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ABSTRACT 

Monitoring of complex manufacturing processes using multivariate statistical process 

control (MSPC) is becoming more important. However, classical MSPC is restricted 

to stationary data while most industrial processes are nonstationary. One way of 

addressing nonstationary data is to calculate the difference between consecutive time 

series data samples. However, this can cause loss of dynamic information, resulting in 

inadequate process monitoring or a reduced fault detection capability. Cointegration 

analysis has recently been adopted for process monitoring of nonstationary processes. 

However, the first applications considered only nonstationary variables whereas 

complex industrial processes contain both stationary and nonstationary variables. 

Furthermore, there is inefficiency in the modelling when dealing with higher level 

nonstationary time series. This particular issue can be solved by using common-trend 

residuals-based monitoring. However, the use of different models requires a number 

of control charts to be monitored by a data analyst. To solve these issues, a multi-level 

multi-factor model is proposed for the monitoring of complex continuous and batch 

industrial processes. The method uses a combination of principal component analysis 

(PCA), and cointegration and common-trend models at the 1st level, and then a PCA 

model at the 2nd level to monitor the combined stationary outputs from the 1st level. 

The method is tested with ramp and step type fault functions on continuous and batch 

process simulations, and compared with conventional PCA and cointegration based 

approaches. The findings show that the multi-level multi-factor model can provide 

better fault detection rates compared to conventional PCA and cointegration based 

approaches. In addition, a parameter tuning scheme based on the big-bang big-crunch 

global optimisation algorithm is used to select the optimum parameters for the multi-

level multi-factor model when applied to continuous and batch processes. This not 

only improves the model’s performance but also assists with its practical application 

in an industrial environment. 
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1. INTRODUCTION 

1.1 Motivation  

Information technologies have had many improvements in data storage and its usage 

in the last decades and it will have more, according to recent technological 

breakthroughs. Data storage and data recording will be much easier than now after the 

ongoing internet of things (IoT) revolution. Industry 4.0 is a well-known name for the 

IoT revolution. As the data acquisition process has become easier, this has resulted in 

a data explosion for several sectors such as informatics and bioinformatics (Ashton, 

2009). According to Gartner’s 2018 report on strategic technology trends, one of the 

most promising tools is intelligent analytics (Panetta, 2017), which includes 

multivariate statistical analysis.  

In today’s manufacturing practices, innovation is the primary strategy for 

improvement; sometimes, the survival of the companies. The manufacturing paradigm 

in the pharmaceutical industry has evolved from quality-by-testing to quality-by-

design (Lopes and Sarraguça, 2018). This has resulted in process analytical 

technologies becoming more important at all stages in manufacturing. The Made 

Smarter Review, which was commissioned by the UK government, looks at 

digitalisation of UK industry by 2030 and what is required across different sectors 

(Department for Business, Energy & Industrial Strategy, 2017). One of the critical 

points identified for improvements in the performance of food manufacturing was a 

need for data-driven real-time decision support systems.  

Multivariate statistical process control (MSPC) techniques provide tools for the 

comprehensive on-line monitoring of manufacturing processes and the on-line 

detection of process malfunctions, and are capable of being applied to both continuous 

and batch processes. MSPC techniques play an essential role in maintaining the quality 

of manufacturing by providing data-driven real-time decision support systems. 

However, the capability of classical MSPC, based on projection-based methods such 

as principal component analysis (PCA) and partial least squares (sometimes termed 

projection to latent structures) (PLS), is restricted to stationary systems/variables. 

Most industrial processes are nonstationary in nature, which may be caused by 

seasonal changes, processes that involve filling and emptying, throughput changes, the 

presence of unmeasured disturbances, and operator interventions, etc. However, 
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dealing with nonstationary variables has only recently started to receive increasing 

attention. One way of addressing nonstationary data is to calculate the difference 

between consecutive time series data samples or use of difference based autoregression 

models such as autoregressive integrated moving average (ARIMA). ARIMA comes 

with an enormous computational burden for multivariate processes because of the 

number of variables. It is also known that variable differencing can lead to the loss of 

dynamic information. 

A promising tool called cointegration has been adopted into process monitoring to 

cope with nonstationarity. Cointegration is arguably the most effective way of 

handling the nonstationary characteristics of data and was proposed to formulate the 

problem of the existence of linear equilibria. It has been used extensively in the area 

of econometrics, and more recently, in several disciplines of science and engineering 

to reflect any long-run information, which can be easily removed via de-trending and 

differencing. Even though cointegration analysis is a powerful tool, it can give rise to 

a cointegration matrix of low rank when there is a large number of nonstationary 

variables if there is high level nonstationary present. This issue can be solved through 

the use of a common-trend model, which can model the nonstationary factors 

remaining in the low rank cointegration matrix. However, it gives rise to another 

problem which is the increased number of the control charts associated with all of the 

different models. It is a disadvantage compared to conventional MSPC approaches that 

only require a single control chart based on 𝑇2 and Squared Prediction Error (SPE) 

metrics. On the other hand, the cointegration residuals-based monitoring method is 

applicable only to the nonstationary variables; these are only a part of the data from 

complex industrial processes, which also comprise stationary variables. Therefore, a 

new process monitoring method for fault detection purposes is required that can be 

used with batch or continuous processes, processes that exhibit both stationary and 

nonstationary (including high-level) characteristics, and the output of the model can 

be displayed in a single control chart comprised of the 𝑇2 and SPE metrics. 

1.2 Objectives 

The research presented in this thesis is part of the ModLife (Advancing Modelling for 

Process-Product Innovation, Optimization, Monitoring and Control in Life Science 

Industries) project, a H2020 innovative training network (ITN) funded under the Marie 
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Sklodowska-Curie grant agreement number 675251. The overall goal of ModLife is to 

develop advanced model-based optimisation, monitoring and control as enabling 

technologies for bioprocess-product development and innovation tailored for the needs 

of the life science industries. The ModLife ITN aims to develop the next generation of 

high-performance computing tools and in-situ measurements for increasing the 

efficiency, innovation and competitiveness of Europe’s life sciences and processing 

industries. 

The overall aim of the research described in this thesis is to develop a methodology 

for monitoring of complex industrial processes that comprise stationary and 

nonstationary variables. The methodology must also be applicable to both continuous 

and batch processes. More specifically, the objectives of the research can be 

summarised as follows: 

1. To develop a new process monitoring approach for fault detection that can be 

used with complex continuous industrial processes.  

2. To adapt and extend the method devised in objective 1 for use with complex 

batch industrial processes. 

3. To develop a parameter tuning scheme based on a global optimisation 

algorithm to determine the optimum design parameters for multi-level multi-

factor models when used for monitoring of batch and continuous processes. 

4. To apply the methods developed in objectives 1 to 3 to example continuous 

and batch processes, and to compare the performance of the new method 

against current state-of-the-art methods reported in the literature.  

1.3 Contributions to Knowledge 

A new process monitoring approach, termed multi-level multi-factor, has been devised 

for monitoring of continuous processes. This method was then extended to enable 

monitoring of batch processes through incorporation of a step to divide the batch into 

multiple phases, with each phase taken as a continuous process. The multi-level multi-

factor model consists of 2 levels and 4 sub-models across the 2 levels. The sub-models 

include PCA models for each level, and cointegration and common-trend residuals-

based process monitoring models at the 1st level. In the 1st level, the stationary 

variables are modelled by PCA while the nonstationary variables are modelled by 
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cointegration and common-trend models to determine the stationary factors from both 

modelling techniques for the 2nd level PCA model. The model combines the 

advantages of three existing approaches, namely PCA, cointegration and common-

trend models, and the performance advantage over current state-of-the-art methods has 

been demonstrated using simulations of continuous and batch processes. The multi-

level multi-factor method presented is the first method based on cointegration analysis, 

which considers all process variables (stationary and nonstationary) in the continuous 

process monitoring. 

The multi-level multi-factor model has a number of design parameters such as the 

number of principal components (PCs) for the 1st and 2nd PCA models, phase length 

for multi-phase batch process monitoring, and the combination of nonstationary 

variables for the cointegration models when the number of the nonstationary variables 

exceeds 12; the Johansen test that is used in cointegration analysis of multivariate 

systems only supports 12 or less variables. The simple reason for this limitation is that 

no mathematician has computed the critical values for more than 12 variables. To assist 

the data analyst with the selection of all of the design parameters and to provide 

optimum performance of the models, a parameter tuning scheme based on big bang-

big crunch global optimisation algorithm has been developed and applied to example 

continuous and batch processes. Use of the optimisation algorithm will assist with the 

practical implementation of the multi-level multi-factor method. 

1.4 The Layout of the Thesis 

The thesis comprises 7 chapters. This chapter (Chapter 1) gives the motivation, and 

the aims and objectives of the research described in the following chapters. The 

contributions to knowledge made by this thesis are also presented. 

Chapter 2 provides an overview of process performance monitoring and projection 

based MSPC techniques for process performance monitoring. It gives an introduction 

to statistical process control (SPC), MSPC and well-known conventional MSPC 

methods (PCA and PLS), and the metrics used in control charts for process monitoring. 

Furthermore, the data characteristics of complex industrial processes are summarised 

with a critical review of the literature highlighting the limitations of currently proposed 

methods.  
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Chapter 3 discusses the topics of nonstationarity, unit root tests to find nonstationarity, 

and cointegration, which is arguably the most effective tool for the modelling of 

nonstationary variables. Process monitoring techniques based on cointegration and 

common-trend residuals are introduced and reviewed as a means of monitoring of 

nonstationary variables.  

Chapter 4 presents monitoring techniques for continuous processes: conventional 

PCA, dynamic PCA (DPCA), cointegration residuals-based model, common-trend 

residuals-based model and the new multi-level multi-factor model. A comparison of 

the performance of the models for fault detection has been conducted using data from 

a continuous stirred tank heater simulator 

Chapter 5 presents monitoring techniques for batch processes: multi-PCA, a multi-

level model and an extension of the new multi-level multi-factor model to 

accommodate multi-phase modelling. A comparison of the performance of the models 

for fault detection has been performed using data from an industrial penicillin 

simulator.  

Chapter 6 presents a parameter tuning scheme, based on the BB-BC global 

optimisation algorithm, to enable the design of optimum multi-level multi-factor 

models. It helps to search for several design parameters through the multi-level multi-

factor model, which is quite troublesome for a data analyst to carry out manually. 

Finally, Chapter 7 concludes with a summary of the research and its industrial impact, 

along with suggestions for future work. 
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2. MULTIVARIATE STATISTICAL PROCESS CONTROL (MSPC) 

2.1 Overview 

In this section, an overview of multivariate statistical process control (MSPC) 

techniques is presented. The projection-based techniques such as principal component 

analysis (PCA) and projection to latent variables or sometimes termed partial least 

squares (PLS) are discussed. Even though such conventional MSPC methods are 

powerful, they are not appropriate for some complex industrial processes. 

Statistical process control (SPC) addresses a range of techniques which are used to 

investigate whether a particular manufacturing or production process is operating in a 

state of ‘statistical’ control where products must meet manufacturing standards with 

little, if not zero, variability. A production system that shows only common cause 

variation is said to be statistically in-control. Shewhart, one of the originators of the 

early control charts defined a state of control as “a phenomenon will be said to be 

controlled when, through the use of experience, we can predict, at least within limits, 

how the phenomenon may be expected to vary in the future. Here it is understood that 

prediction within limits means that we can state, at least approximately, that the 

probability that the observed phenomenon will fall within the given limits” (Shewhart, 

1930). Sometimes abnormal variabilities within the manufacturing process may be 

present as a result of errors such as machine error, operator error differing process feed 

materials, etc.  

In the early days, SPC tended to be associated more with the monitoring of individual 

quality characteristics of the product, i.e. statistical quality control (SQC). In control 

charts, limits were defined for the measured process or the quality parameter of the 

end product under the natural process variability. When all the measurements fall 

within the pre-specified control limits, the process is said to be ‘statistically-in-control’ 

(Montgomery, 2001). Any abnormalities caused by unexpected process variation gives 

rise to the chart crossing the determined control limits. Investigations can proceed to 

determine and correct the reason for that occurrence. A simple statistically-in-control 

chart is shown in Figure 2.1. 
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Figure 2.1: Example of a univariate control chart. Figure based on data from 

(Montgomery, 2001). 

Control charts are closely related to statistical hypothesis testing. Control charts test 

the new observation to determine whether it falls within the control limits or not. If it 

falls within the control limits, the process is said to be ‘statistically-in-control’, and 

the null hypothesis cannot be rejected. In contrast, if the new value crosses the control 

limits, it implies that the process is out-of-control and the null-hypothesis should be 

rejected. The most commonly applied univariate tools reflect the Shewhart principles 

of mean and range, cumulative sum (CUSUM) and exponentially weighted moving 

average (EWMA) control charts.  

2.1.1 Univariate Statistical Process Monitoring 

The first and probably the most known control chart was introduced by Walter 

Shewhart (Shewhart, 1930). Since then, they have found many applications in the 

process industries. The Shewhart control charts are a family of monitoring tools, which 

can be used to check the statistics of the mean or variability of key variables inside the 

processes. The upper and lower control limits for monitoring the mean value (target 

value) of a variable are given by: 

 
𝐶𝐿𝑆ℎ𝑒𝑤ℎ𝑎𝑟𝑡 = �̂� ± 𝐴�̂� (2.1) 

where �̂� and �̂� are the estimated values of the mean and standard deviation of the 

monitored variables used in the modelling. 𝐴 is the level constant that dictates the 

capability of the chart. The Shewhart control chart is typically used to detect significant 
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shifts (> 3�̂�) in processes. The statistics in the Shewhart chart can be plotted either 

with a single measurement or the average of the previous 𝑛 measurements. 

Montgomery suggested the use of four or five measurements within the range of 2�̂� 

(Montgomery, 2001). Having control limits farther from the centre line decreases the 

probability of a type-I error, where type-I refers to states where a point is falling 

beyond the control limits. Conversely, wider control limits also increase the 

probability of a type-II error where type-II refers to states where a point is falling 

between the control limits when the process is really out of control. On the other hand, 

moving the control limits closer to the centre line gives rise to the opposite effects: an 

increase in the risk of a type-I error, and a decreases in type-II error (Montgomery, 

2001). 

Shewhart control charts have been in use for more than 75 years. Additional charts 

such as the cumulative sum (CUSUM) chart introduced by Page (Page, 1954) and the 

exponentially moving average (EWMA) chart presented by Roberts (Roberts, 1959) 

are typical ‘memorising’ control charts which produce better results for small shift 

detections that can frequently occur. 

The CUSUM chart has been studied by many authors, including Woodall and Adams 

(Woodall and Adams, 1993) and Ewan (Ewan, 1963). The CUSUM chart combines 

the cumulative sum of the deviation between the previous samples and the target value 

and current information from the measurement. Consequently, it is more effective than 

Shewhart charts in detecting small changes from the mean value. The CUSUM chart 

is founded on the assumption that the measured process variables are stationary.  

Montgomery provided a formal definition for stationarity (Montgomery, 2001). A time 

series can be considered stationary if (i) the expected value of the time series is not 

dependent on the time, and (ii) the autocovariance function defined by 𝐶𝑜𝑣(𝒙𝑡, 𝒙𝑡+𝑘) 

is only a function of 𝑘, not a time where 𝒙𝑡 is the sample observation and 𝑘 is any lag. 

The impact of nonstationary data, which is against any predetermined target, unlike 

stationary data, is discussed in the following sections. 

Time series dependency refers to the dependence of the observation 𝒙𝑡+1 on the 

previous observation 𝒙𝑡. Autocorrelation is used to name such a reliance where the 

distribution of the measured process variables is normal with a known mean and 

variance 𝑁(𝜇, 𝜎2) (Montgomery, 2001). 
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2.1.2 Extensions of Univariate Control Charts for Multivariate Processes 

Univariate control charts provide a tool to monitor process performance. However, the 

use of these charts is limited since they only consider one variable at a time. Complex 

processes, on the other hand, exhibit interactions between the variables which can give 

rise to misleading information in univariate control charts.  

 

Figure 2.2: Illustration for the multivariate (𝒙1 and 𝒙2) monitoring with defined 

control eclipse, and upper control limit (UCL) and lower control limit (LCL). 

Figure 2.2 illustrates two process variables both with univariate mean control charts, 

upper control limits (UCLs) and lower control limits (LCLs). Both charts show that 

the monitored variables are in control. However, one point shows an abnormality 

within the joint multivariate control region.  

Hotelling established multivariate process control techniques in 1947 (Hotelling, 

1947). It represents the multivariate counterpart of the Shewhart control chart based 

on Hotelling’s 𝑇2 statistics as a pioneering study of MSPC.  

2.2 Multivariate Statistical Process Control Using Projection Based Techniques  

The standard multivariate procedures to reduce the dimensionality of the process 

variables are projection techniques like PCA and PLS models. Both are model-based 

approaches using a historical data set that is assumed to be in control (Bersimis, 
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Psarakis and Panaretos, 2007). The first studies and applications of multivariate 

methods were made by John MacGregor’s group (Kresta, Macgregor and Marlin, 

1991) and Barry Wise’s group (Wise and Ricker, 1991). Following the model 

determination, future samples are checked in the diagnosis part of modelling to 

evaluate whether the sample fits the model or not. They can handle process variables 

and quality variables. The PCA approach provides the basis of MSPC based fault 

detection and diagnosis when only the process variables (𝑿) are available. A PLS 

model is developed using the process (𝑿) and quality variables (𝒀). Figure 2.3 

summarizes the usage of both representations (Qin, 2012). The main focus of this study 

is PCA based monitoring techniques for fault detection and diagnosis. In the following 

sections, conventional PCA and PLS models are discussed for process monitoring 

purposes. 

Process

Actuators

Quality

Quality 

Control

PCA-based Monitoring 

Actuator & Sensor FDI

Control Performance 

PLS Quality MonitoringDisturbances

SensorsController

 

Figure 2.3: Process and quality monitoring problem in fault detection and diagnosis 

2.3 Principal Component Analysis 

The use of PCA is arguably the most popular MSPC methodology after the adoption 

by Hotelling of the 𝑇2 statistic (Abdi and Williams, 2010). Originally, PCA was 

developed by Pearson to find the closest line and planes to the variables. PCA analyses 

the variance-covariance structure of a data matrix 𝑿 ∈  ℝ𝑁×𝑀 to extract important 

information that is a linear combination of 𝑿 and to express it as a set of new 

orthogonal variables called principal components where 𝑁 is the number of the 

variables and 𝑀 is the number of samples (Goodall and Jolliffe, 1988).  
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Figure 2.4 illustrates the orthogonal PCs that create a plane which is also perpendicular 

to the third PC if it exists. Here, the first PC represents the most significant amount of 

variation of the data. The methodology is directly applicable to continuous processes 

and can be extended to batch processes. 

First PC

Second PC

Observation

Variable 1

Variable 2

Variable 3
 

Figure 2.4: Graphical representation of principal component analysis. 

In general, 𝑿 will be pre-processed before the analysis. Mostly, this pre-processing is 

done by standardizing the data to transform the data onto unit scale (mean and variance 

of each row are equal to 0 and 1). PCA performs the eigen decomposition on the 

covariance matrix (𝑐𝑜𝑣(𝑿) ∈  ℝ𝑁×𝑁) where each element represents the covariance 

between two variables. The covariance matrix can be represented as below: 

 

𝑐𝑜𝑣(𝑿) = [

𝜎11 ⋯ 𝜎1𝑁
⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

] (2.2) 

where the sample covariance between two variables, 𝑗 and 𝑘, is calculated as follows: 

 

𝜎𝑗𝑘 =
1

𝑀 − 1
∑(𝑥𝑖𝑗 − �̅�𝑗)(𝑥𝑖𝑘 − �̅�𝑘) 

𝑀

𝑖=1

  (2.3) 

where �̅� is the mean of the variable. PCA decomposes 𝑿 as a sum of the outer product 

of the vectors 𝒕𝑟 and 𝒑𝑟 where 𝒕𝑟 and 𝒑𝑟 are the scores and loading vectors, 

respectively, for the 𝑟𝑡ℎ component. 
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𝑿 = ∑𝒑𝑟𝒕𝑟
𝑇

𝑅

𝑟=1

+ 𝑬 = 𝑷𝑻𝑇 + 𝑬 (2.4) 

𝑬 ∈  ℝ𝑁×𝑀 represents the model residuals, or model errors, in addition to the 

statistical model. 𝑅 is the maximum number of principal components under the 

condition of 𝑅 = min (𝑀,𝑁). Here, the score matrix 𝑻 ∈  ℝ𝑀×𝑅 = (𝒕1, … , 𝒕𝑅) 

contains information on how the samples are related to each other, while the loading 

matrix 𝑷 ∈  ℝ𝑁×𝑅 = (𝒑1, … , 𝒑𝑅) defines the interrelation of the variables. Since the 

columns of 𝑻 are orthogonal (𝒕𝑟
𝑇𝒕𝑟−1 = 0) and the loading columns are orthonormal 

(𝒑𝑟
𝑇𝒑𝑟−1 = 0 and 𝒑𝑟

𝑇𝒑𝑟 = 1), the covariance matrix can be written as (Qin, 2003): 

 
𝑐𝑜𝑣(𝑿) = 𝑷𝑻𝚲𝑷 (2.5) 

where 

 

𝜦 =
1

𝑀 − 1
𝑻𝑇𝑻 = 𝑑𝑖𝑎𝑔{𝜆1, … , 𝜆𝑁} (2.6) 

where 𝜆𝑖 are the eigenvalues of the covariance matrix in descending order of the 

represented variation of the data. When 𝑀 is very large, then the eigenvalues can be 

found from the sample variance of the 𝑖th score vector as follows: 

 

𝜆1 =
1

𝑀 − 1
𝒕𝑖
𝑇𝒕𝑖 (2.7) 

Decomposition of 𝑿 can be performed by either nonlinear iterative partial least squares 

(NIPALS) (Wold, Esbensen and Geladi, 1987) or the singular value decomposition 

(SVD) algorithm. These approaches are discussed in more detail in Appendix-A. 

Selection of the number of principal components to be used is an essential step that 

impacts the PCA model.  

The cumulative percentage of variance (CPV) is a measure of how much variation is 

captured by the first 𝑟 PCs: 

 
𝐶𝑃𝑉𝑟 = (

∑ 𝜆𝑖
𝑟
𝑖=1

∑ 𝜆𝑖
𝑁
𝑖=1

⁄ )100% (2.8) 

The number of PCs selected can be based on criteria chosen by the data analyst.  
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2.4 Projection to Latent Structures 

Projection to latent structures or partial least squares is a regression technique based 

on two data blocks, the input (𝑿 ∈  ℝ𝑁×𝑀 ) and output (𝒀 ∈  ℝ𝑁𝑜×𝑀 ) matrices where 

𝑁𝑜 is the number of output variables. In general, the data sets mentioned above include 

state variables for 𝑿 and quality measurements for 𝒀. 

PLS projects 𝑿 and 𝒀 to a low dimensional space defined by 𝐿 latent variables: 

 

{
 
 

 
 𝑿 =∑𝒑𝑖𝒕𝑖

𝑇 + 𝑬 = 𝑷𝑻𝑇 + 𝑬

𝐿

𝑖=1

𝒀 =∑𝒒𝑖𝒖𝑖
𝑇 + 𝑭 = 𝑸𝑼𝑇 + 𝑭

𝐿

𝑖=1

 (2.9) 

where 𝑻 ∈  ℝ𝑀×𝐿 = (𝒕1, … , 𝒕𝐿) and 𝑼 ∈  ℝ𝑀×𝐿 = (𝒖1, … , 𝒖𝐿) are the latent score 

matrices with 𝒕𝑖 and 𝒖𝑖 vectors and 𝑷 ∈  ℝ𝑁×𝐿 = (𝒑1, … , 𝒑𝐿) and 𝑸 ∈  ℝ𝑁0×𝐿 =

(𝒒1, … , 𝒒𝐿) are the loading matrices of 𝑿 and 𝒀, respectively (Geladi and Kowalski, 

1986). The number of latent factors is often determined by cross-validation. 

The latent vectors (𝒕𝑖) is computed sequentially by the NIPALS algorithm from the 

data to maximise the covariance between the deflated input such as 𝑿𝑖 = 𝑿𝑖−1 −

𝒑𝑖−1𝒕𝑖−1
𝑇  with the initial assumption 𝑿1 = 𝑿. A new set of latent variables is 

constructed to represent the linear combination of 𝑿 while unlike PCA, PLS tries to 

reduce dimensionality into a few pairs of latent variables. Details of the NIPALS 

algorithm (Wold, 1975) can be found in Appendix-B.  

2.5 Fault Detection and Fault Detection Metrics 

In typical MSPC applications, fault detection forms the first step. It helps to judge if 

an abnormality happened in a process or not. If the monitoring statistics exceed the 

determined limit, a fault alarm can be raised. Fault detection is then followed by fault 

identification and diagnosis. The methodology of process performance monitoring is 

summarised in Figure 2.5 (Ge, Song and Gao, 2013). 

Typically, the Hotelling’s 𝑇2 statistic and the squared prediction error (SPE) (or Q 

statistic) are used to assess the variability in process performance monitoring. Residual 

space and principal component space can be tracked by SPE and Hotelling’s 𝑇2, 
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respectively. In addition to these two well-known metrics, some combined metrics 

have also been proposed (Raich and Çinar, 1996; Yue and Qin, 2001). The global 

Mahalanobis distance test can also be used in both metrics. However, since process 

data are highly cross or autocorrelated, which makes the variances of the residual 

components close to zero, use of the Mahalanobis distance in residual space is not the 

first choice (Qin, 2012).  

Complex Industrial Processes

Data inspection and selection

Data preprocessing

Model training, selection and validation

Online process monitoring

Online data 

sampling

Fault detection Fault diagnosis
Fault 

identification

Process recovery
 

Figure 2.5: Data-based process performance monitoring methodology (adapted from 

(Ge, Song and Gao, 2013)). 

2.5.1 Hotelling’s T2 Statistics 

Hotelling's 𝑇2 statistic measures variations in principal component spaces. If the 

number of data samples, 𝑀, is vast, the variance-covariance matrix (𝚺) of in-control 

data are accurately known; 𝑇2 index can be defined for the 𝑖𝑡ℎ sample as follows: 

 
(𝑇2)𝑖 = (𝒙𝑖 − �̅�)

𝑇𝚺−1(𝒙𝑖 − �̅�) (2.10) 

where 𝒙𝑖  ∈  ℝ
𝑁×1  is a column vector of 𝑿 comprising 𝑁 variables for the 𝑖𝑡ℎ sample 

and �̅� ∈  ℝ1×1  is the mean vector of the variables. Owing to accurate estimation of 

mean and covariance, the 𝑇2 index can be well approximated by a 𝜒2 distribution with 

𝑅 (number of PCs) degrees of freedom (Qin, 2012): 
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(𝑇2)𝛼 ≤ 𝜒𝑅,𝛼

2    (2.11) 

where 𝛼 is the significance level of the distribution; however, most of the time, 𝚺 

cannot be known accurately. This gives rise to use of the estimated variance-

covariance (𝑺) or sample covariance matrix from training or historical samples:  

 
(𝑇2)𝑖 = (𝒙𝑖 − �̅�)

𝑇𝐒−1(𝒙𝑖 − �̅�) (2.12) 

On the other hand, because of collinear or highly correlated process variables owing 

to the effects of feedback control, inversion of the variance-covariance matrix may 

result in instability. That does not apply to PC scores since they are orthogonal and 

uncorrelated (Kourti and MacGregor, 1996). Therefore, 𝑇2 can be found by using PCA 

scores as follows: 

 
𝑻2 = 𝑷𝑇𝑿𝚲−1𝑿𝑇𝑷 = 𝑻𝑇𝚲−1𝑻 (2.13) 

where 𝜦 = 𝑻𝑇𝑻/(𝑀 − 1) is the sample covariance matrix under the condition that the 

process data are normal and has a multivariate normal distribution. 𝑇2 is related to a 

𝐹 distribution which is the ratio of two independent 𝜒2 scores: 

 

 
𝑅(𝑀 − 1)

(𝑀 − 𝑅)
𝐹𝑅,(𝑀−𝑅);𝛼 (2.14) 

where 𝐹𝑅,(𝑀−𝑅);𝛼 is the 𝐹 distribution with 𝑅 and (𝑀 − 𝑅) degrees of freedom.  

 

Figure 2.6: Example of a Hotelling’s 𝑇2 monitoring chart. 
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Figure 2.6 shows an example monitoring chart based on Hotelling’s 𝑇2 with control 

limits. Here, one sample lies outside the action limit; therefore, this sample needs to 

be further interrogated using the contribution plots.  

2.5.2  Squared Prediction Error  

Hotelling’s 𝑇2 is typically used to monitor variation within the principal component 

space. A second monitoring metric that tracks residual space is the SPE or Q-statistic. 

It is the squared difference between the observed and the predicted values from the 

normal representation: 

 
𝑆𝑃𝐸𝑖 = (𝒙𝑖 − 𝒙𝑖)

𝑇(𝒙𝑖 − �̂�𝑖) = (𝒙𝑖 − 𝑷𝒕𝑖
𝑇)𝑇(𝒙𝑖 − 𝑷𝒕𝑖

𝑇) (2.15) 

where 𝒙𝑖 ∈  ℝ
𝑁×1 and �̂�𝑖 ∈  ℝ

𝑁×1 are the original and estimated variable vectors, 

respectively, for the 𝑖𝑡ℎsample, and 𝒕𝑖 ∈  ℝ
1×𝑁  is the score vector for the 𝑖𝑡ℎ sample. 

It can also be defined as the squared perpendicular distance of a multivariate 

observation from the reduced principal component space in a matrix form as 

follow(Qin, 2003): 

 
𝑺𝑷𝑬 ≅ ‖(𝑰 − 𝑷𝑷𝑇)𝑿‖ (2.16) 

A process is considered abnormal if  

 
𝑆𝑃𝐸𝑖 ≥ 𝑄𝛼 (2.17) 

where 𝑄𝛼 defines the upper control limit for the SPE with a significance level 𝛼 

(Jackson and Mudholkar, 1979): 

 

𝑄𝛼 = 𝜃1 (
𝑧(1−𝛼)√2𝜃2ℎ0

2

𝜃1
+
𝜃2ℎ0(ℎ0 − 1)

𝜃1
2

+ 1)

1

ℎ0

  (2.18) 

where 

 

𝜃𝑖 = ∑ 𝜆𝑘
𝑖

𝑁

𝑘=𝑅+1

, 𝑖 = 1,2,3

ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2

 (2.19) 
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where 𝜆𝑘
𝑖  is the eigenvalue, 𝑖 and 𝑘 refer to indexes of the power and largest eigen 

order, respectively, and 𝑧(1−𝛼) is the standard normal deviate or z-score for the (1 −

𝛼) percentile. This limit is derived under the condition that a sample vector 𝒙 from 𝑿 

follows a multivariate normal distribution. An alternative limit for the SPE has been 

defined by Nomikos and MacGregor (Nomikos and MacGregor, 1995b) by using 

(Box, 1954) by using 𝜒2 distribution: 

 
𝑄𝛼
2 = 𝑔𝜒ℎ,𝛼

2    (2.20) 

where 

 

𝑔 =
𝜃2
𝜃1
, ℎ = 𝜃1

2/𝜃2   (2.21) 

2.5.3  The Asymmetric Role of SPE and T2 in the Performance Monitoring  

Both statistics (or metrics), as mentioned earlier, can be used for process performance 

monitoring; however, it is worth pointing out that they measure different properties of 

the process and their roles are not designed to be symmetric to each other. In the case 

of process performance monitoring, SPE is preferable to 𝑇2 which is the opposite to 

that for quality control. Some instances require SPE and 𝑇2 in a combined form as a 

single metric (Qin, 2003).  

The SPE statistic measures variability, which breaks the typical process correlation 

indicated by an abnormal situation. The 𝑇2 statistics measures the distance to the origin 

in PC subspace. In many complex industrial processes, the PC subspace contains 

normal variation with the significant variance described by the PC representation and 

the residual subspace containing mainly noise. Due to noise characteristics, the 𝑇2 

normal region is defined as larger than the SPE normal region. Therefore, it takes a 

much larger fault magnitude to exceed the 𝑇2 control limit. On the other hand, the 

normal region defined by the SPE control limit includes residual components which 

are mainly noise. Furthermore, small to moderate faults can easily exceed the SPE 

control limits.  

An example taken from Qin et al. (Qin, 2003) can help to illustrate the difference 

between the two metrics. In Figure 2.7, measurement of the inlet and outlet flow rates 

of a unit are represented with two abnormalities given by the filled with black and blue 
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circles. The steady-state data are described by the 𝑇2 region and the PCA model with 

one PC is depicted by the 45∘ line in Figure 2.7(b). An abnormal sample (denoted by 

the filled blue circle) deviates from the normal line and has a large SPE, and so is 

detected by an SPE chart. However, the 𝑇2 index is still in-control for this sample. On 

the other hand, an abnormality (denoted by the filled black circle as a throughput 

sample) can cause an increase in 𝑇2 alone which states that the change is consistent 

with the model but it may be just a shift of operating region which is not an error. This 

does not cause a rise in SPE, and therefore, use of the SPE rather than the 𝑇2 metric is 

preferred for fault detection. 

PC Space

SPE

Throughput Change

x1

(a)

 T2 Region

FIFI
x2

(b)

x1

x2

 

Figure 2.7: (a) Inlet and outlet flow measurement illustration, (b) measurement 

representation with principal component space with two abnormalities (filled blue 

and black circles). 

Another difference between PC space and residual space is the nonstationarity of the 

estimated and original variables. Data from complex industrial processes are rarely 

normally distributed and stationary. As nonstationary variables tend to show 

significant variability and, the principal component subspace usually captures this 

large variability in the model, monitoring charts based on the 𝑇2 metric can exhibit a 

significant number of false alarms for nonstationary data. More comprehensive control 

limits are also required for nonstationary data, which can cause an increase in the 

undetected fault rates. The PC subspace usually captures the nonstationary parts of the 
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signals due to the high variability, therefore, the use of the 𝑇2 metric can incur false 

alarms due to the nonstationarities.  

2.6 Complex Industrial Processes and Data Characteristics  

Industrial processes can be divided into two main groups: continuous and batch 

processes. A continuous process is a flow production method performed around the 

optimum state most of the time. On the other hand, batch processes have finite 

operation duration, strictly following process specifications. From an MSPC view, 

batch processes have an extra-dimension for different batches to keep batch-to-batch 

variations, therefore their data (𝑿 ∈  ℝ𝐼×𝑁×𝑀) is three dimensional (3𝐷) as illustrated 

in Figure 2.8. 

𝑀 
Time

Variables

Batches

1 

𝐼 1 𝑁 ………… 

…
…
…
…

 

………… 

X 

 

Figure 2.8: 3D data representation of a batch process. 

Batch process monitoring using MSPC approaches were pioneered by Nomikos and 

MacGregor (1994; 1995b). Nomikos et al. (1995a) proposed multiway PCA and then 

multiway PLS for performance monitoring of batch processes. Multiway methods 

provide data unfolding of 3𝐷 data into two dimensional (2𝐷) data where projection 

based techniques can work. An alternative approach for unfolding the data matrix was 

proposed by Wold et al. (1998).  

In Figure 2.9, the various approaches for unfolding the batch data are illustrated. 

Nomikos and MacGregor (1994) proposed an unfolding method illustrated in Figure 

2.9(a). Each column vector contains the measurements for variables from at each time 

point over all batches, and each row comprises the measurements for all variables from 

one batch. This allows the comparison of the performance of each batch at a specific 

time point against a group of ‘normal’ batches. However, this unfolding can be 
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problematic with score calculation when online monitoring is needed where the entire 

trajectory is not completed before the end of the batch.  

𝑀 

1 

𝐼 1 𝑁 ………… 

…
…
…
…

 

………… 
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Figure 2.9: Illustration of different unfolding approaches. (a) Time-wise unfolding 

(Nomikos’ approach), (b) batch-wise unfolding (Wold’s approach), and (c) variable-

wise unfolding 

An alternative approach, given in Figure 2.9(b) was proposed by Wold et al. (1998). 

Here, each row contains measurements of the variables at a particular time point in a 

batch and each column comprises measurements of each variable across all batches 

and time points. This allows monitoring of the score trajectories of a variable from all 

batches and it does not need any filling approach for missing data in online monitoring 

unlike Nomikos’s approach. However, mean centring and scaling of the unfolded data 

matrix do not remove the mean trajectories since it only captures the covariance among 

the variables which is not major interest for performance monitoring. The last 

approach is illustrated in Figure 2.9(c) where each row contains measurements of the 

same variables through the batches and each row comprises the measures for variables 

from one batch. Similarly, mean centring and scaling does not remove the mean 

trajectories since it captures the covariance only for time 𝑡. In online monitoring, it 

causes missing data in each data block before the process end. Therefore, it is unlikely 

to be chosen by the data analyst. Kourti (2003) has discussed a detailed statistical 

analysis of multiway monitoring and grade transitions for batch. 

The given techniques consider the entire batch as a single object. This can lead to 

modelling problems when the characteristics of the variables change over time. Since 
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each phase has its own underlying features, variables can exhibit significantly different 

behaviours over the phases. Multi-phase behaviour has been studied widely in the last 

decade after Undey and Cinar (2002) presented a multi-stage multi-phase statistical 

monitoring method for batch processes. Multi-PCA modelling has been proposed for 

multi-phase batch monitoring and allows different PCA different models to be used 

for each phase (Lu, Gao and Wang, 2004). Stubbs et al. (2013) proposed an interval 

model in combination with a multiway model for a fed-batch penicillin simulator. This 

method required the data analyst to select which variables are required within each 

phase. A dynamic monitoring algorithm based on time lag shift has been proposed by 

Chen et al. (2002). The use of lagged variables extended subspace identification and 

has also been applied to continuous processes (Yao and Gao, 2008, 2009).  

2.6.1 Data Characteristics in the Complex Industrial Processes 

2.6.1.1 Non-Gaussian Distributions 

Traditional projection-based MSPC techniques make the inherent assumption that a 

process data are normal distributed, i.e. have a Gaussian distribution. Data from most 

industrial processes do not follow a normal distribution exactly. The control limits may 

be inaccurate and thus unable to represent the typical operation region because of 

inadequate distributions. Figure 2.10 illustrates different types of distributions that can 

be exhibited by complex processes. Several enhancements have been proposed to 

conventional MSPC techniques to overcome inaccurate limit problems arising from 

non-Gaussian distributions.  

Independent component analysis (ICA), proposed to look at components from both 

statistically independent, non-Gaussian and Gaussian variables, was introduced by Li 

and Wang (Li and Wang, 2002) for monitoring, then combined with PCA by Kano 

(Kano et al., 2004). PCA can impose the first and second moments of information, 

namely the mean and variance of the data, which is the basis of the Gaussian 

distribution. However, non-Gaussian data characteristics may show skewness and 

kurtosis, which are the third and fourth moments. ICA may reveal more meaningful 

information from data by handling the higher order moments. However, ICA can cause 

a selection problem for the independent components where it may result in different 

independent components in replicate analysis of the same data. Several extensions 

including hybrid modelling have been proposed by Li and Wang to control these 
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different characteristics where each component is independent (Li and Wang, 2002). 

Even though the ICA model can extract high-order moments and provide independent 

latent variables, randomised components from the random initialisation may result in 

unstable monitoring performance. There are also difficulties in selecting the number 

of components, which directly affects the control limits for ICA-based monitoring.  

 

Figure 2.10: Illustration of discrete and continuous distributions.  

A Gaussian mixture model was proposed by Chen and Lui (1999), which can be 

described by several local linear models through employing the expectation-

maximization algorithm. Later, this method was improved by a maximum-likelihood 

PCA modelling framework (Sang et al., 2005). However, difficulties with model 

training and the definition of the number of local models have limited its use. The 

given methods for analysis of data with non-Gaussian characteristics have some 

advantages for particular data sets, though they have limited general applicability. 

However, they cannot solve issues with correlation and dependencies in the data, 

which is critical for process monitoring. 

2.6.1.2 Nonlinearity 

A large number of industrial processes have linearly correlated variables as a result of 

stable production and operate within a small region of steady conditions; however, 
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modern industrial processes can run under various operating conditions. Furthermore, 

relationships among the variables can be more complicated, and so linear modelling 

may not function well even if linearisation around steady-state conditions are applied. 

The models built on this type of data become more specific and complicated, working 

only on data that are similar to that used to build the model. Therefore, having a 

nonlinear model for one specific process may only enable singular usage for that 

process.  

Several local linear models, built on an approximation of the nonlinear process can be 

a first choice with the application of PCA (Kerschen and Golinval, 2002). However, 

difficulties can arise with the determination of the number of models. Adaptive and 

recursive models that can also handle the slow-varying processes have been studied 

widely. A recursive exponentially weighted PLS model was proposed (Dayal and 

MacGregor, 1997) that was followed by the development of an adaptive monitoring 

scheme, which incorporated recursive PCA to update the mean of the training data, the 

number of the PCs and the control limits (Li et al., 2000). Moving window approaches 

that use a 𝑁 step ahead horizon strategy have been applied, which overlaps to some 

extent with the work of Li et al. (Wang, Kruger and Irwin, 2005). 

A data-based approach based on the application of neural networks for nonlinear PCA 

was proposed and used the principal curve method; this shapes the line of PCs with 

regards to the samples (Dong and Mcavoy, 1996). A five-layer neural network has 

been designed and the principal curve used to calculate the scores of the nonlinear 

PCA. An extension for a correlated data set, which combined neural network-based 

nonlinear PCA and time lag shifts, was proposed to monitor complex processes such 

as the Tennessee Eastman process (TEP) (Chen and Liao, 2002). To enhance the 

process monitoring performance, a hierarchical neural network based on a fuzzy 

clustering method has been designed and applied to the TEP (Eslamloueyan, 2011). 

Even though the nonlinear PCs can be directly obtained, the training of the nonlinear 

PCA model requires prior knowledge such as the number of PCs. This makes training 

of the models difficult particularly where building of neural network models is already 

more time consuming than conventional PCA models. 

A kernel is a way of computing the dot product of two vectors in some (possibly high 

dimension) feature space. It provides a mapping between the given features to another 

feature space. The similarity between the foundation of projection techniques such as 
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PCA and PLS, and kernels gives rise to potential hybrid models. Kernel PCA has been 

proposed to avoid nonlinear mapping involved in computational intelligence models 

such as neural networks (Odiowei and Cao, 2010). As for conventional PCA, two 

monitoring metrics have been constructed to enable separate monitoring of the system 

and the noisy part of the process. The training of the kernel PCA model is easier than 

a nonlinear PCA model since the nonlinear optimisation problem is eliminated. 

However, a kernel selection with parameter tuning requires the data analyst’s attention. 

Linear approximation approaches by several local linear models is another type of 

nonlinear method. A linear subspace model has been proposed, which divides the 

nonlinear process into several linear subspaces. The modelling is based on PCA 

decomposition. Multi-phase models based on multiway PCA and conventional PCA 

for the monitoring of batch processes can also deal with nonlinearities in the data as 

they are based on local modelling (Chen and Liu, 2002; Lu, Gao and Wang, 2004; Yao 

and Gao, 2008, 2009; Stubbs, Zhang and Morris, 2013). Compared to nonlinear 

modelling via neural networks and kernel-based models, the determination of the 

linear approximation method seems much more straightforward because model 

interpretation is easier for linear approximation methods. 

On the other hand, it is difficult to determine the number of local models as well as the 

time intervals over which individual local models apply for a process. This requires 

more attention from the data analyst to work on which is time-consuming. Therefore, 

parameter tuning methods are necessary for the determination of the range and number 

of local models. 

2.6.1.3 Correlated and Dependent Variables 

When the value of the observations such as 𝒙𝑡+𝑘 depends on the value of observations 

𝒙𝑡, it is said to be dependent where 𝒙𝑡 and 𝒙𝑡+𝑘 represent a sample and time shifted 

sample vector, respectively, of the same variables and 𝑘 is a lag. The term 

autocorrelation can express this dependency. Cross-correlation describes the 

dependence between different variables. One of the diagnostic methods to investigate 

autocorrelation in a data series is to extract graphical information from the scatter plot 

of all the data pairs (𝒙𝑡, 𝒙𝑡+𝑘). For each delay, the autocorrelation coefficient 𝜌 can be 

calculated as below: 
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𝜌𝑘 =
𝑐𝑜𝑣(𝒙𝑡, 𝒙𝑡+𝑘)

𝑣𝑎𝑟(𝒙𝑡)
   (2.22) 

A collection of 𝜌𝑘 represents the autocorrelation function (ACF). The example given 

in Figure 2.11 shows the ACF function of a moving average (MA) model of a time 

series. The stationary characteristics of the data and its autocorrelation properties are 

often closely related. If a time series displays a sharp increase in the mean with time, 

autocorrelation analysis will indicate a high positive autocorrelation structure. 

Nonstationary data series are called auto-dependent rather than autocorrelated (Box 

and Narasimhan, 2010). 

Complex industrial processes show autocorrelations because of feedback control 

systems, random noise and process disturbances. However, most of the conventional 

MSPC techniques are based on the assumption that the process samples are 

independent of each other, i.e., stationary. If the dynamic information of the process is 

not incorporated into the model, the fault detection model may be misleading. Several 

enhancements have been proposed to improve the monitoring performances of 

dynamic processes that show autocorrelation and time-dependent data characteristics. 

A dynamic PCA (DPCA) model has been used for disturbance rejection and isolation 

for complex industrial processes (Ku, Storer and Georgakis, 1995). A DPCA model is 

extracted from data sets that have several lagged time data samples of each variable. 

Having lagged variation of the process inside the DPCA model extracts the 

autocorrelation of the process variables. Subsequent studies have utilised hybrid 

models comprising DPCA with ICA and kernel PCA to tackle nonlinearities (Jia et al., 

2010; Stefatos and Hamza, 2010). Rato and Reis (2013b) have discussed an extension 

for the determination of the number of lags and Vanhatalo et al. (2017) have proposed 

another one based on autocorrelation relationships. DPCA is designed to account for 

the dynamic structures. However, the resulting scores from DPCA may still be 

autocorrelated, and possibly cross-correlated (De Ketelaere, Hubert and Schmitt, 

2015). An autoregressive moving average (ARMA) filter was  applied to remove the 

autocorrelations and improve the model performance (Rato and Reis, 2013a). DPCA 

approaches are easy to implement as many existing models can be used. However, 

they may not efficiently model the correlated and dependent behaviours of the data 

(Kruger, Zhou and Irwin, 2004). 
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Figure 2.11: Example of a negatively correlated process 𝒙𝑡 = 8 − 0.8𝒙𝑡−1 + 𝝐𝑡, 

with (a) a time series plot, (b) an autocorrelation function for each lag.  

State-space model-based methods such as canonical variate analysis (CVA) take serial 

correlations into account in the dimension reduction step, which also aims to maximise 

of the correlation statistics (Negiz and Çinar, 1997; Russell, Chiang and Braatz, 

2000a). Subspace identification method based on a state-space model has been 

compared with DPCA and autoregressive model-based approaches (Xie and Kruger, 

2006). The subspace identification model has also been improved by using Kalman 

filters to capture further autocorrelation in the data. The state-space model-based 

methods can model both autocorrelation and cross-correlation of the data but it is 

difficult to determine the number of states.  

Adaptive/recursive methods and multi-phase models can also be applied to correlated 

data sets for monitoring purposes, as already discussed in Section 2.6.1.2. However, 

model updating of adaptive models is carried out blind, which may include data 
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exhibiting a fault. Furthermore, multiphase models require knowledge of the number 

of phases and the time intervals of the individual phases, which requires further 

advances in the modelling methods.  

2.6.1.4 Nonstationarity 

A time series is stationary if it displays the same statistical behaviour in time and can 

be characterised with a constant probability distribution whose joint probability 

distributions do not change with time. The stochastic properties of stationary processes 

are unaffected by time. Figure 2.12 represents examples of stationary and 

nonstationary processes.  
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Figure 2.12: Example of (a) a stationary process 𝒙𝑡 = 1 + 0.3𝒙𝑡−1 + 𝝐𝑡, and (b) a 

nonstationary process 𝒙𝑡 = 11 + 𝒙𝑡−1 + 𝝐𝑡 (adapted from (Montgomery, Jennings 

and Kulahci, 2015)). 

Generally speaking, when a complex industrial process operates under normal 

operating conditions, the variables follow a multivariate, stationary, stochastic process 
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approximately. However, through regulatory and feedback control, the recorded 

variables exhibit serial correlations, and time-varying and nonstationary 

characteristics. Typical causes of such nonstationarities may originate from changes 

in the operating conditions, grade changes, and variations in the feed rates. 

Furthermore, some variables of batch and fed-batch processes in the pharmaceutical 

industry typically exhibit nonstationary characteristics along with stationarities. For 

these processes, the variables are not strictly stationary and the statistical 

characteristics usually show slow time-varying behaviors. 

Even though time-varying and autocorrelated variables have been studied extensively 

by the MSPC techniques, nonstationary variables have received little attention until 

the last decade. One of the first reports of nonstationarity in process monitoring was 

in a publication on recursive PLS (RPLS) algorithm (Wang, Kruger and Lennox, 

2003). Here, the mean and variance of the processes were updated by RPLS. A well-

known ARIMA model can also model nonstationary variables; however, the training 

of multivariate models is difficult because of the number of parameters involved. It 

can also lead to loss of dynamic information from variable differencing. 

A promising tool to cope with the modelling of nonstationary variables is cointegration 

analysis, which has been adopted from econometrics. Cointegration analysis was used 

for process monitoring by Chen et al. (2009) following the first mention of its use for 

the monitoring of nonstationary processes by Xu et al. (2007); the study involved 

condition monitoring of a fluid catalytic cracking unit. This was followed by the 

publication of a cointegration-based method for process monitoring. Li et al. (2014) 

proposed metrics for monitoring techniques based on cointegration residuals using the 

TEP as an example; however, the method only used the nonstationary variables from 

all of the variables available to monitor the process. Fault diagnosis with cointegration 

analysis has more recently been employed on the TEP (Sun, Zhang, Zhao and Gao, 

2017). Use of a combination of common-trend and cointegration analysis with 

different performance metrics was proposed by Lin et al. (2017), which was 

subsequently enhanced with the Chigira procedure (Lin et al., 2019). However, this 

still required more than one control chart, based on statistical metrics, to be followed. 

The first application of cointegration analysis and conventional PCA to the study of 

batch processes used data from a penicillin simulation (Zhang, Zhao and Gao, 2019). 

Dominant trend-based logistic regression has also been compared to cointegration 
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analysis-based approaches for the study of nonstationary processes (Shang et al., 

2017).  

Although the methods mentioned above have proved to be effective, the application of 

the techniques apart from that in Zhang’s study has so far been limited to nonstationary 

variables (Zhang, Zhao and Gao, 2019). The models were built using only 

nonstationary variables. Therefore, any faults on stationary variables were not 

considered, which is against the fundamentals of MSPC. A common-trend model helps 

to monitor high-level nonstationary variables, which cannot be modelled by 

cointegration analysis. However, the use of a common-trend model as described by 

Lin required the determination and monitoring of several control charts, each 

comprised of 𝑇2 and SPE metrics. This creates contradictions when the control charts 

do not detect the same fault dynamics. Furthermore, the use of only cointegration 

analysis of nonstationary variables may not be sufficient to model high-level 

nonstationary variables such as batch processes. Therefore, a study is needed to extend 

the use of cointegration analysis within a monitoring scheme that can be applied to 

both stationary and nonstationary (including high-level) variables. 

2.7 Conclusions 

In this chapter, an overview of process performance monitoring has been given and a 

wide range of projection-based MSPC techniques for process monitoring has been 

presented. MSPC is an extensive monitoring tool that considers all variables together, 

unlike univariate SPC. Projection-based techniques such as PCA and PLS form the 

basis of MSPC owing to their dimension reduction and variance representation 

capabilities. Process monitoring with PCA-based approaches is constructed around 

two metrics namely, 𝑇2 and the SPE. However, the use of the SPE is preferred due to 

its use for residual space monitoring and its monitoring performance with 

nonstationary variables.  

Generally, complex industrial processes have various data characteristics, such as non-

Gaussian distributions, nonlinearities, autocorrelations and nonstationarities. To date, 

several studies have been carried out to address those specific problems in both 

continuous and batch processes. However, good process monitoring must deal not only 

with one data characteristic but all data behaviours simultaneously. Furthermore, the 

conveniences provided by MSPC such as the coverage of all variables throughout the 
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process and the requirement for only one control chart should not be given up. It is 

worth noting that one control chart can be based on several metrics such as 𝑇2 and 

SPE from the same source of signal. This being the case, a method that combines 

stationary and nonstationary variable modelling and retains the best features of MSPC 

is proposed as a means of monitoring complex industrial process, and will be described 

in the following chapters.  
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3. MODELLING OF NONSTATIONARY VARIABLES 

3.1 Overview 

Nonstationarity occurs in complex industrial processes due to, for example, seasonal 

changes, the presence of disturbances, operator inventions, etc. Fault detection by 

monitoring of nonstationary process data is becoming an increasing challenge. It is not 

possible to consider a complex process as stationary over all variables. However, 

dealing with nonstationary variables has only recently started to receive some 

attention.  

Wang et al. (2003) discussed the monitoring of processes that exhibited nonstationary 

and/or time varying behaviour. They showed that the application of RPLS algorithms 

together with a recursive structure for the mean and variances of the processes, 

together with confidence limits, had problems with detecting incipient faults (Wang, 

Kruger and Lennox, 2003). It is well-known that an ARIMA model can represent 

nonstationary variables (Box, Luceño and Paniagua-Quiñones, 2011); however, that 

comes with a vast computational burden for multivariate processes. It is also known 

that variable differencing, another approach to cope with nonstationarity, can lead to 

the loss of dynamic information.  

Cointegration analysis is a promising tool to model nonstationary variables by 

establishing long-run equilibria between nonstationary variables. The use of 

cointegration in process monitoring was proposed by Chen et al. (2009). Cointegration 

is arguably the most effective ways of handling the nonstationary characteristics of 

data, and was proposed to formulate the existence of linear equilibria (Engle and 

Granger, 1987). Applied economists used cointegration analysis to cope with the 

difficulties that arise when the data contains a unit roots, which indicates 

nonstationarity. It has been extensively used in the area of econometrics, and more 

recently, in several disciplines of science and engineering to ensure that it reflects any 

long-run information which can be easily removed via de-trending and differencing. It 

is also worthy of note that, Robert F. Engle and Clive Granger’s contribution of 

cointegration to econometric modelling and analysis was awarded a Nobel Prize for 

Economics in October 2003.  
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Cointegration has been studied intensely in areas where there are complex systems 

such as econometrics (Engle and Granger, 1987; Stock and Watson, 1988; Harris and 

Sollis, 2003; Kirchgässner and Wolters, 2007), structural health monitoring (Cross, 

Worden and Chen, 2011; Antoniadou, Cross and Worden, 2013), computational 

systems for tool wear monitoring (Wang et al., 2014) and process system engineering 

for process monitoring (Chen, Kruger and Leung, 2009; Sun, Zhang, Zhao and Gao, 

2017; Zhang, Zhao and Gao, 2019). Chen et al. (2009) demonstrated the use of 

cointegration analysis for the monitoring of an industrial distillation unit, which 

exhibited nonstationary behaviours. Recently, cointegration has also been used in 

combination with conventional PCA for monitoring of multi-phase batch processes 

(Zhang, Zhao and Gao, 2019). 

Even though cointegration is a powerful tool for the building of long-run relationships 

between time series, cointegration analysis can result in a low rank cointegration 

matrix, which does not allow the use of all latent stationary and nonstationary factors, 

even when the number of nonstationary variables is high. This issue can be solved 

through the use of a common-trend model. The common-trend model representation 

was proposed by Stock and Watson (1988) with the connection between cointegration 

and a common-trend model being derived by linear stochastic trends (Johansen, 1988; 

Stock and Watson, 1988). There exists a duality between common-trend and 

cointegration analysis. Cointegration analysis restricts the number of independent 

trends, namely the rank of the cointegration matrix, and the observed variables from 

all the independent trends. The rank of cointegration matrix also determines the 

number of the cointegration residuals vectors which is the basis of the cointegration 

residuals-based process monitoring methods. In order to extend the effectiveness of 

cointegration analysis and prevent loss of the ability to detect faulty process dynamics, 

a common-trend model can be used to form the independent trends. This was 

demonstrated for a continuous industrial melter process through the use of a common-

trend model implemented with a forecast recovery filter to obtain stationary factors 

(Lin, Kruger and Chen, 2017). This work was further extended with another study 

addressing the use of the Chigira procedure for the monitoring of nonstationary and 

dynamic trends for practical process fault diagnosis (Lin et al., 2019).  

In this chapter, the definition of nonstationarity is given and the different unit root tests 

that are used to determine if a variable is nonstationary or not are described. The 
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concept of cointegration and modelling techniques such as the Engle-Granger 

approach for a single equation method, and the Johansen test for multivariate systems 

are introduced with examples. 

3.2 Stationary and Nonstationary Time Series 

In the broadest sense, stationarity is a statistical property of data or a defined process 

that does not change over time. It is a common pattern in different science fields for 

approximation of complex phenomena. Therefore, it has become a common 

assumption for many practices and tools in time series analysis.  

Two different kinds of stationarity can be distinguished. If the common distribution 

function of a stochastic process does not change in time, the process can be categorised 

as strictly stationary. The strictly stationary concept is difficult to apply in practice; 

therefore, only weak stationarity and stationarity in the second moments are 

considered. Weak stationarity only requires the shift-invariance in time of the first 

(mean) and second (auto-covariance), moments for all time points. It implies that the 

process has the same mean at all-time points and the covariance between the variables 

at any two time points (𝒙𝑡, 𝒙𝑡+𝑘) depend only on 𝑘, not time.  

The types of stationarity of a stochastics process (𝒙𝑡) can be defined for the 

corresponding moments starting from the first moment, the mean, as given below 

(Kirchgässner and Wolters, 2007): 

 Mean stationary: If the expected value is constant for all 𝑡 (E[𝒙𝑡] = 𝜇) then 

the process is mean stationary. 

 Variance stationary: If the expected value is constant and finite for all 𝑡 

(var[𝒙𝑡] = cov[𝒙𝑡, 𝒙𝑡] = E[(𝒙𝑡 − 𝜇)
2] = 𝜎2 and 𝜎2 < ∞) then the process 

is variance stationary. 

 Covariance stationary: If the expected value is only a function, not dependent 

in time 𝑡 on the time difference between the corresponding two samples 

(cov[𝒙𝑡, 𝒙𝑘] = E[(𝒙𝑡 − 𝜇𝑡)(𝒙𝑘 − 𝜇𝑘)] = 𝑓(|𝑘 − 𝑡|)) , then the process is 

covariance stationary. 
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 Weak stationary: If a stochastic process is mean and covariance stationary, then 

it is weak stationary. In other words, the given stationary definitions describe 

the weak stationarity.   

Figure 3.1 illustrates types of weak stationarities.  

(a) (b) (c)

Time Time Time

xxx

 

Figure 3.1: Constancy in the mean and variance to illustrate weak stationarities. (a) 

stationary mean and stationary variance, (b) nonstationary mean and stationary 

variance, and (c) stationary mean and nonstationary variance. 

In time series analysis, the question of whether the model should be estimated by a 

single equation approach such as ordinary least squares (OLS) or as a system estimator 

where it is necessary to consider the underlying properties of the time series. A model 

containing nonstationary variables may lead to a problem of spurious regression 

(Harris and Sollis, 2003). Furthermore, nonstationary variables may lead to an increase 

in false alarm rates because of slow time-varying characteristics in process monitoring. 

Complex industrial processes rarely behave in a stationary manner (Ketelaere et al., 

2011). In econometrics, nonstationarity plays a vital role in affecting the performance 

of a financial time series model because of the time-varying characteristics. 

Consequently, helpful tools to handle nonstationary data have been heavily influenced 

by econometricians. 

Suppose a variable 𝑥𝑡 is generated by a first-order autoregressive (AR) process: 

 
𝒙𝑡 = 𝜃𝒙𝑡−1 + 𝝐𝑡   (3.1) 

 where, 𝒙𝑡 depends on the value at the previous time, 𝒙𝑡−1, and a disturbance (𝝐𝑡) is a 

normal distribution with zero mean and 𝜎2 variance. The variable 𝒙𝑡 is stationary if 

𝜃 < 1 and nonstationary if 𝜃 = 1. Moreover, if 𝜃 > 1, then it is nonstationary and 
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tends to ±∞. A unit root process defines a process whose first difference is stationary. 

Equation (3.1) can be described as a unit root process when 𝜃 = 1. Consequently, 

searching for the existence of the condition 𝜃 = 1 is called the unit root test. The 

difference between some of these processes is illustrated in Figure 3.2.  
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Figure 3.2 : Illustration of AR(1) processes (a) 𝜃 = 0.9, (b) 𝜃 = 1, (c) 𝜃 = 1.01 and 

𝜖~𝑁(0,0.12). 

A stationary series tends to return to its mean value and varies around the mean, while 

a nonstationary series might have different mean values for different samples through 

time. Assuming 𝜃 = 1 and rearranging Equation (3.1) with a starting initial value 

𝒙𝑡−𝑘: 

 

𝒙𝑡 = 𝒙𝑡−𝑘 +∑𝝐𝑡−𝑗

𝑘−1

𝑗=0

  (3.2) 

𝒙𝑡 is the current value and depends on the initial value and all disturbances produced 

by 𝝐 lie between 𝑡 − 𝑘 + 1 and 𝑡. The variance of 𝒙𝑡 is time dependent and 𝑡𝜎2 
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increases to infinity. Thus, it does not converge to a mean value and the expected time 

to return the original mean value is infinite.  

3.3 Testing for Unit Roots 

If a variable contains a unit root, then it is nonstationary and unless it combines with 

other nonstationary variables via methods like cointegration to form a stationary 

cointegration relationship, using it in methods or models that consist of stationary 

variables can be detrimental to the fault detection capability or could falsely imply the 

existence of a meaningful relationship.  

There are several ways of testing for the existence of a unit root. The Dickey-Fuller 

(DF) test and the extended, the version augmented DF (ADF) test will be the main 

focus here for testing the null hypothesis that the time series contains a unit root. Even 

though there are several tests that have been proposed, only four will be discussed in 

this section. 

3.3.1 The Dickey-Fuller Test 

The Dickey-Fuller (DF) test was the first unit root test proposed to test the null 

hypothesis that there is the presence of a unit root in an AR model of a given time 

series and thus the process is not stationary (Dickey and Fuller, 1979). The simplest 

form of the DF test can be defined by using AR(1): 

 
𝒙𝑡 = 𝜃𝒙𝑡−1 + 𝝐𝑡 (3.3) 

or 

 (1 − 𝐿)𝒙𝑡 = Δ𝒙𝑡 = (𝜃 − 1)𝒙𝑡−1 + 𝝐𝑡 (3.4) 

where Δ is a difference operator such that Δ𝒙𝑡 = 𝒙𝑡 − 𝒙𝑡−1, and 𝐿 is a lag operator 

where 𝐿𝒙𝑡 = 𝒙𝑡−1. Either variant of the test is applicable where the null hypothesis is 

 
𝐻0:    𝜃 ≥ 1 (3.5) 

versus the alternative hypothesis: 
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𝐻1:    𝜃 < 1 (3.6) 

A standard approach to test a hypothesis is the 𝑡-test. However, because of the 

nonstationarity of the data, the computed statistics do not follow a standard 𝑡-

distribution. Thus, a DF distribution can be calculated using the samples which are 

generated by Monte Carlo techniques. This procedure is achieved by fixing 𝜃 = 1 and 

then adding randomly generated 𝜖𝑡 to the normal distribution. The rejection 

percentages of the model are also calculated based on this approach. These are the 

critical values to reject a null hypothesis of a unit root at various significance levels 

such as 5% and 1% based on the DF distribution of 

 
(𝜃 − 1)/SE(𝜃) (3.7) 

where 𝜃 is an estimator of 𝜃 and SE(𝜃) is the standard deviation of the estimated 

parameter. Some critical values are tabulated in Table 3.1 for different models (Harris 

and Sollis, 2003). The DF test has two other versions which are different in terms of 

the model of the unit root test. These are based on Equation (3.4) with additional drift 

(𝑎0): 

 
Δ𝒙𝑡 = 𝑎0 + (𝜃 − 1)𝒙𝑡−1 + 𝝐𝑡 (3.8) 

and with drift and a deterministic time trend: 

 
Δ𝒙𝑡 = 𝑎0 + 𝑎1𝑡 + (𝜃 − 1)𝒙𝑡−1 + 𝝐𝑡 (3.9) 

The size and type of the test can significantly affect the results. Thus, a-priori 

knowledge or structured strategies can be used for the type of test to allow the best 

fitting test. Philips and Perron (Phillips and Perron, 1988) suggested a sequential 

testing procedure for the model types given in Table 3.1, and starts with the use of 

Equation (3.9) and continues with eliminating unnecessary nuisance parameters. The 

testing stops when the test can reject the null hypothesis of a unit root.  
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Table 3.1: Critical values of Dickey-Fuller tests for 𝑚 = 100 (Harris and Sollis, 

2003, p. 47). 

Model 
 

Hypothesis 
 Critical Values for 

  95% 99% 

Δ𝒙𝑡 = 𝑎0 + 𝑎1𝑡 + (𝜃 − 1)𝒙𝑡−1 + 𝝐𝑡  𝜃 = 1  −3.51 −4.04 

  𝜃 = 1, 𝑎1 = 0  6.49 8.73 

  
𝜃 = 1, 

𝑎0 = 𝑎1 = 0 
 4.88 6.5 

Δ𝒙𝑡 = 𝑎0 + (𝜃 − 1)𝒙𝑡−1 + 𝝐𝑡  𝜃 = 1  −2.89 −3.51 

  𝜃 = 1, 𝑎0 = 0  4.71 6.70 

Δ𝒙𝑡 = (𝜃 − 1)𝒙𝑡−1 + 𝝐𝑡  𝜃 = 1  −1.95 −2.60 

3.3.2 The Augmented Dickey-Fuller Test 

In the DF test, the parameter estimation might be biased because the test cannot 

guarantee that 𝝐𝑡 is white noise. Dickey and Fuller extended the DF test to the so-

called ADF test (Dickey and Fuller, 1981). The ADF test also covers AR(p) processes 

whereas the DF test is only for AR(1) processes. Assume that 𝒙𝑡 follows a 𝑝𝑡ℎ order 

AR process: 

 
𝒙𝑡 = 𝜙1𝒙𝑡−1 + 𝜙2𝒙𝑡−2 +⋯+𝜙𝑝𝒙𝑡−𝑝 + 𝝐𝑡 (3.10) 

or 

 
Δ𝒙𝑡 = 𝜃∗𝒙𝑡−1 + 𝜃1Δ𝒙𝑡−1 + 𝜃2Δ𝒙𝑡−2 +⋯+ 𝜃𝑝−1Δ𝒙𝑡−𝑝+1 + 𝝐𝑡 (3.11) 

where 𝜃∗ = (𝜙1 +⋯+ 𝜙𝑝) − 1, 𝜃𝑖 = (𝜙1 +⋯+𝜙𝑖) − 1 for 𝑖 = 1, … , 𝑝 − 1 and 

𝝐𝑡~𝑁(0, 𝜎
2). The null hypothesis which indicates that 𝑥𝑡 contains a unit root is: 

 
𝐻0:    𝜃

∗ ≥ 0 (3.12) 

in contrast with the alternative test: 
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𝐻1:   𝜃

∗ < 0 (3.13) 

The ADF t-statistic calculation is the same as given below: 

 
𝜃∗/SE(𝜃∗) (3.14) 

The critical values shown in Table 3.1 are still valid for the ADF test. However, it is 

only strictly accurate for large samples. Banerjee (Banerjee et al., 1993, p. 106) 

showed that the significance levels for small samples are not the same as those that are 

under the strong assumptions of the simple DF model. Based on Equation (3.11) with 

additional drift (𝑎0), the deterministic time trend is: 

 

Δ𝒙𝑡 = 𝜃∗𝒙𝑡−1 +∑ 𝜃𝑖Δ𝐱𝑡−𝑖
𝑝−1

𝑖=1
+ 𝑎0 + 𝑎1𝑡 + 𝝐𝑡 (3.15) 

Here, the choice of 𝑝 is important and should be sufficient to capture the correlation 

structure in the data. The selection of the lag variable 𝑝 has been discussed in several 

studies (Harris, 1992; Banerjee et al., 1993; Greene, 2017) as it affects rejection of the 

null hypothesis when it is true. According to the study by Said and Dickey (1984), the 

lag variable 𝑝 should be 𝑚1/3 where 𝑚 is the sample size.  

3.3.3 The Philips-Perron Test 

An alternative approach to the ADF test was suggested by Phillips and Perron (Phillips 

and Perron, 1988) termed the PP test. It differs from the ADF test by adding robustness 

to deal with correlations. The Phillip’s Z-test (𝑍(𝜏𝜇)) is the 𝑡-statistic associated with 

testing the null hypothesis 𝜃 = 1 in Equation (3.3) and is calculated as: 

 
𝑍(𝜏𝜇) = 

(𝑆𝜖/𝑆𝑀𝑙)𝜏𝜇  −
1

2
(𝑆𝑀𝑙

2 − 𝑆𝜖
2) {𝑆𝑀𝑙 [𝑀

2∑(𝒙𝑡−1 − 𝒙−1)
2

𝑀

𝑡=2

]

1/2

}

−1

 
(3.16) 

where 𝑥−1 is an additional term to ensure non-negativity for the estimation of 𝑆𝑀𝑙 (non-

negativity is not guaranteed for finite numbers of samples), and 
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𝑆𝜖
2 = 𝑀∑(𝝐𝑡)

2

𝑀

𝑡=1

 , 

𝑆𝑀𝑙
2 = 𝑀−1∑ (𝝐𝑡)

2
𝑀

𝑡=1
+ 2𝑀−1∑ ∑ 𝝐𝑡𝝐𝑡−𝑗

𝑀

𝑡=𝑗+1

𝑙

𝑡=1
 

(3.17) 

where 𝑙 is the lag truncation parameter to ensure that the autocorrelation of the 

residuals is fully captured. 

The critical values for this statistic are the same as for 𝜏𝜇 in Table 3.1 and 𝑍(𝜏𝜇) 

reduces the ADF test statistic (𝜏𝜇 ) when autocorrelation is not present. This also 

makes 𝑆𝜖/𝑆𝑇𝑙 = 1.  

In contrast to the ADF and PP tests, the Kwiatkowski, Philips, Schmidt and Shin 

(KPSS) test (Kwiatkowski et al., 1992) assumes that the null hypothesis is stationary 

around a mean or a linear trend while the alternative hypothesis is the presence of the 

unit root. This is a significant difference since it is possible for a time series to be 

nonstationary, and still have no unit root yet be trend-stationary. 

3.4 Cointegration 

For years, econometricians have not considered the effects of nonstationarity as they 

did not consider that economic time series data might be integrated. Granger (Granger 

and Newbold, 1974) showed that the use of traditional statistical procedures proposed 

for the investigation of stationary stochastic time series might be an issue in such 

situations.  

If a time series is differenced 𝑑 times to become a stationary time series, then it 

contains 𝑑 unit roots, and it is integrated of order 𝑑. It is denoted as 𝐼(𝑑). Assume that 

there are two time series 𝒙𝑡 and 𝒚𝑡 and both are 𝐼(𝑑). Generally, any linear 

combination of 𝐼(𝑑) time series will also be 𝐼(𝑑); however, if there is 𝜷 that defines 

regression between 𝒙𝑡 and 𝒚𝑡 where a disturbance term 𝝐𝑡 is defined as: 

 
𝝐𝑡 = 𝒚𝑡 − 𝜷𝒙𝑡 (3.18) 

then it has a lower order of integration such as 𝐼(𝑑 − 𝑏) where 𝑏 > 0. This 

phenomenon is termed cointegration of order (𝑑, 𝑏) between 𝒙𝑡 and 𝒚𝑡 by Engle and 
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Granger (1987). Consequently, if 𝒙𝑡 and 𝒚𝑡 were 𝐼(1) and 𝝐𝑡~𝐼(0), then this is called 

cointegration of order 𝐶𝐼(1,1). The introduction of cointegration has had a massive 

impact on econometrics and financial time series analysis and Engle and Granger were 

awarded the Nobel Prize for Economics in 2003 (NobelPrize.org, n.d.). 

The long-run properties of a time series are said to be cointegrated as they are linked 

to form an equilibrium relationship spanning the long-run. Thus, if 𝒙𝑡~𝐼(1) and 

𝒚𝑡~𝐼(0), then these cannot be cointegrated as 𝐼(0) suggests a constant mean while 

𝐼(1) tends to drift over time. As a result, an error term defined between 𝝐𝑡 = 𝒚𝑡 − 𝜷𝒙𝑡 

would not be a constant over any period of time. On the other hand, having a mixture 

of different order time series is possible in the case when three or more time series 

exist in the model. In this case, the cointegration order between them must be the lower 

order series for both bilateral and multivariate models (Engle and Granger, 1987).  

3.4.1 Cointegration in Single Equations 

The Engle-Granger (EG) approach or EG two-step method refers to a calculation of 

the bivariate cointegration model following (Engle and Granger, 1987): 

1. Assuming both time series have unit roots, find the linear approximated 

relationship between 𝒙𝑡 and 𝒚𝑡 via ordinary least squares (OLS). Find the 

errors (𝝐𝑡). 

2. Test 𝝐𝑡 for unit root existence via unit root test methods. 

In discussing cointegration, it has been shown that if two time series are 𝐼(𝑑) then the 

estimation of the long-run relationship between them can be represented with a static 

model: 

 
𝒚𝑡 = 𝜷𝒙𝑡 + 𝝐𝑡 (3.19) 

Estimation of 𝜷 in Equation (3.19) can be found by using OLS. It achieves a consistent 

estimate of the long-run steady-state relationship between variables. Furthermore, the 

OLS estimator is consistent in the presence of a deterministic trend. Consider Equation 

(3.19); the OLS estimator will be 

 

�̂� =
∑ 𝒙𝑡𝒚𝑡
𝑀
𝑡=1

∑ (𝒙𝑡)2
𝑀
𝑡=1

= 𝜷 +
∑ 𝒙𝑡𝝐𝑡
𝑀
𝑡=1

∑ (𝒙𝑡)2  
𝑀
𝑡=1

 (3.20) 
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To observe the convergence, assume 𝒚𝑡 = 𝜷𝑡 + 𝝐𝑡 as the estimator for the constant 

term (𝑡) converges at the usual rate, and consider 

 

𝑣𝑎𝑟(�̂�) = 𝜎𝜖
2 (

∑ 𝑡2𝑀
𝑡=1

(∑ 𝑡2𝑀
𝑡=1 )2

) = 𝜎𝜖
2 (

1

∑ 𝑡2𝑀
𝑡=1

) =
𝜎𝜖
2

𝑀(𝑀 + 1)(2𝑀 + 1)/6
 (3.21) 

This will converge to zero much faster than the usual OLS estimator with stationary 

𝐼(0) variables.  

The second step of the EG approach for testing the null hypothesis of whether or not 

𝒙𝑡 and 𝒚𝑡 are cointegrated is to check 𝝐𝑡~𝐼(1) against the alternative 𝝐𝑡~𝐼(0). Even 

though there are several methods to test this, Engle and Granger advocated the ADF 

test by using: 

 

Δ�̂�𝑡 = 𝜃
∗�̂�𝑡−1 +∑𝜃𝑖Δ

𝑝−1

𝑖=1

�̂�𝑡−1 + 𝑎0 + 𝑎1𝑡 + 𝝎𝑡 (3.22) 

where �̂�𝑡 is obtained by estimation of Equation (3.19) and 𝝎𝑡~𝑁(0, 𝜎
2). While testing 

with the ADF test, the inclusion of linear and/or constant terms in the test regression 

is a question that needs to be answered. Hansen’s results (Hansen, 1992) obtained 

using Monte Carlo experiments show that having a time trend in the test model results 

in a loss of test power, which leads to under-rejections whether �̂�𝑡 contains a 

deterministic trend or not. The test power indicates the probability that the test rejects 

the null hypothesis when the alternative hypothesis is true. Therefore, this form of 

testing should be based on 𝑎1 = 0. 

Furthermore, the standard DF tables tabulated in Table 3.1 tend to over-reject the null 

hypothesis for two reasons. Firstly, OLS estimates �̂�𝑡 to have the smallest variance that 

makes the �̂�𝑡 look as stationary as possible. Secondly, the test distributions are affected 

by the number of regressors (𝑛) which can also change by additional characteristics in 

the model type such as the trend and constant. MacKinnon (MacKinnon, 1991) 

proposed the critical values for the response surfaces given in Table 3.2 for particular 

tests for a set of parameters to link all of the problems mentioned via the following 

relation: 

 
𝐶(𝑝) = 𝜙∞ + 𝜙1𝑀

−1 + 𝜙2𝑀
2 (3.23) 
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where 𝐶(𝑝) is the 𝑝% critical value. For example, estimation of a 5% critical value 

for 105 observations and 𝑛 = 3 can be calculated as −3.74 − (8.35/105) −

(13.41/1052)  ≈ −3.82 where the calculation is given by Equation (3.22) with 

inclusion of a constant (𝑎0) but not a trend (𝑎1).  

Table 3.2: Response surfaces for critical values of the cointegration test 

(MacKinnon, 1991). 

𝑛  Model  
Significance 

level / % 
 𝜙∞  𝜙1   𝜙2 

1  

No constant, no 

trend 
 

1 

5 

10 

 

−2.56 

−1.93 

−1.61 

 

−1.96 

−0.39 

−0.18 

 

−10.04 

0.0 

0.0 

1  

Constant, no 

trend 
 

1 

5 

10 

 

−3.43 

−2.86 

−2.56 

 

−5.99 

−2.73 

−1.43 

 

−29.25 

−8.36 

−4.48 

1  Constant, trend  

1 

5 

10 

 

−3.96 

−3.41 

−3.12 

 

−8.35 

−4.03 

−2.41 

 

−47.44 

−17.83 

−7.58 

3  

No constant, no 

trend 
 

1 

5 

10 

 

−4.29 

−3.74 

−3.45 

 

−13.79 

−8.35 

−6.24 

 

−46.37 

−13.41 

−2.79 

 

For example, three times series taken from a dataset comprising interest rates in 

Canada (uk.mathworks.com, n.d.) are illustrated in Figure 3.3. Their 𝑡-statistics are 

calculated as [−0.6463,−0.068, 0.246] by the ADF test and the critical value is 

−1.947. Therefore, the null hypotheses for all three time series were accepted and they 

are all nonstationary. An OLS estimator resulted in 𝝐 = [+1.0 − 2.22 + 1.07]𝑿 +

1.23 for this particular estimation with 𝑛 = 3 where 𝑿 is the time series matrix of 

interest rates. Figure 3.3(b) shows the estimated cointegration relationship where the 

𝑡-statistic of the ADF test is −3.93, and thus the null hypothesis is rejected; therefore, 

the cointegrated data are stationary.  
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Figure 3.3: Illustration of (a)interest rates in Canada, and (b) the estimated 

cointegration relationship using the Engle-Granger model. 

3.4.2 Cointegration in Multivariate Systems 

Cointegration testing with a single equation can be quite problematic if there are 𝑛𝑛𝑠 >

2 nonstationary variables to be modelled where 𝑛𝑛𝑠 is the number of nonstationary 

variables. This arises because of the possibility that there is more than one 

cointegration relationship present and a single relationship can be misleading. On the 

other hand, the Johansen test allows use of more than one cointegration relationship 

by using a multivariate vector autoregression (VAR) model (Johansen, 1988). The 

maximum number of cointegration relationships that can be modelled is given by 

𝑛𝑛𝑠 − 1 and can be up to 11, as the calculated critical values for Johansen test models 
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is limited to 12 nonstationary variables in the current literature (Harris and Sollis, 

2003). 

Defining a vector 𝒛𝑡 of 𝑁 potentially endogenous variables as an unrestricted VAR 

model involving up to 𝑘 lags: 

 
𝒛𝑡 = 𝑨1𝒛𝑡−1 +⋯+ 𝑨𝑘𝒛𝑡−𝑘 + 𝒖𝑡 (3.24) 

where 𝒛𝑡 ∈  ℝ
𝑛𝑛𝑠×1 and 𝑨𝑖 ∈  ℝ

𝑛𝑛𝑠×𝑛𝑛𝑠 is a matrix of parameters where 𝒖𝑡~𝑁(0, 𝜎
2). 

It can be reformulated into a vector error correction model (VECM) from: 

 
Δ𝒛𝑡 = 𝚪1Δ𝒛𝑡−1 +⋯+ 𝚪𝑘−1Δ𝒛𝑡−𝑘+1 + 𝚷𝒛𝑡−𝑘 + 𝒖𝑡 (3.25) 

where 

 𝚪𝑖 = −(𝑰 − 𝑨1 −⋯− 𝑨𝑖),      𝑖 = 1,… , 𝑘 − 1
𝚷 = −(𝑰 − 𝑨1 −⋯− 𝑨𝑘)

 (3.26) 

Here, the VECM contains both short and long-run information of 𝒛𝑡 via the estimates 

of �̂�𝑖 and �̂�, respectively. As 𝚷 stands for the long-run information, it can be separated 

into two terms as follows: 

 
𝚷 = 𝜶𝚩𝑇 (3.27) 

where 𝜶 represents the speed of adjustment to a non-equilibrium and 𝚩 is a matrix of 

the long-run coefficients. Thus there are, 𝑛𝑛𝑠 − 1 cointegration relationships in the 

multivariate model which can be expressed as follows: 

 
𝝃𝑡 = 𝚩

𝑇𝒛𝑡−𝑘 (3.28) 

Assuming that 𝒛𝑡 is a vector of nonstationary 𝐼(1) variables, then the terms Δ𝒛𝑡−𝑖 (i.e., 

Equation (3.25)) are 𝐼(0). It follows that 𝚷𝑧𝑡−𝑘 must also be stationary and 𝐼(0) where 

𝒖𝑡 is already defined to be white noise and 𝒖𝑡~𝐼(0). Three cases can achieve this 

condition; first, all variables of 𝒛𝑡 are already stationary which it is not relevant in the 

present context; second is the instance where 𝚷 ∈  ℝ𝑛𝑛𝑠 × 𝑛𝑛𝑠 is a zero matrix because 

there are no linear combinations of 𝒛𝑡 that are 𝐼(0). The third and final case is the 

existence of 𝑟 cointegration vector in 𝚩 where it provides 𝚩𝑇𝒛𝑡−𝑘~𝐼(0). Here, 𝚩 forms 

𝑟 linearly independent combinations of the variables in 𝒛𝑡 where each is stationary 
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under the condition 𝑟 ≤ 𝑛𝑛𝑠 − 1. The remaining 𝑛𝑛𝑠 − 𝑟 columns of 𝚩 forms 

common-trends where they are 𝐼(1). To ensure 𝚷𝒛𝑡−𝑘 is 𝐼(0), only the cointegration 

vectors in 𝚩 must reflect Equation (3.25). The values of the 𝐼(0) vectors are arranged 

by 𝜶 with the smallest elements in the last 𝑛𝑛𝑠 − 𝑟 columns. Furthermore, Johansen 

showed that it is possible to combine some of the 𝐼(1) vectors with combinations of 

𝐼(2) variables to form stationary vectors known as polynomial cointegration. 

However, this may not be valid for all cointegration relationships. There is another 

way to use common-trend models in process monitoring, which will be discussed in 

the following sections. 

Consequently, testing for cointegration amounts to checking the rank of 𝚷 or finding 

the number of 𝑟 linearly independent columns for 𝚷. This estimation is also known as 

reduced rank regression because 𝑟 ≤ (𝑛𝑠 − 1), and it is usually not possible to apply 

ordinary regression techniques on Equation (3.25) and was proposed by Johansen 

(Johansen, 1988).  

As highlighted by Harris and Sollis, it is common to assume that the data are 

nonstationary and cointegration relationships need to be found to avoid the problem of 

spurious regressions (Harris and Sollis, 2003). In comparison to the field of 

econometrics, it is typical in process monitoring applications to assume that the data 

are stationary and so PCA-based techniques and a control chart based on 𝑇2 can be 

used. However, this is not valid in applications wherein the PCA-based techniques 

perform poorly in the modelling of nonstationary variables and 𝑇2 performs arguably 

poorer in comparison to the SPE for the monitoring of complex industrial processes. 

It is also possible that a cointegration relationship is present when there is a mix of 

𝐼(0), 𝐼(1) and 𝐼(2) variables in the model. Furthermore, stationary 𝐼(0) variables 

might well play a pivotal role in building a sensible long-run equilibrium between 

nonstationary variables (Johansen, 1995). However, this information is weakened by 

the current process monitoring techniques based on cointegration residuals.  

Equation (3.25) represents the VECM which is a combination of short and long-run 

characteristics that is a useful tool in econometrics. By regressing 𝒛𝑡−𝑘 and Δ𝒛𝑡 

separately and respectively on the right-hand side of Equation (3.29), the effect of 

short-run dynamics can be removed: 
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Δ𝒛𝑡 = 𝑷1Δ𝒛𝑡−1 +⋯+ 𝑷𝑘−1Δ𝒛𝑡−𝑘+1 + 𝑹0𝑡 (3.29) 

where 𝑹0𝑡 is difference errors, and 

 
𝒛𝑡−𝑘 = 𝑻1Δ𝒛𝑡−1 +⋯+ 𝑻𝑘−1Δ𝒛𝑡−1 + 𝑹𝑘𝑡 (3.30) 

where 𝑹𝑘𝑡 is the levels errors. Then, these two can be used to form residual matrices: 

 

𝑺𝑖𝑗 =
1

𝑀
𝑹𝑖𝑡𝑹𝑗𝑡

𝑇 , 𝑖, 𝑗 = 0, 𝑘 (3.31) 

Johansen (1988) showed that the eigenvectors corresponding to the first 𝑟 largest 

eigenvalues from the maximum likelihood estimation of 𝜷 are: 

 
|𝛌𝑺𝑘𝑘 − 𝑺𝑘0𝑺00

−1𝑺0𝑘| = 0 (3.32) 

where 𝝀 is an eigen matrix from the eigenvalues �̂�1 ≥ ⋯ ≥ �̂�𝑛𝑛𝑠 wherein the 

corresponding eigenvectors are �̂� = (�̂�1, … , �̂�𝑛) (�̂�
𝑇𝑺𝑘𝑘�̂� = 𝑰). The first 𝑟 elements 

of �̂� determines the linear combinations of the stationary relationship as �̂� =

(�̂�1, … , �̂�𝑟). These represent the cointegration vectors because the eigenvalues are the 

largest squared canonical correlation between 𝑹0𝑡 and 𝑹𝑘𝑡.To determine the rank 𝑟 the 

estimates of all distinct �̂�𝑖
𝑇𝒛𝑡(𝑖 = 1,… , 𝑛𝑛𝑠) are calculated. Here, the combination of 

𝐼(1) from 𝒛𝑡 and 𝐼(0) from Δ𝒛𝑡 elements of Equation (3.25) results in high 

correlations. Such a combination can only be created by the difference of 𝐼(1) and 

𝐼(0). Therefore, the cointegration vectors must in themselves be 𝐼(0) in order to 

achieve higher correlations. As a result, the magnitude of the eigenvalues (�̂�𝑖) 

represents how strongly correlated the cointegration relation is with the stationary part 

of the model. The remaining 𝑛𝑛𝑠 − 𝑟 combinations are theoretically uncorrelated as 

they still show 𝐼(1) characteristics as a common-trend where �̂�𝑖 = 0 for 𝑖 = 𝑟 +

1, … , 𝑛𝑛𝑠. Johansen (Johansen, 1992) also showed that the relationship between the 

eigenvalues and 𝜶 is given by: 

 
�̂�𝑖 = �̂�𝑖

𝑇𝑺00
−1�̂�𝒊 (3.33) 

where 
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�̂� = 𝑺0𝑘�̂� (3.34) 

Following the estimation of �̂�, the procedure can continue with the rank testing. The 

null hypothesis defined for 𝑛𝑛𝑠 − 𝑟 unit-roots remaining after 𝑟 cointegration vectors 

can be defined as follows: 

 
𝐻0:    𝜆𝑖 = 0,       𝑖 = 𝑟 + 1,… , 𝑛𝑛𝑠 (3.35) 

The trace statistics defined to test the null hypothesis, which is the comparison of the 

log of the maximised likelihood function of the restricted and unrestricted model where 

the restriction is the number of cointegration vectors denoted as 𝑟 can be defined as: 

 

𝜆𝑡𝑟𝑎𝑐𝑒 = −2 log(𝑄) = −𝑀 ∑ log (1 − �̂�𝑖)

𝑛𝑛𝑠

𝑖=𝑟+1 

 (3.36) 

where 𝑟 = 0,1, … , 𝑛𝑛𝑠 − 2, 𝑛𝑛𝑠 − 1 and 𝑄 is the ratio of the restricted maximised 

likelihood to the unrestricted maximised likelihood. Another test called the maximal 

eigenvalue or 𝜆𝑚𝑎𝑥 statistic also tests the significance of the largest 𝜆𝑟: 

 
𝜆𝑚𝑎𝑥 = −𝑀log (1 − �̂�𝑟+1) (3.37) 

where 𝑟 = 0,1, … , 𝑛𝑛𝑠 − 2, 𝑛𝑛𝑠 − 1. Both of them test the null hypothesis, which is the 

existence of 𝑟 cointegration vector against the presence of 𝑟 + 1 cointegration vectors. 

The dataset comprising interest rates in Canada, which is illustrated in Figure 3.3(a) 

was also evaluated with Johansen test. The Johansen test resulted in 𝑟 = 2 which is 

the maximum rank that it can take (𝑟𝑚𝑎𝑥 = 𝑛 − 1 = 3 − 1 = 2). The residuals were 

calculated as 𝝃𝑡 = 𝚩𝑇𝒛𝑡−1 = [
0.077
−2.14
2.056

  
1.753
−3.72
1.716

]

𝑇

𝒛𝑡−1 where 𝒛 is the time series matrix 

of interest rates. Figure 3.4 shows the estimated cointegration residuals where the 𝑡-

statistics of ADF test are −2.40 and −1.31 and the critical value is −1.239. Therefore, 

the null hypothesis is rejected and so, the data are stationary.  
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Figure 3.4: Illustration of estimated cointegration residuals using the Johansen 

model. 

3.4.3 Common-trend Representation 

Common-trends are present when the cointegration vectors do not establish stationary 

cointegration space between 𝒛𝑡−𝑘 and 𝚩. Another representation for the cointegrated 

variables is known as the common-trend representation or dynamic factor model 

proposed by Stock and Watson (Stock and Watson, 1988): 

 𝒛𝑡 = 𝜷⊥𝒙𝑡 + 𝝐𝑡
𝒙𝑡 = 𝒙𝑡−1 + 𝒖𝑡

 (3.38) 

where 𝝐𝑡 is a stationary time series, 𝜷⊥ ∈  ℝ
𝑛𝑛𝑠 × (𝑛𝑛𝑠−𝑟) is the loading matrix, 𝒙𝑡 ∈

 ℝ(𝑛𝑛𝑠−𝑟)×1 is a random walk process and 𝑢𝑡 is an independent identical distributed 

(IID) process. Even though, Stock and Watson’s model has a unique estimation 

procedure for the determination of 𝜷⊥, a common-trend representation will be used for 

further procedures. These are derived by establishing a connection between 

cointegration analysis and the common-trend model. More precisely, it was shown in 

Section 3.4.2 that 𝒛𝑡 could be modelled using Equation (3.24), where the cointegration 

matrix is given by calculating Equation (3.27). Here, 𝚩 consist of 𝜷 and the unused 

cointegration vectors, which have no cointegration relationship, retain the common-

trends. Furthermore, 𝜷⊥ ∈  ℝ
𝑛𝑛𝑠 × (𝑛𝑛𝑠−𝑟) is the orthogonal complement of 𝜷 ∈

 ℝ𝑛𝑛𝑠 × 𝑟 that helps to model common-trends (Lin, Kruger and Chen, 2017).  

Escribano and Pena (Escribano and Peña, 1994) demonstrated that the relationship 

between 𝜷⊥ and 𝜷 can be used to represent 𝒛𝑡 in the form of a Kasa decomposition: 
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𝒛𝑡 = 𝜷⊥[𝜷⊥

𝑇𝜷⊥]
−1𝜷⊥

𝑇𝒛𝑡 + 𝜷[𝜷
𝑻𝜷]−𝟏𝜷𝑻𝒛𝑡 (3.39) 

where 𝜷⊥
𝑇𝒛𝑡 and 𝜷𝑻𝒛𝑡 are the identified nonstationary and stationary factors, 

respectively. The further usage of the identified nonstationary factors for process 

monitoring is detailed in Chapter 4 to 6.  

3.5 Conclusions 

This chapter has discussed a wide range of topics about nonstationarity and the 

modelling techniques that are applicable to nonstationary data: cointegration starting 

from econometrics to process systems engineering. Even though some studies have 

proposed methods to deal with nonstationarity in the area of process monitoring, there 

had not been a breakthrough in the monitoring of nonstationary variables from 

complex industrial processes until the use of cointegration analysis. Its capability in 

nonstationary variable modelling has been proved not only in its main area of 

application, econometrics, but also in areas such as process system engineering and 

construction.  

The use of cointegration starts with the identification of the nonstationary variables. 

Several testing techniques have been introduced. The most well-known and popular 

tool is the ADF test because of its ease-of-use. The cointegration model can then be 

estimated by the Engle-Granger approach or the Johansen Test. In this modelling 

study, the Johansen test is favoured as it can be used to analyse multivariate variables. 

In contrast, some nonstationary characteristics might not be involved in the model by 

the Johansen test, which is mostly 𝐼(1) and 𝐼(2) series, and so can be modelled by the 

common-trend representation. Through the use of common-trend residuals-based 

process monitoring, the dynamic information remaining in the unused cointegration 

vectors can be used for monitoring.  
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4. MONITORING CONTINUOUS PROCESSES USING COINTEGRATION 

BASED APPROACHES 

4.1 Overview 

Continuous processes were the initial focus of MSPC techniques where the process 

variability is within defined limits to provide continuous excellence in manufacturing. 

Most MSPC techniques are implemented on continuous processes first then batch or 

fed-batch processes. 

Chapter 2 introduced the main concepts of MSPC and PCA based techniques within 

the broader literature. Some of the detailed descriptions of MSPC techniques in 

Chapter 2 are particularly relevant to this chapter. Classical MSPC aims to detect 

deviations of typical process behaviour during two distinct phases of the process 

measurements called offline training and online diagnosis. Offline training is model 

training which is the practice of retrospectively evaluating whether a previously 

completed process was statistically in-control. Likewise, online diagnosis is the 

practice of determining whether new observations from the process are in-control as 

they are obtained in real-time. During both phases, time dependence in the form of 

autocorrelation and/or nonstationarity can be present. Autocorrelation arises when the 

in control measurements within one-time series are not serially independent, while 

nonstationarity arises when the parameters governing a process, such as the mean or 

covariance, change over time. In this chapter, time dependency and nonstationarity 

will be the main focus.  

Control charts based on PCA have been successfully applied in high dimensional data 

sets when the data are not time-dependent. This is also called static PCA because the 

model contains no dynamic components when the training data set consists of samples 

for time 𝑡. Therefore, no attempt is made to model a relationship between variables at 

different time points (autocorrelations), and the PCA model cannot be adjusted for 

changes in the underlying parameters (nonstationarity). However, complex industrial 

processes show time dependency and nonstationary characteristics due to the use of 

feedback control systems, process disturbances, changes in the operating conditions, 

variations in the feed rates, etc. 
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DPCA is proposed as a solution to the problem of autocorrelated data by using 

different time points in the training data set and aims to extract independent noise from 

the uncorrelated variable space; however, it is still not a solution for nonstationarity. 

Cointegration and common-trend residuals-based process monitoring approaches offer 

solutions to the nonstationary data modelling problem.  

Starting from the first implementation of a cointegration residuals-based monitoring 

method, one of the main problems is that it is only applicable to nonstationary variables 

while complex industrial processes contain both stationary and nonstationary 

variables. The second problem is inefficiency in the modelling when higher level 

nonstationary time series are present. This can be solved by using common-trend 

residuals-based monitoring; however, it gives rise to another problem which is the 

increased number of control charts associated with all of different models. MSPC 

became a popular technique after SPC as it required fewer charts. Current methods 

reported in the literature require the usage of several control charts at the same time, 

which is a disadvantage compared to conventional MSPC approaches that only require 

a single control chart consisting of 𝑇2 and SPE performance metrics. To solve all these 

problems, a new multi-level multi-factor model based on cointegration analysis and a 

PCA model is proposed as a means of providing a single control chart composed of 

𝑇2 and SPE performance metrics for the monitoring of complex industrial processes 

exhibiting both stationary and nonstationary characteristics.  

In this chapter, a continuous stirred-tank heater (CSTH) is used to compare PCA, 

DPCA, cointegration residuals-based monitoring, common-trend residuals-based 

monitoring, and finally the new multi-level multi-factor method for monitoring of a 

continuous process. The performance of the methods presented is evaluated using 2 

different examples to assess the capability of the monitoring methods to detect 

different types of faults. 

4.2 Introducing the Continuous Stirred Tank Heater Simulator 

The continuous stirred tank heater system (CSTH) is a subsystem of the most advanced 

complex systems (Thornhill, 2008). The CSTH has been tested by several process 

performance monitoring techniques (Ding, 2008, 2014; Yu and Qin, 2008; Wang, Yin 

and Kaynak, 2014; Kundu, Kundu and Damarla, 2017). In the simulation of a CSTH, 

hot and cold water is mixed from the input pipes and then it is heated by steam through 
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a heating coil. Even though the simulation does not involve a chemical reaction, it 

comprises sensors, electrical units, valves and a heat exchanger. As the system can be 

described as second order plus a dead time, the time dependent and nonstationary 

characteristics can be seen through the time. A realistic model of a CSTH was 

proposed by Thornhill and validated on a pilot plant at the University of Alberta 

(Thornhill, Patwardhan and Shah, 2008).  

TC – Temperature Controller

TT – Temperature Transmitter

FC – Flow Controller

FT – Flow Transmitter

LC – Level Controller

LT – Level Transmitter

 

 

Figure 4.1: A schematic of the continuous stirred tank heater. 

The configuration of the system is illustrated in Figure 4.1. Because the CSTH is well 

mixed, the temperature of a liquid in the tank is the same as the temperature of a liquid 

in the outlet pipe. The tank has a circular cross section with a volume of 8 𝐿 and height 

of 50 cm. The inputs or utilities namely hot and cold water come from a shared service; 

therefore, the pressure of the water can fluctuate between 60 − 80 psi. Control valves 

in the plant have pneumatic actuators which use a compressed air supply with a 

pressure of 3 − 15 psi. Furthermore, the flow instruments are orifice plates with a 

differential pressure transmitter that works between a 4 − 20 mA output. 

The dynamic volumetric and heat balances are:  

 𝑑𝑉(𝑥)

𝑑𝑡
= 𝑓𝑐𝑤 + 𝑓ℎ𝑤 − 𝑓𝑜𝑢𝑡(𝑥) (4.1) 

where 𝑥 is the level, 𝑉 is the volume of water, 𝑓 represents the flow rate of the liquid 

where 𝑐𝑤, ℎ𝑤 and 𝑜𝑢𝑡 denote the cold water inlet, the hot water inlet and the outlet 

flow rates, respectively. Typically, there is expected to be a linear relationship between 
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the level and volume; however, the volume occupied by the heating coils in the lower 

half of the tank shows nonlinear characteristics. The top of the heating coils is 16.9 

cm from the base of the tank and above this height, the relationship between volume 

and level becomes linear.  

 𝑑𝐻

𝑑𝑡
= 𝑊𝑠𝑡 + ℎ𝑐𝑤𝜌𝑐𝑤𝑓𝑐𝑤 + ℎℎ𝑤𝜌ℎ𝑤𝑓ℎ𝑤 − ℎ𝑜𝑢𝑡𝜌𝑜𝑢𝑡𝑓𝑜𝑢𝑡(𝑥) (4.2) 

where 𝐻 is the total enthalpy in the tank, and ℎ and 𝜌 represent the specific enthalpy 

and density of the liquids, respectively. In the well-mixed case ℎ𝑜𝑢𝑡 = 𝐻/𝑉𝜌𝑜𝑢𝑡. The 

set temperatures for hot and cold water are 50 ℃ and 24 ℃, respectively. Here, the 

manual outlet valve was fixed at 50% under normal operating conditions and the flow 

rate (𝑚3𝑠−1), which was calculated empirically from experiments, is given by:  

 
𝑓𝑜𝑢𝑡(𝑥) = 10−4 ((0.1013√(55 + 𝑥)) + 0.02037) (4.3) 

where the outlet valve was 55 cm below the bottom of the tank and the head of the 

water. 0.1013 was calculated from the slope of the best fit straight line to the 

calibration graph for the outlet flow rate, and 0.02037 was determined from the 

vertical axis intercept. Furthermore, 𝑊𝑠𝑡 is the heat inlet flow rate from steam and it 

depends on the steam valve setting. Because of the heat exchange and heat transfer 

coefficient could not be measured, the relationship is determined empirically. The heat 

balance for steady-state operation with only cold water as the inlet with 𝑓𝑐𝑤 = 𝑓𝑜𝑢𝑡 is 

given by:  

 
𝑊𝑠𝑡 = ℎ𝑜𝑢𝑡𝜌𝑜𝑢𝑡𝑓𝑜𝑢𝑡(𝑥) − ℎ𝑐𝑤𝜌𝑐𝑤𝑓𝑐𝑤 (4.4) 

The calculation for 𝑊𝑠𝑡 is tabulated for values between 0 − 15.04 kJs−1 (Thornhill, 

Patwardhan and Shah, 2008). The cold water valve dynamics were found as a first 

order lag with time delay of 1 𝑠. and time constant of the valve is 3.8 𝑠. Therefore, the 

valve transfer function is: 

 

𝑀𝑉(𝑠) =
𝑒−𝑠

3.8𝑠 + 1
𝑂𝑃(𝑠) (4.5) 

where 𝑀𝑉(𝑠) is the valve position and 𝑠 represents a domain transformed by a Laplace 

transformation from a continuous time signal which can be represented as 𝑠 = 𝑗𝜔 in 
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the Fourier transform where 𝜔 is frequency and 𝑗 = √−1. In closed loop, 𝑂𝑃(𝑠) is the 

controller output while in open loop it is a valve demand signal applied to the valve. 

The inputs for electronic signals, which correspond to the steam and cold water valves, 

are in the range 4 − 20 mA. The measurements form the temperature, level and cold 

flow sensors are on the same scale. The variables utilised for process monitoring of 

the CSTH are listed in Table 4.1. 

Table 4.1: CSTH variables for process monitoring. 

Number  Definition  Number  Definition 

1  Cold water valve (𝑚𝐴)  8  Hot water valve (𝑚𝐴) 

2  Steam valve (𝑚𝐴)  9  Temperature (𝑚𝐴) 

3  Cold water temperature (𝑚𝐴)  10  Hot water temperature (𝑚𝐴) 

4  Cold water flow (𝑚𝐴)  11  Hot water flow (𝑚𝐴) 

5  Cold water flow (𝑚3 𝑠−1)  12  Hot water flow (𝑚3 𝑠−1) 

6  Temperature (℃)  13  Overflow 

7  Level (𝑚𝐴)  14  Level (𝑐𝑚) 

4.3 Monitoring Techniques for Continuous Processes 

4.3.1 Principal Component Analysis 

Figure 4.2 illustrates the relationship between data pre-treatment and a PCA model 

that uses all variables without considering the stationary characteristics of the data.  

Observations

𝑿 𝑵 

𝑴 

PCA 
Model

 

Figure 4.2: Illustration of the treatment of data , 𝑿, which comprises both stationary 

and nonstationary variables by PCA. 
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A PCA model has only one design parameter which is the number of principal 

components (PCs). A reliable model must represent sufficient explained variance to 

capture the fault signature while avoiding false alarms. It dictates the performance of 

the model built on the training data set in terms of type-I errors, which is the false 

alarm rate, and type-II errors, which is the missed fault rate. A description of the use 

of a PCA model for process monitoring is given in Section 2.3. Moreover, 𝑇2and SPE 

metrics are defined in Section 2.5 for further information. 

4.3.2 Dynamic Principal Component Analysis 

Correlated and dependent variables are one of the distinct characteristics of complex 

industrial process data. One way to address autocorrelation is to perform first-order 

differencing. However, this can cause issues in terms of the dynamic information of 

the data as parts of the data might be whitened after differencing. In the case of step 

faults, differencing will reveal the significant difference between the previous and 

current operating point. However, differenced time series reveal that change on only 

one sample as the step faults reach its final point in a consecutive time. Furthermore, 

a single sample that shows the step fault, can be considered as an outlier in the control 

chart as the process goes back to the normal operation region due to the feedback 

controllers.  

DPCA is an extension of PCA to handle autocorrelated data sets (Ku, Storer and 

Georgakis, 1995). It was a continuation of an earlier study where ARIMA models were 

used to fit the data to reduce cross-correlation between the variables (Ku, Storer and 

Georgakis, 1994). However, use of ARIMA models is complex as the number of 

parameters for each sub-model needs to be estimated for a high number of variables in 

a multivariate process. On the other hand, DPCA combines a PCA model’s ability to 

cope with high dimensionality and ARIMA’s lag operators to deal with 

autocorrelations. Assume that the data matrix for DPCA is: 

 
𝑿𝐿
𝑇 = [𝑿𝑡

𝑇 𝑿𝑡−1
𝑇  𝑿𝑡−2

𝑇 …𝑿𝑡−𝑙
𝑇  ] (4.6) 

where 𝑙 is the lag parameter and 
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𝑿𝑡
𝑇 =

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑁
⋮
⋮
⋮

⋱
⋮
⋮
⋮

𝑥𝑀,1 … 𝑥𝑀,𝑁]
 
 
 
 

, 𝑿𝑡−1
𝑇 =

[
 
 
 
 

0 0 0
𝑥1,1
⋮
⋮

⋱

𝑥1,𝑁
⋮
⋮

𝑥𝑀−1,1 … 𝑥𝑀−1,𝑁]
 
 
 
 

 (4.7) 

Time 
Shift

DPCA 
Model

Observations

𝑁 

𝑀 

Shifted Observations

𝑁 𝑁 𝑁 

𝑿𝑡
𝑇  𝑿𝑡−1

𝑇  𝑿𝑡−2
𝑇  

Shifting

𝑿𝑡
𝑇  

(a)

(b)

Observations

𝑿 𝑵 

𝑴 

𝑿 

𝑿𝑡−1 

𝑴 

𝑵 

𝑵 

 

Figure 4.3: (a) A schematic representation of DPCA use with variables lagged twice, 

[𝑿𝑡 𝑿𝑡−1 𝑿𝑡−2 ], and (b) DPCA use with variables lagged once, 𝑿𝑡−1,  with data, 𝑿,  

that comprises both stationary and nonstationary variables. 

The use of the lag operator for each variable is illustrated in Figure 4.3. One of the 

critical steps to provide a DPCA model is to select the number of the time lag shifts as 

it can profoundly affect the explained variance level per principal component. A 

simple way to determine the optimum number of the time lag shifts for a DPCA model 

is to examine the ACFs of each score. Depending on the existence of autocorrelation, 

an additional time lag shift can be added until enough lags have been added to 

sufficiently reduce the auto and cross-correlations between PCA scores. This does not 

aim to reduce all correlations starting from the first PC. It rather tries to create 
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correlated and correlation free score spaces. However, this is extremely cumbersome 

because of the number of variables. 

Consequently, Ku (Ku, Storer and Georgakis, 1995) provided an algorithm given in 

Table 4.2 to determine how many time lag shifts can define the new linear relationship 

(𝑟𝑛𝑒𝑤). It begins with no lags and sequentially increases the number of the lag until 

the maximum number of the time lag shifts is reached. The number of linear relations 

(𝑟𝑙) will be the total number of variables minus the number of PCs. When a new time 

lag shift does not reveal an important linear relationship between the PCs, the 

algorithm stops and the previous lag number is selected. The suggested time lag shift 

is typically one or two. For example, the algorithm suggests use of 𝑙 = 1 for a 

continuous stirred tank reactor simulation which has 7 variables (Malik, 1998).  

Table 4.2: Linear relationship determination algorithm for dynamic principal 

component analysis (Ku, Storer and Georgakis, 1995). 

1: Set the lag parameter 𝑙 = 0. 

2: Form the new data matrix 𝑿𝐿
𝑇 = [𝑿𝑡

𝑇 𝑿𝑡−1
𝑇  𝑿𝑡−2

𝑇 …𝑿𝑡−𝑙
𝑇  ]. 

3: Perform PCA and calculate all the principal component scores. 

4: Set the comparison index 𝑗 = 𝑁(𝑙 + 1) and relation rank 𝑟𝑙(𝑙) = 0 where 𝑁 

is the number of variables. 

5: If 𝑗th eigenvalue from PCA nearly equal to zero, then continue to Step 7. 

6: Set 𝑗 = 𝑗 + 1 and 𝑟𝑙(𝑙) = 𝑟𝑙(𝑙) + 1, then go back to Step 5. 

7: Calculate number of a new relationship between PCs: 

 

𝑟𝑛𝑒𝑤(𝑙) = 𝑟𝑙(𝑙) −∑(𝑙 − 𝑖 + 1)𝑟𝑛𝑒𝑤(𝑖)

𝑙−1

𝑖=0

 (4.8) 

8: If 𝑟𝑛𝑒𝑤(𝑙) ≤ 0, then go to Step 10, otherwise, go to next step. 

9: Set 𝑙 = 𝑙 + 1, then go to Step 2. 

10: Stop 

 

DPCA provides dynamic modelling but it does not aim to give uncorrelated score 

variables. The score variables will still be autocorrelated and probably cross-correlated 

even though there is no cross-correlation present between variables. Furthermore, 

another significant but mostly ignored feature explained by Ku is “For a dynamic 

system, after properly selecting the number of constraining relations, 𝑄-statistics can 

be calculated from the independent noise space. If data are auto-correlated, 𝑇2 will 

still be calculated from the correlated variables. Since 𝑇2 represents the movement of 
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the data in the multidimensional space, it contains important information about the 

process although the variables from which it is calculated are not independent”. The 

take-home message from here is to use the independent noise space to determine a 

𝑆𝑃𝐸 metric. Therefore, after choosing an appropriate number of principal components, 

the training data can be transformed into loading and score matrices: 

 

𝑿𝐿 = ∑𝒑𝑟𝒕𝑟
𝑇

𝑅

𝑟=1

+ 𝑬 = 𝑷𝑻𝑇 + 𝑬 (4.9) 

It follows that the determination of 𝑇2 which is given by: 

 
(𝑻𝟐)𝐷𝑃𝐶𝐴 = 𝑿

𝑇𝑷𝚲−1𝑿𝑇𝑷𝑇𝑿 (4.10) 

In the Q-statistic monitoring, the use of independent noise space is equivalent to 

uncorrelated score variables. Therefore, some modification is needed to the 𝑆𝑃𝐸 

equation as follows: 

 
𝑺𝑷𝑬𝑃𝐶𝐴 ≅ ‖(𝑰 − 𝑷𝑖𝑛𝑑𝑷𝑖𝑛𝑑

𝑇 )𝑿‖ (4.11) 

where 𝑷𝑖𝑛𝑑 consist of loading vectors which correspond to the independent space. 

Similarly, the upper limit calculation in Equation (2.17) and (2.18) can be performed 

using a modified calculation of 𝜃:  

 

𝜃𝑖 = ∑ 𝜆𝑘
𝑖

𝑅𝑖𝑛𝑑

𝑘=1

, 𝑖 = 1,2,3  (4.12) 

where 𝑅𝑖𝑛𝑑 is the number of independent score vectors. 

4.3.3 Cointegration Residuals-based Process Monitoring 

In complex industrial processes, cointegration models can describe the long-run 

relationships between variables of the process operating under normal conditions. The 

cointegration model can provide the stationary residuals space from the nonstationary 

variables as long as the working conditions for the trained model are not changed. 

However, it breaks the long-run equilibrium when a fault occurs and the residual 

sequence might become nonstationary. 
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Process monitoring of nonstationary variables using cointegration residuals, illustrated 

in Figure 4.4., was proposed by Chen et al. (2009), and the control limits were 

proposed by Li et al. (2014). Before starting to train the models, the number of 

nonstationary variables (𝑛𝑛𝑠) needs to be known for the nonstationary variables, 

𝑿𝑁𝑆 ∈  ℝ
𝑛𝑛𝑠 × 𝑀. This can be achieved using the unit root tests introduced in Section 

3.3. The cointegration model can be defined as a long-run equilibrium of the process 

when the process operates under normal conditions. The Johansen test is the most 

common multivariate cointegration tool introduced in Section 3.4.2 to find the 

cointegration matrix 𝜷. 
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Figure 4.4: Illustration of process monitoring method based on cointegration 

residuals. 

It has been shown that 𝐼(1) variables (𝒙𝑡) can combine with the cointegration matrix 

to estimate stationary residuals as given below: 

 
𝝃𝑡 = 𝜷

𝑇𝑿𝑁𝑆 (4.13) 

where 𝝃𝑡 is called the residual equilibrium sequence and 𝜷 = (𝜷(1), 𝜷(2), … , 𝜷(𝑅)) is 

the cointegration matrix under the condition 𝝃𝑡 = 𝜷𝑇𝑿𝑁𝑆~ 𝐼(𝑑 − 𝑏) where 𝑑 ≥ 𝑏 >

0. 𝑅 describes the rank cointegration relationship. 
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The 𝑇2 metric for cointegration residuals-based monitoring proposed by Li et al. 

(2014) is based on a residual equilibrium series as follows: 

 (𝑻𝟐)𝐶𝐴 = 𝝃𝑡
𝑇𝜦𝐶𝐴

−1𝝃𝑡 (4.14) 

where 𝚲CA = ∑ 𝝃𝑘
𝑇𝝃𝑘

𝑀
𝑘=1 /𝑀 is the sample covariance matrix of the residuals and 𝑀 is 

the sample size. 𝑇2 shows the changes in the variation of the common stationary 

variables on the nonstationary variables (𝑿𝑁𝑆). Similar to the well-known 𝑇2, the F-

distribution is also used for providing the control limits: 

 𝑅(𝑀 − 1)(𝑀 + 1)

𝑀(𝑀 − 𝑅)
𝐹𝛼(𝑅,𝑀 − 𝑅) (4.15) 

where 𝛼 is the significance level of the F-distribution 𝐹𝛼(𝑅,𝑀 − 𝑅) with degrees of 

freedom, 𝑅 and 𝑀 − 𝑅. The Johansen test guarantees that the residuals from the first 

𝑅 cointegration vectors are stationary. The remaining 𝑛𝑁𝑆 − 𝑅 cointegration vectors 

still represent a significant portion of the process characteristics where it consists of 

the variables of 𝐼(1) and 𝐼(2). In some cases, the Johansen test may result in a smaller 

number of cointegration vectors that might cause loss of effectiveness of monitoring 

of nonstationary variables. In such circumstances, a common-trend model is a helpful 

tool to evaluate the unused cointegration relationship estimated by the Johansen test. 

4.3.4 Cointegration and Common-trend Residuals-based Process Monitoring 

The use of common-trend residuals for process monitoring was introduced by Lin (Lin, 

Kruger and Chen, 2017). The key feature of their model is that it included the common-

trend residuals in addition to cointegration residuals. However, it is noted that the 

combined monitoring schemes require separate control limits and charts to monitor the 

common-trend and cointegration residuals, as illustrated in Figure 4.5.  

A common-trend model requires cointegration analysis to generate the cointegration 

matrix. It requires a set of vectors 𝜷⊥ ∈  ℝ𝑛𝑛𝑠×(𝑛𝑛𝑠−𝑅) such that it is perpendicular to 

the cointegration matrix 𝜷 ∈  ℝ𝑛𝑛𝑠×𝑅 and [𝜷, 𝜷⊥] has full rank. Therefore, 𝜷⊥ is the 

orthogonal complement of 𝜷 and is termed the common-trend loading matrix. 

Common-trend residuals can be represented as: 

 
𝒆𝑡 = 𝜷⊥𝑿𝑁𝑆 (4.16) 
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where 𝒆𝑡 represents the nonstationary residuals from cointegration analysis. The 

residuals represent the stochastic trends caused by nonstationarity but were not 

involved in the residuals for cointegration analysis. As 𝜷⊥ is the complement of 𝜷, the 

rank is dependent on 𝜷, which is proven in Section 3.4.3. 
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Figure 4.5: Illustration of process monitoring method based on common-trend and 

cointegration residuals.  

Nonstationary factors that were obtained from the common-trend model are not 

involved in the cointegration analysis residuals due to nonstationarity but they are still 

integrated of order 𝑑 = 1 (Lin, Kruger and Chen, 2017). The difference operator 

converts 𝑑 = 1 variables into stationary by using ∆𝒆𝑡 = 𝒆𝑡 − 𝒆𝑡−1 where ∆𝒆𝑡 is 

stationary. A sample point of 𝒆𝑡 can be represented via a 𝑉𝐴𝑅(𝑝) process: 
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𝒆𝑡 = 𝑨1𝒆𝑡−1 +⋯+ 𝑨𝑝𝒆𝑡−𝑝 + 𝝇𝑡 (4.17) 

where 𝑨1, 𝑨2, … , 𝑨𝑝 are the autoregression matrices and 𝝇𝑡 denotes a random error 

vector which has a multivariate normal distribution with 𝑁(0, 𝚲𝐶𝑇). The VECM can 

be obtained after the subtraction 𝒆𝑡−1 from both sides of Equation (4.17) and 

rearrangement of the terms as follows: 

 
∆𝒆𝑡 = 𝚷𝒆𝑡−1 +𝜣1∆𝒆𝑡−1 +⋯+𝜣𝑝−1∆𝒆𝑡−𝑝+1 + 𝝇𝑡 (4.18) 

where  

 
𝜫 = −(𝑰𝑛𝑛𝑠 − 𝑨1 −⋯𝑨𝑝)                                   

𝜣𝑖 = −(𝑨𝑖+1 +⋯+ 𝑨𝑝),          𝑖 = 1,… , 𝑝 − 1
 (4.19) 

Here, 𝝇 is stationary and does not contain any serial correlation as it is whitened by the 

autoregression. Hence, it is useful to use as a source for the monitoring metrics. The 

𝑇2 metric can also be defined for 𝝇 as below: 

 
𝑻𝐶𝑇
2 = 𝝇𝑡

𝑇𝜦𝐶𝑇
−1𝝇𝑡 (4.20) 

where 𝚲CT = ∑ 𝝇𝑘
𝑇𝝇𝑘

𝑀
𝑘=1 /𝑀 is the sample covariance matrix of the residuals where 𝑀 

is the sample size. 𝑻𝐶𝑇
2  shows the variation of the change of the nonstationary variables 

in the model. Furthermore, the control limits can be determined as follows: 

 (𝑛𝑛𝑠 − 𝑅)(𝑀 − 1)(𝑀 + 1)

𝑀(𝑀 − 𝑛𝑛𝑠 + 𝑅)
𝐹𝛼(𝑛𝑛𝑠 − 𝑅,𝑀 − 𝑛𝑛𝑠 + 𝑅) (4.21) 

where 𝛼 is the significance level of the F-distribution 𝐹𝛼(𝑛𝑛𝑠 − 𝑅,𝑀 − 𝑛𝑛𝑠 + 𝑅) with 

degrees of freedom 𝑛𝑛𝑠 − 𝑅 and 𝑀 − 𝑛𝑛𝑠 + 𝑅.  

A nonstationary time series can be converted into a stationary time series by first-order 

differencing but that might also cause some loss in information related to the process 

dynamics as discussed in earlier sections. Lin et al. (2017) proposed the use of a 

forecast recovery filter based on vector autoregressive moving average (VARMA) 

model. Filtering has two issues: first, it is specifically designed for step faults. 

Secondly, it is often not practical to realise step changes in the process systems. As a 

result, having a differenced relatively small number of variables has the same impact 

as much as having highly specialised filtering.  
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On the other hand, a relatively small number of variables that have common-trends 

might be close to 1 or sometimes 0; thus, having only a common-trend model for 

monitoring will not be the answer for effective monitoring of nonstationary processes. 

Accordingly, this gives rise to the search for a multi-level multi-factor model that can 

cover all type of characteristics in the processes, which requires only one control chart 

to be monitored.  

4.3.5 Multi-level Multi-factor Process Monitoring Model 

A multi-level multi-factor model, which covers all types of data characteristics, and 

requires only one monitoring chart is needed. A single chart based on 𝑇2 and SPE 

metrics is easier to monitor than multiple charts; the latter may clash in terms of 

identifying a sample as an abnormality or an outlier. Having a multi-level multi-factor 

model that uses specific models for different type of data characteristics will also 

provide enhanced performance in terms of earlier detection of faults and increased 

fault detection rates compared to conventional and cointegration residual-based 

approaches, which focus only on the nonstationary variables.  

The multi-level multi-factor process monitoring model consists of two modelling 

levels and a data pre-treatment stage to identify the stationary of the data. The two 

modelling levels include three techniques namely conventional PCA, cointegration 

residuals-based process monitoring and common-trend residuals-based process 

monitoring. The sequence of the procedure is illustrated in Figure 4.6. Level 

assignment helps to build a monitoring chart that allows the monitoring of all of the 

process using a single chart. More precisely; firstly, conventional PCA is a well-known 

and useful tool for process monitoring, which can deal with stationary and IID 

variables. However, PCA cannot be used with time-varying and nonstationary data, 

which has been discussed in several studies (Ku, Storer and Georgakis, 1995; Chen, 

Kruger and Leung, 2009; Li, Qin and Yuan, 2014; Shang et al., 2017). Secondly, 

cointegration residuals-based process monitoring is a useful tool when nonstationary 

variables are considered. However, there can be issues with cointegration analysis such 

as a low or zero cointegration rank, when the nonstationary variables exhibit high-

level nonstationarity, which limits the effectiveness of cointegration analysis. 
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Figure 4.6: Illustration of process monitoring method based on a multi-level multi-

factor model. 
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Moreover, a cointegration relationship might not exist for high cointegration degrees 

such as 𝐼(2) in combination with 𝐼(1) (Lin, Kruger and Chen, 2017). It increases the 

possibility of having common-trends in the cointegration analysis, which cannot be 

used in cointegration residuals. Lastly, common-trends residuals are helpful whereby 

the cointegration degree is high and cointegration analysis is enough to tackle all 

nonstationary variables. However, no studies have demonstrated that common-trends 

always exist or that common-trend residuals-based approaches will be superior to 

cointegration residuals-based approaches for process monitoring.  

Prior to building the multi-level multi-factor model, the ADF test is applied to the 

variables (𝑿) collected from a complex industrial process. The ADF test searches for 

the unit root of the following regression model: 

 

Δ𝒙𝑡 = 𝜃∗𝒙𝑡−1 +∑ 𝜃𝑖Δ𝒙𝑡−𝑖
𝑝−1

𝑖=1
+ 𝝐𝑡 (4.22) 

where 𝑝 is the order of the AR model, 𝜃∗ = (𝜙1 +⋯+ 𝜙𝑝) − 1, 𝜃𝑖 = (𝜙1 +⋯+

𝜙𝑖) − 1 for 𝑖 = 1,… , 𝑝 − 1, 𝝐𝑡~𝑁(0, 𝜎
2), for the AR parameter 𝜙 and Δ𝒙𝑡 = 𝒙𝑡 −

𝒙𝑡−1. The null hypothesis of the existence of the unit root where 𝜃∗ = 1 compares the 

test against the alternative hypothesis with the presence of the stationarity under the 

condition 𝜃∗ < 1. This will result in identification of the variable as nonstationary or 

stationary, and so is called variable identification. Further information about unit root 

tests is given in Section 3.3.  

The first level of the technique starts with cointegration analysis on the nonstationary 

variables (𝑿𝑁𝑆 = [𝒙𝑁𝑆
(1)
, … , 𝒙𝑁𝑆

(𝑛𝑛𝑠)]
𝑇

 ∈  ℝ𝑛𝑛𝑠×𝑀). Cointegration residuals from the 

long-run equilibrium can be generalised as follows: 

 
𝝃 = 𝜷𝑻𝑿𝑁𝑆 (4.23) 

where 𝜷 is the cointegration matrix and if it has rank 𝑅 such that 𝜷 ∈  ℝ𝑛𝑛𝑠×𝑅 =

[𝛽(1), 𝛽(2), … , 𝛽(𝑅)], it represents 𝑅 linearly independent stationary vectors from the 

cointegration analysis; therefore 𝝃 ∈  ℝ𝑅×𝑀 describes stationary factors that can be 

modelled using PCA in the 2nd level. Estimation of 𝜷 can be done by following 

Equation (3.27) in Section 3.4.2. 
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Another stationary factor produced in the 1st level by cointegration analysis comes 

from the common-trend residuals which can be represented as  

 
𝒆 = 𝜷⊥𝑿𝑁𝑆 (4.24) 

where 𝒆 represents the nonstationary residuals. The residuals represent the stochastic 

trends caused by nonstationarity but were not involved in the residuals for 

cointegration analysis. As 𝜷⊥ is the complement of 𝜷, the rank is dependent on 𝜷. The 

stationary factors from the common-trend model (𝝇) can be determined after auto 

regression whitens them as represented in the previous section. 

The last stationary factor produced in the 1st level arises from conventional PCA. The 

stationary factors or t-scores (𝑻𝑆) can be derived by the PCA model as follows 

 

𝑿𝑆 = ∑𝒑𝑟𝒕𝑟
𝑇

𝑅𝑆

𝑟=1

+ 𝑬𝑆 = 𝑷𝑆𝑻𝑆
𝑇 + 𝑬𝑆 (4.25) 

where 𝑿𝑆 ∈  ℝ𝑛𝑠×𝑀, 𝑛𝑠 is the number of stationary variables determined by the ADF 

test, and 𝑷𝑆 is the loading matrix with 𝑬𝑆 being the estimation error matrix. 𝑅𝑆 is the 

maximum number of principal components under the condition of 𝑅𝑆 = min (𝑛𝑠, 𝑀).  

The second and final level of the multi-level multi-factor model combines the factors 

from the 3 sub-models from 1st level, which are all stationary and hence can be 

analysed by PCA. The stationary factors can be described as follows: 

 
�̃� = [𝝃, 𝝇, 𝑻𝒔] (4.26) 

Similar to the PCA model described previously, it uses the same SVD or NIPALS 

decomposition to give: 

 

�̃� =  ∑ 𝒑𝑟𝒕𝑟
𝑇

𝑅𝑆𝑒𝑐

𝑟=1

+ �̃� = �̃��̃�𝑇 + �̃� (4.27) 

Here, the number of factors involved in �̃� varies depending on the percentage of the 

explained variance chosen for the PCA model and the rank of the cointegration 

analysis in the 1st level.  
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The 𝑇2 performance monitoring metric, which covers all process variables can be 

stated as follows: 

 
𝑻2 = �̃�𝑇�̃�𝚲−1�̃�𝑇�̃� (4.28) 

where 𝜦 = 𝑻𝑇𝑻/(𝑀 − 1) is the sample covariance matrix under the condition that the 

process is normal and the data has a multivariate normal distribution. Hence, 𝑇2 

becomes related to a 𝐹 distribution: 

 𝑅𝑆𝑒𝑐(𝑀 − 1)

(𝑀 − 𝑅𝑆𝑒𝑐)
𝐹𝑅,(𝑀−𝑅𝑆𝑒𝑐);𝛼 (4.29) 

where 𝐹𝑅,(𝑀−𝑅);𝛼 is the 𝐹 distribution with 𝑅 and (𝑀 − 𝑅) degrees of freedom and 𝛼 

is the significance level of the 𝐹 distribution. The 𝑇2 metric measures the distance of 

the sample to the origin in PC subspace which can be explained by the model 

parameters. On the other hand, the SPE metric measures variability which breaks the 

typical process correlation indicated by an abnormal situation based on a squared 

difference between the observed and the predicted values from the normal 

representation and can be defined as follows: 

 𝑄𝑖 = 𝑆𝑃𝐸𝑖 = (𝑥𝑖 − �̂�𝑖)
2 = (𝑥𝑖 − �̃��̃�𝑖

𝑇)
2
 (4.30) 

where 𝒙𝑖 and �̂�𝑖 are the original and estimated variable vectors for the 𝑖𝑡ℎ sample, and 

�̃�𝑖 is the score vector for the 𝑖𝑡ℎ sample of �̃�. The upper control limits for the SPE 

under a significance level 𝛼 can be calculated (Jackson and Mudholkar, 1979) via: 

 

𝑄𝑖 = 𝜃1 (
𝑧(1−𝛼)√2𝜃2ℎ0

2

𝜃1
+
𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 + 1)

1
ℎ0

  (4.31) 

where 𝜃𝑖 = ∑ 𝜆𝑘
𝑖𝑁

𝑘=𝑅+1 , 𝑖 = 1,2,3 and ℎ0 = 1 − (2𝜃1𝜃3)/(3𝜃2
2 ). Here, 𝜆𝑘

𝑖  is the 

eigenvalue from residuals, 𝑖 and 𝑘 refer indexes of the power and largest eigen 

order, 𝑧(1−𝛼) is the standard normal deviate or z-score regarding (1 − 𝛼) percentile. 

This limit is derived under the condition that a sample vector 𝒙 from �̃� follows a 

multivariate normal distribution.  
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The first part of the multi-level multi-factor model requires offline training of the 

model with the data that was gathered under normal steady-state conditions. The 

critical steps of the proposed multi-level multi-factor model are listed in Table 4.3.  

Table 4.3: Offline training of the multi-level multi-factor model. 

1: Identify the stationarity and nonstationarity of each variables using the ADF 

test. 

2: Set up nonstationary (𝑿𝑁𝑆) and stationary (𝑿𝑆) variables matrices. 

3: Use Equation (3.25) to obtain 𝜷. 

4: Calculate 𝝃 via Equation (4.13) 

5: Find 𝜷⊥ and calculate 𝒆 via Equation (4.16) and then whiten 𝒆 via Equation 

(4.18) to find 𝝇. 

6: Use Appendix-A on (𝑿𝑆) to find 𝑻𝑠 via Equation (4.25). 

7: Set up stationary factors (�̃�) via Equation (4.26) 

8: Use Appendix-A on (�̃�) to find �̃� via Equation (4.27). 

9: Calculate the upper control limits. 

 

Following the determination of the model and the upper control limits, online process 

monitoring can then be conducted as listed in Table 4.4. 

Table 4.4: Online process monitoring using the multi-level multi-factor model. 

1: For each sampling point (𝑡). 

2: Calculate 𝝃𝑡 via Equation (4.13) 

3: Calculate 𝝇𝑡 via Equation (4.16) then Equation (4.18) 

4:  Calculate 𝑻𝑠𝑡 via Equation (4.25). 

5:  Set up stationary factors (�̃�𝑡) via Equation (4.26) 

6:  Calculate �̃�𝑡 via Equation (4.27). 

7:  Calculate 𝑇2 via Equation (4.28) and SPE via Equation (4.30) 

8:  If the sampling point exceeds the defined upper limits, then raise an 

alarm 

9: End if it is the last point 

 

4.4 Application to Continuous Stirred Tank Heater 

The purpose of the use of the CSTH is to evaluate the effectiveness of the models on 

different types of errors. Here, closed-loop control is implemented in the standard form 

of a proportional plus integral (PI) controller for both level and temperature control. 

Even though the initial variables are described in the paper by Thornhill et al. 

(Thornhill, Patwardhan and Shah, 2008) via the Simulink files provided, any changes 
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made to the Simulink file can affect the steady-state of the process. This can be solved 

by using signal limits for integral windups and then assigning the final states that 

describe the new steady state as the initial tuning of the process. To do this, the final 

states should be saved using the configuration parameters under the simulation toolbar.  

Two different types of error function are defined and applied for testing. The first is a 

step function used on the inlet hot water temperature, and the second is a ramp function 

applied to the cold water valve. In this thesis, all simulation and process monitoring 

studies have been performed using MATLAB® R2017b (Mathworks, Natwick, USA) 

on an Intel® Core™ i7-6700HQ CPU @2.60 GHz in conjunction with the MATLAB® 

statistics and machine learning toolbox and the econometrics toolbox.  

4.4.1 Model Training 

A training data set was collected for steady-state operation of the process under normal 

operating conditions with a 1 second sampling time for 2000 samples. Even though 

2000 samples is quite a short period of time for operation of the heat exchange system, 

it is sufficient to show the differences in the fault detection capabilities of the different 

methods. In the literature, there is no exact definition for the percentage of the 

explained variance that must be used in a PCA model. For example, Russell et al. used 

between 11 − 20 PCs (out of a maximum of 42 PCs) in a PCA model to describe 40 −

72% of the variance in the data from a simulation of the TEP (Russell, Chiang and 

Braatz, 2000b). Alternatively, Rato et al. used 17 principal components to describe 

68 − 70% of the variance in the process (Rato and Reis, 2013c).  

Further information about the selection of PCs for all given models are given in 

Appendix-C. A PCA model was trained with 2 PCs, which explained 54.5% of the 

total variance; the first five PCs explained 32.2, 22.3, 19.7, 15.1 and 5.1% of the 

variance in the data. The 𝑇2 and SPE charts for training performance are illustrated in 

Figure 4.7 and tabulated in Table 4.5. 

The linear relationship determination algorithm for DPCA suggested that 𝑙 = 2 lag 

shifts should be used, with regards to the algorithm in Table 4.2. A linear relationship 

determination found 9 and 1 new linear relationships between the PCs for each lagged 

additional training data set, which states the autocorrelations in each added data matrix 

as a time lag shift. The DPCA model was trained with 3 PCs, which explained 42.9% 

of the total variance; the first 5 PCs out of a total of 42 explained 18.9, 12.8, 11.3, 11.1 
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and 10.4% of the variance in the data. In the training of the DPCA model, the 

performance of the model with 3 PCs explained 42.9% and 4 PCs explained 54% 

were arguably closed to each other as explained in Appendix-C. The model with 3 PCs 

is selected to have a model that is close to 45%, which is the percentage that have been 

used in most of the models in this study. The 𝑇2 and SPE charts for training 

performance are given in Figure 4.8 and tabulated in Table 4.5. It can be concluded 

from Table 4.5, that the training performance is acceptable in terms of the type-1 error 

rate (below 1%) for both PCA-based approaches in Figure 4.7 and Figure 4.8.  

 

Figure 4.7: T2 and SPE metrics for a PCA model built using training data from the 

CSTH.  

Table 4.5: A comparison of the offline training performance of different models for 

the CSTH process. 

Metric 

Name 

(significance 

level) 

 Type I error (%) 

 PCA DPCA 
Cointegration 

Residuals 

Common-

trend 

Residuals 

Multi-level 

Multi-

factor 

SPE(1%)  𝟎. 𝟔 0.8 − − 𝟎. 𝟔 

𝑇2(1%)  0.7 0.5 0.8 𝟎. 𝟒 0.8 

 

Process monitoring methods based on cointegration residuals requires variable 

identification prior to performing the training procedure. Table 4.6 lists the identity of 

the variables based on a 5% significance level and an AR order 12. 9 of the 14 

variables were assigned as nonstationary and hence, require cointegration residuals-

based process monitoring methods.  
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Figure 4.8: T2 and SPE metrics for a DPCA model built using training data from the 

CSTH. 

Table 4.6: Result of the ADF test applied to CSTH training data. 

Variable No  AR Order  𝑡 Statistic  Critical Value  Test Result 

1  12  −0.1188  −1.9416  Nonstationary 

2  12  −0.4772  −1.9416  Nonstationary 

3  12  −3.1265  −1.9416  Stationary 

4  12  −4.8339  −1.9416  Stationary 

5  12  −0.0250  −1.9416  Nonstationary 

6  12  −0.0738  −1.9416  Nonstationary 

7  12  −0.0785  −1.9416  Nonstationary 

8  12  −0.0825  −1.9416  Nonstationary 

9  12  −0.02955  −1.9416  Nonstationary 

10  12  −4.1265  −1.9416  Stationary 

11  12  −3.3779  −1.9416  Stationary 

12  12  −0.9295  −1.9416  Nonstationary 

13  12  −5.3781  −1.9416  Stationary 

14  12  −0.1089  −1.9416  Nonstationary 
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The rank (𝑅) for the cointegration matrix was determined to be 5 where the maximum 

rank is 8. Therefore, 𝜷 was defined as ℝ9×5 where 𝜷⊥ can be defined as ℝ9×4 

perpendicular to 𝜷. The 𝑇2 chart for training performance is illustrated in Figure 4.9 

and tabulated in Table 4.5. Following the determination of 𝜷⊥, the 𝑇2 chart for the 

training performance of the common-trend residuals can be found in Figure 4.10 and 

Table 4.5. Compared to PCA-based models, cointegration and common-trend 

residuals-based models performed similar or better in terms of type-I error rates. 

 

Figure 4.9: T2 metric for a cointegration residuals model built using the training data 

from CSTH. 

A PCA model built that using stationary variables (𝑿𝑆) was trained with 1 PC that 

explained 72.2% of the total variance; the first 5 PCs explained 72.2, 25.0, 2.7,  

0.001 and 0.001% of the variance in the data. The stationary factors (�̃�) comprise 1 

score vector (𝑻) where 𝝃 and 𝝇 consist of 5 and 4 vectors, respectively.  

The 2nd level PCA model was trained with 2 PCs (out of a total of 10), which explained 

47.9% of the total variance; the first 5 PCs explained 25.9, 22.0, 16.8, 13.4 and 11.1% 

of the data. The 𝑇2 and SPE charts for training performance are illustrated in Figure 

4.11 and tabulated in Table 4.5. The performance of the multi-level multi-factor model 

was comparable to that of the cointegration residuals-based model in terms of the type-

I error rate; the multi-level multi-factor model utilizes the SPE statistic for monitoring, 

which is the favoured metric in process monitoring for fault detection.  
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Figure 4.10: T2 metric for a common-trend residuals model built using the training 

data from CSTH. 

 

Figure 4.11: T2 and SPE metrics for the multi-level multi-factor model built using 

the training data from CSTH. 

4.4.2 Model Testing 

For the first case, an electrical sensor current fault was applied in the form of a step 

function at sample number 500. The error increases the hot water temperature of the 

inlet by +1 ℃, where the range of the input varies between 48 − 52 ℃; thus reflecting 

a 2% change. Faulty zones are highlighted on the figures with grey shading. It should 

be noted that the process operates under feedback control which tries to regulate the 

process deviations from the normal operating conditions. That being the case, the fault 

is created to test the ability of the monitoring system to detect instant and continuous 

changes.  
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For the second case, a ramp function with a slope 10−8 𝑚3𝑠−1 was defined as a valve 

malfunction on the flow of the cold water, which is stationary according to Table 4.6. 

The names of the variables are shown in Table 4.1. A ramp function displays a slow-

varying trend, which shows nonstationary characteristics. By using the given models 

with this example, their performance with a nonstationary fault that is applied on the 

stationary variable is tested.  

The results obtained using a PCA model for a step function type fault are shown in 

Figure 4.12 and tabulated in Table 4.7. The reasons for not using the 𝑇2 metric for 

process monitoring, which are discussed in Section 2.5.3, can be seen in this example. 

A 2% change of 1 ℃ is not sufficient to impact on the model variance as can be seen 

in Figure 4.12. PCA can detect the abnormality via the SPE at sample number 509 but 

this comes with some fluctuation around the control limits. Even though PCA can 

identify the step function type fault, the magnitude of the SPE metric was not enough 

to exceed the upper control limits for all of the samples which causes type-2 errors.  
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Figure 4.12: T2 and SPE metrics obtained using PCA with test data from the CSTH 

exhibiting a step function type fault. The fault is first detected at sample number 509 

using the SPE metric (indicated by turquoise vertical line). 

The 𝑇2 and SPE metrics for the DPCA model for a step function type fault are 

illustrated in Figure 4.13 and tabulated in Table 4.7. DPCA is able to detect the fault 

signature with both 𝑇2 and SPE with some type-2 errors due to the additional time lag 

shift variables. One way to solve the missed fault signature and reduce the type-2 error 

rate in the 𝑇2 chart is to increase the percentage variance explained but this comes with 
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an increase in the type-I errors in the no-fault zones in the control charts for both PCA 

and DPCA models. Thus, the problems affecting PCA also affect the DPCA.  

Table 4.7: Comparison of the online diagnosis performance in terms of error rate 

(%) of different models for the monitoring of the CSTH process exhibiting step and 

ramp function type faults. 
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Figure 4.13: T2 and SPE metrics obtained using DPCA with test data from the CSTH 

exhibiting a step function type fault. The fault is first detected at sample number 513 

using the SPE metric (indicated by turquoise vertical line). 

The results obtained for the detection of a step function type fault using cointegration 

residuals and common-trend residuals are illustrated in Figure 4.14 and Figure 4.15, 
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respectively, and are tabulated in Table 4.7. The fault is detected at sample number 

535 and 550 by the cointegration and common-trend residuals, respectively. The 

CTSH simulation contains some high-level nonstationary variables that are 

challenging to model using a cointegration relationship, which can cause reduced rank, 

but a common-trend model can be used to extract the stationary factors from the 

unused cointegration vectors. Nevertheless, neither method is sufficient for detection 

of the fault signature with an acceptable type-II error rate. This might be because the 

most affected variables from the step function type fault are stationary variables, 

namely the hot and cold water flows. 
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Figure 4.14: T2 metric obtained using cointegration residuals with test data from the 

CSTH exhibiting a step function type fault. The fault is first detected at sample 

number 535 (indicated by turquoise vertical line). 
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Figure 4.15: T2 metric obtained using common-trend residuals with test data from 

the CSTH exhibiting a step function type fault. The fault is first detected at sample 

number 550 (indicated by turquoise vertical line). 
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The results obtained for the detection of the step function type fault using the multi-

level multi-factor model are shown in Figure 4.16 and tabulated in Table 4.7. The 

effectiveness of the multi-level multi-factor model for fault detection via the SPE 

metric demonstrates the superiority of this method with step type function errors. The 

performance of the multi-level multi-factor model is improved compared to separate 

cointegration and common-trend residuals-based methods owing to the combination 

of these methods with PCA, which is applied to the stationary variables where some 

of the fault resides. As a result, the fault is detected by the multi-level multi-factor 

model at sample number 503, via the SPE control chart. As expected, the multi-level 

multi-factor model cannot detect any particular fault via the 𝑇2 chart as the error is not 

enough to vary above the defined 𝑇2 confidence bounds.  
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Figure 4.16: T2 and SPE metrics obtained using the multi-level multi-factor method 

with test data from the CSTH exhibiting a step function type fault. The fault is first 

detected at sample number 503 using the SPE metric (indicated by turquoise vertical 

line). 

The results obtained using PCA for the detection of a ramp function type fault are 

shown in Figure 4.17 and tabulated in Table 4.7. Even though the 𝑇2 metric is able to 

detect the fault, the time to do so is expected to be later than that for the SPE as the 

fault is a ramp type function. This is due to the inefficiency of the 𝑇2 metric for 

monitoring of nonstationary variables as previously discussed. PCA can detect an 

abnormality via the SPE chart at sample number 590 but this comes with some type-

II errors until around sample number 700.  
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The 𝑇2 and SPE metrics obtained using the DPCA model for detection of a ramp 

function type fault are illustrated in Figure 4.18. DPCA can detect the fault signature 

with both 𝑇2 and SPE earlier than PCA owing to its capabilities with additional time 

lag shifts. The performance of DPCA is tabulated in Table 4.7, where it shows better 

performance than PCA with regards to type-II errors. However, it causes some normal 

operation samples to go beyond the control limits, which caused an increase in the 

type-I error in the SPE control chart. 
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Figure 4.17: T2 and SPE metrics obtained using PCA with test data from the CSTH 

exhibiting a ramp function type fault. The fault is first detected at sample number 

590 using the SPE metric (indicated by turquoise vertical line). 
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Figure 4.18: T2 and SPE metrics obtained using DPCA with test data from the CSTH 

exhibiting a ramp function type fault. The fault is first detected at sample number 

587 using the SPE metric (indicated by turquoise vertical line). 
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The results obtained for the detection of the ramp function type fault using the 

cointegration residuals and common-trend residuals are illustrated in Figure 4.19 and 

Figure 4.20, respectively, and are tabulated in Table 4.7. The fault is first detected at 

sample number 513 and 580 for cointegration and common-trend residuals, 

respectively. Cointegration residuals are able to detect the ramp type of error in a short 

period of time whereas common-trend residuals were not. This indicates that most of 

the nonstationarity arising from the ramp function is captured via cointegration 

analysis. It is noted that the common-trend model can still detect the fault.  
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Figure 4.19: T2 metric obtained using cointegration residuals with test data from the 

CSTH exhibiting a ramp function type fault. The fault is first detected at sample 

number 513 (indicated by turquoise vertical line). 
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Figure 4.20: T2 metric obtained using common-trend residuals with test data from 

the CSTH exhibiting a ramp function type fault. The fault is first detected at sample 

number 580 (indicated by turquoise vertical line). 
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Finally, Figure 4.21 shows the 𝑇2 and SPE metrics obtained using the multi-level 

multi-factor model of a ramp function type fault. Here, a clear advantage of 

cointegration residuals is also transferred to the multi-level multi-factor model. The 

detection performance is tabulated in Table 4.7 where the results obtained for the SPE 

are the same as those obtained for the 𝑇2 metric with cointegration residuals. 

As it can be seen from Table 4.7, the effectiveness of the multi-level multi-factor 

model is proven on both step and ramp type function faults as it models both stationary 

and nonstationary characteristics in the data. It is worth noting that cointegration 

residuals and common-trend residuals-based approaches cannot be compared with 

other methods via the SPE metric because only a modified 𝑇2 metric is available for 

these models. However, the effectiveness of the multi-level multi-factor model 

compared to other methods can be demonstrated if the best detection rates by either 

the 𝑇2 and SPE metrics are used as a comparison.  
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Figure 4.21: T2 and SPE metrics obtained using the multi-level multi-factor model 

with test data from the CSTH exhibiting a ramp function type fault. The fault is first 

detected at sample number 543 using the SPE metric (indicated by turquoise vertical 

line). 

4.5 Conclusions 

This chapter has explored a new multi-level multi-factor process monitoring method 

for use with complex, continuous industrial processes. The method requires a data pre-

treatment step, which is then followed by two-levels of modelling. The procedure 

requires the identification of the stationary and nonstationary variables in the data set. 

Following this, the data are then divided into two groups: stationary data are handled 
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by the PCA model and nonstationary data are handled by cointegration analysis for the 

determination of cointegration and common-trend residuals, which are stationary. 

Such models transform the data into stationary factors, which can then be modelled by 

PCA in the 2nd and final level of the multi-level multi-factor model.  

The multi-level multi-factor model solves 3 problems: firstly, a need for a model that 

can be applied to data exhibiting a wide range of characteristics, not only nonstationary 

variables like cointegration residuals-based monitoring but also stationary variables. 

Secondly, the problem in modelling nonstationary variables with a high degree of 

nonstationarity is addressed by using both cointegration and common-trend residuals 

at the same time. Thirdly and lastly, a confusion that comes with multiple monitoring 

charts is removed through the use of a single control chart based on 𝑇2 and SPE 

performance metrics. This is the first report of a method based on cointegration 

analysis that can be applied to both nonstationary and stationary data, and its use for 

the monitoring of continuous processes has been successfully demonstrated using a 

CSTH simulation. The effectiveness of the multi-level multi-factor model was 

evaluated with two different types of faults. The proposed multi-level multi-factor 

model showed its superiority against PCA, DPCA, cointegration and common-trend 

residuals-based monitoring methods.  
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5. MONITORING BATCH PROCESSES USING COINTEGRATION-BASED 

APPROACHES 

5.1 Overview 

Unlike continuous processes, batch and semi-batch processes are characterised by a 

prescribed processing of materials for a finite duration of time. Even though feedback 

control is applicable for some variables, it often cannot be applied to correct 

disturbances in a timely manner during a batch. Therefore, techniques that can provide 

insights into variables and their relationships through their statistical properties may 

improve the product quality and minimize batch to batch differences. MSPC 

techniques such as PCA and PLS have been applied successfully to batch processes 

through multiway PCA (Nomikos and MacGregor, 1994; Nomikos and MacGregor, 

1995b). Multiway PCA considers the entire batch as a single object due to the 

conversion of the 3D data cube to a 2D representation by unfolding methods. This can 

cause modelling problems for multi-phase batch processes where the characteristics of 

the process variables change from phase to phase. Since each phase has its own 

underlying characteristics, the variables can exhibit significantly different behaviours 

over the duration of the batch. Multi-model PCA approaches have been proposed to 

cope with these differences. For example, such approaches were used to monitor two 

phases of an exothermic batch chemical reactor (Kosanovich et al., 1994; Dong and 

McAvoy, 1995). To extend the performance of multi-phase modelling, several 

methods have been developed and used to handle different problems in batch process 

monitoring such as phase transitions and variable selection for each phase (Kourti, 

2003; Zhao et al., 2007; Ng and Srinivasan, 2009). 

Although several techniques have been proposed, most of the existing methods assume 

that all statistical characteristics of the data, gathered from the normal operating 

conditions are sufficiently covered by the models. However, in real-life situations, the 

nonstationarity issue widely exists in complex industrial processes (Chen, Kruger and 

Leung, 2009; Sun, Zhang, Zhao and Sun, 2017). Cointegration approaches have 

proved their effectiveness in continuous process in several studies (Chen, Kruger and 

Leung, 2009; Lin, Kruger and Chen, 2017). One of the issues of cointegration 

approaches is that they are applicable only to nonstationary variables whereas complex 

industrial processes contain both stationary and nonstationary variables. In a recent 
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study of batch process monitoring, a combination of cointegration residuals and a PCA 

was suggested (Zhang, Zhao and Gao, 2019). However, the presence of high-level 

nonstationary variables within the cointegration model can affect the rank of the 

cointegration matrix due to impractical modelling of the cointegration relationship 

established. Therefore, cointegration analysis can give rise to a cointegration matrix 

with low or zero rank owing to high-level nonstationarity. This can, however, be 

solved by using common-trend residuals-based monitoring as was demonstrated in 

Chapter 4.  

In this chapter, an industrial penicillin simulation is introduced and, used to compare 

different performance monitoring approaches: multi-PCA, a multi-level model and the 

multi-level multi-factor model. The different monitoring approaches are applied to 2 

case studies to evaluate their performance for a complex industrial batch process 

exhibiting different kinds of faults.  

5.2 Introducing the Industrial Penicillin Simulator 

Filamentous micro-organisms are the primary source of commercial quantities of 

secondary metabolites. In penicillin production, which is the target product in this case, 

the endpoint is defined by the maximum yield. It is a billion-dollar industry which was 

pioneered through the development of deep-tank fermentation in the 1940s (Goldrick 

et al., 2015). There have been research activities conducted with laboratory-scale 

equipment to develop mathematical models. The PenSim simulator is a well-known 

benchmark fed-batch process for the replication of penicillin production (Birol, Ündey 

and Çinar, 2002). However, such a simple model structure is not sufficient to capture 

complex process dynamics even though several process monitoring studies have been 

carried out using this simulation. Recently, a more realistic simulation of an industrial-

scale penicillin simulator (Goldrick, 2015), illustrated in Figure 5.1, was validated 

using real data from a 100,000 𝐿 fed-batch process (Goldrick et al., 2015). It provides 

a realistic simulation of faults with the faults introduced directly affecting the process 

states in comparison with the PenSim simulator (Birol, Ündey and Çinar, 2002).  

The simulation considers the growth, morphology, metabolic production and 

degeneration of the biomass during a submerged P. chrysogenum fermentation. The 

simulation divides the internal structure of the biomass, or hyphae, into four separate 

regions: actively growing region (𝑅0), non-growing region (𝑅1), degenerated region 
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(𝑅3), which is formed through vacuolation, and autolysed region (𝑅4). The vacuoles 

are defined as the vacuole region (𝑅2) (Goldrick et al., 2015).  

 

Figure 5.1: Schematic of a bioreactor with process inputs and outputs (Goldrick et 

al., 2015). 

The total biomass (𝑋𝐵𝑖𝑜) is given by: 

 
𝑋𝐵𝑖𝑜 = 𝑅0 + 𝑅1 + 𝑅3 + 𝑅4 (5.1) 

with the growing regions (𝑅0) given by: 

 𝑑𝑅0
𝑑𝑡

= 𝑟𝑏 − 𝑟𝑑𝑖𝑓𝑓 −
𝐹𝑖𝑛𝑅0
𝑉

 (5.2) 

the non-growing regions (𝑅1) given by: 

 𝑑𝑅1
𝑑𝑡

= 𝑟𝑒 − 𝑟𝑏 + 𝑟𝑑𝑖𝑓𝑓 − 𝑟𝑑𝑒𝑔 −
𝐹𝑖𝑛𝑅1
𝑉

 (5.3) 

the degenerated regions (𝑅3) given by: 
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 𝑑𝑅3
𝑑𝑡

= 𝑟𝑑𝑒𝑔 − 𝑟𝑎 −
𝐹𝑖𝑛𝑅3
𝑉

 (5.4) 

the autolysed regions (𝑅4) given by: 

 𝑑𝑅4
𝑑𝑡

= 𝑟𝑎 −
𝐹𝑖𝑛𝑅4
𝑉

 (5.5) 

and the product formation or penicillin yield (𝑃) given by: 

 𝑑𝑃

𝑑𝑡
= 𝑟𝑃 − 𝑟ℎ −

𝐹𝑖𝑛𝑃

𝑉
 (5.6) 

where rb,diff,e,deg,a,P,h,m is the rate of branching, differentiation, extension, 

degeneration, autolysis, product formation, product hydrolysis and maintenance, 

respectively. 𝐹𝑖𝑛 represents all the process inputs. The fermenter volume (𝑉) is 

calculated by: 

 𝑑𝑉

𝑑𝑡
= 𝐹𝑆 + 𝐹𝑜𝑖𝑙 + 𝐹𝑃𝐴𝐴 + 𝐹𝑎 + 𝐹𝑏 + 𝐹𝑤 − 𝐹𝑒𝑣𝑝 − 𝐹𝑑𝑖𝑠 (5.7) 

where 𝐹𝑃𝐴𝐴 is the flow rate of the phenyl acetic acid and 𝐹𝐴 and 𝐹𝑏 are the flow rates 

of the acid and base, respectively. 𝐹𝑤 is the flow rate of the water for injection which 

is typically used to reduce the broth viscosity. 𝐹𝑒𝑣𝑝 is the evaporation rate of the 

fermenter and 𝐹𝑑𝑖𝑠 is the volume discharged from the vessel during production to 

maintain the volume within its maximum working capacity. 𝐹𝑠 and 𝐹𝑜𝑖𝑙 represents the 

sugar and soybean oil feed rate. The substrate consumption(𝑠𝑢𝑏) is given by: 

 𝑑𝑠𝑢𝑏

𝑑𝑡
= −𝑌𝑠/𝑋𝑟𝑒 + 𝑌𝑠/𝑋𝑟𝑏 −𝑚𝑠𝑟𝑚 − 𝑌𝑠/𝑃𝑟𝑝 +

𝐹𝑠𝑐𝑠
𝑉

+
𝐹𝑜𝑖𝑙𝑐𝑜𝑖𝑙
𝑉

−
𝐹𝑖𝑛𝑠𝑢𝑏

𝑉
 (5.8) 

The batch time is represented by 𝑡. 𝑌𝑠/𝑋 and 𝑌𝑠/𝑃 represents the substrate yield 

coefficients of biomass and penicillin, respectively, and 𝑚𝑠 is the substrate 

maintenance term. Dissolved oxygen (𝐷𝑂2) is a key macro-nutrient used by the micro-

organism for growth, maintenance and metabolic production: 

 𝑑𝐷𝑂2
𝑑𝑡

= −𝜇𝑥𝑋𝑌𝑂2/𝑋 − 𝜇𝑃𝑃𝑌𝑂2/𝑃 −𝑚𝑂2𝑋 + 𝑘𝐿𝑎(𝐷𝑂2
∗ − 𝐷𝑂2) −

𝐷𝑂2𝑑𝑉

𝑉𝑑𝑡
 (5.9) 
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The first three terms represent the oxygen uptake rate (𝑂𝑈𝑅) which accounts for 

oxygen being consumed during biomass growth (𝜇𝑋𝑋), maintenance (𝑚𝑂2𝑋) and 

penicillin production (𝜇𝑃𝑃). 𝑌𝑂2/𝑋and 𝑌𝑂2/𝑃 are the oxygen yield coefficients for 

biomass and penicillin, respectively. 𝜇𝑋 represents the rate of change of the growing, 

non-growing, degenerated and autolysed regions. Oxygen transfer rate is the product 

of the volumetric mass transfer coefficient (𝑘𝐿𝑎) and the difference between the 

dissolved oxygen concentration (𝐷𝑂2) and the oxygen saturation concentration 

(𝐷𝑂2
∗). Dissolved carbon dioxide (𝐶𝑂2,𝐿) is an important and often overlooked 

variable in fermentation modelling with accumulation of 𝐶𝑂2,𝐿 in the broth reported 

to be detrimental to cell growth and productivity: 

 𝑑𝐶𝑂2,𝐿
𝑑𝑡

= 𝛿𝑐/𝑜𝑘𝐿𝑎(𝐶𝑂2,𝐿
∗ − 𝐶𝑂2,𝐿) −

𝐶𝑂2,𝐿𝑑𝑉

𝑉𝑑𝑡
 (5.10) 

where 𝛿𝑐/𝑜 is the ratio of the carbon dioxide to oxygen mass transfer coefficients. The 

second most abundant nutrient in fermentation media is generally the nitrogen source 

as it is critical for growth and required for metabolic production of product. The 

primary source of nitrogen for each batch is generally contained in the starting media 

and consumed throughout the batch. This consumption is modelled using a material 

balance, which considered the nitrogen consumed during biomass growth and 

maintenance and that utilised for penicillin production, defined as: 

 𝑑𝑁

𝑑𝑡
=
𝐹𝑜𝑖𝑙𝑐𝑁𝑜𝑖𝑙 + 𝐹𝑃𝐴𝐴𝑐𝑁𝑃𝐴𝐴 + 𝑁𝑠ℎ𝑜𝑡𝑠𝑐𝑁𝑠ℎ𝑜𝑡𝑠

𝑉
− 𝜇𝑋𝑋𝑌𝑁/𝑋 − 𝜇𝑃𝑋𝑌𝑁/𝑃

−𝑚𝑁𝑋 −
𝑁

𝑉

𝑑𝑉

𝑑𝑡
  

(5.11) 

The simulation considers the nitrogen composition of the input feeds, 𝐹𝑜𝑖𝑙 and 𝐹𝑃𝐴𝐴 in 

addition to the ammonia sulphate salts (𝑁𝑠ℎ𝑜𝑡𝑠), which are added to rapidly increase 

the nitrogen concentration. The nitrogen concentration in these inputs (𝑖) is 

represented by 𝑐𝑁𝑖. The yield coefficients of nitrogen to biomass and penicillin were 

represented as 𝑌𝑁/𝑋and 𝑌𝑁/𝑃, respectively. 

Some fermentations require the addition of a precursor to ensure metabolic production 

of a desired product. This is particularly important for the industrial case study 

presented here, where phenylacetic acid (𝑃𝑃𝐴) is added to supply the desired side 
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chain for penicillin synthesis. A simplified 𝑃𝐴𝐴 uptake rate based on the biomass 

growth, penicillin production and penicillin maintenance is modelled here as: 

 𝑑𝑃𝐴𝐴

𝑑𝑡
= −

𝐹𝑃𝐴𝐴𝑐𝑃𝐴𝐴
𝑉

− 𝑌𝑃𝐴𝐴/𝑃𝜇𝑃𝑃 − 𝑌𝑃𝐴𝐴/𝑋𝜇𝑋𝑋 −𝑚𝑃𝐴𝐴𝑃 −
𝑃𝐴𝐴

𝑉

𝑑𝑉

𝑑𝑡
  (5.12) 

where 𝐹𝑃𝐴𝐴 is the flow rate of the 𝑃𝐴𝐴 and 𝑐𝑃𝐴𝐴 is the feed solution concentration. 

𝑌𝑃𝐴𝐴/𝑃 and 𝑌𝑃𝐴𝐴/𝑋are the yield coefficients of 𝑃𝐴𝐴 for penicillin and biomass, 

respectively, and 𝑚𝑃𝐴𝐴 is a maintenance term related to the concentration of penicillin. 

Off-gas analysis involves monitoring the exhaust gas leaving the head space of the 

fermenter. The off-gas concentration of oxygen (𝑂2𝑜𝑢𝑡) was measured in terms of a 

percentage (%): 

 
𝑑𝑂2𝑜𝑢𝑡
𝑑𝑡

=
𝑄𝑔𝑖𝑛

𝑂2,𝑖𝑛 − 𝑄𝑔𝑜𝑢𝑡𝑂2,𝑜𝑢𝑡 − 𝑘𝐿𝑎(𝐷𝑂2
∗ − 𝐷𝑂2)𝑉𝐿

(29𝑉𝑔/22.4)
  (5.13) 

where 𝑄𝑔𝑖𝑛
 and 𝑄𝑔𝑜𝑢𝑡 are taken as the mass flow rate of air in and out, respectively. 

𝑂2,𝑖𝑛 and 𝑂2,𝑜𝑢𝑡 are the oxygen concentrations in the gas inlet and outlet, respectively. 

𝑉𝑔 is the volume of the gas in the vessel taken as 휀𝑉𝐿 which is converted into a mass 

here to work out 𝑂2,𝑜𝑢𝑡 in terms of a %. Similarly, the off-gas calculation of 𝐶𝑂2 was 

calculated as: 

 
𝑑𝐶𝑂2𝑜𝑢𝑡
𝑑𝑡

=
𝑄𝑔𝑖𝑛

𝐶𝑂2,𝑖𝑛 − 𝑄𝑔𝑜𝑢𝑡𝐶𝑂2,𝑜𝑢𝑡 + 𝐶𝐸𝑅𝑋

(29𝑉𝑔/22.4)
   (5.14) 

where 𝐶𝐸𝑅𝑋 is the carbon evolution rate taken here as directly related to the biomass: 

𝐶𝐸𝑅𝑋 = 𝑉𝑋/𝑌𝐶𝑂2−𝑋 with 𝑌𝐶𝑂2−𝑋 as the yield coefficient of 𝐶𝑂2. Measuring the 𝐶𝑂2 

and 𝑂2 concentrations in the off-gas analysis allows for the calculation of the oxygen 

uptake rate (𝑂𝑈𝑅) and the carbon evolution rate (𝐶𝐸𝑅) which are valuable tools in 

the real-time monitoring of fermentations: 

 

𝑂𝑈𝑅 =
32

22.4
𝐹𝑔𝑖𝑛 (𝑂2𝑖𝑛 − 𝑂2𝑜𝑢𝑡

𝑁2𝑖𝑛
1 − 𝑂2𝑜𝑢𝑡 − 𝐶𝑂2𝑜𝑢𝑡

)

𝐶𝐸𝑅 =
44

22.4
𝐹𝑔𝑖𝑛 (𝐶𝑂2𝑜𝑢𝑡

𝑁2𝑖𝑛
1 − 𝑂2𝑜𝑢𝑡 − 𝐶𝑂2𝑜𝑢𝑡

− 𝐶𝑂2𝑖𝑛)

   (5.15) 
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The simulation based on the equations above, was validated using the batch records 

from an industrial case study using the parameter values and presented in the case 

study (Goldrick et al., 2015). Here, the sugar flow (𝐹𝑠), soybean oil flow (𝐹𝑜𝑖𝑙), water 

for injection (𝐹𝑤), aertion rate (𝐹𝑔), vessel back pressure (𝑃1) and discharge rate (𝐹𝑑𝑖𝑠) 

are manipulated variables which were interpolated using a sampling time of 0.2 ℎ and 

used as the simulation inputs. A 0.2 hours sampling time was used in the data 

generation. The simulation is validated by 10 batches. The variables marked with the 

asterisk in Figure 5.1 represent the variables not recorded within the 10 batch records. 
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Figure 5.2: Illustration of coolant flow (𝐹𝑐), phenyl acetic acid concentration (PAA), 

nitrogen concentration (𝑁𝐻3) and substrate flow rate (𝐹𝑠) for the simulation of 

penicillin production under normal operating conditions (Batch 1 in the study by 

Goldrick et al., 2015). 
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The penicillin simulator gives an opportunity to follow different variables that have 

different characteristics such as binary, continuous, non-continuous, stationary, 

nonstationary, etc. Some variables from the simulation are illustrated in Figure 5.2 to 

show the differences between the different time ranges. Furthermore, some variables 

are selected for process monitoring depending on their effect on the process. The 

variables used in this study are tabulated in Table 5.1. Some variables such as 𝑂𝑈𝑅 

and 𝐶𝐸𝑅 are calculated from the measured variables. These calculations are stated 

above. Moreover, the penicillin fermentation process is a multiphase process, which 

has been divided into 5 phases in several studies for process monitoring purposes 

(Zhang, Zhao and Gao, 2019). The five phases adopted in this study were selected as 

(0 − 30 , 30 − 68.2, 68.2 − 102.2, 102.2 − 133.4, 133.4 −  200 ℎ𝑟𝑠 +).  

Table 5.1: Variables monitored in the industrial penicillin simulator. 

No Variable Acronym No Variable Acronym 

1 Coolant Flow 𝐹𝑐 11 
Phenyl acetic acid 

Concentration 
𝑃𝐴𝐴 

2 
Dissolved 

Oxygen Level 
𝐷𝑂2  12 

Nitrogen 

Concentration 
𝑁𝑖𝑡 

3 
Biomass 

Concentration 
𝑋𝐵𝑖𝑜 13 Oxygen Uptake Rate 𝑂𝑈𝑅 

4 Penicillin Yield 𝑃 14 Oxygen Percentage 𝑂2 

5 Vessel Volume 𝑉 15 
Carbon Evolution 

Rate 
𝐶𝐸𝑅 

6 Vessel Weight 𝑊 16 
Biomass Specific 

Growth Rate 
𝜇𝑋 

7 pH 𝑝𝐻 17 
Penicillin Specific 

Growth Rate 
𝜇𝑃 

8 
Vessel 

Temperature 
𝑇 18 Dissolved 𝐶𝑂2 𝐶𝑂2,𝐿 

9 Generated Heat 𝑄 19 Viscosity  𝜇𝑣𝑖𝑠 

10 
𝐶𝑂2 Percent in 

Outgas 
𝐶𝑂2𝑜𝑢𝑡    

5.3 Monitoring Techniques for Batch Processes 

5.3.1 Multi-Principal Component Analysis 

Multi principal component analysis (multi-PCA) is a multi-phase approach that 

establishes different PCA models for different phases/stages using conventional PCA 
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modelling without considering the nonstationary of the data. The approach was first 

described in a study by DuPont and John MacGregor (Kosanovich et al., 1994; Lu, 

Gao and Wang, 2004; Zhang, Zhao and Gao, 2019). The PCA model of the 𝑐𝑡ℎ phase 

can be described by: 

 

𝑿𝑐 = ∑𝒑𝑟𝒕𝑟
𝑇

𝑅𝑀
𝑐

𝑟=1

+ 𝑬𝑐 = 𝑷𝑐(𝑻𝑐)𝑇 + 𝑬𝑐 (5.16) 

where 𝑿𝑐 ∈  ℝ𝑁×𝑚𝑐 , 𝑁 and 𝑚𝑐 are the number of variables and samples in the 𝑐𝑡ℎ 

phase, respectively, 𝑷𝑐 is the loading matrix and 𝑬𝑐is the estimation error matrix. 𝑅𝑆
𝑐 

is the maximum number of principal components for the 𝑐𝑡ℎ phase under the condition 

of 𝑅𝑀
𝑐 = min (𝑁,𝑚𝑐). The 𝑇2 metric for the 𝑐𝑡ℎ phase can be defined by: 

 
(𝑻𝑐)2 = (𝑻𝑐)𝑇(𝜦𝑀

𝑐 )−1 𝑻𝑐 (5.17) 

and calculation of the control limit for the 𝑇2 metric at a confidence limit, 𝛼, is given 

by: 

 𝑅𝑀(𝑚𝑐 − 1)

𝑚𝑐 − 𝑅𝑀
𝐹𝛼(𝑅𝑀, 𝑚𝑐 − 𝑅𝑀) (5.18) 

where 𝑅𝑀 is the number of PCs, 𝚲M
𝑐 = (𝑻𝑐)𝑇𝑻𝑐/(𝑚𝑐 − 1) is the sample covariance 

matrix of scores where 𝑚𝑐 is the sample size of the phase. 𝛼 is the significance level 

of the F-distribution with degrees of freedom 𝑅𝑀 and 𝑚𝑐 − 𝑅𝑀. The 𝑆𝑃𝐸 metric for 

the 𝑐𝑡ℎ phase can be defined as: 

 
𝑆𝑃𝐸𝑐 = (𝑬𝑐)𝑻𝑬𝑐 (5.19) 

The limits are dependent on the eigenvalues as given below: 

 

𝑆𝑃𝐸𝑈𝐶𝐿
𝑐 = (

𝑧(1−𝛼)√2𝜃2ℎ0
2

𝜃1
+
𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 + 1)

1
ℎ0

   (5.20) 

where 𝜃𝑖 = ∑ 𝜆𝑘
𝑖𝑚𝑐

𝑘=𝑅𝑀+1
, 𝑖 = 1,2,3 and ℎ0 = 1 − (2𝜃1𝜃3)/(3𝜃2

2 ). Here, 𝜆𝑘
𝑖  is the 

eigenvalue from residuals, 𝑖 and 𝑘 refer to indexes of the power and the largest eigen 
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order, respectively, and 𝑧(1−𝛼) is the standard normal deviate or z-score regarding (1 −

𝛼) percentile.  

5.3.2 Multi-level Process Monitoring Method  

Use of a multi-level model has been proposed for the monitoring of multi-phase batch 

processes, which combines the cointegration residuals and 𝑡-scores from multiple PCA 

models (Zhang, Zhao and Gao, 2019). It requires one control chart with the control 

metrics and limits determined by a PCA model trained on the stationary factors 

gathered from the PCA model and the cointegration residuals.  

Batch processes have a three dimensional data structure that combines the number of 

batches (𝐼), variables (𝑁) and samples (𝑀) 𝑿 ∈  ℝ𝐼×𝑁×𝑀. Figure 5.3 shows a schematic 

diagram of the data unfolding. A key property of batch processes is that they can have 

different phases of operation, e.g. exhibiting different characteristics. A concurrent 

identification procedure has been proposed to determine the unit roots for the variable 

identification (Zhang, Zhao and Gao, 2019). 
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Figure 5.3: Illustration of data unfolding for the identification process. 

The concurrent identification procedure employed is based on the ADF test on 

unfolded variables of 𝑿, or the unit root test. The ADF test is applied to the 

concatenated variables for the same phase across each batch. Thus, the ADF test is 

applied 𝐶 × 𝑁 times to identify the stationary and nonstationary variables in each 

process phase as shown in Figure 5.3, where 𝐶 is the number of phases. The following 

regression model can be derived from Equation (3.15) in Section 3.3.2: 
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{
  
 

  
 
𝒙𝑛,𝑡
𝑐,1 = 𝜇𝑛 + 𝜃𝑛

∗𝒙𝑛,𝑡−1
𝑐,1 +∑𝜃𝑘∆𝒙𝑛,𝑡−𝑘+1

𝑐,1

𝑝

𝑘=1

+ 𝝐𝑛,𝑡
𝑐,1

⋮

𝒙𝑛,𝑡
𝑐,𝐼 = 𝜇𝑛 + 𝜃𝑛

∗𝒙𝑛,𝑡−1
𝑐,𝐼 +∑𝜃𝑘∆𝒙𝑛,𝑡−𝑘+1

𝑐,𝐼

𝑝

𝑘=1

+ 𝝐𝑛,𝑡
𝑐,𝐼

 (5.21) 

where 𝜇 is a constant, 𝝐 is the IID noise representation, and 𝜃𝑛
∗ and 𝜃𝑘 are the regression 

variables for the 𝑛𝑡ℎ sample (𝑛 = 1, … , 𝑁). ∆𝒙𝑛,𝑡
𝑐,𝑖 = 𝒙𝑛,𝑡

𝑐,𝑖 − 𝒙𝑛,𝑡−1
𝑐,𝑖

 is the difference 

operator where 𝑝 is the lag term, 𝑖 is the batch number (𝑖 = 1, … , 𝐼) and 𝑐 is the phase 

number (𝑐 = 1,… , 𝐶). 

An OLS model can be used for the estimation of the regression parameters 𝜃∗ and 𝜃: 

 
[�̂�𝑛, 𝜃𝑛, �̂�1, … , �̂�𝑝]

𝑇
= (𝜞𝑇𝜞)−1𝜞𝑇�̅�𝑛

𝑐  (5.22) 

where �̅�𝑛
𝑐 = [𝑥𝑛,1

𝑐,1 , … , 𝑥𝑛,1
𝑐,𝐼 ]

𝑇
 is the unfolded vector of the 𝑛𝑡ℎ variable in the 𝑐𝑡ℎ phase. 

𝚪 = [𝚪1, … , 𝚪I]
𝑇 is the regression matrix: 

 

𝜞𝑖 =

[
 
 
 
 1
1
⋮
1

    

𝑥𝑛,𝑝
𝑖

𝑥𝑛,𝑝+1
𝑖

⋮
𝑥𝑛,𝑚𝑐−1
𝑖

    

∆𝑥𝑛,𝑝
𝑖

∆𝑥𝑛,𝑝+1
𝑖

⋮
∆𝑥𝑛,𝑚𝑐−1

𝑖

    

⋯
⋯
⋱
⋯

    

∆𝑥𝑛,1
𝑖

∆𝑥𝑛,2
𝑖

⋮
∆𝑥𝑛,𝑚𝑐−𝑝

𝑖
]
 
 
 
 

 (5.23) 

Here, 𝚪𝒊 represents the selected variables of the 𝑖𝑡ℎ batch, and therefore, Γ is the 

generalized version of the regression variables where ∆𝒙𝑛,𝑝
𝑖 = 𝒙𝑛,𝑝

𝑖 − 𝒙𝑛,𝑝−1
𝑖 , 𝑝 is the 

order of the regression and 𝑚𝑐 is the length of the phase. In practice the ADF test for 

variable identification in batch processes is different from the original ADF test 

applied to continuous time series because of the repetition of variables across each of 

the process phases. 

Following the identification of stationary and nonstationary variables, the training data 

set (𝑿) is divided into two groups: 𝑿𝑁𝑆  and 𝑿𝑆 as illustrated in Figure 5.4. The multi-

level method uses two models: a PCA model for the stationary variables (𝑿𝑆) and a 

cointegration analysis model for the nonstationary variables. The stationary factors 

(�̃�𝑀𝐿) gathered from the 𝑡-scores of the PCA model and the cointegration residuals 

from cointegration analysis are used as a training data set for the 2nd level PCA model.  
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Figure 5.4: Illustration of batch process monitoring method based on a multi-level 

model. 

The multi-level method uses several models for each phase, which trained separately 

in terms of the models and upper limits for control charts. Thus, 3 models must be 
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trained: 2 models for the 1st level consisting of PCA and cointegration analysis, and a 

PCA model at the 2nd level for the stationary factors. The stationary cointegration 

residuals can be represented for the 𝑐𝑡ℎ phase as below: 

 
𝝃𝑐 = (𝜷𝑐)𝑇 𝑿𝑁𝑆

𝑐  (5.24) 

where 𝑿𝑁𝑆
𝑐 ∈  ℝ𝑛𝑐 ×𝑚𝑐 represents the nonstationary variables where 𝑛𝑐 and 𝑅𝑐 are the 

number of the nonstationary variables and the cointegration rank for the 𝑐𝑡ℎ phase. 

𝜷𝑐  ∈  ℝ 𝑛𝑐 × 𝑅𝑐  is the cointegration matrix determined by the Johansen test according 

to Section 3.4.2.  

The 𝑇2 metric for process monitoring based on cointegration residuals is given by: 

 (𝑻𝐶𝐴
𝑐 )2 = (𝝃𝑐)𝑇(𝜦𝐶𝐴

𝑐 )−1 𝝃𝑐 (5.25) 

where 𝚲CA
c = ∑ (𝝃𝑘

𝑐 )𝑇𝝃𝑘
𝑐𝑚𝑐

𝑘=1 /𝑚𝑐 is the sample covariance matrix in the residuals. 𝑻𝐶𝐴
𝑐  

provides information about the changes of the variations between the nonstationary 

variables (𝑿𝑁𝑆
𝐶 ). Similar to the previously defined upper control limits, the control 

limits for cointegration analysis in the 𝑐𝑡ℎ phase can be calculated as 

 𝑅𝑐(𝑚𝑐 − 1)(𝑚𝑐 + 1)

𝑚𝑐(𝑚𝑐 − 𝑅𝑐)
𝐹𝛼(𝑅𝑐, 𝑚𝑐 − 𝑅𝑐) (5.26) 

where 𝛼 is the significance level of the F-distribution 𝐹𝛼(𝑅𝑐, 𝑚𝑐 − 𝑅𝑐) with degrees 

of freedom 𝑅𝑐 and 𝑚𝑐 − 𝑅𝑐. 

A conventional PCA model in the 1st level determines the 𝑡-scores (𝑻𝑆) for the 

stationary factors matrix (�̃�𝑀𝐿). Decomposition of the stationary variables (𝑿𝑆) can 

be described for the 𝑐𝑡ℎ phase: 

 

𝑿𝑆
𝑐 = ∑𝒑𝑟𝒕𝑟

𝑇

𝑅𝑆
𝑐

𝑟=1

+ 𝑬𝑆
𝑐 = 𝑷𝑆

𝑐(𝑻𝑆
𝑐)𝑇 + 𝑬𝑆

𝑐 (5.27) 

where 𝑿𝑆
𝑐 ∈  ℝ(𝑁−𝑛𝑐)×𝑚𝑐 , 𝑛𝑐 is the number of the nonstationary variables determined 

by the concurrent ADF test, 𝑷𝑆
𝑐 is the loading matrix and 𝑬𝑆

𝑐 is the estimation error 

matrix for the 𝑐𝑡ℎ phase. 𝑅𝑆
𝑐 is the maximum number of PCs for the 𝑐𝑡ℎ phase where 
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𝑅𝑆
𝑐 = min (𝑁 − 𝑛𝑐 , 𝑚𝑐). 𝑇

2 can be defined for the stationary variables in the 1st level 

model for the 𝑐𝑡ℎ phase: 

 (𝑻𝑠
𝑐)2 = (𝑻𝑆

𝑐)𝑇(𝜦𝑃𝐶𝐴
𝑐 )−1 𝑻𝑆

𝑐 (5.28) 

and the upper control limits: 

 𝑅𝑃𝐶𝐴(𝑚𝑐 − 1)

𝑚𝑐 − 𝑅𝑃𝐶𝐴
𝐹𝛼(𝑅𝑃𝐶𝐴,𝑚𝑐 − 𝑅𝑃𝐶𝐴) (5.29) 

where 𝑅𝑃𝐶𝐴 is the number of the PCs for the 1st level PCA model, 𝚲PCA
𝑐 =

(𝑻𝑠
𝑐)𝑇𝑻𝑠

𝑐/(𝑚𝑐 − 1) is the sample covariance matrix of scores. 𝛼 is the significance 

level of the F-distribution with degrees of freedom 𝑅𝑃𝐶𝐴 and 𝑚𝑐 − 𝑅𝑃𝐶𝐴. Furthermore, 

the 𝑆𝑃𝐸 metric can be determined as: 

 
𝑆𝑃𝐸𝑐 = (𝑬𝑆

𝑐)𝑻𝑬𝑆
𝑐     (5.30) 

and the upper control limits: 

 

(
𝑧(1−𝛼)√2𝜃2ℎ0

2

𝜃1
+
𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 + 1)

1
ℎ0

      (5.31) 

where 𝜃𝑖 = ∑ 𝜆𝑘
𝑖𝑚𝑐

𝑘=𝑅𝑃𝐶𝐴+1
, 𝑖 = 1,2,3 and ℎ0 = 1 − (2𝜃1𝜃3)/(3𝜃2

2 ). Here, 𝜆𝑘
𝑖  is the 

eigenvalue from residuals, 𝑖 and 𝑘 refer indexes of the power and largest eigen 

order, 𝑧(1−𝛼) is the standard normal deviate or z-score regarding (1 − 𝛼) percentile. 

Sections 2.3 and 2.5 provide further information on PCA modelling. 

The stationary factor for the multi-level model for the 𝑐𝑡ℎ phase (�̃�𝑀𝐿
𝑐 ) can be 

represented as: 

 
�̃�𝑀𝐿
𝑐 = [𝝃𝑐, 𝑻𝑠

𝑐] (5.32) 

and the 2nd level PCA model on the stationary factors can be represented as 

 

�̃�𝑀𝐿
𝑐 = ∑𝒑𝑀𝐿𝒕𝑀𝐿

𝑇

𝑅𝑀𝐿
𝑐

𝑟=1

+ �̃�𝑀𝐿
𝑐 = �̃�𝑀𝐿

𝑐 (�̃�𝑀𝐿
𝑐 )

𝑇
+ �̃�𝑀𝐿

𝑐  (5.33) 
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where 𝑅𝑀𝐿
𝑐  is the number of PCs for the 𝑐𝑡ℎ phase and �̃�𝑀𝐿

𝑐 , �̃�𝑀𝐿
𝑐  and �̃�𝑀𝐿

𝑐  are the 

loading, score and error matrix of the 2nd level PCA model, respectively. The �̃�𝑀𝐿
𝑐 . and 

𝑆𝑃𝐸𝑀𝐿 metrics can be derived from the 1st level PCA model from the given matrices 

and the number of PCs (𝑅𝑀𝐿
𝑐 ).  

5.3.3 Multi-level Multi-factor Process Monitoring Method for Batch Processes 

The multi-level model described in Section 5.3.2 was the first method to propose the 

use of PCA and cointegration analysis together for batch processes. The approach 

provides a final PCA model that combines cointegration residuals and PCA scores. 

However, cointegration analysis is ill-suited to the modelling of data exhibiting higher 

level nonstationary characteristics. In some cases, cointegration analysis can end up 

with only one cointegration relationship even though the cointegration matrix has a 

higher rank. Some cointegration relationships built by cointegration analysis can result 

in an ill-suited situation for the monitoring of nonstationary variables where the 𝑡- 

score vectors can dominate in terms of the number of variables in the 2nd level PCA 

model. To solve this issue, the use of common-trend models has been adopted along 

with cointegration analysis and PCA. 

The concurrent identification method detailed in the previous section is used for 

variable identification for the multi-level multi-factor model. The model is illustrated 

in Figure 5.5. In comparison to the multi-level model, the 1st level modelling 

techniques include common-trend residuals-based process monitoring method, which 

is applied to the nonstationary variables (𝑿𝑁𝑆). Therefore, the 2nd level PCA model 

uses different stationary factors to those in the multi-level model. 

The multi-level multi-factor model uses the same models in the 1st level as for the 

multi-level method with the addition of a common-trend residuals-based process 

monitoring method. A common-trend model is applied to the unused vectors in the 

cointegration matrix to improve the performance of the monitoring of the 

nonstationary variables. Cointegration analysis determines the rank of cointegration 

matrix according to the cointegration relationship of the nonstationary variables, which 

also equals the number of stationary factors gathered from the cointegration residuals. 

The common-trend model allows the multi-level multi-factor model to analyse the 

nonstationary space, that is not used by cointegration model. After whitening of the 

common-trend residuals, the variables transform into stationary factors. 
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Figure 5.5: Illustration of batch process monitoring method based on a multi-level 

multi-factor model. 
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In addition to the stationary factors 𝝃𝑐 and 𝑻𝑠
𝑐 described by the multi-level model for 

the 𝑐𝑡ℎ phase, the stationary factors from the common-trend residuals (𝝇𝑐) require the 

same cointegration matrix built by the cointegration model for the nonstationary 

variables (𝑿𝑁𝑆) in Section 5.3.2. The cointegration matrix has a maximum rank of 

𝑁 − 1. Low rank matrices imply the existence of common-trends. Assuming that the 

rank for the 𝑐𝑡ℎ phase is 𝑅𝑐, the first 𝑅𝑐 columns of the cointegration matrix represent 

the relationship between nonstationary variables to obtain stationary factors. The 

remaining 𝑛𝑛𝑠 − 𝑅𝑐 cointegration vectors still represent a large portion of the process 

characteristics. For some cases in batch process monitoring, cointegration analysis 

may result in a smaller cointegration rank, which may cause loss of valuable 

information. 

A common-trend model requires a set of vectors 𝜷⊥
𝑐  ∈  ℝ𝑛𝑐×(𝑛𝑐−𝑅𝑐) such that the 

matrix is perpendicular to the ranked cointegration matrix 𝜷𝑐 ∈  ℝ𝑛𝑐×𝑅𝑐 and [𝜷𝑐, 𝜷⊥
𝑐 ] 

has full rank. Common-trend residuals for the 𝑐𝑡ℎ phase can be represented as: 

 
𝒆𝑐 = (𝜷⊥

𝑐 )𝑇𝑿𝑁𝑆
𝑐  (5.34) 

where 𝒆𝑐 represents the nonstationary residuals and a sample point of 𝒆c can be 

represented via a VAR process, discussed in Section 4.3.4, to extract stationary factors 

(𝝇𝑐). The 𝑇2 metric can be defined as: 

 (𝑻𝐶𝑇
𝑐 )2 = (𝝇𝑐)𝑇(𝜦𝐶𝑇

𝑐 )−1 𝝇𝑐 (5.35) 

where 𝚲CT
c = ∑ (𝝇𝑘

𝑐 )𝑇𝝇𝑘
𝑐𝑚𝑐

𝑘=1 /𝑚𝑐 is the sample covariance matrix and the UCLs are 

given by: 

 (𝑛𝑛𝑠 − 𝑅𝑐)(𝑚𝑐 − 1)(𝑚𝑐 + 1)

𝑚𝑐(𝑚𝑐 − 𝑛𝑐 + 𝑅𝑐)
𝐹𝛼(𝑛𝑐 − 𝑅𝑐, 𝑚𝑐 − 𝑛𝑐 + 𝑅𝑐) (5.36) 

where 𝛼 is the significance level of the F-distribution 𝐹𝛼(𝑛𝑐 − 𝑅𝑐, 𝑚𝑐 − 𝑛𝑐 + 𝑅𝑐) with 

degrees of freedom 𝑛𝑐 − 𝑅𝑐 and 𝑚𝑐 − 𝑛𝑐 + 𝑅𝑐. The stationary factors arising from the 

1st level of the multi-level multi-factor model are given by the stationary factors from 

the 3 sub-models:  

 
�̃�𝑐 = [�̃�𝑀𝐿

𝑐 , 𝝇𝑐] = [𝝃𝑐, 𝑻𝑠
𝑐 , 𝝇𝑐] (5.37) 
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Note that cointegration residuals (𝝃𝑐) and t-score (𝑻𝑠
𝑐) from 1st level are the same 

stationary factors gathered from the 1st level of the multi-level modelling (�̃�𝑀𝐿
𝑐 ). The 

2nd PCA model applied to the stationary factors (�̃�𝑐) can be represented as: 

 

�̃�𝑐 = ∑ 𝒑𝑟𝒕𝑟
𝑇

𝑅𝑆𝑒𝑐
𝑐

𝑟=1

+ �̃�𝒄 = �̃�𝒄(�̃�𝒄)
𝑇
+ �̃�𝒄 (5.38) 

where 𝑅𝑆𝑒𝑐
𝑐  is the number of PCs for the 𝑐𝑡ℎ phase and �̃�𝒄, �̃�𝒄 and �̃�𝒄 are the loading, 

score and error matrix of the 2nd level PCA model, respectively. The 𝑇2 and 𝑆𝑃𝐸 

metrics can be derived from the 1st level PCA model by using the given matrices and 

the number of PCs (𝑅𝑆𝑒𝑐
𝑐 ). Sections 2.3 and 2.5 provide the PCA modelling for further 

information. 

Unlike the continuous process version of the multi-level multi-factor model, the model 

for batch processes includes unique variable identification and additional modelling as 

each of the phases requires different models. In Table 5.2, the offline training 

procedure of the multi-level multi-factor model for batch processes is summarized. 

This requires batch data sets collected under normal operating conditions.  

Table 5.2: Offline training of the multi-level multi-factor model for batch processes. 

1: Set up phase lengths (𝑚𝐶). Set 𝑐 = 1 and 𝑛 = 1 

2: Compute Equation (5.23) for regression matrix Γ. 

3: Solve OLS in Equation (5.22) and determine 𝜃 for nonstationarity. 

4: If 𝑛 < 𝑁, then set 𝑛 = 𝑛 + 1 and go to Step 2 

5: Solve Equation (3.25) to obtain 𝜷𝑐. 

6: Calculate 𝝃𝑐 via Equation (5.25) 

7: Find 𝜷⊥
𝑐  and calculate 𝒆𝑐 via Equation (5.34) and then whiten 𝒆𝑐  via 

Equation (4.18) to find 𝝇𝑐. 

8: Use Appendix-A on (𝑿𝑆
𝑐) to find 𝑻𝑐 via Equation (5.27). 

9: Set up stationary factors (�̃�𝑐) via Equation (5.37) 

10: Use Appendix-A on (�̃�𝑐)  to find �̃�𝒄 via Equation (5.38). 

11: Calculate the upper control limits. 

12: If 𝑐 < 𝐶  then set 𝑐 = 𝑐 + 1 and 𝑛 = 1 go to Step 2. 

 

Following the determination of the upper control limits and the model, process 

monitoring can continue with the online diagnosis listed in Table 5.3. 
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Table 5.3: Online diagnosis of the multi-level multi-factor model for batch 

processes. 

1 : For each sampling point (𝑡) set 𝑐 = 1 

2 :  Calculate 𝝃𝑡
𝑐 via Equation (5.25) 

3 :  Calculate 𝝇𝑡
𝑐 via Equation (5.34) then Equation (4.18) 

4 :  Calculate 𝑻𝑡
𝑐 via Equation (5.27). 

5 :  Set up stationary factors (�̃�𝑡) via Equation (5.37) 

6 :  Calculate �̃�𝑡
𝑐 via Equation (5.38). 

7 :  Calculate 𝑇2 via Equation (5.28) and SPE via Equation (5.30) 

8 :  If any of them exceed the upper limits that defined, then raise an alarm 

9 :  If 𝑡 < 𝑚𝑐 go to Step 2, else 𝑐 = 𝑐 + 1 and go to Step 2 until the last 

sampling point. 

10: End if it is the last point 

 

5.4 Application to Industrial Penicillin Simulator  

The industrial-scale penicillin simulator was used to compare three methods that have 

been introduced: multi-PCA, a multi-level model and the multi-level multi-factor 

model. Nine standard batches were selected from the real fermentation data sets and 

cut to 200 hours for the training of the methods. 

Two examples of process faults were created to evaluate the performance of the 

different methods. The first comprised a fault on the temperature sensor, which affects 

directly the variables that are measured (see Table 5.1). The fault is a ramp function 

starting at the time of the initiation of the fault. The second was a fault on the substrate 

feed rate, which was not monitored directly but has an indirect effect on the variables 

that were monitored (see Table 5.1). 

The multi-PCA method is a multiphase monitoring approach, which establishes a 

different PCA model for each phase but does not consider the nonstationarity of the 

data. Each PCA model can explain a different percentage of variance so as to vary the 

sensitivity of the model through time for the phases. However, for simplicity, the 

explained variance level of the multi-PCA models was set to be the same as that for 

the PCA model employed in the first level of the multi-level multi-factor method. The 

explained variance was selected to be 45% to provide a better performance on the 

type-1 error rate for the training data sets compared to other fixed variance percentages 

(see Appendix-D for further information about PC selection). It is noted that each of 

the operation phases has its own variance distributions given by the PCs. Therefore, 
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even the same level of explained variance can result in a different number of PCs and 

upper control limits. 

In contrast, the multi-level and multi-level multi-factor models share some of sub-

models from the 1st level of modelling. In addition to these same models, the multi-

level multi-factor model uses common-trend models. In comparison to the multi-level 

model, the multi-level multi-factor model uses common-trend models where 

cointegration analysis has difficulties in building long-run equilibria to make 

nonstationary (𝐼(1)) variables stationary (𝐼(0)), which can be monitored using 

standard PCA. 

5.4.1 Model Training 

Training of the sub-models for each phase was performed using the data from the 

normal batches. Multi-PCA requires one parameter to be set, which is the number of 

principal components required to explain the selected variance in the data, 45% in this 

case.  

It is noted that since the multiphase batch process is divided into different operating 

phases, each phase is modelled by a different model. This gives rise to differences in 

the control limits for each phase. Thus, it is normal to see various control limits 

throughout the different phases. For both PCA and cointegration analysis, 𝑇2 is based 

on the F-distribution-based ranking for the control limits while the SPE uses 

eigenvalues for control limits with PCA. The procedure for training of the models is 

shown in Table 5.2. Details on how model variance was selected is given in Appendix-

D. 

First training was performed using multi-PCA and the results obtained for the 

monitoring of a normal batch are shown in Figure 5.6. The multi-PCA model combines 

5 different PCA models, which are tabulated in Table 5.4. Figure 5.6 shows the 

residuals collected from one of the nine training data sets using a cross validation 

approach. Most of the 𝑇2 metrics lie below the control limits and a few samples went 

above the control limits in the SPE chart. This issue can be resolved by having a 

different variance level for each phase. However, the main purpose of this study is to 

compare the same parameters for the same models in the different methods, thus the 

variance level was kept the same for each PCA model in the study.  
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Figure 5.6: T2 and SPE metrics obtained for a multi-PCA model built using a 

training batch exhibiting normal operation. 

Table 5.4: Number of principal components selected for each PCA model. 

Model Name 
Phase 

Number 

Number 

of PCs 
Variance in the Data (%) 

Multi-PCA 

1 2 𝟒𝟒. 𝟗, 𝟏𝟐. 𝟒, 9.2, 8.5, 6.2 

2 2 𝟑𝟗. 𝟓, 𝟏𝟕. 𝟏, 10.6, 10.6, 6.4 

3 2 𝟑𝟏. 𝟎, 𝟏𝟗. 𝟕, 14.8, 8.9, 7.8 

4 3 𝟐𝟑. 𝟐, 𝟐𝟎. 𝟑, 𝟏𝟕. 𝟓, 10.7, 8.9 

5 3 𝟐𝟖. 𝟐, 𝟏𝟓. 𝟐, 𝟏𝟎. 𝟓, 10.4, 6.7 

1st level PCA 

1 1 𝟔𝟎. 𝟓, 13.5, 11.9, 6.6, 3.1 

2 1 𝟓𝟓. 𝟎, 14.8, 11.4, 6.8, 5.4 

3 2 𝟐𝟔. 𝟖, 𝟐𝟎. 𝟏, 19.1, 14.1, 8.7 

4 2 𝟑𝟑. 𝟎, 𝟐𝟒. 𝟑, 18.2, 11.1, 9.4 

5 2 𝟐𝟔. 𝟔, 𝟏𝟖. 𝟒, 12.4, 9.3, 8.0 

2nd level PCA 

(Multi-level) 

1 1 𝟕𝟖. 𝟑, 21.7 

2 1 𝟓𝟖. 𝟑, 41.6 

3 3 𝟐𝟏, 𝟓, 𝟏𝟖. 𝟓, 𝟏𝟔. 𝟕, 16.6, 14.8 

4 2 𝟑𝟑. 𝟎, 𝟐𝟕. 𝟒, 22.6, 17.0 

5 1 𝟓𝟑. 𝟖, 33.3, 12.9 

2nd level PCA 

(Multi-level 

Multi-factor) 

1 2 𝟒𝟑. 𝟖, 𝟐𝟒. 𝟎, 15.2, 9.4, 7.3 

2 2 𝟑𝟓. 𝟒, 𝟐𝟓. 𝟓, 17.8, 12.4, 8.7 
3 2 𝟑𝟓. 𝟏, 𝟏𝟒. 𝟔, 10.5, 8.8, 7.8 
4 3 𝟐𝟒. 𝟗, 𝟏𝟗. 𝟓, 𝟏𝟓. 𝟖, 11.2, 8.9 
5 2 𝟑𝟒. 𝟔, 𝟐𝟔. 𝟓, 16.6, 9.0, 7.6 

 

It is common to see different characteristics in the variables through the different time 

phases in batch processes and so it is necessary to check the stationary characteristics 

of each variable during all time phases. These tests can show different results for the 
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same variable across different time phases, which has led to the development of the 

multi-level multi-factor process monitoring scheme where different models are used 

for each variable set and time phase. The variables that exhibit nonstationarity during 

phases 1 to 5 of the batch process are tabulated in Table 5.5. 

Having different control limits for the SPE and 𝑇2 metrics is possible because of the 

different number of PCs selected for each phases. For example, the 𝑇2 metric in Figure 

5.6 shows two different levels for the control limits. This difference arises from the 

selected number of PCs for the multi-PCA model as stated in Table 5.4. However, this 

is not the case for the SPE metric as it uses eigenvalues of the different samples through 

the phases. 

Table 5.5: Nonstationary variables in each phase of the batch process given by the 

industrial penicillin simulator.  

N

o 

Phase Range (𝑷𝑹) 
Nonstationary Variables 

In hours In samples 

1 0 − 30 0 − 150 [𝑥1, 𝑥6, 𝑥7, 𝑥8, 𝑥12, 𝑥13, 𝑥18] 

2 30 − 68.2 150 − 341 [𝑥1, 𝑥8, 𝑥12, 𝑥13, 𝑥17, 𝑥18] 

3 68.2 − 102.2 341 − 511 [𝑥1, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥14, 𝑥15, 𝑥16, 𝑥17, 𝑥18] 

4 102.2 − 133.4 511 − 667 [𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥9, 𝑥10, 𝑥12, 𝑥13, 𝑥17, 𝑥18] 

5 133.4 − 200 + 667 − 1000 +  [𝑥4, 𝑥6, 𝑥12, 𝑥13, 𝑥17, 𝑥18] 

 

The first phase of the process is the growth period of the penicillin fermentation. The 

biomass and weight show clear trends in that period. The first 30 hours of the process 

has the lowest penicillin concentration because of the initiation of the production. In 

that phase 𝑋𝑁𝑆
1 = [𝑥1, 𝑥6, 𝑥7, 𝑥8, 𝑥12, 𝑥13, 𝑥18] has been identified as being 

nonstationary. The second phase is subject to growth of the penicillin culture and 

hence, increasing concentration. Changes in 𝑃𝐴𝐴 are also possible because of the 

optimum control of the flow of phenyl acetic acid, which is a major challenge in 

penicillin fermentations. It is known that high levels of PAA in the culture are toxic to 

the biomass by inhibiting growth and penicillin production (Goldrick et al., 2015). 𝐹𝑐 

keeps its nonstationary characteristics with 𝑇(𝑥8), 𝑁𝑖𝑡(𝑥12), 𝑂𝑈𝑅(𝑥13) and 

𝐶𝑂2,𝐿(𝑥18). However, 𝑉(𝑥5) and 𝑊(𝑥6) show stationary characteristics which means 

that these variables can be monitored by classical PCA. On the other hand, 𝜇𝑃(𝑥17) 
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changes from being stationary to nonstationary for the 2nd phase: 𝑋𝑁𝑆
2 = [𝑥1, 𝑥8, 𝑥12, 

𝑥13, 𝑥17, 𝑥18]. The 3rd phase is the saddle point for the different variables, with an 

increase in the number of nonstationary variables: 𝑋𝑁𝑆
3 = [𝑥1, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11 

, 𝑥14, 𝑥15, 𝑥16, 𝑥17, 𝑥18]. After the 3rd phase, the process tends to exhibit steady state 

regarding the natural limits of the penicillin growth Here; 𝑊,𝑄(𝑥9), 𝑃𝐴𝐴(𝑥11) , 

𝑂2(𝑥14) and viscosity became stationary and the following variables were identified 

as nonstationary: 𝑋𝑁𝑆
4 = [𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥9, 𝑥10, 𝑥12, 𝑥13, 𝑥17, 𝑥18]. For the final (5th) 

phase, there is a reduction in the number of nonstationary variables, which is expected 

as more variables exhibit steady-state characteristics. On the other hand, penicillin 

yield and vessel weight show nonstationary characteristics due to the end of the 

growing phase where penicillin concentration can be reduced in that phase and weight 

can be fluctuated from changes (Goldrick et al., 2015). The nonstationary variables in 

the final phase are given by: 𝑋𝑁𝑆
5 = [𝑥4, 𝑥6, 𝑥12, 𝑥13, 𝑥17, 𝑥18]. 

The 𝑇2 and SPE metrics obtained using the multi-level model for the training data set 

are shown in Figure 5.7. As for the multi-level multi-factor model, the multi-level 

model consists of two levels of modelling, which includes PCA and cointegration 

analysis. The 1st level PCA models for each phase are tabulated in Table 5.4. 

Differences in the control limits for each phase result from the rank of the PCA models. 

The rank of the cointegration matrix for the 5 different phases was determined as: 

[1, 1, 4, 2, and  1] using the Johansen test. The ranks show the existence of common-

trends within the cointegration analysis, which allows the use of a common-trend 

model and the number of nonstationary variables for each phase can be assigned as 

[7, 6, 12, 10, and  6]. The 2nd level PCA models for each phase are also tabulated in 

Table 5.4. As can be seen from the number of PCs used in the 2nd level PCA model in 

the multi-level model, a small number of factors are integrated into the 2nd PCA model.  

The results obtained for the training data using the multi-level multi-factor model are 

shown in Figure 5.8. Here, the different sub-models from the 1st and 2nd levels of the 

multi-level scheme are presented to show the differences between them. Figure 5.8(a) 

shows the 𝑇2 metric for the cointegration residuals-based model for the nonstationary 

variables. Figure 5.8(b) shows the 𝑇2 metric for the common-trend residuals-based 

model for the nonstationary variables. The control limits are different for these two 

approaches as they complement each other. The last sub-model from the 1st level of 

the multi-level scheme is shown in Figure 5.8(c), and shows the 𝑇2 and 𝑆𝑃𝐸 metrics 
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after application of PCA to only the stationary variables. The 1st level PCA model 

combines 5 different PCA models which are tabulated in Table 5.4. In the final (2nd 

level) stage, the residuals from the three sub-models from the 1st level are combined 

and analysed using PCA. The 𝑇2 and 𝑆𝑃𝐸 metrics for the 2nd level PCA model are 

shown in Figure 5.8(d). Modelling by PCA is possible as the residuals from the 1st 

level are stationary. Again, it combines 5 different PCA models, which are tabulated 

in Table 5.4. In comparison to the multi-level model, more stationary factors that 

describe the process dynamics are taken into the 2nd level model, which can be then 

used to monitor these dynamics.  

 

Figure 5.7: T2 and SPE metrics obtained for a multi-level model built using a 

training batch exhibiting normal operation. 

A performance comparison of the three methods is summarized in Table 5.6. 99% 

SPE limits were selected as the basis for the comparison as the SPE metric is used to 

detect deviations that are not explained by the model. The statistical comparison is 

carried out using the false alarm rate (type-I error) as it is training data. It can be seen 

that the performance of the three methods is comparable.  

Table 5.6: Performance comparison of the multi-level multi-factor, multi-level, and 

multi-PCA methods based on the type-1 error rate for training data exhibiting normal 

operation. 

Case Study 
 Type I error (%) 

 Multi-level Multi-factor Multi-level Multi-PCA 

Training  1.8 2.1 2.3 
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(a)

(b)
(d)

(c)

 

Figure 5.8: Metrics obtained using the multi-level multi-factor model for a training batch exhibiting normal operation. (a) T2 metric for 

cointegration analysis at the 1st level, (b) T2 metric for common-trend model at the 1st level, (c) T2 and SPE metrics for PCA at the 1st level, and 

(d) T2 and SPE metrics for PCA at the 2nd level. 
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5.4.2 Model Testing 

The 3 models were applied to test data sets generated using the industrial penicillin 

simulator. In the first case, a sensor error on the temperature was defined to be a ramp 

function starting from sample number 200. This allowed a maximum error of 2% on 

the measured temperature value. Faulty zones are highlighted in the figures with grey 

shading as shown, for example, in Figure 5.9 and Figure 5.10. This fault tests the 

monitoring systems for an error that could result in a plant shutdown due to the 

increasing magnitude of the error. It is worth noting that the temperature sensor fault 

shows a clear trend characteristic, which is nonstationary. 

The second case was selected as an example of a fault that had an indirect effect on 

the variables that were monitored. The substrate feed rate was not monitored and 

therefore, the models need to detect the error from the measured variables indirectly 

(see Table 5.5). The substrate (sugar) feed rate is changed to 20 𝐿 ℎ−1 at sample 

number 300. Note that the fault examples used here have already been defined in the 

simulation (Goldrick et al., 2015). 

The results obtained using multi-PCA for detection of a temperature sensor error are 

shown in Figure 5.9. The 𝑇2 statistic, as expected, was not able to detect the fault 

during the first three phases of the batch (samples 0 − 511) where the vessel 

temperature exhibits nonstationary characteristics. The ramp function is considered as 

a common-trend fault and so no samples exceeded the 𝑇2 control limits that define the 

variance for the normal operating conditions. It is also noted that owing to the PCA 

model’s high explained variance, the 𝑇2 metric is unable to detect nonstationary 

characteristics. After the process entered the 4th phase (samples 511 − 667), the SPE 

metric goes above the control limits for the first time at sample number 535. The slow 

time-varying fault characteristics from the ramp function made the fault difficult to 

detect by multi-PCA owing to the dynamic relationship between the temperature and 

the other variables. However, after entering the 5th phase (samples 667 − 1000 +), 

both metrics go above the control limits. 

It is expected that the temperature sensor error would affect some variables that are 

monitored such as the vessel temperature (𝑥8). However, the sensor error may be 

evident in more variables than just the vessel temperature, as the process comprises a 

number of cross correlated variables. Considering that the vessel temperature is 
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identified as nonstationary for the first three phases (samples 0 − 511) and shows 

stationary characteristics for the last two phases (samples 511 − 1000 +), it can be 

concluded that when the characteristics of the variables change in the different phases, 

this can affect the performance of conventional models. 
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Figure 5.9: T2 and SPE metrics obtained using multi-PCA for a batch exhibiting a 

temperature sensor error. The fault is first detected at sample number 535 using the 

SPE metric (indicated by turquoise vertical line). 

Figure 5.10 shows the T2 and SPE results obtained using a multi-level model for data 

exhibiting a temperature sensor fault. The multi-level model uses cointegration 

residuals and PCA scores to build a model. Thus, it uses the stationary factors that are 

later used to derive the 𝑇2 and SPE metrics observed in Figure 5.11(a) and Figure 

5.11(c). Here, different characteristics are modelled by the different models. As can be 

seen from Figure 5.11(a) and Figure 5.11(c), the PCA and cointegration models are 

effective on different phases. Detection of the fault using the SPE metric occurs in the 

3rd phase (samples 341 − 511) at sample number 400 as, shown in Figure 5.10. This 

occurs earlier than when a fault is detected by multi-PCA. Even though some samples 

in the 3rd phase (samples 341 − 511) are below the control limit, the multi-level model 

has a better fault detection rate than multi-PCA. As can be seen from Figure 5.11(a) 

and Figure 5.11(c), the PCA model cannot detect the fault until the 5th phase (samples 

667 − 1000 +). Thus, the effective stationary factors in the multi-level model for fault 

detection were the cointegration residuals.  
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Figure 5.10: T2 and SPE metrics obtained using a multi-level method for a batch 

exhibiting a temperature sensor error. The fault is first detected at sample number 

400 using the SPE metric (indicated by turquoise vertical line). 

Figure 5.11(a) shows the 𝑇2 metric for the cointegration residuals-based process 

monitoring results for the nonstationary variables. Figure 5.11(b) shows the 𝑇2 metric 

for the common-trend residuals for the nonstationary variables. Figure 5.11(c) 

represents the 𝑇2 and 𝑆𝑃𝐸 metrics for the application of PCA to the stationary 

variables. As for the multi-level model, the PCA model is effective when the variable 

that is the most affected by the fault, variable 𝑥8, shows stationary characteristics. On 

the other hand, it is better to use cointegration and common-trend residuals-based 

process monitoring models during the first 3 phases (samples 0 − 511) where variable 

𝑥8 exhibits nonstationary characteristics, illustrated in Figure 5.11(a) and (b). The 

results obtained for detection of the temperature sensor fault using the multi-level 

multi-factor model are shown in Figure 5.11(d). The results obtained for the three sub-

models at the 1st level and the final model at the 2nd level are also shown.  

The temperature sensor fault was first detected by the multi-level multi-factor model 

at the beginning of the 3rd phase (sample number 341), as can be seen in Figure 5.11 

(d) which shows the residuals from the 2nd level PCA model that were built from the 

residuals of the 3 sub-models from the 1st level (see Figure 5.11 (a) to Figure 5.11(c)). 

The multi-level multi-factor model was able to detect the temperature sensor error 

earlier than the multi-level method owing to the common-trend residuals involved in 

the 2nd PCA model.  
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Figure 5.11: Metrics obtained using the multi-level multi-factor model for a batch exhibiting a temperature sensor error. (a) T2 metric for 

cointegration analysis at the 1st level, (b) T2 metric for common-trend model at the 1st level, (c) T2 and SPE metrics for PCA at the 1st level, and 

(d) T2 and SPE metrics for PCA at the 2nd level. The turquoise vertical line indicates when the fault was first detected.
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It is worth observing that there are some peak points, which appear at around sample 

number 800. The ramp characteristic changes into a standard input (2%) without any 

increase at sample number 800. On the other hand, the poor performance of 𝑇2 with 

nonstationary data is well-known; thus, the use of the SPE for the 2nd level model is 

recommended. A performance comparison of the given models is given in Table 5.7. 

In the second example, a fault was introduced to the substrate feed rate, which is not 

part of the list of measured variables in Table 5.1. Hence, this fault has to be detected 

indirectly via those variables that are measured. The substrate (sugar) feed rate (𝐹𝑠) 

was changed to 20 𝐿 ℎ−1 at sample 300, which is just before the change from the 3rd 

to 4th phase in the process. 

The results obtained using multi-PCA for detection of a substrate feed error are shown 

in Figure 5.12. Oscillations in the residuals are common for cointegration based 

approaches because they model 𝑥𝑡 in the long-run with stationary Δ𝑥𝑡 variables (see 

Equation (3.25)) (Chen, Kruger and Leung, 2009; Li, Qin and Yuan, 2014). The 

oscillations observed in Figure 5.12 arise from variable 𝑥10, which denotes the 

percentage of 𝐶𝑂2 in the outgas that is partly related to the substrate feed rate as 

discussed in Sections 2.8 and 3.5 of the original publication of Goldrick et al.(2015). 

Furthermore, the higher oscillations in the cointegration residuals are also reported in 

several studies such as in the monitoring of the distillation unit (Chen, Kruger and 

Leung, 2009). Although the multi-PCA model detected some abnormalities at the end 

of the 2nd phase (sample number 341), they were not well detected and did not continue 

into the 3rd phase (samples 341 − 511). This can be related to the characteristics of 

𝑥10 which shows nonstationarity in the 3rd and 4th phases (samples 341 − 667). 

Consequently, the first continuous detection of the fault using a multi-PCA model 

occurred at sample number 480 with some type-II errors. 

The 𝑇2 and SPE metrics obtained using a multi-level model for data exhibiting a 

substrate feed rate error are illustrated in Figure 5.13. Here, the first detection of a fault 

in the SPE chart occurs at sample number 420; however, it continues with some type-

II errors until sample number 450 for the 3rd and 4th phases (341 − 667). Even though, 

𝑥10 is stationary for the 5th phase, the PCA model contributes to keeping the SPE 

metric above the control limit with some type-II errors. It should be noted that the 

substrate feed rate fault does not have a direct effect on 𝑥10. This can be followed 
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through the monitoring of variables exhibiting higher degree nonstationarity using 

common-trend models. 
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Figure 5.12: T2 and SPE metrics obtained using multi-PCA for a batch exhibiting a 

substrate feed rate error. The fault is first detected at sample number 302 using the 

SPE metric (indicated by turquoise vertical line). 
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Figure 5.13: T2 and SPE metrics obtained using the multi-level method for a batch 

exhibiting a substrate feed rate error. The fault is first detected at sample number 420 

using the SPE metric (indicated by turquoise vertical line). 

The 𝑇2 and SPE charts obtained using the multi-level multi-factor model for substrate 

feed rate fault are shown in Figure 5.14(d). The results obtained for the three sub-

models at the 1st level and the final model at the 2nd level are given. Figure 5.14(a) 

shows the 𝑇2 metric for the cointegration residuals-based monitoring results for the 

nonstationary variables. Figure 5.14(b) shows the  𝑇2 metric for the common-trend 

residuals for the nonstationary variables. Figure 5.14(c) shows the 𝑇2 and 𝑆𝑃𝐸 metrics 
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from application of PCA to the stationary variables where the fault detection is evident 

via the SPE metric during the 3rd and 5th phases (samples 300 − 341 and 667 −

1000 +). Even though the multi-level multi-factor model uses the same factors as 

those shown in Figure 5.14(a) and Figure 5.14(c), it is evident that the earlier fault 

detection observed in Figure 5.14(d) by the multi-level multi-factor model compared 

to the multi-level model arises from use of the common-trend residuals illustrated in 

Figure 5.14(c). Note that the rank of the cointegration matrices were found to be 

1, 1, 4, 2, and 1 for each phase (out of 7, 6, 12, 10 and  6 nonstationary variables) which 

shows the existence of higher degree nonstationarity within the nonstationary 

variables. The rank of the cointegration matrix can be zero or a small number compared 

to the large number of nonstationary variables that are to be modelled. This is because 

of the impracticality of cointegration analysis modelling to build linear cointegration 

relationships when high-level nonstationarity is present. The number of factors used 

in the common-trend residuals-based monitoring was 6, 5, 8, 8 and 5, which 

complement the cointegration matrix assigned by the Johansen test. 

In addition to early detection of the error in the substrate feed rate at around sample 

number 350, the multi-level multi-factor method can extract information from the 

higher level nonstationary variables as observed in the final phase (samples 667 −

1000 +) in Figure 5.14(c) and Figure 5.14(d). This compensates for some deficiencies 

of cointegration modelling when the level of nonstationarity is high. Therefore, the use 

of the common-trend model is needed when higher nonstationarity levels are 

considered such as in batch processes.  

Table 5.7 summarizes the fault detection results for the test data sets obtained using 

the three different methods: the multi-level multi-factor, multi-level and multi-PCA 

models. 99% SPE limits were selected for the comparison as the SPE statistic tends to 

detect deviations that are not explained by the model. The statistical comparison shows 

that the multi-level multi-factor method has better performance in terms of both false 

alarm rate (type-I error) and missing alarm rate (type-II error) in comparison with 

conventional multi-PCA and the multi-level model. 
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Figure 5.14: Metrics obtained using the multi-level multi-factor model for a batch exhibiting a substrate feed rate error. (a) T2 metric for 

cointegration analysis at the 1st level, (b) T2 metric for common-trend model at the 1st level, (c) T2 and SPE metrics for PCA at the 1st level, and 

(d) T2 and SPE metrics for PCA at the 2nd level. The turquoise vertical line indicates when the fault was first  detected.
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Table 5.7: Type I and type II errors for the multi-level multi-factor, multi-level, and 

multi-PCA models for detection of a temperature sensor error and a substrate feed 

rate error in the test data sets. 

Case Study 

 Type I error (%) 

 
Multi-level 

Multi-factor 
Multi-level multi-PCA 

Temperature  − − 3.2 

Substrate Feed  1.3 1.1 − 

Case Study 

 Type II error (%) 

 
Multi-level 

Multi-factor 
Multi-level multi-PCA 

Temperature  𝟐𝟎. 𝟗 27.3 39.7 

Substrate Feed  𝟏𝟎. 𝟑 37.5 19.6 

5.5 Conclusions 

A multi-level multi-factor process monitoring scheme has been developed that can 

deal with both stationary and nonstationary variables for multi-phase batch processes. 

The multi-level multi-factor scheme consists of two levels. In the 1st level, the 

statistical information underpinning the nonstationary variables is extracted by 

cointegration analysis and a common-trend model while PCA extracts information 

from the stationary variables. The final part (2nd level) of the monitoring scheme is 

based on conventional PCA as the factors from the 1st level models are stationary and 

hence can be modelled by PCA. 

The advantage of the multi-level multi-factor method is that it incorporates a common-

trend model as can be seen directly in cases where there is a low rank cointegration 

matrix which can be caused by high level nonstationary characteristics such as 𝐼(2). 

A low rank cointegration matrix means that fewer variables are monitored by methods 

such as the multi-level model (Zhang, Zhao and Gao, 2019). Thus it is conjectured that 

the multi-level-multifactor model has better performance than previously reported 

models for the monitoring of nonstationary variables such as those found in complex 

multi-phase batch processes. The multi-level multi-factor method has been used to 

detect two types of faults in the simulation of the industrial scale penicillin 

fermentation process, demonstrating its potential for general applicability to the 

monitoring of batch and semi-batch processes. 
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This chapter validates the multi-level multi-factor model using data sets gathered from 

a realistic fermentation process simulation. However, the model needs to be evaluated 

using data sets gathered from actual industrial processes before it can be considered 

for real-time process monitoring. 
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6. PARAMETER TUNING FOR MULTI-LEVEL MULTI-FACTOR 

MODELLING 

6.1 Overview 

The multi-level multi-factor model proved its effectiveness on several test cases for 

both continuous (Chapter 4) and batch processes (Chapter 5). The model has two PCA 

models; one for each level. This requires optimisation of one design parameter per 

model, the number of PCs, which can be set on the basis of explained variance. 

In the Chapters 4 and 5, the models were designed according to their performance with 

training data, i.e., the type-I error. However, the proposed model’s level structure 

means that the two models should not be considered independently. The number of the 

PCs in the 1st level PCA model directly determines the number of 𝑡-score vectors, 

which is one of the sources of the stationary factors for the 2nd level modelling. 

Designing models separately where there is only one metric to be considered is also 

time consuming for a data analyst. All of the possible combinations must be tried to 

find the optimum parameters for the multi-level multi-factor model.  

The multi-level multi-factor method models the different phases of batch processes via 

a series of local models to cope with nonlinearities through the time domain. It also 

affects the data identification procedure where the characteristics of the variables can 

change within the determined phases. Furthermore, the model that is responsible for 

these variables can also be changed with regards to the time period covered by the 

phases. However, designing the phase length for the multi-level multi-factor model is 

another exhaustive task for the data analyst considering the possibilities for each time 

range within the process.  

The multi-level multi-factor model truly supports multivariate cases unlike the other 

cointegration residuals-based approaches (Chen, Kruger and Leung, 2009; Li, Qin and 

Yuan, 2014; Lin, Kruger and Chen, 2017; Sun, Zhang, Zhao and Gao, 2017). Multiple 

cointegration models can be used as the source of the stationary factors for the second 

level modelling when there are more than 12 nonstationary variables. It is known that 

the cointegration rank depends on the combination of the nonstationary variables 

involved in the cointegration model where the rank may increase or decrease according 

to this combination (Harris and Sollis, 2003). Therefore, the performance of the multi-
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level multi-factor model may increase through selection of a better combination of the 

nonstationary variables for each cointegration model. However, this search for the 

optimum combination is another demanding task for the analyst.  

Global optimization algorithms aim to find the best global solution for a model, in the 

possible presence of multiple local optima. Starting from the genetic algorithm (GA), 

several heuristic global optimization algorithms have been proposed for different 

search or optimization problems (Erol and Eksin, 2006). Problems such as that 

described, which requires optimisation of 3 properties (the number of PCs in the PCA 

models at both levels, the phase length for batch processes and selection of the 

nonstationary variables for each cointegration model when there are more than 12 

nonstationary variables), can be solved by using a global optimization algorithm. The 

big-bang big-crunch (BB-BC) algorithm is one of the most promising optimization 

algorithms to tackle problems such as this.  

In the MSPC literature, global optimization algorithms have been used in several cases. 

For example, Gao and Hou (2016) used a GA along with support vector machines 

(SVMs) for fault diagnosis, based on clustering approaches, with the TEP; faults were 

detected using PCA models. GA-based kernel PCA (KPCA) was studied by Jiang and 

Yan (2018) to search for the optimum variables for inclusion in the KPCA model, 

which is arguably unnecessary for PCA when used as a MSPC technique. Particle 

swarm optimization (PSO) has been used to train artificial neural networks (ANNs) 

and SVMs for the modelling of vibration data (Samanta and Nataraj, 2009). Similarly, 

Jia et al. (2012) used a GA to search for the optimum KPCA parameters for the 

monitoring of a penicillin simulation. Xie and Kruger (2006) used PSO to tackle the 

convergence problem of independent component analysis (ICA). These examples 

show the use of global optimization algorithms for the exhaustive search of the 

parameter space.  

In this chapter, a parameter tuning method based on the BB-BC global optimization 

algorithm, is proposed for optimisation of the parameters for the multi-level multi-

factor model. It manages several parameter search problems, as mentioned above. The 

application of the method to the examples presented in Chapters 4 and 5 and the TEP 

will be evaluated to show its capability with both continuous and batch processes.  



120 

 

6.2 Big Bang-Big Crunch Optimization Algorithm 

The big bang-big crunch (BB-BC) optimization algorithm is a global optimization 

algorithm inspired by the formation of the universe, namely Big Bang and Big Crunch 

theories (Erol and Eksin, 2006). Big Bang is the first step where the solution candidates 

are randomly distributed over the search space. It forms the population matrix by 

choosing the solution candidates. It is then followed by the Big Crunch phase where a 

contraction procedure calculates a centre of mass for the defined population as 

described in Table 6.1. 

Table 6.1: Big Bang-Big Crunch optimization algorithm. 

Step 1 (Big Bang Phase): 𝑀 candidates are initially generated at random in the 

limited search space. 

Step 2: The cost function values of all population are computed.  

Step 3 (Big Crunch Phase): The centre of mass is calculated.  

Step 4: New population is calculated around the new point assigned in Step 3. 

Step 5: Go to Step 2 until the stopping criteria is met. 

 

The first population of Big-Bang is randomly generated over the entire search space 

like any other evolutionary search algorithm. The populations for each iteration are 

randomly distributed around the centre of mass or the best fit individual candidate. In 

the Big Crunch phase, a contraction procedure is applied. Here, each individual 

population member is associated with a cost function value, which determines the best 

fit value for the next starting point of the Big Bang phase. Another strategy for the 

determination of the future population is the use of the centre of the mass instead of 

the best fit: 

 

𝒙𝑐 =
∑ (1/𝑓𝑖)𝒙𝑖 
𝑀
𝑖=1

∑ (1/𝑓𝑖) 𝑀
𝑖=1

 (6.1) 

where 𝒙𝑐 and 𝒙𝑖 are the vectors of the centre of the mass and the candidate, 

respectively, 𝑓𝑖 is the cost function value of 𝒙𝑖 and 𝑀 is the population size. The new 

generation of the population for the next Big Bang iteration is normally distributed 

around 𝒙𝑐: 

 

𝒙𝑛𝑒𝑤 = 𝒙𝑐 +
𝑟𝛼(𝒙𝑚𝑎𝑥 − 𝒙𝑚𝑖𝑛)

𝑘
 (6.2) 
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where 𝑟 is a normal random number, and 𝛼 is a limiting parameter for the size of the 

search space. 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are predefined upper and lower limits for the search 

space, respectively, and 𝑘 is the number of iterations. Here, the connection between 

iteration number and the limits for the prescribed search boundaries, provides a shrink 

searching space close to the stopping criteria for the fine search.   

As is the case for any evolutionary optimization algorithm, the BB-BC algorithm 

continues until a specified stopping criteria is met. Commonly used stopping criteria 

are: (i) maximum number of iterations, (ii) maximum run time, and (iii) minimum 

convergence goal for the fitness value.  

In the original paper describing the BB-BC optimization algorithm, simulation results 

on benchmark test functions were reported and compared to those obtained with a GA; 

this demonstrated the quick convergence capability of the BB-BC algorithm. Thus, the 

BB-BC optimization algorithm was chosen for this study.  

6.3 Parameter Tuning for Multi-level Multi-factor Model 

6.3.1 Parameters  

Multi-level multi-factor modelling of continuous and batch was presented in Chapter 

4 and Chapter 5, respectively. For the sake of generalisation, the following sections 

describes optimisation of the multi-level multi-factor model for batch processes, as it 

combines several continuous models (one for each phase of the batch process). When 

considering its application to continuous processes, 𝑐 = 1.  

The 𝑇2 and 𝑆𝑃𝐸 metrics are calculated for the multi-level multi-factor model. The 

(𝑇𝑐)2 statistic is established to monitor the dominant subspace, which is the PCs space 

for the 𝑐𝑡ℎ phase according to Equation (5.28), and the SPE statistic is established to 

monitor the residual subspace according to Equation (5.30) using 𝑅𝑆𝑒𝑐
𝐶  as the number 

of PCs for the 2nd level PCA. The metrics provide local modelling of the defined phases 

in the 2nd level model. The metrics available at the 1st level of modelling vary because 

of the data characteristics and sub-models built to deal with these characteristics. 

Therefore, the optimization algorithm utilises the metrics from the 2nd level of the 

multi-level multifactor model as the response factor for the evaluation of the fault 

detection capability.  
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Multi-level multi-factor modelling has four design spaces that can be changed 

depending on the detection requirements. They are indicated in Figure 6.1 by the 

uppercase letters, A to D, and are highlighted with grey shading. These are: (A) the 

number of the PCs in the 1st level PCA model by choosing the minimum CPV (𝑝1), 

which models stationary variables, (B) the number of the PCs in the 2nd level PCA 

model by choosing the minimum CPV (𝑝2), which models the stationary factors 

gathered from the 1st level sub-models, (C) the number and length of the phases, which 

determines the variables characteristics, and (D) selection of the nonstationary 

variables for each cointegration model (𝑶𝒓𝒅) when there are more than 12 

nonstationary variables. These searches can be combined to improve performance of 

the optimum model apart from (C), which is only applicable to batch processes.  
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Figure 6.1: Illustration of the parameter tuning scheme for the four design spaces 

(denoted A to D) of a multi-level multi-factor method for the monitoring of batch 

processes, where (A) is the number of PCs for the 1st level PCA, (B) is the number of 

PCs for the 2nd level PCA, (C) is the phase lengths for the batch processes, and (D) is 

the selection of the nonstationary variables for each cointegration model. 
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Given features affect the fault detection capability of the multi-level multi-factor 

model according to the following decision logic, which is used to determine the status 

of the process: 

 

{
(𝑇𝑐)2 < (𝑇𝑐)𝑈𝐶𝐿

2  𝑎𝑛𝑑 𝑆𝑃𝐸𝐶 < 𝑆𝑃𝐸𝑈𝐶𝐿
𝐶 ⇒ 𝐹𝑎𝑢𝑙𝑡 − 𝑓𝑟𝑒𝑒

(𝑇𝑐)2 ≥ (𝑇𝑐)𝑈𝐶𝐿
2  𝑜𝑟 𝑆𝑃𝐸𝐶 > 𝑆𝑃𝐸𝑈𝐶𝐿

𝐶 ⇒ 𝐹𝑎𝑢𝑙𝑡 𝑎𝑙𝑎𝑟𝑚
 (6.3) 

where (𝑇𝑐)𝑈𝐶𝐿
2  is the upper control limit for the 𝑇2 statistic for the 𝑐𝑡ℎ phase, 𝑆𝑃𝐸𝑈𝐶𝐿

𝐶  

is the upper control limit for the SPE statistic for the 𝑐𝑡ℎ phase. Fault detection is 

conducted based on the SPE statistic in Chapter 5 including phase information. 

Considering the same approach here, the fault detection depends on 

 
𝑺𝑷𝑬𝐶 = ‖𝑰 − �̃�𝑐(�̃�𝑐)

𝑻
�̃�𝑐‖ (6.4) 

where �̃�𝑐 ∈ ℝ𝑅𝑆𝑒𝑐
𝑐 ×(𝑛𝑐+𝑅𝑆

𝑐) is the loading matrix of the 2nd level PCA model, 𝑅𝑆𝑒𝑐
𝑐  is 

the number of the PCs in the 2nd level PCA model, 𝑛𝑐 is the number of the 

nonstationary variables, and 𝑅𝑆
𝑐 is the number of the PCs in the 1st level PCA model. 

Monitoring based on the 𝑆𝑃𝐸𝑐 statistic depends on the control limits (𝑆𝑃𝐸𝑈𝐶𝐿
𝑐 ) 

determined in Equation (5.20) where 

 

𝜃𝑖 = ∑ 𝜆𝑘
𝑖

𝑁

𝑘=𝑅𝑆𝑒𝑐
𝑐 +1

, 𝑖 = 1,2,3

ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2

 (6.5) 

It is worth noting that the number of PCs determined on the basis of the CPV, given in 

Equation (2.7), affects both 𝑆𝑃𝐸𝑐 and 𝑆𝑃𝐸𝑈𝐶𝐿
𝑐 . However, it is subject to 1 ≤ 𝑅 ≤ 𝑁 −

1 where 𝑅 is the number of PCs and 𝑁 is the number of variables. Given limits helps 

to have a loading vector (�̃�𝑐 ∈ ℝ𝑁×𝑅) where 𝑅 ≥ 1. Furthermore, having 𝑁 − 1 

eigenvalues provides real SPE control limits by leaving at least one eigenvalues 

outside of the model. Following determination of the SPE metric, it can be seen that 

monitoring based on type-I and type-II error rates is highly dependent on the number 

of PCs in both PCA models, involved in the multi-level multi-factor modelling, and 

the phase lengths. Therefore, a systematic search of these parameters will further 

improve the performance of the multi-level multi-factor model for process monitoring. 

To provide this search, the BB-BC global optimization algorithm is applied to the 
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multi-level multi-factor method for the monitoring of batch processes as illustrated in 

Figure 6.1.  

In the global optimization-based parameter tuning procedure, the manipulated 

variables consist of the number of PCs, the phases lengths and combination of the 

nonstationary variables for each cointegration model if the number of nonstationary 

variables exceed 12. The number of PCs can be defined through the minimum CPV 

and can take values between [0 and  100] but the value should be between the value 

of CPV for the first and last eigenvalues of the related PCA model. The maximum 

number of phases must be limited before performing the search by assigning (𝐶𝑐𝑜𝑛𝑠). 

It is possible to find a lower number of phases than the maximum number. However, 

having no limit for the number of phases may negatively affect the optimization 

performance. As also mentioned in Chapter 5, different batch data sets are cut to have 

same number of the samples. Therefore, the search procedure constrains the candidates 

to have the same number of samples in total. The sum of the phase length candidates 

(𝑷𝑹) must be 𝑀 where the phase length candidates may vary between [0 and 𝑀]. 

Another search procedure may be required when the number of nonstationary variables 

exceeds 12, which is the maximum number of variables supported by Johansen’s test 

for cointegration analysis. In this case, more than one cointegration analysis model 

must be established on the nonstationary variables. Here, two factors can affect the 

performance of the multi-level multi-factor model: the number of nonstationary 

variables for each cointegration analysis model and the variables chosen for the 

models. It is known that the combination of the nonstationary variables may affect 

their nonstationarity characteristics (Harris and Sollis, 2003). Therefore, searching for 

how many cointegration analysis models are needed with which nonstationary 

variables constitutes another parameter tuning problem.  

6.3.2 Cost Function 

A cost function defines an objective to be reached by the optimization algorithm. This 

can be reachable or impossible to reach by the algorithm. The algorithm stops 

searching if the defined cost value is reached. In this study, the main goal is to improve 

the false alarm rate through training and test data sets, which are given to the global 

optimization algorithm to build an optimized multi-level multi-factor model. The data 

sets must cover all the possible characteristics of the process and errors. A cost 



125 

 

function can be defined with only one set of type-I and type-II errors. However, a truly 

global optimisation must have several data sets, which cover all working conditions 

and the defined error characteristics within the process. Cost function can be defined 

for the training data set, which includes data sets from different scenarios; faulty and 

fault-free. Assume that 𝐾 different data sets represent two zones (fault-free and faulty) 

through the time-scale where 0 < 𝑖 < 𝑡𝑓 covers the fault-free zone and 𝑡𝑓 ≤ 𝑖 < 𝑡𝑒𝑛𝑑 

covers the faulty zone for time index 𝑖. Consequently, a cost function can be defined 

as follows: 

 

𝐽(𝑝1, 𝑝2, 𝑷𝑹,𝑶𝒓𝒅) = ∑∑
𝑗𝑘,𝑖
𝑀

𝑀

𝑖=1

𝐾

𝑘=1

 (6.6) 

where 𝑀 is the number of the samples for the data set from scenario 𝑘 and 𝑗𝑘,𝑖 is: 

 

𝑗𝑘,𝑖
0<𝑖<𝑡𝑓

=  {
1, 𝑖𝑓 𝑆𝑃𝐸𝑐 > 𝑆𝑃𝐸𝑈𝐶𝐿

𝑐

0, 𝑖𝑓 𝑆𝑃𝐸𝑐 ≤ 𝑆𝑃𝐸𝑈𝐶𝐿
𝑐

𝑗𝑘,𝑖
𝑡𝑓<𝑖<𝑡𝑒𝑛𝑑

=  {
1, 𝑖𝑓 𝑆𝑃𝐸𝑐 < 𝑆𝑃𝐸𝑈𝐶𝐿

𝑐

0, 𝑖𝑓 𝑆𝑃𝐸𝑐 ≥ 𝑆𝑃𝐸𝑈𝐶𝐿
𝑐

 (6.7) 

where 𝑆𝑃𝐸𝐶 is dependent on �̃�𝑐 ∈ ℝ𝑅𝑆𝑒𝑐
𝑐 ×(𝑛𝑐+𝑅𝑆

𝑐) and �̃�𝑐 = [𝝃𝒄, 𝑻𝒔
𝒄, 𝝇𝒄]. 

 

𝑅𝑠
𝑐 = min

𝑟
((
∑ 𝜆𝑖
𝑟
𝑖=1

∑ 𝜆𝑖
𝑁−𝑛𝑐
𝑖=1

⁄ )100 ≥ 𝑝1)

𝑅𝑠𝑒𝑐
𝑐 = min

𝑟
((
∑ 𝜆𝑖
𝑟
𝑖=1

∑ 𝜆𝑖
𝑛𝑐+𝑅𝑆

𝑐

𝑖=1

⁄ )100 ≥ 𝑝2)

  (6.8) 

where 𝑝1 and 𝑝2 are the selected minimum cumulative percentage of variances for the 

1st and 2nd PCA models in the multi-level multi-factor method. Both variables can take 

values between [0, 100] by applying the condition above. 1 < 𝑐 < 𝐶 represents the 

related phase division, which can also be tuned by design space C to find phase lengths 

(𝑷𝑹 = (𝑚1, … ,𝑚𝑐, … ,𝑚𝐶)). Therefore, a phase length (𝑚𝑐) can take a value between 

[0,𝑀]. Furthermore, if 𝑛𝑐 > 12, the partition of 𝑿𝑁𝑆
𝑐 ∈ ℝ𝑛𝑐×𝑚𝑐 into the matrices by 

𝑶𝒓𝒅 up to 12 variables for each Johansen model affects the determination of 𝝃𝒄 and 

𝝇𝒄. Consequently, the optimisation problem can be defined as:  
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 argmin
𝑝1,𝑝2,𝑷𝑹,𝑶𝒓𝒅

𝐽(𝑝1, 𝑝2, 𝑷𝑹,𝑶𝒓𝒅)                                                                           

𝑠. 𝑡.        (
𝜆1
∑ 𝜆𝑖
𝑁−𝑛𝑐
𝑖=1

⁄ )100 < 𝑝1 < (
∑ 𝜆𝑖
𝑁−𝑛𝑐−1
𝑖=1

∑ 𝜆𝑖
𝑁−𝑛𝑐
𝑖=1

⁄ )100      

            (
𝜆1
∑ 𝜆𝑖
𝑛𝑐+𝑅𝑆

𝑐

𝑖=1

⁄ )100 < 𝑝2 < (
∑ 𝜆𝑖
𝑛𝑐+𝑅𝑆

𝑐−1

𝑖=1

∑ 𝜆𝑖
𝑛𝑐+𝑅𝑆

𝑐

𝑖=1

⁄ )100

                𝐶 = 𝐶𝑐𝑜𝑛𝑠 ∥ 𝐶 <
𝑀

2
;  ∑𝑚𝑗 = 𝑀                                              

𝐶

𝑗=1

𝑶𝒓𝒅 = (𝑶𝒓𝒅1, … , 𝑶𝒓𝒅𝑙), 𝑙 ≤
𝑛𝑐
2
; 𝑖𝑓 𝑜 ∈ 𝑶𝒓𝒅𝟏, 𝑡ℎ𝑒𝑛 𝑜 ∉ 𝑶𝒓𝒅 − 𝑶𝒓𝒅𝟏

  (6.9) 

where 𝐶𝑐𝑜𝑛𝑠 is a constant selected for the maximum number of phases which can be 

assigned before parameter tuning. 𝑙 represents the number of the Johansen model that 

can be assigned before parameter tuning. The tuning of 𝑶𝒓𝒅 can also be seen as a 

distribution of the nonstationary variables into the Johansen models. Therefore, an 

element of 𝑶𝒓𝒅 can be an integer value between [0, 𝑛𝑛𝑠). The conditions given above 

cover all search spaces (A to D) for the tuning of the parameters (𝑝1, 𝑝2, 𝑷𝑹,𝑶𝒓𝒅). 

Therefore, the parameters must be considered separately if only specific search spaces 

are of interest. For example, only 𝑝1 and 𝑝2 would be considered for consideration of 

search spaces A and B.  

6.4 Application to a Continuous Stirred Tank Heater 

6.4.1  Model Optimisation  

A simulation of the continuous stirred tank heater was described and studied in Chapter 

4. The parameters that were searched by the BB-BC optimization algorithm for the 

CSTH data sets are defined in Section 6.3.1. Here, two design spaces, A and B were 

searched using the parameter tuning method represented in Figure 6.1. The 

characteristics of the variables in the training data set cannot be changed throughout 

the process as the training data set represents the normal operating conditions of the 

process. Therefore, there is no need to check for changes in the nonstationarity of the 

variables. The multi-level multi-factor model for the CSTH simulator comprised two 

PCA models; one for each level and 45% of the variance was retained in both models 

in Chapter 4. The percentage of variance to be retained in the two PCA models was 

optimized using data representing normal operating conditions and that exhibiting a 
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temperature sensor fault simulated using a step type function, which changed the inlet 

hot water temperature by +1 ℃ . Therefore, the number of scenarios that were used in 

parameter tuning was 𝐾 = 2. Parameter tuning via the BB-BC optimization algorithm 

was achieved using 10 iterations for every 20 populations of candidate variables. The 

number of iterations varies according to a linear relationship with the number of 

manipulated parameters. This is also related to the complexity of the search space. 

Tuning of the two parameters (𝑝1, 𝑝2) required 10 iterations and took 83.2 seconds. 

The change in the cost function with the number of iterations for the optimum model 

parameters can be seen in Figure 6.2.  

 
Figure 6.2: Cost function for the multi-level multi-factor model of data from the 

CSTH. 

In the multi-level multifactor model developed in Chapter 4, 45% of the variance was 

retained in both PCA models. In comparison, the BB-BC algorithm suggested 

retention of 85.5% and 58.8% of the variance in the data for the 1st level and 2nd level 

PCA models, respectively, in the optimum multi-level multi-factor model. The results 

obtained for the training data using the suggested parameters are shown in Figure 6.3. 

The explained variance of the training data set is given in Section 4.4.1 where 4 PCs 

were required to describe 85.5% of the variance in the data at the 1st level and 4 PCs 

are required to describe 58.8% of the variance in the data at the 2nd level of the multi-

level multi-factor model.  
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Figure 6.3: T2 and SPE metrics for the optimum multi-level multi-factor model built 

using training data from the CSTH exhibiting normal operating conditions. 

A temperature sensor error that exhibits a step function type fault was used to tune the 

parameters. The 𝑇2 and SPE metrics are shown in Figure 6.4. The optimum model 

provides better detection of both types of faults. For the step function type fault, the 

type-II error rate is reduced to 1.4% from 5% in the SPE control chart. The results are 

compared in Table 6.2 where the model that was developed in Chapter 4 is termed a 

fixed-variance model. 
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Figure 6.4: T2 and SPE metrics for the optimum multi-level multi-factor model with 

parameter tuning data from the CSTH that exhibits a step function type fault. The 

fault was first detected at sample number 502 using the SPE metric (indicated by 

turquoise vertical line). 
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Table 6.2: Online diagnosis performance of the fixed variance and optimum multi-

level multi-factor models for the CSTH process. 
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6.4.2 Model Performance  

Evaluation of the capability of the optimum model for fault detection was evaluated 

using data exhibiting a ramp function type fault, which is not used for the parameter 

tuning. The fault is a valve malfunction on the flow of cold water. The 𝑇2 and SPE 

metrics are shown in Figure 6.5 for the ramp function type fault. The results are 

compared in Table 6.2 where the model that was developed in Chapter 4 is termed a 

fixed-variance model. For the ramp function type fault, the early detection 

performance was improved and the type-II error rate is reduced to 0.7% from 0.8% in 

the SPE chart. Here, it can be seen that use of a higher level of explained variance in 

the 1st level PCA model improves the performance of the multi-level multi-factor 

model. Rather than testing the metric performance of each possible portion of variance 

explained by the models, the parameter tuning scheme can seek the connection 

between different design parameters, which explained the percentage of variance for 

both PCA models. The suggested number of PCs shows that the 1st level PCA model 

should not be considered as a conventional PCA model for process monitoring. The 

use of the 1st level PCA model should aim to extract process dynamics into 𝑡-scores, 
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which is one of the sources of the stationary factors for the 2nd level PCA model. 

Furthermore, the 2nd level PCA model can represent the process dynamics, 

conventional PCA modelling where the explained variance level is selected to be 

around 50%.  
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Figure 6.5: T2 and SPE metrics for the optimum multi-level multi-factor model with 

the test data from the CSTH that exhibits a ramp function type fault. The fault was 

first detected at sample number 516 using the SPE metrics (indicated by turquoise 

vertical line). 

6.5 Application to the Industrial Penicillin Simulator 

6.5.1 Model Optimisation  

The industrial penicillin simulator was described in Chapter 5. The multi-level multi-

factor model designed for the industrial penicillin simulator includes 5 phases and the 

number of nonstationary variables for each phases does not exceed 12. Thus, 3 design 

spaces, A, B and C, were searched using the parameter tuning scheme represented in 

Figure 6.1. As the process is of the batch type and the expected number of 

nonstationary variables for each phase is lower than 12, only phase length and the 

number of the PCs for the 1st and 2nd level PCA models in the multi-level multi-factor 

model are subject to the optimization procedure. 

The data in Chapter 5 is used here for the optimisation study. An additional test data 

set was simulated to provide 3 fault examples for evaluation of model performance in 

Section 6.5.2. The data for parameter tuning comprised 9 standard batches, which were 

cut to a length of 200 hours, for training and two test data sets. Therefore, the number 
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of scenarios was assigned as 𝐾 = 11. The first fault comprised a monitoring error on 

the temperature sensor, which affects directly the variables that are given in Table 5.1. 

The fault shows ramp function characteristics starting from the first initiation of the 

fault at sample 200. The second fault was an error on the substrate feed rate starting 

from sample number 300, which was not monitored directly but has an indirect effect 

on the variables that were monitored (see Table 5.1). Another fault on the substrate 

feed rate was also defined from sample number 500, and used in the parameter tuning 

procedure. Section 5.4 describes the phases and their lengths, and the fault 

characteristics. The five phases adopted in this study were selected as (0 − 30, 30 −

68.2, 68.2 − 102.2, 102.2 − 133.4, 133.4 − 200 ℎ𝑟𝑠+). The number of PCs was 

chosen on the basis of explained variance which was set to 45% for all of the PCA 

models in Chapter 5.  

Global optimization via the BB-BC algorithm was achieved using 500 iterations for 

every 10 populations of candidate variables. Tuning of the three parameters 

(𝑝1, 𝑝2, 𝑷𝑹)  required 500 iterations and took ~190 minutes; 𝐶𝑐𝑜𝑛𝑠 was set to 5 for 

the sake of simplicity. The change in the cost function with the number of iterations 

for the optimum model parameters can be seen in Figure 6.6.  

 
Figure 6.6: Cost function for the best result, which gives the optimum parameters for 

the multi-level multi-factor model of data from the industrial penicillin simulation. 

The phase lengths suggested by the BB-BC algorithm are given in Table 6.3, and 

compared to those utilised in Table 5.5 in Chapter 5, which were selected on the basis 

of the different stages in a fermentation process (i.e. expert user knowledge). There are 

some changes in the number of nonstationary variables when the phases are selected 
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through parameter tuning due to changes in the phase lengths. The 1st phase is 

shortened to 3.6 hours compared to 30 hours. The 2nd phase is between 3.6 − 35.6 

hours, and shows similar variable characteristics in terms of nonstationarity to those 

in the 1st phase. The 3rd phase identified by the parameter tuning procedure has close 

time boundaries to those of the 2nd phase identified by the expert user. However, there 

is also some overlap with the 3rd phase in terms of the variables exhibiting 

nonstationary characteristics. Similar to the 3rd phase of the optimum model, the 4th 

phase of the optimum model has close time boundaries with the 3rd phase identified by 

the expert user. The final phase identified by parameter tuning is a combination of the 

4th and 5th phases, identified by the expert user.  

Table 6.3: Nonstationary variables in each phase for the fixed variance (with expert 

user knowledge) and optimum model for the industrial penicillin simulator. 

 
Fixed Variance Model 

(with expert user knowledge) 
Optimum Model 

No 
Phase Range (𝑷𝑹) 

In hours In samples In hours In samples 

1 0 − 30 0 − 150 0 − 3.6 0 − 18 

2 30 − 68.2 150 − 341 3.6 − 35.6 19 − 178 

3 68.2 − 102.2 341 − 511 35.6 − 74.4 178 − 372 

4 102.2 − 133.4 511 − 667 74.4 − 108.4 372 − 542 

5 133.4 − 200 + 667 − 1000 +  108.4 − 200 + 542 − 1000 +  

No Nonstationary Variables 

1 [𝑥1, 𝑥6, 𝑥7, 𝑥8, 𝑥12, 𝑥13, 𝑥18] [𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥17, 𝑥18] 

2 [𝑥1, 𝑥8, 𝑥12, 𝑥13, 𝑥17, 𝑥18] [𝑥1, 𝑥6, 𝑥8, 𝑥12, 𝑥13, 𝑥17, 𝑥18] 

3 [𝑥1, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥14, 𝑥15, 𝑥16, 
𝑥17, 𝑥18] 

[𝑥1, 𝑥6, 𝑥7, 𝑥9, 𝑥10, 𝑥11, 𝑥15, 𝑥16, 𝑥17, 𝑥18 
, 𝑥19] 

4 [𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥9, 𝑥10, 𝑥12, 𝑥13, 𝑥17, 𝑥18] [𝑥1, 𝑥3, 𝑥5, 𝑥8, 𝑥9, 𝑥12, 𝑥13, 𝑥15, 𝑥17, 𝑥18, 
𝑥19] 

5 [𝑥4, 𝑥6, 𝑥12, 𝑥13, 𝑥17, 𝑥18] [𝑥1, 𝑥4, 𝑥6, 𝑥12, 𝑥13, 𝑥17] 
 

In comparison with the phase assignment by an expert, the optimum model shortened 

the length of the 1st phase (from 0 − 150 to 0 − 18) and extended the length of the 5th 

phase (from 667 − 1000 + to 542 − 1000 +). This being the case, the middle phases 

were of comparable length for the optimum model. More detailed searches can also be 
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performed using a greater number of phases; the number of phases was initially 

assigned as 5 for this search as the fixed variance model that utilised expert user 

knowledge comprised 5 phases. 

The rank of the cointegration matrix for the 5 different phases was determined as: 

[1, 1, 5, 2, and 3] using the Johansen test. This allows the use of the common trend 

model as the number of nonstationary variables for each phase is: [7, 6, 6, 9, and 3]. 

Here the rank of the cointegration models, which was [1, 1, 4, 2, and 1], is larger 

compared to that in the fixed-variance multi-level multi-factor model. The number of 

nonstationary factors for the common-trend model is [6, 5, 8, 8, and 5]. The optimum 

model shows that a longer 5th phase helps to establish 2 more cointegration 

relationships between nonstationary variables. Another change occurs in the 3rd phase 

(samples 178 − 372, which is similar to 2nd phase used in Chapter 5 (samples 150 −

341)). If the limits for both phases are assumed to be the same, the rank of that phase 

increases to 5 from 1. Even though some variables were identified as nonstationary, 

this does not mean that they can establish a cointegration relationship easily. Higher 

level nonstationarities make construction of a model harder for 𝐼(1) nonstationary 

series. The parameter tuning scheme helps to search optimum phase lengths, which 

helps the cointegration models to increase their performance in regards to building 

linear relationships between nonstationary variables. 

In addition to the phase lengths, the number of PCs were also searched through the 

observation of the percentage of the explained variance. Unlike the fixed variance 

models where 45% of the variance in the data was retained for both models, retention 

of 84.55% and 19.05% of the variance in the data was suggested for the 1st level and 

2nd level PCA models. The results obtained for the training data using the suggested 

parameters are shown in Figure 6.7. Figure 6.7(a) and Figure 6.7(b) show the 𝑇2 

metrics from cointegration analysis and the common-trend residuals for the 

nonstationary variables. The last sub-model from the 1st level of the multi-level scheme 

is shown in Figure 6.7 (c), which shows the 𝑇2 and 𝑆𝑃𝐸 metrics of the PCA model for 

the stationary variables only. The optimally designed PCA models in terms of PCs are 

tabulated in Table 6.4. In comparison with the fixed variance model training 

performance, the type-I error rate is reduced to 1.12% from 1.80%.  

Similar to the CSTH example, the parameter tuning scheme suggested retention of a 

high portion of the variance for the 1st level PCA model and a low portion of the 
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variance for the 2nd level PCA model. In comparison to the CSTH example, a 3rd design 

space (C) was searched using the parameter tuning scheme in addition to searching for 

the optimum number of PCs (design space (A) and (B)). The type-I error rate for the 

optimum model with the training data set was 0.8 whereas that for the fixed variance 

model presented in Chapter 5 was 0.7 (see Table 5.6). As can be seen from the error 

rates, changes in the percent variance for the 1st and 2nd level models did not affect the 

performance of the multi-level multi-factor model. Having a high portion of variance 

in the 1st level PCA model provided all of the extracted dynamics into the 2nd level 

PCA model via the stationary factors. It should be noted that, due to the full rank 

feature of the combination of the cointegration model and common-trend model, 

modelling of nonstationary variables within the multi-level multi-factor model does 

not have any dimensionality reducing features. This being the case, the 𝑡-scores must 

evolve into stationary factors as much as possible because the univariate dynamics 

from each factor becomes a part of the multivariate dynamics. Therefore, loss of 

dynamic information in the stationary variables modelled by 1st PCA is possible, if a 

small number of PCs is selected. The given optimisation results also support this 

approach. 

Table 6.4: Number of principal components and corresponding variances for the 

optimum multi-level multi-factor model for the industrial pennicillin simulator. 

Model 

Name 

Phase 

Number 

Number 

of PCs 
Variance Variance in the Data (%) 

1st 

level 

PCA 

1 4 88.4 𝟓𝟑. 𝟏, 𝟏𝟔. 𝟕, 𝟏𝟎. 𝟕, 𝟖. 𝟎, 4.4 

2 3 84.6 𝟓𝟒. 𝟑, 𝟐𝟎. 𝟒, 𝟗. 𝟗, 6.4, 3.5 

3 5 90.7 𝟑𝟎. 𝟓, 𝟐𝟑. 𝟗, 𝟏𝟖. 𝟎, 𝟏𝟎. 𝟖, 𝟕. 𝟒 

4 4 92.6 𝟒𝟕. 𝟗, 𝟐𝟎. 𝟏, 𝟏𝟒. 𝟏, 𝟏𝟎. 𝟓, 𝟒. 𝟐 

5 7 87.4 𝟐𝟑. 𝟐, 𝟏𝟕. 𝟒, 𝟏𝟒. 𝟗, 𝟏𝟏. 𝟗, 𝟖. 𝟖, 𝟔. 𝟔, 𝟓. 𝟐 

2nd 

level 

PCA 

1 1 36.4 𝟑𝟔. 𝟒, 19.4, 13.0, 10.3, 9.2 

2 1 31.6 𝟑𝟏. 𝟔, 23.2, 19.4, 11.4, 6.7 

3 1 30.6 𝟑𝟎. 𝟔, 12.6, 11.3, 9.7, 8.8 

4 1 23.9 𝟐𝟑. 𝟗, 20.8, 12.9, 11.3, 8.2 

5 1 21.0 𝟐𝟏. 𝟎, 14.5, 13.9, 11.7, 8.9 
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Figure 6.7: Metrics obtained using the optimum multi-level multi-factor model for a training batch exhibiting normal operation. (a) T2 metric for 

cointegration analysis at the 1st level, (b) T2 metric for common-trend model at the 1st level, (c) T2 and SPE metrics for PCA at the 1st level, and 

(d) T2 and SPE metrics for PCA at the 2nd level. 
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The type-I errors observed in Figure 5.8(d) around sample number 650 are modelled 

properly in the optimum model (Figure 6.7(d)) due to the merging of the phases. 

However, the type-I error at sample number 450 still exists. High magnitude type-I 

errors are reduced by only searching phases that affect the performance of 

cointegration models. Two faulty process examples, which were analysed in Chapter 

5, were used to evaluate the training of the parameter tuning scheme. 

The 𝑇2 and SPE charts obtained for data exhibiting a temperature sensor error using 

the 2nd level PCA model of the optimum multi-level multi-factor model are shown in 

Figure 6.8 where the fixed variance model results can be found in Figure 5.11(d). Here, 

the fault shows ramp function type characteristics starting from sample number 200 

until the end. The optimum model provides early detection of the fault, while the fixed 

variance model could not detect it. Detection of the fault occurred approximately 100 

samples earlier. However, in the last phase at around sample number 700, some type-

II errors occurred for the optimum model. Even though the optimum model detected 

the fault earlier, due to the performance of the last phase, the type-II error rates for the 

optimum model are comparable to those for the fixed variance model as tabulated in 

Table 6.5.  
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Figure 6.8: T2 and SPE metrics obtained using the optimum multi-level multi-factor 

model for a batch exhibiting a temperature sensor error. The fault was first detected 

at sample number 200 using the SPE metrics (indicated by turquoise vertical line). 

The 𝑇2 and SPE charts obtained for data exhibiting a substrate feed error rate case 

using the 2nd PCA model of the optimum multi-level multi-factor model is shown in 

Figure 6.9 where the fixed variance model results can be found in Figure 5.14(d). Here, 
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a substrate feed error represents a step function type fault starting from sample number 

300. The optimum model detected the fault at sample number 300, which was earlier 

than the fixed variance model where the fault was detected at sample number 350. The 

optimum model helps to reduce the type-II error rate by nearly 30% for this example 

as tabulated in Table 6.5. 

Table 6.5: Type I and type II errors for the fixed variance and optimum multi-level 

multi-factor models for detection of different types of faults. 

Case Study 

 Type I error (%) Type II error (%) 

 
Fixed 

variance 
Optimum 

Fixed 

variance 
Optimum 

Temperature  𝟎 2.3 𝟐𝟎. 𝟗𝟏 21.10 

Substrate Feed  𝟎. 𝟎𝟏 𝟎. 𝟎𝟏 10.3 𝟕. 𝟐𝟒 

Aeration Rate  1.5 0 6.5 0 

Vessel Pressure  6 5 51.01 0 

Base Flow Rate  1.57 1.85 100 64 
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Figure 6.9: T2 and SPE metrics obtained using the optimum multi-level multi-factor 

model for a batch exhibiting a substrate feed rate error. The fault was first detected at 

sample number 300 using the SPE metrics (indicated by turquoise vertical line). 

6.5.2 Model Performance  

The data exhibiting errors in the temperature sensor and the substrate feed rate were 

utilised within the parameter tuning step of the optimisation algorithm. Thus, to 

evaluate the process monitoring capability of the optimised model using data that had 

not been used within the optimisation procedure, 3 additional batches exhibiting faults 

were generated using the industrial penicillin simulator. The faults used in this section 



138 

 

were also defined in the simulation package (Goldrick et al., 2015). Therefore, they 

are used according to their fault type such as ramp or step function type faults, and 

magnitudes. The performance of the fixed variance and optimum models was then 

compared.  

In the first example, an aeration rate fault, which shows step function type 

characteristics, was introduced at sample 200 where the rate was set to 22 𝐿ℎ−1. The 

aeration rate (𝐹𝑔𝑖𝑛
) is not directly monitored by the multi-level multi-factor model as 

it is not in the monitored variables in Table 5.1. The effects of the aeration rate can be 

followed via Equation (5.15) where it is related to the oxygen uptake rate (𝑂𝑈𝑅 −

𝑥13) and carbon evolution rate (𝐶𝐸𝑅 − 𝑥15). According to the nonstationary variables 

for each phase in Table 6.3, the only difference in these two variables occurred in the 

4th phase where 𝑥15 showed nonstationary characteristics. A comparison of the fixed 

variance and optimum models is illustrated in Figure 6.10 and tabulated in Table 6.5. 

Here, the optimum model provides better detection without any type-I or type-II errors. 

The fixed variance model detected variation changes at the beginning of the fault but 

due to differences in the number of PCs and the cointegration models (2nd phase for 

fixed variance and the cointegration rank equals 1 and 3rd level for the optimum model 

and the cointegration rank equals 5), the 𝑇2 statistic could not exceed the UCLs. 

In the second example, a vessel back pressure fault, which shows step function type 

fault characteristics, was introduced at sample 600 where the air head pressure was set 

to 2 𝑏𝑎𝑟. The pressure is a manipulated variable used in the sequential batch control 

strategy of the industrial penicillin simulator to control 𝑂2 concentration, which can 

be followed from Equations (5.14) and (5.15). Similar to previous example it has 

arguably some effects on 𝑂𝑈𝑅 and 𝐶𝐸𝑅. This example was selected to test different 

types of faults that have not been used in the training of the parameter tuning scheme. 

The comparison can be observed in Figure 6.11. Compared to Figure 6.11(a), the 

optimum model detected the fault without any type-II errors whereas the fixed variance 

model detected the fault only in the 4th phase (samples 511 − 667) and some other 

samples around sample number 850. Similar to the previous example, the fixed 

variance model has a similar performance in the 4th phase (higher magnitude in 

comparison with the others in the previous example) but the same performance was 

not continued in the last phase. In contrast, the optimum model assigned only one 

phase between sample numbers 542 − 1000 +. This also helped the optimum model 



139 

 

to retain its performance starting from the first sign of the fault to the end. The type-I 

errors are a problem for both the fixed variance and optimum models but the optimum 

model shows better performance in terms of the type-I error rates as well.  
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Figure 6.10: T2 and SPE metrics obtained using (a) the fixed variance, and (b) the 

optimum multi-level multi-factor model for a batch exhibiting an aeration rate error. 

The turquoise vertical lines indicate when the fault was first detected. 

In the final example, the base flow rate fault, which shows step function type 

characteristics, was introduced at sample 700 where the base flow rate (𝐹𝑏) was set to 

5 𝐿ℎ−1. The base solution is a manipulated variable to control pH level and it is 

activated when the pH level (𝑥7) has decreased under 0.05 from the pH set-point. 𝑥7 

is a stationary variable, according to both phase distributions in the phase that the fault 

occurred. As with the previous examples, this fault type that is effective in the last 
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phase was not involved in the parameter tuning example. Sample number 700 occurs 

in the last phase of both of the models. Thus, the last phase of the modelling 

performance is compared in this example. As can be seen from Figure 6.12(a), it is not 

possible to detect the fault at any point using the fixed variance model while the 

optimum model detects the fault at around sample number 900 but with some type-I 

errors that are not detected in the fixed variance model. 
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Figure 6.11: T2 and SPE metrics obtained using (a) the fixed variance, and (b) the 

optimum multi-level multi-factor model for a batch exhibiting a vessel back pressure 

error. The turquoise vertical line indicates when the fault was first detected. 

The optimum model shows better performance for detection of all faults terms of the 

type-II error rate comparison shown in Table 6.5. Even though the temperature fault 

was detected earlier than with the fixed variance model (the optimum model detected 

the fault at sample number 308 compared to sample number 359 for the fixed variance 
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model), the optimised model has type-II errors in the final phase (between samples 

680 to 750). This is the only case where the performance of the optimum and fixed 

variance models was comparable. By using parameter tuning, the effective PCs and 

factors were discovered. From a MSPC point of view, use of a model that explains 

between 40 − 50% of the total variance, is capable of detecting most of the faults. 

However, due to a combination of the cointegration residuals and the multi-level 

characteristics, the 1st level model performs better for fault detection when it explains 

a higher percentage of the variance. In comparison, a lower percentage variance is 

preferred for the 2nd level model to achieve good fault detection rates.  
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Figure 6.12: T2 and SPE metrics obtained using (a) the fixed variance, and (b) the 

optimum multi-level multi-factor model for a batch exhibiting a base flow rate error. 

The turquoise vertical line indicates when the fault was first detected. 
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6.6 Application to the Tennessee Eastman Process  

The CSTH example only required the search for the optimum number of PCs required 

for the two PCA models, while the industrial penicillin example (batch process) 

required the search for both the optimum number of PCs required for the two PCA 

models and the length of the phases of the batch. For processes that comprise more 

than 12 nonstationary variables, an additional search parameter, the combination of 

nonstationary variables for each cointegration model, is needed. This is because use of 

the Johansen test is limited to use with 12 or less nonstationary variables. As discussed 

by Harris and Sollis in their consideration of the order of integration of the variables, 

the cointegration rank depends on the combination of nonstationary variables involved 

in the cointegration model where the rank may increase or decrease according to the 

combination (Harris and Sollis, 2003). Searching different combinations of the 

nonstationary variables may change the cointegration rank and the performance of the 

cointegration residuals in the multi-level multi-factor model. Therefore, exploration of 

this property is investigated using a continuous process simulator called the Tennessee 

Eastman Process (TEP), which consists of 53 variables. 

6.6.1 Introducing the Tennessee Eastman Process Simulator 

The Tennessee Eastman process (TEP) simulator emulates a continuous chemical 

process. Downs and Vogel proposed it as a test problem for a list of potential 

applications such as plant control, optimization and monitoring (Downs and Vogel, 

1993). It is a popular test problem within the chemometrics community and has been 

used widely for the development of MSPC techniques (Ku, Storer and Georgakis, 

1995; Rato and Reis, 2013c; Sun, Zhang, Zhao and Gao, 2017). A revised version of 

the TEP was proposed by Bathelt et al. to cover the randomness problem in the 

previous version (Bathelt, Ricker and Jelali, 2015).  

The process contains five major units as illustrated in Figure 6.13: a reactor, a stripper, 

a compressor, a vapour-liquid separator, and a condenser. It produces two liquid 

products (G and H) and a liquid by-product (F) from four gas reactants (A, C, D, and 

E) from the irreversible exothermic reactions (Downs and Vogel, 1993). Reactants, A, 

D and E, flow into the reactor then the reactor feeds the condenser. The vapour-liquid 

separator separates the substances then the stripper separates the remaining A, D and 
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E from the liquid and another reactant, C, is added to the product. This is followed by 

the exit of the final product given below (Capaci et al., 2019): 

 

{
 

 
𝐴(𝑔) + 𝐶(𝑔) + 𝐷(𝑔) → 𝐺(𝑙𝑖𝑞)

𝐴(𝑔) + 𝐶(𝑔) + 𝐸(𝑔) → 𝐻(𝑙𝑖𝑞)

𝐴(𝑔) + 𝐸(𝑔) → 𝐹(𝑙𝑖𝑞)
3𝐷(𝑔) → 2𝐹(𝑙𝑖𝑞)

 (6.10) 

The TEP simulator contains 41 measured and 12 manipulated variables, which are 

listed in Table 6.6. The sample time of the simulator is 1.8 seconds, however, the 

sample time for recording variables was chosen as 3 minutes.  

Table 6.6: Measured and manipulated variables of the Tennessee Eastman Process. 

No  Variable Description  No  Variable Description 

1  A feed (Stream 1)  28  Component F (Stream 6) 

2  D feed (Stream 2)  29  Component A (Stream 9) 

3  E feed (Stream 3)  30  Component B (Stream 9) 

4  A and C feed (Stream 4)  31  Component C (Stream 9) 

5  Recycle flow (Stream 8)  32  Component D (Stream 9) 

6  Reactor feed rate (Stream 6)  33  Component E (Stream 9) 

7  Reactor pressure  34  Component F (Stream 9) 

8  Reactor level  35  Component G (Stream 9) 

9  Reactor temperature  36  Component H (Stream 9) 

10  Purge rate (Stream 9)  37  Component D (Stream 11) 

11  Product separator temperature  38  Component E (Stream 11) 

12  Product separator level  39  Component F (Stream 11) 

13  Product separator pressure  40  Component G (Stream 11) 

14  
Product separator underflow 

(Stream 10) 
 41  Component H (Stream 11) 

15  Stripper level  42  D feed flow (Stream 2) 

16  Stripper pressure  43  E feed flow (Stream 3) 

17  
Stripper separator underflow 

(Stream 11) 
 44  A feed flow (Stream 1) 

18  Stripper temperature  45  
A and C feed flow (Stream 

4) 

19  Stripper steam flow  46  Compressor recycle valve 

20  Compressor work  47  Purge valve (Stream 9) 

21  
Reactor cooling water outlet 

temperature 
 48  

Separator liquid flow 

(Stream 10) 

22  
Stripper cooling water outlet 

temperature 
 49  

Stripper liquid product 

flow(Stream 11)  

23  Component A (Stream 6)  50  Stripper steam Valve 

24  Component B (Stream 6)  51  Reactor cooling water flow 

25  Component C (Stream 6)  52  
Condenser cooling water 

flow 

26  Component D (Stream 6)  53  Agitator 

27  Component E (Stream 6)     
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Figure 6.13: Illustration of the Tennessee Eastman Process simulator. 
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6.6.2 Multi-level Multi-factor Model on Tennessee Eastman Process 

A multi-level multi-factor model was established on the training data set gathered from 

normal operation for 1200 samples. Data identification was performed using the ADF 

test based on an 𝐴𝑅(11) model with a significance level of 0.05. 2 manipulated 

variables, 𝑥50 and 𝑥53, were not included as they were constant for this study. 18 

variables were identified as stationary, with the remaining 33 variables identified as 

nonstationary. The stationary variables are: 𝑥4, 𝑥5, 𝑥6, 𝑥9, 𝑥12, 𝑥14, 𝑥19, 𝑥20, 𝑥26, 𝑥27,  

𝑥31, 𝑥33, 𝑥35, 𝑥36, 𝑥37, 𝑥39, 𝑥46 and 𝑥47.  

A PCA model for the 1st level was trained with 8 PCs, which explained 50.5% of the 

total variance where PCs 1 to 10 explained 7.47, 6.54, 6.50, 6.35, 6.07, 5.93,

5.86, 5.78, 5.62, and 5.38% of the variance in the data. Therefore, the stationary 

factors (�̃�) were described using 8 score vectors (𝑻). The detailed PCA model 

selections for multi-level multi-factor model is presented in Appendix-E, which shows 

the number of PCs are chosen that retains closest to 45% of the variance in the data for 

the 1st and 2nd level PCA models. 

There are 33 nonstationary variables to be modelled by cointegration analysis via the 

Johansen test, where one model can support only 12 variables. Therefore, at least 3 

cointegration models are needed to produce stationary cointegration residuals from all 

of the nonstationary variables. The rank (𝑅) for the cointegration matrix was [8 9 5] 

(from [12 12 9] nonstationary variables for each model). Therefore, the cointegration 

residuals matrix (𝝃) consists of 22 vectors. Hence, the rank of the perpendicular 

matrices for the common-trend model was [4 3 4], and the common-trend residuals 

matrix (𝝇) consists of 11 vectors. The 2nd level PCA model was trained with 9 PCs out 

of 41, which explained 47.9% of the total variance where PCs 1 to 10 explained 8.83, 

8.37, 6.15, 5.34, 4.53, 4.12, 3.82, 3.39, 3.27 and 2.99% of the variance in the data. The 

𝑇2 and SPE charts for the fixed variance multi-level multi-factor model built using 

training data is illustrated in Figure 6.14; both metrics exhibited type-I error rates of 

1%. 
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Figure 6.14: T2 and SPE metrics for the fixed variance multi-level multi-factor 

model built using training data from the TEP.  

6.6.3 Model Optimisation 

As described in the previous applications of the parameter tuning system, the BB-BC 

optimization algorithm can be used to search for the optimum number of PCs for both 

PCA models. In addition to optimization of these two parameters, it is known that the 

combination of the nonstationary variables inside the cointegration model may affect 

the cointegration rank through the cointegration relationship between them. Therefore, 

the BB-BC optimization algorithm was also used to search for the optimum 

combination of nonstationary variables to use in each cointegration model. This search 

can be improved by increasing the number of cointegration models. However, this 

gives rise to an increase in the computational time of the algorithm. To simplify the 

search for the optimum combination of nonstationary variables to employ in the 

cointegration models, the number of cointegration models was set to 3 and the number 

of variables in each model was set to 12, 12 and 9 nonstationary variables for each 

cointegration model. Therefore, BB-BC searches 3 nonstationary variable set 

combinations for cointegration analysis ((D) in Figure 6.1). The design space for the 

optimum number of PCs ((A) and (B) in Figure 6.1) was searched using the level of 

variance explained in the data, and can take any value between [0 100]. When 

considering the optimum combination of nonstationary variables, any nonstationary 

variables can take part in only one cointegration model. Thus, the BB-BC algorithm 

searches for the optimum combination for each cointegration model. In contrast, the 
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fixed variance model uses the sequential order of the nonstationary variables for the 

cointegration models (first 12 nonstationary variables from Table 6.6 are modelled by 

the 1st cointegration model, the 2nd 12 nonstationary variables for the 2nd model and 

the remaining for the 3rd model). 

The TEP simulator enables generation of several faults. The parameter tuning scheme 

can only be tested if some fault cases are used for the training of the parameter tuning 

procedure and some of the faults used for model performance testing are not used in 

the development of the parameter tuning scheme. The TEP simulator runs faults with 

only one binary (0 𝑜𝑟 1) control parameter. Even though some set point changes were 

suggested in the original publication (Downs and Vogel, 1993), benchmark faults are 

not described by their magnitudes. The faults given in this section are used without 

any change in the TEP simulator. The following scenarios were selected for training 

the parameter tuning: (i) A/C feed ratio error, B composition is constant in stream 4 

(step type), (ii) B composition error, A/C ratio is constant in stream 4 (step type), (iii) 

D feed temperature error in stream 2 (Step type), (iv) C feed flow error in stream 4 

(random variation), (v) E feed flow error in stream 3 (random variation), (vi) idv-16 

unknown error. Note that idv represents the fault number of the defined error in the 

TEP. Therefore, the number of the selected cases was assigned as 𝐾 = 7 which also 

includes data depicting normal operating conditions. Some of the selected faults, such 

as (i) and (ii), can be detected with nearly a 100% success rate using the fixed variance 

model. These faults were combined with other faults, such as (iii), which has a lower 

detection rate using the fixed variance model.  

500 iterations for every 20 populations of candidate variables were used for this study. 

Tuning for three parameters (𝑝1, 𝑝2, 𝑶𝒓𝒅) required 500 iterations took 115.23 

minutes; 𝑙 was set to 3. The change in the cost function with the number of iterations 

for the optimum model parameters can be seen in Figure 6.15.  

In comparison with the fixed variance multi-level multi-factor model that retains 

closest to 45% of the variance In the data for the 1st and 2nd level PCA models, the 

BB-BC algorithm suggested retention of 93.2% and 32.0% of the variance in the data 

for the 1st level and 2nd level PCA models, respectively, in the optimum multi-level 

multi-factor model. The results obtained for the training data using the suggested 

parameters are shown in Figure 6.16; both metrics exhibited type-I error rates of 0.7%. 

The 1st level PCA model explained 93.2% of the total variance, requiring 16 PCs, and 
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the 2nd level PCA model explained 32% of the total variance, requireing 8 PCs, in the 

multi-level multi-factor model. 

 
Figure 6.15: Cost function change for the best run that gives the optimum 

parameters for the multi-level multi-factor model of data from the TEP. 

 
Figure 6.16: T2 and SPE metrics for the optimum multi-level multi-factor model 

built using training data from the TEP. 

The optimum combination of the nonstationary variables for the cointegration models 

obtained using the BB-BC optimisation algorithm is listed in Table 6.7. Furthermore, 

the cointegration ranks for the sub-models were [11 10 7]. Hence, the rank of the 

perpendicular matrices for the common-trend model were [1 2 2].  
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Table 6.7: Combinations of nonstationary variables used in the cointegration models 

within fixed variance and optimum multi-level multi-factor models 

No Fixed Variance Model Optimum Model 

1 
[𝑥1, 𝑥2, 𝑥3, 𝑥7, 𝑥8, 𝑥10, 𝑥11, 𝑥13, 𝑥15 

𝑥16, 𝑥17, 𝑥18] 

[𝑥1, 𝑥2, 𝑥16, 𝑥17, 𝑥18, 𝑥22, 𝑥24, 𝑥34, 

𝑥38, 𝑥41, 𝑥45, 𝑥49] 

2 
[𝑥21, 𝑥22, 𝑥23, 𝑥24, 𝑥25, 𝑥28, 𝑥29, 𝑥30 

𝑥32, 𝑥34, 𝑥38, 𝑥40] 

[𝑥7, 𝑥10, 𝑥11, 𝑥15, 𝑥21, 𝑥28, 𝑥30, 𝑥40, 

 𝑥43, 𝑥44, 𝑥51, 𝑥52] 

3 [𝑥41, 𝑥42, 𝑥43, 𝑥44, 𝑥45, 𝑥48, 𝑥49, 𝑥51, 𝑥52] [𝑥3, 𝑥8, 𝑥13, 𝑥23, 𝑥25, 𝑥29, 𝑥32, 𝑥42, 𝑥48] 

 

The performance of the fixed variance and optimum models for detection of five 

different types of faults are compared in Table 6.8. The first 3 cases have been used in 

the parameter tuning scheme and the first two faults have already been detected with 

nearly a 100% success rate. 3 fault cases are detailed to show the performance 

differences given in Table 6.8. Additional two errors are selected from the unused fault 

cases in the parameter tuning.  

Table 6.8: Type I and type II errors for the fixed variance and optimum multi-level 

multi-factor models for detection of different types of faults. 

Case 

 Models 

 Fixed variance Optimum 

 Type-I Type-II Type-I Type-II 

 SPE 𝑻𝟐 SPE 𝑻𝟐 SPE 𝑻𝟐 SPE 𝑻𝟐 

A/C feed ratio and 

B composition 

constant 

 0.8 1.2 𝟎. 𝟑 0.06 𝟎. 𝟕 1.4 𝟎. 𝟑 0.25 

B composition and 

A/C ratio constants 
 𝟎. 𝟗 1.1 1.8 2.9 𝟎. 𝟗 1.3 𝟏. 𝟕 1.1 

D feed temperature  𝟐. 𝟖 1 81.1 99 3.1 0.9 54.7 98 

A,B and C feed 

composition 
 1.8 1.1 35.1 31.3 1 1.7 18.3 22.5 

A and C feed 

pressure 
 1.2 1.1 10.3 44.4 0.9 1 8.9 15.5 

 

The D feed temperature error was used in the training of the parameter tuning scheme. 

Even though it is defined on D feed (𝑥2), it is related to the secondary feature of 𝑥2, 

which is not directly monitored. The reactor temperature (𝑥9) is affected indirectly, 

which is stationary according to Table 6.7. Therefore, selection of the number of PCs 
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(search space (A) and (B)) is more important than the nonstationary variable 

combination (search space (D)) for this particular error. The 𝑇2 and SPE metrics for 

the fixed variance and optimum models are illustrated in Figure 6.17 and Figure 6.18, 

respectively. The optimum model provided a ~30% improvement in terms of SPE 

metric (type-II error rate reduced to 54.7% from 81.1%) as tabulated in Table 6.8. 

The increase in the fault detection rate is attributed to differences in the number of PCs 

rather than the cointegration rank, which is changed after the new combination of the 

nonstationary variables.  
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Figure 6.17: T2 and SPE metrics obtained using the fixed variance multi-level multi-

factor model with test data from the TEP exhibiting a fault in the D feed temperature. 

The fault was first detected at sample number 1410 using the SPE metrics (indicated 

by turquoise vertical line). 
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Figure 6.18: T2 and SPE metrics obtained using the optimum multi-level multi-factor 

model with test data from the TEP exhibiting a fault on the D feed temperature. The 

fault was first detected at sample number 1425 using the SPE metrics (indicated by 

turquoise vertical line). 
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6.6.4 Model Performance 

In this section, the model is evaluated using two examples that were not used in the 

parameter tuning. The first fault case is an error in the A, B and C feed composition 

on stream 4. They are the reactants of the production of G, H, and F. Therefore, several 

variables can affect the fault signatures such as 𝑥23, 𝑥24. 𝑥25 in the reactor, 

𝑥29, 𝑥30, 𝑥31, 𝑥34, 𝑥35, 𝑥36 in the purge gas analysis and more. Therefore, the 

combination of the nonstationary variables in each cointegration model is effective for 

this case. The 𝑇2 and SPE metrics are given in Figure 6.19 and Figure 6.20 for the 

fixed variance and optimum models, respectively.  

The optimum model was able to detect the fault using the SPE metric, giving a higher 

fault detection rate than the fixed variance model. The performance metrics for both 

models are listed in Table 6.8. Here, the optimum model improved the performance 

by ~40% in terms of SPE metric (type-II error rate reduced to 18.3% from 35.1%).  
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Figure 6.19: T2 and SPE metrics obtained using the fixed variance multi-level multi-

factor model with test data from the TEP exhibiting a fault on the A, B and C feed 

composition. The fault was first detected at sample number 1470 using the SPE 

metrics (indicated by turquoise vertical line). 
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Figure 6.20: T2 and SPE metrics obtained using the optimum multi-level multi-factor 

model with test data from the TEP exhibiting a fault on the A, B and C feed 

composition. The fault was first detected at sample number 1435 using the SPE 

metrics (indicated by turquoise vertical line). 

The second fault case is an error in the A and C feed pressure in stream 4. These 

reactants are connected to the stripper and are manipulated via the variables of the 

reactant. 𝑥4 and 𝑥45 are the two variables that can be affected by this error as they are 

stationary and nonstationary, respectively. Figure 6.21 and Figure 6.22 represent the 

𝑇2 and SPE metrics for the fixed variance and optimum models, respectively. The 

results are also tabulated in Table 6.8. The fault detection rates is increased in the fault 

zone by ~10% (type-II error rate for SPE metric reduced to 8.9% from 10.3%) and 

the faulty alarm rate in the normal operating region is decreased by ~25% (type-I error 

rate for SPE metric reduced to 0.93% from 1.21%). Changes in the numbers of PCs 

in the PCA models also changed the variance representation of the optimum model as 

can be seen from the 𝑇2 metric performance in Figure 6.22. Hence, the parameter 

tuning system has improved the capability and effectiveness of the multi-level multi-

factor model for fault detection in complex nonstationary industrial processes. 



153 

0 500 1000 1500 2000
0

50

100

T
2

99% T
2

 limit

95% T
2

 limit

T
2

0 500 1000 1500 2000

Samples

0

50

100

S
P

E

99% SPE limit

95% SPE limit

SPE

First Detection

 
Figure 6.21: T2 and SPE metrics obtained using the fixed variance multi-level multi-

factor model with test data from the TEP exhibiting a fault on the A and C feed 

pressure. The fault was first detected at sample number 1405 using the SPE metrics 

(indicated by turquoise vertical line). 
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Figure 6.22: T2 and SPE metrics obtained using the optimum multi-level multi-factor 

model with test data from the TEP exhibiting a fault on the A and C feed pressure. 

The fault was first detected at sample number 1403 using the SPE metrics (indicated 

by turquoise vertical line). 

6.7 Conclusion  

In this chapter, a parameter tuning system based on the BB-BC optimization algorithm 

was proposed for optimisation of multi-level multi-factor models. It solves several 

problems associated with the multi-level multi-factor model in terms of parameter 

optimisation for the different sub-models. These parameter optimisations can be 

categorised into four design spaces for the multi-level multi-factor model. These can 

be listed as: (A) the number of the PCs for the 1st level PCA model, (B) the number of 
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the PCs for the 2nd level PCA model, (C), phase length in batch process monitoring 

using multi-level multi-factor model, and (D) combination of the nonstationary 

variables for the cointegration models when the number of nonstationary variables 

exceeds 12 because the Johansen test is limited to use with 12 or fewer nonstationary 

variables. 

The effects of the parameter optimisation on the performance of the multi-level multi-

factor model was demonstrated on different cases starting from the simplest one. The 

CSTH simulation, used in Chapter 4, was optimised in terms of the number of PCs for 

both the 1st and 2nd level PCA models of the multi-level multi-factor model (design 

space (A) and (B)). Up to a 65% improvement in the type-II error rate for the SPE 

metric was observed in the fault detection rate base on the SPE statistic, The industrial 

penicillin simulator, used in Chapter 5, was optimised in terms of the number of PCs 

for both the 1st and 2nd level PCA models and the phase lengths of the corresponding 

batch processes. Up to a 35% improvement in the type-II error rate for the SPE metric 

was observed in the fault detection rate based on the SPE. The final case is tested on 

the TEP simulation, which has 53 variables. It was optimised in terms of the number 

of PCs for both the 1st and 2nd level PCA models and the combination of the 

nonstationary variables for the cointegration analysis models. Up to 40% 

improvement in the type-II error rate for the SPE metric was observed using the 

parameter tuning scheme for this example.  

The computational time for the parameter tuning procedures is dependent upon the 

search space complexity. The initial search spaces (A) and (B) are the simplest in 

comparison to spaces (C) and (D) with respect to computational time. On the other 

hand, parameter tuning for the phase length through the search spaces A, B and C takes 

more time to complete the same number of iterations in comparison with the other 

search space combinations because of the involvement of the ADF test for each 

candidate.  

A parameter tuning scheme that provides an insight into effective modelling of the 

multi-level multi factor model is presented. The scheme can also be implemented for 

online monitoring where the parameters can be updated after each time period of a 

batch.  
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7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

Multivariate statistical process control (MSPC) techniques are of key importance to 

different industries. They provide comprehensive on-line monitoring of manufacturing 

processes and the on-line detection of process malfunctions, and are capable of being 

applied to both continuous and batch processes. Today’s competitive manufacturing 

practices require companies to be more efficient, more sustainable and consistent about 

quality assurance. MSPC techniques are contributing to the digital transformation of 

industries across a range of sectors in response to Industry 4.0. MSPC plays an 

essential role in intelligent analytics by providing quality maintenance, fault detection 

and diagnostic systems using data-driven real-time decision support systems.  

The MSPC idea was born through the use of projection based latent variables 

modelling such as principal component analysis (PCA) and partial least squares (PLS) 

for process monitoring. In comparison to SPC, MSPC techniques aim to interpret high 

dimensional data by extracting data dynamics into reduced dimensionalities. However, 

the applicability of classical MSPC (the projection-based methods such as PCA and 

PLS) is restricted to stationary systems/variables. In contrast, complex industrial 

processes are highly nonstationary in nature. This being the case, dealing with 

nonstationary variables is starting to gain increased attention, and the existence of 

nonstationary variables accompanied by stationary variables has only recently started 

to be addressed. A ground zero approach to address nonstationarity in the data is to 

calculate the difference between consecutive time series data samples or use of the 

difference-based ARIMA model. It is a known fact from the econometrics field that 

variable differencing can lead to loss of dynamic information in the long-run, which 

contains valuable information.  

One of the valuable findings from the research on nonstationary time series in the 

econometrics field is cointegration analysis. Cointegration analysis is arguably the 

most effective way of handling nonstationarities, which formulates the problem of the 

linear equilibrium along with nonstationary variables by using long-run equilibria. The 

effectiveness of cointegration analysis has been proved not only in its initial 

application area of econometrics but also in several disciplines of engineering such as 

process systems and construction. One of the modelling techniques used to extract 
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cointegration relationships is the Johansen test, which supports up to 12 nonstationary 

variables. The number of cointegration relationships can decrease down to zero 

because of the high-level of nonstationarity such as 𝐼(2) variables. Even though 

cointegration analysis is a powerful tool to extract cointegration relationships, the rank 

of the cointegration matrix can be low despite there being a high number of 

nonstationary variables. This is because of the presence of higher level nonstationary 

time series. A common-trend model can solve the unrepresented cointegration 

relationship. However, this means another control chart must be used in addition to the 

cointegration residuals-based approach. This is a disadvantage compared to 

conventional MSPC approaches that only require a single control chart based on 𝑇2 

and SPE performance metrics. 

Nonstationary process monitoring has been studied by dividing the data into two 

groups, stationary and nonstationary. Cointegration residuals-based approaches along 

with common trend residuals-based approaches can only model the nonstationary 

variables of processes. This gives rise to another issue for monitoring of complex 

industrial process, where nonstationary variables are present along with stationary 

variables. The current literature on the use of cointegration analysis models for process 

monitoring has just considered the nonstationary variables and the faults defined on 

these variables. This is limited by the definition stationary test as they give a binary 

result. It is another disadvantage compared to conventional MSPC approaches such as 

PCA that consider all of the process variables (assuming that they are stationary 

without testing them). 

A multi-level multi-factor process monitoring model is proposed to solve the given 

problems in the application to continuous processes within Chapter 4. It consists of 2 

level modelling along with data pre-treatment at the beginning to divide the process 

variables into two groups on the basis of their characteristics. The 1st level of modelling 

consists of three sub-models to cover the monitoring of all process variables, which 

solves one of the issues with cointegration analysis for process monitoring. 

Furthermore, the method uses a common-trend model in addition to PCA and a 

cointegration model to propose an alternative for the case of high-level nonstationary 

characteristics. On the other, it uses a 2nd PCA model in the 2nd level to model 

stationary factors gathered from the 1st level sub-models: PCA, cointegration and 

common-trend models. By using the 𝑇2 and SPE metrics, it requires only one control 
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chart to be monitored by the operator, which is one of the advantages of MSPC 

techniques. The design of the models is completed based on the type-1 error rate 

performances in the training data set, and the same percent variance was used for the 

PCA models to provide similar features for comparison with other models. Other 

models that were compared include conventional PCA, dynamic PCA (DPCA), and 

cointegration and common trend residuals based approaches. DPCA is an extension of 

conventional PCA using a time lag shift to cope with time dependency and 

autocorrelations.  

The continuous stirred tank heater (CSTH) simulator was used to compare the multi-

level multi-factor model and the given models in Chapter 4. The CSTH is a second 

order plus dead time system, which shows time dependency and nonstationarity on the 

variables. A comparison of models was made on two different type of faults where the 

multi-level multi-factor model proved its superiority against its counterparts. In 

comparison with cointegration and common-trend models, the multi-level multi-factor 

model was able to detect faults for both stationary and nonstationary variables whereas 

the individual cointegration and common trend models were only able to detect a ramp 

function type fault, which is nonstationary. The multi-level multi-factor model also 

proved its superiority against conventional PCA and DPCA, which was proposed to 

cope with time dependent data. Therefore, the multi-level multi-factor model is the 

first reported method in the MSPC literature for the monitoring of continuous 

processes that combines both stationary and nonstationary variable modelling with 

only one control chart.  

Multi-phase approaches are a solution to cope with time-varying and nonlinearities, 

especially in batch process modelling. The multi-level multi-factor model is enhanced 

with the power of nonlinear modelling using multi-phase approaches in Chapter 5. One 

of the counterparts of the multi-level multi-factor model for batch processes is the 

multi-level model. It uses only PCA and cointegration for the modelling of stationary 

and nonstationary variables, respectively. Unlike continuous processes, batch or fed-

batch processes can have high-level nonstationary variables. The high-level 

nonstationarity among the nonstationary variables can cause a low rank cointegration 

matrix, which indicates the impracticality of modelling these types of variables by 

cointegration analysis. A common-trend model within the multi-level multi-factor 

method provides an opportunity to use unused cointegration vectors. This also 
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provides extra stationary factors for the 2nd level PCA model, which can be selected 

through the choice of the number of principal components (PCs).  

An industrial penicillin simulator was used to compare the performance of the multi-

level multi-factor, multi-level, and multi-PCA models for the monitoring of batch 

processes. The industrial penicillin simulation depicts a complex batch processes, 

which contains both stationary and nonstationary characteristics within its variables. 

The phase lengths were assigned using expert knowledge to build multi-phase models. 

The ability to detect two different types of error using the different models was 

evaluated. Two comparisons were made between the methods. The first one was 

between conventional PCA-based multi-PCA and the multi-level multi-factor model. 

Multi-PCA could detect the step function type fault better than the ramp function type 

fault. However, the multi-level multi-factor model possessed earlier detection 

capability for both fault type due to the ability to include all types of variables in the 

model. Secondly, the comparison between a multi-level and the multi-level multi-

factor model indicates the effect of the use of common trend models. Again, the multi-

level multi-factor model proved the need for common-trend models in the modelling 

of nonstationary variables where high-level nonstationary is present such as for 

complex batch processes. Therefore, Chapter 5 clearly demonstrated the effectiveness 

of incorporating a common-trend model within the multi-level multi-factor model.  

Interpretability of models has been a secondary theme throughout the thesis up until 

the last chapter as the models have been designed separately by the author. There are 

several search spaces within the multi-level multi-factor model, which can be searched 

to select the appropriate parameters. Those can be grouped into 4: (A) the number of 

PCs in the 1st level PCA model, which models stationary variables, (B) the number of 

the PCs in the 2nd level PCA model, which models the stationary factors gathered from 

the 1st level sub-models, (C) the number and length of the phases, which determines 

the variables characteristics, and (D) selection of the nonstationary variables for each 

cointegration model when there are more than 12 nonstationary variables. A parameter 

tuning scheme based on the big bang-big crunch (BB-BC) global optimization 

algorithm is proposed to improve the multi-level multi-factor model by changing the 

given parameters above considering not only one parameter, but all parameters to have 

better fault detection capability.  
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The models designed for the different examples in Chapter 4 and 5 were compared 

with the optimum model found by the BB-BC algorithm. The results showed that a 

high percent variance 1st level PCA model and a low percent variance (or similar to 

that used in Chapters 4 and 5 (45%)) 2nd level PCA model provides improved fault 

detection. This also showed the similar principle that inclusion of the common-trend 

residuals improved the performance of the multi-level multi-factor model in 

comparison with the multi-level model, which used only PCA and cointegration 

analysis. Extra 𝑡-scores variables provided by the number of the PCs, gave an 

opportunity for the 2nd level PCA model to better represent the process. Two other 

cases were also investigated. One of them was the batch process that was used in 

Chapter 5. This time phase lengths (search space (C)) were searched using a parameter 

tuning scheme to improve both modelling of the stationary and nonstationary variables 

as the characteristics of the variables can change within the phases. Optimising the 

phase lengths improved the performance of the multi-level multi-factor model. A final 

case was the Tennessee Eastman process (TEP), which has 53 recorded variables. It is 

a perfect testbed to try multiple cointegration models for continuous process 

monitoring and tuning of the optimum combination of nonstationary variables for 

these models. The results showed that the combination of nonstationary variables in 

each model can affect the rank of the cointegration matrix and the performance of the 

cointegration residuals-based monitoring.  

The parameter tuning scheme is an important requirement for the practical deployment 

of the method, which helps non-experts in the field to build and deploy the multi-level 

multi-factor model. Unlike a training environment, changes in the environment, 

especially seasonal, may occur which requires tuning of the calibration model. The 

parameter tuning scheme makes the method self-sufficient and self-adaptive for any 

process, which is a unique feature of the multi-level multi-factor model. Simple 

parameter tuning, including the search spaces (A) and (B), can be done in no more 

than 10 minutes. This does not require any change in the process before-hand apart 

from the validation of the model. Deployment of the other search spaces such as (C) 

and (D) may increase the optimisation time up to an hour. In this study, the tuning for 

the search spaces (A) and (B) took 83.2 seconds while that for (A), (B) and (C) took 

190 minutes and (A), (B) and (D) took 115 minutes. Note that, the optimisation time 

and the number of training batches / data sets have a linear relationship. Therefore, the 
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number of scenerios (𝐾) and number of the samples (𝑀) must be considered as a 

computational load. The optimisation time can be increased due to the size of the data 

set. Therefore, selection of the training data set must be done carefully. This being the 

case, the implementation of the parameter tuning scheme within the multi-level multi-

factor model can change the impracticality of the current model calibration process. 

7.2 Future Work 

The work presented in this thesis includes model presentation and model verification 

on different complex industrial process data sets obtained from the simulation of the 

processes described. However, before the multi-level multi-factor model can be used 

in practice, it has to be validated thoroughly via data sets obtained from actual 

industrial processes. It has to be ensured that the developed algorithms generate 

relevant results under all circumstances both on simulated and real data sets. In this 

work, three different process simulation have been used. From a practical point of 

view, some of the faults characteristics defined within the processes may or may not 

be realistic in the real process. For example, in practice, step functions do not exist in 

physical environment. A transition form of the variable between initial and final value 

of the step changes always exists within the nature, especially for high magnitude 

signals. This being case a model validation and new model studies on the real data 

collected from complex industrial process is required to improve and test the proposed 

work. Therefore, complex processes that show high level nonstationary such as 

fermentation processes would be a good start for model validation using real process 

data.  

In addition, it is a prerequisite for a validation procedure that the multi-level multi-

factor model can be tested in real-time on complex industrial process. This includes 

the application of the parameter tuning scheme along with the validated model. Only 

then can the real effect of the use of the multi-level multi-factor be estimated for 

process monitoring and model tuning. Practical validation or an in depth theoretical 

validation may lead to improvements. The more practical real-time data that are 

available, the better the behaviour of the models developed can be investigated.   

Another theme to investigate in more detail is the development of new heuristic 

algorithms for the parameter tuning scheme. Note that the current version requires 

some inputs from the operator to the algorithm such as the maximum number of phases 
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for batch process modelling using the multi-level multi-factor model. Some new 

criteria can be defined that changes with the number of phases within the search space 

such as one based on the statistics score of the ADF tests. Furthermore, parameter self-

tuning can be implemented easily by incorporating tuning loops fed by new data sets. 

This can be done automatically followed by an abnormality detection in the process or 

within a time period determined by the process expert.  

Similar to the current form of the multi-phase structure, the phases can be searched by 

a clustering algorithm. A study was reported on batch process monitoring based on 

fuzzy segmentation using Gath-Geva clustering (Tanatavikorn and Yamashita, 2017) 

proposed to phase length for several PCA models. Similar searching procedure based 

on fuzz c-means clustering or Gath-Geva clustering can be implemented into the 

search space (C) in addition to other optimisation parameters in the parameter tuning 

scheme. 

For the cointegration and common-trend residuals-based process monitoring models, 

the significance of the residual vectors is an unknown factor for process monitoring. 

As an example from PCA, eigenvalues can derive the importance of the corresponding 

score vector. However, cointegration residuals do not have such a relationship with 

any defined parameters. A parameter that can provide a selection criterion between the 

cointegration residuals would be helpful to design a detailed model. This can also 

change the performance of the multi-level multi-factor model and the effects of the 

selection can also be searched through the parameter tuning scheme based on the BB-

BC optimisation algorithm.  

A multi-level multi-factor model built only from process variables might not be able 

to monitor advanced features, which cannot be measured by physical measurements, 

especially in biopharmaceutical manufacturing. In such cases, use of spectroscopic 

data of the process may help advance process monitoring. Nevertheless, it requires 

fusion techniques to combine and evaluate the data sets from physical measurements 

and spectroscopic device such as Raman. A recent study published on the industrial 

penicillin simulator (used in Chapters 5 and 6) reports the addition of Raman 

spectroscopic data to the simulator (Goldrick et al., 2019). This gives an opportunity 

to develop a fusion technique between the multi-level multi-factor model of the 

process data and Raman spectroscopic data, which would be valuable to research.    
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Another direction in cointegration research for process monitoring might be the use of 

the Chigira procedure. The Johansen test is the conventional cointegration testing 

method, which can support up to 12 variables. More than 12 variables requires 

additional modelling as presented in the application of the TEP using the multi-level 

multi-factor model. A test procedure for estimating the cointegration rank on the basis 

of PCA has been proposed to support cointegration modelling of more than 12 

variables (Chigira, 2008). Therefore, it seems worthy to test the Chigira procedure for 

use in process monitoring cases that include more than 12 nonstationary variables such 

as the TEP. 

In conclusion, proposing the multi-level multi-factor model was the first stage of the 

model development. Some further steps must follow (as described above) to see the 

impacts of modelling both nonstationary and stationary variables in industry.  
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APPENDIX-A  

Nonlinear Iterative Partial Least Squares (NIPALS) 

The NIPALS algorithm decomposes 𝑿 sequentially through each principal 

components. The algorithm for the sequential order can be followed from Table A.1. 

Table A.1: NIPALS for PCA. 

1: Scale and subtract the averages from 𝑿. Set 𝑟 = 1. 

2: Select a 𝒕𝑟 for the score vector with the largest variance. 

3: Calculate a loading vector as 𝒑𝑟 =
𝑿𝒕𝑟

𝒕𝑟𝑇𝒕𝑟
⁄ . 

4: Normalize the loading vector to the unit length 𝒑𝑟 =
𝒑𝑟

‖𝒑𝑟‖
⁄  

5: Calculate a new score vector 𝒕𝑟 =
𝑿𝑇𝒑𝑟

𝒑𝑟𝑇𝒑𝑟
⁄  

6: Check the convergence., for instance using the sum of squared differences 

between all elements in two consecutive score vectors. If converge, 

continue to 7, otherwise return to 3. If convergence is not met by a 

specified number of iterations, break anyway.  

7: Form the residuals 𝑬 = 𝑿 − 𝒑𝑟𝒕𝑟
𝑇. Use 𝑬 as 𝑿, set 𝑟 = 𝑟 + 1 until the 

maximum number of principal components met, then return to 3. 

 

Singular Value Decomposition 

The SVD is a generalization of the eigen decomposition. It decomposes a rectangular 

matrix into three simple matrices: one diagonal and two orthonormal.  

 
𝑿𝑇 = 𝑷𝑇𝑻 = 𝑼𝚫𝑽𝑻 (A.1) 

where 

 𝑼 is the normalized eigenvectors of 𝑿𝑇𝑿(i.e 𝑼𝑇𝑼 = 𝑰). The columns of 𝑼 are 

called the left singular vectors of 𝑿. 

 𝑽 is the normalized eigenvectors of 𝑿𝑿𝑻(i.e 𝑽𝑇𝑽 = 𝑰). The columns of 𝑽 are 

called the right singular vectors of 𝑿. 𝑽 also represents the loading matrix (𝑷) 

for PCA. 

 𝚫 is the diagonal matrix of the singular values, 𝚫 = 𝚲𝟏/𝟐where 𝚲 is the 

diagonal matrix of the eigenvalues of the matrix 𝑿𝑿𝑇 and 𝑿𝑇𝑿. 
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APPENDIX-B  

Similar to the algorithm described for PCA, the NIPALS algorithm decomposes 𝑿 and 

𝒀 as sequentially through each principal components. The algorithm for the sequential 

order can be followed from Table B.1. 

Table B.1: NIPALS for PLS. 

1: Scale and subtract the averages from 𝑿and 𝒀. Set 𝑟 = 1. 

2: Select a 𝑢𝑟 for the output score vector with the largest variance for column 

𝒀. 

3: Calculate an input loading vector as 𝒘𝑟 =
𝑿𝒖𝑟

𝒖𝑟𝑇𝒖𝑟
⁄ . 

4: Normalize 𝒘𝑟 to the unit length 𝒘𝑟 =
𝒘𝑟

‖𝒘𝑟‖
⁄  

5: Calculate a new input score vector 𝒕𝑟 =
𝑿𝑇𝒘𝑟

𝒘𝑟
𝑇𝒘𝑟

⁄  

6: Calculate an output loading vector as 𝒒𝑟 =
𝒀𝑡𝑟

𝒕𝑟𝑇𝒕𝑟
⁄ . 

7: Normalize 𝒒𝑟 to the unit length 𝒒𝑟 =
𝒒𝑟

‖𝒒𝑟‖
⁄  

8: Calculate a new output score vector 𝑢𝑟 =
𝒀𝑇𝒒𝑟

𝒒𝑟𝑇𝒒𝑟
⁄  

9: Check the convergence., for instance using the sum of squared differences 

between all elements in two consecutive score vectors of 𝒖. If converge, 

continue to 10, otherwise return to 3. If convergence is not met by a 

specified number of iterations, break anyway.  

10: Calculate the loading vector of 𝑿 as 𝒑𝑟 =
𝑿𝑡𝑟

𝒕𝑟𝑇𝒕𝑟
⁄ . 

11: Calculate the score coefficient  as 𝒅𝑟 =
𝒖𝑟
𝑇𝒕𝑟

𝒕𝑟𝑇𝒕𝑟
⁄ . 

12: Form the residuals 𝑿𝑁𝑒𝑤 = 𝑿 − 𝒑𝑟𝒕𝑟
𝑇. 

13: Form the residuals 𝒀𝑁𝑒𝑤 = 𝒀− 𝒅𝑟𝒒𝑟𝒕𝑟
𝑇. 

14: Replace 𝑿𝑁𝑒𝑤 as 𝑿 and the same for 𝒀, set 𝑟 = 𝑟 + 1 until the maximum 

principal components met, then return to 3. 
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APPENDIX-C  

The selection criterion for the number of principal components (PCs) for the models, 

which includes the PCA model is detailed in this appendix. There are several ways to 

determine the number of PCs, such as defining the maximum limit for the cumulative 

explained variance, the training data error rate comparison, looking for a ‘knee’ in the 

scree plot, limits for the minimum eigenvalue, and cross-validation. Here, a 

conventional PCA model trained with 2 PCs (selected on the basis of the ‘knee’ in the 

scree plot and the type-I error) explained 54.48% of the data. Figure C.1 represent a 

scree plot of the eigenvalues extracted from CSTH data by PCA. Table C.1 shows the 

type-I error rate for the corresponding cumulative variance percentage, where it can 

be seen that the selection of 45% gives marginally the best results. Therefore, to select 

45% of the variance in the data, 2 PCs are required which actually explains 54.48% 

of the variance in the data. 

 
Figure C.1: Scree plot for the eigenvalues from the PCA model of CSTH data 

collected under normal operating conditions. The red dot represents the number of 

PCs selected. 
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Table C.1: Offline training performance of PCA models with corresponding 

cumulative explained variance for the CSTH process. 

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 45% 55% 65% 75% 85% 

SPE(1%)  𝟎. 𝟔 𝟎. 𝟕 0.7 0.95 0.95 

𝑇2(1%)  𝟎. 𝟕 𝟎. 𝟔𝟓 𝟎. 𝟔𝟓 0.85 0.85 

Number 

of PCs 
 2 3 3 4 4 

 

Ku argues in favour of using parallel analysis for choosing the number of the PCs, but 

it is also recommended that the number of PCs for SPE metric can selected in regards 

to the score vectors, which are independent or nearly independent in time (Ku, Storer 

and Georgakis, 1995). Figure C.2 represents the scree plot of the eigenvalues of the 

DPCA model where the knee is at the 2nd and 7th PCs. On the other hand  

Table C.2 shows the training performance with respect to the type-I error. 

Consequently, the DPCA model is trained according to the error rate performance with 

selection of 35% of the cumulative explained variance. The model with 3 PCs that 

explained 42.95% of the variance in the data was selected to have a model that is close 

to 45%, which is the percentage that have been used in most of the models in this 

study. 

 
Figure C.2: Scree plot for the eigenvalues from the DPCA model for CSTH data 

collected under normal operating conditions. The red dot represents the number of 

PCs selected. 
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Table C.2: Offline training performance of DPCA models with corresponding 

cumulative explained variance for the CSTH process. 

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 35% 45% 55% 65% 75% 

SPE(1%)  𝟎. 𝟔 𝟎. 𝟕 0.7 0.9 0.95 

𝑇2(1%)  𝟎. 𝟕 𝟎. 𝟔𝟓 𝟎. 𝟔𝟓 0.85 0.85 

Number 

of PCs 
 3 4 6 7 9 

 

The training of the multi-level multi-factor model is two part. Firstly, the number of 

PCs for the 1st level PCA model needs to be determined. There are 5 stationary 

variables in the 1st level PCA model and Figure C.3 represents the scree plot for the 

eigenvalues, where it can be seen that only one eigenvalue explained more than 70% 

of the variance in the data. From the classical MSPC point of view, selection of the 

first PC is sufficient to represent the data. Table C.3 also shows that the type-I error is 

largely unaffected by the number of PCs selected. Therefore, the 1st level PCA model 

was trained with 1 PC, which explained 72.24% of the variance in the data. Even 

though most of the models trained with 45% of the variance in regards to the number 

PCs, 1st level PCA model for CSTH data is used 1 PC that explained more than half 

of the variance.  

Secondly, the number of PCs for the 2nd level PCA model needs to be determined. In 

this study, this was determined independently from the 1st level PCA model. However, 

it is known that selection of the first model affects the performance of the 2nd level 

PCA model. The 1st level PCA model gave rise to stationary factors, which consisted 

of 10 variables. Figure C.4 represents the scree plot for the eigenvalues when a ‘knee’ 

is not evident. Table C.4 tabulates the training performance in terms of the type-I error 

for the CSTH data with the corresponding cumulative explained variance. As a result 

2 PCs were selected for the 2nd level PCA model, which explained 47.4% of the 

variance in the data. 
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Figure C.3: Scree plot for the eigenvalues from the 1st level PCA model of the 

multi-level multi-factor model for CSTH data representing normal operating 

conditions. The red dot represents the number of PCs selected. 

Table C.3: Offline training performance of the 1st level PCA models for the multi-

level multi-factor model with corresponding cumulative explained variance for the 

CSTH process. 

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 70% 90% 98% 

SPE(1%)  𝟎. 𝟖 0.8 0.9 

𝑇2(1%)  𝟎. 𝟔𝟓 0.65 0.65 

Number 

of PCs 
 1 2 3 
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Figure C.4: Scree plot for the eigenvalues from the 2nd level PCA model of the 

multi-level multi-factor model for CSTH data representing normal operating 

conditions. The red dot represents the number of PCs selected. 

Table C.4: Offline training performance of the 2nd level PCA models for the multi-

level multi-factor model with corresponding cumulative explained variance for the 

CSTH process.  

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 45% 55% 65% 75% 85% 

SPE(1%)  𝟎. 𝟔 0.8 0.9 0.9 1.0 

𝑇2(1%)  𝟎. 𝟖 0.95 0.90 0.90 1.05 

Number 

of PCs 
 2 3 4 4 5 
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APPENDIX-D  

Chapter 5 compares 3 different multi-phase based models when applied to data from 

the industrial penicillin simulator. These models can be listed as: multi-PCA, multi-

level, and multi-level multi-factor. In comparison to continuous processes, each model 

is designed and built for a specific phase. However, for the sake of simplicity a constant 

percent variance value was selected for each phase. 

The scree plot for the multi-PCA model for each phases is illustrated in Figure D.1. 

The figures given below is an illustration of the information given in Table 5.4. 

However, due to the multi-phase complexity, selection of the number of PCs according 

to the eigenvalue distribution for each phase is a troublesome procedure. Therefore, 

the training performances in terms of type-1 errors for different percent variances were 

evaluated for data from the industrial penicillin simulation. Table D.1 shows the type-

1 error for both 𝑇2 and the SPE. Therefore, a fixed variance level of 45% was selected 

for each phase based on this training performance. 

The multi-level and multi-level multi-factor models use the same stationary variable 

model, which is the 1st level PCA model. Similar to one constant variance selection 

for all phases in multi-PCA, Figure D.2 illustrates the scree plot of the eigenvalues of 

the stationary variables modelled by the 1st level PCA model. However, the number of 

PCs is selected with a fixed variance of 45% according to the training performance of 

the 1st level PCA model tabulated in Table D.2. Furthermore, the scree plot of the 2nd 

level PCA model is illustrated in Figure D.3. The number of the PCs was selected 

according to the performance tabulated in Table D.3. Note that, due to the small 

number of PCs, more than 75% explained the variance contained in all of the 

eigenvalues. Therefore, the SPE limits cannot be calculated for this example.  

Similarly, a selection of one constant variance selection for all phases is also applied 

to the multi-level multi-factor model training. The scree plot for 2nd level PCA model 

in the multi-level multi-factor method is illustrated in Figure D.4 and the number of 

the PCs was selected as 45% according to the performance tabulated in Table D.4 
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Figure D.1: Scree plot for the eigenvalues from the multi-PCA model for industrial 

penicillin simulator data representing normal operating conditions. The red dots 

represent the number of PCs selected. 

Table D.1: Offline training performance of the multi-PCA models with 

corresponding cumulative explained variance for the industrial penicillin simulator.  

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 45% 55% 65% 75% 85% 

SPE(1%)  𝟐. 𝟑 2.91 3.59 3.59 3.39 

𝑇2(1%)  𝟎 0 0 0 0 

Number 

of PCs 
 [𝟐 𝟐 𝟐 𝟑 𝟑] [2 2 3 3 4] [3 3 3 4 5] [4 4 5 5 6] [6 6 6 6 8] 
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Figure D.2: Scree plot for the eigenvalues from the 1st level PCA models for 

industrial penicillin simulator data representing normal operating conditions. The red 

dots represent the number of PCs selected. 

Table D.2: Offline training performance of the 1st level PCA models with 

corresponding cumulative explained variance for the industrial penicillin simulator.  

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 45% 55% 65% 75% 85% 

SPE(1%)  𝟐. 𝟒𝟐 4.75 3.88 3.68 4.38 

𝑇2(1%)  𝟎 0 0.29 3.66 4.14 

Number 

of PCs 
 [𝟏 𝟏 𝟐 𝟐 𝟐] [1 2 3 2 3] [2 2 3 3 4] [3 3 4 3 6] [3 4 5 4 7] 
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Figure D.3: Scree plot for the eigenvalues from the 2nd level PCA model for a multi-

level model for industrial penicillin simulator data representing normal operating 

conditions. The red dots represent the number of PCs selected. 

Table D.3: Offline training performance of the 2nd level PCA model for multi-level 

models with corresponding cumulative explained variance for the industrial 

penicillin simulator.  

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 45% 55% 65% 75% 85% 

SPE(1%)  𝟐. 𝟏𝟎 2.22 ~ ~ ~ 

𝑇2(1%)  𝟎. 𝟓𝟖 0.77 ~ ~ ~ 

Number 

of PCs 
 [𝟏 𝟏 𝟑 𝟐 𝟏] [1 1 3 2 2] [1 2 4 3 2] [1 2 5 3 2] [2 2 5 4 2] 
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Figure D.4: Scree plot for the eigenvalues from the 2nd level PCA model for multi-

level multi-factor model for industrial penicillin simulator data representing normal 

operating conditions. The red dots represent the number of PCs selected. 

Table D.4: Offline training performance of the 2nd level PCA model for multi-level 

multi-factor models with corresponding cumulative explained variance for the 

industrial penicillin simulator.  

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 45% 55% 65% 75% 85% 

SPE(1%)  𝟏. 𝟖𝟎 2.33 2.52 1.83 1.93 

𝑇2(1%)  𝟎. 𝟑𝟖 0.38 0.38 1.94 1.58 

Number 

of PCs 
 [𝟐 𝟐 𝟐 𝟑 𝟐] [2 2 3 3 2] [2 3 4 4 3] [3 3 5 5 3] [4 4 7 6 4] 
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APPENDIX-E  

The multi-level multi-factor model built for the TEP simulator is detailed in this 

appendix. The scree plot for the 1st level PCA model is illustrated in Figure E.1. A 

fixed explained variance of 45% was chosen according to the training performance 

tabulated in Table E.1. Here, the performance for 55% is very close to 45%. However, 

a lower percentage was chosen to avoid noise in the test cases. 

Furthermore, the scree plot for the 2nd level PCA model is illustrated in Figure E.2. A 

fixed variance of 45% was chosen according to the training performance tabulated in 

in Table E.2. Here a percent variance of 75% has a lower type-I error rate than a 

percent variance of 45%. However, 22 PCs for monitoring can be troublesome 

according to the MSPC point of view with regards to avoidance of noise.  

 

Figure E.1: Scree plot for the eigenvalues from the 1st level PCA model for the TEP 

simulator data representing normal operating conditions. The red dots represent the 

number of PCs selected. 
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Table E.1: Offline training performance of the 1st level PCA model for multi-level 

multi-factor models with corresponding cumulative explained variance for the TEP 

process.  

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 35% 45% 55% 65% 75% 

SPE(1%)  2.25 𝟐. 𝟎𝟖 2.16 2.25 2 

𝑇2(1%)  1.41 𝟎. 𝟖𝟑 𝟎. 𝟖𝟑 1.16 1 

Number 

of PCs 
 6 𝟖 9 11 13 

 

Figure E.2: Scree plot for the eigenvalues from the 2nd level PCA model for TEP 

simulator data representing normal operating conditions. The red dots represent the 

number of PCs selected. 

Table E.2: Offline training performance of the 2nd level PCA model for multi-level 

multi-factor models with corresponding cumulative explained variance for the TEP 

process.  

Metric 

Name 

(level) 

 Variance / Type I error (%) 

 35% 45% 55% 65% 75% 

SPE(1%)  1.33 1.25 1.41 1.08 𝟎. 𝟗 

𝑇2(1%)  𝟎. 𝟔𝟔 𝟎. 𝟔𝟔 𝟎. 𝟔𝟔 0.91 0.71 

Number 

of PCs 
 𝟏𝟎 14 18 22 27 
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