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Abstract

Kerr ring resonators, where laser light circulates and interacts with a nonlinear
medium, have a vast range of applications, especially in the field of metrology
and telecommunications. An important feature that can occur in Kerr ring
resonator setups with two field components is a spontaneous symmetry break-
ing (SSB) of the intensities of the circulating fields. At low input powers, the
two components circulate in the resonator with the same intensity, but this
symmetry may spontaneously break upon a minute change of input conditions
resulting in one component becoming dominant while the other is suppressed.
This thesis concerns the study of this symmetry breaking phenomenon and
the features that can be exploited in wide-reaching applications in photonics
and quantum technologies.

In early chapters we provide an introduction to passive Kerr ring resonators
both in terms of the theoretical and experimental setups, and to the estab-
lished model used to describe a single light beam circulating in a Kerr ring
resonator, the Lugiato-Lefever equation (LLE). Systems of coupled LLEs are
then used to model multiple modes circulating simultaneously in the resonator.
We proceed to describe SSB in the intensities of these modes upon changes of
experimentally controllable parameters. Through a linear stability analysis of
the system of coupled equations we investigate the possible dynamical regimes
starting from useful field oscillations and leading to the novel behaviour of peri-
odic switching between the dominant and suppressed field components. Later,
to describe a wide range of experimental setups, this analysis is generalised to
arbitrary self- and cross-phase modulation strengths.

In subsequent chapters we describe our studies into how Temporal Cavity
Solitons (TCS) evolve within the coupled LLE system. TCS have themselves a
wide range of applications in the generation of, for example, optical frequency
combs. It is shown for the first time and with external experimental verifica-
tion, that TCS may also experience SSB in Kerr ring resonators with orthog-
onal polarization modes, a result which may lead to novel telecommunications
applications. These symmetry broken TCS can, under certain conditions, be-
gin to ‘breath’ in simple and complex manners and even show the periodic
switching of the dominant and suppressed components previously mentioned,
only now in self-localised pulses instead of continuous waves.
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The final chapter of this thesis describes significant advances in two projects
which lay the ground for further study. The first section builds on the bal-
ancing of asymmetric input conditions in a manner that restores a connected
perturbed pitchfork bifurcation. This is important for applications looking to
utilise interchangeable suppressed and dominant field roles in systems with
physical imperfections. In the second we outline the derivation and early sim-
ulations of a new model which expands to four field components. It is shown
how the enlarged degrees of freedom leads to ‘nested’ symmetry breaking bi-
furcations, opening new avenues for applications requiring more diversity and
flexibility than just two coupled components.
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Chapter 1

Introduction

Owed to the demonstration of the first laser by Theodore H. Maiman in 1960,
the field of nonlinear optics has grown significantly in recent decades. Non-
linear optical effects occur as a consequence of a medium’s optical properties
being altered by their interaction with light [1], which, although not a necessity
- see the observation of saturation effects in the luminescence of dye molecules
by G.N. Lewis et al. in 1941 [2], often requires very high intensity light. This
high intensity light is most commonly supplied through the use of a laser.

As an example of a nonlinear effect, consider momentarily the polarisation,
P (t), or dipole moment per unit volume, of a material in response to an ap-
plied optical field E(t). In contrary to conventional optics, where the induced
polarisation field is often described by

P (t) = ε0χ
(1)E(t) , (1.1)

for linear susceptibility χ(1) and permittivity of free space ε0, in nonlinear
optics the polarisation field is better described by following power series

P (t) = ε0
[
χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + ...

]
, (1.2)

where χ(2−3) are the second- and third-order nonlinear optical susceptibilities
respectively. From Eq. (1.2) one observes that, at difference with Eq. (1.1),
the polarisation of the material depends in a nonlinear manner on the applied
field.

Throughout this thesis we concern ourselves with a special type of nonlinear
material - Kerr materials [3,4] - which simplify Eq. (1.2) while still maintaining
the possibility to exhibit nonlinear phenomena. Specifically, we study systems
made up of continuous Kerr materials which form a connected path or closed
loop wave guide for light to travel along. These types of setups are commonly
referred to as Kerr ring resonators.
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CHAPTER 1. INTRODUCTION

Kerr ring resonators [5] have seen application in a multitude of different
fields, including many areas of metrology (for example through the generation
of frequency combs [6–13] and improving rotation sensors through enhancing
the Sagnac effect [14–18]), telecommunications (by, for example, storing and
transferring data using temporal cavity solitons [19–22]), and in the production
of components for use in photonic circuits such as isolators and circulators
[23] and acting as logic gates [24]. Many of the recent advancements have
been owed to the development of high-quality factor resonators [25–29], within
which light circulates for many round trips of the closed loop wave guides
before exiting - leading to a strong build up of nonlinear effects and allowing
for optical bistability [5, 30].

The propagation of a single light field around these ring resonators is of-
ten modeled by the Lugiato-Lefever equation [31]. When multiple light fields
circulate in Kerr ring resonators simultaneously they can interact with one
another as they propagate. This interaction causes coupling effects and leads
to coupled equations which can exhibit even more complex dynamics than
the single LLE, thus yielding the potential for yet further applications. In
this thesis we study in particular two physical situations. The first involves
the propagation of two light fields moving in opposing directions, or counter-
propagating, with a shared linear polarisation [14, 32], whereas the second
involves two fields which co-propagate in the same direction, only now with
orthogonal polarisations [33].

In both of these two-field systems, the propagating light fields can exhibit a
fascinating effect: spontaneous symmetry breaking, and it is this effect which
forms the basis of study for this manuscript.

This thesis is organised as follows.

In Chapter 2 we provide the reader with an adequate introduction to
passive Kerr ring resonators such that the rest of the thesis is grounded in the
wider research topic and there is understanding of the prerequisite material
that this thesis is based upon. With this said, further background material is
still introduced in subsequent chapters as it becomes relevant. In this main
chapter of introduction we begin by describing the theoretical set up of a
ring resonator and outline some of the key physics involved as light propa-
gates around them. This allows us to derive the well-known Lugiato-Lefever
Equation (LLE), for which we then go on to provide methods for solving.

Chapter 3 then begins the main discussion of this thesis, “The Sponta-
neous Symmetry Breaking of Light in Passive Kerr Ring Resonators”. We in-
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CHAPTER 1. INTRODUCTION

troduce the two physical situations that are studied through out this manuscript:
two co-propagating circularly polarised light fields, a situation modeled with
two coupled LLEs, and two counter-propagating linearly polarised light fields,
modeled by two coupled Lorentzian equations. It is shown that under cer-
tain conditions, notably when the circulating field envelopes are homogeneous
(field envelope is constant around the resonator) and stationary (field enve-
lope is constant in time), these two systems are mathematically akin. These
homogeneous and stationary solutions (HSS) are then shown in multiple ways
to display the potential for a Spontaneous Symmetry Breaking (SSB), where
of the two field intensities, which were circulating as equals, one field becomes
spontaneously dominant, while the other is suppressed. We then go on to
access the stability of these HSS by removing the stationary constraint on the
system.

Picking up where we left off, Chapter 4 continues with the studies of
the time dependent system, only now rather than studying the local stability
of the HSS we investigate the wider dynamics by numerically integrating the
equations. This allows us to predict the field evolutions over time and observe,
for example, the oscillations that the fields undergo when the HSS becomes
unstable to noise. These oscillations can be harmonic in nature, or they can
become extremely complex and chaotic. To visualise the types of oscillations
viable within the system we map out Poincaré sections, which mark the local
maxima of the oscillations and hence give insight into their complexity. We go
on to demonstrate that for certain input parameters the field oscillations can
become so large that the ranges of their intensity evolutions overlap entirely,
a process which can lead to the interesting dynamic of periodic self-switching.

In reading these early chapters it will become apparent that we have limited
ourselves to certain values of the so called self- and cross-phase modulation
(SPM and XPM) within our coupled systems. This choice was made due to
the experimental parameters provided by collaborators. In Chapter 5 we
widen the scope of our studies to address the same coupled systems but with
arbitrary strengths of the SPM and XPM. We begin the chapter with a short
introduction describing exactly what SPM and XPM, are and why they arise
within the system, before giving examples of what strengths they can take
in our studied systems - and hence illustrating why it is important for the
analysis to be expanded to incorporate these arbitrary strengths. It is shown
that the SPM and XPM influence many behaviours in the system, from the
possible range of the well known optical bistability to the size and shape of the
set of asymmetric solutions. We end the chapter by generalising the stability
analysis of the HSS to arbitrary SPM and XPM strengths and observing the
effects of these strengths on the oscillatory behaviour of the field evolutions.
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CHAPTER 1. INTRODUCTION

In Chapter 6 we remove the homogeneous character of the solutions. This
allows us to study how the fields vary during their circulations of the resonator,
leading to behaviours such as Turing patterns and Temporal Cavity Solitons
(TCS). While TCS have been known to exist in LLE systems for some time,
we show here that TCS in our coupled systems can also undergo SSB, leading
to two soliton profiles with different peak intensities. We go on to show that
these solitons, under certain conditions, can begin to also show oscillatory
behaviours - commonly referred to as ‘breathing’. Again these oscillation or
breathing dynamics can be simple or very complex, and we show that it is
even possible for the periodic switching behaviour to be observed for TCS.

In the final chapter of this thesis, Chapter 7, we give the results from
two shorter and complementary studies. In the first part of the chapter we
address the situation where the fields within our systems have non-equal input
conditions and what effects this may have. Specifically we show that although
now the system is heavily asymmetric in its origin, we may restore some typical
features of the equal-input-system by a process of balancing the differences in
two different input condition. In the chapter’s second part we outline the
derivation and early simulations of a new model which expands studies to four
field components - combining the counter-propagating fields with polarisation
effects. It is shown that the enlarged degrees of freedom allows for ‘nested’
symmetry breaking bifurcations, leading to the possibility of four asymmetric
fields circulating simultaneously and thus opening new avenues for applications
requiring more diversity and flexibility than just two coupled components.

We then conclude the thesis with a summary of our findings and finally
provide an explanation of the numerical methods used throughout this thesis
in the appendix.
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CHAPTER 1. INTRODUCTION

“Begin at the beginning...
and go on till you come to the end:

then stop.”

– Lewis Carroll, Alice in Wonderland

6





Chapter 2

Passive Kerr Ring Resonators

Contents
2.1 Chapter Introduction . . . . . . . . . . . . . . . . . 9

2.2 Theoretical and Physical Passive Kerr Ring Res-
onators . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Modeling Passive Kerr Ring Resonators . . . . . 12

2.3.1 The Kerr Nonlinearity . . . . . . . . . . . . . . . . . 12

2.3.2 Chromatic Dispersion for Slowly Varying Envelopes 13

2.3.3 The Purely Temporal Lugiato-Lefever Equation . . . 13

2.3.4 Solving the Lugiato-Lefever Equation . . . . . . . . 17

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . 22

8



CHAPTER 2. PASSIVE KERR RING RESONATORS

2.1 Chapter Introduction

In this main introductory chapter we aim to provide a background on passive
Kerr ring resonators, of the physics involved when light propagates around
them and finally the purely temporal version of the Lugiato-Lefever equation
[31], which has enjoyed much success in accurately modeling the circulating
light field’s dynamics.

2.2 Theoretical and Physical Passive Kerr Ring

Resonators

Let us begin by first discussing the theoretical schematic of a ring resonator.
In its most basic definition, a ring resonator is a waveguide which forms a
closed loop coupled to some input and output; an example of this is given in
Fig. 2.1.

Figure 2.1: Basic setup of a ring resonator. Laser light is sent from some
input along a path towards an output, with a coupling mechanism placed
somewhere along the way. This coupling mechanism, with transmissivity, T ,
and reflectively, R, acts as a two way gate, allowing for light to both enter and
leave the waveguide of the resonator, which forms a closed loop.
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CHAPTER 2. PASSIVE KERR RING RESONATORS

In Fig. 2.1 we have some laser input which sends light along a waveguide
towards an output. At some point along the input-output path there lies a
coupling mechanism of some description (such as a beam splitter, fiber coupler
or evanescent-wave coupling), which allows for the input light to leave its
current path and join the closed loop path of the resonator itself.

The coupling mechanism may be characterised by its power reflection coeffi-
cient, R, and its power transmission coefficient, T . These coefficients represent
the respective proportions of light which is reflected (carries on without inter-
ruption towards the output) and transmitted (enters the closed loop waveguide
of the resonator) by the coupling mechanism.

In this thesis we concern ourselves with high finesse, or low-loss, resonators
which partially amounts to being able to state that, for the coupling mechanism
of choice, T � 1. This very low rate of transmission, and conversely very high
rate of reflection, acts in both directions for the coupling mechanism. This
means that a very low proportion of the laser input will enter the resonator,
yet once it has entered the resonator it will remain there, circulating over and
over for many round trips. Eventually the light will leave the resonator, by the
same coupling mechanism, to rejoin its original path and proceed on towards
the output once again.

The material which makes up the resonator itself is extremely important in
determining how the circulating light field is affected during its propagation. In
this thesis we focus on Kerr media (described in detail momentarily), which are
named as thus for their capacity in displaying the Kerr, or quadratic electro-
optic (QEO), effect on propagating light [3,4]. Other types of materials can be
used in the creation of ring resonators, such as a quadratic nonlinear media [34],
but these are not studied here.

Physical manifestation of Fig. 2.1 can be achieved in a number of ways.
Figure 2.2 shows some variations of microring resonators, such as microrod (a)
or microtoroid (b) setups. Various nonlinear materials can also be used to make
up the resonator, such as silica (a,b) and silicon nitride (c) [35,36]. Microring
resonators, as their name suggests, are typically micrometres to millimetres
in size. Similarly Fig. 2.1 may be realised using fiber-loops. For example, in
Ref. [20] fiber loops made from single-mode silica fiber were used to observe
temporal cavity solitons [19]. Contrary to the micrometres to millimetres size
of microring resonators, these fiber cavities are often much larger: 380 m in
length in Ref. [20], 10.5 m in Ref. [37] for example. The relative small size of
microring resonators, in comparison to fiber loops, is of tremendous advantage
when its comes to applications requiring a large free spectral range [38] or
which seek to minimise the required physical space of components - such as in
the generation of frequency combs for use on satellites [39].

10



CHAPTER 2. PASSIVE KERR RING RESONATORS

Figure 2.2: Three physi-
cal realisations of passive
Kerr ring resonators. (a)
shows a 2.7 mm diameter
high-Q whispering-gallery-
mode fused silica micro-rod
resonator with a tapered
fibre (highlighted with red
laser light) [35]. (b) shows
a silica micro-toroid res-
onator with diameter of
approximately 200 µm. [36]
Finally, (c) shows a Si3N4

resonator with a diameter of
approximately 450 µm. [36]

11



CHAPTER 2. PASSIVE KERR RING RESONATORS

2.3 Modeling Passive Kerr Ring Resonators

In this subsection we first introduce two important factors for consideration
when modeling the propagation of light in Kerr materials, with the first being
the Kerr nonlinearity and the second being chromatic dispersion. Following
these introductions we will work through the derivation of the highly successful
(purely temporal) Lugiato-Lefever equation from the Nonlinear Schrödinger
equation with appropriate boundary conditions, introducing other important
considerations, such as cavity detuning and other losses, as we go.

2.3.1 The Kerr Nonlinearity

Nonlinear optics in general is the study of effects whose origins lie in a mate-
rial’s response to an optical field, with the strength of this response depending
in a nonlinear manner on the strength of said field.

The Kerr nonlinearity arises from a change in the refractive index of a ma-
terial in response to an applied electric field; an effect which was discovered
in 1875 by John Kerr, a Scottish physicist [3, 4], whom the effect was later
named after. This nonlinearity can be observed when considering the polari-
sation field of a material, P (t), in response to an optical field E(t), described
by

P (t) = ε0
[
χ(1) + χ(2)E(t) + χ(3)|E(t)|2

]
E(t) , (2.1)

where ε0 is the permittivity of free space, χ is the the susceptibility tensor
specific to the medium, with χ(1−3) being the linear, second- and third-order
nonlinear optical susceptibilities respectively, and where we have stopped at
the Kerr nonlinearity under the assumption that higher order terms are neg-
ligible for the materials we study here. We also assume in this thesis that
the resonator materials of choice display inversion symmetry, such that χ(2)

vanishes [1], and further that the polarisation field in Eq. (2.1) changes in-
stantaneously in response to the field strength.

In this manner we may express the polarisation field of the propagated
material by splitting the total polarisation field into linear and nonlinear parts

P (t) = PL + PNL = ε0
[
χ(1) + χ(3)|E(t)|2

]
E(t) , (2.2)

This is used later as a key component of the Nonlinear Schrödinger equation.

12



CHAPTER 2. PASSIVE KERR RING RESONATORS

2.3.2 Chromatic Dispersion for Slowly Varying Envelopes

Chromatic dispersion causes an angular frequency, ω, dependence in the refrac-
tive index of a medium, η(ω). It often occurs during the interaction between
an electromagnetic wave and the electronic cloud of a dielectric medium, such
as silica. The effect amounts to implying that different spectral components of
a propagating field profile, such as a pulse, will not travel at the same velocity,
leading to chirping [40,41].

We may vastly simplify discussions on chromatic dispersion if we limit
ourselves to situations where we can validly make the slowly varying envelope
approximation (SVEA), which amounts to assuming that the envelope of a field
varies much slower, in space and time, compared to the carrier wave [42, 43],
that is to say ∣∣∣∣∂E

∂z

∣∣∣∣ ≤ k0 |E| ,
∣∣∣∣∂E

∂t

∣∣∣∣ ≤ ω0 |E| . (2.3)

When determining the influence of dispersive effects, the SVEA allows us
to neglect higher-order terms in the Taylor expansion of the mode-propagation
constant k(ω) around the carrier frequency, ω0, such that it is given by

k(ω) ≈ k0 + k′0(ω − ω0) +
1

2
k′′0(ω − ω0)2 (2.4)

with

k0 = k (ω0) , k′0 =
∂k0

∂ω
, k′′0 =

∂2k0

∂ω2
, (2.5)

where k′0 = 1/vg and k′′0 are known as the inverse of the group velocity vg and
the group velocity dispersion parameter, respectively.

Focusing on only the last two terms of Eq. (2.4) and applying the inverse
Fourier transform returns

F−1

(
k′0(ω − ω0) +

1

2
k′′0(ω − ω0)2

)
= ik′0

∂E

∂t
− k′′0

2

∂2E

∂t2
, (2.6)

which is used in combination with Eq. (2.2), details in Ref. [42], to derive the
well known Nonlinear Schrödinger equation, Eq. (2.7).

2.3.3 The Purely Temporal Lugiato-Lefever Equation

The model which forms the basis of the more complex models later used in
this thesis, and which would later be described as the purely temporal version

13



CHAPTER 2. PASSIVE KERR RING RESONATORS

of the Lugiato-Lefever equation, was first derived by Halterman, Trillo and
Wabnitz in their 1992 publication “Dissipative modulation instability in a
nonlinear dispersive ring cavity” [44]. At its core, this model builds upon the
Nonlinear Schrödinger equation [42,45], which combines the Kerr nonlinearity
and chromatic dispersion by

∂En
∂z

= −ik
′′
0

2

∂2En
∂τ 2

+ iγ|En|2En, (2.7)

where, in the context of Fig. 2.1, En(z, τ) describes the envelope of the circu-
lating field at some distance z from the coupling mechanism (placed at z = 0)
around the resonator, on its nth round trip. τ is measured in a frame of refer-
ence traveling at the group velocity of the carrier wave, such that τ = t− z/vg
(which collapses Eq. (2.6)), and γ is the self-phase modulation coefficient (see
section 5.1.1). In fibers for example, γ is given by γ = ω0n2/cAeff , where n2

is the nonlinear index coefficient of the medium, Aeff is the effective area of
the medium’s core, c is the speed of light in a vacuum and ω0 is the central
frequency of the spectrum.

Equation (2.7) is combined with the following longitudinal boundary con-
ditions

En+1 (z = 0, τ) ≈
√
TEin +

√
Re−iθGLEn (z = 0, τ) , n = 0, 1, 2, ... , (2.8)

which amount to stating that the field just after the coupling mechanism is
equal to the transmitted input field, Ein, plus the intracavity field which has
just propagated one round trip. Within Eq. (2.8), T,R are the transmission
and reflection coefficients of the coupling mechanism respectively, with T+R =
1, θ is the cavity detuning (the difference between the carrier frequency, ω0,
and the closest cavity resonant frequency) and we define the operator GL to
account for the propagation of En through the nonlinear medium over some
distance L, which here we assume to be the length of the ring resonator, i.e.

GLEn(z = 0, τ) =

∫ L

0

(
∂En
∂z

)
dz, (2.9)

which amounts to the integration of the Nonlinear Schrödinger equation, Eq.
(2.7) over the longitudinal range z = (0→ L).

Equations (2.7) and (2.8) together describe an infinite-dimensional Ikeda
map [46] which completely describes the dynamics of the system, however un-
der the assumption that we are dealing with high finesse (low-loss) resonators,
such that T << 1, we can, via the following method, combine Eq. (2.7) and
(2.8) into a single partial differential equation.
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The limits described under the assumption of low-loss resonators imply that
the length of time that a single photon may be expected to stay within the
cavity, before exiting via the coupling mechanism, is very high in comparison
to the roundtrip time tR. The low entry and exit rates to the cavity of photons
means that it is reasonable to assume that the intracavity field has very little
variation over one round trip, known as the mean-field approximation, and
hence we may perform the integration of Eq. (2.9) trivially by the first-order
Euler method [19], resulting in

GLEn(0, τ) =

∫ L

0

(
∂En
∂z

)
dz,

≈ En(0, τ) + L
∂En(0, τ)

∂z

≈ En(0, τ)− iLk
′′
0

2

∂2En(0, τ)

∂τ 2
+ iLγ|En(0, τ)|2En(0, τ).

(2.10)

This assumption, that the round trip variation of the field is very small,
also allows to to define new temporal variable t, known as the ‘slow’-time,
which describes the field on each pass of the coupling mechanism at z = 0
such that E(t, τ) is defined as

E(t = ntR, τ) = En(z = 0, τ) , n = 1, 2, ... (2.11)

with its derivative defined in a similar manner by

∂E(t = ntR, τ)

∂t
=
En+1(z = 0, τ)− En(z = 0, τ)

tR
, n = 1, 2, ... (2.12)

Returning attention to Eq. (2.8), we proceed by making the substitutions
e−iθ ≈ 1− iθ and R = 1− T to obtain

En+1 (z = 0, τ) ≈
√
TEin +

√
1− T (1− iθ)GLEn(0, τ)

≈
√
TEin +

[(
1− T

2

)
(1− iθ)

]
GLEn(0, τ)

≈
√
TEin +

[
1− T

2
− iθ + i

Tθ

2

]
GLEn(0, τ) .

(2.13)

By the slowly varying envelope and low-loss assumptions stated earlier,
with the latter further amounting to assuming that both the cavity detuning
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and self-phase modulation are small θ � 1, Lγ|E| � 1 [44], we may assume
that T , θ and the latter two terms of Eq. (2.10) are of first order smallness
and proceeding to drop higher order terms from Eq. (2.13), one arrives at

En+1 (z = 0, τ) ≈
√
TEin + En(0, τ)− T

2
En(0, τ)− iθEn(0, τ)

− iLk
′′
0

2

∂2En(0, τ)

∂τ 2
+ iLγ|En(0, τ)|2En(0, τ)

≈
√
TEin +

(
1− T

2
− iθ − iLk

′′
0

2

∂2

∂τ 2
+ iLγ|En(0, τ)|2

)
En(0, τ) .

(2.14)

Making use of Eq. (2.12) and (2.14) then gives the result:

tR
∂E(t, τ)

∂t
≈
√
TEin +

[
−T

2
− iθ − iLk

′′
0

2

∂2

∂τ 2
+ iLγ|En(t, τ)|2

]
En(t, τ) ,

(2.15)
which, by the following definitions

α =
T

2
, θ̄ =

θ

α
, Ē =

√
Lγ

α
E , Ēin =

√
α3

T 2Lγ
Ein , (2.16)

and transformations

t→ tR
α
t̄ , τ →

√
L
∣∣k′′0 ∣∣
2α

τ̄ , (2.17)

can be expressed in its dimensionless form as:

∂E(t, τ)

∂t
= Ein +

[
−1− iθ − iη ∂

2

∂τ 2
+ i|E|2

]
E , (2.18)

where, for ease of notation, we have dropped all bar notation and have also
introduced η = ±1, which depends on the sign of k

′′
0 and indicates normal

and anomalous dispersion respectively. Note that the term α defined here
generally refers to the total cavity losses studied within the system, such that,
if one wishes to account for further factors, such as internal cavity loss in
fibers, splice loss or intracavity component losses, these can also be included,
or excluded, as required [19].

The fully temporal LLE is in fact equivalent to the spatio-temporal LLE
in one dimension [19, 42]. The spatio-temporal LLE takes into account the
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diffraction of the field and has its origins in the Maxwell-Bloch equations for a
two-level system with assumptions introduced by the mean-field limit [31,42].
An extension to this model that we do not consider here is the inclusion of
thermal effects which may arise in micro-resonator devices . These thermal
effects can lead to further changes in the refractive index of the resonator as
a function of the pump power [6].

2.3.4 Solving the Lugiato-Lefever Equation

Homogeneous Stationary States and Optical Bistability

Homogeneous solutions are here defined as solutions where the circulating field,
E(t, τ) remains constant during a round-trip i.e. E(t, τ) = E(t), and implies
that ∂2E/∂τ 2 = 0 in the LLE (2.18). Stationary solutions on the other hand
are here defined as solutions within which the field profile over a full round
trip repeats exactly on subsequent circulations, i.e E(t, τ) = E(τ), and defines
∂E/∂t = 0 in the Eq. (2.18).

The set of homogeneous stationary solutions to the LLE (2.18) is therefore
given by:

0 = Ein +
[
−1− iθ + i|E|2

]
E , (2.19)

and we may multiply Eq. (2.19) by its complex conjugate and simplify to
obtain the following equation

|E|2 =
E2
in

1 + (θ − |E|2)2 , (2.20)

which describes the set of homogeneous and stationary field intensities |E|2
and amounts to a cubic equation of the form

y3 − 2θy2 +
(
1 + θ2

)
y = I , (2.21)

where we define y = |E|2 and E2
in = I. This equation, as shown in Fig. 2.3,

may display a phenomena known as optical bistability [30, 47, 48], defined in
general as a range of x-axis (here I or θ) values for which there are multiple
possible y-axis values (|E|2).

In Fig. 2.3 (a) the input intensity is scanned for various cavity detuning
parameters. A bistability is not always seen since it is dependent on, here, the
cavity detuning. The red, blue and green lines show input intensity scans for
three different cavity detunings, but only the green line displays the bistability.
This is because input intensity bistability of Eq. (2.20) is limited by a minimum
detuning value of θ =

√
3 (blue line).
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Figure 2.3: Input intensity, (a), and cavity detuning, (b), scans of Eq. (2.20)
for three values of the cavity detuning, (a), or input intensity (b). In (a,b)
the red line gives an example of a scan which is below the respective threshold
for bistability, the blue line is a scan for the limit value where the possibility
for optical bistability begins and finally the green line gives an example of
a scan above the limit value, with the bistable region shaded with a green
background.
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Similarly, in Fig. 2.3 (b) the cavity detuning is scanned for various input
intensity parameters. Again a bistability is not always seen since it is depen-
dent on, now, the input intensity. The red, blue and green lines now show
cavity detuning scans for three different input intensities, and again only the
green line displays the bistability. This is because input cavity detuning bista-
bility of Eq. (2.20) is limited by a minimum input intensity of Ein = 8

√
3/9

(blue).
To observe physically the effect of the nonlinearity in Eq. (2.20), we plot

in Fig. 2.4 the normalised circulating field power, |E|2/E2
in, against the cavity

detuning, θ. It can be seen that as the input intensity is increased the required
cavity detuning to maximise the circulating power shifts away from 0, that is
to say the nonlinearity causes a resonance shift.

Figure 2.4: Tilted resonance curves. For various input intensities the nor-
malised power |E|2/E2

in is plotted using a recasting of Eq. (2.20). The vertical
dashed lines indicate the resonant cavity detuning, θR, which maximises the
normalised power for each given input intensity, E2

in, – note how this resonant
detuning is shifted away from 0 as the input intensity is increased.
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Dynamical Solutions

When it comes to accessing the solutions to dynamical equations the homo-
geneous or stationary solutions of the system are but one aspect to consider.
For example, in the system of a simple pendulum, the system state where the
pendulum is perfectly inverted is a stationary state of the system. That is to
say, unless the system is perturbed in some way, it will not change over time.
Once such perturbations are taken into account however, even the slightest
nudge to the inverted pendulum will cause it to begin to swing away from the
perfectly inverted state - the state is unstable to perturbations.

The stability of a solution is thus an important indication of the dynamics
of the system (where derivative components are not forced to 0). Our system
can become unstable in two ways. The first occurs when dE/dt 6= 0 and is
characterised by the emergence of Hopf bifurcations, see section 3.3 for more
information. This instability amounts to the circulating field slowly varying
over multiple round trips. The second occurs when d2E/dτ 2 6= 0, which is
caused by a Turing instability and leads to Turing patterns [49–51]. This type
of instability amounts to the circulating field varying within a round trip.

Using an appropriate technique for integrating Eq. (2.20), such as the
combination of the split-step Fourier and Runge-Kutta methods, appendix A,
one can study the full dynamics of the equation and observe, for example,
some of these Turing pattern states. In Fig. 2.5(a) we show again the solutions
of Eq. (2.20) for a scan of the input intensity for θ = 1, in the anomalous
dispersion regime and with self-focusing media. The previously discussed HSS
of the equation are shown in black, only now the stability of the solution is also
shown, solid black - stable, dashed black - unstable. We show in (b) a possible
pattern solution which occurs in the fast-time profile when the HSS becomes
unstable to in-homogeneous perturbations; the blue curve in (a) tracks the
maxima and minima of this pattern state.

Temporal Cavity Solitons
Connected to the pattern states of the previous section is the topic of

Temporal Cavity Solitons (TCS). To avoid repeated similar content, the main
discussions on TCS are left to their own dedicated chapter later in this thesis,
Chapter 6, however this may suffice as a suitable place to provide a brief
introduction.

To give a basic description, TCS are locally inhomogeneous solutions which
propagate without changing their shape due to their ability to counter effects
such as losses, and self-reinforce [19]. The reason we briefly introduce them
here is due to the capacity of the LLE to sustain them through the use of
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Figure 2.5: (a) An intensity scan of Eq. (2.18) for θ = 1 and η = −1,
with the homogeneous stationary states, given by Eq. (2.20), shown in black
(solid - stable states, dashed - unstable states) and the maxima and minima
of simulated pattern states shown in blue. Scan in (a) runs right to left. Note
that there may be multiple possible pattern states - only one state is tracked
here. (b) shows the profile of the tracked pattern state for E2

in = 1.5.

Figure 2.6: Soliton and pattern states of Eq. (2.18) for Ein =
√

2, θ = 2.1
and η = −1 (anomalous dispersion). It can be seen that the TCS (red) locally
locks to the pattern state (blue). The base of the TCS ‘sits’ on the lower
branch of the HSS optical bistability.
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pattern states. Figure 2.6 shows how the previously described Turing pattern
states can provide a mechanism for the HSS to locally become inhomogeneous
yet remain a stable solution.

In Fig. 2.6, the majority of the circulating field’s fast time profile consti-
tutes the HSS solution which forms the lower branch of the optical bistability
however it can be seen that for a small region the profile can locally ‘lock’ to
one of the peaks of the Turing pattern - resulting in a solitary wave or soliton.

2.4 Chapter Summary

In this preliminary chapter we strived to introduce the reader to the basic con-
cepts surrounding light propagation in passive Kerr ring resonators. To do this
we began by presenting and explaining the basic schematic of a passive Kerr
ring resonator, followed up with a few examples of their physical realisation.

The next section of the chapter concerned itself primarily with the physics
involved within the resonator setup, notably the Kerr nonlinearity and chro-
matic dispersion, and how these phenomena are modeled mathematically.
By making the slowly varying envelope approximation the Kerr nonlinear-
ity and chromatic dispersion were combined to form the well known Nonlinear
Schrödinger equation.

Using the Nonlinear Schrödinger equation as a base, we proceeded to work
through the derivation of the highly successful (fully temporal) Lugiato-Lefever
equation (LLE). The derivation involved combining the Nonlinear Schrödinger
equation with boundary conditions imposed by the resonator itself (leading to
an infinite-dimensional Ikeda map), applying the mean-field approximations
and neglecting high order terms.

We then went on to describe the various methods for solving the LLE. The
homogeneous stationary states (HSS) of the equation could be derived exactly,
and these were presented in various manners, such as input intensity and
cavity detuning scans. Both scans were shown to display a phenomena known
as optical bistability, which occurs when there are multiple possible states
available to the system for a given scanned parameter. It was further shown
how the presence of the nonlinearity in the system resulted in a resonance shift
in the cavity detuning.

Finally, in this chapter we began discussions on possible dynamical solu-
tions to the LLE, showing how it was possible for HSS to become unstable
to perturbations. This instability would occur unconditionally on the middle
branch of the bistability but could also occur else wear when inhomogeneous
perturbations were used - leading to pattern states. It was then shown how
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temporal cavity solitons could emerge within the system by locking to said
pattern states while ‘sitting’ on the lower branch of the HSS bistability.

With the fully temporal LLE introduced, in subsequent chapters we will
begin to introduce more complex models which use the LLE as their base
and show how these models can display incredibly interesting and useful be-
haviours such as the umbrella behaviour of this thesis: the spontaneous sym-
metry breaking of light.

23



CHAPTER 2. PASSIVE KERR RING RESONATORS

“There’s nothing more exciting than science. You get all the fun of sitting
still, being quiet, writing down numbers, paying attention.

Science has it all.”

– Seymour Skinner, The Simpsons
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CHAPTER 3. SPONTANEOUS SYMMETRY BREAKING

3.1 Chapter Introduction

Most people will have some general interpretation of what is meant by sym-
metry and, by extension, symmetry breaking. The first explanations to a child
on the subject usually involve some image printed on a piece of paper where
they are shown that upon placing a mirror along some certain line, or axis, the
image they see in the mirror’s reflection is the same as the unaltered picture.
This simple type of symmetry is known as ‘reflection’ (or ‘mirror’) symmetry.

More broadly defined, symmetry can be used to describe any common
characteristic shared between two defined objects which happens to be equal,
with spontaneous symmetry breaking describing the point in some parameter
space at which that equality suddenly ceases to hold.

Spontaneous symmetry breaking is fundamental to the description of many
physical phenomena; from the modelling of magnetism and superconductiv-
ity [52] and the generation of mass via the Higgs mechanism [53] in the case

Figure 3.1: Examples of a mirror symmetry and asymmetry. Left: Placing a
mirror down the central axis of a square, as illustrated by the grey line with
dashing, will result in the reflection seen in the mirror appearing to overlay the
non-reflected part of the square. Right: Placing a mirror again in the position
of the grey line with dashing will now result in the reflection looking different
to the unaltered image. Thus, in this case there is not mirror symmetry, but
asymmetry.
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of continuous symmetries, to many areas in optics which exhibit discrete sym-
metries; such as time-reversal [54,55] and parity-time symmetries [56] and the
interplay between two types of symmetry breaking [57].

Spontaneous symmetry breaking has been studied recently in photonic lat-
tices [58–60], and in spin-orbit interactions in metasurfaces [61], with chirality
symmetry breaking [62] studied in metamaterials [63], during crystalisation
processes [64], and in nonlinear microresonators [65]. The breaking of mirror
symmetry in coupled photonic-crystal nanolasers [66] and rotational symmetry
breaking in photonic spin Hall effect in dielectric metasurfaces [67] have also re-
cently been studied. More generally, symmetry breaking has been observed in
many other nonlinear systems such as in symmetric plasmonic oligomers [68],
Aharonov-Bohm cages [69], double-well structures [70], and photometamate-
rials [71].

This chapter will describe a type of spontaneous symmetry breaking which
occurs between coupled light components circulating ring resonators - a sym-
metry breaking which is highly applicable in communications, meteorology
and integrated photonic circuits.

3.1.1 Coupled Equations

In the previous chapter it was described how a single light field component cir-
culating a ring resonator may have its envelope described by a LLE, but what
if multiple components circulate simultaneously? How do you model their
interactions with each other, and does this affect the possible solutions and
dynamics which are possible? This subsection will go into detail on the theo-
retical modelling of two situations in ring resonators: where a linearly polarised
component is split into its left- and right-circularly-polarised components, and
where two components circulate simultaneously counter-propagating with re-
spect to one another.

Left- and Right-circularly-polarised Components

A linearly polarised field can be split into two components, one with its polar-
isation rotating in a direction to the right and the other with its polarisation
rotating to the left, see Fig. 3.2. This is the first situation that we will intro-
duce.

J. B. Geddes et al. derive in Ref. [33] what can be described as coupled
LLE(s), which take into account the polarisation of a field circulating within a
ring resonator. Whereas in the case of the single LLE the third-order nonlinear
polarisation was given by P (3) = 3ε0χ

(3)
1111|E|2E, it is now given by
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Figure 3.2: A linearly polarised field can be split into its left- and right-
circularly-polarised components. This separation results in observing two,
co-propagating, field envelopes circulating the resonator simultaneously.

P(3) = 3ε0χ
(3)
1111

(
A (E •E∗)E +

B

2
(E •E)E∗

)
, (3.1)

with

A =
(
χ

(3)
1122 + χ

(3)
1212

)
/χ

(3)
1111, B = 2χ

(3)
1221/χ

(3)
1111 (3.2)

where χ(3) is the third order susceptibility tensor, with χ
(3)
nmlj being its elements.

Applying Eq. (3.1) to the purely temporal LLE gives:

∂E

∂t
= Ein −E− iθE− iη∂

2E

∂τ 2
+ i

(
A (E •E∗)E +

B

2
(E •E)E∗

)
(3.3)

where E = Exx̂ + Eyŷ.
Proceeding to follow the method of Geddes et al., a transformation to a

cirularly polarised basis defined by E± = 1√
2

(Ex ± iEy) is made on Eq.(3.3),
which sends it to its final form:

∂E±
∂t

= Ein − E± − iθE± − iη
∂2E±
∂τ 2

+ i
(
A|E±|2 + (A+B)|E∓|2

)
E± (3.4)
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where we assume that that input field is linearly polarised along the x-direction
such that Ein =

√
2Einx̂. There are many mathematical advantages of choos-

ing this basis for study, mostly owed to removal of the complex conjugate term
within the nonlinearity of Eq. (3.3). This ensures a simple method of calculat-
ing the homogeneous stationary states of the system and their stability, both
discussed momentarily.

Eq. (3.4) should be readily identifiable as being of the same form as two
standard LLEs, up to the inclusion of the second field within the nonlinearity.
The constants A and (A+B) are known as the self- and cross-phase modulation
constants respectively and loosely they describe how strongly the two fields
interact with each other. The exact values that these constants can take and
a more in-depth explanation of their physical meaning will be left to Chapter
5 to describe.

Counter-propagating Fields

Turning our attention to the second situation for study; in the previous setup
there is one input beam which enters the resonator in a set direction and
proceeds to circulate, again, in one set direction. If two input beams are used
however, two fields counter-propagating within the resonator can be easily
achieved – one circulating in a ‘forward’ direction and one in a ‘backwards’
direction, see Fig. 3.3.

This system was first studied theoretically in the 1980s by A. E. Kaplan,
P. Meystre and others [14, 32, 72]. Here they modelled the total field at some
position z within the resonator as E(z) = E+(z)eikz + E−(z)e−ikz where E±
are the envelopes of the fields circulating in the clockwise or anticlockwise
directions respectively. Similar to the polarisation model, this additional field
has an effect on the nonlinearity which becomes dependent upon the direction
being observed. The nonlinear terms P (3) for each field respectively are given
by

P (3) = γ2(|E±|2 + 2|E∓|2). (3.5)

where γ2 describes the strength of the nonlinear susceptibility.
Utilising Eq. (3.5), steady state equations describing the envelope ampli-

tudes of the two counter-propagating fields are given in Ref. [14, 32], which
may be normalised to:

E± =
Ein

1 + i(|E±|2 + 2|E∓|2 − θ)
. (3.6)
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Figure 3.3: Counter-propagating fields circulating a ring resonator. Two iden-
tical input beams enter the resonator in opposing directions. Both beams
circulate simultaneously but in counter-propagating directions.

3.1.2 Homogeneous Stationary States

Returning momentarily to the polarisation system and subjecting the field
envelopes E± in Eq. (3.4) to the constraints of being both stationary and
homogeneous, and multiplying by respective complex conjugates yields the
steady state equation for the intensities of the envelopes of the coupled field
components:

P1,2 =
I

1 + (θ − AP1,2 − (A+B)P2,1)2
, (3.7)

which corresponds to two coupled Lorentzian equations, with P1,2 = |E±|2 and
I = E2

in denoting the field envelope intensities and input intensity respectively.
Similarly for Eq. (3.6), multiplying by complex conjugates one obtains

P1,2 =
I

1 + (θ − P1,2 − 2P2,1)2
, (3.8)

where now I = E2
in is the intensity of the two input pumps, one in each di-

rection. Note that although the inputs act in opposite directions, they are
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otherwise identical. This equation should be easily recognised as being in the
exact same mathematical form, up until the self- and cross-phase modulation
constants, as Eq. (3.7). This is an extremely important observation since it
means that although the polarisation system and the counter-propagating sys-
tem are physically very different, mathematically the homogeneous stationary
states (HSS) are described by the same type of equations. For the rest of this
section therefore we focus on the following general equation which should be
understood to be applicable to both separate systems:

P1,2 =
I

1 + (θ − AP1,2 −BP2,1)2
. (3.9)

where A and B are now new dummy variables representing the self- and cross-
phase modulation constants respectively.

3.2 Spontaneous Symmetry Breaking

With much of the preamble now complete, finally the first discussions of sym-
metry breaking within ring resonators can begin. Our focus for now remains
with the HSS equations, Eq. (3.9) and how these can be manipulated to show
symmetry breaking in various ways. The easiest way, of four that we discuss
here, to visualise symmetric and asymmetric solutions is by solving a variation
of Eq. (3.9) with one field intensity, P2, plotted against the other, P1.

Method 1: A Simple Bubble
Since Eq. (3.9) can be expressed as

I =
[
1 + (θ − AP1 −BP2)2

]
P1

=
[
1 + (θ − AP2 −BP1)2

]
P2,

(3.10)

one can solve these equations simultaneously, by eliminating I to obtain:

[
1 + (θ − AP1 −BP2)2

]
P1 =

[
1 + (θ − AP2 −BP1)2

]
P2, (3.11)

which, for A = 1, B = 2 and θ = 2, is plotted in Fig. 3.4a.
These plots can be interpreted as a simultaneous mapping of the stationary

solutions of P1 and P2 for variations in the value of I and some constant
detuning value θ. They may be considered to be the simplest way of visualising
symmetric and asymmetric solutions since the solutions where P1 = P2, the
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symmetric solutions, form a very obvious diagonal line with the asymmetric
solutions forming an intercepting ellipse.

The points at which the asymmetric solutions occur indicate that a spon-
taneous symmetry breaking is possible, but whether this physically occurs, or
not, is down to the stability of the system - which is left to Section 3.3.

Method 2: “The Stingray”
While the above method generates an input intensity mapping, it is also

possible to obverse the circulating intensities’ variation with the other inde-
pendent input variable, the cavity detuning. These maps again utilise Eq.
(3.9), but now one proceeds to eliminate the cavity detuning. Rearranging
Eq. (3.9) one may obtain:

Figure 3.4: Spontaneous symmetry breaking of coupled powers P1 and P2.
(a), the solution sets of Eq. (3.11) for A = 1, B = 2 and θ = 2. Note the
symmetric solutions, where P1 = P2, form an infinite diagonal line, while the
asymmetric solutions form an ellipse which crosses this diagonal line in two
places, or bifurcation points (red crosses). (b), the solution sets of Eq. (3.13)
for A = 1, B = 2 and I = 3. Note the now finite diagonal line holding the
symmetric solutions and how the asymmetric solutions takes the form similar
to that of a stingray. The fins of the stingray shape imply a bistability is
possible within the asymmetric curve itself.
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θ = +AP1,2 +BP2,1 ±

√
I

P1,2

− 1

= AP2,1 +BP1,2 ±

√
I

P2,1

− 1.

(3.12)

Which can then be solved for θ:

AP1,2 +BP2,1 ±

√
I

P1,2

− 1 = AP2,1 +BP1,2 ±

√
I

P2,1

− 1 (3.13)

A plot of this equation, for A = 1, B = 2 and I = 3, can be seen in Fig.
3.4b. The symmetric solutions can be seen as a finite diagonal line while, for
intensities above a threshold required for symmetry breaking, the asymmetric
bubble forms a warped ellipse. Interesting above a second threshold the bubble
bends back on itself, showing a bistability, to form a shape similar to a stingray.

Method 3: True Intensity and Detuning Scans
While the plots produced under methods 1 and 2 can be described as maps

showing the effects of varying the input intensity and cavity detuning respec-
tively, to obtain scans of these variables closer to experiments it is required
to plot the independent variable along the horizontal axis, with the stationary
states of the circulating field powers along the vertical axis. To do this requires
much more complex equations than those given above, but it also highlights
that the simplicity of the symmetry breakings shown in Fig. 3.4(a,b) hide
many of the interesting results underlying within the system.

In order to plot either the input intensity or cavity detuning along the x-
axis the objective is to once again eliminate one of the variables from Eq. (3.9),
but rather than choosing one of the independent variables, the elimination of
a dependent variable is sought, P1 or P2.

Taking one equation of Eq. (3.9) and rearranging to make P1 or P2 the
subject yields:

P1,2 =
AP2,1 − θ ±

√
I

P2,1
− 1

−B
, (3.14)

which in turn can be substituted into the remaining equation of Eq. (3.9),
giving:
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Figure 3.5: Intensity scans for low and high values of the cavity detuning. (a)
for A = 1, B = 2 and θ = 1.7 – with this sub-threshold detuning neither the
bistability of the symmetric solution line, or asymmetric solutions are possible,
there is no spontaneous symmetry breaking. (b) for A = 1, B = 2 and θ = 2 we
are now above the threshold for symmetry breaking, with asymmetric solutions
shown in red. (c) for A = 1, B = 2 and θ = 7. For this well-above-threshold
value of the input intensity one can see that the asymmetric solution bubble
folds in on itself, creating a bistability in the asymmetric powers.

AP1,2 − θ ±
√

I
P1,2
− 1

−B
=

I

1 +

[
θ − A

(
AP1,2−θ±

√
I

P1,2
−1

−B

)
−BP1,2

]2 . (3.15)

This equation is then readily usable to produce the required scans of either
the cavity detuning or the input intensity.

The solution set of Eq. (3.15) for A = 1 and B = 2 is shown in Fig. 3.5
with the circulating intensities, P1,2 plotted against the input intensity, I, for
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Figure 3.6: Detuning scans for various values of the input intensity. (a): A = 1,
B = 2 and I = 1.5. This input intensity is below the threshold for asymmetric
solutions, but there is a bistability on the symmetric solution line. (b): A = 1,
B = 2 and I = 2. This input is above the threshold for both symmetric
solution bistability and symmetry breaking, with asymmetric solutions shown
in red. (c): A = 1, B = 2 and I = 6. For this well-above-threshold value of
input intensity one can see that the asymmetric solution bubble (red) folds in
on itself, creating a bistability in the symmetry broken powers.

various values of the cavity detuning. This reveals the true complexity, and
interest, of the system described by Eq. (3.9). The symmetric solution line
now takes on, what often appears to be, an elongated ‘S’ shape, Fig. 3.5 (a),
while the asymmetric ‘bubble’ forms a slightly warped ellipse, Fig. 3.5 (b). As
with the emergence of asymmetric solutions in Fig. 3.4 (a), the asymmetric
solution bubble, and s-shaped bistability are reliant on the cavity detuning
being above some limit value, i.e. note no asymmetry for Fig. 3.5 (a). Above
a second detuning limit the asymmetric bubble can fold in on itself, creating a
further region of bistability only this time in the asymmetric solution set, see
Fig.3.5(c).
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Equation (3.15) is also usable to yield a scan of the cavity detuning, where
the coupled powers are now plotted against the detuning along the x-axis.
Figure 3.6 shows Eq. (3.15) for a variety of input intensities. Panel (a) shows
a scan for an input intensity which is below the threshold for symmetry break-
ing, and shows only the symmetric tilted Lorentzian solution line. The scan for
an increased input intensity, this time one above the threshold for symmetry
breaking, is shown in panel (b). One should be able to note the asymmetric
bubble which appears on the upper path of the symmetric solution line. In-
creasing the input intensity further causes the folding-over of the bubble to
occur once more, showing a bistability of the asymmetric solutions.

3.3 Time-dependent Model and its Stability

Analysis

Returning focus momentarily to only the system of two counter-propagating
fields, in Ref. [73] we described the time-dependent coupled equations which
return the coupled Lorentzians of Eq.(3.6):

∂E±
∂t

= Ein −
[
1 + i(|E±|2 + 2|E∓|2 − θ)

]
E±, (3.16)

where the introduced time variable t has been normalised by the photon life-
time in the cavity.

Small perturbations on the field envelopes, E±, were then used to assess
the stability of the system. By defining E+ = E+S + ε1 and E− = E−S + ε2,
where ε1,2 were the small perturbations on the steady-state solutions, E±S, Eq.
(3.16) becomes:

∂E±
∂t

= Ein −
[
1 + i(|E±S + ε1,2|2 + 2|E∓S + ε2,1|2 − θ)

]
(E±S + ε1,2) . (3.17)

The steady state solutions, E±S, occur when ∂E±/∂t = 0 hence Eq. (3.16)
may be used to find the following expression of Ein

Ein =
[
1 + i(|E±S|2 + 2|E∓S|2 − θ)

]
E±S. (3.18)

Inserting Eq. (3.18) into Eq. (3.17), expanding the resultant and simplifying
then yields the following set of coupled equations

∂E±
∂t

=
∂ε1,2
∂t

= −[1 + i(2|E±S|2 + 2|E∓S|2 − θ)]ε1,2

− iE2
±Sε

∗
1,2 − 2iE±SE∓Sε

∗
2,1 − 2iE±SE

∗
∓Sε2,1.

(3.19)
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Without loss of generality, the phase of the input Ein was adjusted such
that E±S were real which then allows us to split ε1,2 into real and complex
components, x1,2 and y1,2 respectively, such that ε1,2 = x1,2 + iy1,2

∂(x1,2 + iy1,2)

∂t
= −[1 + i(2E2

±S + 2E2
∓S − θ)](x1,2 + iy1,2)− iE2

±S(x1,2 − iy1,2)

− 2iE±SE∓S(x2,1 − iy2,1)− 2iE±SE
∗
∓S(x2,1 + iy2,1).

(3.20)

which, expanded and simplified, is equivalent to the following:

∂

∂t


x1

y1

x2

y2

 =


−1 A1 0 0
−B1 −1 −C 0

0 0 −1 A2

−C 0 −B2 −1



x1

y1

x2

y2

 = J


x1

y1

x2

y2

 (3.21)

with

A1,2 = E2
±S + 2E2

∓S − θ,
B1,2 = 3E2

±S + 2E2
∓S − θ,

C = 4E+SE−S.

(3.22)

The eigenvalues of J, calculated by solving det|J− λ1| = 0, where 1 is the
identity matrix, are given by:

λ1→4 = −1±
√
−A1B1 − A2B2 ± S

2
, (3.23)

with

S =

√
(A1B1 − A2B2)2 + 4A1A2C2, (3.24)

where the ± signs are independent, giving four distinct eigenvalues, λ1→4.
These eigenvalues then define the stability of the system state. If ALL the
eigenvalues have a negative real part then the system will decay to the sta-
tionary state; the state is thus defined as ‘stable’. If any of the eigenvalues
have a positive real part then the system will immediately evolve away from the
stationary state; the state is defined as being ‘unstable’. If there is a complex
component to the eigenvalue then the system is susceptible to either growing
or decaying oscillations, depending on the value of the real component, during
its evolution. A summary of how the eigenvalues of a linear stability analysis
give insight into the response of a system to small perturbations is given in
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Eigenvalue Condition Stability Implication

All real components are negative Stable
At least one real component is positive Unstable
At least one real component is positive and this
eigenvalue has an imaginary component

Unstable to oscilla-
tions

Table 3.1: Stability conditions based upon the eigenvalues of a linear stability
analysis. The onset of instability to oscillations is known as a Hopf bifurcation.

Figure 3.7: (a) Tilted resonances for various pump powers, showing the
symmetry-broken region. Dark solid curves indicate stable solutions, faint
curves show unstable solutions, and dashed curves correspond to oscillatory be-
haviour. (b) Amplitude of the difference in the coupled powers. The grey area
corresponds to time-oscillating solutions (white denotes symmetric states). (c)
Isolated asymmetric solution curve for I = 3.8, from (a). (d) Real part of the
stability eigenvalue, λ, of (c). (e) Imaginary part of the stability eigenvalue
of (c). Note that there always exists at least one eigenvalue with non-zero
imaginary part, implying strong susceptibility to oscillations.

39



CHAPTER 3. SPONTANEOUS SYMMETRY BREAKING

table 3.1. Figure 3.7 shows the eigenvalues, λ1→4, and conditions being used
to calculate the local stability of Eq. (3.6) for detuning scans at various input
intensities.

The first result here worthy of discussion is the verification of a claim made
in Ref. [32]; that part of the symmetric solution line which exists between the
symmetry breaking and restoring bifurcation points is unstable. This is a very
important result since it means that in an imperfect version of the system, one
which contains random noise, where possible the two fields will evolve over
time away from the symmetric solution line towards the asymmetric solution
line - one field will become dominant while the second field is suppressed,
explaining the some experimental observations of Refs [35, 37].

Figure 3.7(a) shows the detuning scans of Eq. (3.9) for A = 1, B = 2
and for various input intensities. It can be seen that there exists a critical
value of the input pump for the system to be susceptible to oscillations, this
value was calculated to be I = 2.87. Panel (b) shows the difference between
the two asymmetric fields and panels (c-e) show the eigenvalue analysis for a
selected intensity of I = 3.8. (c) shows the isolated asymmetric bubble with
panels (d) and (e) showing the calculated eigenvalues of these asymmetric
coupled powers. Recalling table 3.1, for the majority of the values shown for
the normalised cavity detuning the real part of the eigenvalues is negative, i.e
Re (λ1→4) < 0, implying that the asymmetric solutions are stable. However,
this is not true for all detuning values. Note in Fig. 3.7(d) that between
detuning values of approx. 4.5 and 10 the real part of two of the eigenvalues is
greater than 0, implying that even the asymmetric solutions in this region are
unstable. There also exist imaginary components to these eigenvalues implying
the solutions are unstable to growing oscillations. These oscillations will be
studied in subsequent chapters.
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3.4 Chapter Summary

In this chapter the coupled Lorentzian equations, Eq. (3.9), which form the
homogeneous stationary states of two different nonlinear optical systems were
introduced. Both systems at their core involve the propagation of light in Kerr
ring resonators, but while in the first system one input beam is used to induce
two circularly polarised co-propagating light components, in the second two
input beams are used, which in turn leads to two counter-propagating light
fields circulating within the resonator.

It was shown how the two coupled Lorentzian equations can exhibit a
spontaneous symmetry breaking, and restoration, in the intensities of the two
circulating components for a multitude of variable scans provided one is op-
erating in a specific region of the input pump and cavity detuning parameter
space.

Restoring a temporal derivative to the Lorentzian system, Eq. (3.16), a
stability analysis of the system was completed and this confirmed that the
asymmetric solutions which become possible following the system symmetry
breaking are dynamically favoured over the unstable symmetric solution. The
stability analysis also revealed that within some regions of the parameter space
even the asymmetric solutions can also become unstable, unstable to growing
oscillations.
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“Absorb what is useful, discard what is useless
and add what is specifically your own”

– Bruce Lee
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4.1 Introduction

The Logistic map [74], Eq.(4.1), is often used as an example of how simple
nonlinear dynamical equations can lead to very complex behaviours. This
mapping is mathematically expressed by:

xn+1 = rxn (1− xn) , (4.1)

where 0 < xn < 1, which originally described the ratio of some existing popula-
tion to the maximum possible population, and, to ensure nontrivial solutions,
1 < r < 4. By seeking the fixed points of Eq.(4.1), where xn+1 = xn, it is
possible to build up a diagram of the successive iterations in finding these fixed
points against the value of r, Fig. 4.1. It can be seen on such a diagram how
initially the employed algorithm successfully finds a fixed point however, at
r = 3, successive iterations begin to alternate between two non-fixed points,
further increases of r lead to successive iterations alternating between now 4
non-fixed points. The number of points which successive iterations cyclically
alternate between increases further with r leading, eventually, to resemble
chaos. The values of r at which the number of alternating points change are
know as bifurcations, r = 3 for example is known as a bifurcation point, and
hence Fig. 4.1 is often referred to as a bifurcation diagram.

Figure 4.1: Bifurcation diagram of the late iterations of seeking the fixed
points, where xn+1 = xn, for Eq.(4.1) against the value of r. Image taken from
the public domain [75]
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The previous chapter’s prediction, that the system of coupled equations
(3.16) describing the counter-propagating setup was locally susceptible to os-
cillations, prompted the dynamics of the system to be explored in more depth.
This study was spurred on since oscillations due to the Kerr nonlinearity have
been previously noted to occur in other systems of microcavities, including
those with multiple coupled resonators [76–78], in a single resonator due to:
linear coupling which is achieved between the two cavity modes via Rayleigh
backscattering [79], thermal instabilities [80] and external forcing [81]. In
this chapter we specifically report on how the growth of the predicted local
oscillations is eventually suppressed and how the dynamics of the resulting os-
cillations can become extremely complex and may even lead to apparent chaos
and the interesting dynamic of self-switching.

In addition to passive systems, the results of this chapter may be of conse-
quence for the gain dynamics of ring lasers [82,83], and for systems that host
Kerr solitons [84–88] especially those with counterpropagating modes [89].

From a practical perspective, self-switching periodicity of the counterprop-
agating modes can be applied in the controlled generation of twin waveforms
and signal encoding, while the chaotic states that we imminently report could
be potentially be employed in the generation of chaotic-cryptographic algo-
rithms [90] as well as chaos-induced stochastic resonance [91].

In photonics, noisy [92] and chaotic [93] switching between two polariza-
tion states, as well as in-phase and antiphase frequency combs [94], have been
described in semiconductor lasers. Recently, similar effects have also been
described in the simulation of driven dissipative dimers of Bose-Einstein con-
densates [95].

4.2 Simple Temporal Evolutions and Oscilla-

tions

As mentioned in Chapter 3, the onset of the system of Eq. (3.16) becoming
susceptible to growing oscillations (a Holf bifurcation) is described by the set
of eigenvalues, λ1→4, Eq. (3.23), where for at least one eigenvalue, λ, R(λ) > 0
and Im(λ) 6= 0. However, this eigenvalue analysis only describes the local
susceptibility of the state to said oscillations. To obtain the full picture of the
resulting temporal dynamics one must complete direct numerical integrations
of Eq. (3.16). In this instance this was completed using the Runge-Kutta
method of integration, as outlined in the appendix on numerical methods.

Early results of the numerical integrations of the system of Eq. (3.16),
with A = 1, B = 2, I = 3.8 and initial conditions E+ = 2.0000 + 0i and
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E− = 2.0001 + 0i, are displayed in Fig. 4.2. The imposed 0.0001 difference
in the initial conditions and programmed random noise at each iteration is
to create a very small imbalance in the two fields and avoid the situation of
Buridan’s principle [96]. This figure is complementary to the depiction of the
eigenvalue analysis for this system in Fig. 3.7.

The first two panels of Fig. 4.2, (a)-(b), occur with θ = 1.5, where for all
eigenvalues of the stationary symmetric solution R(λ) < 0, i.e the condition
for it being stable is satisfied, and further the detuning value is below the√

3 requirement for symmetry breaking to occur. In (a), one can see how the
system therefore spirals away from the initial conditions onto the attractor
of the stable stationary solution. This can be seen also in (b) as the system
relaxes to a stable, symmetric, intensity.

In panels (c)-(d) θ = 5. This higher detuning value now allows for at least
one eigenvalue of the symmetric stationary state to have a real component
greater than 0, i.e the state is unstable. This detuning value however is also
above the threshold for symmetry breaking, see Fig. 3.7 (c). Fig. 4.2 (c)
shows how the system once again evolves away from the initial conditions to
the initially attractive symmetric solution, however, as is expected since this
solution is unstable, upon the system getting suitably close to the symmetric
attractor, the system rapidly jumps away, before spiraling in on the two stable
attractors of the asymmetric stationary state. This can also be seen in (d)
where the two fields’ intensities initially evolve together before separating into
two unequal constant intensities.

Finally, in panels (e)-(f), there is an example of how the system evolves
in the parameter space where both the symmetric and asymmetric stationary
states are unstable. Here θ = 5.5, and one can observe in (e) how the system
again spirals towards the unstable symmetric attractor before jumping away, as
before, to spiral towards the asymmetric attractors, however this time, rather
than crashing in on the asymmetric stationary state, as in (c), the system
now settles to periodically orbit around the two asymmetric states, leading
to a sinusoidal variation in the two circulating intensities (f), with a single
characteristic frequency.

It may be odd to note that the system’s oscillations in Fig. 4.2(e,f) eventu-
ally stop growing and become regular. The prediction of growing oscillations
made by the linear stability analysis only holds true for a small area surround-
ing the stationary solution, when the oscillations become so large that they
fall out of this region of validity other effects can occur. I.e. the system can
become saturated, imposing a limit on the magnitude of the oscillations.
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Figure 4.2: Temporal evolutions of E+, in red, and E−, in blue, (with brown
implying an overlap) using Eq.(3.16), from initial conditions of E+ = (2.000, 0)
and E− = (2.0001, 0) with A = 1, B = 2, I = 3.8 and a time step of dt = 0.001.
LHS panels show the temporal evolutions through the complex phase space,
while the RHS panels show how the coupled field intensities vary over the same
evolution. For (a,b) θ = 1.5, for (c,d) θ = 5, and for (e,f) θ = 5.5.
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4.3 Periodic Doubling Bifurcations, Cascades,

Chaos and Crises

When analysing the region of Fig. 3.7 which is susceptible to growing oscilla-
tions, it was noted that the system would not always settle on some regular
temporal oscillation. Instead at times the system would appear to evolve
chaotically. This prompted an investigation into the types of oscillation which
may be possible for Eq. (3.16).

By the numerical integration of Eq. (3.16) for many iterations it is possi-
ble to begin to build up a picture of how the oscillations themselves evolve
over time, i.e. whether or not they establish a stable singular character-
istic frequency of oscillation or if they in fact have some other second, or
many, frequency components. Tracking the circulating field intensities P1,2

and recording their local maxima, where the first derivative is zero and the
second derivative is negative, it was possible to evaluate a Poincaré section
for a variation in the cavity detuning. Figure 4.3, shows an example of this,
with forward scans of detuning changing θ from 5 to 11 at I = 3.4 for (a)
and I = 3.8 for (b), and a reverse scan: θ from 11 to 5 at I = 3.4 for (a)
and I = 3.8 for (c). Note that this figure does not show the early iterations,
only the late, i.e. once the system has been given suitable time to evolve and
potentially settle.

The points on Fig. 4.3 begin (end) with Hopf (inverse-)bifurcations which
occur when the real part of one or more of the eigenvalues, Eq. (3.23), become
positive (negative) and rather than the system settling on focused points it
instead follows some closed curve [97, 98]. The Hopf bifurcation indicates
the start of oscillations, initially with one local maxima which is repeatedly
plotted, but, upon suitably increasing the detuning, eventually the system may
then also be susceptible to a period doubling bifurcation [99] - leading to a
second local maxima being present on the Poincaré section, as seen in Fig. 4.3
(a).

Increasing the input pump power can lead to increases in the complexity
of the Poincaré sections. Below some input limit the period doubling bifurca-
tion does not occur for any value of the cavity detuning, whereas increasing it
can lead to the simple situation of (a) or increasing it further, to many subse-
quent (or a cascade of) period doubling bifurcations, as seen in the column of
points marked for some detunings in Fig. 4.3 (b,c). An example of a complex
oscillation in this region is given in Fig. 4.4.

This sequence of many period doubling bifurcations can lead to the system
exhibiting deterministic chaos, collision of Feigenbaum cascades [100], and
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Figure 4.3: Detuning scans of the oscillatory regimes of Eq.(3.16) between two
Hopf bifurcations. The field intensity is sampled at its maximum during the
oscillation. A single value of P1 for a given θ means that only one (maximal)
value of P1 intersects the Poincaré section during its trajectory with a single
periodicity. In contrast, two values of P1 for a specified θ means that the
maximum of P1 is cycling between two distinct values with an overall period
that has doubled. Further period-doublings are observed for larger values of
θ, which eventually transition into chaos. The arrows indicate the direction
of scanning the detuning. (a) Scan for I = 3.4 (showing no dependence on
direction). Forward (b) and backward (c) scans for I = 3.8.
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Figure 4.4: Complex temporal evolutions of |E+|2, red, and |E−|2, blue, using
Eq. (3.16) with A = 1, B = 2, I = 3.8 and θ = 7. Note the more complex
nature of the intensity oscillation, when in comparison with Fig. 4.2, with the
apparently random fluctuations in the heights of the local peak intensities of
the two circulating fields, further note the small overlap of the fields’ intensities.

crises. It is interesting to note that a bistability is also observed between these
dynamical regimes, as shown in Fig. 4.3(b,c), i.e. when the direction of the
detuning scan is reversed, leading to an alternate Poincaré section.

4.4 Self-switching Dynamics

As can be seen in the relatively complex oscillations of Fig. 4.4, given an
appropriate set of input conditions the size, or range, of the oscillatory paths
which the two fields take can partially overlap. The obvious question for
investigation therefore was whether the system could be fed input conditions
suitable enough to force the range of the oscillatory paths to overlap entirely,
and to see if this could produce yet further complex or novel behaviours.

Figure 4.5 is a similar Poincaré section to Fig. 4.3 only now both the local
maxima and minima of the two circulating fields are plotted in red. The full
range of the oscillations can also be seen, shaded in semi-transparent blue
and yellow. The semi-transparent shading has the nice effect of showing a
green colour where the two intensity oscillations begin to overlap. To show
the relationship, the Poincaré and shading are overlaid atop the HSS. With a
higher input intensity, I = 4.0, it can easily be seen in this figure that one may
classify three distinct regions of the intensity oscillations. In region (1) the two
circulating fields have intensities which oscillate with no overlap, such as with
Fig. 4.2 (e,f), contrary to region (2) where there is partial overlap, such as
Fig. 4.4, but the dominant and submissive fields maintain their respective
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roles, and finally there is a third region, where the overlap of the two fields
becomes the entire range of the intensity variation, and the dominant role is
often exchanged between the two fields.

An alternative method of observing this region (3), where there is complete
overlap, is by plotting the averages of the two fields over an extended period of
time. Figure 4.6 shows the same simulation as Fig. 4.5 but now, in green and
red respectively, the mean field intensity is plotted. Outside of the highlighted
yellow region lies regions (1,2) of Fig. 4.5, and one observes that although the
two fields oscillate, and even partially overlap, one of the two fields can always
be described as being dominant. Within the yellow highlighted region however
the averages intensities of the two fields over a long time scale become equal
and now neither field can be singled out as being consistently dominant over
the other, this is an example of a symmetry restoration crisis [101].

Figure 4.6: Similar to Fig. 4.5, only now the average intensities of the field’s
oscillations are shown in green and red. The highlighted region indicates (3) of
Fig. 4.5, where one can observe the symmetry restoration of the average field
intensities when observed over long time scales. Black and blue line are the
asymmetric and symmetric HSS solutions respectively, shown for comparison.
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It is also interesting to note in Fig. 4.5, and Fig. 4.3 for that matter,
that, similar to the logistic map of Fig. 4.1, there are very thin regions within
the chaotic columns where spontaneously a very thin gap appears with only a
couple of dots, implying a switch from complex to relatively simple dynamics.
Shown in Fig. 4.7, this spontaneous emergence of order from apparent chaos
is caused by the momentary merging of two attractors.

Similar to Fig. 4.2, Fig. 4.7 shows the evolutionary paths carved out by
the two circulating fields. The panels on the left hand side show the movement
through the complex plane whereas those in the middle show the intensity evo-
lutions. The right column shows the power spectra. In panels (a-c) one initially
observes two separate attractors for θ = 6 with no overlap of the oscillatory
intensities. These panels have reletivly simple dynamics with relatively few
(asymmetric) frequency components. Increasing the detuning to θ = 6.5, pan-
els (d-f), the two field’s phase space paths begin to overlap with each other and
this interactions begins to cause complex and non-repeating dynamics, lead-
ing to some variation in the circulating intensities and the emergence of many
small frequency components in the spectra. Panels (g-i) show the evolutions
for θ = 7 which causes a much closer overlap of the two evolution paths, note
that the overlap is still imperfect. This can lead to very complex dynamics
and is indicated by a column of points on the various Poincaré sections and is
also shown by the large number of significant frequency components. Finally,
in panels (j-l) we show the case when θ = 8.8. One can now see that the two
attractors have completely merged leading to the two fields taking the exact
same paths, but out of phase to one another, characterised by the periodic
switching of the dominant and suppressed field roles. This periodic switching
thus restores on average over a short time scale the symmetry of the system
and one can see that this leads to a very well structured, and symmetric,
spectra.

The existence of these switching dynamics was experimentally observed by
collaborators in Ref. [102], reproduced in Fig. 4.8. Although not perfect peri-
odic switching, due to experimental difficulties in obtaining perfectly balanced
input conditions, Fig. 4.8 shows close replication of the periodic interchange of
the dominant and suppressed fields. In the next chapter methods of increasing
the robustness of the perfectly periodic interchange are discussed which should
alleviate some of these experimental difficulties for future study.
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Figure 4.7: Temporal evolutions and spectra of the circulating fields for A = 1, B = 2,
I = 3.8 and θ = 6, 6.5, 7, 8.8 for panels (a-c), (d-f), (g-i) and (j-l) respectively. The left
column shows the evolutions of E± in complex phase space. The middle column of panels
shows the intensities |E±|2 over a late time period, and finally the right column shows the
frequency components of the intensity evolutions of the two fields |E±|2. It can be seen how
the system initially orbits two separate attractors yet, as the cavity detuning is increased
through the rows, the two attractors begin to increasingly overlap, furthering the complexity
of the oscillations, before overlapping completely, leading to the ordered periodic switching of
the two fields. For all panels the red line refers to the E+ field and the blue refers to E− field.
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Figure 4.8: Experimental verification of the possibility for near perfect periodic
switching. The evolution paths are not perfect mirrors of each other, note
differing maxima, due to experimental imbalances. Details on the experimental
conditions can be found in Ref. [102]. Results and figure supplied by L. Del
Bino. Red and blue lines refer each to one of the two modelled fields E±.

4.5 Chapter Summary

In this chapter we investigated the non-local temporal dynamics of the counter-
propagating system, where A = 1 and B = 2, for a variety of cavity detunings.
It was shown, in agreement with the eigenvalue analysis of the previous chap-
ter, that the system is susceptible to leaving unstable symmetric states in the
presence of noise in favour of the stable asymmetric states and that when
the asymmetric states themselves are unstable, to growing oscillations. The
resultant oscillations at low detunings and input intensities were found to even-
tually cease their growth and settle to a stable path with consistent maximum
amplitudes.

In the cases where higher intensities and detunings were analysed, the
dynamics could become much more complex - with single (or multiple) period-
doubling bifurcations occurring, causing the system’s oscillations to repeatedly
alternate between two (or more) different maximums. Many sequential period-
doubling bifurcations could also occur, which led to very complex and even
apparent chaotic oscillations. Within this chaos small regions of order were
found, leading to the periodic switching of the dominant and suppressed field
roles.

This sporadic behaviour was found to be caused by a global bifurcation
brought about by the the merging of two chaotic attractors. This merging
partially restored symmetry to the system with the average field intensities on
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relatively short time scales becoming equal. Experimental results confirmed
the existence of this phenomena, even in the presence of imbalanced input
conditions, implying that the general switching dynamic is quite robust, this
said, in the next chapter it will be shown that this robustness can be increased
further.
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“Take nothing on its looks; take everything on evidence.
There’s no better rule.”

– Charles Dickens, Great Expectations
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CHAPTER 5. THE EFFECTS OF SELF- AND CROSS-PHASE
MODULATION

5.1 Introduction

Self- and Cross-phase modulation (SPM and XPM) are important nonlinear
effects which induce a phase shift in light traveling through a medium. The
effects are caused by the optical Kerr effect which makes the refractive index of
a medium become light-intensity dependent. SPM and XPM are not only very
important in optical telecommunications [103] but also feature prominently in
the coupled system Eq. (3.8).

5.1.1 What is Self- and Cross-phase Modulation?

Self-phase Modulation (SPM) amounts to a nonlinear phase delay of a field
which is brought about by its own intensity and was first observed by Shimizu
in 1967 [104, 105]. It is a consequence of the optical Kerr effect which, recall,
occurs when high intensity light travels in an appropriate media and causes a
change in the refractive index, ∆n = n2I, where I is the light intensity and
n2 is the nonlinear index of the medium.

In systems where the light field which is propagating is non-homogeneous,
for example with a ‘pulse’ of light, the temporal structure of the varying in-
tensity leads to a temporal structure of the refractive index, in turn changing
the propagation velocity of the light field and hence also a phase change inside
the pulse.

SPM is present due to effects of the field in question itself, but what if there
exists a second field within the system, such as with Eq. (3.8)? Surely this
second field will induce a similar effect on the refractive index and, in turn,
this should also have an effect on the initial field. This is indeed exactly what
happens in refractive media [106], but the strength of this XPM is, more often
than not, different to that of the SPM. The total phase change is therefore not
only due to the primary field being observed, but also due to the other fields
in the system.

In the previous chapters the constants A and B which appeared in the
coupled Lorentzian Equations, restated below, were left unexplained. These
constants are in fact the SPM and XPM coefficients, with the particular values
that these constants can take very much depending on the physical system,
counter-propagating or circularly-polarised, which is being studied. We begin
the chapter by describing the possible values of the SPM and XPM within
each of our systems and then go on to describe the effects that this has on the
symmetry breaking and other phenomena.
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5.2 Self- and Cross-phase Modulation Constant

Values

Restating Eq. (3.9), the HSS for the field intensities of both studied systems
are given by:

P1,2 =
I

1 + (θ − AP1,2 −BP2,1)2
, (5.1)

The values that the constants A and B can take in the system of Eq. (5.1)
very much depends on the physical system being studied.

5.2.1 Counter-propagating fields

In the previous chapter the equations describing a ring resonator with two
counter-propagating fields were always given with the SPM and XPM: A = 1
and B = 2 respectively, as is stated in [14, 32]. However it should be noted
that this is only true for specific types of resonators. The general form of the
equation is given with:

A = 1 , B = 1 + h , (5.2)

with 0 ≤ h ≤ 1. Here, the XPM is due to the standing-wave interference of
the two fields resulting in an index grating within the medium [107–110].

In a highly diffusive Kerr medium, such as with some liquids or gases, this
index grating can quickly be ‘washed out’, and so, its XPM effect is relatively
weak, h → 0. In a medium with little to no diffusive effects, leading to a
robust index grating, the XPM is maximised with h → 1. Under this effect
therefore the XPM can range from 1 ≤ B ≤ 2. Gases and liquids could be
used, for example, in hollow fibres [111] to create appropriate ring resonators
showing these differing XPM strengths.

Two counter-propagating fields A B
Solids (without diffusion) 1 2
General diffusive effects 1 1 + h,

(0 < h ≤ 1)
Gases (high rates of diffusion) 1 → 1

Table 5.1: Table of values that the SPM and XPM coefficients, A and B
respectively, may take in Eq. (5.1) for the counter-propagation system.
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5.2.2 Orthogonally polarised fields

Whilst there is a spectrum of values that the XPM can take in the “counter-
propagating” system, it is still limited to values from 1 ≤ B ≤ 2. In the
case of two co-propagating orthogonally polarised fields however, the values
which both the SPM and the XPM can take has much more variety, but once
again, these possible values are often dependent on the material making up
the resonator.

In this setup the SPM and XPM are related to the third order susceptibility
tensor, χ(3), by

A =
χ

(3)
1122 + χ

(3)
1212

χ
(3)
1111

, B =
χ

(3)
1122 + χ

(3)
1212 + 2χ

(3)
1221

χ
(3)
1111

(5.3)

(adapted for our A,B from Ref. [33]) with the constraint that, for CW pumps,
A+B = 2 for an isotropic medium with neglected dispersion [33].

The other cases are: a nonresonant electronic response, A = 2/3, B = 4/3;
liquids or molecular orientation, A = 1/4, B = 7/4; and electrostriction, A =
1, B = 1 [1].

Atomic vapours, deviating momentarily from Kerr media, are predicted
to show phenomena offering a wide range of possible magnitudes of A and
B [33, 112], experimentally shown in Ref. [113] . Again, these atomic vapours
could be used, for example, in hollow fibres [111] to create appropriate ring
resonators.

Modification of an effective χ(3) nonlinearity has been demonstrated in
periodically-poled lithium niobate (PPLN) [114,115] and bismuth borate [116];
cascaded quadratic nonlinearities have also been used to realise a negative
effective nonlinear coefficient in the context of self-phase modulation [117–119].
We also speculated in Ref [120] that it may be possible to generate B/A < 0
through appropriate material engineering - as considered, for example, in Ref.
[119]. In a side note to this section, self- and cross-phase modulation coeffcients
with opposite sign are used in spin-orbit-coupled Bose-Einstein condensates
(BEC) [121].
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Two copropagating polarisations A B
Isotropic media A+B = 2
Non-resonant electronic response 2/3 4/3
Liquids, or molecular orientation 1/4 7/4
Electrostriction 1 1
χ(2) media with effective χ(3) Wide range of values of B/A
Atomic vapours Wide range of values of B/A
Bose-Einstein condensates
Spin-orbit-coupled BEC Wide range of values of B/A

Table 5.2: Table of values that the SPM and XPM coefficients, A and B
respectively, may take in Eq. (5.1) with regards to the resonator medium
when applied to two co-propagating, circularly polarised, fields. Appropriate
engineering of other phenomena may allow for further values of SPM and XPM
coefficients.

5.3 Effects of SPM and XPM on Optical Bista-

bility and SSB Phenomena

5.3.1 Bistability of Symmetric Field Intensities

The purely symmetric set of HSSs to the coupled LLE/Lorentzian systems,
where |E+|2 = |E−|2, causes the system to degenerate to a single equation:

P1,2 =
I

1 + [θ − (A+B)P1,2]2
, (5.4)

or, in cubic polynomial form:

I = (1 + θ2)P1,2 − 2(A+B)θP 2
1,2 + (A+B)2P 3

1,2, (5.5)

As explained in Section 2.3.4, equations of this form are known to have the
potential to exhibit a bistability when changing the input pump, see Fig. 5.1.
Since Eq. (5.5) depends in key places on the self- and cross-phase modulation
constants, this potential bistability also depends on such constants.

The range of input pump intensities where the bistable region emerges can
be determined through finding the stationary points of Eq. (5.5), i.e where:

∂I

∂P1,2

= (1 + θ2)− 4(A+B)θP1,2 + 3(A+B)2P 2
1,2 = 0, (5.6)

which is solved by:
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P1,2 =
2θ ±

√
θ2 − 3

2(A+B)
, (5.7)

and substituting these values back into Eq. (5.5), yielding:

I =
−2(2θ ±

√
θ2 − 3)(−θ2 ± θ

√
θ2 − 3− 3)

27(A+B)
. (5.8)

These results are visualised in Fig. 5.1.
Equation (5.8) reveals useful insight on the bistable region. Firstly, with

absolutely no dependence on the strength of the self- and cross-phase modu-
lation within the system, the cavity detuning must always be greater than

√
3

for bistability to be possible, and secondly with the possibility of bistability
established through appropriate detuning, the value of (A + B) affects the
range of input intensity for which this bistability occurs.

Figure 5.1: An arbitrary example plot of Eq. (5.5). It should be used as a
point of reference for the equations (5.7) - (5.8), with (7±) indicating Eq. (5.7)
with ± signs respectively and similar for (8±) with Eq. (5.8).

5.3.2 Analysis of Symmetry-broken Solutions

We turn our attention now to the purely asymmetric solutions of Eq. (5.1),
specifically as to how they are affected by variations in the self- and cross-phase
modulation.
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We begin analysing the input intensity ‘scans’. To aid in a mathematical
analysis, we add symmetries to Eq. (5.1), which yields the bubble of Fig. 3.4
(a) Recall this equation:[

1 + (θ − AP1 −BP2)2
]
P1 =

[
1 + (θ − AP2 −BP1)2

]
P2. (5.9)

To observe the purely asymmetric solutions to this equation requires some
further manipulation. The purely asymmetric set of solutions can be found
by taking the full Eq. (5.9) and dividing it by the symmetric counterpart
equation, Eq. (5.9) with the enforcement that P1 = P2. It is not advisable
to complete this simplification by hand, but such a simplification yields an
equation mapping only the asymmetric solutions and is given by:

[θ − A(P1 + P2)]2 − P1P2(B − A)2 = −1, (5.10)

With the set of asymmetric solutions now reduced to this much simpler form,
further manipulations may be completed with relative ease to obtain the key
points of the asymmetric solutions, notably the opening and closing of the
solution set (the symmetry breaking and restoring bifurcations) and the point
of maximum difference between circulating fields.

Symmetry-breaking Bifurcation and Inverse-bifurcation Points

The point at which asymmetric solutions spontaneously begin to (not) exist is
known as the symmetry-breaking (inverse-) bifurcation point, and for visual
aid, these points have been denoted a and b respectively on Fig. 5.2. This
is where the use of the additional symmetry of Eq. (5.10) and the earlier
removal of nearly all symmetric solutions becomes helpful, now the symmetry
breaking bifurcation and inverse bifurcation points are the only places where
there remains a solution where P1 = P2. Thus in setting P1 = P2 in Eq. (5.10)
one obtains:

[θ − 2AP1]2 − P 2
1 (B − A)2 = −1, (5.11)

or

(3A−B)(A+B)P 2
1 − 4AθP1 + (θ2 + 1) = 0 (5.12)

and through the use of the quadratic formula:

P1,2 =
−4Aθ ±

√
(−4Aθ)2 − 4(3A−B)(A+B)(θ2 + 1)

2(3A−B)(A+B)
, (5.13)
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and simplification this yields the two sought bifurcation points and their de-
pendence on self- and cross-phase modulation strength:

P1,2 = C ± D

(3A−B)(A+B)
, (5.14)

where

C =
2Aθ

(3A−B)(A+B)
, (5.15)

and

D =
√
−3A2 + θ2(A−B)2 − 2AB +B2. (5.16)

Equations are presented in such a manner since Eq. (5.15) corresponds to the
mid-point of the elliptic asymmetric bubble, as shown visually under point c
in Fig. 5.2. Substitution of these coupled powers, P1,2, into Eq. (5.4) can then
yield the input pump intensity, I, if required.

Points of Maximum Difference

For many of the applications of the symmetry broken phenomenon it is bene-
ficial to maximise the difference between the two circulating fields. The points
of maximum difference are visually shown in Fig. 5.2 as points d and e. To
calculate these points Eq. (5.10) was once again employed due to its sim-
plicity. It was recognised that the points of maximum difference occur where
∂P1/∂P2 = 1. This partial derivative of Eq. (5.10) is given by:

∂P2

∂P1

= −(b− a)2P2 − 2A2P2 − 2A2P1 + 2Aθ

(b− a)2P1 − 2A2P1 − 2A2P2 + 2Aθ
, (5.17)

which, when set equal to 1, yields:

P2 = −P1 +
4Aθ

(3A−B)(A+B)
. (5.18)

inserting Eq. (5.18) into Eq. (5.10), simplifying, solving the resultant quadratic
and finally simplifying again, yields the points of maximum difference:

P1,2 = C ± 1

B − A
D√

(3A−B)(A+B)
(5.19)

Where, once again, substitution of these coupled powers, P1,2, into Eq. (5.4)
can then yield the required input pump intensity, I, if required.
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The root within Eq. (5.19) provides a very interesting further result, it
identifies a ‘bursting ratio’ for the bubble. Observe that within said root, if
B/A < −1 or 3 < B/A then the roots become imaginary and hence no real
solutions of P1,2 exist for Eq. (5.19). That is to say, the difference between the
two circulating fields may grow indefinitely, the ‘bubble’ of asymmetric solu-
tions opens, but never closes - it has burst. In more mathematical language,
the ellipse becomes a parabola, see Fig. 5.3.

Figure 5.2: A restating of Fig. 3.4 (a) with appropriate points of interest
marked for visual aid. Points a and b are the symmetry breaking bifurcation
and inverse bifurcation points respectively, c denotes the midpoint of the ellip-
tical bubble of asymmetric solutions and finally d and e show the points with
maximum difference between the two circulating fields.

The Cavity Detuning Limit

Within the analysis of the root component of Eq. (5.13) a further useful result
is yielded, a minimum requirement on the cavity detuning, θ, for symmetry
breaking to be possible. For real solutions to exist in Eq. (5.13), P1,2 ∈ R, the
root component must be real, ie.:√

(−4Aθ)2 − 4(3A−B)(A+B)(θ2 + 1) ∈ R, (5.20)

which thus requires that:

(−4Aθ)2 − 4(3A−B)(A+B)(θ2 + 1) ≥ 0, (5.21)
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Figure 5.3: Variations in the ratio of the cross- to the self-phase modulation
constants affect the ‘shape’ of the set of asymmetric solutions. Although this
‘shape’ is some what arbitrarily a form of an ellipse, outside of −1 < B/A < 3
the ellipse bursts into a parabola - meaning that the set of asymmetric solutions
opens but never closes, leading to an infinite region of asymmetric solutions.

or, simplified, that the cavity detuning must obey the restriction:

|θ| >
Re
[√

(3A−B)(A+B)
]

|B − A|
(5.22)

in order for asymmetric solutions, for some input intensity, to be at all possible.
On the contrary, if this restriction is not satisfied asymmetric solutions will
never occur for any input intensity.

The cavity detuning limit of Eq. (5.22), while an interesting and useful
result even in itself, yields further insight into the system. The first result
which is apparent arises from the necessity to avoid a division by 0. This
may occur if B = A and thus when B/A = 1, but at least here there is
physical meaning to the undefined mathematics. It implies that when the self-
and cross-phase modulation constants are equal, symmetry breaking is not
possible for any cavity detuning, indeed the cavity detuning would need to
be infinitely high to satisfy Eq. (5.22). A second result which can easily be
seen from this equation is that when the ratio B/A falls outside of the region:
−1 ≤ B/A ≤ 3, then the minimum detuning limit falls to 0, that is to say,
that for some value of the input pump intensity, symmetry breaking is always
possible.
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Figure 5.4: Minimum detuning, θ, required to observe symmetry breaking
when changing the ratio of the coupling constants B/A. The yellow regions
indicate where symmetry breaking is possible, for some range of input pump
intensity, with the blue lines indicating the limits where symmetry breaking
becomes impossible. In the white region symmetry breaking is not possible
for any range of input pump intensity.

Position of ‘the bubble’ relative to the ‘S-shaped’ bistabilty

In closing this section, note that the value of B/A also affects where the
symmetry-broken solution line appears with respect to the bistable symmetric
solution line. It is known that, for A = 1 and B = 2, when observing an
intensity scan, like that of Fig. 3.5, the symmetry-broken ‘bubble’ always
appears with a bistability on the symmetric solution line [32]. This is because,
for this B/A ratio, Eq. (5.22) dictates that symmetry-broken solutions are
only possible for θ ≤

√
3, with θ =

√
3 being the condition where optical

bistability emerges. This holds true for any 1 < B/A < 2. Above ratios of
2 however, the minimum detuning for symmetry breaking falls below that for
optical bistability. This means that it is now possible to observe the symmetry-
broken solutions without bistability, Fig. 5.5(a). More interesting is the region
B/A < 1. For 0 < B/A < 1, symmetry breaking is again only possible for
detunings above the

√
3 value for optical bistability, but now the symmetry-

broken bubble appears on the middle branch of the bistable region, as shown
in Fig. 5.5(b). Progressing further, for B/A < 0, it is once again possible to
observe the symmetry-broken solutions for detunings lower than the minimum
required for symmetric solution line optical bistability.
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Figure 5.5: (a), (b) Plots of the input power scans for B/A = 2.2, θ = 1.5 and
B/A = 0.5, θ = 4 respectively. (c), (d) show the special case of B = 0, A ∈ R,
with A = 1, θ = 3. (c) shows the possibility for symmetry-broken solutions,
while (d) shows how their origin is due to the bistable region of the Lorentzian
equation.

We note that when plotting in the style of Fig. 5.2 for B = 0, it would ap-
pear that symmetry broken solutions are, interestingly, still possible, as shown
in Fig. 5.5(c) even in the absence of any cross-phase modulation. This ex-
plains the continuous nature of all equations described previously, and Fig.
5.4, about B/A = 0. However in this case the appearance of the appar-
ently symmetry-broken solutions is due to the imposed constraint that both θ
and I are equal for both equations. This results in the two, now uncoupled,
Lorentzian equations being identical. The ‘symmetry-broken’ solutions arise
physically from the possibility of one field being on the top branch of the opti-
cal bistability while, simultaneously, the other is on the bottom, or vice versa,
see Fig. 5.5(d), i.e it is not a symmetry breaking of coupled fields.
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5.4 Effects of SPM and XPM on System Sta-

bility and the Corresponding Temporal Dy-

namics

5.4.1 Generalised Stability Analysis

This section reports on the generalisation of the stability analysis preformed
in Section 3.3. Here we analyse the stability of the homogeneous solutions
described by the equations:

∂E±
∂t

= Ein −
[
1 + i

(
A|E±|2 +B|E∓|2 − θ

)]
E±, (5.23)

Following the procedure set out in Section 3.3, we add small perturbations
to the steady state solution, calculate the eigenvalues of the matrix that results,
and assess the stability of this system. The eigenvalues of the linear stability
of Eq. (5.23) have the same form as those provided in Section 3.3:

λ = −1±
√
−α1β1 − α2β2 ± S

2
, (5.24)

with

S =

√
(α1β1 − α2β2)2 + 4α1α2γ2, (5.25)

however now the quantities α1,2, β1,2 and γ2 take on forms generalised to arbi-
trary self- and cross-phase modulation coefficients: α1,2 = (AP1,2 +BP2,1− θ),
β1,2 = (3AP1,2 +BP2,1 − θ), and γ2 = 4B2P1P2.

Note that again in Eq. (5.24) one ± choice enforces no restrictions on
the other ±, giving a total of four eigenvalues. The quantity S plays an
essential role in establishing the stability of the system. If S is real, and the
quantity under the square root in Eq. (5.24) is negative for both ±S , i.e,
S < α1β1 +α2β2, then all the eigenvalues are complex numbers with real part
equal to −1, leading to full stability of the corresponding stationary states.
On the other hand, if S is real, and the quantity under the square root in
Eq. (5.24) is positive, then one real eigenvalue can be positive (meaning a
non-oscillatory instability) if

S > 2 + α1β1 + α2β2, (5.26)

with the maximum of two real eigenvalues being positive when
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S < − (2 + α1β1 + α2β2) , (5.27)

is also satisfied. Note that this condition for a second unstable eigenvalue is
only possible when 2 + α1β1 + α2β2 < 0.

Under the condition of S being purely imaginary, the eigenvalues, Eq.
(5.24), are complex with the real (R) and imaginary (Ω) parts, corresponding
to the growth rate and the angular frequency respectively.

The instabilities are then obtained by finding the conditions for which
R > 0, and correspond to

|S2| > 8 (2 + α1β1 + α2β2) . (5.28)

This birth of a stable limit cycle implies a Hopf bifurcation. Note that,
for this system, if we have a pair of oscillatory eigenvalues with positive real
part, then the real part of the remaining two must necessarily be negative.
Interestingly, oscillatory instabilities can only appear in the symmetry-broken
branches of the stationary solutions, regardless of B/A; no oscillatory insta-
bility can be found on the symmetric branches, since, in this case, S is always
a real number.

Real eigenvalue instabilities can be found on the symmetric branches of
the stationary solutions, where α = α1 = α2 and β = β1 = β2. Here, real S
means S = 2|γα| and the conditions Eq. (5.26)-(5.27) reduce to

|γα| > 1 + αβ, and |γα| < − (1 + αβ) . (5.29)

On the symmetric branches, the bifurcations corresponding to conditions
given by Eq. (5.29) are either the saddle-node bifurcations of the S-shaped
stationary curves or the pitchfork bifurcations leading to symmetry-breaking
solutions.

To illustrate the effect of the cross-phase modulation coefficient on the
stability of the system, we report here about two cases of large and small
cross-phase to self-phase modulation ratio, B/A, with A = 1.

For larger values of B/A such as B = 7, A = 1, Fig 5.7 is not only consistent
with a prediction made by Eq. (5.22), that symmetry-broken solutions are
possible at zero detuning, but also shows that there are now large parameter
regions where stationary states are susceptible to oscillations. On the contrary
however Fig 5.8 illustrates stable, unstable, and oscillatory unstable regimes
for a variety of choices of parameters for a small value of B = 0.9, with A = 1.
Now the self-phase modulation is stronger than the cross-phase modulation. In
this regime, the system is not strongly susceptible to either symmetry breaking
or the onset of growing oscillations, and so the power
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Figure 5.6: Reference chart showing eigenvalue conditions, beginning from
S, required to obtain solutions with various stability outcomes. This diagram
should be used in reference to section 5.4.1 for ease of understanding. Solution
types are colour coded to match that of figs. 5.8 and 5.7

Figure 5.7: Coupled power P1,2, against the detuning parameter, θ for A =
1, B = 7 and I = 3.3. Stable and non-oscillatory unstable solutions are shown
in solid and dotted blue, respectively, whilst oscillatory instabilities are shown
in dashed red.
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Figure 5.8: (a)-(d) illus-
trate the coupled power P1,2,
against the detuning param-
eter, θ for A = 1 and B =
0.9. (a) I = 9. (b) I = 18.
(c) I = 40. (d) I = 80. The
lower collection of plots illus-
trate the coupled power,P1,2,
against the input power, I.
(e) θ = 15. (f) θ = 25. (g)
θ = 75. (h) θ = 170. Sta-
ble and non-oscillatory un-
stable solutions are shown
in solid and dotted blue,
respectively, whilst oscilla-
tory instabilities are shown
in dashed red.
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thresholds for accessing these phenomena are very high. When increasing
the input power, I, symmetry-broken solutions occur in the middle branch of
the bistable S-shaped curves. Some of these solutions later gain stability, and
others exhibit growing oscillations; the system begins to display multi-stability
of symmetric and asymmetric solutions; the fact that the growing oscillations
are always accompanied by a stable solution means that these oscillations may
be difficult to experimentally observable.

5.4.2 Temporal Dynamics

The stability analysis of the previous section described how the system re-
sponds to small, noise-like, perturbations with respect to changes of the ratio
B/A. In this section, we investigate the full temporal evolutions and oscilla-
tions by numerical integrating of Eq. (5.23) in a manner similar to Section
4.3. The temporal dynamics of optical systems can lead to a range of appli-
cations, such as polarization scramblers or devices with periodic switching of
polarisation state or direction. In Fig. 5.9 numerical integrations illustrate the
consequences of modifying the relative strengths of self- and cross-phase mod-
ulation for the onset and extent of deterministic chaos. Figure 5.9(a) shows
the maxima of the coupled power P1 during oscillations when changing B from
1.5 to 7, for A = 1, θ = 5, and I = 3.3. The power ranges spanned by the
oscillations clearly increase with the cross-phase modulation magnitude.

To illustrate the susceptibility of the system to temporal oscillations at
large values of B/A, we show in Fig. 5.9(b) the Poincaré sections for a de-
tuning scan for B = 7, A = 1 and I = 3.3. These are the same parameters
of the stationary solution curves displayed in Fig. 5.7. Note that at these
high detunings the regions where chaotic attractors merge to give the physical
behaviour of the periodic switching between dominant and suppressed field
roles become quite large and sustained, for example a continuous region of
this behaviour can be seen from θ = 4.65 → 4.95. Applications looking to
utilise this behaviour with a large degree of robustness should therefore use
appropriate ring resonators with high XPM.
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Figure 5.9: (a) Poincaré sections of the maxima of oscillating coupled power
P1, versus the cross-phase modulation coefficient, B, for constant A = 1. These
points corresponds to constant values of the detuning θ = 5 and input power
I = 3.3. (b) Illustration of periodic oscillations and deterministic chaos in the
Poincaré sections of the maxima of P1 when varying the detuning parameter,
θ for a large cross- to self-phase modulation ratio. In this case, A = 1, B = 7
and the input power is I = 3.3. Note the dense columns of chaos with large
windows of order indicative of periodic switching. Both scans run from left to
right.
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5.5 Chapter Summary

In this chapter we presented a theoretical model for the spontaneous symme-
try breaking of light in ring resonators, generalised to arbitrary strengths of
self- and cross-phase modulation, and describing the coupling of either two
circularly-polarised or two counter-propagating fields. This was motivated by
the recognition that these SPM and XPM strengths could vary extensively
between experimental settings, particularly those featuring different nonlinear
media, including Kerr liquids and atomic vapours.

We proceeded to present the characteristics of the steady-state symmetry-
broken region of the system, such as the minimum input criteria for its ob-
servation, its opening and closing bifurcation points and the conditions for
maximum difference in the coupled intensities in ways generalised to arbitrary
strengths of SPM and XPM. One of the most useful results to emerge here
was the bursting of the asymmetric bubble beyond certain SPM and XPM val-
ues, leading to a theoretically infinite symmetry broken region with no upper
bound.

Later, it was described how the position of the symmetry-broken region
varies with respect to the symmetric optical bistability, with the possibility of
the asymmetric bubble forming on the middle branch of the S-shaped sym-
metric solution line and for the possibility of observing spontaneous symmetry
breaking without the symmetric curve becoming at all bistable. This may be
extremely useful for application requiring the asymmetric solutions but where
one may wish to avoid the additional, at times stable, symmetric solutions.

Finally, we described the existence of a dependence of the oscillatory regime
on the value of B/A. This could not only be useful in avoiding the oscillatory
regime, when stationary asymmetric solutions are required at certain intensi-
ties, but could also be used to conversely promote the oscillatory regime and
allow for the regions of periodic switching or chaos to become more robust
with regards to the input parameters.
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“Home is behind, the world ahead”

– J.R.R. Tolkein, The Lord of the Rings
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CHAPTER 6. SYMMETRY BROKEN TEMPORAL CAVITY SOLITONS
AND THEIR BREATHING DYNAMICS IN KERR RING RESONATORS

6.1 Introduction

In 2019 we applied for, and were awarded, two travel scholarships. The com-
bination of these two awards covered the planned costs of a ten week research
visit to the University of Auckland, New Zealand. For this chapter’s results,
thanks must therefore be given to both the Mac Robertson Trust, who awarded
the largest of the two scholarships, and to the Dodd-Walls Centre. We would
also like to express our enormous gratitude to the University of Auckland
for our hosting, with a special mention of the group of researchers we worked
with, primarily Gang Xu, Julien Fatome, Stuart Murdoch, Miro Erkintalo and
Stéphane Coen.

To those who know the history of the soliton, it may seem ironic that
the majority of our work on the topic did not take place until we left our
base in Glasgow, Scotland, to visit the other side of the world. This irony
arises because the first recognition of the soliton actually occurred in Scotland,
described in 1834 by the Victorian Engineer John Scott Russell [122–124].

Following these initial observations, many studied the mathematics be-
hind solitary waves in the 19th century [125–127] resulting in the first known
equation [123] describing a soliton’s form, which came from solving the Ko-
rteweg–de Vries equation [128,129]; this equation is given by:

η(x, t) = a sech2 [β (x− Ut)] , (6.1)

where η(x, t) describes the solitary wave profile and a is the maximum am-
plitude of the formation above the free surface of liquid, depth h. β is de-
fined by β2 = 3a/(4h2(h + a)) and the speed of the solitary wave is given by
U =

√
g(h+ a) for gravitational acceleration g.

As one may expect, the area of study surrounding solitons has expanded
greatly since these early 19th century studies. Solitons have now been found
in many different systems and areas of physics; most relevant to this thesis
are cavity solitons (CS) in the Lugiato-Lefever equation, which have been very
impactful, with transverse CS in the LLE first detected by Scroggie and Firth
at Strathclyde in 1996 [130, 131] and longitudinal or temporal CS (TCS) in
the LLE being observed in 2010 [19,20]. Here specifically we investigate TCS.

TCSs are the dissipative optical solitons [132–134] of coherently-driven
nonlinear resonators [135]. In contrary to conservative solitons, where the
only required system balance is that of the diffraction (or dispersion) with
nonlinear effects, dissipative solitons require an additional balance. This is
due to the inherent losses within a dissipative system; in order for a soliton
to maintain its shape and velocity, an input pump of some kind is required to
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exactly balance any losses the system exhibits [19].
TCSs have revealed themselves as ideal entities for the systematic inves-

tigation of fundamental dissipative soliton physics, permitting controlled ex-
perimental insights into a range of nonlinear dynamical phenomena [21, 87,
136–139]. Further to this, they have also enabled – particularly through their
key role in the generation of coherent microresonator Kerr frequency combs
[6, 84, 140] – ground breaking advances across numerous applications, includ-
ing all-optical information processing [141,142], telecommunications [143,144],
optical frequency synthesis [145], detection of extra-solar planets [146, 147],
spectroscopy [148,149] and ultrafast optical ranging [150–152].

TCSs have so far predominantly been studied in the context of single-
component (scalar) systems involving a single (spatial and polarization) trans-
verse mode family of the resonator. It is only very recently that researchers
have begun to explore the novel realm of multi-mode (vectorial) systems
[153–157]. In particular, asymmetric excitation of two distinct mode families
has been shown to allow for the simultaneous emergence of two non-identical
CSs [154,156], enabling a novel route for the generation of multiple frequency
combs from a single device [154]. However, solitons supported under strongly
asymmetric conditions are still effectively scalar, being (almost) entirely as-
sociated with one of the modes excited. Whilst vectorial solitons that rely
on a symbiotic combination between two orthogonal components have been
extensively studied in single-pass waveguide propagation [158–160] and fibre
lasers [161–163], there has so far been only a handful of theoretical studies
on such structures in the context of temporal cavity solitons in passive res-
onators [153,157].

In this chapter we describe how the spontaneous symmetry breaking phe-
nomenon described in previous chapters may be combined with TCS to pro-
duce novel field behaviours, both stable and dynamic, such as mirror-like vecto-
rial CSs and breathers. To the best of our knowledge, the experimental results
which followed the theory outlined here comprised the first experimental ob-
servations of spontaneous symmetry breaking of TCSs (and non-homogeneous
states in general) in a two-component Kerr resonator. Moreover, whilst SSB
has been previously identified and observed for vectorial solitons of conser-
vative systems [164, 165], and studied theoretically in the context of various
dissipative systems [166–168], the results presented in our paper, on which
this chapter is based, [88] represent the first direct experimental observation
of SSB of dissipative solitons in any two-component physical system. As such,
our work provides fundamental insights at the intersection of two widely inves-
tigated nonlinear phenomena, linking together the rich physics of (vectorial)
dissipative solitons [169–172] and spontaneous symmetry breaking.
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6.2 The Symmetry Breaking of Temporal Cav-

ity Solitons

While many of the results described in previous chapters were applicable to
both the situations of two counter-propagating linearly polarised fields and
to that of two co-propagating orthogonally polarized light fields, the results
in this chapter are purely limited to the latter. This is because we seek to
observe the temporal evolutions of E± on the time scale of one round trip
of the resonator. Whereas it was shown previously that both the counter-
propagating and the orthogonally polarized systems are described by the same
set of equations, Eq. (5.23), when assuming no variation of E± during a round
trip, if there is considerable change during the round trip then the systems
may differ. Here we study therefore only the orthogonally polarised case with
self-focusing media (anomalous dispersion) which is described by the following
restated equation [33]:

∂tE± = Ein − E± − iθE± + i∂ττE± + i
(
A |E±|2 +B |E∓|2

)
E± . (6.2)

One of the main inspirations for our studies of fast time temporal structures
came from the single LLE and its predicted [173], and verified experimentally
[174], ability to exhibit an instability which can lead to the viability of pattern
and soliton solutions [42]. To first verify this claim it was required to code a
suitable method of integrating Eq. (6.2), such as the split-step Fourier method
combined with the Runge-Kutta method, as outlined in appendix A.

With such a suitable method of integration coded, the next step was to
verify the existence of the predicted (symmetric, E+ = E−) TCS [173, 174],
which may naturally emerge from the integration of Eq. (6.2) for a range of
initial conditions containing adequately large non-homogeneous random per-
turbations. Figure 6.1 shows such an evolution, panel (a), and the final stage
of the integration, panel (b), of such initial conditions, where we have also
momentarily fixed E+ = E−. One can clearly see the emergence of the pre-
dicted TCS, or to be more accurate the emergence of a pair of symmetric TCS
- one soliton in each field E±. Here SPM and XPM constants were used which
were similar to the experimental setup which would later be used to clarify
our predictions [88]. The TCS of Fig. 6.1 and others of the type discussed in
Refs [173,174] can be described as ‘sitting’ on the bottom branch of the HSS,
with the soliton itself locally locking to the pattern state [88].

Having verified the existence of TCS in our system we proceeded to remove
the constraint that fixed E+ = E− in order to begin the investigations into if a
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Figure 6.1: Results of the numerical integration of Eq. (6.2) from initial
conditions with adequately large non-homogeneous random perturbations with
A = 1, B = 1.58, Ein = 1.5 and θ = 4, where we have forced symmetry on
the system by imposing the condition that E+ = E−. (a) shows the slow time
evolution of the two field profiles. (b) shows the final fast time profile of the
two field components which in this case happens to be a single soliton sitting
on the HSS solution.

symmetry breaking of symmetric TCS would occur. Figure 6.2 shows one such
simulation for the same set of input parameters as Fig. 6.1 . Panels (a) and (b)
show the fast time intensity profile evolutions for both circulating components
respectively and one can see how once again from the initial conditions, con-
taining adequately large non-homogeneous random perturbations, solitons can
naturally emerge without further engineering; the final profiles are shown in
panel (c) in red and blue respectively. (a,b) show that the symmetric solitons
which initially emerged from the initial conditions eventually split into two
asymmetric profiles with one soliton becoming dominant while the second is
suppressed, (c). Panel (d) shows the difference between the two fast-temporal
profiles and it is clear to see that initially the two field components evolve al-
most perfectly symmetrically to the attractive but unstable symmetric soliton
profile before, similar to the homogeneous case in Fig. 4.2(c,d), evolving away
from the unstable symmetric solution to the attractive and stable asymmetric
profiles. Results for similar parameters were later experimentally verified by
collaborators in Ref. [88].
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Figure 6.2: Symmetry broken TCS for A = 1, B = 1.58, θ = 4 and Ein = 1.5.
(a,b) slow time the evolution of the two field components |E±|2 over 40,000 iter-
ations starting from initial conditions with adequately large non-homogeneous
random perturbations, with (c) showing the final fast-time profiles. (d) Differ-
ences observed between the two field component intensities over the evolution.
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With asymmetric TCS observed for a single detuning value the question
was raised as to whether we could observe the actual bifurcation point of spon-
taneous symmetry breaking, the transition point from symmetric to asymmet-
ric solitons. To best fit with the experimental methods, numerical integra-
tions were preformed which scanned the cavity detuning parameter. Figure
6.3 shows, again with parameters which were chosen to mimic those used in
the later experiments of Ref. [88], a scan from low, θ = 2, to high, θ = 8,
cavity detuning, where the final stage of the previous cavity detuning is used
as the initial condition for the next cavity detuning value integration. As
in scalar systems, the intracavity fields initially, θ < 3.1, are unstable to a
Turing-like modulation instability that results in the formation of dissipative
patterns that fill the entire system. Despite their complex dynamics, we find
that the patterned states are (predominantly) identical across the two modes,
|E+|2 = |E−|2 see panel (c), although this symmetry later begins to break at
θ = 2.6, dashed line (1). When the detuning increases beyond θ > 3.1, dashed
line (2), localised CSs emerge from the patterned state. (c) shows that at this
point the profiles of the TCS have a very strong asymmetry and thus corre-
spond to mirror-like polarization states. As the detuning increases further,
beyond θ > 6.5, dashed line (3), the symmetry of the solitons is recovered,
thus observing the SSB bifurcation point, which continue until the symmetric
solitons become unstable at around θ = 7.16, dashed line (4).

Similarly, we may produce a clearer observation of the bifurcation point by
tracking only the peak of a TCS. Figure 6.4 starts from the initial conditions of
a symmetric TCS, produced from some earlier scan, at the high detuning limit
of the soliton’s stability, θ = 7.16. The detuning was then gradually reduced
in steps of 0.01, where at each stage the system was given time to stabilise
before the peaks of the two TCSs were recorded. One can see that at around
θ = 6.5, the two symmetric solitons spontaneously break their symmetry and
suddenly one soliton peak becomes dominant over the other.

The spontaneous symmetry breaking of the TCS may be claimed to be
analogous to that of the HSS, with the pitchfork bifurcation clearly shown; once
again with the branch of the symmetric TCSs becoming unstable (generated by
the same method as above but with E+ = E− enforced), but in this context,
we must emphasise that the soliton symmetry breaking does not require a
simultaneous breaking of the (corresponding) symmetry of the homogeneous
state. Results in Fig. 6.4 were in fact obtained using a driving power that is
below the threshold of SSB of the homogeneous state [57,120]. This is because
the local peak of the soliton operates with intensities higher than that which
are experienced by the HSS.

There may have been some surprise with observation of Fig. 6.4 at the
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Figure 6.3: Fast time intensity profiles for the two field components E±, (a) and
(b) respectively, are plotted for a scan of the cavity detuning for A = 1, B =
1.58, and Ein = 1.5. (c) Difference between the fast time intensity profiles.
Dashed line (1) shows the point at which symmetric MI becomes asymmetric,
(2) shows the point where asymmetric solitons emerge from the pattern state,
(3) shows the symmetry restoring bifurcation leading to symmetric TCS and
(4) shows the point where these TCS become unstable.
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Figure 6.4: A scan of the cavity detuning while tracking the peaks of the TCS
structures present in each of the field intensities |E±|2. For A = 1, B = 1.58,
Ein = 1.5. The scan starts from θ = 7.16 with a pregenerated symmetric
TCS which is allowed to evolve until stable, at which point the detuning is
gradually reduced, at each stage allowing for the system to re-stabilise. The
red line tracks the peaks of the two TCS with no forced symmetry where as
the dashed blue line tracks the system with a forced E+ = E− symmetry. HSS
in black. Green background shows the region with symmetric TCS, yellow
with asymmetric TCS and red shows the system falling to MI. Dashed lines
(2-4) are defined the same as defined in Fig. 6.3

abrupt end of the dashed blue and red curves which track the peaks of the
(symmetric and asymmetric) TCS peaks. This ending is explained by the
recollection that the soliton base sits on the lower branch of the HSS. The
HSS for the relevant parameters is also plotted on Fig. 6.4 and it is clear
to see that the point at which the solitons become unviable coincides exactly
with the HSS’s turning point, where the bistability ends and of course there
is no longer a bottom branch for the soliton to sit, θ = 3.16. In Ref. [88] it
is shown that the solitons lock to a particular modulation instability pattern,
patterns that are, as seen in Fig. 6.3, continuous past the HSS bistability
cut off. This cut off prevents the full ‘bubble’ of asymmetric solitons being
plotted, however one sees in Ref. [88] that the inclusion of pattern states,
generated using a Newton-Raphson relaxation algorithm [175] allows for both
the symmetry breaking and symmetry-restoring bifurcations to be seen.
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Many further, experimental, results on symmetry broken solitons are re-
ported in [88], such as their manipulation in switching the dominant and sup-
pressed soliton states.

6.3 Breathing Dynamics of Symmetry Broken

TCS

The previous section of this chapter verified that the SSB phenomenon was in-
deed applicable to pattern and soliton solutions. This realisation then opened
up many questions as to whether the other results and discussions outlined in
Chapters 3-4 were also relevant to TCS and if these could be used to create
novel behaviours. For example, with the knowledge that there are regions
of some symmetry broken bubbles of the homogeneous solutions where the
system is susceptible to oscillations, could similar oscillations occur with the
new symmetry broken TCS? Solitons with an oscillating peak are described
as ‘breathing’, and an investigation into possible breathing symmetry broken
TCS was further encouraged since breathing dissipative solitons in optical mi-
croresonators have already been observed in Ref. [138].

Utilizing the findings from Section 3.3, primarily the understanding that
the homogeneous states of Eq. (6.2) have a stronger susceptibility to growing
oscillations as the input intensity is increased, a scan similar to Fig. 6.4 was
completed at the higher input pump of Ein = 2.1, this is shown in Fig. 6.5.

Figure 6.5 once again tracks the peaks of the solitons in each of the fields
E±, now with red and blue lines respectively, but now under the condition
that if the peak of the soliton is unstable, i.e. it is oscillating in some manner,
then the red and the blue lines plot the edges of the range of these oscillations,
their maxima and minima intensities. The scan again started with the initial
conditions of a pre-simulated stable symmetric soliton at the high detuning
limit of soliton stability, at approx. θ = 14 in this case, and in a step-wise
fashion the detuning is decreased, at each stage allowing the system time to
adapt to this new detuning value. With an appropriate relaxation period
allowed, the peaks are then tracked for an appropriate time in order to build
up a picture of their behaviour.

It can be seen in the results of Fig. 6.5 that such a scan can result in four
distinct regions of soliton behaviour, which is indicated by various background
shading. Two of these regions are known from the previous section: green
shading shows the region where the symmetric TCSs reside, and the pink
shading shows the stable asymmetric TCSs. The two new regions of Fig. 6.5
are shaded in blue and purple, and while both these regions indicate breathing
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Figure 6.5: Range of TCS peak power levels of the two polarisation components
of numerically simulated TCSs versus cavity detuning θ for Ein = 2.1 and
B = 1.6. Blue and red curves indicate the limits of peak breathing with the
full range in gold and cyan, green for overlap. Background colour: green –
symmetric TCSs; Pink – stable SB TCSs; Purple – in-phase SB breathers;
Blue – out of phase SB breathers. Within the blue region, ‘deep’ breathers
exist, which can lead to periodic or chaotic switching of the dominant and
suppressed fields. Dashed lines (2-4) are the same as defined in Fig. 6.3 where
as (5,6) define the limits of anti-phase and in-phase breathing respectively.

solitons, they differ since in the blue region the breathing dynamics favour
being out of phase with each other, while in the purple region the breathing
dynamics occur in phase. These regions have their boundaries defined by Hopf
bifurcations which indicate the start of peak oscillations, dashed lines (5) and
(6). Examples of the soliton peak oscillatory evolutions are shown in Fig. 6.6,
with some early experimental verification of these symmetry broken breathing
dynamics for fiber loops being shown in Fig. 6.7, as reported in Ref. [176].

Within the blue region of Fig. 6.5 there is an internal region, which is
computationally intensive to model, where, similar to the dynamics of the ho-
mogeneous fields, many subsequent period doubling bifurcations occur leading
to very complex and even chaotic breathing dynamics. Due to the sizeable
interruptions at time of writing caused by the COVID-19 pandemic both the-
oretical and experimental research into this region is ongoing, but Fig. 6.6
(c) provides an example of ‘deep’ breathing solitons, where the range of the
breathing dynamics of the two fields completely over lap, reminiscent of the
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Figure 6.6: Breathing soliton dynamics for various detuning values by tracking
TCS peak intensities. For all A = 1, B = 1.58, Ein = 2.1. For (a) θ = 4.5,
residing in the purple region of Fig. 6.5, and shows close to in-phase dynamics.
For (b,c), θ = 7.05 and 8.1579 respectively which both reside in the blue
region of Fig. 6.5 which is characteristic of closer to anti-phase dynamics -
most obviously seen in the relatively simple dynamics of (b). (c) shows that
periodic switching dynamics are also possible for breathing solitons.
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green region of Fig. 4.5, and there is the opportunity of observing the in-
teresting phenomenon of spontaneous periodic switching of the dominant and
suppressed breathing solitons.

Figure 6.7: Preliminary and unpublished results of experiments performed at
A = 1, B = 1.58, Ein = 2.1 with θ = 5.2 and θ = 8 for (a,b) respectively.
The green and orange lines track the soliton peaks of the two field components
respectively. (a) shows the peak evolution for a detuning in the purple region
of Fig. 6.5 and confirms a close to in-phase relationship between the two fields.
(b) on the other hand shows the evolution for a detuning in the blue region of
Fig. 6.5 and confirms a more anti-phase relationship between the two fields.
Experiment performed, and figure supplied, by Gang Xu [176,177]. Details of
experiment can be found in Ref. [37]. We have no claim over this experimental
work, it is included only to provide comparison with theoretical predictions.

6.4 Chapter Summary

In this chapter we began by independently verifying the existence of temporal
cavity solitons in a system described by a single LLE which is recovered from
our studied coupled systems when enforcing that E+ = E−. We employed
a combination of split-step Fourier and Runge-Kutta integration methods to
show that these symmetric soliton profiles may naturally emerge from initial
conditions containing adequately large non-homogeneous random perturba-
tions, without any further required engineering.

Following this symmetric soliton observation we proceeded to remove the
condition of forced symmetry and allowed the system to again naturally evolve
for the same input conditions which resulted again in the formation of soliton
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field profiles however now the two field profiles were asymmetric with the emer-
gence of dominant and suppressed solitons similar to the phenomena observed
for the homogeneous studies of previous chapters.

To observe the symmetry breaking bifurcation points of the symmetric TCS
two detuning scans were simulated. One observed the full fast time profiles of
the two field components and showed how unstable Turing-like pattern states
may evolve within the system which beyond a certain detuning parameter
may form asymmetric TCS. These asymmetric TCS may later restore their
symmetry when passing a second detuning limit. A second scan showed this
behaviour in a clear bifurcation diagram by tracking only the peaks of the
TCS.

Finally preliminary investigations were described into the possibility of
breathing dynamics occurring, where the fast-time symmetry broken soliton
structures may begin to oscillate over slow-time. It was shown that this could
occur in two distinct regions, in one region the fields evolved in a more in-
phase manner while in the second the fields were more closely linked to anti-
phase descriptions, these results were compared to experimental results from
collaborators verifying their validity. It was further shown that theoretically
symmetry-broken TCS would breath in complex ways with the potential for
the periodic switching of the dominant and suppressed roles held by each of
the two field components.
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“Science knows no country,
because knowledge belongs to humanity,

and is the torch which illuminates the world”

– Louis Pasteur
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In this final chapter, for completeness, we discuss two further issues related
to symmetry breaking in nonlinear optical resonators. The first set of results
outlined here were presented by ourselves for useful discussion with the authors
of the paper ‘Asymmetric balance in symmetry breaking’ [37]. The second
section of this chapter concerns a model combining both counter-propagation
and field polarisation.

7.1 Bifurcation Restoration from the Balanc-

ing of Asymmetric Inputs

With our normal set of coupled equations describing homogeneous fields:

∂E±
∂t

= Ein +
[
−1 + i(A|E±|2 +B|E∓|2 − θ)

]
E±, (7.1)

both the two terms describing the input pumps, Ein, and two describing the
cavity detuning, θ, were respectively equal to one another for each of the two
fields. This situation may be referred to as having symmetric input parame-
ters. There is however no requirement in general for the input parameters to
be equal, one input beam could have a higher intensity than the other, or one
input beam could have a different cavity detuning to the second. By intro-
ducing an initial imbalance to the system, say to the input pump, we may try
to restore some typical features of the the symmetric-input system, such as
the pitchfork bifurcation indicative of spontaneous symmetry breaking, with
a second imbalance, say in the cavity detuning.

To study the impact of unbalanced input conditions, we use equations
adapted from Eq. (7.1) to describe the system

∂E+

∂t
=
√
X cosχ+

[
−1 + i(A|E+|2 +B|E−|2 − θ+)

]
E+, (7.2)

∂E−
∂t

=
√
X sinχ+

[
−1 + i(A|E−|2 +B|E+|2 − θ−)

]
E−, (7.3)

where X represents the total pump power and the imbalances are introduced
through the value of χ (note that χ = 45◦ restores an equal pump power) and
θ±. We may also define, without loss of generality, θ+ = θ, θ− = θ+ − δθ =
θ − δθ, such that δθ = 0 implies symmetric cavity detuning θ+ = θ− [37].

By the same method as outlined in Chapter 3, we begin by finding the
stationary states of Eq. (7.2)-(7.3). These are given by
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X cos2(χ) = |E+|2
[
1 +

(
A|E+|2 +B|E−|2 − θ

)2
]
, (7.4)

X sin2(χ) = |E−|2
[
1 +

(
A|E−|2 +B|E+|2 − θ + δθ

)2
]
. (7.5)

Proceeding to rearrange Eq. (7.4) to make |E−|2 the subject of the equation
and substituting the result into Eq. (7.5), one obtains the result given by Eq.
(7.6). A similar method may then be applied to Eq. (7.5) only now making
|E+|2 the subject, which may then be substituted into Eq. (7.4) yielding the
result given by Eq. (7.8).

X sin2(χ) = y1

[
1 +

(
Ay1 +B|E+|2 − θ + δθ

)2
]
, (7.6)

with

y1 =

√
X cos2(χ)
|E+|2 − 1− A|E+|2 + θ

B
, (7.7)

and similarly

X cos2(χ) = y2

[
1 +

(
Ay2 +B|E+|2 − θ

)2
]
, (7.8)

with

y2 =

√
X sin2(χ)
|E+|2 − 1− A|E+|2 + θ − δθ

B
. (7.9)

Equations (7.6)-(7.9) allow you to plot |E±|2 against either the input inten-
sity or the cavity detuning in a manner similar to Figs (3.5-3.6) respectively.
Figure 7.1 shows the results of intensity and detuning scans. (a) and (b) show
the intensity and detuning scans respectively with only one input parameter
imbalance, with χ = 53.5◦, and it is plain to see that in both scans there
is little resembling a pitchfork bifurcation between the two fields. In panels
(c) and (d) we implement a second imbalance, this time in the cavity detun-
ing (δθ = 0.73332 and δθ = 0.632 respectively) to restore that which at first
glance appears to be a pitchfork bifurcation of the form studied in previous
chapters. It is the restoration of this bifurcation point which we use to define
a ‘balancing’ of asymmetric inputs.

Note that our choices of parameters for Fig. 7.1, particularly for panel (d),
were influenced by the experiments of collaborators, results later presented in
Fig. 5 of Ref. [37]. We do not observe the exact experimental results presented
there but this is likely due to the extreme sensitivity of the system to inputs
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Figure 7.1: Intensity (a,c) and detuning (b,d) scans of Eq. (7.6)-(7.9), solid
blue and dashed red respectively, for A = 1, B = 1.57, and with the initial
imbalanced caused with χ = 53.5. For the fixed common input in (a,c) θ =
5.45, where as in (b,d) X = 10.8. In (a,b) no re-balancing is attempted,
δθ = 0, where as in (c,d) δθ = 0.73332 and δθ = 0.632 respectively, which
restores a bifurcation point, marked with a dashed green line.
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Figure 7.2: Equations (7.6)-(7.8) are used to plot the ‘bubble’ field intensities
E± for a scan of the ellipticity angle χ. Here A = 1, B = 1.57, θ = 5.45,
X = 10.8 and δθ = 0.632, which restore the bifurcation in 7.1(d). It is shown
that under these parameters an ellipticity angle of approx. 51◦ momentarily
restores mirror states between the two fields as observed experimentally in
Ref. [37] at a slightly different ellipticity angle of 53.5◦.

and hence a small error in stated experimental parameters can cause a consid-
erable difference in the system outcome. See our Fig. 7.2 for further theory
comparison and agreement with Ref. [37].

Beginning to address the question of the type of bifurcation which is recov-
ered, the first observation which immediately implies a difference between the
restored bifurcation and the normal symmetry breaking pitchfork bifurcation
previously studied comes from the very apparent fact, observe Fig. 7.1 once
more, that there is no initial field intensity symmetry, |E+|2 = |E−|2, to break.
That is to say the red and blue curves do not overlap for any extended period
prior, or indeed after, the bifurcation, unlike in the similar Figs. 3.5-3.6. Al-
though the bifurcations are not |E+|2 = |E−|2 symmetry breaking in nature,
the question still remains as to if we restore two pitchforks bifurcations, all be
it asymmetric to each other.

Figure 7.3 (a,b) show magnifications of the bifurcation points of the input
intensity and cavity detuning scans of Fig. 7.1 (c,d) and there is the revelation
that at the bifurcation point the gradient of the offshoot curve is not infinite;
an important property of the normal |E+|2 = |E−|2 pitchfork bifurcation, Fig.
7.3 (c). The bifurcations seen in (a,b) with offshoot curves of non-infinite
gradients are in fact more accurately modeled at a local level by a pitchfork
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Figure 7.3: Bifurcation comparison. Panels (a,b) show zoomed in snapshots
of the bifurcation in points Fig. 7.1 (a,b). Note the non-infinite gradient at
the bifurcation point, uncharacteristic of the standard generic pitchfork bifur-
cation, panel (c). The bifurcations in (a,b) instead locally share their forms
with a perturbed pitchfork bifurcation, panel (d). In (a,b) the green dashed
lines show the x-axis value where the bifurcation takes place, whereas the
green dashed line in (c,d) shows the gradient of the pitchfork’s and perturbed
pitchfork’s offshoot curves at the bifurcation point.
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bifurcation which has been perturbed, Fig. 7.3 (d). It is at this stage that mo-
mentarily we must address the mathematical theory of pitchfork bifurcations
and their unfolding [37].

7.1.1 Universal Unfolding of the Pitchfork Bifurcation

We begin by introducing the equation which describes a standard pitchfork
bifurcation,

P (x, L) = x3 − Lx = 0 , (7.10)

which was used by us to map out Fig. 7.3(c). Bifurcation theory states that the
unfolding of a bifurcation occurs when the bifurcation function, here P (x, L),
is disturbed by some smooth perturbation [178–182], with the equation de-
scribing the universal unfolding of a bifurcation being one that gives all the
essential types of bifurcations found in all unfoldings with the minimum num-
ber of variables. For a pitchfork bifurcation the universal unfolding, which
yields all possible variants of imperfect pitchfork bifurcations, is given by

U(x, L, a, b) = P (x, L) + bx2 + a , (7.11)

where a, b are imperfection parameters. For a perfect pitchfork a = b = 0 and
U(x, L, a, b) = P (x, L).

Figure 7.4 is a phase diagram for the values of a, b of the universal unfold-
ing of the pitchfork bifurcation, showing all possible forms of the imperfect
pitchfork bifurcation, with the ‘connected’ perturbed pitchforks of the form
seen in Fig. 7.3(d) being found along the line a = 0. If one therefor assumes
that a, b are independent of one another, then an imbalance caused by the a-
term can never be countered, thus restoring a connected pitchfork, by a second
imbalance caused by the b-term.

If however we make the a-term instead a function of a, b, for example
simply:

U(x, L, a, b) = P (x, L) + bx2 + ã(a, b) , ã(a, b) = a+ b , (7.12)

then it is now possible to shift the universal unfolding parameters to allow for
asymmetry balancing, where we restore the connected perturbed pitchfork by
balancing one asymmetric parameter b with a second a.

Figure 7.5 shows the new phase space of a, b for Eq. (7.12), with the
connected perturbed pitchfork bifurcations now lying away from the a = 0
line and along the ã = 0 line.
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Figure 7.4: Phase space of the universal unfolding of the pitchfork bifurcation,
showing all possible forms of the imperfect pitchfork bifurcation, Eq. (7.12).
The dashed red line (a = 0) shows where the imperfect, but connected, pitch-
forks, as seen in Fig. 7.3(d), lie.

Figure 7.5: Phase space of the transformed universal unfolding of the pitchfork
bifurcation, showing all possible forms of the imperfect pitchfork bifurcation
Eq. (7.12). The dashed red line (ã = 0) shows where the imperfect, but
connected, pitchforks, as seen in Fig. 7.3(d), lie.
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Returning discussions to our own studied system, the reason that we are
able to restore a connected perturbed pitchfork bifurcation through the coun-
tering of one asymmetry χ with another, δθ, is due to the underlying pitchfork
being described by Eq. (7.12) with some, currently unknown, ã(χ, δθ).

We finish this section with the observation of the crossing of the ã(χ, δθ) =
0 line for our system Eq. (7.6)-(7.8).

Figure 7.6 (similar for Fig. 7.7) shows the ã(χ, δθ) = 0 crossing when
scanning the cavity detuning (input intensity), with the top row of panels
showing the HSS of Eq. (7.8) and the middle row showing the HSS of Eq. (7.6).
For all panels of the figure a common imbalance in the input intensity χ = 48.5
is present and this is countered with different cavity detuning imbalances δθ
for each column.

In the far left column the cavity detuning imbalance under-compensates
the input offset and this results in a disconnected perturbed pitchfork. When
the pitchfork is disconnected, the system, which is assumed to have low noise,
will always choose the same field to become dominant or suppressed during
the scan, this is because the alternative role is inaccessible due to the discon-
nect (the bottom row of panels in the figure shows the selected path of each
field). Similarly, the column second from left shows a better, but still under-
compensating cavity detuning imbalance - again forcing field dominance or
suppressed roles.

(Near) perfect compensation by the cavity detuning imbalance is finally
seen in the middle column of Fig. 7.6, leading to a connected perturbed
pitchfork bifurcation and thus implying that here ã(χ = 48.5, δθ ≈ 0.26) = 0
(Similarly seen in Fig. 7.7 for δθ ≈ 0.31). This leads to the possibility of either
role, dominant or suppressed, being taken by either field since even minimal
noise will be enough for the system to be attracted to either stable branch of
the pitchfork due to the connected unstable middle branch.

Moving on to the right two columns of the Fig. 7.6 and 7.7, the cavity de-
tuning imbalance now over-compensates the input offset, once again breaking
the connection of the perturbed pitchfork and leaving only one path viable for
the system to follow.

If there is enough noise within the system then it is possible for the sys-
tem to jump to the alternate path, even when the perturbed pitchfork is not
connected, observed experimentally in Ref. [37]. The requirement of this ac-
tivation energy in the form of adequate noise within the system would be
an important consideration for development of devices looking to utilise both
field roles but who are unable to achieve a perfect balancing of the asymmetric
inputs.
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Figure 7.6: Various cavity detuning scans, θ, of Eq. (7.6) and Eq. (7.8) with
imbalances in both input conditions. For all A = 1, B = 1.57, χ = 48.5,
X = 10.8. The top row of panels shows the HSS of Eq. (7.8), shown in
blue, while the middle row shows the HSS of Eq. (7.6), in red. The columns
of panels relate to a common value of the detuning imbalance, δθ, with the
respective values shown at the top of the column. Highlighted in bold blue and
red are the paths that the system will take when scanning from low to high
detuning. For clear viewing these bold paths, for both fields, are repeated in
isolation from the other HSS on the bottom row.
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Figure 7.7: Various input intensity scans, X, of Eq. (7.6) and Eq. (7.8) with
imbalances in both input conditions. For all A = 1, B = 1.57, χ = 48.5,
θ = 5.45. The top row of panels shows the HSS of Eq. (7.8), shown in
blue, while the middle row shows the HSS of Eq. (7.6), in red. The columns
of panels relate to a common value of the detuning imbalance, δθ, with the
respective values shown at the top of the column. Highlighted in bold blue
and red are the paths that the system will take when scanning from low to
high input intensity. For clear viewing these bold paths, for both fields, are
repeated in isolation from the other HSS on the bottom row. Note that the
bold path assume the two field intensities are beginning the scan on the top
branches of their respective s-shaped bistabilities.
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7.2 Nested Symmetry Breaking - a Combined

Model of both Circular Polarizations and

Counter-propagation Direction

The two systems which have been extensively studied throughout this thesis
are two counter-propagating linearly polarised fields and two co-propagating
circularly polarised fields, both circulating a Kerr ring resonator. The two
systems both yield fruitful fields of study due to the complexity of the system
dynamics, yet there is the opportunity to further expand the scope of results
by asking one simple question: what if the two counter-propagating fields had
two orthogonally polarised components - i.e. what would happen if the two
systems were combined?

The interaction between two counter-propagating quasi-monochromatic
beams in an isotropic dielectric with Kerr nonlinearity has nonlinear com-
ponents of the polarization along the x and y directions expressed by:

Px,y = (χxxyy + χxyxy + χxyyx) |Ex,y|2Ex,y
+ (χxxyy + χxyxy) |Ey,x|2Ex,y + χxyyxE

2
y,xE

∗
x,y,

(7.13)

[183], where χ is the third-order susceptibility tensor and Ex,y are the total
field envelopes along the x and y axis respectively. In the case of silica glass
fibers, where χxxyy ' χxyyx ' χxyxy ' χxxxx/3, Eq. (7.13) reduces to

Px,y = χxxxx

(
|Ex,y|2Ex,y +

2

3
|Ey,x|2Ex,y +

1

3
E2
y,xE

∗
x,y

)
. (7.14)

Jumping into the midpoint of the derivation contained within Ref. [33], a
combined model can then be derived through the substitution of Eq. (7.14)
in place of equation (2.1) of Ref. [33], which in the first instance leads to the
following coupled equations:

∂Ex
∂t

=
√

2ε0 − Ex − iθEx + i

(
|Ex|2Ex +

2

3
|Ey|2Ex +

1

3
E2
yE
∗
x

)
,

∂Ey
∂t

= −Ey − iθEy + i

(
|Ey|2Ey +

2

3
|Ex|2Ey +

1

3
E2
xE
∗
y

)
.

(7.15)

To include both propagation directions the following expansion of the total
field envelope E is then required:
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E = Exx̂ + Eyŷ

=

(
Ex
Ey

)
=

(
Ex1e

ikz + Ex2e
−ikz

Ey1e
ikz + Ey2e

−ikz

)
(7.16)

and, saving the reader from some lengthily algebra, one may then proceed to
expand all terms of Eq. (7.15) in terms of Ex1, Ex2, Ey1, Ey2, negate the fast
varying terms which emerge, and collate all terms of Ex1, Ex2, Ey1, Ey2 into
separate equations. One may then finally arrive at the set of four coupled
equations (7.18)-(7.21), on the next page.

It is however possible to simplify Eqs (7.18)-(7.21) by following a process
similar to that described in Ref. [33], i.e. moving from a linear basis to a
circular one by defining:

u1 =
Ex1 + iEy1√

2
, u2 =

Ex1 − iEy1√
2

,

v1 =
Ex2 + iEy2√

2
, v2 =

Ex2 − iEy2√
2

.

(7.17)

Again saving the reader from lengthily algebra, one can substitute Eqs
(7.18)-(7.21) into Eqs (7.17) and simplify appropriately to obtain the much
simpler set of equations, Eqs (7.22)-(7.25).

Unfortunately, owed to the inclusion of the complex conjugate terms within
the nonlinear components present in Eqs (7.22)-(7.25), it is not trivial to obtain
the set of all possible homogeneous stationary solutions, even by the method
previously employed. We can however still study how the system evolves from
some set of initial conditions by the Runge-Kutta method of integration.

Figure 7.8 shows one such evolution of Eq. (7.22)-(7.25), with the addition
of a small amount of random noise, for θ = 3.85, ε20 = 1.3, and initial conditions
u1,2, v1,2 = 1 + i0. Remarkably this figure shows that the system breaks its
symmetry twice, leading to final field intensities with four entirely different
stable values. It can be seen in Fig. 7.8(a) that initially the system is attracted
to the purely symmetric attractor before rapidly evolving away (similar to the
two field model), but rather than evolving to settle, the system is attracted
to a second attractor - one which forms the previously unobserved state of
two symmetric field intensities and two asymmetric. This attractor is also
unstable and hence the system once again evolves away from the attractor
before finally settling in the stable purely asymmetric state where all field
intensities are different. Fig. 7.8(b) shows the field intensities during this
evolution.
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Allowing for Field Polarisation in the Counter-propagating Model
(Circular Basis)

∂u1

∂t
= ε0 − u1 − iθu1

+ i
2

3

(
|u1|2u1 + 2|u2|2u1 + 2|v1|2u1 + 2|v2|2u1 + 2v1v

∗
2u2

) (7.22)

∂u2

∂t
= ε0 − u2 − iθu2

+ i
2

3

(
|u2|2u2 + 2|u1|2u2 + 2|v2|2u2 + 2|v1|2u2 + 2v2v

∗
1u1

) (7.23)

∂v1

∂t
= ε0 − v1 − iθv1

+ i
2

3

(
|v1|2v1 + 2|v2|2v1 + 2|u1|2v1 + 2|u2|2v1 + 2u1u

∗
2v2

) (7.24)

∂v2

∂t
= ε0 − v2 − iθv2

+ i
2

3

(
|v2|2v2 + 2|v1|2v2 + 2|u2|2v2 + 2|u1|2v2 + 2u2u

∗
1v1

) (7.25)
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Figure 7.8: Temporal evolutions of Eq. (7.22)-(7.25) from initial conditions
of u1,2, v1,2 = 1 + i0 with θ = 3.85 and ε20 = 1.3. (a) shows the temporal
evolutions through the complex phase space, while (b) show how the coupled
field intensities vary over the same evolution.

Figure 7.9: A high to low input intensity scan, shown in green, of the system
of equations (7.22)-(7.25) for θ = 3.85. Overlaid are the purely symmetric
solution line (black), and the HSS of the degenerate system where there are
two asymmetric pairs of symmetric solutions (red). The highlighted region
shows where all four field intensities are asymmetric and stable.
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Figure 7.9 shows a high to low input intensity scan of Eq. (7.22)-(7.25)
for the input conditions θ = 3.85. One can see the well known solutions to
the degenerate case, where from the four studied fields there are two sets of
two symmetric fields, shown in red, and shown in black is the fully degen-
erate case where all four field intensities are symmetric (equal). The green
curve shows the ‘new’ solutions which are made possible by the four coupled
equations. Note that this green curve originates from the red curve with a
second symmetry breaking bifurcation which leads to a region, highlighted in
yellow, where all four studied fields are asymmetric to each other, which may
be described ‘nested symmetry breaking’.

The potential for four symmetry broken fields implies that many of the
pre-reported behaviours in earlier chapters may be also expandable here, such
as four periodically interchanging fields. Further, if the system of Eq. (7.22)-
(7.25) is expanded to include slow-time considerations then the possibility for
four way symmetry broken temporal cavity solitons and breathers may also
be possible. Initial simulations imply that this region for four-way symmetry
breaking is widened for higher cavity detunings.

Turning attention to the higher input intensities of Fig. 7.9 one eventually
leaves the shaded region where all four field intensities are asymmetric and
arrives at an interesting behaviour where there is the partial restoration in
the system of symmetry. This partial symmetry restoration is very interesting
since it is very different to the symmetry restoration bifurcation described in
previous chapters. Firstly it is not a pitchfork bifurcation and secondly it only
restores the symmetry of two of the field intensities; it leads to the situation
of two stand alone asymmetric fields and a pair of two symmetric fields.

The prediction of four asymmetric solutions and this new semi-symmetry-
broken state of affairs could blow the range of observable dynamical behaviours
wide open and allow for many new, or extensions to pre-suggested, applica-
tions, such as components for use in all optical computing with higher degrees
of programmable freedom.

Routes for taking this work forward include a full bifurcation analysis of
both the nested symmetry breaking bifurcations and the partial symmetry
restoring bifurcations, and their conditions on forming. A linear stability anal-
ysis on the system would also be beneficial.
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7.3 Chapter Summary

This chapter outlined the results of two small but relevant projects which
contain much scope for continued work.

In the first section we began by introducing an asymmetry to the system
of two homogeneous circulating fields in the form of different input pumps,
breaking the normally observable pitchfork bifurcation. We went on to show
that through introducing a second asymmetry to the system, this time from
imposing different cavity detunings, it is possible to restore two pitchfork-like
bifurcations.

Analysis of the restored bifurcation revealed that it was different in a couple
of ways to that seen in the system with symmetric inputs. Most obviously it
was no longer a symmetry breaking bifurcation due to the lack of inherent
symmetry in the system but more subtly the bifurcation itself was in fact a
perturbed version of the pitchfork.

Through discussions on the universal unfolding of the pitchfork bifurca-
tion, with a functional asymmetry present, ã(χ, δθ), which mathematically
transformed the system, it was shown that the connected perturbed pitchfork,
restored through our balancing of two asymmetries, was indeed in keeping
with the universal unfolding theory.

Finally we discussed the fact that even when the perturbed pitchfork is not
perfectly connected, the alternative path way be reached by the system but this
required some activation energy, supplied perhaps from adequate noise, to be
used. This path bias would be very important for the development of devices
hoping to replicate certain features of the spontaneous symmetry breaking
phenomenon with balanced asymmetric inputs, the system path choice being
favoured one way may hinder, or in fact be of benefit, to such applications.

In the second section of this chapter we derived a new model which predicts
the circulating intensities of counter-propagating fields while taking into ac-
count field polarisation effects. This system of four coupled equations predicts
nested symmetry breaking bifurcations, which lead to the new situations of
four symmetry broken fields, u1 = u2 = v1 = v2, and the strange case of two
asymmetric fields and a pair of symmetric fields, such as u1 = u2 6= v1 6= v2.
This system provides a very rich range of dynamics for further investigation
with more degrees of freedom for symmetry breaking, which may be very useful
for applications requiring more diversity than those based on the two equation
system.
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“The best laid schemes o’ mice
an’ men / Gang aft a-gley.”

– Robert Burns, To a Mouse
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Chapter 8

Conclusions

During this thesis the theoretical models of various passive Kerr ring res-
onator setups were studied; primarily a system involving two counter circu-
lating, linearly polarised, light fields and a system of two co-propagating light
fields which are orthogonally polarised with respect to one another. Although
not contained specifically within this thesis, many of the theoretical results
which are contained were later experimentally verified by collaborators and
details on these experiments can be found in the papers which complement
many of these chapters. The main findings of this dissertation are summarised
here.

It had been shown early on that a spontaneous symmetry breaking of the
two systems, where two circulating fields go from having equal intensities to
different intensities, with one field becoming dominant while the second is sup-
pressed, can be described, in each case, by two coupled Lorentzian equations
which model the intensities of the two circulating components. In Chapter 3
we showed that these equations can be manipulated to allow for the visuali-
sation of this symmetry breaking in a multitude of ways with some providing
mathematical or aesthetic advantages over others.

Following the restoration of a ‘slow’-temporal derivative to these coupled
equations, the system was subjected to a linear stability analysis which con-
firmed that the spontaneous emergence of asymmetric solutions was combined
with a loss of stability of the symmetric solution, thus explaining experimen-
tal results showing asymmetry emerging naturally in favour of the symmetric
possibility. This analysis, and the resulting eigenvalues, also showed that, for
appropriate parameters, even the asymmetric solutions can become unstable,
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leaving the system susceptible to oscillations.

The predicted local susceptibility of the system to oscillations prompted
study into how these oscillations actually evolved on a macroscopic level. In
Chapter 4, it was not only found that the predicted growing oscillations even-
tually cease their growth due to saturation, but also that the resulting oscil-
lations were very diverse in their nature. It was shown that simple sinusoidal
oscillations can undergo sequential period-doubling bifurcations, upon appro-
priate changes to input conditions, which had the potential to eventually lead
to deterministic chaos, the collision of Feigenbaum cascades, and crises.

One of the more interesting results to emerge from this study into poten-
tial system oscillations came from the spontaneous emergence of order within
chaos. This spontaneous order was found to be brought about by the merging
of two attractors and physically leads to the periodic interchange between the
dominant and suppressed roles which the two circulating fields take, implying
a partial symmetry restoration in the system.

In Chapter 5 we then went on to generalise the analysis of the coupled
equations describing the two ring resonator setups to include arbitrary self-
and cross-phase modulation. This expanded the theoretical predictions to en-
capsulate ring resonators made from a multitude of different Kerr materials
and states of matter, for example hollow fibers filled with a Kerr liquid or gas.

Variations in the self- and cross-phase modulation strengths were found to
not only alter the required conditions on the laser input to observe symmetry
breaking, but also to lead to other useful phenomenon such as a theoretically
infinite symmetry broken region (where no symmetry restoring bifurcation
occurred) and the ability to generate symmetry broken solutions below the
threshold for symmetric optical bistability.

Generalisations to the linear stability analysis were also made in Chap-
ter 5, and this revealed that the range of system susceptibility to oscillations
increased with the cross-phase modulation and that higher values could also
lead to broader regions where the periodic switching of the dominant and sup-
pressed roles remained viable before reversion to chaotic oscillations.

Following the restoration of a second temporal derivative in Chapter 6, this
time a second order fast-time derivative describing group velocity dispersion,
the set of equations studied became a coupled set of Lugiato-Lefever equations.
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This allowed for the study of temporal evolutions which took place on the time
scale of one resonator round-trip. The validity of this model was however now
limited to only the case of two co-propagating fields with orthogonal polarisa-
tions. It was solved using the split-step Fourier method.

In this chapter we showed that temporal cavity solitons form under certain
circumstances in the coupled system and, through scanning values of the cav-
ity detuning, were shown to not only also experience spontaneous symmetry
breaking but for this breaking to actually occur at lower conditions than that
required by the homogeneous solutions.

Analogous to the homogeneous field oscillations, the peaks of the TCS
were also found to oscillate, or breathe, under certain circumstances. These
breathing dynamics were found to have a similar diversity to those of the ho-
mogeneous solutions.

In the Chapter 7 two short projects were addressed to complement this
thesis’ analysis. The first part of this chapter concerned the balancing of
asymmetric input conditions in an attempt at restoring a pitchfork-like bi-
furcation for the system. It was found that while a bifurcation is recovered
through the proposed balancing procedure, this bifurcation was a perturbed
variation of the standard symmetry breaking pitchfork bifurcation. The re-
stored bifurcation was a variant from the universal unfolding of the pitchfork
bifurcation and could be described as a connected perturbed pitchfork bifur-
cation. This restored the possibility for either field to take up the dominant
or suppressed role within the system.

Away from the bifurcation restoring values of the balancing parameters,
the bifurcation only allows for the system to follow one of the possible two
stable branches of the unconnected perturbed pitchfork, that is unless some
non-zero activation energy, perhaps supplied by small fluctuations, allows for
the system to make the jump between paths.

The second part of Chapter 7 concerned itself with the derivation of a
model which combined the two systems of primary interest; that is it modeled
two counter-propagating fields while simultaneously allowing for field polari-
sation considerations.

The model derived could not be solved for homogeneous stationary states
in the manner employed in previous chapters of this thesis due to the inclusion
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of complex conjugate terms within the nonlinearity itself; it could however be
evolved by using a four way coupled Runge-Kutta method.

Numerical integration of the four-equation system for a scan of the input
intensity revealed that, atop the symmetric and asymmetric solutions typical
of the degenerate two-equation system, there was the possibility for ‘nested’
symmetry breaking bifurcations. This led to the possible case of a fully asym-
metric system, where all circulating field components were asymmetric to each
other, and also to the interesting case of a partially symmetric system, where
two of the fields pair up and become symmetric while the remaining two are
left asymmetric both to the symmetric pair and to each other.

This combined model and its resulting solutions provides a potentially very
fruitful area for additional research. For example a linear stability analysis of
the system would be revealing in terms of the potential for highly complex
oscillations and a study of the required input conditions for this nested sym-
metry breaking and partial symmetry restoration may be of great interest to
experimentalists looking to use the phenomenon to create devices with higher
degrees of freedom over the two equation system.
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“Just go forward in all your beliefs
and prove to me that I am not mistaken in mine”

– The First Doctor, Dr Who
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Appendix A

Numerical Methods

Recall the the system of coupled purely temporal LLEs:

∂E±
∂t

= Ein − E± − iθE± − iη
∂2E±
∂τ 2

+ i
(
A|E±|2 +B|E∓|2

)
E± (A.1)

To solve this PDE system we employed a combination of two known numerical
methods for integration, 2nd order Runge-Kutta and the split-step Fourier
method. For those who may not be familiar with these methods we give here
a brief introduction to these methods before explaining their combination and
ultimately their application to our studied coupled systems.

A.1 An Introduction to 2nd Order Runge-Kutta

Integration

The Runge-Kutta method of integration is very well known and follows a
similar idea to that of Euler’s method, it solves an initial value problem by
propagating the solution by a sequence of small steps, but rather than evalu-
ating the studied function only once at each step it evaluates it a number of
times. For those interested in the history development and derivation of the
Runge-Kutta method a nice paper on the subject is Ref. [184].

Most will be aware that there are higher order Runge-Kutta methods which
boast better accuracy, however there is good reason for us only using 2nd order
here which should hopefully become apparent later.

The 2nd order Runge-Kutta method with a step size of h can be used to
solve problems of the form
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dy

dx
= f(x, y), y(x0) = y0 (A.2)

by using the recurrence relation

yn+1 = yn + k2 +O(h3), n = 0, 1, 2, ... (A.3)

with

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

(A.4)

Since the error per step (local error) is O(h3), the total, or global, error in
integrating H = Nh over N steps is given by NO(h3) = HO(h3)/h = HO(h2).
The method’s error is there for 2nd order with respect to the integration step
size.

A.2 An Introduction to Split-step Fourier In-

tegration

The slightly less well known Split-step Fourier method is commonly used to
solve nonlinear PDEs. It treats the linear and nonlinear aspects of the PDE
differently making use of Fourier space to simplify some of the operations
required for solving each subsequent integration step. If more detail is required
than is briefly described here, a useful introduction to the method, along with
example applications, was found in Ref. [185].

One starts the method by splitting the PDE into the linear and nonlinear
parts, such that the PDE may be expressed like so

∂F

∂t
= [D̂ + N̂ ]F + C (A.5)

where D̂ and N̂ denote the operators which, when applied to F , restore the
linear and nonlinear parts of the original PDE respectively and C denotes any
constant terms.

The Baker-Hausdorff formula can show that the error involved in treating
the two operators as if they commute is O(h2) [186]. Making this treatment,
the solution after a small integration step h = dt can be found by first ac-
counting for D̂ and then N̂ [185].
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On a side note, due to the just established error order of the split-step
Fourier method, it should now become apparent as to why we only later use
this method in combination with the 2nd order Runge-Kutta method. If we
utilised the 4th order Runge-Kutta method then the overall error of the com-
bined integration would still be O(dt2), due to the split-step’s error, and com-
putational time would be needlessly increased due to the added complexity of
the 4th order Runge-Kutta method.

Returning to the split-step Fourier method itself, we focus initially on the
linear part of the PDE, which has an analytical solution in the frequency
domain.

FD, n = edtD̂Fn (A.6)

To make use of this solution we must employ the Fourier Transform F
defined by

F̂ (k) = F(F ) =

∫ ∞
−∞

F (τ)e−2πkτdτ (A.7)

with the inverse defined as

F (τ) = F−1(F̂ ) =

∫ ∞
−∞

F̂ (k)e2πkτdk (A.8)

where k is the associated wave number of the transformed variable.
A useful trick, which will later be employed in solving Eq. (A.1), when

using the split-step Fourier method is that:

F
(
dF

dτ

)
= ikF̂ , F

(
d2F

dτ 2

)
= −k2F̂ (A.9)

Overall this method amounts to the integration, by a small step, of the linear
part of the PDE being expressed in real space by

FD, n = F−1F(edtD̂Fn) (A.10)

Next, the nonlinear operator and constants must be taken into account
which we do by using the 2nd order Runge-Kutta method described above. In
this way one obtains the full integration method for a small step dt:

Fn+1 = FD, n + k2 +O(dt2), (A.11)

with
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k2 = dt

(
N̂

[
FD, n +

k1

2

]
+ C

)
,

k1 = dt
(
N̂ [FD, n] + C

)
.

(A.12)

A.3 Integrating Coupled LLEs

In the case of coupled purely temporal LLEs eq. (A.1) we apply these methods
by first splitting the two equations into linear, nonlinear and constant parts:

D̂ = −iη ∂
2

∂τ 2
, N̂ = −1− iθ + i

(
A|E±|2 +B|E∓|2

)
, C = Ein. (A.13)

Note: although not strictly nonlinear, we may move −1−iθ from D̂ to N̂ since
it is the ∂2

∂2τ
term that we wish to isolate.

Then, by employing Eq. (A.10), we begin the Split-step Fourier method:

E±D(τ, t+ dt) = F−1F(edtD̂E±)

= F−1F
[
e
dt
(
−iη ∂2

∂τ2

)
E±

]
= F−1

[
eidtηk

2F(E±)
] (A.14)

We proceed to utilise the Runge-Kutta method to obtain:

E±, n+1 = F−1
[
eidtηk

2F(E±, n)
]

+ k±2 +O(dt2) (A.15)

with

k±2 = dt

[(
−1− iθ + iA

∣∣∣∣E±D, n +
k±1

2

∣∣∣∣2 + iB

∣∣∣∣E∓D, n +
k∓1

2

∣∣∣∣2
)(

E±D, n +
k±1

2

)
+ Ein

]
k±1 = dt

[(
−1− iθ + iA |E±D, n|2 + iB |E∓D, n|2

)
E±D, n + Ein

]
(A.16)

Equation (A.15) then forms the recurrence relationship used to simulate
the evolution of Eq. (A.1) throughout this thesis. This may be augmented
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with a random component to simulate noise within the system. Note that in

early chapters, where ∂2E±
∂τ2

= 0, only the Runge-Kutta method is required for
integration, since there is no need to split into linear and nonlinear parts, with
the recurrence relation given by:

E±, n+1 = E±n + k±2 +O(dt2) (A.17)

with

k±2 = dt

[(
−1− iθ + iA

∣∣∣∣E±n +
k±1

2

∣∣∣∣2 + iB

∣∣∣∣E∓n +
k∓1

2

∣∣∣∣2
)(

E±n +
k±1

2

)
+ Ein

]
k±1 = dt

[(
−1− iθ + iA |E±n|2 + iB |E∓n|2

)
E±n + Ein

]
(A.18)

The combined model discussed in the final chapter of this thesis is also
solved by the Runge-Kutta method where the recurrence relation now incor-
porates the four fields in a manner not too dissimilar to Eq. (A.17).
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