Y

Equation	3.2	

where	DP	is	depth	of	penetration;	W	=	wavenumber;	nc	=	RI	of	ATR	crystal,	θ	=	angle	

of	incidence	and	nsc	=	θC	(2).	 	

	 There	 are	 several	 factors	 which	 effect	 the	 spectra	 obtained	 via	 ATR-FTIR,	

they	include:	the	ATR	crystal	material	(RI	index);	RI	of	the	sample;	wavelength	of	the	

IR	 radiation;	 angle	 of	 incidence	 (θi)	 and	 the	 efficiency	 of	 contact	with	 the	 sample	

(11).	

Due	 to	 the	 exponential	 decrease	 of	 the	 evanescent	 wave	 as	 the	 distance	

from	the	surface	of	the	crystal	 increases,	an	 intimate	contact	between	the	sample	

and	the	crystal	allows	for	the	efficient	penetration	of	the	evanescent	wave	into	the	

sample.	 Intimate	 contact	 between	 human	 serum	 and	 the	 ATR	 crystal	 is	 easily	

achieved	due	to	the	liquid	biofluid	drying	on	the	surface.	A	drying	study	of	human	

serum	was	 conducted	 during	 this	 research	 and	will	 be	 discussed	 in	 a	 subsequent	

chapter.		

The	 sampling	 depth	 of	 ATR	 is	 wavelength	 dependent,	 and	 increases	 with	

decreasing	 wavenumber.	 The	 depth	 of	 penetration	 depends	 on	 the	 angle	 of	
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incidence.	 Varying	 the	 angle	 of	 incidence	 of	 the	 light	 and	 the	 RI	 of	 the	 IRE	 can	

control	 the	 sampling	depth	 -	 increasing	either	decreases	 the	 sampling	depth	 (12).	

The	 wavelength	 dependent	 behaviour	 of	 the	 evanescent	 wave	 leads	 to	 ATR-FTIR	

spectral	 band	 intensities	 decreasing	with	 increasing	wavenumbers;	 this	 is	 not	 the	

case	 with	 transmission	 experiments	 of	 the	 exact	 sample,	 thus	 the	 RI	 of	 the	 IRE	

effects	 acquired	 spectra	 (12).	 During	 the	 project	 described	 within	 this	 thesis,	 to	

correct	for	this,	an	in-built	software	ATR-correction	method	automatically	corrected	

band	position	and	shape	(11).	The	RI	of	an	ATR	crystal	has	2	major	influences	on	an	

ATR	 spectrum.	 A	 high	 RI	 crystal	 allows	 for	 the	 critical	 angle	 (θC)	 to	 be	 kept	 to	 a	

minimum;	 it	 is	 important	 for	the	angle	of	 incidence	to	exceed	θC	to	avoid	spectral	

distortions	created	from	the	combination	of	ATR	and	external	reflectance.		

A	 high	 RI	 ATR	 crystal	 will	 decrease	 the	 depth	 of	 penetration	 by	 the	

evanescent	wave,	 thus	decreasing	the	effective	pathlength.	Effective	pathlength	 is	

used	 during	 ATR-correction	 by	 approximating	 a	 samples	 expected	 spectrum	 with	

transmission	whereby	 the	 thickness	of	a	 sample	 is	directly	 related	 to	a	 spectrums	

absorbance	 intensities.	 The	 purpose	 of	 ATR-correct	 is	 to	 increase	 the	 peak	

intensities	 at	 higher	 wavenumbers	 on	 the	 IR	 spectrum	 relative	 to	 a	 spectrum	

acquired	via	transmission	mode	collection	(2).	 Increasing	the	depth	of	penetration	

increases	 the	 absorbance	 intensities	 on	 a	 spectrum,	 thus	 reducing	 the	 use	 of	

approximation	of	ATR-correct	on	an	acquired	ATR	spectrum	(11).	

The	angle	of	incidence	also	plays	a	role	in	the	collection	of	an	ATR	spectrum.	

An	ATR	crystal	should	be	chosen	with	a	RI	to	allow	the	angle	of	incidence	to	exceed	
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the	 critical	 angle	 (equation	 3.7).	 Using	 equation	 3.7,	 an	 ATR	 crystal	 which	 can	

achieve	a	greater	angle	of	 incidence	should	be	selected	to	ensure	that	the	spectra	

collected	 represents	 the	 sample.	 The	 angle	 of	 incidence	 effects	 the	 number	 of	

reflections	 within	 the	 ATR	 crystal;	 the	 greater	 the	 angle	 of	 incidence,	 the	 less	

intense	 the	 absorbance’s	 are	 on	 the	 ATR	 spectrum,	 furthermore,	 a	 high	 angle	 of	

incidence	 decreases	 the	 evanescent	 wave	 penetration	 depth,	 thus	 reducing	 the	

absorbance	intensities	(11).		

	

3.4	 FTIR	Instrumentation	

During	 this	PhD	project,	 two	FTIR	spectrometers	have	been	used	to	collect	

spectral	 data	 from	 pooled	 and	 patient	 serum	 samples.	 In	 subsequent	 research	

chapters,	 the	 specific	 FTIR	 spectrometer	 used	 to	 collect	 the	 spectral	 data	 will	 be	

stated.		

3.4.1			JASCO	FTIR	Instrument	

During	 the	 early	 stages	 of	 the	 PhD	 project,	 a	 JASCO	 FTIR-410	 Specac	 ATR-

single	 reflection	 diamond	 Golden	 Gate™	 spectrometer	 was	 used	 to	 collect	 all	

absorption	data.	 	 Figure	3.5	 shows	an	 image	of	 the	 JASCO	FTIR	 instrument	with	a	

computer	monitor	showing	an	infrared	background	spectrum.	
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All	data	was	collected	in	the	range	of	4000-400	cm-1,	at	a	resolution	of	4	cm-1	

and	 over	 32	 co-added	 scans.	 Prior	 to	 each	 spectral	 collection,	 a	 background	

absorption	spectrum	was	collected	for	atmospheric	correction.	

3.4.2	 Agilent	Cary	600	Series	FTIR	Instrument	

An	 Agilent	 Cary	 600	 Series	 FTIR	 instrument	 with	 a	 PIKE	 MIRacle™	 single	

reflection	 ATR	 sampling	 accessory	 was	 also	 used	 to	 collect	 spectral	 data	 from	

patient	 serum	 samples.	 It	 is	 important	 to	 note	 that	 spectral	 data	 collected	 from	

both	 the	 JASCO	 and	 Agilent	 FTIR	 systems	 was	 not	 combined	 together	 for	 data	

analysis	 in	 this	 project;	 the	wavenumber	bins	on	both	 instruments	do	not	match,	

thus	 all	 required	 sample	 spectra	was	 re-collected	 upon	 installation	 of	 the	 Agilent	

FTIR	 system.	 Figure	 3.6	 shows	 an	 image	 of	 the	 Agilent	 Cary	 600	 Series	 FTIR	

spectrometer	 (13)	 and	Figure	3.7	an	 image	of	 the	PIKE	MIRacle™	 single	 reflection	

ATR	sampling	accessory	(14).	

Figure3.5	-	JASCO	FTIR-410	Specac	ATR	spectrometer	with	computer	monitor.	
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The	 Agilent	 FTIR	 system	 is	 a	 research	 grade	 instrument	 which	 can	 deliver	

excellent	 SNR	 and	 excellent	 spectral	 resolution	with	 fast	 internal	 optic	 speeds	 to	

allow	 for	 optimal	 spectral	 collection	 (13).	 All	 data	 was	 collected	 in	 the	 range	 of	

4000-400	cm-1,	at	a	resolution	of	4	cm-1	and	over	32	co-added	scans.	Prior	to	each	

spectral	 collection,	 a	 background	 absorption	 spectrum	 was	 collected	 for	

atmospheric	correction.	

3.4.3			Infrared	Sources	and	Detectors	

Both	 JASCO	and	Agilent	 systems	used	 the	 same	 type	of	 infrared	 source.	A	

mid-infrared	 emitting	 light	 source,	 commercially	 known	 as	 Globar,	 is	 a	 resistively	

Figure3.6	-	Agilent	Cary	600	Series	FTIR	spectrometer	(inside	PIKE	MIRacle™	
ATR	accessory).	Reproduced	from	(13).	

Figure3.7	-	PIKE	MIRacle™	ATR	accessory.	Reproduced	from	(14).	
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heated	silicon	carbide	rod	which	was	used	throughout	this	project.	Globar	sources	

are	heated	to	approximately	1300	Kelvin	and	emit	mid-IR	radiation	in	the	range	of	

50-6000	cm-1(3).	

Briefly,	 the	purpose	of	a	detector	 is	 to	convert	an	 intensity	of	 light	 into	an	

electrical	 signal	 (voltage).	 The	 JASCO-410	 FTIR	 spectrometer	 and	Agilent	 Cary	 600	

Series	 FTIR	 spectrometer	 both	 used	 a	 deuterated	 triglycine	 sulphate	 (DTGS)	

detector.	 A	 DTGS	 is	 optimal	 for	 use	 in	 the	 mid-infrared	 region	 when	 using	 KBr	

beamsplitter	windows.	DTGS	detectors	 are	 suitable	 for	ATR	 analysis,	 but	 they	 are	

known	 for	 their	 level	 of	 noise	 contribution	 to	 IR	 spectra	 when	 performing	 IR	

microscopy.	 Ideally,	 a	mercury	 cadmium	 telluride	 (MCT)	 detector	 should	 be	 used	

during	microscopy	 experiments	 due	 it	 being	 a	 photoconductor.	 An	MCT	 detector	

produces	a	current	when	IR	radiation	is	absorbed.		Comparing	an	MCT	detector	to	a	

DTGS	 detector,	 where	 the	 current	 generated	 varies	 with	 temperature,	 MCT	

detectors	are	reported	to	be	4	times	faster	and	10	times	less	noisy	-	however,	MCT	

detectors	 are	 several	 thousand	pounds	more	expensive	and	 their	detection	 range	

cuts	 off	 at	 around	 700	 cm-1,	 thus	 concealing	 a	 part	 of	 the	 mid-IR	 region.	 DTGS	

detectors	cut	off	at	around	400	cm-1	making	it	more	suitable	for	use	with	fingerprint	

region	collection	via	ATR	mode	spectroscopy	(2).	
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Chapter	4	

AN	ORTHOGONAL	APPROACH:	INVESTIGATING	THE	

POTENTIAL	USE	OF	ATR-FTIR	FOR	RAPID	GLIOMA	DIAGNOSIS	

4.1	 Introduction	and	Aims	

This	 chapter	 investigates	 the	 potential	 use	 of	 ATR-FTIR	 spectroscopy	 to	

identify	 cancer	 from	 non-cancer	 from	 whole	 (unfiltered)	 and	 10	 kDa	 (kiloDalton)	

filtered	serum	samples.	

Prior	to	our	spectral	analysis	of	the	human	serum	samples	our	collaborator	

Peter	Abel	at	 the	University	of	Central	 Lancashire	used	a	Bioplex	 immunoassay	 to	

provide	cytokine	and	angiogenesis	factor	levels	that	differ	between	serum	samples	

from	glioma	and	non-cancer	patients.	Specifically	angiopoietin,	follistatin,	leptin	and	

interleukin-8	 factors	 were	 found	 to	 be	 most	 discriminatory.	 The	 cytokines	 and	

angiogenesis	factors	responsible	for	discrimination	have	varying	molecular	weights;	

hence	 we	 perform	 a	 filtration	 study	 to	 assess	 which	 fraction	 of	 serum	 is	 most	

suitable	 for	 our	 analyses.	 To	 study	 this,	 an	 RBF-SVM	was	 used	 to	 investigate	 the	

spectral	data	was	collected	 from	patient	 serum	samples.	Sampling	protocols	were	

determined	 and	 optimised	 (e.g.	 drying	 time	 for	 serum	 dehydration)	 and	 whole	

(unfiltered)	 serum	 and	 filtrate	 aliquots	 were	 analysed	 to	 determine	 the	 most	

discriminatory	fraction	of	serum.		

The	work	presented	within	this	chapter	has	been	published	in	the	Journal	of	

Analytical	 and	 Bioanalytical	 Chemistry,	 2013,	 Volume	 405(23);	 7347-7355.	
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Investigating	 the	 rapid	 diagnosis	 of	 gliomas	 from	 serum	 samples	 using	 infrared	

spectroscopy	and	cytokine	and	angiogenesis	factors.	

4.2	 Experimental	Details	

4.2.1	Biological	Samples	

Human	blood	was	collected	from	49	patients	diagnosed	with	a	WHO	grade	

GBM	brain	 tumour	and	 from	25	patients	who	do	not	have	cancer	 (non-cancerous	

state).	All	 serum	samples	were	 collected	 from	 the	Walton	Centre	Research	Tissue	

Bank	 (Liverpool,	 England)	 and	 Brain	 Tumour	 North	 West	 (BTNW)	 Tissue	 Bank	

(Preston,	 England)	 with	 full	 ethical	 approval	 (BTNW	 and	 Walton	 Centre	 ethical	

application	#1108).	Only	those	patients	with	a	newly	diagnosed	GBM	were	included	

in	 the	study	 -	no	patients	had	a	 recurring	 tumour.	All	patient	blood	samples	were	

collected	pre-operatively	and	 left	 to	clot	at	 room	temperature	 for	30-120	minutes	

from	 blood	 draw.	 Centrifugation	 of	 blood	 samples	 at	 1200xg	 for	 10	minutes	was	

performed	 to	 separate	 the	 clot,	 followed	 by	 the	 serum	 being	 aliquoted	 into	

cryovials.	All	 samples	were	snap	 frozen	using	 liquid	nitrogen	and	were	stored	at	a	

temperature	 of	 -80°C.	 Samples	 were	 collected	 from	 the	 hospital	 on	 dry-ice	 and	

stored	in	a	-80°C.	When	required,	samples	were	thawed	at	room	temperature	for	30	

minutes,	gently	shaken	and	a	volume	pipetted	for	analysis.	Serum	samples	did	not	

undergo	the	freeze-thaw	cycle	on	more	than	3	occasions	prior	to	spectral	collection.	

The	 latter	 was	 consistent	 throughout	 the	 project.	 Appendix	 1	 shows	 patient	

demographic	data.	The	patient	dataset	has	an	entire	age	mean	of	60.18	years.	The	

non-cancer	 patients	 have	 a	mean	 age	 of	 60.16	 years;	 likewise,	 the	 GBM	 patients	
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have	 a	 mean	 age	 of	 60.18.	 Appendix	 1	 displays	 each	 patient’s	 gender,	 age	 and	

diagnosis	 -	 at	 the	 time	 of	 sample	 collection,	 further	 patient	 information	 (BMI,	

weight,	 treatment	 and	 medication	 use)	 was	 unavailable	 from	 our	 collaborating	

tissue	bank.		

4.2.2	 Serum	Preparation	for	Filtration	Study	

All	 whole	 serum	 samples	 were	 thawed	 for	 30	 minutes	 prior	 to	 spectral	

collection	 10	 kDa	 filtration	 1	 ml	 aliquots	 were	 prepared	 to	 investigate	 the	 most	

discriminatory	 fraction	 of	 serum	 using	 Amicon	 Ultra-0.5	 mL	 centrifugal	 filters	

(purchased	 from	 Millipore	 Limited,	 UK)	 (Figure	 4.1).	 Centrifugal	 filters	 filter	 out	

components	of	 the	serum	above	the	cut-off	point	of	 the	 filters	membrane	 (i.e.	10	

kDa),	 allowing	 components	 below	 the	 filter	 membrane	 cut-off	 point	 to	 pass	

through.	 Each	 whole	 serum	 sample	 had	 a	 10	 kDa	 filtration	 aliquot	 prepared	 by	

pipetting	0.5	mL	of	 the	whole	serum	 in	to	the	 filtration	device	and	centrifuging	at	

14,000	rpm	for	15	minutes.	Figure	4.1	shows	a	centrifugal	filter	where	a	volume	of	

serum	(0.5ml)	is	pipetted	into	the	top	(left)	and	centrifuged	so	that	the	filter	retains	

all	 serum	constituents	greater	 than	the	kDa	range,	 thus	only	allowing	through	the	

serum	filtrate	which	contains	constituents	below	the	maximum	range.	

	

	

	

Figure	4.1	-	Centrifugal	filters	used	to	filter	serum	constituents	greater	than	the	
kiloDalton	range’s	cut	off	point.	Reproduced	with	permission	from	Millipore	Ltd.	
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4.2.3	 Drying	Study		

Effective	 spectral	 collection	 via	 ATR-FTIR	 spectroscopy	 requires	 intimate	

contact	between	the	ATR	Di	crystal	and	the	sample	due	to	 the	penetration	of	 the	

~2.0	 micron	 evanescent	 wave	 (1);	 as	 such	 a	 drying	 of	 human	 serum	 was	

investigated.	Whole	 normal	 (non-cancerous)	 human	mixed	 pooled	 serum	 (0.2	 µL	

sterile	 filtered,	 CS100-100,	 purchased	 from	 TCS	 Biosciences,	 UK)	 was	 used	 in	

volumes	 of	 one	 microlitre	 to	 determine	 the	 optimal	 drying	 time	 necessary	 for	

quality	 spectral	 collection,	 in	 addition,	 10	 kDa	 serum	 filtrate	 aliquots	 were	 also	

prepared	to	determine	drying	time	of	a	filtrate	sample.	Following	the	collection	of	

spectral	data	 from	dried	 serum	 films	on	 the	ATR	crystal,	Virkon®	 (purchased	 from	

Antec	 Int.,	 Suffolk,	 UK)	 and	 absolute	 ethanol	 (purchased	 from	 Fisher	 Scientific,	

Loughborough,	UK)	were	used	to	clean	the	crystal.	In	total,	666	spectra	(74	patients	

with	9	spectra	each)	were	collected	from	all	whole	serum	samples,	and	another	666	

spectra	from	the	serum	filtrate	aliquots.	

4.2.4			Non-Cancer	(Control)	Sample	Analysis	

	 A	 control	 study	was	 conducted	 to	observe	whether	ATR-FTIR	 spectroscopy	

could	 distinguish	 sex	 (male	 vs.	 female)	 and	 young	 vs.	 old	 1	microlitre	 volumes	 of	

patient	serum.	All	spectral	data	was	acquired	from	the	described	method	 in	4.2.5.	

The	 analysis	 of	 the	 25	 non-cancerous	 state	 serum	 samples	 within	 this	 study	 will	

provide	 us	with	 an	 insight	 regarding	 any	 other	 potential	 sources	 of	 classification.	

The	 spectral	 data	 acquired	 was	 split	 up	 into	 two	 datasets	 -	 one	 dataset	 for	 sex	

determination	and	one	to	observe	patients	in	a	young	vs.	old	manner.	To	allow	for	a	
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sufficient	 number	 of	 patients	 in	 both	 young	 and	 old	 classes,	 it	 was	 decided	 that	

patients	younger	 than	50	years	old	were	 ‘young’	and	patients	older	 than	50	years	

were	‘old’,	thus	7	patients	were	considered	young	and	18	patients	‘old’.	

4.2.5			ATR-FTIR	Spectral	Collection	

A	 JASCO	FTIR-410	 Specac	ATR	Di	Golden	Gate™	 spectrometer	was	used	 to	

collect	absorption	data	from	all	74	serum	samples	in	this	initial	study.	All	data	was	

collected	 in	the	range	of	4000-400	cm-1,	at	a	resolution	of	4	cm-1	and	using	32	co-

added	 scans.	 Prior	 to	 each	 spectral	 collection,	 a	 background	 absorption	 spectrum	

was	collected	for	atmospheric	correction.		

All	serum	samples	were	analysed	in	a	random	order	within	the	whole	and	10	

kDa	sample	sets.	For	each	sample,	the	described	procedure	was	repeated	3	times:	a	

1	microlitre	spot	of	patient	serum	was	pipetted	onto	the	ATR	crystal	and	allowed	to	

dry	for	8	minutes,	at	which	point	3	spectra	were	collected.	A	background	absorption	

was	 collected	prior	 to	 analysis	 and	 in	between	each	3	 sets	of	 spectra	 acquired	 to	

allow	 for	 atmospheric	 correction.	 Following	 the	 collection	 of	 spectral	 data	 from	

dried	serum	 films	on	 the	ATR	crystal,	Virkon®	 (purchased	 from	Antec	 Int.,	 Suffolk,	

UK)	 and	 absolute	 ethanol	 (purchased	 from	 Fisher	 Scientific,	 Loughborough,	 UK)	

were	used	to	clean	the	crystal.	In	total,	666	spectra	(74	patients	with	9	spectra	each)	

were	 collected	 from	 all	whole	 serum	 samples,	 and	 another	 666	 spectra	 from	 the	

serum	filtrate	aliquots.	
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4.3	Drying	Study	Results	

In	total,	666	spectra	(74	patients	with	9	spectra	each)	were	collected	from	all	

whole	 serum	 samples,	 and	 another	 666	 spectra	 from	 the	 serum	 filtrate	 aliquots.	

Effective	 spectral	 collection	 via	 ATR-FTIR	 spectroscopy	 requires	 intimate	 contact	

between	 the	 ATR	 Di	 crystal	 and	 the	 sample	 due	 to	 the	 penetration	 of	 the	 ~2.0	

micron	evanescent	wave	(1).	Figure	4.2	shows	offset	ATR-FTIR	spectra	of	whole	and	

10	kDa	serum.	

	

	

	

	

	

	

	

	

	

	

	

Table	 4.1	 shows	 proposed	 biomolecular	 assignments	 for	 the	 dried	 whole	

serum	 spectrum	 and	 Table	 4.2	 for	 dried	 10	 kDa	 serum.	 The	 major	 differences	

between	the	whole	and	10	kDa	serum	samples	include	the	presence	of	the	Amide	II	

Figure	4.2	-	ATR-FTIR	spectral	data	for	whole	and	10	kDa	serum	after	8	
minutes	of	drying.	The	CO2	has	been	removed	and	spectra	offset	for	each	of	
visualisation.	
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band	(1637	cm-1)	in	the	whole	serum	spectrum	but	not	in	the	10	kDa	serum	filtrate	

spectrum.	The	lipid	CH2	band	(1307	cm-1)	is	also	present	in	whole	serum	but	not	in	

the	 serum	 filtrate	 samples.	 The	 10	 kDa	 serum	 filtrate	 spectrum	 holds	 an	 intense	

band	at	1032	cm-1,	tentatively	assigned	as	C-O	vibration	of	ribonucleic	acid	(RNA)		

and	ribose/glucose	(8-18).	

Wavenumber	

(cm-1)	
Proposed	Biomolecular	Assignment	

3441	 O-H	stretch	of	hydroxyl	groups	

3286	 CH3	stretch	(antisymmetric),	fatty	acids,	lipids,	proteins	

3071	 CH3	stretch	(antisymmetric),	fatty	acids,	lipids,	proteins	

2958	 CH2	stretch	(antisymmetric),	fatty	acids,	lipids,	proteins	

2933	 CH2	(antisymmetric),	methylene	group	of	membrane	
phospholipids	

2866	 CH2	stretch	(antisymmetric),	fatty	acids,	lipids,	proteins	

1741	 C=O	stretch	(symmetric),	fatty	acids,	lipids,	proteins	

1637	 Amide	I	

1536	 Amide	II		

1449	 CH2	deformation	of	methylene	group,	lipids	

1399	 CH3	(asymmetric),	lipids	

1307	 Lipids	CH2	twist,	protein	amide	II	band,	cytosine,	adenine	

1204	 C-C,	C-H,	PO2
-	phosphodiester	

1170	 C-O	(antisymmetric),	lipids	

1018	 C-O	(glucose)	

924	 C-C-N	backbone,	C-C,	glucose	

Table	4.1	-	The	proposed	biomolecular	assignments	of	the	whole	dried	serum	film	
spectrum	(Figure	4.2)	(8-18).	
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Table	4.2	-	The	proposed	biomolecular	assignments	of	the	10	kDa	dried	serum	film	
spectrum	(Figure	4.1)	(8-18).	

	

One	microlitre	volumes	of	pooled	serum	were	pipetted	onto	the	ATR	crystal	

and	a	spectrum	was	collected	at	0,	2,	4,	8,	16	and	32	minute	 intervals	 to	observe	

spectral	changes	during	the	drying	process.	One	biological	repeat	and	two	technical	

repeats	 were	 collected	 per	 1	 µL	 of	 dried	 serum.	 The	 drying	 experiment	 was	

repeated	70	times	to	gain	representative	spectra	at	specific	times	during	drying	of	

the	 sample.	 It	 was	 determined	 that	 after	 8	 minutes	 of	 drying	 at	 ambient	 room	

temperature	(~18°C)	a	one	microlitre	serum	film	was	stable	with	no	further	spectral	

Wavenumber	

(cm-1)	
Proposed	Biomolecular	Assignment	

3308	 O-H	stretch	of	hydroxyl	groups	

2941	 CH3	(antisymmetric),	fatty	acids,	lipids,	proteins	

2883	 CH2	(antisymmetric),	methylene	group	of	membrane	phospholipids	

1641	 Amide	I	

1451	 CH2	deformation	of	methylene	group,	lipids	

1403	 CH3	deformation,	lipids	

1345	 Adenine,	CH	deformation	

1215	 C-C,	C-H	bend	

1107	 PO2	symmetric	stretch	

1032	 C-O	RNA,	ribose/glucose	vibration	

991	 C-C,	C-N,	PO3	stretch	

916	 C-C,	glucose	
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changes	being	observed	upon	visual	spectral	 inspection.	The	dried	serum	film	at	8	

minutes	(Figure	4.3)	matches	the	representative	film	described	by	Lie	et	al.	(2).	

	

	

	

	

	

	

	

	

	

Figure	4.3-	All	serum	films	dried	after	8	minutes	when	intimate	contact	between	
the	 serum	 film	 and	 crystal	 occurred	 due	 to	 sample	 dehydration.	 The	 CO2	 has	
been	 removed	 and	 spectra	 offset	 for	 each	 of	 visualisation.	 At	 0	 mins	 the	
spectrum	 shows	 a	 broad	 O-H	 band	 which	 conceals	 the	 fingerprint	 region,	 as	
drying	occurs	(between	2-6	minutes)	the	Amide	regions	of	become	visible	upon	
sample	 dehydration.	 From	8	minutes	 and	 onwards,	 the	 serum	 film	 is	 now	dry	
and	no	further	spectral	changes	occur	due	to	sample	dehydration.	The	bands	in	
the	fingerprint	region	become	more	intense	due	to	the	evaporation	of	the	highly	
polar	 and	 electronegative	water	molecules	within	 the	 sample,	 thus	 the	 dipole	
moments	of	the	weaker	bonded	molecules	in	this	region	are	represented	on	the	
IR	spectrum	
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4.4	 Non-Cancer	(Control)	Sample	Analysis	Results	

As	described	in	4.2.4,	the	analysis	of	the	non-cancerous	control	samples	was	

conducted	to	determine	any	other	potential	causes	of	classification,	such	as	patient	

age	or	sex.	Figure	4.4	shows	a	PCA	scores	plot	of	the	non-cancerous	patients.		

Figure	 4.4	 shows	 little	 separation	 between	 patients	 classed	 in	 two	 different	 age	

categories.	The	x-axis,	PC1,	shows	that	 the	majority	of	patients	below	and	greater	

than	50	years	of	age	are	largely	based	between	-0.02	and	0,	furthermore,	the	y-axis,	

PC2,	does	not	describe	separation	between	the	two	classes.	It	would	be	expected	to	

observe	 a	 separation	 between	 younger	 and	 older	 aged	 individuals;	 however,	 the	

sample	data	here	has	not	demonstrated	this,	thus	it	can	be	concluded	that	the	age	

of	 the	 patients	within	 this	 non-cancer	 classification	 group	 are	 not	 influencing	 the	

classification	of	test	set	data	(discussed	further	in	4.5).		

Figure	 4.4	 -	 PCA	 scores	 plot	 showing	 the	 separation	 between	 non-cancer	
(control)	 patients	who	are	under	50	 years	of	 age	 -	 ‘young’	 (blue)	 and	patients	
who	are	over	50	years	of	age	-	‘old’	(red).	The	age	was	determined	by	the	range	
of	patient	ages	available	in	the	non-cancerous	patient	dataset	(Appendix	1).	
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	 Figure	 4.5	 shows	 a	 PCA	 scores	 plot	 of	 the	 non-cancerous	 control	 serum	

sample	data	to	show	separation	between	male	and	female	patients.	

	

	

Figure	4.5	shows	no	separation	between	male	and	females	non-cancerous	patients.	

The	x-axis,	PC1,	shows	that	the	vast	majority	of	the	patients	are	between	-0.02	and	

0.045	 with	 no	 clear	 separation.	 Figure	 4.5	 does	 not	 present	 a	 clear	 separation	

between	 male	 and	 female	 patient	 serum	 spectra;	 therefore,	 it	 is	 reasonable	 to	

conclude	 that	 the	 sex	 of	 the	 patients	 within	 the	 25	 patient	 non-cancer	 serum	

dataset	does	not	influence	the	classification	of	the	patients	within	the	test	set	data.		

	

	

	

Figure	 4.5	 -	 PCA	 scores	 plot	 showing	 the	 separation	 between	 non-cancer	
(control)	male	(blue)	and	female	(red)	serum	samples	(Appendix	1	for	individual	
patient	ages).	
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4.5	 ATR-FTIR	Data	Pre-processing	and	Multivariate	Analysis	

Pre-processing	and	multivariate	analysis	were	performed	on	the	raw	spectral	

data	 using	 Matlab	 (version	 7.11	 [R2010b])	 (The	 MathWorks,	 Inc.,	 USA)	 using	 in-

house	written	software	and	LibSVM	3.12.	

The	 fingerprint	 region	 (1800-1000	 cm-1)	 was	 extracted	 and	 selected	 for	

analysis	 to	 allow.	 The	 fingerprint	 region	 is	 known	 to	 produce	 different	 spectral	

patterns	 and	 troughs	 in	 response	 to	 different	 components	 of	 compounds	 (1).	 A	

visual	quality	 test	was	performed	to	check	for	gross	spectral	error.	To	do	this,	 the	

maximum	absorbance	point	 (~3290	cm-1)	of	 the	O-H	region	was	observed	to	have	

absorbance	 units	 between	 0.17	 -	 0.23;	 Amide	 I	 and	 II	 to	 have	 absorbance	 units	

between	0.35	-	0.45	and	the	spectrum	to	have	a	smooth	baseline	with	 little	or	no	

noise	 contribution.	 Spectra	 which	 have	 gross	 errors	 could	 potentially	 skew	 a	

diagnosis	 based	 on	 non-biochemical	 information.	 Noise	 reduction	 (50	 PCs)	 and	

vector	 normalisation	 was	 performed	 on	 the	 data	 to	 mathematically	 correct	 for	

inconsistencies	due	to	changing	environment	and	instrumental	factors.		

Spectra	were	 organised	 into	 two	 sets	 on	 a	 patient	 level	 to	 allow	 the	 SVM	

model	to	be	trained	with	the	majority	of	the	data	prior	to	being	challenged	with	the	

test	set,	as	follows:	

• Training	set	-	450	spectra	(2/3	of	the	entire	dataset)	

• Test	set	-	216	spectra	(1/3	of	the	entire	dataset)	
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An	RBF-SVM	was	used	for	 its	ability	to	easily	optimise	the	cost	and	gamma	

model	parameters.	Leave-one-out	cross	validations	were	performed	using	the	train	

sets	 of	 the	 whole	 serum	 and	 10	 kDa	 serum	 filtrate	 samples	 to	 determine	 the	

optimum	cost	and	gamma	values	(Table	4.3).	Table	4.3	shows	the	SVM	parameters	

used	for	the	SVM	kernel	within	this	chapter.	Cross-validation	accuracy	is	conducted	

to	test	the	model	to	understand	how	it	will	perform	with	an	independent	dataset.	

The	 SVM	model	 was	 trained	 using	 the	 optimum	 cost	 and	 gamma	 values	 prior	 to	

being	tested	with	the	blind	dataset.		

	

4.6	 ATR-FTIR	Diagnostic	Model	

In	order	to	assess	and	measure	the	quality	of	the	spectral	discrimination	

between	the	GBM	and	non-cancer	serum	states,	sensitivities	and	specificities	were	

used.	

Sensitivity	measures	the	ability	of	a	model	to	correctly	classify	(equation	4.1),	

and	specificity	measures	its	ability	not	to	misdiagnose	(equation	4.2).	

	 Whole	Serum	Dataset	 10	kDa	Serum	Dataset	

Optimum	Cost	 1024	 16384	

Optimum	Gamma	 8	 16	

Cross-Validation	Accuracy	 99.80	%	 99.30	%	

Table	4.3	-	Optimal	cost	and	gamma	values	for	whole	serum	and	10	kDa	serum	filtrate	
serum,	presented	with	cross	validation	accuracies	
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Sensitivity

= 	
True	Postives

True	Positives + False	Negatives	 																								Equation	4.1	

	

Specificity = 	
True	Negatives

True	Negatives + False	Positives Equation	4.2	

	

where:	

• True	 Positives	 is	 the	 number	 of	 spectra	where	 samples	were	 correctly	

identified	as	cancerous;	

• True	Negatives	 is	 the	number	of	spectra	where	the	samples	have	been	

correctly	identified	as	non-cancerous;	

• False	Positives	is	the	number	of	spectra	where	the	model	has	incorrectly	

identified	the	samples	as	cancerous	when	it	is	non-cancerous;	

• False	 Negatives	 is	 the	 number	 of	 spectra	 where	 the	 model	 has	

incorrectly	identified	samples	as	non-cancerous	when	it	is	cancerous.	
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4.6.1	 Whole	Serum	Diagnostic	Ability	

The	whole	serum	RBF-SVM	diagnostic	model	misclassified	21	of	the	216	test	

set	 data	 when	 it	 was	 challenged	 with	 the	 blind	 test	 dataset,	 thus	 resulting	 in	

spectral-based	sensitivities	and	specificities	of	88.2	%	and	94.4	%.	Table	4.4	shows	

the	patients	whereby	spectra	were	misclassified	from	the	whole	serum	blind	test.	

	

With	regards	to	Table	4.5,	if	more	than	4	out	of	9	patient	spectra	are	classed	

as	GBM	or	non-cancer	then	this	is	was	considered	as	the	diagnosis.	Table	4.5	shows	

that	only	2	GBM	patients	 (12055	and	11156)	were	misclassified	as	non-cancer;	no	

non-cancer	patients	were	diagnosed	as	GBM.	Sensitivities	and	specificities	achieved	

on	 a	 patient	 level	 were	 87.5	 %	 and	 100.0	 %	 respectively.	 Figure	 4.6	 shows	 two	

average	 spectra	 from	 the	 cancer	 and	 non-cancer	 classes	 of	 spectra	 within	 this	

chapter.	

	 Patient	Number	 Misclassified	Spectra	

GBM	 12012	 1/9	

Patients	 12019	 2/9	

	 12055	 5/9	

	 11156	 9/9	

Non-Cancer	 600	 3/9	

Patients	 607	 1/9	

Table	 4.4	 -	 Patient	 level	 results	 -	 patients’	 numbers	 showing	 the	 number	 of	
misclassified	 spectra	 per	 patients	 from	 the	 blind	 test	 set	 for	 the	 whole	 serum	
diagnostic	model	

	

Table	 1.5	 -	 Patient	 level	 results	 -	 patients’	 numbers	 showing	 the	 number	 of	
misclassified	 spectra	 per	 patients	 from	 the	 blind	 test	 set	 for	 the	 whole	 serum	
diagnostic	model	
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The	 spectral	 which	 occur	 between	 the	 two-classes	 are	 assigned	 to	 4	

discriminatory	wavenumber	regions	-	the	Amide	II	band/CH2	deformation	at	1490-

1535	cm-1,	Amide	 II	band	at	1535-1570	cm-1,	Amide	 I	band	at	1600-1630	cm-1	and	

C-C,	 C-O,	 DNA/RNA	 contributions	 between	 1040	 and	 1230	 cm-1.	 The	 Bioplex	

immunoassay	data	 collection	 from	 these	 samples	 (discussed	 further	 in	4.7)	 shows	

that	 there	 is	 a	 significant	 concentration	 increase	 in	 certain	 cytokines	 and	

angiogenesis	factors	within	the	serum	collected	from	cancer	patients	compared	to	

non-cancer	 patients.	 The	 slight	 spectral	 changes	 observed	 on	 Figure	 4.4	 between	

cancer	vs.	non-cancer	patients	 could	possibly	be	due	 to	 the	 increase	of	PECAM-1,	

PDGF,	 leptin	and	 interleukin-8	being	 secreted	 into	a	patient’s	bloodstream	due	 to	

the	development	of	 cancer.	As	discussed	earlier	 in	4.2.1,	patient	BMI,	weight	and	

medication	use	 is	unknown	from	these	samples,	 thus	analysis	of	 this	data	without	

this	patient	 information	does	now	allow	the	definitive	conclusion	that	the	spectral	

changes	are	solely	a	biochemical	response	to	cancer,	rather	than	patient	medication	

use	and	BMI	allowing	for	this	separation.		

Figure	 4.6	 -	 Two	 average	 spectra	 of	 cancer	 (red)	 and	 non-cancer	 (green)	 of	 the	
patients	within	chapter	4.	The	fingerprint	region	(1800-1000	cm-1)	is	presented.	

	

Table	 1.5	 -	 Patient	 level	 results	 -	 patients’	 numbers	 showing	 the	 number	 of	
misclassified	 spectra	 per	 patients	 from	 the	 blind	 test	 set	 for	 the	 whole	 serum	
diagnostic	model	
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4.6.2		Filtrate	Serum	Diagnostic	Ability		

The	 10	 kDa	 serum	 filtrate	 RBF-SVM	 diagnostic	 model	 misclassified	 more	

spectra	 in	 comparison	 to	 the	 whole	 diagnostic	 model.	 The	 diagnostic	 model	

misclassified	38	out	of	216	spectra	when	challenged	with	the	blind	test	dataset,	thus	

a	sensitivity	of	81.4	%	and	a	specificity	of	81.9	%	was	achieved	on	a	spectral	 level.	

Table	4.6	shows	 the	patients	whereby	spectra	were	misclassified	 from	the	10	kDa	

filtrate	serum	blind	test.	

	 Table	4.5	shows	that	just	4	patients	diagnosed	with	GBM	were	misclassified	

as	non-cancer	and	only	1	non-cancer	patient	diagnosed	as	GBM,	thus	a	patient-level	

based	sensitivity	and	specificity	of	78.9	%	and	88.9	%	was	achieved	respectively.		

	

	

	 	

	 Patient	Number	 Misclassified	Spectra		

GBM	 11121	 6/9	

Patients	 11154	 6/9	

	 12019	 6/9	

	 12052	 8/9	

Non-Cancer	 572	 2/9	

Patients	 593	 6/9	

	 594	 4/9	

Table	 4.5	 -	 Patient	 level	 results	 -	 patients’	 numbers	 showing	 the	 number	 of	
misclassified	spectra	per	patients	from	the	blind	test	set	for	the	10	kDa	filtrate	serum	
diagnostic	model	

	

Table	1.6	-	Patient	level	results	-	patients’	numbers	showing	the	number	of	
misclassified	spectra	per	patients	from	the	blind	test	set	for	the	10	kDa	filtrate	serum	
diagnostic	model	
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In	comparison	to	the	10	kDa	serum	filtrate	aliquot	samples,	the	whole	serum	

RBF-SVM	 diagnostic	model	 achieved	 better	 spectral	 and	 patient-level	 sensitivities	

and	 specificities;	 however,	 due	 to	 the	 relatively	 high	 sensitivities	 and	 specificities	

achieved	 with	 the	 10	 kDa	 serum	 RBF-SVM	 diagnostic	 model,	 there	 is	 reason	 to	

indicate	 that	 sub-fraction	 biomolecular	 constituents	 of	whole	 serum	may	 provide	

interesting	targets	for	diagnosis.	

	

4.7				Orthogonal	Approach	

	 Our	 collaborator,	 Peter	 Abel,	 at	 the	 University	 of	 Central	 Lancashire	

(England)	 conducted	a	 study	using	a	Bioplex	 immunoassay,	with	exactly	 the	 same	

whole	 serum	 samples	 as	 those	 used	 in	 the	 spectroscopic	 study	 to	 investigate	 the	

significant	 cytokine	 and	 angiogenesis	 factors	 enabling	 for	 the	 differentiation	

between	 GBM	 and	 non-cancer	 patients.	 For	 brevity,	 it	 was	 found	 that	 the	 most	

significant	 component	 of	 the	 serum	 samples	 allowing	 for	 discrimination	 was	

follistatin.	 Follistatin	 achieved	 the	 highest	 sensitivity	 and	 specificity	with	 88.0	 and	

81.0	 %	 respectively.	 In	 addition	 to	 follistatin,	 other	 cytokines	 and	 angiogenesis	

factors	 also	 allowed	 for	 discrimination	 -	 angiopoietin,	 interleukin-8	 and	 leptin	 are	

among	 those	biochemical	 factors	which	are	able	 to	distinguish	between	GBM	and	

non-cancerous	 disease	 state.	 The	 cytokines	 and	 angiogenesis	 factors	 found	 to	 be	

responsible	 for	 discrimination	 between	 GBM	 and	 non-cancer	 have	 various	

molecular	weights.	Follistatin	has	a	molecular	weight	of	35-70	kDa	(3);	interleukin-8	

a	molecular	weight	 of	 8.4	 kDa	 (4);	 angiopoietin	 55	 kDa	 (5);	 leptin	 16	 kDa	 (6)	 and	
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PECAM-1	130	 kDa	 (7),	 thus	 it	was	decided	 to	 initially	 investigate	 a	 10	 kDa	 cut-off	

fraction	 of	 the	 whole	 serum	 via	 ATR-FTIR	 spectroscopy	 where	 all	 biochemical	

components	of	 the	 filtrate	has	 a	molecular	weight	 less	 than	10	 kDa.	 	 The	BioPlex	

immunoassay	 study	 found	 that	 cancer	 patient	 serum	 samples	 have	 a	 significantly	

higher	 concentration	 of	 PECAM-1,	 PDGF,	 leptin,	 interleukin-8,	 follistatin	 and	

angiopoietin	 compared	 to	 non-cancerous	 serum	 state	 samples.	 The	 signalling	

pathway	 of	 angiogenesis	 in	 high-grade	 GBM	 patients	 are	 mainly	 controlled	 by	

molecules	 which	 include	 angiopoietin,	 PDGF,	 interleukin-8,	 follistatin,	 hepatocyte	

growth	 factor	 and	 tumour	 necrosis	 factors.	 The	 discussed	 biomolecules	 are	

attributed	with	brain	tumour	development	and	tumour	angiogenesis.		

Table	 4.6	 shows	 those	 patients	 which	 were	 misclassified	 (patient	 level)	

based	 upon	 serum	 follistatin	 levels	 and	 from	 serum	 ATR-FTIR	 spectroscopic	

diagnosis.	 The	 total	 number	 of	 patients	 misclassified	 for	 both	 techniques	 is	 few,	

thus	 a	 two-stage	diagnostic	method	utilising	ATR-FTIR	 spectroscopy	and	 follistatin	

levels	has	great	potential	for	rapid	brain	cancer	diagnoses.	
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4.7			Discussion	

The	 work	 described	 within	 this	 chapter	 has	 shown	 that	 spectroscopic	

signatures	 acquired	 from	 ATR-FTIR	 and	 patient	 serum	 samples	 can	 be	 used	 to	

diagnose	 GBM	 to	 sensitivities	 and	 specificities	 as	 high	 as	 87.5	 %	 and	 100.0	 %	

respectively.	 ATR-FTIR	 spectroscopy	 can	 provide	 a	 diagnosis	 in	 just	 10	minutes	 of	

serum	 deposition	 onto	 the	 ATR	 crystal	 and	 within	 4	 hours	 with	 a	 Bioplex	

immunoassay	study.	The	orthogonal	diagnostic	procedure	described	here	 is	based	

upon	 very	 different	 phenomena	 -	 the	 serum	 concentration	 of	 cytokines	 and	

angiogenesis	 factors	 and	 the	 molecular	 response	 to	 vibrational	 spectroscopy	 of	

whole	and	filtrate	serum.	A	limitation	presented	within	this	chapter	and	all	patient	

blood	 serum	 samples	 used	 throughout	 this	 thesis	 is	 the	 lack	 of	 individual	 patient	

information,	 e.g.	 BMI,	 drug	 use,	 diet,	 lifestyle,	 etc.	 Patients	 who	 have	 a	 blood	

sample	collected	pre-operatively	are	highly	likely	to	be	on	an	array	of	medication	for	

	 	 False	Negatives	 	 False	Positives	

Follistatin				 	 11205	 	 585,	594,	607	

Level	 	 11202	 	 609,	589	

(95%	CI)	 	 	 	 	

Whole	 	 12055,	11159	 	 -	

Serum	 	 	 	 	

ATR-FTIR	 	 	 	 	

Table	4.6	-	Patient	level	results	-	patient	numbers	who	were	misclassified	based	on	
follistatin	levels	and	whole	serum	ATR-FTIR	diagnostic	model	outcomes	

	

	 	 False	Negatives	 	 False	Positives	

Follistatin				 	 11205	 	 585,	594,	607	

Level	 	 11202	 	 609,	589	

(95%	CI)	 	 	 	 	

Whole	 	 12055,	11159	 	 -	

Serum	 	 	 	 	

ATR-FTIR	 	 	 	 	

	Table	1.7	-	Patient	level	results	-	patient	numbers	who	were	misclassified	based	on	
follistatin	levels	and	whole	serum	ATR-FTIR	diagnostic	model	outcomes	
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cancer	or	have	been	treated	with	chemotherapy/radiotherapy,	thus	impacting	upon	

the	 blood	 serum	 sample	 acquired.	 In	 contrast,	 a	 patient	 who	 donated	 a	 non-

cancerous	sample	will	not	have	the	physiological	changes	induced	by	the	intake	of	

cancer	medications	and	therapies.	To	summarise,	cancer	patients	are	likely	to	be	on	

pain	 killers,	 steroids	 and	 have	 different	 regional	 physiological	 functions	 in	

comparison	to	those	patients	which	have	not	been	diagnosed	with	cancer.	The	age	

and	sex	of	the	patients	also	has	the	potential	to	affect	the	acquired	data.	It	would	

be	 reasonable	 to	 assume	 that	 older	 aged	 patients	 take	medications	 on	 a	 regular	

basis	 in	 comparison	 to	 younger	 adults.	 As	 discussed	 in	 Chapter	 1,	 the	 human	

metabolome	 impacts	upon	 the	concentration	of	biomolecules	within	blood	 serum	

based	on	 the	 donor’s	 diet,	 fitness	 regime	 and	BMI	 etc.	 This	 chapter	 focuses	 on	 a	

proof-of-principle	 concept	 of	 using	 ATR-FTIR	 spectroscopy	 for	 rapid	 brain	 tumour	

identification	from	minute	volumes	of	blood	serum.		

There	 are	 a	 number	 of	 factors	 which	 can	 greatly	 impact	 the	 analysis	 of	

human	 serum	 samples.	 These	 factors	 include	 hemolysis,	 sample	 filtration,	

freezing/thawing,	 storage/transportation	 and	 histopathological	 diagnoses.	 The	

problem	 of	 hemolysis	 was	 considered	 throughout	 this	 project	 and	 a	 visual	

examination	of	all	blood	serum	samples	prior	to	spectral	analysis	was	conducted	-	

all	 samples	were	straw-yellow	coloured	prior	 to	analysis.	The	filtration	step	 in	this	

chapter	 provided	 sensitivities	 and	 specificities	 which	 were	 not	 as	 high	 as	 those	

achieved	with	whole	 serum;	 in	addition,	 the	 filtration	 step	 is	 time	consuming	and	

requires	 costly	 molecular	 filters.	 Subsequent	 chapters	 will	 further	 analyse	 serum	
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filtration	 to	 determine	 which	 fraction	 of	 whole	 serum	 is	 most	 discriminatory	 for	

disease	identification.	

The	whole	 serum	ATR-FTIR	 spectral	diagnostic	models	misclassified	2	GBM	

patients	-	12055	and	11159.	A	potential	reason	for	the	misclassification	of	these	2	

GBM	 patients	 could	 relate	 to	 the	 age	 and	 sex	 of	 the	 patients.	 Both	 patients	 are	

male;	12055	is	25	years	old	and	11159	is	57	years	old.	Additionally,	these	2	patients	

were	 both	 successfully	 classified	 as	 GBM	 patients	 based	 upon	 the	 blood	 serum	

follistatin	 concentration.	 It	 should	 not	 be	 dismissed	 that	 both	 patients	 could	

potentially	 have	 medical	 complications	 alongside	 their	 GBM	 tumour,	 thus	 they	

could	 be	 taking	 different	 medications	 compared	 to	 those	 patients	 with	 just	 a	

primary	 GBM,	 although	 this	 information	 was	 not	 available	 from	 the	 tissue	 bank.	

Both	patients	could	be	extremely	active	or	be	completely	inactive	-	their	BMI	values,	

lifestyle	 and	 medication-use	 has	 the	 potential	 to	 play	 a	 significant	 role	 in	 the	

reasoning	behind	their	misclassification,	likewise,	these	factors	could	potentially	be	

key	to	the	classification	of	a	patient	spectrum	to	a	certain	disease	class.	A	definitive	

classification	 of	 solely	 cancer	 or	 non-cancer	 for	 a	 patient	 classification	 is	 not	

possible	without	interrogating	the	discussed	additional	patient	information,	which	is	

unavailable	from	the	tissue	bank.	Future	work	on	this	project	would	aim	to	acquire	

detailed	patient	information	(unavailable	at	time	of	analysis)	from	the	tissue	bank	to	

further	investigate	patient	classifications.	

For	a	single	patient	serum	sample,	if	the	same	diagnosis	is	found	from	both	

tests	then	the	overall	diagnosis	has	a	greater	diagnostic	strength	and	the	patient	can	
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be	 referred	 for	 further	 diagnostic	 techniques	 such	 as	 CT,	 MRI	 etc.	 As	 both	 the	

Bioplex	 immunoassay	 and	 spectral	 study	 achieved	 such	 high	 sensitivities	 and	

specificities,	should	a	conflicting	overall	diagnosis	occur	between	both	there	is	still	

reason	to	further	investigate	the	potential	of	the	patient	having	cancer.	
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Chapter	5	

INVESTIGATING	ATR-FTIR	SPECTROSCOPY	TO	

DISCRIMINATE	BRAIN	TUMOUR	SEVERITIES	FROM	

WHOLE	AND	FILTRATE	SERUM	SAMPLES	

5.1 Introduction	and	Aims	

In	the	previous	chapter,	ATR-FTIR	was	used	to	differentiate	between	cancer	

and	non-cancer	state	using	whole	and	10	kDa	filtrate	serum	samples.	This	aims	of	

this	 chapter	 include	 the	 investigation	 of	 ATR-FTIR	 spectroscopy	 to	 discriminate	

between	 cancer	 and	 non-cancer,	 and	 to	 also	 discriminate	 between	 brain	 tumour	

severities	 from	 whole	 (unfiltered)	 serum	 and	 100	 kDa,	 10	 kDa	 and	 3	 kDa	 serum	

filtrate	 aliquots.	 Additionally,	 this	 chapter	 describes	 a	 variance	 study	 which	 was	

performed	to	assess	the	reproducibility	of	the	spectra	acquired	from	human	serum.		

The	purpose	of	conducting	a	tiered	serum	filtrate	study	was	to	discover	the	

most	discriminatory	fraction	of	proteins	present	in	serum	for	disease	discrimination	

based	 upon	 the	 identified	 discriminatory	 protein	 regions	 found	 in	 the	 previous	

chapter.	 The	 cytokines	 and	 angiogenesis	 factors	 found	 to	 be	 responsible	 for	

discrimination	between	GBM	and	non-cancer	 in	 chapter	4	have	various	molecular	

weights,	thus	this	chapter	investigates	whether	removing	biomolecular	constituents	

of	 human	 serum	 via	 filtration	 will	 enhance	 the	 spectral	 response	 of	 smaller	

biomolecules	to	allow	for	improved	disease	discrimination.	
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The	work	presented	within	this	chapter	has	been	published	in	the	Journal	of	

Biophotonics,	 2014,	 Volume	 7(3-4);	 189-199.	 Attenuated	 Total	 Reflection	 Fourier	

Transform	Infrared	(ATR-FTIR)	spectral	discrimination	of	brain	tumour	severity	from	

serum	samples.	

	

5.2 Experimental	Details	

5.2.1 Variance	Study	

To	assess	 the	reproducibility	and	variance	of	spectra	acquired	 from	human	

serum	a	variance	 study	was	conducted.	The	aim	of	 the	variance	 study	was	 to	use	

standard	 deviation	 (STD)	 values	 to	 represent	 the	 consistency	 of	 spectra	 collected	

from	human	serum.		

5.2.1.1		Materials	and	Methods	of	Variance	Study	

Normal	 (non-diseased)	 human	mixed	 pooled	 serum	 (0.2	 μl	 sterile	 filtered,	

CS100-100,	 purchased	 from	 TSCBiosciences	 UK)	 was	 used	 in	 this	 study.	 A	 1	 μl	

volume	 of	 serum	 was	 pipetted	 onto	 the	 ATR-FTIR	 single	 reflection	 diamond	 and	

dried	for	8	minutes	prior	to	spectral	collection.	All	1	μl	volumes	of	serum	were	dried	

for	8	minutes	 in	 accordance	 to	 the	drying	 study	described	 in	4.3	of	 chapter	4.	All	

spectra	were	 collected	 using	 a	 JASCO	 FTIR-410	 spectrometer	 fitted	with	 a	 Specac	

ATR	diamond	Golden-Gate™	in	the	range	of	4000-400	cm-1,	at	a	resolution	of	4	cm-1	

and	over	32	co-added	scans.	Per	1	μl	volume	of	serum,	3	spectra	were	collected.	In	

total,	 50	 different	 1	 μl	 volumes	 of	 missed	 pooled	 serum	 were	 analysed	 with	 a	

background	collected	in	between	each	and	the	dried	serum	films	removed	from	the	
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diamond	with	absolute	ethanol.	In	total,	150	ATR-FTIR	spectra	were	collected	from	

50	x	1	μl	spots	of	the	mixed	pooled	serum.	Mixed	pooled	serum	is	purchased	from	a	

biofluid	 supplier	 company	where	 the	blood	 serum	has	been	extracted	 from	blood	

collected	from	blood	donors.		

5.2.2 Addition	of	Low-Grade	Glioma	Patients	

The	addition	of	 these	 low-grade	glioma	patients	 to	 the	patient	dataset	 is	a	

development	as	 it	 allows	 for	 the	 investigation	 into	grading	brain	 cancer	 severities	

and	the	determination	of	the	most	discriminatory	fraction	of	serum	for	doing	so	via	

ATR-FTIR	spectroscopy.	

	

5.2.2.1 Materials	and	Methods	-	Low-Grade	Serum	

In	addition	to	the	cancer	(GBM)	and	non-cancer	human	serum	samples	used	

in	chapter	4	(Appendix	1),	this	chapter	 includes	23	 low-grade	patients	to	allow	for	

the	discrimination	of	brain	tumour	severities	to	be	investigated.	All	serum	samples	

were	 collected	 from	 the	Walton	Centre	Research	Tissue	Bank	 (Liverpool,	 England)	

and	 Brain	 Tumour	 North	 West	 (BTNW)	 Tissue	 Bank	 (Preston,	 England)	 with	 full	

ethical	approval	(BTNW	and	Walton	Centre	ethical	application	#1108).	As	stated	in	

chapter	 4,	 all	 23	 low-grade	 patient	 blood	 samples	were	 collected	 pre-operatively	

and	 left	 to	 clot	 at	 room	 temperature	 for	 30-120	 minutes	 from	 blood	 draw.	

Centrifugation	 of	 blood	 samples	 at	 1200xg	 for	 10	 minutes	 was	 performed	 to	

separate	the	clot,	followed	by	the	serum	being	aliquoted	into	cryovials.	All	samples	
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were	snap	frozen	using	liquid	nitrogen	and	were	stored	at	a	temperature	of	-80°C.	

Table	5.2	shows	patient	demographic	data	of	the	23	low-grade	patients.		

	

Patient	Number	 Gender	 Age	at	Sample	
Collection	

Diagnosis	

11006	 F	 34	 Astrocytoma	
11017	 M	 41	 Astrocytoma	
11020	 M	 50	 Astrocytoma	
11084	 F	 31	 Astrocytoma	
12118	 M	 20	 Astrocytoma	
12001	 F	 60	 Astrocytoma	
12156	 F	 44	 Astrocytoma	
12164	 F	 20	 Astrocytoma	
12318	 F	 23	 Astrocytoma	
12100	 M	 37	 Oligoastrocytoma	
12060	 F	 53	 Oligoastrocytoma	
12329	 F	 28	 Oligoastrocytoma	
11109	 M	 46	 Oligodendroglioma	
12103	 F	 31	 Oligodendroglioma	
12121	 M	 59	 Oligodendroglioma	
12136	 M	 41	 Oligodendroglioma	
12324	 M	 43	 Oligodendroglioma	
1043	 M	 21	 Ganglioglioma	
1044	 M	 29	 Infiltrating	edge	of	glioma	
1046	 F	 19	 LGG	diagnosis	only	
1047	 F	 54	 Ependymoma	
1048	 F	 35	 LGG	diagnosis	only	
1049	 M	 29	 LGG	diagnosis	only	

	

	

	

	

	

Table	 5.1	 -	 Patient	 demographic	 data	 -	 each	 patient’s	 age,	 gender	 (F:	 female,	 M:	
male)	and	tumour	diagnosis	is	presented	
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The	average	patient	age	of	the	entire	sample	set	(GBM,	low-grade	and	non-

cancer	samples)	is	54.62	years.	Table	5.3	provides	demographic	details	by	cancer	

group.	

	

5.2.3 	Serum	Filtrate	Preparation		

All	whole	 serum	samples	were	 thawed	prior	 to	 spectral	 collection	and	100	

kDa,	10	kDa	and	3	kDa	filtration	aliquots	were	prepared	using	Amicon	Ultra-0.5	mL	

centrifugal	 filters	 (purchased	 from	Millipore	 Limited,	 UK)	 -	 as	 described	 in	 1.2	 of	

chapter	4.	Centrifugal	 filters	 filter	out	components	of	 the	serum	above	the	cut-off	

point	of	the	filters	membrane	(i.e.	100	kDa),	allowing	components	below	the	filter	

membrane	 cut	 off	 point	 to	 pass	 through.	 Each	 whole	 serum	 sample	 (high-grade,	

low-grade	and	control)	had	a	filtration	aliquot	prepared	by	pipetting	0.5	mL	of	the	

whole	 serum	 in	 to	 the	 filtration	 device	 and	 centrifuging	 at	 14,000	 rpm	 for;	 10	

minutes,	15	minutes,	and	30	minutes	for	100	kDa,	10	kDa	and	3	kDa	filter	devices	

Tumour	Grade	 Number	of	
Subjects	 Age	range/mean	age	 Gender	

Normal	
(Non-cancer)	 25	 26-87/59.1	years	 15	male,	10	female	

Low-Grade	 23	 19-60.3/36.9	years	 11	male,	12	female	

High-Grade	 49	 24.7-78.8/60.1	years	 29	male,	20	female	

Table	 5.2	 -	 Number,	 age	 and	 gender	 data	 of	 patient	 samples	 from	 each	 tumour	
grade.	



131	
	

respectively.	 Spectra	 were	 collected	 in	 a	 random	 order	 within	 the	 serum	 sample	

sets.	For	each	sample,	a	1	μl	serum	spot	was	dried	for	8	minutes	on	the	ATR-FTIR	

crystal,	at	which	time	3	spectra	were	collected.	This	procedure	was	repeated	three	

times	per	sample.	As	a	result,	for	each	sample	9	spectra	were	collected.		

Prior	to	spectral	collection,	a	background	absorption	spectrum	was	collected	

(for	atmospheric	correction)	before	the	1	μl	was	pipetted	onto	the	ATR-FTIR	crystal,	

thus	 a	 background	 was	 collected	 per	 serum	 replicate.	 The	 dried	 serum	 film	 was	

washed	 off	 the	 crystal	 in	 between	 each	 procedure	 using	 Virkon®	 disinfectant	

(purchased	from	Antec	Int.,	Suffolk,	UK)	and	absolute	ethanol.		

Spectra	were	 acquired	 in	 the	 range	of	 4000–400	 cm-1,	 at	 a	 resolution	of	 4	

cm-1	 and	 averaged	 over	 32	 co-added	 scans.	 In	 total,	 3375	 ATR-FTIR	 spectra	were	

collected	 from	 all	 whole	 and	 filtration	 serum	 samples.	 Table	 5.4	 shows	 the	 total	

number	 of	 spectra	 and	 patients	 in	 each	 serum	 grade	 and	 filtration	 category.	 The	

number	of	 patients	 reduces	 as	 serum	 filtrate	 aliquots	 are	 prepared	due	 to	 serum	

availability.	

Table	5.3	-	The	number	of	spectra	collected	and	number	of	patients	(in	brackets)	for	
each	filtrate	composition	for	the	range	of	cancer	serum	severities	being	analysed		

	 Whole	Serum	 100	kDa	
Serum	 10	kDa	Serum	 3	kDa	Serum	

High-Grade	
Serum	 441	(49)	 423	(47)	 423	(47)	 405	(45)	

Low-Grade	
Serum	 207	(23)	 207	(23)	 198	(22)	 198	(22)	

Normal	
(Non-cancer)	

Serum	
225	(25)	 225	(25)	 225	(25)	 198	(22)	

Total	 873	(97)	 855	(95)	 846	(94)	 801	(89)	
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The	100	 kDa	 serum	 filtrate	preparation	will	 contain	 all	 of	 the	biomolecules	which	

have	a	molecular	weight	below	100	kDa,	allowing	 for	 the	analysis	of	 serum	which	

has	had	the	abundant	albumin	molecule	removed.	Likewise,	the	10	kDa	and	3	kDa	

serum	filtrate	preparations	contain	only	those	biomolecules	which	have	a	molecular	

weight	 less	 than	 the	 cut-off	 range	 of	 the	 filter.	 As	 previously	 discussed	 in	 4.7	 of	

Chapter	 4,	 the	 cytokines	 and	 angiogenesis	 factors	 deemed	 to	 be	 significant	when	

distinguishing	 between	 non-cancer	 and	 GBM	 blood	 serum	 were	 interleukin-8,	

angiopoietin,	 leptin,	 PECAM-1,	 PDGF,	 HGF	 and	 follistatin.	 For	 example,	 follistatin	

with	a	molecular	weight	of	35-70	kDa,	angiopoietin	(55	kDa)	and	leptin	(16	kDa)	will	

be	 present	 in	 the	 100	 kDa	 preparation	 (*along	 with	 smaller	 molecular	 weighted	

biomolecules);	the	10	kDa	filtrate	preparation	will	contain	interleukin-8	(8.4	kDa)*,	

and	the	3	kDa	preparation	heparin	fragments	associated	with	carcinogenesis*.	The	

presence	 of	 these	 previously	 identified	 significant	 cytokines	 and	 angiogenesis	

factors	 via	 Bioplex	 immunoassay	 gives	 promise	 to	 the	 prepared	 serum	 filtrate	

samples	 holding	 biomolecules	 which	 may	 allow	 for	 successful	 discrimination	

between	disease	state	and	tumour	severity.	

5.3 Results	of	Variance	Study	

Figure	 5.1	 (A-B)	 shows	 ATR-FTIR	 raw	 and	 pre-processed	 spectra	 in	 the	

fingerprint	 region	 of	 1800–1000	 cm-1.	 The	 2	 spectra	 display	 an	 average	 spectrum	

(coloured	error	margin	(coloured	black).	
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A	

	

Figure5.1	-	(A)Raw	unprocessed	data	with	error	margin	(STD)	in	the	region	
of	1800–900	cm-1.(B)	Noise	reduced	(30	PCs)	and	vector	normalised	with	
error	margin	(STD)	in	the	region	of	1800–900cm-1	

	

Figure5.1	-	(A)	Raw/unprocessed	spectral	data.	(B)	Noise	reduced	(30	PCs)	and	
vector	normalised	with	error	margin	(STD)	in	the	region	of	1800–900cm-1.	
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The	 largest	 variance	 between	 3900-900	 cm-1in	 the	 raw	 (unprocessed)	

spectral	data	was	 in	 the	 fingerprint	 region	at	1637.27	cm-1	 (RSD:	11.94	%)	 (Figure	

5.1(A)).	 The	 smallest	 variance	 in	 the	 raw	 data	 between	 3900-900	 cm-1	 was	 at	

3735.44	 cm-1	 and	 in	 the	 fingerprint	 region	 at	 1792.51cm-1	 (RSD:	 15.19	%)	 (Figure	

5.1(B)).	 Noise	 reduction	 (30	 principal	 components)	 and	 vector	 normalization	 pre-

processing	methods	were	applied	to	the	data	to	reduce	the	baseline	and	to	smooth	

the	data.	The	pre-processing	methods	significantly	reduced	the	RSD	and	variance	of	

the	 spectral	 data.	 The	 largest	 raw	 data	 RSD	 at	 1637.27	 cm-1	 was	 reduced	 from	

11.94	%	 to	 2.35	 %	 (pre-processed).	 The	 smallest	 spectral	 variance	 RSDs	 were	

reduced	 from	15.19	%	 to	 6.26	%	 at	 3735.44	 cm-1	 and	 from	11.94	%	 to	 2.35	%	 at	

1792.51	cm-1.	 Table	 5.1	 displays	 the	 smallest	 and	 largest	 variances	 related	 to	

Figure	5.1	(A-B)	before	and	after	pre-processing	methods	were	applied	to	the	data.	

	

	

	
The	 RSD	 values	 of	 the	 raw	 spectra	 were	 low	 initially	 but	 were	 reduced	

further	 by	 implementing	 pre-processing	 methods.	 The	 reproducibility	 of	 spectral	

	 Smallest	Variance	
Wavenumber	(cm-1)/(RSD	%)	

Largest	Variance	
Wavenumber	(cm-1)/(RSD	%)	

Raw	Data	 1792.51	cm-1	

(15.19)(STD:0.0138)	
1637.27	cm-1	

(11.94)(STD:	0.042)	

After	Pre-
processing	

1792.51	cm-1	

(6.26)(STD:	0.0004)	
1637.27	cm-1	

(2.35)(STD:	0.0043)	

Table	5.4	 -	The	smallest	and	 largest	variance	STDs	related	to	Figure	5.2	 (A),	before	
and	after	pre-processing	methods	are	applied	to	the	data.		
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data	 using	 ATR-FTIR	 is	 high	 and	 exhibits	 minimal	 variance,	 especially	 after	 pre-

processing. 
5.4 Spectra	Acquired	from	Serum	Filtrate	Samples	

Following	on	from	the	discussed	serum	filtrate	sample	preparation	in	5.2.3,	

spectra	typical	of	each	serum	filtrate	were	plotted	and	are	presented	in	Figure	5.2.	 

	 The	 spectra	 which	 are	 typical	 of	 each	 serum	 filtrate	 group	 are	 vastly	

different	from	one	another	due	to	the	filtration	step	of	whole	serum.	The	region	of	

3600-600	 cm-1	 is	 different	 for	 each	 filtrate	 sample;	 however,	 it	 is	 the	 fingerprint	

region	(1800-1000	cm-1)	that	is	of	interest	during	MVA	within	this	chapter.	Following	

Figure	5.2	-	Average	spectra	from	whole	serum	(blue),	100	kDa	(red),	10	kDa	(green)	
and	3	kDa	(purple)	serum	filtrate	samples.	The	fingerprint	region	varies	from	whole	
and	 filtrate	 serum	preparations	due	 to	 the	 removal	of	biomolecules	 via	 filtration.	
The	largest	fingerprint	absorbances	derive	from	whole	serum.	
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the	drying	of	the	1	μl	volume	of	serum	on	the	ATR	crystal,	the	Amide	I	and	Amide	II	

bands	 between	 1650-1450	 cm-1	 have	 strong	 absorbances,	 however,	 Figure	 5.2	

shows	 that	 the	 absorbance	 of	 the	 Amide	 bands	 is	 drastically	 reduced	 with	 all	

filtration	 samples,	 due	 to	 the	 filtration	 process	 removing	 biomolecules	 which	

contribute	to	these	absorption	peaks.	A	major	difference	between	the	spectra	is	at	

approx.	1025	 cm-1.	 The	whole	 serum	spectra	does	not	exhibit	 a	 large	and	 intense	

peak,	 tentatively	 assigned	 as	 contributions	 from	 carbohydrates	 (e.g.	 glucose),	

although	as	the	blood	serum	is	further	filtered,	these	peaks	become	more	intense.	

The	3	kDa	spectrum	displays	the	greatest	absorbance	of	this	peak,	possibly	due	to	

blood	serum	containing	approximately	4000	species	of	small	proteins	and	peptides	

under	 2.5	 kDa	 [14].	 Separating	 whole	 serum	 into	 sub-fractions	 reduces	 spectral	

complexity	(Figure	5.2).	Spectra	collected	from	each	of	the	filtration	groups	have	the	

potential	 to	 increase	 the	 sensitivity	 of	 detection	 smaller	 and	 lower	 abundant	

molecules	which	may	have	otherwise	been	masked/lost	due	 to	 absorbance	peaks	

from	higher	mass	proteins.	 Spectra	 from	100	 kDa	and	10	 kDa	 shows	Amide	 I	 and	

Amide	 II	 protein	 peaks	 suggestive	 that	 these	 samples	 contain	 concentrations	 of	

blood-related	glycoproteins	following	filtration	from	whole	serum.	The	absorbance	

bands	of	the	Amide	I	and	Amide	II	on	the	3	kDa	serum	filtrate	spectrum	are	weaker	

in	 comparison,	 suggestive	 that	 the	 filtration	 removed	 the	proteins	 contributing	 to	

these	bands.	
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5.5 ATR-FTIR	Spectral	Diagnostic	Model		

5.5.1	 Pre-processing	Selection	Data	

For	each	whole	and	 filtration	serum	sample	set,	an	 identical	approach	was	

used	 to	 pre-process	 the	 spectral	 data,	 and	 to	 analyse	 using	 multivariate	 analysis	

methods.	Firstly,	to	remove	any	bias	from	analysis	models,	the	technical	replicates	

from	each	 sample	were	averaged	 so	 that	 each	 serum	 sample	 set	 contained	 three	

spectra	from	each	patient;	one	average	spectrum	from	each	patient	spot.		

A	visual	quality	test	was	performed	to	check	for	gross	spectral	error.	To	do	

this,	the	maximum	absorbance	point	(~3290	cm-1)	of	the	O-H	region	was	observed	

to	 have	 absorbance	 units	 between	 0.17-0.23;	 Amide	 I	 and	 II	 to	 have	 absorbance	

units	between	0.35-0.45	and	the	spectrum	to	have	a	smooth	baseline	with	little	or	

no	noise	contribution.	The	O-H	and	the	Amide	I	and	II	absorbance’s	were	selected	

for	visual	quality	testing	as	they	were	consistently	present	on	spectra	of	whole	and	

filtrate	serum	samples.	After	8	minutes	when	the	narrowing	point	of	the	O-H	band	

at	 ~3290	 cm-1	 and	 the	 absorbances	 of	 the	 Amide	 bands	 remain	 at	 a	 constant	

absorbance,	the	serum	film	had	dried	on	the	ATR	crystal.	

The	fingerprint	region	(1800–1000	cm-1)	was	selected	for	MVA.	A	PC	based	

noise	reduction,	using	the	first	30	PCs	of	the	data,	was	performed	on	the	spectra	to	

improve	the	signal-to-noise	ratio.	Following	this,	all	spectra	were	vector	normalised.	

PCA	 was	 performed	 on	 the	 pre-processed	 spectra,	 giving	 an	 unsupervised	

classification	from	which	the	loadings	could	be	interpreted	by	showing	the	𝑣	regions	

which	contribute	to	the	separation.		
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Using	 LIBSVM	 code	 in	 Matlab,	 an	 automatic	 n-fold	 cross	 validation	 was	

performed	(where	n=3)	on	the	training	data	to	find	the	best	values	for	the	cost	and	

gamma	functions.		

These	values	were	then	used	to	train	the	SVM	in	one-versus-rest	mode	using	

a	randomly	selected	training	set	consisting	of	2/3	of	the	patient-associated	spectral	

data.	The	remainder	of	the	data,	making	up	the	blind	test	set,	was	then	projected	

into	the	model	where	an	overall	SVM	classification	accuracy	(based	on	the	true	and	

predicted	 data	 class	 labels)	 was	 determined.	 The	 spectral	 data	 was	 split	

independently	 at	 a	 patient	 level	 into	 1/3	 blind	 and	 2/3	 training	where	 all	 spectra	

from	one	patient	was	either	in	the	train	set	or	blind	set.		

The	whole	serum	dataset	had	3	various	patient	associated	splits	of	blind	and	

train	data	which	were	used	 for	 SVM	analysis	 (n=3);	 the	100,	 10	 and	3	 kDa	 serum	

filtrate	data	was	split	randomly	into	2/3	train	and	1/3	test	and	used	for	SVM	(n=1).	

Sensitivities	 and	 specificities	 were	 calculated	 for	 each	 SVM	model	 and	 for	

each	 separate	 disease	 group.	 All	 spectra	 in	 the	 three	 different	 test	 and	 blind	

datasets	 were	 randomly	 assigned	 at	 a	 patient	 level,	 thus	 all	 3	 averaged	 patient	

spectra	were	either	in	the	test	or	train.	Pre-processing	and	MVA	was	carried	out	on	

the	raw	spectral	data	in	Matlab	using	in-house	written	software.	
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5.6 Results	of	ATR-FTIR	Spectral	Diagnostic	Model	

5.6.1 Principal	Component	Analysis	and	Loadings	

Figure	5.2	(A)	shows	a	3D	PCA	scatter	plot	displaying	the	separation	between	

normal	 (non-cancer)	 (blue]),	 low-grade	cancer	 (red)	and	high-grade	cancer	 (green)	

patient	 spectral	 data	 collected	 from	 whole	 (unfiltered)	 serum.	 As	 discussed	 in	

chapter	 4,	 the	 optimum	 sensitivities	 and	 specificities	 allowing	 for	 discrimination	

between	disease	state	were	achieved	using	whole	serum	samples,	thus	the	spectral	

data	acquired	from	whole	serum	in	this	chapter	was	investigated	via	PCA	to	obtain	

loadings	 to	 determine	 the	 biomolecular	 components	 contributing	 to	 the	

discrimination	between	brain	tumour	severities.	

PC3	 on	 the	 x-axis	 shows	 good	 separation	 between	 low-grade	 cancer	 and	

normal	(non-cancer)	data.	PC2	on	the	y-axis	shows	good	separation	between	high-

grade	 cancer	 from	 low-grade	 and	 normal	 (non-cancer),	 however,	 there	 is	 still	 a	

significant	overlap	between	patients.	Towards	the	centre	of	Figure	5.4	(A)	crossing	

both	 zero	points	on	 the	x-axis	and	y-axis	 there	are	 some	patients	who	have	been	

poorly	classified.	Section	4	of	Chapter	4	discusses	there	being	no	separation	in	the	

non-cancer	 patient	 samples	 based	 on	 patient	 age	 and	 sex,	 thus	 the	 non-cancer	

group	 (blue)	 represents	 the	non-cancerous	 group	based	on	 factors	which	 include,	

but	 not	 limited	 to,	 biochemical	 components	 which	 differ	 from	 samples	 collected	

from	diseased	patients,	or	other	factors	such	as	BMI,	medication	use,	 lifestyle	and	

activity	 etc.	 Low-grade	 patients	with	 slow	 growing	 primary	 gliomas	 (WHO	grade	 I	

and	II)	and	tumours	which	are	not	rapidly	infiltrating	may	be	grouped	closer	to	the	
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non-cancer	group	due	to	their	biochemical	profile	being	closer	to	that	of	a	person	

without	 a	 disease,	 rather	 than	 a	 person	 with	 a	 high-grade	 and	 highly	 infiltrative	

brain	 tumour.	 Additionally,	 a	 low-grade	 patient	 (WHO	 grade	 II)	 who	 has	 an	

increasingly	 infiltrative	 and	 aggressive	 tumour	 could	 potentially	 be	 grouped	 with	

high-grade	 (WHO	 grade	 III	 and	 IV)	 patients.	 Some	 non-cancer	 patients	 were	

misclassified,	 via	 PCA	 (Figure	 5.3),	 in	 the	 low	 and	 high-grade	 classes,	 possibly	

suggesting	 that	 the	 non-cancer	 patients	 have	 cancer	 or	 a	 disease.	 Non-cancer	

patient	 data	 was	 not	 available	 from	 the	 tissue	 bank,	 thus	 it	 was	 not	 possible	 to	

identify	whether	any	patients	had	illnesses	(non-cancer	related)	that	may	alter	the	

biochemical	 composition	 of	 their	 blood	 sample.	 As	 was	 the	 case	 with	 all	 blood	

serum	samples	 in	 this	 thesis,	crucial	patient	 information	was	unavailable	 from	the	

tissue	 bank.	 It	 was	 not	 possible	 to	 link	 patient	medication	 use,	 BMI	 etc.	 to	 their	

acquired	 blood	 serum	 spectra.	 Further	 analysis	 of	 this	 data	 involves	 supervised	

machine	 learning	 algorithms	which	 allow	 for	 blind	 data	 to	 be	 projected	 into	 pre-

defined	spectral	data	classes.	Spectral	data	collected	from	the	three	serum	grades	in	

this	 study	 have	 been	 shown	 to	 successfully	 separate	 into	 their	 different	 spectral	

groups	using	PCA.	Figure	5.3	(B-C)	are	the	loadings	of	PC1	and	PC3.	(D)	shows	a	2D	

plot	of	PC1	vs.	PC3,	as	in	the	data	presented	in	(A).	
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Figure	5.3	-	(A)	Three	dimensional	PCA	scatter	plot	of	normal	(non-cancer)	[blue],	
low-grade	cancer	[red]	and	high-grade	cancer	[green]	from	patient	whole	serum	
samples.	(B)	PC1	loading	plot.	(C)	PC3	loading	plot.	(D)	2D	plot	showing	PC1	vs.	
PC3	of	the	data	presented	in	(A)	

A	
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Table	5.5	shows	the	major	spectral	peaks	and	proposed	biomolecular	assignments	

responsible	for	PC1	loadings	and	Table	5.6	for	PC3	loadings	(1-4).	

	

	

	

	

	

	

	

	

	

	

Table	 5.5	 -	 The	 major	 peaks	 and	 the	 proposed	 biomolecular	 assignments	 of	 PC1	
loading	(Figure	5.3(B)).	

Direction	Loading	
on	PC	1	(B)	

Wavenumber	
(cm-1)	 Proposed	Biomolecular	Assignment	

+ve	 1698	 Amide	I		

+ve	 1513	 Amide	II		

+ve	 1445	 CH2	deformation	of	methylene	group,	lipids	

+ve	 1386	 CH3	deformation,	lipids	

-ve	 1649	 Amide	I	

-ve	 1619	 Amide	I		

-ve	 1553	 Amide	II		

-ve	 1077	 C-O	stretch,	deoxyribose/ribose,	DNA,	RNA	
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Table	5.6-	The	major	peaks	and	the	proposed	biomolecular	assignments	of	PC	

3	loading	(Figure	5.3(C)).	

Direction	of	

Loading	on	

PC	3	(C)	

Wavenumber	
(cm-1)	 Proposed	Biomolecular	Assignment	

+ve	 1655	 Amide	I		

+ve	 1589	 Amide	II	

+ve	 1462	 CH2	deformation	of	methylene	group	(lipids)	

+ve	 1416	 CH3	asymmetric	stretch	(lipids)	

+ve	 1394	 CH3	deformation,	lipids	

+ve	 1361	 CH3	(symmetric)	

+ve	 1119	 C–O	(antisymmetric),	COH	bend,	lipids	

+ve	 1040	
	

	C–O,	deoxyribose/ribose	DNA,	RNA	

-ve	 1644	 Amide	I	

-ve	 1513	 C=C		

-ve	 1505	 C=C		

-ve	 1220	 C–C,	C–H	bend	

-ve	 1006	 Phenylalanine	(ring	breathing)	

-ve	 935	 C–C	residue	α-helix	
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The	 axes	 of	 the	 loading	 plots	 have	 positive	 and	 negative	 directions.	 The	

positive	and	negative	peaks	in	the	loading	plots	of	PC1	and	PC3	correspond	to	the	

spectral	peaks	 that	 the	PCA	scatter	plot	 is	using	 to	discriminate	 the	groups	within	

the	patient	 spectral	 dataset.	 The	major	peaks	of	PC1	 (Figure	5.2(B))	 are	–ve	1649	

cm-1	which	is	assigned	as	Amide	I,	+ve	1513	cm-1	assigned	as	Amide	II	and	–ve	1077	

cm-1	assigned	as	C–O	stretch	(DNA/RNA),	these	positive	and	negative	peaks	separate	

the	low-grade	cancer	(red)	and	non-cancer	(blue)	from	the	high-grade	(green)	data	

points.	

The	major	peaks	of	PC3	(Figure	5.3	(C))	are	+ve	1655	cm-1	and	-ve	1644	cm-1	

both	which	are	assigned	Amide	I	and	+ve	1589	cm-1	assigned	as	Amide	II.	The	major	

+ve	and	-ve	peaks	separate	the	low-grade	from	the	non-cancer	PCA	data	points	and	

-ve	1644	cm-1	 (Amide	 I).	 Table	5.5	and	5.6	 show	 the	 spectral	assignments	 for	PC1	

and	 PC3	 loadings	 respectively	 (Figure	 5.2	 (B-C)).	 Table	 5	 shows	 the	 proposed	

biomolecular	assignments	from	the	loadings	of	PC3.	

	

5.6.2 ATR-FTIR	Diagnostic	Model	SVM	Results	

ATR-FTIR	 spectra	 from	 all	whole	 serum	 and	 serum	 filtrate	 aliquot	 samples	

were	 analysed	 to	 investigate	 sensitivities	 and	 specificities	 possible	 on	 patient	 and	

spectral	 levels	 using	 RBF-SVM	 analysis.	 Three	 different	 train	 and	 test	 spectral	

datasets	 were	 used	 to	 provide	 a	 range	 of	 sensitivities	 and	 specificities	 for	 whole	

serum	(Table	5.7).		
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One	 train	 and	 test	 spectral	 dataset	 was	 used	 to	 achieve	 sensitivities	 and	

specificities	 for	 the	 filtrate	 aliquots.	 The	 whole	 serum	 SVM	 diagnostic	 model	

achieved	93.75	%	sensitivity	and	96.53	%	specificity	 (overall	average)	on	a	patient	

level.	 The	 whole	 serum	 dataset	 also	 achieved	 92.61	 %	 sensitivity	 and	 96.12	 %	

specificity	 on	 a	 spectral	 level.	 The	 best	 whole	 serum	 RBF-SVM	 diagnostic	 model	

misclassified	 three	 patients	 in	 the	 blind	 dataset;	 one	 low-grade	 patient	 and	 two	

high-grade	patients.	The	blind	dataset	consisted	of	one	average	spectrum	per	1	μL	

of	 patient	 serum	analysed	 resulting	 in	 three	 spectra	 per	 patient	 in	 the	 dataset.	 If	

two	 or	more	 spectra	 from	 the	 three	 averaged	 for	 each	 patient	were	 classified	 as	

either	high-grade,	low-grade	or	non-cancer,	then	this	is	regarded	as	the	diagnosis.		

	

Table	5.7-	Dataset	1	(n	=	3)	results	presented	with	the	ranges	from	datasets	2	and	3.	
Sensitivities	 and	 specificities	 for	 whole	 serum	 on	 patient	 and	 spectral	 levels	 for	
normal	(non-cancer),	low-grade	and	high-grade	cancer.		

	
Normal		

(%)	

Normal	
Range	
(%)	

Low		

(%)	

Low	
Range	
(%)	

High		

(%)	

High	
Range	
(%)	

Overall	
Average	

(%)	

Overall	
Range	
(%)	

Patient	
Sensitivity	 100	 75.00	–

100	 87.50	 87.50	–	
87.50	 93.75	 92.86	–	

93.75	 93.75	 75.00	–	
100	

Patient	
Specificity	 95.83	 95.40	–

100	 100	 95.45	–	
100	 93.75	 87.50	–	

93.75	 96.53	 87.50	–	
100	

Spectra	
Sensitivity	 95.83	 78.26	–	

95.83	 86.36	 85.00	–	
91.67	 95.65	 92.86	–	

95.65	 92.61	 78.26	–
95.83	

Spectra	
Specificity	 97.06	 95.45	–	

100	 100	 95.45	–	
100	 91.30	 86.36	–

91.30	 96.12	 86.36	–
100	
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In	comparison	to	the	whole	serum	SVM-RBF	results,	the	100	kDa	(Table	5.8),	

10	 kDa	 (Table	 5.9)	 and	 3	 kDa	 (Table	 5.10)	 serum	 filtrate	 aliquots	 did	 not	 achieve	

sensitivities	or	specificities	as	high.	The	100	kDa	diagnostic	model	achieved	69.05%	

sensitivity	 and	 85.87	 %	 specificity	 on	 a	 patient	 level	 and	 the	 10	 kDa	 diagnostic	

model	 achieved	 a	 sensitivity	 and	 specificity	 on	 a	 patient	 level	 with	 79.68	 %	 and	

88.75	%	respectively.	

	

	

	

	

Table	 5.8-	 Sensitivities	 and	 specificities	 for	 100	 kDa	 serum	 filtrate	 samples	 on	
patient	 and	 spectral	 levels	 for	 normal	 (non-cancer),	 low-grade	 and	 high-grade	
cancer	with	an	overall	average.	

	 Normal	
(%)	

Low-
Grade	(%)	

High-
Grade	(%)	

Overall	Average	
(%)	

Patient	sensitivity	 50	 57.14	 100	 69.05	

Patient	specificity	 95.45	 95.45	 66.7	 85.87	

Spectra	sensitivity	 54.17	 61.90	 93.75	 69.94	

Spectra	specificity	 94.12	 94.12	 67.44	 85.39	

Table	 5.9-	 Sensitivities	 and	 specificities	 for	 10	 kDa	 serum	 filtrate	 samples	 on	
patient	 and	 spectral	 levels	 for	 normal	 (non-cancer),	 low-grade	 and	 high-grade	
cancer	with	an	overall	average.	

	

	 Normal	
(%)	

Low-
Grade	(%)	

High-
Grade	(%)	

Overall	Average	
(%)	

Patient	sensitivity	 85.71	 70.00	 83.33	 79.68	

Patient	specificity	 85.00	 100	 81.25	 88.75	

Spectra	sensitivity	 75.00	 66.67	 78.38	 73.35	

Spectra	specificity	 80.33	 98.25	 78.72	 85.77	
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The	3	kDa	dataset	achieved	the	lowest	sensitivities	and	specificities	and	on	a	

patient	level	achieved	65.28	and	80.81	%	respectively	(Table	5.9).		

The	results	presented	in	tables	5.7-5.10	show	that	whole	serum	provides	the	

greatest	 sensitivities	 and	 specificities	 compared	 to	 the	 serum	 filtrate	preparations	

when	 distinguishing	 between	 cancer	 vs.	 non-cancer,	 as	 well	 as	 brain	 tumour	

severities.	Whole	serum	contains	a	plethora	of	biochemical	molecules	which	allow	

for	 optimum	 disease	 classifications	 (Table	 5.7),	 thus	 the	 combination	 of	 the	

cytokines	 and	 angiogenesis	 factors,	 such	 as	 follistatin,	 interleukin-8,	 leptin	 and	

angiopoietin,	to	name	but	a	few,	is	favourable,	especially	with	the	filtration	step	not	

being	 required.	 The	 10	 and	 3	 kDa	 filtrate	 preparations	 do	 not	 provide	 as	 high	

sensitivities	and	specificities,	this	suggests	that	the	biomolecules	 involved	with	the	

discrimination	 between	 the	 various	 grades	 of	 brain	 tumour	 are	 not	 as	

discriminatory	compared	 to	 larger	molecular	weighted	biomolecules	 (e.g.	100	kDa	

filtrate	preparations).		

	 Normal	
(%)	

Low-
Grade	(%)	

High-
Grade	(%)	

Overall	Average	
(%)	

Patient	sensitivity	 62.50	 66.67	 66.67	 65.28	

Patient	specificity	 73.68	 100	 68.67	 80.81	

Spectra	sensitivity	 70.83	 69.23	 68.57	 69.54	

Spectra	specificity	 76.36	 98.04	 74.47	 82.96	

Table	 5.10	 -	 Sensitivities	 and	 specificities	 for	 3	 kDa	 serum	 filtrate	 samples	 on	
patient	 and	 spectral	 levels	 for	 normal	 (non-cancer),	 low-grade	 and	 high-grade	
cancer	with	an	overall	average.	
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Table	5.11	shows	the	optimum	cost	and	gamma	values	for	whole	serum	and	

serum	 filtrate	 sample	 SVM	 analysis	 where	 training	 accuracy	 is	 the	 correctly	

predicted	spectra	from	the	training	set	and	total	accuracy	is	the	correctly	predicted	

spectra	 from	 the	 blind	 set.	 Three	 different	 train	 and	 test	 spectral	 datasets	 were	

used	to	provide	a	range	of	sensitivities	and	specificities	for	whole	serum	(n=3).	One	

train	and	test	spectral	dataset	was	used	to	achieve	sensitivities	and	specificities	for	

the	filtrate	aliquots	(n=1).	

	

	

Whole	serum	contains	a	range	of	biochemical	components	such	as	cytokines	

and	 angiogenesis	 factors	 which	 are	 redundant	 proteins	 that	 are	 secreted	 with	

growth	 and	 are	 involved	 in	 regulating	 and	 determining	 the	 nature	 of	 an	 immune	

response,	 such	 as	 with	 the	 development	 of	 cancer	 (5).	 Chapter	 4	 of	 this	 thesis	

demonstrates	how	cytokines	 and	angiogenesis	 factors	differ	between	 serum	 from	

glioma	and	non-cancer	patients.		

The	whole	 serum	RBF-SVM	diagnostic	model	achieved	 the	greatest	patient	

and	 spectral	 sensitivities	 and	 specificities	 as	 a	 result	 of	 the	 IR	 spectral	 dataset	

Table	5.11	-	The	optimum	cost	and	gamma	values	for	the	whole	serum	and	serum	
filtrate	aliquot	samples.	

	
	 Whole	

Serum	
Whole	

Serum	(2)	
Whole	

Serum	(3)	
100	kDa	
Data	

10	kDa	
Data	

3	kDa	
Data	

Optimal	Cost	
(C)	 22.63	 32	 22.63	 2048	 2048	 2048	

Optimal	
Gamma	(γ)	 4	 5.66	 8	 0.85	 16	 16	

Training	
Accuracy	(%)	 85.86	 87.96	 86.46	 72.58	 90.80	 78.53	

SVM	Total	
Accuracy	(%)	 96.88	 86.46	 91.58	 79.57	 79.76	 75.64	
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exhibiting	 bands	 characteristic	 of	 all	 serum	 components	 such	 as	 cytokines	 and	

angiogenesis	 factors	 which	 have	 varied	 molecular	 weights	 (6).	 Follistatin	 has	 a	

molecular	weight	of	35-70	kDa	(7);	interleukin-8	a	molecular	weight	of	8.4	kDa	(8);	

angiopoietin	 55	 kDa	 (9);	 leptin	 16	 kDa	 (10)	 and	 PECAM-1	 130	 kDa	 (11).	 The	

cytokines	 and	 angiogenesis	 factors	 deemed	 to	 be	 significant	 when	 distinguishing	

between	 non-cancer	 and	 GBM	 blood	 serum	 (discussed	 previously	 in	 Chapter	 4)	

were	interleukin-8,	angiopoietin,	leptin,	PECAM-1,	PDGF,	HGF	and	follistatin.	

Serum	filtrate	aliquots	produced	from	whole	serum	samples	achieved	lower	

sensitivities	 and	 specificities	 as	 a	 result	 of	 filtering	 and	 removing	 serum	

biomolecular	components	above	the	filter	cut-off	range.	

Petrich	et	al.	reported	the	significant	differences	in	IR	spectra	of	dried	serum	

before	 and	 after	 filtration.	 It	 was	 revealed	 that	 whole	 serum	 has	 more	 spectral	

regions	which	allows	for	 the	discrimination	between	serum	samples	 from	patients	

with	acute	myocardial	 infarction	 (AMI)	and	serum	samples	 from	non-AMI	patients	

compared	to	100	kDa	and	10	kDa	serum	filtrates.	The	molecules	responsible	for	the	

significant	differences	have	a	molecular	mass	greater	than	100	kDa	and	10	kDa	due	

to	decreasing	sensitivities	and	specificities	with	greater	sample	filtration,	thus	whole	

serum	 spectra	 has	 more	 areas	 of	 significance	 when	 differentiating	 disease	

states	(12).	

	

5.7 Discussion		

The	 results	 presented	 in	 this	 chapter	 show	 that	 the	 combination	 of	 SVM	

analysis	 and	 ATR-FTIR	 spectroscopic	 profiles	 of	 the	 molecular	 vibrations	 within	 1	
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μlserum	 films	 on	 an	 ATR-FTIR	 crystal	 can	 be	 used	 to	 diagnose	 and	 differentiate	

between	high	and	low-grade	brain	tumours	from	non-cancer	with	high	sensitivities	

and	specificities.		

The	 raw	spectra	 collected	 from	1	μl	 serum	spots	after	8	minutes	of	drying	

have	 a	 low	 standard	 deviation	which	 is	 further	 reduced	with	 noise	 reduction	 and	

vector	 normalisation	 pre-processing	methods.	 The	 variance	 between	 the	 spectral	

data	after	pre-processing	is	as	little	as	0.0004	at	1792.51cm-1.	The	reproducibility	of	

spectral	data	using	ATR-FTIR	 is	high	and	exhibits	minimal	 variance	especially	 after	

pre-processing.		

This	chapter	has	demonstrated	that	the	combination	of	mid-IR	spectral	data	

collected	from	whole	serum	samples	from	high-grade,	low-grade	and	normal	(non-

cancer)	patients	and	RBF-SVM	analysis	has	the	ability	to	be	implemented	within	the	

clinical	 environment	 as	 a	 rapid,	 reagent-free	 and	 cost-effective	diagnostic	 regime.	

The	analysed	serum	filtrate	aliquots	 in	this	chapter	(100,	10	and	3	kDa)	have	been	

shown	to	not	achieve	as	high	sensitivities	and	specificities	as	whole	serum;	filtration	

removes	 key	 biomolecules	 which	 exhibit	 spectral	 bands	 that	 are	 involved	 in	 the	

MVA	diagnostic	process.	The	loadings	from	PC1	and	PC3	(Figure	5.3(B-C))	show	the	

peaks	which	are	responsible	for	the	separation	between	high-grade,	low-grade	and	

non-cancer	spectral	datasets.	The	major	peaks	from	PC1	show	that	Amide	I,	Amide	II	

and	C–O	stretch	(DNA/RNA)	bands	are	responsible	for	the	separation	between	non-

cancer	 and	 low-grade	 cancer	 from	 high-grade	 cancer	 PCA	 data	 points.	 The	major	

peaks	from	PC2	shows	that	Amide	I	and	Amide	II	are	responsible	for	the	separation	

of	low-grade	cancer	from	non-cancer	PCA	data	points.		
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Serum	 filtrate	 aliquot	 samples	 in	 this	 chapter	 did	 not	 achieve	 as	 high	

sensitivities	 and	 specificities	 in	 comparison	 to	 whole	 serum,	 thus	 the	 filtration	

serum	 preparation	 step	 can	 be	 avoided	 allowing	 for	 an	 ever	 faster	 spectroscopic	

diagnostic	process.	Bonnier	et	al.	found	that	careful	washing	protocols	needs	to	be	

implemented	 prior	 to	 using	 the	 commercially	 available	 filters,	 as	 used	 to	 prepare	

the	 serum	 filtrate	 samples	 in	 this	 chapter.	 Contaminants	 deriving	 from	 glycerine	

were	found	to	be	present	in	the	IR	spectra	of	serum	prior	to	the	careful	washing	of	

the	 filter	 before	 use	 (13).	 ATR-FTIR	 spectroscopy	 is	 useful	 for	 diagnostic	

applications,	 however,	 unless	 a	 multi-ATR	 crystal	 device	 is	 created	 for	 high-

throughput	 analysis	 then	 the	 practicality	 of	 collecting	 spectral	 data	 from	 each	

sample	one-by-one	becomes	a	concerning	time-consuming	issue.		

The	method	described	within	this	chapter	has	the	ability	to	diagnose	gliomas	

(high-grade	and	low-grade	versus	non-cancer	serum)	from	whole	patient	serum	

ATR-FTIR	spectral	data	to	sensitivities	and	specificities	as	high	as	100	and	95.83	%	

respectively.	
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Chapter	6	

BRAIN	TUMOUR	DIFFERENTIATION:	STRATIFIED	SERUM	

DIAGNOSTICS	VIA	ATR-FTIR	SPECTROSCOPY	

6.1 Introduction	and	Aims	

In	 the	 previous	 chapter,	 ATR-FTIR	 spectroscopy	 was	 demonstrated	 to	

differentiate	 between	 brain	 tumour	 severities	 (high-grade	 and	 low-grade	 glioma)	

using	 whole	 serum	 and	 serum	 filtrate	 aliquots	 with	 high	 sensitivities	 and	

specificities.	In	summary	of	the	study	to	discover	which	fraction	of	serum	was	most	

discriminatory	 between	 brain	 tumour	 severities,	 it	 was	 found	 that	 whole	 serum	

provided	 greater	 sensitivities	 and	 specificities	 in	 comparison	 to	 serum	 filtrate	

aliquots.		

The	 research	 in	 this	 chapter	 aims	 to	 expand	 on	 the	 previously	 conducted	

research	 to,	 for	 the	 first	 time,	detect	 cancer	vs.	 non-cancer,	metastatic	 cancer	vs.	

organ	confined,	brain	cancer	severity	and	the	organ	of	origin	of	metastatic	disease	

from	 the	 same	 serum	 sample	 enabling	 stratified	 diagnostics	 depending	 upon	 the	

clinical	 question	 asked.	 Furthermore,	 this	 chapter	 investigates	 feature	 extraction	

(FE)	 fed	 SVM	 analysis	 to	 maximize	 classification	 accuracy	 based	 on	 the	 most	

discriminatory	features	of	the	projects	spectral	dataset.The	work	presented	within	

this	chapter	has	been	submitted	to	Neuro-oncology.	Manuscript	title:	Brain	Tumour	

Differentiation:	 Rapid	 Stratified	 Serum	Diagnostics	 via	 Attenuated	 Total	 Reflection	

Fourier-Transform	Infrared	Spectroscopy.	
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6.2 Experimental	Details	

Blood	 samples	 were	 collected	 from	 a	 total	 of	 433	 patients.	 Table	 6.1	

provides	demographic	 information	based	on	all	patient	groups.	All	 serum	samples	

were	 collected	 from	 the	Walton	Centre	Research	Tissue	Bank	 (Liverpool,	 England)	

and	 BTNW	 Tissue	 Bank	 (Preston,	 England)	 with	 full	 ethical	 approval	 (BTNW	 and	

Walton	Centre	ethical	application	#1108).	

	

Tumour	Grade	
Number	of	
Subjects	

Age	Range/	
Mean	Age	

Gender	

Non-cancer	 122	
16-89	

44.77	years	
64	male	
58	female	

All	Cancer	 311	
19-82	

57.77	years	
133	male	
178	female	

Glioma	 87	
19-81	

49.90	years	
52	male	
35	female	

Low-Grade	Glioma	 23	
19-60	

38.35	years	
11	male	
12	female	

High-Grade	Glioma	 64	
25-81	

61.44	years	
41	male	
23	female	

Meningioma	 47	
24-78	

55.98	years	
13	male	
34	female	

Metastasis	 177	
25-82	

59.45	years	
68	male	

109	female	
Lung		

Metastasis	
84	

25-82	
59.32	years	

36	male	
48	female	

Breast		
Metastasis	

36	
27-76	

50.92	years	
0	male	

36	female	
Melanoma	
Metastasis	

25	
25-80	

56.00	years	
14	male	
11	female	

Table	 6.1	 -	 Total	 subject	 number	 of	 tumour	 grade,	 age	 range,	 mean	 age	 and	
gender	of	patient	samples	



156	
	

Non-cancer	 control	 serum	 samples	 were	 collected	 from	 individuals	 who	

presented	no	 symptoms	of	 cancer	 at	 Royal	 Preston	Hospital	NHS	 Trust,	UK	blood	

donation	 event	 as	well	 as	 those	 presenting	 to	 the	 clinic	 for	 elective	 surgery.	 The	

average	age	is	57.77	and	44.77	years	for	the	cancer	and	non-cancer	patient	sample	

sets,	 respectively.	 Removing	 all	 teenage	 patients	 (n=2;	 1	 non-cancer	 diagnosis,	 1	

low-grade	 diagnosis)	 increases	 the	 non-cancer	 patient	 sample	 set	 average	 age	 to	

60.32	years	and	cancer	to	57.89	years.	Where	possible	each	tumour	grade	was	age	

and	sex	matched.	The	whole	metastatic	tumour	subset	has	an	average	age	of	59.45	

years	-	this	can	further	be	split	up	into	lung	metastasis	with	an	average	age	of	59.32;	

breast	 metastasis	 subset	 average	 age	 of	 50.92	 years	 and	 melanoma	 metastasis	

subset	an	average	age	of	56.00	years.	Patient	information,	e.g.	BMI,	drug	use,	diet,	

lifestyle,	 etc.	 was	 unavailable	 from	 the	 tissue	 bank	 from	 which	 the	 blood	 serum	

samples	were	collected.	Patients	who	have	a	blood	sample	collected	pre-operatively	

are	highly	 likely	 to	be	on	an	array	of	medication	 for	 cancer	or	have	been	 treated	

with	 chemotherapy/radiotherapy,	 thus	 impacting	 upon	 the	 blood	 serum	 sample	

acquired.	In	contrast,	a	patient	who	donated	a	non-cancerous	sample	will	not	have	

the	 physiological	 changes	 induced	 by	 the	 intake	 of	 cancer	 medications	 and	

therapies.	To	summarise,	cancer	patients	are	likely	to	be	on	pain	killers,	steroids	and	

have	 different	 regional	 physiological	 functions	 in	 comparison	 to	 those	 patients	

which	have	not	been	diagnosed	with	 cancer.	Appendix	2	 shows	expanded	patient	

demographic	information	for	all	433	individual	patients.		
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6.2.1 Instrumentation	

All	spectra	from	all	patient	serum	samples	in	Table	6.1	were	collected	using	

an	Agilent	Cary	600	 Series	 FTIR	 spectrometer	with	 a	PIKE	 Technologies	MIRacleTM	

single	 reflection	 ATR	 configured	 with	 a	 diamond	 crystal	 plate.	 1	 μl	 volumes	 of	

human	serum	were	pipetted	onto	the	ATR-FTIR	crystal	using	an	Eppendorf	Research	

Plus	0.5ul-10.0ul	pipette.	After	spectral	collection	from	each	1	μl	dried	serum	spot,	

Virkon	Surface	Disinfectant	(Fisher	Scientific)	and	99.5	%	absolute	ethanol	(Thermo	

Scientific)	were	used	consecutively	to	wash	the	serum	film	off	the	Di	crystal.	

6.3	 ATR-FTIR	Diagnostic	Model	

As	was	the	case	in	chapters	4	and	5,	all	whole	serum	samples	were	thawed	

prior	to	spectral	collection	at	room	temperature	for	up	to	30	minutes.	Spectra	were	

collected	in	a	random	order	within	the	serum	sample	sets.	For	each	sample,	a	1	μl	

serum	spot	was	pipetted	onto	the	ATR-FTIR	crystal	and	allowed	to	dry	for	8	minutes,	

at	which	 time	3	 spectra	were	 collected.	 Prior	 to	 spectral	 collection,	 a	background	

absorption	spectrum	was	collected	(for	atmospheric	correction)	before	the	1	μl	of	

serum	was	pipetted	onto	 the	ATR-FTIR	 crystal.	A	 single	background	was	 collected	

per	 sample	 replicate.	 Spectra	were	acquired	 in	 the	 range	of	4000	 -	600	cm-1,	 at	a	

resolution	of	4	cm-1	and	averaged	over	32	co-added	scans.	 In	total,	3897	ATR-FTIR	

spectra	were	collected	from	all	serum	samples.	To	the	best	of	my	knowledge,	this	is	

the	largest	study	on	mid-infrared	spectroscopy	in	relation	to	cancer	research	with	a	

433	patient	cohort.	
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All	 serum	samples	were	collected	 from	the	Walton	Centre	Research	Tissue	

Bank	 (Liverpool,	 England)	 and	 Brain	 Tumour	 North	 West	 (BTNW)	 Tissue	 Bank	

(Preston,	 England)	 with	 full	 ethical	 approval	 (BTNW	 and	 Walton	 Centre	 ethical	

application	 #1108).	 All	 patient	 blood	 samples	 were	 collected	 pre-operatively	 and	

left	 to	 clot	 at	 room	 temperature	 for	 30-120	 minutes	 from	 blood	 draw.	

Centrifugation	 of	 blood	 samples	 at	 1200xg	 for	 10	 minutes	 was	 performed	 to	

separate	the	clot,	followed	by	the	serum	being	aliquoted	into	cryovials.	All	samples	

were	snap	frozen	using	liquid	nitrogen	and	were	stored	at	a	temperature	of	-80°C.	

Table	5.2	shows	patient	demographic	data	of	the	23	low-grade	patients.		

	

6.4	 Data	Handling	and	Analysis	

Initially	Agilent’s	Resolutions-Pro	FTIR	 software	was	used	 for	data	handling	

after	 which	 the	 spectra	 were	 imported	 for	 further	 analysis	 and	 processing	 into	

Matlab™	using	in-house	written	and	open	source	protocols.	

For	 all	 spectra	 acquired,	 the	 fingerprint	 region	 (1800-1000	 cm-1)	was	 selected	 for	

MVA.	A	PCA	noise	reduction,	using	the	first	50	PCs,	of	the	data	was	performed	on	

the	 spectra	 to	 improve	 the	 SNR	 ratio.	 Following	noise	 reduction,	 all	 spectra	were	

vector	 normalised.	Using	 LIBSVM	and	 in-house	written	protocols	 in	MATLAB™,	 an	

n-fold	 CV	 was	 performed	 (n=5)	 on	 the	 training	 data	 to	 determine	 the	 optimum	

values	 for	 the	 cost	 and	 gamma	 functions.	 Table	 6.2	 shows	 the	optimum	cost	 and	

gamma	functions	for	each	stratum	(e.g.	cancer	vs.	non-cancer).		
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Optimum	 cost	 and	 gamma	 values	 were	 used	 to	 train	 the	 SVM	 in	 a	 one-

versus-rest	 mode	 using	 a	 randomly	 selected	 training	 set	 consisting	 of	 2/3	 of	 the	

patient	associated	spectral	data.	The	remainder	of	the	data	(1/3)	was	used	to	create	

the	blind	set	which	was	then	projected	into	the	model,	and	confusion	matrices	were	

calculated	giving	an	overall	SVM	classification	based	on	the	true	and	predicted	data	

class	labels.	For	each	stratum,	525	combinations	of	2/3	training	and	1/3	blind	were	

performed	based	upon	patient	membership,	thus,	all	spectra	from	one	patient	was	

either	in	the	train	set	or	the	blind	set.	Sensitivities	and	specificities	were	calculated	

for	 each	 combination	 in	order	 to	understand	 the	effect	of	patient	membership	 in	

training	 and	 blind	 sets	 based	 upon	 sensitivity	 and	 specificity.	 Sensitivities	 and	

specificities	were	calculated	using	equations	4.1	-	4.2	in	Chapter	4.	

	

	

	

	 Cancer	vs.	
Non-cancer	

Metastasis	
vs.	Brain	

Glioma	vs.	
Meningioma	

HGG	vs.	
LGG	

Lung	vs.	
Skin	vs.	
Breast	

Optimal	Cost	
(C)	 128	 128	 128	 128	 32	

Optimal	
Gamma	(γ)	 128	 128	 128	 128	 128	

Mean	Cross-
Validation	

Accuracy	(%)	
94.74	 94.07	 95.37	 95.60	 93.10	

Table	 6.2	 -	 Optimal	 cost	 and	 gamma	 values	 for	 each	 stratum	 with	 a	 mean	 cross	
validation	accuracy	
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6.5	 Feature	Extraction	(FE)	

The	main	function	of	FE	is	to	elucidate	and	rank	the	relevant	discriminatory	

spectral	 information	 from	 recorded	ATR-FTIR	 data.	 Per	 stratum,	 all	 pre-processed	

spectral	 data	was	 variably	 ranked	with	 information	 gain	using	 the	 top	30	%	of	 all	

variables.	 Variable	 ranking	 highlights	 the	 wavenumber	 variables	 that	 are	 most	

salient	 between	 the	 spectral	 classes.	 In	 the	 case	 of	 the	 cancer	 vs.	 non-cancer	

stratum,	 130	 wavenumber	 variables	 associated	 to	 6	 wavenumber	 regions	 were	

selected	 (Table	 6.4).	 Following	 variable	 ranking,	 the	 6	 wavenumber	 regions	 were	

selected	on	a	2D	plot	of	the	mean	spectrum,	upon	which	FE	was	performed.	FE	was	

performed	whereby	 spectral	 descriptors	 such	 as	 root-mean-square	 (RMS)	 energy,	

peak	 kurtosis,	 peak	 skew,	 peak	 centroid,	 as	 well	 as	 peak	 frequency	 and	 peak	

amplitude	can	be	extracted	from	each	user	selected	spectral	band,	thus	the	relevant	

spectral	band	shapes	involved	in	the	discrimination	between	classes	are	able	to	be	

captured.		

The	 feature	 information	 is	 ranked	 and	 scored	 in	 descending	 order	 to	

describe	how	each	feature	of	the	model	explains	the	difference	between	the	groups	

of	 recorded	 spectral	 data.	 The	 most	 discriminatory	 features	 highlighted	 during	

feature	extraction	were	then	used	for	a	feature	based	SVM	(FE-SVM).	Using	LIBSVM	

and	 in	 house	 written	 protocols	 in	 MATLAB™,	 an	 n-fold	 cross	 validation	 was	

performed	 (n=5)	on	 the	cancer	vs.	 non-cancer	 spectral	 training	data	 to	determine	

the	optimum	values	for	the	cost	and	gamma	functions;	128	was	optimal	for	cost	and	

gamma	respectively.	FE-SVM	was	performed	using	all	130	spectral	features	followed	

by	the	top	30	and	top	2	features	for	the	cancer	vs.	non-cancer	data	set.	
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6.5.1	 Spectral	Descriptors		

RMS	energy	 is	 calculated	by	 the	 square	 root	 of	 the	 average	of	 all	 squared	

intensity	points	of	a	spectrum	(Figure	6.1)	(1).		

	

	

	

	

	

	

	

	

	

	

	 Peak	 kurtosis	 is	 a	measure	 of	 whether	 spectral	 data	 are	 peaked	 or	 flat	 in	

relation	to	the	normal	distribution,	as	 illustrated	in	Figure	6.2	(2).	Positive	kurtosis	

spectra	 exhibit	 distinct	 peaks	 near	 to	 the	 mean	 and	 decline	 rapidly;	 in	 contrast,	

negative	 kurtosis	 spectra	 have	 flat	 tops	 near	 to	 the	 mean	 rather	 than	 a	 sharp	

peak	(3).	

	

	

	

	

	

Figure	 6.1	 -	 Example	 of	 root	 mean	 square	 (RMS)	
energy	-			calculated	by	square	rooting	the	sum	of	the	
average	of	each	peak	intensity.	Adapted	from	(1).	
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Skewness	 is	 a	 measure	 of	 the	 symmetry,	 or	 lack	 of	 symmetry,	 of	 a	 peak.	

Normally	 distributed	 data	 has	 a	 skewness	 of	 zero.	 Negative	 values	 for	 skewness	

represent	data	which	are	skewed	to	the	left	and	positive	to	the	right.	Data	which	is	

skewed	to	the	left,	for	example,	has	a	longer	tail	on	the	left	in	comparison	to	the	tail	

on	the	right	of	the	peak	(3).	Figure	6.3	illustrates	the	skewness	of	a	peak	(4).	

	

	

	

	

	

	

	

	

Figure	 6.2	 -	 Example	 of	 peak	 kurtosis	 -	 	 	 positive	
kurtosis	 spectra	 exhibit	 distinct	 peaks	 near	 to	 the	
mean	 (normal	 distribution)	 and	 decline	 rapidly;	 in	
contrast,	 negative	 kurtosis	 spectra	 have	 flat	 tops	
near	 to	 the	 mean	 rather	 than	 a	 sharp	 peak.	
Replicated	from	(2).	

	

Figure	6.3	-	Example	of	peak	skewness.	Normally	distributed	
data	 (symmetrically	 distributed)	 has	 a	 skewness	 of	 zero,	
whereas	the	value	of	a	peaks	skew	indicates	which	direction	
it	is	in.	Adapted	from	(4).	
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	 Peak	 centroiding	 finds	 the	 centre	 of	 the	 user	 highlighted	 peak	 to	 basically	

represent	a	weighted-average	of	the	peak	(5).	Figure	6.4	illustrates	the	centroid	of	

the	Amide	I	band	(6).		

	 	

	

	

	

	

	

	

	

	

	

6.6	 Results	from	ATR-FTIR	Diagnostic	Model	

ATR-FTIR	 spectra	 from	 433	 patients	 (3897	 spectra)	 were	 analysed	 to	

investigate	 sensitivities	 and	 specificities	 possible	 on	 a	 patient	 level.	 525	 iterations	

with	different	training	and	blind	spectral	datasets	(split	1/3	blind	and	2/3	training	on	

a	 patient	 basis)	were	 used	 to	 analyse	 the	 power	 of	 the	 RBF-SVM	 analysis	 and	 to	

understand	the	variance	within	a	biospectroscopic	dataset.	Figures	6.5	-	6.6	show	of	

the	 range	 of	 sensitivities	 and	 specificities	 achieved	 for	 the	 cancer	 vs.	 non-cancer	

stratum.	

	 	

	

	

Figure	 6.4	 -	 Peak	 centroid	 of	 the	 Amide	 I	 band.	
Adapted	from	(6).	
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The	 sensitivity	and	 specificity	 range	 for	 cancer	vs.	 non-cancer	 is	81	–	97	%	

and	51	–	95%	respectively.	Sensitivities	and	specificities	range	from;	

• 46	 –	 80	 %	 and	 60	 –	 93	 %	 for	metastatic	 cancer	 vs.	 brain	 cancer	 respectively	

(Appendix	4	-	Figure	1);	

• 48	–	100	%	and	31	–	100	%	for	glioma	vs.	meningioma	respectively	(Appendix	4	-	

Figure	2);	

• 50	–	100	%	and	2	–	100	%	for	HGG	vs.	LGG	respectively	(Appendix	4	-	Figure	3);	

Figure	 6.5	 -	 Histogram	 showing	 the	 sensitivity	 results	 for	 525	 iterations	 of	

SVM	conducted	using	the	fingerprint	region	from	1800-1000	cm-1.	

	

	

Figure	 6.6	 -	 Histogram	 showing	 the	 specificity	 results	 for	 525	 iterations	 of	

SVM	conducted	using	the	fingerprint	region	from	1800-1000	cm-1.	
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• 28	–	95	%	and	68	–	98	%	for	the	metastatic	origin	stratum	(Appendix	4	-	Figure	4	

-	breast;	Appendix	4	-	Figure	5	-	skin;	Appendix	4	-	Figure	6	-	lung).	

These	 ranges	 of	 sensitivities	 and	 specificities	 show	 the	 diagnostic	 potential	 of	

the	525	iterative	approach	for	the	discussed	datasets.	The	ranges	of	sensitivities	and	

specificities	demonstrate	the	ability	of	spectral	diagnoses	with	various	splits	of	train	

datasets.	 It	 is	 shown	 (Figure	 6.5-6.6)	 that	 the	 cancer	 vs.	 non-cancer	 iterative	

approach	 had	 a	 mode	 of	 89.4	 %	 and	 78.0	 %	 for	 sensitivity	 and	 specificity,	

respectively.		

Table	6.3	shows	the	mean,	mode	and	optimum	sensitivities	and	specificities	for	

each	 stratum.	 The	 optimum	 sensitivity	 and	 specificity	 columns	 refer	 to	 the	

sensitivity	 and	 specificity	 that	 best	 describes	 the	 sample	 set	 based	 upon	 disease	

grouping.	

	

Model	
Optimum	

Sens	
(%)	

Optimum	
Spec	
(%)	

Mean	
Sens	
(%)	

Mean	
Spec	
(%)	

Mode	
Sens	
(%)	

Mode	
Spec	
(%)	

Cancer	
vs.	

Non-Cancer	
97.1	 95.1	 89.8	 77.5	 89.4	 78.0	

Metastatic	
Cancer	
vs.	

Brain	Cancer	

80.0	 93.2	 79.7	 64.0	 64.4	 80.0	

Glioma	
vs.	

Meningioma	
100	 100	 81.1	 66.7	 82.1	 75.0	

HGG	vs.	LGG	 100	 100	 80.9	 48.5	 85.0	 50.0	

Table	6.3	 -	Mean,	mode	and	optimum	sensitivities	(sens)	and	specificities	(spec)	
obtained	for	each	stratum	
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The	optimum,	mode	and	mean	sensitivities	and	specificities	observed	for	all	

strata	range	from	48.5	%	to	100.0	%	respectively,	with	the	optimum	sensitivities	and	

specificities	 ranging	 from	 86.3	 %	 -	 100	 %.	 The	 cancer	 vs.	 non-cancer	 stratum	

achieved	 a	 mean	 sensitivity	 and	 specificity	 of	 89.8	 %	 and	 77.5	 %	 respectively,	

metastatic	 cancer	 vs.	 brain	 cancer	 of	 79.7	 %	 and	 64.0	 %	 respectively,	 glioma	 vs.	

meningioma	 of	 66.7	 %	 and	 82.1	 %	 respectively,	 high	 grade	 glioma	 vs.	 low	 grade	

glioma	of	80.9	%	and	48.5	%	respectively	and	the	origin	of	metastasis	of	64.8	%	and	

86.9	%	respectively.		

These	results	show	the	power	of	ATR-FTIR	spectroscopy	to	diagnose	disease	

states	based	upon	a	stratified	approach;	however	variance	still	exists	in	the	spectral	

datasets	due	to	the	selection	of	patient	populations	in	the	training	and	blind	set.	For	

each	stratum,	sensitivity	and	specificity	variance	exists	between	classification	model	

iterations.	This	shows	that	certain	patient	partitions	provide	better	classification	for	

Metastatic	
Model	

Optimum	
Sens	
	(%)	

Optimum	
Spec		
(%)	

Mean	
Sens	
(%)	

Mean	
Spec		
(%)	

Mode	
Sens	
(%)	

Mode	
Spec	
(%)	

Metastatic	
		Lung		 95.4	 95.9	 79.0	 85.7	 81.4	 84.9	

Metastatic		
	Skin	 84.4	 94.4	 63.9	 82.0	 64.4	 80.3	

Metastatic		
Breast	 78.6	 98.9	 51.4	 90.1	 50.0	 90.9	

Metastatic	
Model	
Mean	

86.3	 98.3	 64.8	 86.0	 65.3	 85.4	

Table	6.3	-	continued…	
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the	remaining	blind	patient	data	set.	A	reason	for	this	is	redundant	data	maximising	

the	 spectral	 variance	 within	 a	 group	 within	 the	 data	 variables	 of	 the	 spectral	

fingerprint	 region	 i.e.	 patient	 data	 containing	 higher	 intra-group	 spectral	 variance	

partitioned	 together	 to	 form	 the	 training	 set	 would	 produce	 poorer	 classification	

models.	

	

6.7	 Results	of	Stratified	Diagnostics	via	FE		

	 To	maximise	 classification	accuracies	 the	most	discriminatory	 features	of	 a	

spectrum	can	be	extracted	and	ranked	based	on	their	similarity	of	a	desired	dataset,	

thus	 assigning	 scores	 on	 the	 feature’s	 ability	 to	 discriminate	 between	 classes,	

maximising	 inter-group	 differences	 (7).	 Unless	 otherwise	 stated,	 all	 tabulated	

spectral	assignments	were	taken	from	(8-13).	

As	discussed	previously,	the	spectral	features	used	to	discriminate	between	

the	pre-defined	classes	are	the	peak	centroid	(measure	of	the	peak’s	central	point),	

peak	skew	(measure	of	asymmetry	in	the	peak’s	shape),	peak	kurtosis	(a	measure	of	

the	shape	of	a	RMS	peak	relating	peaked	vs.	flat-topped),	peak	amplitude	and	RMS	

energy.	 These	 features	 were	 extracted	 from	 pre-defined	 sub-bands	 of	 each	

spectrum	 (user	highlighted	 in	 the	SpecToolbox);	 features	were	 then	 ranked,	using	

the	information	gain,	based	upon	the	resulting	score.	

Following	FE	and	variable	ranking,	the	most	discriminatory	characteristics	of	

the	spectrum	(from	1800	to	900	cm-1)	were	extracted.	Table	6.4	displays	the	most	

discriminatory	 regions	 with	 proposed	 biomolecular	 assignments	 highlighting	
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spectral	 components	 relating	 to	 proteins,	 lipids,	 carbohydrates	 and	 nuclear	

material.	

	

	

The	features	observed	for	the	2-class	strata	-	enabling	classification	of	cancer	

vs.	non-cancer,	metastatic	vs.	brain	cancer,	glioma	vs.	meningioma	and	high-grade	

glioma	 vs.	 low-grade	 glioma	 -	 focus	 on	 the	 detection	 of	 primary	 brain	 cancer	

originate	from	the	Amide	I	(8)	and	Amide	(9),	C-O	stretch	of	lipids/proteins(10),	CH2	

of	lipids/proteins	(13)	and	contributions	from	nuclear	materials	(DNA	&	RNA	via	PO2
-	

stretches)	wavenumber	 regions	 (10).	The	 top	10	 features	 for	each	2-class	 stratum	

are	displayed	in	Figures	6.7-6.10,	with	a	mean	spectrum	for	each	individual	disease	

state.	

Wavenumber	
Region(cm-1)	

Spectral	Assignments	

1008	-	1230	 C-O,	deoxyribose/ribose,	DNA,	RNA	(PO2
-),	C-C,	C-H	bend	

1315	-	1384	 CH3/CH	deformation	of	lipids	

1380	-	1465	 CH3	lipids/proteins	

1460	-	1590	 Amide	II		

1600	-	1706	 Amide	I		

1700	-	1799	 C=O	of	lipids	

Table	6.4	-	The	discriminatory	wavenumber	regions	with	assigned	biomolecular	
assignments		
	

assignments	
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These	wavenumber	 regions	have	been	described	previously	 in	 research	by	

Gajjar	 et	 al.	 observing	 discrimination	 between	 brain	 cancer	 states	 using	 tissue	

spectroscopy	(11).	This	research	highlighted	the	Amide	I	(1655	cm-1),	Amide	II	(1547	

and	 1582	 cm-1),	 carbohydrate	 (1173	 cm-1),	 glycogen	 (1014	 cm-1)	 and	 phosphate	

regions	 as	 describing	 the	majority	 of	 the	 difference	 between	 IR	 spectra	 of	 tissue	

origination	 between	 non-cancerous	 patients	 and	 tumour	 types.	 Growth	 factor	

proteins	 are	 known	 to	 be	 excessively	 produced	 in	 tissue	 of	 high-grade	 brain	

tumours	 where	 proliferation,	 angiogenesis	 and	 metastasis	 is	 occurring	 (14),	

therefore,	 the	spectral	 response	to	 the	presence	of	 these	proteins	can	be	used	to	

differentiate	between	brain	cancer	and	non-cancer	disease	state	tissue	specimens.	

During	 carcinogenesis,	 proliferating	 cells	within	 tissue	uptake	 glycogen	and	amino	

acids	to	produce	nucleic	acids,	consequently	the	increased	proliferation	occurring	in	

cancerous	 tissues	 leads	 to	adapted	metabolic	needs	and	 increased	concentrations	

of	 the	 described	 molecules,	 which	 are	 detectable	 via	 IR	 spectroscopy	 (15).	

An	example	 of	 the	 molecules	 within	 blood	 serum	 allowing	 for	 differentiation	 is	

interleukin-8	(IL-8)	which	is	expressed	in	cancer	and	has	been	deemed	as	significant	

with	 tumour	 severity	 (Chapter	 4).	 (16).	 IL-8	 is	 a	 key	 protein	 involved	 in	

neoangiogenesis	 -	 a	 process	whereby	 cancer	 creates	 new	blood	 vessels	 to	 supply	

developing	 tumours	 with	 nutrients	 and	 ensures	 growth.	 Many	 tumours	 produce	

growth	 factors,	 such	 as	 interleukin-8,	 that	 stimulate	 angiogenesis	 thus	 inducing	

surrounding	healthy	cells	to	secrete	the	same	factors.	The	presence	of	IL-8,	among	

other	cytokines	and	angiogenesis	factors,	in	patients	with	gliomas	is	known	(16-17),	

in	 addition,	 our	 Top	 10	 spectral	 assignments	 (Figure	 6.7-6.10	 and	 Table	 6.6-6.8)	
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allowing	 for	 discrimination	 between	 cancer	 vs.	 non-cancer	 to	 primary-site	

metastatic	 brain	 cancer	 include	 Amide	 I	 and	 Amide	 II,	 thus	 pointing	 such	

biomolecules	 towards	being	 involved	 in	 the	discrimination.	Supporting	this,	Tables	

5.5-5.6	 in	 Chapter	 5,	 concerned	 with	 the	 discrimination	 between	 brain	 tumour	

severities,	 found	 that	 the	 loadings	 from	 PCA	 show	 the	 major	 peaks	 allowing	 for	

discrimination	 between	 low-grade	 glioma	 and	 non-cancer	 from	high-grade	 glioma	

include	 Amide	 I	 (–ve	 1649	 cm-1)	 and	 Amide	II	 (+ve	 1513	 cm-1).	 The	 major	 peaks	

allowing	 for	 discrimination	 between	 low-grade	 glioma	 and	 non-cancer	 include	

Amide	 I	 (+ve	 1655	 cm-1	 and	 -ve	 1644	 cm-1)	 and	 Amide	 II	 (+ve	 1589	 cm-1).	 During	

tumour	 development,	 tumour	 cells	 release	 their	 nucleic	 acids	 into	 the	 blood	

circulation	 via	 apoptosis	 and	 necrotic	 cell	 death,	 resulting	 in	 circulating	 DNA	 and	

RNA	 in	 blood	 samples	 from	 cancer	 patients.	 Moredechai	 et	 al.	 reports	 that	

DNA/RNA	 spectral	 ratios	 are	 higher	 in	 malignant	 samples	 than	 in	 non-diseased	

samples	 (18),	 additionally;	 this	 research	has	 found	DNA/RNA	spectral	bands	 to	be	

involved	in	the	discrimination	between	disease	states.	
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Figure	6.7	-	Top	ten	extracted	features,	based	upon	feature	extraction	score,	and	
average	 spectrum	 from	 each	 disease	 state	 for	 cancer	 vs.	 non-cancer.	 Spectra	
(offset	 for	ease	of	visualisation)	display	standard	deviation	error	bars	presented	
as	a	cloud	around	the	spectrum.	RMSN	=	RMS	energy;	pkAmp	=	peak	amplitude.	
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Figure	6.8	-	Top	ten	extracted	features,	based	upon	feature	extraction	score,	and	
average	spectrum	from	each	disease	state	for	metastatic	cancer	vs.	brain	cancer.	
Spectra	 (offset	 for	 ease	 of	 visualisation)	 display	 standard	 deviation	 error	 bars	
presented	as	a	cloud	around	the	spectrum.	
	

	

	



173	
	

	

	

	

	

	

	

	

	

	

	

	

	 	

	

Figure	 6.9	 -	 Top	 ten	 extracted	 features,	 based	 upon	 feature	 extraction	 score,	 and	
average	spectrum	from	each	disease	state	for	glioma	vs.	meningioma.	Spectra	(offset	
for	ease	of	visualisation)	display	standard	deviation	error	bars	presented	as	a	cloud	
around	the	spectrum.	
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Figure	 6.10	 -	 Top	 ten	 extracted	 features,	 based	 upon	 feature	 extraction	 score,	
and	average	spectrum	from	each	disease	state	for	HGG	vs.	LGG.	Spectra	(offset	
for	 ease	 of	 visualisation)	 display	 standard	 deviation	 error	 bars	 presented	 as	 a	
cloud	around	the	spectrum.	
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The	 features	 observed	 for	 the	 metastatic	 stratum	 enabling	 discrimination	

between	 the	 organs	 of	 origin	 (lung	 vs.	 melanoma	 vs.	 breast)	 originate	 from	

vibrations	of	C-O,	C=O	and	C-H	associated	with	lipids	and	protein	macromolecules.	

Additionally,	 contributions	 associated	with	 nucleic	material	 (DNA	&	 RNA	 via	 PO2
-)	

and	 minimal	 contributions	 from	 the	 Amide	 wavenumber	 regions	 allow	 for	 the	

discrimination	between	the	metastatic	subtypes	(Top	10	features	tabulated	in	6.5	-	

6.7	 for	 each	 primary	 site.	 interlekin-8,	 leptin	 and	 cell-free	 serum	 DNA	 secreted	

during	 vasculogenesis	 and	 angiogenesis	 have	 a	 positive	 correlation	 with	 the	

development	 and	metastasis	 of	 cancer,	 thus	 enabling	 for	 discrimination	 between	

the	metastatic	stratum	(19).	

Figure	 6.11	 displays	 an	 average	 spectrum	 of	 each	 disease	 state.	 This	 is	

consistent	 with	 research	 performed	 by	 Gazi	 et	 al.	 (12)	 when	 utilising	 FTIR	

microscopy	 to	 investigate	 discrimination	 of	metastatic	 prostate	 cancer	 tissue	 and	

organ	 confined	 prostate	 cancer.	 Gazi	 et	 al.	 show	 increases	 in	 biomolecular	

intensities	of	carbohydrate,	phosphate	and	lipid	intensities	between	organ	confined	

prostate	cancer	and	prostate	cancer	bone	metastatic	tissue	specimens.	

Krafft	et	al.	(20)	highlights	spectral	features	at	1026,	1080	and	1153	cm-1	as	

molecular	markers	for	brain	metastases	of	the	primary	tumour	renal	cell	carcinoma.	

Krafft	 et	 al.	 also	 found	 that	 the	 intensity	 at	 1735	 cm-1	 (assigned	 to	 the	 carbonyl	

vibrations	 (C=O)	 of	 ester	 groups)	 was	 indicative	 of	 brain	 metastases	 of	 breast	

cancer;	 an	 increase	 in	 Amide	 II	 intensity	 and	 broadening	 of	 the	 Amide	 I	 low	

wavenumber	 shoulder	near	1625	cm-1	 for	brain	metastases	of	 lung	cancer	and	an	

intensity	minimum	near	1400	cm-1	 for	brain	metastases	of	colorectal	cancer	when	
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performing	 IR	 spectroscopic	 imaging	 of	 brain	 tissue.	 The	 similar	 wavenumber	

regions	observed	for	the	tissue	spectroscopic	studies,	as	compared	to	serum	based	

spectroscopic	studies,	provide	corroborating	evidence	of	the	power	of	the	analysis	

as	serum	biochemical	profiles	are	understood	to	reflect	the	tissue	status.	

	 	

	

	

	

	

	

	

	

	

	

	

	

	 	

	

	 	

	

	

	

	

	

	

Figure	 6.11	 -	 Average	 spectrum	 from	 each	 disease	 state	 (lung,	
melanoma	 (skin)	 and	 breast)	 for	 metastatic	 disease	 origin.	 Spectra	
(offset	for	ease	of	visualisation)	display	standard	deviation	error	bars	
presented	as	a	cloud	around	the	spectrum.	
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Table	 6.5	 -	 Top	 ten	 extracted	 features,	 based	 upon	 feature	 extraction	
score,	for	lung	cancer	metastatic	origin.	
	

	

	

Table	 6.6	 -	 Top	 ten	 extracted	 features,	 based	 upon	 feature	 extraction	
score,	for	melanoma	(skin)	cancermetastatic	origin.	
	

	

	



178	
	

	

	

	

	

In	 order	 to	 examine	 the	 ability	 of	 feature	 extraction	 to	 improve	 the	

diagnostic	 capability	 of	 stratified	 serum	 diagnostics	 a	 525	 iteration	 feature-based	

SVM	 was	 performed	 using	 all	 of	 the	 130	 features	 discovered	 during	 the	 feature	

extraction	 process,	 the	 top	 30	 features	 and	 the	 top	 2	 features	 for	 the	 cancer	 vs.	

non-cancer	 stratum,	based	on	a	variable	 ranking	process.	The	 top	30	 features	are	

displayed	in	Table	6.8.	All	130	features	are	tabulated	in	Appendix	3.	

	

	

	

	

	

Table	6.7	-	Top	ten	extracted	features,	based	upon	feature	extraction	score,	for	
breast	cancermetastatic	origin.	
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FE	
Number	 Type	 Wavenumber	(cm-1)	 FE	Score	

1	 RMSN	 1176-1242	vs.	1020-1115	 0.4512	
2	 Skew	 1176-1242	vs.	1483-1537	 0.4376	
3	 Peak	Amplitude	 1176-1242	vs.	1020-1115	 0.4292	
4	 RMSN	 1483-1537	vs.	1020-1115	 0.4288	
5	 RMSN	 1483-1537	vs.	1599-1635	 0.4163	
6	 Skew	 1599-1635	vs.	1483-1537	 0.4141	
7	 RMSN	 1483-1537	 0.4032	
8	 Centroid	 1020-1115	vs.	1543-1585	 0.3985	
9	 Centroid	 1543-1585	vs.	1020-1115	 0.3982	
10	 Skew	 1483-1537	vs.	1176-1242	 0.3937	
11	 Centroid	 1020-1115	vs.	1483-1537	 0.3918	
12	 Centroid	 1483-1537	vs.	1020-1115	 0.3914	
13	 RMSN	 1599-1635	vs.	1483-1537	 0.3866	
14	 RMSN	 1020-1115	vs.	1176-1242	 0.3811	
15	 Centroid	 1020-1115	 0.3708	
16	 Centroid	 1020-1115	vs.	1641-1693	 0.3700	
17	 Centroid	 1641-1693	vs.	1020-1115	 0.3697	
18	 RMSN	 1483-1537	vs.	1543-1585	 0.3667	
19	 Peak	Amplitude	 1483-1537	vs.	1020-1115	 0.3614	
20	 RMSN	 1020-1115	vs.	1483-1537	 0.3478	
21	 Peak	Amplitude	 1020-1115	vs.	1176-1242	 0.3473	
22	 Centroid	 1176-1242	vs.	1020-1115	 0.3445	
23	 Centroid	 1020-1115	vs.	1176-1242	 0.3443	
24	 Skew	 1543-1585	vs.	1483-1537	 0.3350	
25	 Skew	 1483-1537	 0.3325	
26	 Centroid	 1020-1115	vs.	1599-1635	 0.3313	
27	 Centroid	 1599-1635	vs.	1020-1115	 0.3312	
28	 Skew	 1020-1115	 0.3273	
29	 Skew	 1020-1115	vs.	1483-1537	 0.3258	
30	 Skew	 1020-1115	vs.	1641-1693	 0.3255	

Table	6.8	-	Top	30	spectral	features	(type	and	wavenumber)	selected	by	variable	
ranking	from	the	cancer	vs.	non-cancer	stratum	
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	 Figure	 6.12	 -	 6.14	 displays	 the	 histograms	 showing	 the	 sensitivity	 and	

specificities	 achieved	 when	 analysing	 525	 iterations	 of	 a	 130	 feature	 fed	 SVM	

(Figure	6.18),	30	feature	fed	SVM	(Figure	6.19)	and	2	feature	fed	SVM	(Figure	6.20)	

for	the	cancer	vs.	non-cancer	stratum.		

The	 range	 of	 sensitivities	 and	 specificities	 from	 FE-SVM	 achieved	 higher	

percentages	 and	 occurred	 over	 a	 smaller	 range,	 when	 compared	 to	 the	 SVM	

analysis	of	data	from	the	full	spectral	fingerprint	region	(shown	in	Figures	6.5	-	6.6).	

Sensitivities	 and	 specificities	 achieved	 for	 the	 cancer	 vs.	 non-cancer	 dataset	 from	

FE-SVM	range	from:	

• 82	–	98	%	and	66	–	97	%	respectively	for	the	130	feature	fed	SVM;	

• 81	–	98	%	and	66	–	95	%	for	the	top	30	feature	fed	SVM	respectively;	

• 81	–	96	%	and	51	–	95	%	for	the	top	2	feature	fed	SVM	respectively;	

compared	 to	 81	 –	 97	%	 and	 51	 –95	%	 respectively	 for	 the	 cancer	 vs.	 non-cancer	

fingerprint	region	SVM	shown	in	section	6.6.	

	 The	 range	 of	 sensitivities	 and	 specificities	 was	 reduced	 with	 the	 use	 of	

feature	 extraction,	 thus	 the	 FE-fed	 SVM	 method	 improved	 the	 ability	 of	 disease	

identification	 with	 ATR-FTIR	 spectroscopy.	 The	 results	 obtained	 from	 fingerprint	

region	 analysis	 vs.	 the	 top	 2	 features	 FE-SVM	 are	 comparable	 to	 one	 another.	

Including	all	130	features	allows	for	greater	classification	of	blind	patients.	
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Figure	6.12	 -	Histogram	showing	the	range	of	sensitivities	and	specificities	over	525	

iterations	 from	 the	 top	 130	 spectral	 features	 of	 the	 cancer	 vs.	 non-cancer	 dataset	

(from	Table	6.9).	
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Figure	 6.13	 -	 Histogram	 showing	 the	 range	 of	 sensitivities	 and	 specificities	 over	

525	 iterations	 from	 the	 top	 30	 spectral	 features	 of	 the	 cancer	 vs.	 non-cancer	

dataset	(from	Table	6.9).	
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The	mode	sensitivity	and	specificity	for	the	full	fingerprint	region	SVM	of	the	

cancer	vs.	non-cancer	stratum	was	89.4	%	and	78.0	%	respectively,	compared	to	the	

mode	 sensitivities	 and	 specificities	of	 92.3	%	and	80.5	%	when	using	130	 spectral	

features,	thus	FE-SVM	improved	upon	the	initial	results	within	this	chapter.		

The	top	30	features	achieved	91.3	%	and	82.9	%	when	using	30	features	and	

89.4	%	and	70.7	%	when	using	2	spectral	features.	To	best	present	the	results	of	the	

FE-SVM	 analysis,	 Table	 6.9	 displays	 the	 results	 of	 the	 top	 130,	 top	 30	 and	 top	 2	

spectral	features	of	the	cancer	vs.	non-cancer	dataset.	

	

Figure	6.14	 -	Histogram	showing	the	range	of	sensitivities	and	specificities	over	

525	 iterations	 from	 the	 top	 2	 spectral	 features	 of	 the	 cancer	 vs.	 non-cancer	

dataset	(from	Table	6.9).	
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The	mean	sensitivity	and	specificity	for	the	feature	extracted	models	follows	

the	 same	 trend	 with	 all	 130	 features	 achieving	 91.5	 %	 sensitivity	 and	 83.0	 %	

specificity,	 30	 features	 achieving	 90.6	 %	 sensitivity	 and	 81.9	 %	 specificity	 and	 2	

features	 achieving	88.7	%	 sensitivity	 and	77.7	%	 specificity.	Whole	 serum	analysis	

with	all	130	relevant	spectral	features	achieved	the	greatest	diagnostic	ability.	The	

mean	sensitivities	and	specificities	shown	on	table	6.9	show	a	decreasing	trend	due	

to	the	removal	of	features	from	the	analysis.	

The	mean	sensitivities	and	specificities	achieved	using	full	fingerprint	region	

SVM	are	similar	to	those	that	can	be	achieved	using	the	top	2	spectral	features	of	

89.8	%	sensitivity	and	77.5	%	specificity.	The	 top	2	spectral	 features	 that	describe	

the	 differences	 between	 the	 cancer	 vs.	 non-cancer	 disease	 groupings	 are	 RMS	

energy	of	C-OH	groups	(10),	PO2
-,	RNA/DNA	(8)	(1176-1242	cm-1)	vs.	vibrations	PO2

-

Model	 Optimum	
Sens	(%)	

Optimum	
Spec	(%)	

Mean	
Sens	(%)	

Mean	
Spec	(%)	

Mode	
Sens	(%)	

Mode	
Spec	(%)	

All	
130	Features	 98.1	 97.6	 91.5	 83.0	 92.3	 80.5	

Top	30	
Features	 98.1	 95.1	 90.6	 81.9	 91.3	 82.9	

Top	2	
Features	 96.2	 95.1	 88.7	 77.7	 89.4	 70.7	

Table	 6.9	 -	 Optimum,	 mean	 and	 mode	 sensitivities	 and	 specificities	 for	 the	

cancer	vs.	non-cancer	stratum	using	130,	30	and	2	spectral	features	
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stretch	of	nucleic	acids	(8),	RNA/DNA	(8)	(1020-1115	cm-1)	and	the	skew	of	the	C-OH	

groups	 of	 lipids/proteins,	 DNA/RNA	 (1176-1242	 cm-1)	 vs.	 CH2	 of	 lipids/proteins	

(1483-1537	 cm-1)	 (8),	 thus	 the	 ability	 of	 just	 2	 spectral	 feature	 descriptors	 is	 as	

powerful	 as	 the	 full	 fingerprint	 region	 analysis.	 As	 discussed	 in	 6.7,	 during	 the	

process	of	 proliferation	 cells	 uptake	 glycogen	and	amino	acids	 to	produce	nucleic	

acids	 for	new	cells	growth,	 thus	 the	metabolic	needs	of	 the	cells	are	altered	 (15).	

The	features	for	cancer	vs.	non-cancer	described	within	this	chapter	represent	the	

biological	 processes	 of	 cancer	 progression.	 For	 example,	 the	 C-OH	 group	 of	

lipids/proteins	are	related	to	the	abundance	of	lipid	production	as	a	consequence	of	

cancer	 progression.	 Likewise,	 the	 PO2
-	 stretching	 of	 nucleic	 acids	 is	 related	 to	

tumour	development.	During	the	progression	of	a	tumour,	the	tumour	cells	release	

their	 nucleic	 acids	 into	 the	 blood	 stream;	 hence	 the	 biochemistry	 of	 tissue	 is	

reflected	 in	 the	 blood	 which	 can	 be	 examined	 using	 ATR-FTIR	 spectroscopy.	 The	

process	 of	 the	 tumour	 cells	 releasing	 their	 cellular	 components	 into	 the	 blood	

circulation	 occurs	 by	 apoptosis	 and	 necrotic	 cell	 death,	 resulting	 in	 high	 levels	 of	

circulating	DNA	and	RNA	in	blood	samples	of	patients	with	cancer	(21).	

	

6.8	 Discussion		

The	results	presented	 in	this	chapter	were	obtained	via	525	 iterations	with	

different	 training	and	blind	spectral	datasets	 (split	1/3	blind	and	2/3	 training	on	a	

patient	basis)	 to	assess	 the	power	of	 the	RBF-SVM	analysis.	The	FE	portion	of	 this	

chapter	 shows	 that	 greater	 sensitivities	 and	 specificities	 are	 achieved	 with	 the	
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(whole	 serum)	 cancer	 vs.	 non-cancer	 dataset	 during	 FE-SVM.	 Fingerprint	 region	

FE-SVM	 sensitivities	 and	 specificities	 of	 the	 cancer	 vs.	 non-cancer	 dataset	 range	

from	81-97	%	and	51-95	%	respectively,	compared	to	the	increased	sensitivities	and	

specificities	obtained	with	130	features	of	82-98	%	and	66-97	%	respectively.	

The	 organ	 of	 origin	 in	 metastatic	 brain	 tumour	 patients	 has	 also	 been	

investigated	 via	 525	 fingerprint	 region	 SVM	 iterations.	 The	 optimum,	 mode	 and	

mean	sensitivities	and	specificities	observed	for	all	strata	range	from	48.5	-	100	%	

respectively.		

Features	are	ranked	in	order	of	how	representative	they	are	of	the	original	

data,	thus	a	reduction	in	the	diagnostic	ability	from	2	spectral	features,	compared	to	

all	 130	 or	 top	 30,	 is	 not	 surprising	 due	 to	 the	 reduction	 in	 spectral	 information	

available	 during	 feature	 fed	 SVM.	 The	 features	 for	 the	 cancer	 vs.	 non-cancer	

dataset,	 highlighted	 by	 variable	 ranking,	 represent	 the	 biological	 processes	 of	

cancer	progression	(15).	

The	ability	to	select	and	rank	spectral	features	enables	the	extraction	of	data	

that	 describes	 the	 differences	 within	 the	 disease	 groupings	 without	 addition	 of	

added	 variance	 based	 upon	 other	 contributing	 factors	 from	 the	 patients	 and	

enables	biochemical	differences,	via	spectral	peaks,	 to	be	observed	whereas	a	 full	

spectral	SVM	does	not.	

In	addition,	 the	selection	of	spectral	 features,	based	upon	the	collection	of	

the	 full	 FTIR	 spectrum,	 allows	 for	 targeting	 of	 the	 most	 discriminatory	 regions	

during	a	sparse	frequency	collection	approach	(22)	and	reduction	in	the	processing	
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power	 required	 for	 classification	 of	 disease	 states	 providing	 a	 quicker	 and	 more	

efficient	spectroscopic	diagnostic	process.	
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Chapter	7	

Overall	Conclusions	

7.1 Conclusion	

The	 early	 diagnosis	 of	 brain	 cancer	 is	 widely	 understood	 to	 improve	

mortality	 and	 morbidity	 rates	 via	 the	 early	 intervention	 of	 therapy,	 hence	 the	

development	 of	 this	 rapid	 spectroscopic	 diagnostic	 regime.	 The	 development	 of	

ATR-FTIR	 spectroscopy	 as	 a	 technique	 for	 the	 rapid	 diagnosis	 of	 primary	 and	

metastatic	brain	tumours	has	been	presented	within	this	thesis;	in	addition,	to	the	

best	 of	 my	 knowledge,	 this	 is	 the	 largest	 study	 on	 mid-infrared	 spectroscopy	 in	

relation	 to	 cancer	 research	with	a	433	patient	 cohort	 consisting	of	3897	ATR-FTIR	

spectra.		

The	 diagnostic	 methodology	 discussed	 throughout	 this	 thesis	 has	 the	

potential	 to	 be	 intertwined	 with	 current	 healthcare	 protocols	 to	 benefit	 patient	

outcomes	through	early	cancer	diagnosis.	Blood	is	routinely	collected	from	patients	

for	 diagnostic	 and	 monitoring	 purposes,	 creating	 no	 requirement	 for	 dedicated	

sample	 collection	 for	 objective	 spectral	 diagnoses.	 Whole	 serum	 ATR-FTIR	

spectroscopy	 involves	 no	 sample	 preparation	 and	 is	 cost-effective	 due	 to	 the	

minimal	use	of	consumables	(to	remove	the	dried	serum	film	from	IRE),	thus	it	is	a	

beneficial	diagnostic	tool	with	little	financial	burden	on	healthcare	budgets.	A	multi-

ATR	crystal	device	created	for	high-throughput	analysis	would	allow	the	regime	to	

be	more	practical	for	use	in	a	clinical	setting	rather	than	analysing	each	patient	one-
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by-one.	 Figure	 1.12	 shows	 a	 schematic	 showing	 the	 potential	 use	 of	 ATR-FTIR	

spectroscopy	in	the	clinical	setting.	

	

	

	

	

	

	

The	 initial	 aim	 of	 this	 project	 was	 to	 determine	 whether	 cancer	 could	 be	

differentiated	from	non-cancerous	state	serum	samples.	Prior	to	the	spectral	study	

described	 in	 Chapter	 4,	 our	 collaborator	 at	 the	 University	 of	 Central	 Lancashire	

(Preston,	 UK)	 investigated	 the	 biomolecules	 which	 allow	 for	 the	 discrimination	

between	 GBM	 and	 non-cancer	 patient	 serum	 samples.	 Follistatin	 achieved	 the	

highest	 sensitivity	 and	 specificity,	 although	 angiopoietin,	 interleukin-8	 and	 leptin	

were	among	the	biomolecules	which	allowed	for	discrimination	between	cancer	and	

non-cancer.	 The	 aforementioned	 biomolecules	 have	 various	 molecular	 weights,	

thus	it	was	decided	to	conduct	a	whole	(unfiltered)	serum	study	alongside	a	10	kDa	

filtrate	serum	sample	study	(derived	from	the	whole	sample)	to	investigate	whether	

improved	sensitivities	and	specificities	could	be	achieved	via	ATR-FTIR	spectroscopy.	

The	major	differences	between	the	spectra	acquired	from	whole	and	10	kDa	serum	

filtrate	samples	was	 the	presence	of	 the	Amide	 II	 (1637	cm-1)	and	 lipid	CH2	bands	

Figure	1.12	-	A	schematic	showing	the	potential	use	of	ATR-FTIR	spectroscopy	in	
a	clinical	setting.	Replicated	from	(1).	
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(1307	cm-1)	in	whole	serum	and	their	absence	in	the	filtrate	sample	spectra.	Patient	

level	sensitivities	and	specificities	for	whole	serum	were	87.5	and	100	%	and	for	10	

kDa	 serum	 filtrate	 78.9	 and	 88.9	 %	 respectively	 via	 ATR-FTIR.	Whole	 (unfiltered)	

serum	samples	achieved	greater	sensitivities	and	specificities	 in	comparison	to	the	

10	kDa	filtrate	serum	samples.	The	relatively	high	sensitivities	and	specificities	from	

the	 filtrate	 samples	 gave	 reason	 to	 indicate	 that	 sub-fraction	 biomolecular	

components	of	whole	serum	may	provide	significant	diagnostic	targets.	

An	 important	consideration	for	serum	analysis	via	ATR-FTIR	 is	the	drying	of	

the	 sample	 on	 the	 crystal	 allowing	 for	 intimate	 contact	 to	 occur.	 Following	 70	

repeated	drying	experiments,	ranging	from	0-32	minutes,	it	was	determined	that	8	

minutes	was	a	sufficient	length	of	time	for	drying	of	a	1	μl	spot	of	serum	at	ambient	

room	temperature.	

The	 existing	 patient	 spectral	 dataset	 was	 expanded	 upon	 to	 not	 only	

differentiate	 between	 cancer	 (GBM)	 vs.	 non-cancer,	 but	 to	 include	 low-grade	

patients	 (e.g.	 astrocytoma)	 to	 allow	 for	 brain	 tumour	 severities	 to	 be	determined	

(LGG	vs.	HGG	vs.	non-cancer)	via	serum	ATR-FTIR	spectroscopy.	This	portion	of	the	

project	included	low-grade	patients	and	further	sample	filtration	analysis.	All	whole	

serum	 samples	 were	 analysed	 along	 with	 their	 100	 kDa,	 10	 kDa	 and	 3	 kDa	

counterparts	to	determine	which	filtrate	fraction	allowed	for	optimal	brain	tumour	

severity	determination.	The	highest	patient-level	sensitivities	and	specificities	were	

achieved	from	whole	serum	with	a	general	decreasing	trend	occurring	from	100	kDa	

to	 3	 kDa	 filtrate	 samples.	 The	method	had	 shown	 the	 ability	 to	 diagnose	 gliomas	

from	whole	patient	serum	ATR-FTIR	spectroscopy	to	sensitivities	and	specificities	as	
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high	as	100	and	95.83	%	respectively.	The	 loadings	from	PCA	show	that	the	major	

peaks	 responsible	 for	 discrimination	 between	 non-cancer	 and	 LGG	 from	HGG	 are	

Amide	I,	Amide	II	and	C-O	stretching	of	DNA/RNA.	Again,	the	Amide	I	and	Amide	II	

bands	were	responsible	for	the	discrimination	of	LGG	from	non-cancer.	

Following	 the	 investigation	 into	 determining	 which	 fraction	 of	 serum	 was	

most	discriminatory	for	cancer	diagnoses,	the	research	project	was	expanded	to,	for	

the	 first	 time,	 detect	 cancer	 vs.	 non-cancer,	 glioma	 vs.	 meningioma,	 metastatic	

cancer	 vs.	 organ	 confined,	 brain	 cancer	 severity	 and	 the	 organ	 of	 origin	 of	

metastatic	disease	 from	whole	 serum	 samples.	 The	aforementioned	 list	 of	 clinical	

questions	 ranging	 from	 cancer	 vs.	 non-cancer	 to	metastatic	 disease	 origin	 can	 be	

determined	 using	 the	 same	 serum	 sample,	 thus	 enabling	 stratified	 diagnostics	

depending	upon	the	clinical	question	asked.	Chapter	6	demonstrates	the	successful	

discrimination	 of	 the	 discussed	 clinical	 questions	 with	 high	 sensitivities	 and	

specificities	 using	 the	 fingerprint	 region	 (1800-1000	 cm-1)	 of	 the	 collected	 spectra	

over	 525	 test	 and	 train	 set	 RBF-SVM	 iterations.	 Optimum	 sensitivities	 and	

specificities	between	80.0	and	100	%	were	achieved	for	all	strata.	

In	 addition,	 the	 FE	 performed	 in	 Chapter	 6	 identified	 the	 salient	 spectral	

information	for	the	cancer	vs.	non-cancer	model	which	allows	for	targeting	the	most	

discriminatory	 regions	 during	 spectral	 collection,	 thus	 reducing	 collection	 times.	

Chapter	6	examined	the	ability	of	FE	to	improve	our	diagnostic	ability	by	extracting	

discriminatory	 features	 of	 the	 original	 spectral	 data.	 Increased	 sensitivities	 and	

specificities	of	82-98	and	66-97	%	respectively	were	achieved	for	the	top	130	FE-fed	
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SVM	 compared	 to	 81-97	 %	 and	 51-95	 %	 respectively	 for	 the	 cancer	 vs.	 non-

cancerfingerprint	region	RBF-SVM.	

This	 thesis	 demonstrates	 the	 ability	 to	 reduce	 the	 time	 to	diagnosis	 based	

upon	a	relatively	non-invasive	diagnostic	test	that	would	provide	rapid	patient	entry	

to	the	clinical	process	(Figure	7.1),	profiling	of	at-risk	population	cohorts,	as	well	as	

enabling	close	clinical	follow-up	throughout	resulting	in	a	reduction	in	mortality	and	

morbidity	rates	whilst	increasing	the	efficiency	of	the	healthcare	system.	
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Chapter	8	

Potential	for	Future	Work	

8.1 Future	Work	

The	 direction	 for	 future	 biofluid/serum	 ATR-FTIR	 spectroscopy	 will	 move	

towards	the	development	of	a	multi-ATR	crystal	device	to	allow	for	high-throughput	

analysis	to	be	performed	in	a	clinical	setting.	Currently,	each	patient	serum	sample	

is	analysed	individually,	hence	the	practicality	of	a	one-by-one	diagnostic	regime	in	

a	clinical	environment	is	not	ideal.	

This	 thesis	 has	 focused	 on	 the	 development	 of	 ATR-FTIR	 spectroscopy	 for	

brain	tumour	diagnoses	via	blood	serum;	however,	the	regime	presented	within	this	

thesis	could	be	adapted	for	use	with	other	biofluids,	such	as	urine,	cerebral	spinal	

fluid	(CSF)	and	tears	etc.	Furthermore,	other	disease	targets	such	as	urinary	system	

tumours	or	renal	failure	could	be	investigated	using	patient	urine	samples.		

An	interesting	area	to	investigate,	having	real	clinical	relevance,	would	be	to	

develop	 the	 regime	 with	 patients	 biofluids	 obtained	 from	 those	 who	 only	 have	

breast,	 lung	 or	 skin	 cancers	 to	 predict	 the	 likelihood	 of	 them	 developing	 a	

metastatic	tumour	to	another	site	within	the	body.		

ATR-FTIR	spectrometers	are	available	in	hand-held	versions	allowing	for	the	

proposed	 regime	 to	 be	 used	 in	 the	 field	 or	 in	 situations	where	 a	 bench-top	 FTIR	

spectrometer	 is	 not	 available/appropriate.	 Future	 research	 is	 likely	 to	 involve	 the	
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use	of	these	hand-held	instruments	for	spectral	diagnoses	as	they	are	portable	and	

easily	translatable	into	the	clinic.		

The	 future	of	mid-infrared	 spectroscopy	and	 spectral	diagnosis	will	 include	

QCLs	 for	 discrete	 frequency	 collection	 of	 biological	 samples.	 QCLs	 have	 recently	

been	 integrated	within	 a	microscope	 allowing	 for	 simpler	 instrumentation.	 Faster	

spectral	collection	times	are	achieved	when	collecting	discrete	 target	wavelengths	

rather	than	collecting	the	more	time	consuming	full	IR	spectrum.	

Aiming	to	test	the	robustness	of	the	spectral	models	created	throughout	this	

PhD,	 towards	 the	 end	 of	 the	 project,	 161	 serum	 samples	 were	 obtained	 from	

patients	 with	 various	 grades	 of	 brain	 tumours	 and	 provided	 to	 us	 by	 our	

collaborator	at	Nottingham	City	University	Hospital	(NCUH),	UK.	All	received	serum	

samples	 were	 anonymised	 and	 the	 brain	 tumour	 grade	 of	 each	 sample	 was	

unknown.	 Spectral	 collection	 was	 performed	 using	 the	 same	 methods	 described	

throughout	 this	 thesis.	 The	 aim	 of	 this	 multi-centre	 collaboration	 was	 to	 receive	

serum	samples	obtained	from	patients	with	various	brain	tumour	grades	where	the	

site	of	analysis	was	uninformed	on	individual	patient	sample	diagnoses.	Due	to	time	

constraints,	the	collected	spectral	data	remains	to	be	analysed,	however,	the	goal	of	

the	analysis	was	to	determine	a	spectral	diagnosis	for	each	blind	serum	sample.	The	

spectral	 diagnoses	 for	 all	 patients	 were	 then	 to	 be	 reported	 back	 to	 NCUH	 for	

comparison	 against	 the	 patient’s	 histopathological	 diagnoses,	 allowing	 for	

sensitivities	 and	 specificities	 to	 be	 calculated	 representing	 our	 spectral	 diagnostic	

performance.	
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Appendix	1	

Blood	 sample	 patient	 demographics	 from	 samples	 used	 in	 Chapter	 4.	 Appendix	 2	
includes	 these	 patient	 numbers,	 along	 with	 all	 other	 patient	 information	 used	
throughout	this	thesis.	

	

Patient	Number	 Gender	
Age	at	Sample	
Collection	

Diagnosis	

572	 F	 26	 Non-Cancer	
575	 F	 67	 Non-Cancer	
576	 M	 81	 Non-Cancer	
579	 F	 61	 Non-Cancer	
580	 F	 80	 Non-Cancer	
582	 F	 74	 Non-Cancer	
583	 M	 39	 Non-Cancer	
585	 M	 34	 Non-Cancer	
586	 M	 60	 Non-Cancer	
587	 F	 65	 Non-Cancer	
589	 M	 45	 Non-Cancer	
591	 M	 85	 Non-Cancer	
592	 F	 67	 Non-Cancer	
593	 M	 84	 Non-Cancer	
594	 M	 57	 Non-Cancer	
595	 M	 39	 Non-Cancer	
598	 F	 68	 Non-Cancer	
600	 M	 68	 Non-Cancer	
603	 M	 87	 Non-Cancer	
606	 M	 37	 Non-Cancer	
607	 F	 56	 Non-Cancer	
608	 F	 47	 Non-Cancer	
609	 M	 55	 Non-Cancer	
610	 M	 57	 Non-Cancer	
616	 M	 65	 Non-Cancer	

11001	 M	 62	 Glioblastoma	multiforme	
11004	 M	 55	 Glioblastoma	multiforme	
11005	 M	 66	 Glioblastoma	multiforme	
11012	 M	 75	 Glioblastoma	multiforme	
11014	 M	 44	 Glioblastoma	multiforme	
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11026	 M	 73	 Glioblastoma	multiforme	
11028	 F	 65	 Glioblastoma	multiforme	
11029	 M	 66	 Glioblastoma	multiforme	
11030	 F	 50	 Glioblastoma	multiforme	
11032	 F	 50	 Glioblastoma	multiforme	
11034	 M	 58	 Glioblastoma	multiforme	
11050	 F	 72	 Glioblastoma	multiforme	
11053	 M	 62	 Glioblastoma	multiforme	
11057	 M	 41	 Glioblastoma	multiforme	
11073	 F	 63	 Glioblastoma	multiforme	
11094	 F	 44	 Glioblastoma	multiforme	
11097	 M	 45	 Glioblastoma	multiforme	
11101	 F	 69	 Glioblastoma	multiforme	
11120	 F	 51	 Glioblastoma	multiforme	
11121	 F	 79	 Glioblastoma	multiforme	
11123	 M	 70	 Glioblastoma	multiforme	
11124	 M	 75	 Glioblastoma	multiforme	
11137	 F	 66	 Glioblastoma	multiforme	
11142	 M	 76	 Glioblastoma	multiforme	
11145	 M	 55	 Glioblastoma	multiforme	
11154	 M	 67	 Glioblastoma	multiforme	
11155	 F	 70	 Glioblastoma	multiforme	
11156	 M	 57	 Glioblastoma	multiforme	
11163	 M	 68	 Glioblastoma	multiforme	
11181	 M	 68	 Glioblastoma	multiforme	
11188	 M	 70	 Glioblastoma	multiforme	
11197	 F	 61	 Glioblastoma	multiforme	
11205	 M	 73	 Glioblastoma	multiforme	
11212	 F	 65	 Glioblastoma	multiforme	
11268	 F	 74	 Glioblastoma	multiforme	
12009	 M	 50	 Glioblastoma	multiforme	
12012	 M	 25	 Glioblastoma	multiforme	
12014	 F	 64	 Glioblastoma	multiforme	
12019	 F	 39	 Glioblastoma	multiforme	
12025	 M	 41	 Glioblastoma	multiforme	
12028	 F	 72	 Glioblastoma	multiforme	
12030	 F	 69	 Glioblastoma	multiforme	
12032	 M	 64	 Glioblastoma	multiforme	
12042	 F	 55	 Glioblastoma	multiforme	
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12046	 F	 53	 Glioblastoma	multiforme	
12052	 M	 65	 Glioblastoma	multiforme	
12055	 M	 25	 Glioblastoma	multiforme	
12057	 M	 66	 Glioblastoma	multiforme	
12063	 M	 56	 Glioblastoma	multiforme	
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Appendix	2	

Expanded	patient	demographic	information	for	all	433	individual	patients.	

Patient	
Number	

Sex	
Patient	Age	
at	Sample	
Collection	

Diagnosis	

Non-Cancer	
Patients	 	 	 	
572	 F	 26	 Normal	
575	 F	 67	 Normal	
576	 M	 81	 Normal	
579	 F	 61	 Normal	
580	 F	 80	 Normal	
582	 F	 74	 Normal	
583	 M	 39	 Normal	
585	 M	 34	 Normal	
586	 M	 60	 Normal	
587	 F	 65	 Normal	
589	 M	 45	 Normal	
591	 M	 85	 Normal	
592	 F	 67	 Normal	
593	 M	 84	 Normal	
594	 M	 57	 Normal	
595	 M	 39	 Normal	
598	 F	 68	 Normal	
600	 M	 68	 Normal	
603	 M	 87	 Normal	
606	 M	 37	 Normal	
607	 F	 56	 Normal	
608	 F	 47	 Normal	
609	 M	 55	 Normal	
610	 M	 57	 Normal	
616	 M	 65	 Normal	
933	 M	 41	 Normal	
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1115	 M	 89	 Normal	
1116	 F	 64	 Normal	
1127	 F	 44	 Normal	
1128	 F	 43	 Normal	
1133	 M	 76	 Normal	
1136	 F	 72	 Normal	
1367	 F	 34	 Normal	
1368	 M	 46	 Normal	
1369	 F	 36	 Normal	
1370	 F	 52	 Normal	
1371	 F	 49	 Normal	
1372	 F	 41	 Normal	
1373	 F	 41	 Normal	
1374	 F	 40	 Normal	
1375	 M	 23	 Normal	
1376	 M	 53	 Normal	
1390	 M	 70	 Normal	
1391	 M	 71	 Normal	
1392	 M	 34	 Normal	
1393	 F	 71	 Normal	
1394	 M	 57	 Normal	
1395	 M	 66	 Normal	
1396	 M	 21	 Normal	
1397	 M	 32	 Normal	
1398	 M	 40	 Normal	
1399	 F	 24	 Normal	
1400	 M	 39	 Normal	
1401	 M	 65	 Normal	
1402	 F	 25	 Normal	
1403	 F	 67	 Normal	
1475	 M	 22	 Normal	
1476	 M	 41	 Normal	
1477	 F	 50	 Normal	
1478	 M	 47	 Normal	
1479	 M	 16	 Normal	
1480	 F	 39	 Normal	
1481	 F	 28	 Normal	



6	
	

1482	 M	 52	 Normal	
1483	 F	 53	 Normal	
1484	 M	 56	 Normal	
1485	 M	 51	 Normal	
1486	 M	 56	 Normal	
1487	 F	 53	 Normal	
1488	 M	 54	 Normal	
1489	 F	 49	 Normal	
1490	 F	 23	 Normal	
1491	 F	 31	 Normal	
1492	 M	 31	 Normal	
1493	 M	 24	 Normal	
1494	 M	 31	 Normal	
1495	 F	 33	 Normal	
1496	 F	 37	 Normal	
1497	 M	 47	 Normal	
1498	 F	 62	 Normal	
1499	 M	 unknown	 Normal	
1500	 F	 unknown	 Normal	
1501	 M	 49	 Normal	
1502	 M	 28	 Normal	
1503	 M	 27	 Normal	
1504	 M	 28	 Normal	
1505	 F	 32	 Normal	
1506	 F	 32	 Normal	
1507	 F	 58	 Normal	
1508	 F	 51	 Normal	
1509	 F	 24	 Normal	
1510	 M	 58	 Normal	

1511	
un-	

kno-wn	
57	 Normal	

1512	 M	 25	 Normal	
1513	 M	 56	 Normal	
1514	 F	 25	 Normal	
1515	 F	 57	 Normal	
1516	 F	 43	 Normal	
1517	 F	 51	 Normal	
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1518	 M	 32	 Normal	
1519	 F	 35	 Normal	
1520	 F	 27	 Normal	
1521	 M	 49	 Normal	
1522	 M	 unknown	 Normal	
1523	 M	 unknown	 Normal	
1524	 M	 54	 Normal	
1525	 F	 33	 Normal	
1526	 M	 29	 Normal	
1527	 F	 60	 Normal	
1528	 M	 52	 Normal	
1529	 F	 51	 Normal	

1530	
un-	

kno-wn	
24	 Normal	

1531	 M	 25	 Normal	
1533	 F	 53	 Normal	
1534	 M	 57	 Normal	
1535	 M	 29	 Normal	
1536	 M	 23	 Normal	
1537	 M	 24	 Normal	
1538	 F	 23	 Normal	
1539	 F	 50	 Normal	
1540	 F	 25	 Normal	
1541	 F	 50	 Normal	

Low-Grade	
Glioma	Patients	 	 	 	

932	 F	 59	 Oligoastrocytoma	
1043	 M	 21	 Ganglioglioma	
1044	 M	 29	 Infiltrating	edge	of	glioma	
1046	 F	 19	 LGG	diagnosis	only	
1047	 F	 54	 Ependymoma	
1048	 F	 35	 LGG	diagnosis	only	
1049	 M	 29	 LGG	diagnosis	only	
11006	 F	 34	 Astrocytoma	
11017	 M	 40	 Astrocytoma	
11020	 M	 50	 Astrocytoma	
11084	 F	 30	 Astrocytoma	
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11109	 M	 46	 Oligodendroglioma	
12001	 F	 60	 Astrocytoma	
12060	 F	 53	 Oligoastrocytoma	
12100	 M	 37	 Oligoastrocytoma	
12103	 F	 31	 Oligodendroglioma	
12118	 M	 20	 Astrocytoma	
12121	 M	 59	 Oligodendroglioma	
12136	 M	 41	 Oligodendroglioma	
12156	 F	 44	 Astrocytoma	
12164	 F	 20	 Astrocytoma	
12324	 M	 43	 Oligodendroglioma	
12329	 F	 28	 Oligoastrocytoma	

High-Grade	
Glioma	Patients	 	 	 	

935	 F	 61	 Glioblastoma	multiforme	
1110	 M	 33	 Glioblastoma	multiforme	
1138	 M	 40	 Oligoastrocytoma	III	
1150	 M	 57	 Gliosarcoma	IV	
1175	 M	 75	 Glioblastoma	multiforme	
1314	 M	 70	 Glioma	III	
11001	 M	 62	 Glioblastoma	multiforme	
11004	 M	 55	 Glioblastoma	multiforme	
11005	 M	 66	 Glioblastoma	multiforme	
11012	 M	 75	 Glioblastoma	multiforme	
11014	 M	 44	 Glioblastoma	multiforme	
11026	 M	 73	 Glioblastoma	multiforme	
11028	 F	 65	 Glioblastoma	multiforme	
11029	 M	 66	 Glioblastoma	multiforme	
11030	 F	 50	 Glioblastoma	multiforme	
11032	 F	 50	 Glioblastoma	multiforme	
11034	 M	 58	 Glioblastoma	multiforme	
11050	 F	 72	 Glioblastoma	multiforme	
11053	 M	 62	 Glioblastoma	multiforme	
11057	 M	 41	 Glioblastoma	multiforme	
11073	 F	 63	 Glioblastoma	multiforme	
11094	 F	 44	 Glioblastoma	multiforme	
11097	 M	 45	 Glioblastoma	multiforme	
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11101	 F	 69	 Glioblastoma	multiforme	
11120	 F	 51	 Glioblastoma	multiforme	
11121	 F	 79	 Glioblastoma	multiforme	
11123	 M	 70	 Glioblastoma	multiforme	
11124	 M	 75	 Glioblastoma	multiforme	
11137	 F	 66	 Glioblastoma	multiforme	
11142	 M	 76	 Glioblastoma	multiforme	
11145	 M	 55	 Glioblastoma	multiforme	

11154	 M	 67	 Glioblastoma	multiforme	

11155	 F	 70	 Glioblastoma	multiforme	
11156	 M	 57	 Glioblastoma	multiforme	
11163	 M	 68	 Glioblastoma	multiforme	
11181	 M	 68	 Glioblastoma	multiforme	
11188	 M	 70	 Glioblastoma	multiforme	
11197	 F	 61	 Glioblastoma	multiforme	
11205	 M	 73	 Glioblastoma	multiforme	
11212	 F	 65	 Glioblastoma	multiforme	
11268	 F	 74	 Glioblastoma	multiforme	
12009	 M	 50	 Glioblastoma	multiforme	
12012	 M	 25	 Glioblastoma	multiforme	
12014	 F	 64	 Glioblastoma	multiforme	
12019	 F	 39	 Glioblastoma	multiforme	
12025	 M	 41	 Glioblastoma	multiforme	

12028	 F	 72	 Glioblastoma	multiforme	

12030	 F	 69	 Glioblastoma	multiforme	
12032	 M	 64	 Glioblastoma	multiforme	
12042	 F	 55	 Glioblastoma	multiforme	
12046	 F	 53	 Glioblastoma	multiforme	
12052	 M	 65	 Glioblastoma	multiforme	
12055	 M	 25	 Glioblastoma	multiforme	
12057	 M	 66	 Glioblastoma	multiforme	
12063	 M	 56	 Glioblastoma	multiforme	
451	 M	 75	 Glioblastoma	multiforme	
499	 M	 73	 Glioblastoma	multiforme	
549	 F	 67	 Glioblastoma	multiforme	
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556	 F	 81	 Glioblastoma	multiforme	
615	 M	 68	 Glioblastoma	multiforme	

733	 M	 74	 Glioblastoma	multiforme	

763	 M	 67	 Glioblastoma	multiforme	
774	 M	 72	 Glioblastoma	multiforme	
769	 M	 70	 Glioblastoma	multiforme	

Meningioma	
Patients	 	 	 	
11066	 F	 68	 Meningioma	
11068	 F	 71	 Meningioma	
11070	 F	 56	 Meningioma	
11090	 F	 34	 Meningioma	
11111	 M	 60	 Meningioma	
11127	 F	 49	 Meningioma	
11173	 F	 69	 Meningioma	
11191	 M	 69	 Meningioma	
11215	 F	 44	 Meningioma	
11214	 F	 69	 Meningioma	
12043	 M	 49	 Meningioma	
12056	 F	 57	 Meningioma	
12058	 M	 73	 Meningioma	
12077	 F	 67	 Meningioma	
12085	 F	 58	 Meningioma	
12115	 F	 64	 Meningioma	
12127	 F	 61	 Meningioma	
12157	 F	 73	 Meningioma	
12163	 F	 66	 Meningioma	
12261	 F	 68	 Meningioma	
12326	 M	 39	 Meningioma	
12396	 F	 59	 Meningioma	
12418	 F	 67	 Meningioma	
12441	 M	 53	 Meningioma	
12449	 M	 51	 Meningioma	
12452	 M	 75	 Meningioma	
12470	 F	 62	 Meningioma	
13028	 F	 43	 Meningioma	
13039	 F	 35	 Meningioma	
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13059	 F	 50	 Meningioma	
13062	 F	 72	 Meningioma	
13066	 M	 37	 Meningioma	
13067	 F	 70	 Meningioma	
13077	 F	 41	 Meningioma	
13080	 F	 44	 Meningioma	
13089	 F	 59	 Meningioma	
13090	 F	 48	 Meningioma	
13095	 F	 27	 Meningioma	
13099	 F	 37	 Meningioma	
13112	 M	 64	 Meningioma	
13121	 M	 78	 Meningioma	
13126	 F	 35	 Meningioma	
13133	 F	 78	 Meningioma	
13140	 M	 24	 Meningioma	
13158	 M	 44	 Meningioma	
13162	 F	 48	 Meningioma	
13212	 F	 66	 Meningioma	

Metastatic	
Patients	 	 	

Organ	of	Origin	

358	 M	 74	 Melanoma	
456	 M	 70	 Renal	
509	 M	 80	 Melanoma	
517	 F	 54	 Lung	
553	 F	 72	 Renal	
560	 F	 43	 Breast	
562	 F	 57	 Lung	
567	 F	 63	 Melanoma	
666	 F	 61	 Lung	
694	 M	 59	 Lung	
697	 F	 56	 Renal	
700	 F	 50	 Colorectal	
712	 F	 39	 Breast	
722	 F	 63	 Breast	
725	 F	 39	 Breast	
745	 M	 50	 Lung	
756	 F	 54	 Breast	
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795	 F	 58	 Bowel	
827	 F	 55	 Breast	
837	 F	 68	 Lung	
841	 F	 36	 Melanoma	
847	 M	 63	 Lung	
853	 F	 55	 Bowel	
865	 F	 63	 Lung	
866	 M	 82	 Lung	
884	 F	 65	 Lung	
888	 M	 63	 Colorectal	
893	 M	 75	 Lung	
901	 M	 63	 Melanoma	
912	 F	 50	 Breast	
943	 F	 64	 Breast	
947	 F	 64	 Lung	
952	 M	 58	 Lung	
972	 F	 50	 Breast	
1001	 F	 67	 Lung	
1011	 F	 68	 Lung	
1012	 F	 52	 Breast	
1025	 F	 77	 Rectal	
1031	 M	 65	 Lung	
1040	 F	 51	 Breast	
1041	 M	 59	 Renal	
1053	 M	 53	 Lung	
1056	 F	 54	 Melanoma	
1057	 M	 63	 Lung	
1060	 M	 63	 Lung	
1070	 M	 71	 Lung	
1081	 M	 67	 Melanoma	
1082	 M	 71	 Lung	
1092	 M	 63	 Lung	
1103	 F	 39	 Lung	
1111	 M	 63	 Melanoma	
1113	 F	 69	 Lung	
1117	 F	 75	 Lung	
1144	 F	 67	 Breast	
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1148	 F	 67	 Breast	
1149	 M	 53	 Bowel	
1158	 F	 55	 Breast	
1184	 F	 59	 Lung	
1311	 F	 74	 Lung	
1326	 M	 73	 Renal	
1327	 M	 55	 Renal	
1330	 F	 77	 Lung	
1338	 F	 71	 Lung	
1348	 F	 81	 Lung	
1354	 F	 40	 Lung	
1382	 F	 44	 Breast	
1431	 M	 54	 Melanoma	
1438	 F	 80	 Lung	
1443	 F	 52	 Breast	
11011	 F	 42	 Melanoma	

11019	 M	 59	
Non-small	cell	lung	cancer	
(NSCLC)	Adenocarcinoma	

11027	 F	 64	 Breast	
11037	 M	 67	 NSCLCAdenocarcinoma	
11043	 F	 59	 Lung	
11047	 F	 67	 Lung	
11049	 M	 59	 NSCLC	Squamous	cell	
11052	 F	 79	 NSCLC	Adenocarcinoma	
11054	 F	 61	 NSCLC	Adenocarcinoma	

11059	 M	 68	
Unknown	primary,	brain	

metastasis	is	
adenocarcinoma	

11075	 F	 74	 Melanoma	
11076	 F	 60	 Lung	
11080	 F	 29	 Colon	
11087	 M	 71	 NSCLC	Adenocarcinoma	

11089	 M	 73	
NSCLC,	brain	metastasis	is	
large	cell	neuroendocrine	

11103	 F	 64	 Ovarian	
11104	 M	 65	 Renal	
11108	 F	 55	 Breast	
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11110	 M	 66	 NSCLC	
11146	 M	 59	 NSCLC	Adenocarcinoma	
11152	 F	 44	 Breast	
11161	 M	 64	 NSCLC	Adenocarcinoma	
11164	 F	 25	 Melanoma	
11187	 F	 50	 Adenocarcinoma	bowel	
11193	 M	 41	 Melanoma	
11213	 F	 60	 NSCLC	Adenocarcinoma	
12011	 M	 62	 Renal	
12037	 F	 52	 Lung	
12041	 F	 64	 NSCLC	Adenocarcinoma	
12044	 F	 36	 Melanoma	
12051	 F	 48	 Breast	
12071	 M	 49	 Melanoma	
12074	 F	 76	 Breast	
12098	 F	 44	 Breast	
12104	 F	 59	 NSCLC	Adenocarcinoma	
12133	 M	 56	 NSCLC	Adenocarcinoma	
12135	 F	 27	 Breast	
12138	 F	 44	 Breast	
12145	 F	 64	 NSCLC	Adenocarcinoma	
12148	 M	 65	 Renal	
12149	 M	 56	 NSCLC	Adenocarcinoma	
12158	 F	 73	 NSCLC	Adenocarcinoma	
12160	 F	 63	 Breast	
12166	 F	 74	 NSCLC	Adenocarcinoma	
12179	 F	 70	 NSCLC	Adenocarcinoma	
12180	 F	 41	 Ovarian	
12212	 M	 65	 NSCLC	Adenocarcinoma	
12262	 F	 67	 NSCLC	Adenocarcinoma	
12264	 F	 69	 NSCLC	Adenocarcinoma	
12313	 M	 65	 Bowel	
12321	 F	 39	 Breast	
12381	 F	 65	 Renal	
12382	 F	 58	 NSCLC	Adenocarcinoma	
12385	 F	 66	 NSCLC	Adenocarcinoma	
12397	 F	 62	 Renal	



15	
	

12403	 M	 66	 Melanoma	
12416	 F	 78	 Lung	
12438	 F	 40	 Breast	
12448	 F	 52	 Breast	
12460	 M	 53	 NSCLC	Adenocarcinoma	
13010	 F	 65	 NSCLC	Adenocarcinoma	
13022	 F	 58	 Breast	
13035	 F	 39	 Melanoma	
13042	 F	 44	 Melanoma	
13050	 F	 66	 NSCLC	Adenocarcinoma	
13051	 F	 53	 Melanoma	
13060	 M	 74	 NSCLC	Adenocarcinoma	
13065	 M	 58	 Colon	
13072	 M	 70	 Melanoma	
13075	 F	 49	 Breast	
13079	 F	 66	 NSCLC	Adenocarcinoma	
13101	 M	 26	 Testicular	
13107	 M	 66	 NSCLC	Adenocarcinoma	
13110	 F	 44	 Breast	
13113	 M	 66	 Lung	
13130	 F	 57	 Breast	
13176	 M	 67	 Melanoma	
13196	 M	 60	 NSCLC	Adenocarcinoma	
13218	 F	 39	 Breast	

13222	 F	 unknown	
Non-small	cell	lung	cancer	

(NSCLC)	
13226	 F	 66	 NSCLC	Adenocarcinoma	
13244	 F	 60	 NSCLC	Adenocarcinoma	
13245	 F	 62	 Endomaterial	
13272	 M	 75	 Melanoma	
13276	 F	 67	 NSCLC	Adenocarcinoma	
13281	 M	 66	 NSCLC	Adenocarcinoma	
13288	 M	 68	 NSCLC	Adenocarcinoma	
13302	 F	 35	 Melanoma	
13305	 M	 73	 Melanoma	
13306	 F	 57	 Breast	
13311	 F	 53	 Lung	
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13326	 M	 46	 Lung	
13401	 M	 68	 Lung	
13405	 F	 73	 Lung	
13426	 F	 39	 Breast	

13431	 M	 72	
Large-cell	

Neuroendrocrine	(Lung)	
13492	 M	 68	 Lung	
13510	 F	 72	 Colon	
13624	 F	 69	 Lung	
13626	 F	 59	 Lung	
13666	 M	 76	 Lung	(Atypical	Carcinoid)	
13667	 M	 38	 NSCLC	Adenocarcinoma	
13668	 M	 63	 NSCLC	Adenocarcinoma	

13669	 M	 69	
Metastatic	carcinoma	

from	an	unknown	primary	
13670	 F	 49	 Breast	
13671	 M	 53	 Renal	
13672	 M	 57	 Melanoma	

13673	 M	 42	
Papillary	Carcinoma	
Metastasis	(Renal)	
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Appendix	3	

All	130	spectral	features	of	the	cancer	vs.	non-cancer	dataset	acquired	by	the	
SpecToolbox	

FE	
Number	 Type	 Wavenumber	(cm-1)	 FE	Score	

1	 RMSN	 1176-1242	vs.	1020-1115	 0.4512	
2	 Skew	 1176-1242	vs.	1483-1537	 0.4376	
3	 Peak	Amplitude	 1176-1242	vs.	1020-1115	 0.4292	
4	 RMSN	 1483-1537	vs.	1020-1115	 0.4288	
5	 RMSN	 1483-1537	vs.	1599-1635	 0.4163	
6	 Skew	 1599-1635	vs.	1483-1537	 0.4141	
7	 RMSN	 1483-1537	 0.4032	
8	 Centroid	 1020-1115	vs.	1543-1585	 0.3985	
9	 Centroid	 1543-1585	vs.	1020-1115	 0.3982	
10	 Skew	 1483-1537	vs.	1176-1242	 0.3937	
11	 Centroid	 1020-1115	vs.	1483-1537	 0.3918	
12	 Centroid	 1483-1537	vs.	1020-1115	 0.3914	

13	 RMSN	 1599-1635	vs.	1483-1537	 0.3866	

14	 RMSN	 1020-1115	vs.	1176-1242	 0.3811	
15	 Centroid	 1020-1115	 0.3708	
16	 Centroid	 1020-1115	vs.	1641-1693	 0.3700	
17	 Centroid	 1641-1693	vs.	1020-1115	 0.3697	
18	 RMSN	 1483-1537	vs.	1543-1585	 0.3667	
19	 Peak	Amplitude	 1483-1537	vs.	1020-1115	 0.3614	
20	 RMSN	 1020-1115	vs.	1483-1537	 0.3478	
21	 Peak	Amplitude	 1020-1115	vs.	1176-1242	 0.3473	
22	 Centroid	 1176-1242	vs.	1020-1115	 0.3445	
23	 Centroid	 1020-1115	vs.	1176-1242	 0.3443	
24	 Skew	 1543-1585	vs.	1483-1537	 0.3350	
25	 Skew	 1483-1537	 0.3325	
26	 Centroid	 1020-1115	vs.	1599-1635	 0.3313	
27	 Centroid	 1599-1635	vs.	1020-1115	 0.3312	
28	 Skew	 1020-1115	 0.3273	
29	 Skew	 1020-1115	vs.	1483-1537	 0.3258	

Table	 6.9	 -	 All	 130	 spectral	 features	 (type	 and	 wavenumber)	 selected	 by	
variable	ranking	from	the	cancer	vs.	non-cancer	stratum	
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30	 Skew	 1020-1115	vs.	1641-1693	 0.3255	
31	 Peak	Amplitude	 1543-1585	vs.	1020-1115	 0.3243	
32	 Skew	 1641-1693	vs.	1483-1537	 0.3238	
33	 RMSN	 1543-1585	vs.	1483-1537	 0.3233	
34	 Peak	Amplitude	 1483-1537	vs.	1543-1585	 0.3226	
35	 Skew	 1020-1115	vs.	1543-1585	 0.3221	
36	 RMSN	 1020-1115	 0.3129	
37	 Skew	 1020-1115	vs.	1176-1242	 0.3117	
38	 Peak	Amplitude	 1599-1635	vs.	1020-1115	 0.3102	
39	 Peak	Amplitude	 1543-1585	vs.	1483-1537	 0.3098	
40	 Centroid	 1599-1635	vs.	1483-1537	 0.3062	
41	 Centroid	 1483-1537	vs.	1599-1635	 0.3061	
42	 Peak	Amplitude	 1020-1115	vs.	1483-1537	 0.3008	
43	 RMSN	 1599-1635	vs.	1020-1115	 0.2916	
44	 Peak	Amplitude	 1641-1693	vs.	1020-1115	 0.2871	
45	 Peak	Amplitude	 1020-1115	vs.	1543-1585	 0.2852	
46	 Peak	Amplitude	 1020-1115	 0.2788	
47	 RMSN	 1020	-1115	vs.	1641-1693	 0.2783	
48	 Peak	Amplitude	 1020	-1115	vs.	1641-1693	 0.2783	
49	 RMSN	 1543-1585	vs.	1020-1115	 0.2777	
50	 Peak	Amplitude	 1020	-1115	vs.	1599-1635	 0.2772	
51	 RMSN	 1020	-1115	vs.1543-1585	 0.2688	
52	 RMSN	 1020	-1115	vs.	1599-1635	 0.2640	
53	 Centroid	 1599-1635	 0.2624	
54	 RMSN	 1641-1693	vs.	1020	-1115	 0.2600	
55	 Skew	 1483-1537	vs.	1543-1585	 0.2541	
56	 Centroid	 1543-1585	vs.	1599-1635	 0.2498	
57	 Centroid	 1599-1635	vs.	1543-1585	 0.2498	
58	 Centroid	 1543-1585	vs.	1641-1693	 0.2493	
59	 Centroid	 1641-1693	vs.1543-1585	 0.2493	
60	 RMSN	 1176-1242	vs.	1483-1537	 0.2466	
61	 RMSN	 1483-1537	vs.	1176-1424	 0.2432	
62	 Skew	 1483-1537	vs.	1641-1693	 0.2405	
63	 Skew	 1483-1537	vs.	1599-1635	 0.2228	
64	 Centroid	 1543-1585	 0.2212	
65	 RMSN	 1483-1537	vs.	1641-1693	 0.1827	
66	 Skew	 1020-1115	vs.	1599-1635	 0.1826	
67	 Kurtosis	 1599-1635	vs.	1176-1242	 0.1795	
68	 Kurtosis	 1176-1242	vs.	1599-1635	 0.1733	
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69	 Centroid	 1641-1693	vs.	1599-1635	 0.1730	
70	 Centroid	 1599-1635	vs.	1641-1693	 0.1730	
71	 RMSN	 1543-1585	vs.	1641-1693	 0.1719	
72	 Peak	Amplitude	 1483-1537	vs.	1599-1635	 0.1648	
73	 Kurtosis	 1483-1537	vs.	1176-1242	 0.1638	
74	 Peak	Amplitude	 1599-1635	vs.	1483-1537	 0.1596	
75	 Centroid	 1176-1242	vs.	1599-1635	 0.1570	
76	 Centroid	 1599-1635	vs.	1176-1242	 0.1568	
77	 Kurtosis	 1599-1635	vs.	1483-1537	 0.1558	
78	 RMSN	 1641-1693	vs.1543-1585	 0.1557	
79	 Centroid	 1641-1693	vs.1483-1537	 0.1533	
80	 Centroid	 1483-1537	vs.	1641-1693	 0.1533	
81	 Peak	Frequency	 1483-1537	 0.1525	
82	 Centroid	 1176-1242	vs.	1483-1537	 0.1484	
83	 Centroid	 1483-1537	vs.	1176-1242	 0.1483	
84	 Kurtosis	 1483-1537	 0.1479	
85	 Centroid	 1483-1537	 0.1400	
86	 RMSN	 1641-1693	vs.	1483-1537	 0.1372	
87	 Kurtosis	 1543-1585	vs.	1176-1242	 0.1341	
88	 Peak	Frequency	 1020-1115	vs.	1483-1537	 0.1266	
89	 Peak	Amplitude	 1176-1242	vs.	1483-1537	 0.1251	
90	 RMSN	 1599-1635	vs.	1641-1693	 0.1248	
91	 Kurtosis	 1543-1585	 0.1228	
92	 Centroid	 1176-1242	vs.	1543-1585	 0.1221	
93	 Centroid	 1543-1585	vs.	1176-1242	 0.1221	
94	 Peak	Frequency	 1020-1115	vs.	1543-1585	 0.1213	
95	 Peak	Frequency	 1020-1115	 0.1201	
96	 Kurtosis	 1176-1242	vs.	1543-1585	 0.1173	
97	 Peak	Frequency	 1020-1115	vs.	1599-1635	 0.1122	
98	 Kurtosis	 1641-1693	vs.	1176-1242	 0.1115	
99	 Peak	Amplitude	 1483-1537	vs.	1176-1242	 0.1090	
100	 Peak	Frequency	 1599-1635	vs.	1483-1537	 0.1073	
101	 Kurtosis	 1543-1585	vs.	1483-1537	 0.1072	
102	 RMSN	 1641-1693	vs.	1599-1635	 0.1061	
103	 Kurtosis	 1176-1242	vs.	1641-1693	 0.1057	
104	 Kurtosis	 1641-1693	vs.	1543-1585	 0.1033	
105	 Kurtosis	 1641-1693	 0.1024	
106	 Kurtosis	 1641-1693	vs.	1483-1537	 0.0978	
107	 Kurtosis	 1176-1242	 0.0969	
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108	 Peak	Frequency	 1483-1537	vs.	1020-1115	 0.0961	
109	 Peak	Frequency	 1543-1585	vs.	1020-1115	 0.09574	
110	 Peak	Frequency	 1599-1635	vs.	1020-1115	 0.0950	
111	 Peak	Frequency	 1176-1242	vs.	1020-1115	 0.0946	
112	 Peak	Frequency	 1483-1537	vs.	1599-1635	 0.0944	
113	 Kurtosis	 1483-1537	vs.	1641-1693	 0.0927	
114	 Peak	Frequency	 1641-1693	vs.	1020-1115	 0.0883	
115	 RMSN	 1543-1585	 0.0878	
116	 Kurtosis	 1020-1115	vs.	1543-1585	 0.0862	
117	 Skew	 1599-1635	vs.	1176-1242	 0.0851	
118	 Peak	Amplitude	 1483-1537	 0.0805	
119	 Peak	Amplitude	 1483-1537	vs.	1641-1693	 0.0789	
120	 RMSN	 1599-1635	 0.0755	
121	 RMSN	 1641-1693	 0.0754	
122	 Kurtosis	 1020-1115	vs.	1483-1537	 0.0712	
123	 Peak	Amplitude	 1641-1693	vs.	1483-1537	 0.0695	
124	 Kurtosis	 1020-1115	vs.	1599-1635	 0.0676	
125	 Kurtosis	 1543-1585	vs.	1599-1635	 0.0662	
126	 Kurtosis	 1599-1635	vs.	1543-1585	 0.0647	
127	 Kurtosis	 1020-1115	vs.	1641-1693	 0.0637	
128	 Skew	 1599-1635	 0.0632	
129	 Kurtosis	 1543-1585	vs.1599-1635	 0.0631	
130	 Centroid	 1641-1693	 0.0615	
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Appendix	4	

Sensitivities	and	specificities	of	the	strata	discussed	in	Chapter	6	

	

	

	

	

	

	

	

	

	

Figure	1		-Histogram	showing	the	sensitivity	and	specificity	results	for	metastatic	

cancer	vs.	brain	cancer	for	525	iterations	of	SVM	conducted	using	the	fingerprint	

region	from	1800-1000	cm-1.	

	

	



22	
	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 2	 -	 Histogram	 showing	 the	 sensitivity	 and	 specificity	 results	 for	 glioma	 vs.	

meningioma	for	525	iterations	of	SVM	conducted	using	the	fingerprint	region	from	

1800-1000	cm-1.	
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Figure	 3	 -	 Histogram	 showing	 the	 sensitivity	 and	 specificity	 results	 for	 HGG	 vs.	

LGG	for	525	iterations	of	SVM	conducted	using	the	fingerprint	region	from	1800-

1000	cm-1.	
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Figure	 4	 -	 Histogram	 showing	 the	 sensitivity	 and	 specificity	 results	 for	 breast	

metastatic	 origin	 for	 525	 iterations	 of	 SVM	 conducted	 using	 the	 fingerprint	

region	from	1800-1000	cm-1.	
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Figure	 5	 -	 Histogram	 showing	 the	 sensitivity	 and	 specificity	 results	 for	 skin	

(melanoma)	 metastatic	 origin	 for	 525	 iterations	 of	 SVM	 conducted	 using	 the	

fingerprint	region	from	1800-1000	cm-1.	
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Figure	 6-	 Histogram	 showing	 the	 sensitivity	 and	 specificity	 results	 for	 lung	

metastatic	origin	for	525	iterations	of	SVM	conducted	using	the	fingerprint	region	

from	1800-1000	cm-1.	
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Appendix	5	
	

AWARDS	AND	PRESENTATIONS	

Awards	and	Honours	
• Royal	 Society	 of	 Chemistry	 –	 2015	 Analytical	 Twitter	 Poster	 Conference	 –	

Runner-up	prize	
• National	 Health	 Service	 (NHS)	 –	 2014	 Research	 and	 Innovation	 Showcase	 –	

1st	place	poster	prize	
• 2014	 Federation	 of	 Analytical	 Chemistry	 and	 Spectroscopy	 Societies	 (FACSS)	

Student	Award	–	awarded	in	September	2014	at	the	SciX	conference,	NV,	USA	
• National	 Health	 Service	 (NHS)	 –	 2013	 Research	 and	 Innovation	 Showcase	 –

Runner-up	prize	
• British	 Neuro-oncology	 Society	 Annual	 Meeting	 (BNOS)	 2013	 –	 Best	 Clinical	

Poster	prize	
	

Oral	Presentations	
9) Illuminating	the	Future	of	Cancer	Diagnosis	via	Serum	ATR-FTIR	Spectroscopy	

Hands,	 J	 .R.,	 Clemens,	 G.,	 Baker,	 M.	 J.	 PITTCON	 Conference	 &	 Expo	 2015,	
March	2015	

	
8) Illuminating	the	Future	of	Cancer	Diagnosis	via	Serum	ATR-FTIR	Spectroscopy	

Hands,	J	.R.,	Clemens,	G.,	Lea,	R.	W.,	Ashton,	K.	M.,	Dawson,	T.,	Jenkinson,	M.	D.,	
Brodbelt,	A.,	Davis,	C.,	Walker,	C.,	Baker,	M.	J.	Federation	of	Analytical	Chemistry	
and	 Spectroscopy	 Societies	 (FACSS)	 presents	 SciX2014	 (The	 Great	 Scientific	
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