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Abstract 

The diagnostic pathway for brain tumour patients is currently ineffective. As there 

are no methods in place for the early detection of brain cancer, the affected patients’ 

average life expectancy is reduced by 20 years, which is the highest of all cancer 

types. Thus, the development of rapid, low-cost platforms in primary care to triage 

patients for medical imaging may reduce diagnostic delay, whilst potentially 

providing cost-effective infrastructures for health care providers. Attenuated total 

reflection Fourier transform infrared (ATR-FTIR) spectroscopy has demonstrated the 

ability to diagnose a wide range of pathologies with high accuracies, but the 

technique is yet to make it into a clinical setting as a regulated spectroscopic test. 

Recently, innovative high-throughput accessories have been developed which could 

accelerate clinical translation. The research described in this thesis focuses on the 

development of the technique by examining the diagnostic ability for the detection 

and stratification of brain tumours.  

 

Initially, the novel high-throughput ATR-FTIR technology was validated in one of 

the largest spectroscopic studies to date, by separating brain cancer and non-cancer 

patients with balanced accuracies of 90%, which is comparable to traditional fixed 

diamond crystal methodology. Distinguishing brain tumour types with serum 

spectroscopy would be useful for neurologists, as some are difficult to discriminate 

through medical imaging alone. For example, the highly aggressive glioblastoma and 

primary cerebral lymphoma (PCNSL) can appear similar on magnetic resonance 

imaging scans. The differentiation between glioblastoma and PCNSL patients 

achieved a sensitivity and specificity of 90.1% and 86.3%, respectively. Several 
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other types of brain lesions were then distinguished with balanced accuracies >80%. 

A reliable blood serum test capable of stratifying brain tumours may avoid the need 

for surgery in some cases, and could speed up time to definitive treatment.  

 

Rapid determination of a glioma patient’s IDH1 status facilitates vital neurosurgical 

decisions, such as pursuing with resection or opting for alternative therapeutics. 

Synchrotron-based infrared light has been utilised to probe brain tumour tissue 

microarrays and differentiate between IDH1-mutated and IDH1-wildtype glioma, at 

a sensitivity and specificity of 82.4% and 83.4%, respectively. Additionally, 

centrifugal filtration of patient serum was examined, with the aim of detecting the 

global epigenetic and metabolic changes associated with mutations in the IDH1 

enzyme. The filtration step ultimately improved the classification performance, by 

delivering a balanced accuracy of 69.1%. 

 

Finally, a health economic evaluation was carried out to examine the associated costs 

and benefits of the blood serum test in clinical practice. Based on recent prospective 

clinical data, it was found that test costs up to £100 would likely be considered cost-

effective, whilst primary care tests set at £75 would be cost-saving to the health 

services. When comparing the additional costs required for implementing a brain 

tumour subtype test, the cost-consequence analysis reported an estimated saving of 

~£138,075 per 10,000 patients, equating to a potential saving of ~£568 per individual 

cancer case. Furthermore, this could prevent up to 8 unnecessary surgeries, per 100 

patients. Therefore, a brain cancer diagnostic test that can also stratify tumour type 

would have a profound impact for patients, as well as the health services. 
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Chapter 1 

1. Introduction 

1.1 Cancer  

The term ‘cancer’ refers to a disease that is caused by uncontrolled cell division in 

the human body. It arises from genetic mutations in a person’s DNA, which disrupts 

normal cell behaviour. These mutations can happen by chance, be caused by external 

factors - such as tobacco smoke and chemicals - or can be inherited [1]. The body 

normally maintains a healthy balance of cells, where cell division and cell death 

occur simultaneously. The regular life cycle of a cell can be described by a four stage 

process: the cell prepares for DNA synthesis (G1), the nucleic material is synthesised 

(S), the duplicated nucleic content is condensed and arranged for cell division (G2), 

then finally mitosis occurs which divides the cell into two new daughter cells (M). In 

cancer patients the genetic mutation overstimulates the cell cycle, meaning cells 

begin to divide uncontrollably and form a cluster of cells known as a tumour [2]. 

These tumours can be either cancerous (malignant) or non-cancerous (benign). 

Benign tumours are generally slow-growing, thus do not cause as many issues as 

they do not invade other body tissues. Following surgical removal, they rarely form 

again and are not usually life-threatening [3]. Conversely, malignant tumours grow 

much more quickly (Figure 1.1). They often damage nearby tissues and spread to 

other parts of the body through the bloodstream or lymphatic system forming 

secondary tumours by a process called ‘metastasis’.  

 

 



 2 

 

 

 

 

 

 

 

Figure 1.1 – Example of a tumour growth. Adapted from ref [4]. 

 

There are five main categories of cancer which can be grouped depending on where 

they originate: carcinoma, sarcoma, leukaemia, lymphatic system cancers and central 

nervous system (CNS) cancers [5]. The most common category is carcinoma, which 

originate in the epithelial tissues; these are found on the skin and line the body 

cavities and all the organs inside the body. Sarcomas are a group of rare cancers that 

differ to carcinoma as they arise from a different kind of tissue, originating in 

connective tissues such as bones, muscle, cartilage and tendons. Leukaemia occurs in 

bone marrow and result in an abnormal build-up of white blood cells in the blood. 

Lymphoma and myeloma are lymphatic system cancers; lymphoma starts from cells 

in the lymph glands, lymphatic vessels and the spleen, whereas myeloma originates 

in plasma cells. Finally, CNS cancers are those that start in the cells of the brain or 

the spinal cord.  

 

 

 

 

Normal cells Cancer cells dividing 

A tumour is forming 
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1.1.1 Tumour Development 

The development of a tumour is a multistage process; initiation, promotion and 

progression (Figure 1.2). The point at which the DNA becomes damaged or mutated 

is the initiation stage. During promotion, these irreversible genetic mutations begin 

to form a benign tumour through clonal expansion of the altered cells. As the cells 

proliferate, the tumour expands and transforms into a malignant lesion. Thus, the 

levels of oxygen and nutrients available to the healthy cells become limited causing 

cell death, allowing the tumour to break through nearby tissues.  

 

Figure 1.2 – Carcinogenesis. Adapted from ref [6]. 

 

Naturally, normal cells can exhibit self-destruct behaviour when their genes are 

damaged in a process known as programmed cell death (PCD). One of the major 

PCD mechanisms is described as apoptosis, which eliminates unhealthy cells from 

the body [7]. Apoptosis is a highly complex process, but current research suggests it 

can occur through two distinct pathways: extrinsic or intrinsic. The extrinsic pathway 

is initiated by a death-inducing signal complex, which forms in response to the 

interaction of extracellular ligands, such as fatty acid synthase (FAS), and the cell 

surface receptors. The intrinsic pathway involves stimuli producing intracellular 

signals that cause changes in the inner mitochondrial membrane, releasing proteins 

that activate the apoptotic pathway, such as cytochrome C [8]. Each require specific 
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triggering signals to activate their own initiator caspase (protease enzyme), which 

will go on to activate caspase-3 and the execution pathway. Following the cleavage 

of caspase-3, the cytoskeletal and nuclear proteins start to degrade, the DNA cells 

occurs [9].  

 

However, cancer cells have the ability to override these physiologic signals that 

instruct them to undergo apoptosis, allowing them to continue to grow faster and 

become more aggressive [4]. There are a variety of mechanisms that allow them to 

disable the apoptotic pathways. Cancer cells can suppress the accumulation of pro-

apoptotic proteins, such as Bax, or stimulate the overexpression of anti-apoptotic 

proteins, namely BCL-2 [10]. The expression of both Bax and BCL-2 are controlled 

by the tumour suppressor gene, p53, and a mutation or loss in the p53 gene can give 

rise to a stable mutant protein. The accumulation of this mutant p53 protein is 

regarded as a hallmark of cancer cells, as it is found in around 50% of malignant 

tumours [11,12]. 

 

1.1.2 Metastasis 

In an ideal scenario cancer would be detected at the earliest stage of formation, and 

the patient would have a much better chance of survival. Although in reality, many 

cancers are not diagnosed until a later stage by which point the primary tumour may 

have spread to a secondary site to form another tumour – this development is called 

metastasis [13]. Metastatic cancer is far more difficult to treat as it is often hard to 

locate the original primary tumour, thus cannot determine the optimal treatment. 

Metastasis occurs when the primary tumour breaks into nearby tissues, releasing 
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single cancer cells that travel around the body through the bloodstream or lymphatic 

system [14]. These cells stop in small blood vessels and move into surrounding tissue 

at the ‘secondary’ location, dividing and growing into a new tumour. New blood 

vessels begin to grow around the newly formed tumour, supplying the nutrients 

required for expansion. Cancer can spread to any part of the body, but some sites are 

more common than others. For example, primary bowel cancer often spreads to the 

liver (Figure 1.3), whereas brain metastases commonly arise from primary lung or 

breast cancer [15]. It is thought that small attractant molecules – called chemokines – 

are involved in directing tumour cells to their preferred metastatic sites [16].  

 

 

Figure 1.3 – Metastasis: a) cancer cells moving through the bloodstream and b) 
metastatic liver cancer. Adapted from refs [17,18]. 
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1.1.3 Cancer Staging 

There are many staging systems relating to different cancer types. Most of these are 

based on location and size of tumour, cell type, metastasis and tumour grade [19]. 

The TNM staging system is the most widely used, as it can account for the majority 

of common cancers, with the exception of CNS cancers and leukaemia [20]. Within 

this system, the T describes the size and extent of the tumour, N refers to the nearby 

lymph nodes that have cancer and M describes the presence of metastasis. Each of 

these categories are given a value, e.g. Tx Ny Mz, and are then combined to provide 

an overall stage of 0-IV (Table 1.1) [19]. 

 

Table 1.1 – Generic cancer staging. 

Stage Meaning 

0 Known as carcinoma in situ, not yet cancer. Abnormal cells 
present but have not spread to nearby tissue 

I, II and III Cancer is present. The larger the tumour and the more it has 
spread into nearby tissues, the higher number assigned 

IV The cancer has spread to other parts of the body (metastasis) 

 

1.1.4 Tumour Grading 

Tumours are assigned a ‘grade’ as an indication of how quickly it is likely to grow 

and spread. By removing part of the lesion through a biopsy, doctors can examine the 

tissue under a microscope. The tumour grades are classified on the appearance of the 

cancerous cells and how similar they are to the normal, healthy cells. In some 

cancers, the tumour grade becomes extremely important when deciding which 
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treatment would be best suited, therefore some of the more complex cancers have 

their own specific grading system, i.e. prostate, breast and brain cancer [21]. In 

general, tumours are graded as 1, 2, 3 or 4 depending on the severity. Low grade 

tumours (grade 1) often grow and spread slowly, and appear similar to normal cells 

and tissue under microscopy examination – described as well-differentiated. High 

grade tumours (3 and 4) have abnormal cells and tissue structures and are known as 

poorly differentiated or undifferentiated - these grow aggressively and spread much 

faster than low grade tumours [22]. 

 

1.1.5 Statistics 

There are over 100 different types of cancer, some of which are more common than 

others [23]. In 2014 in the UK, there were approximately 357,000 new cases of 

cancer diagnosed, equating to roughly 980 a day. More than half of all new cases 

were represented by only 4 cancer types; breast (15%), prostate (13%), lung (13%) 

and bowel (11%). Some cancers are more difficult to diagnose, mainly due to lack of 

early symptoms. Therefore, almost half of all cases were diagnosed at a late stage, 

which makes it less likely for the patients to survive. There were around 163,000 

deaths caused by cancer in 2014, and it now causes more than a quarter of all deaths 

in the UK [24]. The cancer with the highest mortality rate in adults in the UK is lung 

cancer, whereas in children and teenagers, deaths from brain and other central 

nervous system cancers are more prevalent [25]. The number of people living with 

cancer in the UK is said to be increasing by 3% every year, and it has been projected 

by Macmillan that by the year 2030 - based on the increasing and aging population - 

there will be approximately 4 million people living with cancer in the UK [26].  
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1.1.6 Risk Factors 

One of the main risk factors for cancer is increasing age. It is thought that over time 

there is an increase in the damage to DNA, i.e. replication errors, and with more gene 

mutations comes a higher likelihood of tumour development [27]. Incidence 

increases with age for the majority of cancer types, and likewise mortality rates. 

Cancer Research UK [28] reported that between the years of 2012-2014, only around 

1% of cases in the UK were found from children and young adults aged 0-24. Adults 

aged 25-29 accounted for a tenth of all new cancer cases. As expected, incidence 

rates are far higher for adults over the age of 50, with 50-74 and 75+ year olds 

contributing 53% and 36% of all new cases, respectively (Figure 1.4).  

 

Figure 1.4 – Cancer incidence by age in the UK (2012-2014).  
Duplicated from ref [28]. 

 

Family history is another major factor related to the progression of cancer, with gene 

mutations being passed through familial generations. There has been a vast amount 

of research into hereditary deposition of cancer. Lynch syndrome is a hereditary 
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condition that is caused by a mutation in one of the mismatch repair (MMR) genes; 

such as MLH1, MSH2, MSH6, PMS1 and PMS2. Those who inherit this condition are 

at high risk of developing various different cancers, including bowel, brain and 

pancreatic cancer. It is thought that if a person has Lynch syndrome, their close 

relatives will have a 50% chance of having the same mutation [29]. Likewise, Li-

Fraumeni syndrome (LFS) is caused by an alteration in the tumour suppresser gene 

p53, and has been linked to bone, breast and brain cancer, as well as soft tissue 

sarcoma and acute leukaemia [30]. 

 

There are various external influences that are also thought to contribute to cancer 

causation: tobacco smoke; chemical and radiation exposure; viruses and bacteria; 

alcohol; obesity and lack of physical exercise [31]. These are the elements that are 

described as ‘general’ cancer causes but  some types of cancer have specific risk 

factors that are more relatable. For example, a lung cancer diagnosis would be more 

likely for a person who smokes cigarettes; liver cancer would be a higher threat for 

those who consume a large amount of alcohol on a daily basis; whereas melanoma 

skin cancer would be more probable for people who expose themselves to large 

amount of UV radiation – e.g. sun exposure or tanning beds.  
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1.2 Brain Cancer 

1.2.1 Statistics 

Brain cancer kills more children and adults under the age of 40 than any other cancer 

[32]. In 2014, there were around 11,000 new cases of brain tumours in the UK, 

which were the cause of approximately 5,200 deaths [33]. As brain cancer has a 

relatively low incidence rate compared to other cancers, such as breast and lung 

cancer, it leads to lower overall mortality rates which masks its true deadliness. The 

average number of years of life lost (AYLL) is a measure of burden of cancer to the 

patient, and out of all cancer types, brain tumour patients have the highest at 20.1 

years [34].  

 

1.2.2 The Central Nervous System 

The brain is one of the most complex and remarkable organs in the human body, 

being responsible for the vast majority of the body’s functions [35]. The large jelly-

like organ contains millions of nerve cells and is protected by the skull (cranium). 

The central nervous system (CNS) is comprised of the brain and the spinal cord. The 

nerve network within the spinal cord allows efficient communication between the 

brain and rest of the body. Small layers of tissue, called meninges, cover and protect 

the brain and spinal cord, and cerebrospinal fluid (CSF) assists by cushioning the 

brain [36]. The brain is split into four main parts; cerebrum, cerebellum, brain stem 

and pituitary gland. The cerebellum, located at the back of the brain, controls 

coordination and balance. The brain stem is responsible for heart rate and breathing, 

and the pituitary gland manages hormone production. The cerebrum is the largest 
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part of the brain, consisting of two hemispheres – the right half controls the left-hand 

side of the body and vice versa. Each hemisphere can be split further into four sub-

sections; frontal lobe, temporal lobe, occipital lobe and parietal lobe (Figure 1.5) 

[37]. 

 

 

Figure 1.5 – Lobes and functions in the brain. Duplicated from ref [37] 

 

1.2.3 Primary Brain Tumours 

Abnormal growths that originate in the brain are known as primary brain tumours. 

There are over 130 different types of primary brain tumours, as classified by the 

World Health Organisation (WHO) [38]. As a general rule, the neoplasms are 

classified according to the type of cell they started from and its location in the brain 

[39]. 
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1.2.3.1 Glioma 

The majority of primary brain tumours arise in the glial tissue that surround nerve 

cells in the brain. These lesions are usually malignant and are known as gliomas. 

Gliomas can be further separated depending on which type of cell the tumour 

originated (Figure 1.6). For example; an astrocytoma arises from the brain’s 

supportive cells (astrocytes), an ependymoma develops from the ependymal cells 

that line the cavities in the brain, and an oligodendroglioma arises from the cells that 

produce fatty covering of nerves (oligodendrocytes).  

Figure 1.6 –  The different types of glial cells and their distinct glioma tumour types. 
Replicated from ref [40]. 

 

The most common, and most aggressive, primary neoplasm found in adults is an 

astrocytic tumour called glioblastoma (GBM). Around 90% of diagnosed GBMs are 

primary tumours that have formed through carcinogenesis, the remainder are 

secondary tumours originating from lower-grade neoplasms [41]. Examples of 

common gliomas are listed in Table 1.2, with their corresponding WHO grade – I 

and II grow slowly and are known as ‘low-grade’ gliomas, whereas grade III and IV 

are described as ‘high-grade’ and are more fast-growing [42]. 
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Table 1.2 – Types of gliomas with their corresponding WHO grades [42]. 

WHO Grade Glioma Types 

I Pilocytic Astrocytoma Ganglioglioma Subependymoma 

II Diffuse Astrocytoma Oligodendroglioma Ependymoma 

III Anaplastic Astrocytoma Anaplastic 
Oligodendroglioma 

Anaplastic 
Ependymoma 

IV Glioblastoma 

 

The complexity of CNS tumours is far greater than those found at other sites of the 

body, therefore WHO have derived a classification system specific to brain tumours 

[38]. Neoplasms were originally classified by their histological appearance (grade I-

IV) and their cell type. However, in 2016 a new classification system was established 

that includes sub-classes with molecular parameters, such as mutations in the 

isocitrate dehydrogenase (IDH) gene [43]. This aimed to assist treatment planning, as 

some molecular biomarkers have been shown to improve response to chemotherapy, 

leading to a greater patient prognosis [44–46]. 

 

1.2.3.2 Meningioma 

Meningiomas are primary CNS tumours deriving from arachnoidea cells – located in 

the meninges. They represent the most common benign intracranial neoplasm, with 

over 90% of meningiomas deemed to be non-cancerous [47]. Atypical (abnormal 

cells) and malignant meningiomas are much less common; 5-7% and 1-3%, 

respectively. However, they are extremely aggressive, and after resection the 

probability of recurrence is high (~60%) [48]. 
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1.2.3.3 Other Central Nervous System Tumours 

There are various other types of CNS tumours that are much less common. 

Medulloblastoma (MB) is a malignant tumour that starts in the cerebellum. MB 

neoplasms are rarely found in adults, but are the most frequently diagnosed 

malignancy in children [49]. The exact cause of this unusual trend is currently 

unknown, but recent studies have suggested that childhood and adult MB are 

genetically different diseases, with more mutations arising in children than adults 

[50]. Tumours originating in the pineal gland, such as germinoas and teratomas, are 

also quite rare, but are more often found in those aged 10-20. Haemangioblastomas 

are slow-growing, develop in the lining of blood vessels and are usually benign. 

Acoustic neuroma and pituitary adenoma are also both usually non-cancerous [51]. 

 

1.2.4 Metastatic Brain Tumours 

Brain metastases are tumours that originate in a primary site outside the CNS, and 

then spread into the brain via the bloodstream. Metastatic neoplasms in the brain are 

much more common than primary brain tumours and it has been reported than there 

are 10 times the amount of brain metastases than primaries [52]. A variety of 

different malignancies can metastasise to the brain, but it generally depends on the 

location of the primary site. The majority come from primary tumours in the lung 

(40-50%) or breast (20-30%), although melanoma, gastrointestinal and prostate 

cancer have also been known to metastasise to the brain [53]. Metastasis only occurs 

once the cancer has progressed significantly, hence by the time it has spread to the 

brain the prognosis for the patient is often dismal [54]. 
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1.3 Current Diagnosis Procedure 

1.3.1 Brain Tumour Symptoms 

As symptoms are generally non-specific to brain tumours, it’s often difficult to 

diagnose patients early. The list of apparent symptoms is rather extensive, but one of 

the most common symptoms is intracranial pressure which is an increased pressure 

on the skull due to the growing neoplasm. As the skull cannot expand to allow more 

space for the tumour to grow, it presses against the cranium, which can lead to 

persistent headaches, nausea and convulsions. Other symptoms are dependent on the 

location of the tumour within the CNS, summarised in Table 1.3 [55].  

 

Table 1.3 – Common brain tumour symptoms [55,56]. 

Location Symptoms 

Brain stem Uncoordinated walking, double vision, facial weakness 

Cerebellum Uncoordinated walking and speech, nystagmus, stiff neck, 
vomiting, 

Frontal lobe Loss of smell, paralysis on one side of body, personality 
changes, vision loss 

Occipital lobe Gradual loss of vision in one or both eyes 

Temporal lobe Impaired speech and loss of memory 

Parietal lobe Impaired mental ability, lack of recognition, inability to write 

 

Unfortunately, there will be many people worldwide living with a brain tumour that 

are not yet aware of their condition. In many cases tumours are asymptomatic, 

meaning patients are diagnosed in emergency presentations. It has recently been 

reported that over 900,000 people are thought to be living with an asymptomatic 

brain tumour in the USA [57]. For those who do become symptomatic, these effects 

are usually only displayed when the tumour has progressed to a late stage, making it 
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difficult for early diagnosis. It has been documented that 70% of brain tumour 

patients have shown signs of persistent headaches [58]. Yet it is uncommon for 

isolated headaches to be the presenting symptom of a brain tumour, meaning general 

practitioners (GP) only refer 2-3% for a consultation with a neurologist [59]. This 

leads to patients returning to their GPs multiple times before a referral is made, by 

which time the tumour may have progressed causing a worsened prognosis. If a 

reliable, quick, non-invasive diagnostic test could be implemented into the clinic, it 

could enable earlier detection and ultimately save lives.  

 

1.3.2 Magnetic Resonance Imaging  

When a GP suspects a brain tumour, they will refer the patient for a number of 

medical imaging examinations for confirmation. Magnetic resonance imaging (MRI) 

is one of the more commonly used techniques. MRI uses a combination of magnetic 

fields and radio waves to produce a three-dimensional image of the brain. It is a 

valuable technique as MRI is highly sensitive to any abnormalities, bone is 

transparent, and no ionizing radiation is used. Examples of the resulting MRI images 

from brain tumour patients are shown in Figure 1.7. The main downside of MRI is 

that the scans are costly - a single MRI scan costs the UK’s National Health Service 

(NHS) on average £165 [60]. They are also time consuming with full body scans 

lasting over an hour, and false positives have proven to be an issue [61]. One study 

reported that 11% of brain tumour patients received a false positive result of either 

primary or metastatic cancer, when tested solely by MRI [62]. Furthermore, it’s often 

difficult to distinguish between various types of brain lesions by MRI alone. For 

example, GBM, primary central nervous system lymphoma (PCNSL) and brain 
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metastases have been confused in various cases [62,63]. Functional MRI (fMRI) 

scanners have recently been reviewed, which have the additional benefit of detecting 

areas of the brain with increased blood flow. This technique tracks oxygen in the 

brain, and many studies have suggested implementing fMRI into standard practice 

could be highly beneficial in preoperative planning, with the potential to reduce post-

operative morbidity [64,65]. 

 

 

Figure 1.7 – MRI scans of various brain tumours; A: Grade II Astrocytoma, B: Grade 
III Astrocytoma, C: Grade IV Astrocytoma and D: Glioblastoma Multiforme.  

Adapted from ref [66]. 
 

1.3.3 Computed Tomography 

Another common imaging technique – often used in unison with MRI – is computed 

tomography (CT). This technique uses computer processed x-rays to create 

tomograms of the human body, which are essentially images of bones, tissues and 

blood vessels. It can be advantageous as analysis is faster and cheaper than MRI – on 

average around £85 per scan - but the patients are exposed to higher amounts of 

radiation, which has caused some concern in the diagnostics field [67–69]. It is 

thought to be more of a health issue for those of a younger age, as they have an 

increased risk of low-dose radiation [70].  
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1.3.4 Other Imaging Techniques 

A more specialised imaging technique that provides details of the complete 

chemistry and metabolic activity of the human body is positron emission tomography 

(PET). PET uses short-lived radioactive substances, such as fluorodeoxyglucose 

(FDG), to produce 3D images of the area of concern [71]. This is often used after an 

initial MRI or CT scan in preparation for biopsy. PET scans are useful for focusing 

on a specific region of interest, aiding full resection of the tumour, without the 

unnecessary removal of healthy tissue. Hybrid instruments allow the use of two 

techniques in a single instrument – PET is usually coupled with CT however 

integrated PET/MRI has recently become an area of active research [72]. Gamma (g) 

emitting radioactive substances are used in single-photon emission computed 

tomography (SPECT). These radioactive tracers are injected into the patient’s 

bloodstream, which provides a 3-dimensional description of cerebral blood flow 

when linked to a CT scanner. SPECT has been shown to be helpful in distinguishing 

between grades of astrocytomas [73]. MR spectroscopy measures the levels of 

metabolites in the body, which can be helpful in diagnosing tumour type and 

aggressiveness. The blood flow into the tissues can be examined by perfusion MRI, 

which can be of use when assessing tumour grade, and can differentiate between 

dead tumour tissue and a recurrent neoplasm [74,75]. 
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1.3.5 Biopsy and Histopathology 

Histopathology is used to determine whether the tumour present is benign or 

malignant. Normally a small section of the neoplasm is removed during a biopsy, 

and the resected tissue is examined. Tumour histology provides information on the 

type and grade of the tumour, and the molecular features present [76]. The preferred 

method for removal of the tissue is a stereotactic brain biopsy as it is the least 

invasive. In this procedure, CT and MRI scans linked with 3-D imaging technology 

targets the tumour location, allowing accurate incision near the area of interest. A 

tiny hole is drilled into the skull and sample of tumour tissue is removed with a thin 

biopsy needle. Removal of non-diagnostic tissue is common, thus repeats are often 

necessary [77]. Stereotactic biopsies are not always possible depending on the 

location or severity of the tumour, and in reality, more invasive open biopsies are the 

most common. During an open biopsy a piece of bone is removed from the skull 

while the patient is under general anaesthetic, exposing the brain and allowing 

tumour removal. This is of higher risk compared to the stereotactic method and 

patient recovery time is generally much longer [78]. Once the sample of tumour 

tissue has been removed, it is examined under a microscope. The histopathological 

examination will determine what type of cells are present and enables tumour grade 

assignment [79]. The tumour tissue is stained with haematoxylin and eosin (H&E), 

which allows the analyst to clearly view the nuclei in a deep blue/purple colour 

(Figure 1.8). The nuclei exhibit both cell and cancer specific patterns, therefore are 

diagnostically valuable [80].   
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Figure 1.8 – Examples of microscopic features of diffuse gliomas: a) low-grade 
astrocytoma, b) anaplastic oligodendroglioma, c) small cell variant of glioblastoma 
with pseudo-palisading necrosis and d) large cell glioblastoma. All images stained 

with H&E. Adapted from ref [81]. 
 

Over the last few decades, the standard way of classifying brain tumours has been 

through their microscopic similarities and their levels of differentiation, based on the 

recommendations of WHO [42]. Lesions with low proliferative potential are termed 

grade I, which are commonly cured with surgery. Grade II tumours are well-

differentiated, exhibit rather low levels of proliferation, and start to become 

infiltrative. Grade III are often termed anaplastic, and they show clear signs of 

nuclear atypia (abnormal looking cell nuclei). In grade IV, such as GBM, there are 

an abundance of malignant cells which reproduce rapidly, and the formation of new 

blood vessels are often visible [82]. It is still often challenging to determine the exact 

cancer grade and stage solely through histopathology, mainly due to the lack of 

consensus between pathologists, and with intra- and inter-observer errors fairly 

common [83,84].  

 

1.3.6 Biological Markers 

A biological marker, or biomarker, has been defined by the National Cancer Institute 

as, “a biological molecule found in blood, other body fluids, or tissues that is a sign 

of a normal or abnormal process, or of a condition or disease” [85]. Biomarkers can 
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be used in various ways in oncology: estimating risk of cancer, screening, tumour 

differentiation, prognosis determination and predicting response to therapy [86]. 

They can be of great value in diagnosis when combined with medical imaging 

techniques, but when used as a stand-alone diagnostic they are not always reliable, 

due to the high frequency of false positives [87]. Currently, biomarker analysis is 

used in the clinic to identify specific types of cancer, including prostate and ovarian 

cancer. The list of potential biomarkers for brain cancer is broad (Table 1.4): 

proteins, nucleic acids, antibodies and gene mutations all exist as valuable biological 

indicators. Specifically in blood serum, it is thought that various oncoproteins, 

metabolites and a host of inflammatory markers may be elevated in brain cancer 

patients – such as pro- and anti-inflammatory cytokines. 

 

Table 1.4 – Genetic mutations and their clinical associations [74,90–94]. 

Genetic mutation Current Associations 

IDH1/2 mutations Oligodendroglial tumours, 
Positive prognostic factor 

1p/19q co-deletion Oligodendroglial tumours 

MGMT promotor methylation Alkylating agents e.g. TMZ 

ATRX deletion Astrocytic tumours, 
Not seen with 1p/19q deletion 

PTEN deletion Small cell phenotype of GBM with EGFR 
amplification and 10q loss 

EGFR amplification Reported in approx. 40% of GBM 

H3-K27M mutation Common paediatric glioma, poor prognosis 

BRAF  Favourable prognosis in paediatric and 
young adult low grade gliomas 
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Various studies have emphasised potential target biomarkers as an efficient 

diagnostic and prognostic tool; human cartilage glycoprotein-39 (YKL-40), matrix 

metallopeptidase-9 (MMP-9), glial fibrillary acid protein (GFAP) and receptor 

tyrosine phosphatase b (RPTPb) have all been documented as potential biomarkers 

for glioma, but are not currently used in the clinic [88]. Research has shown that the 

loss of function of TP53 is frequent in secondary GBM, whereas primary GBMs can 

be characterized by PTEN and EGFR alterations [89]. 

 

Recently there has been small number of biomarker tests introduced to 

neuropathology laboratories [95]. Currently one of the main analyses for brain 

tumours looks at the promoter hypermethylation of the O6–methylguanine-DNA-

methyltransferase (MGMT) gene – the MGMT methylation test [96]. Promoter 

methylation of the MGMT gene compromises DNA repair and allows alkylating 

agents, such as temozolomide (TMZ), to effectively harm the cancerous cells [97]. 

Hence, it is believed that those who possess methylated MGMT will benefit more 

from chemotherapeutic treatment. The 1p/19q test is aimed at differentiating between 

different types of oligodendrogliomas; the co-deletion of both the 1p and 19q 

chromosomes in tumour cells has been associated with a better outcome [98]. The 

IDH1/2 test may be conducted for glioma patients, as those with mutations in the 

isocitrate dehydrogenase (IDH1 and IDH2) enzyme are often predicted to have a 

greater prognosis than those with IDH-wildtype (non-mutated) lesions [99]. The 

BRAF test can be of use for patients diagnosed with an astrocytoma, to determine 

whether it is a grade I tumour (pilocytic astrocytoma) or a higher grade astrocytoma 

[95]. The WHO recently published a revised edition of their 2007 classification 



 23 

guidelines. Now tumours are classified based on both their histological appearance, 

and their molecular pathology. This allows differentiation between tumours of the 

same grade and origin that have molecular alterations. For example, genetic 

mutations in the R132H-IDH1 enzyme [43]. The presence of R132H-IDH1 can be 

established through immunohistochemistry (IHC) by applying the mIDH1R132H 

antibody to resected glioma tissue, as described in Figure 1.9 [100].  

 

 

 

 

 

 

 

 

 

Figure 1.9 – Microscope images of tissue microarray sections of an 
oligodendroglioma tumour with: a) standard H&E staining and b) stained with 

mIDH1R132H antibody, where IDH1-mutated cells exhibit a dark brown colour. 
 

However, the R132H-IDH1 expression is only present in a fraction of tumour cells in 

some diffuse gliomas, thus several sections of brain tissue are generally removed 

during biopsy to increase the chances of a reliable result. The addition of molecular 

parameters to the classifications should aid clinicians in treatment planning, and 

therefore provide patients with a greater prognosis. The current histopathology 

decision pathway (Figure 1.10) signifies the importance reliable detection of 

molecular signatures for the accurate diagnosis of gliomas.

a) b) 
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Figure 1.10 - Diagnostic approach for the histological and molecular classification of diffuse gliomas according to the 2016 WHO 
Classification of Tumours of the Central Nervous System. Replicated from ref [101].
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1.3.7 Current Pathway Issues 

The diagnostic pathway for the majority of brain tumour patients begins with a visit 

to their GP, where they can be referred to a oncology specialist for further 

examination within a two week period, if they meet current NICE guidelines, of sub-

acute progressive loss of neurological function [102]. That said, a reported 38% of 

patients living with a brain tumour visited their GP with headaches on 5 or more 

occasions before being finally diagnosed. With time being such a vital factor in 

tumour development, this statistic alone implies the current pathway is vastly 

ineffective. The severe lack of brain cancer-specific symptoms undoubtedly makes 

early detection more challenging. During the early stages of tumour development, 

symptoms can be minor at best, with many patients being asymptomatic. They 

become more evident with high-grade neoplasms, where seizures and vision 

impairment become more common, but by this point the tumour is already at an 

advanced stage. GP consultations are common for patients that are experiencing 

symptoms, but unfortunately in many cases diagnoses are made following 

emergency presentations. The Brain Tumour Charity has reported that 62% of 

patients are diagnosed in an emergency. Other routes to diagnosis include opticians, 

outpatient appointments and NHS walk-in centres [103]. One study reported the one 

year survival rate was significantly lower for those who presented as an emergency 

[104]. A typical timeframe of the current diagnostic pathway for brain tumours is 

illustrated in Figure 1.11, which highlights the significant wait that a symptomatic 

patient may have before receiving brain imaging. Even from this stage a full 

diagnosis may take a further 5 weeks [60], which is not ideal as an earlier diagnosis 

can have a huge impact on the effectiveness on treatment [103]. 
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Figure 1.11 – The diagnostic pathway for brain tumours. GP, general practitioner;  

MDT, multidisciplinary team; OPD, outpatient department. Replicated form ref [60]. 
 

Medical imaging techniques, such as MRI and CT, can be extremely beneficial for 

finding the exact location of tumours, but are a significant cost burden to the NHS. 

They are also prone to both false negatives and positives as they are subject to the 

experience and competency of the radiographer performing the scan [105]. Despite 

histopathological examination being the gold standard in confirmatory testing, it has 

also been found to exhibit some errors [106]. 

 

Ultimately, the main issue in the current pathway is late diagnosis. For cancer 

detection in general, it is widely accepted that an early diagnosis can greatly increase 

the chance for successful treatment and improve the patient’s outlook. Beyond the 

direct effects of increased survival rates, there is also the knock-on effect on quality 

of life. Earlier detection means the disease will be less advanced, so the patient has a 

better chance of being treated effectively and the outcome is more promising [107]. 
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This might not have the benefits of allowing the patient to live much longer, but it 

could mean the remainder of their lives are spent in relative comfort.  

 

The stress on NHS resources and cost of MRI and CT scans and may incentivise a 

GP to send away a patient complaining of headache for the first time, rather than 

referring them to a specialist for a full examination. Interestingly, a recent study 

found GP’s were of the opinion that ~30% of diagnostic delays experienced by 

patients in primary care may have been preventable, whilst one fifth of GP’s 

advocated that tools allowing timely clinical assessment may have benefited patients 

[108]. Thus, development of rapid, low-cost platforms in primary care to triage 

patients for medical imaging may reduce diagnostic delay whilst potentially 

providing cost-saving or cost-effective infrastructures for health care providers.  

 

1.4 Infrared Biomedical Spectroscopy of Biofluids 

Biomedical vibrational spectroscopy is an emerging field in the quest for early 

disease diagnosis [109–113]. Over the past decade, there has been a rapid increase of 

proof of concept publications, highlighting its potential for progression into the 

clinical environment [114–116]. Spectroscopic techniques have become of great 

interest to medical researchers for various reasons: analysis is rapid, cheap and non-

invasive, instruments are easy to operate, but more importantly, they have the ability 

to characterise the presence of biomolecules and generate a biochemical fingerprint 

[117]. It has also been shown that imbalances in these biomolecules can give an 

indication of disease states. Therefore, rather than striving to detect specific 

biomarkers which exist in extremely low concentrations, a culmination of markers 
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can be probed with spectroscopy to detect a global change in biomolecular content 

caused by the systemic response to cancer [118].  

 

In infrared (IR) spectroscopy, a sample is irradiated with infrared light which causes 

atomic displacements and molecular vibrations. Various types of modalities can be 

used, as the IR radiation can be transmitted, internally reflected or transflected [119]. 

The absorption of this light excites vibrational transitions of molecules, producing 

spectra that contain a vast amount of chemical and biological information [120]. A 

typical IR spectrum of a biological sample can quantify the levels of lipids, proteins, 

carbohydrates and nucleic acids present within the sample, and when coupled with 

data analysis, can differentiate between healthy and diseased samples [121]. Fourier 

Transform IR (FTIR) spectroscopy is thought to have the potential to be effectively 

translated to the clinic when combined with multivariate analysis techniques, due to 

the rapid acquisition times and high spectral quality [122,123]. 

 

The majority of the publications in the biomedical vibrational spectroscopy field 

have been based on the analysis of human tissue, with pilot studies showing it is 

possible to differentiate between healthy and cancerous tissue, as well as benign and 

malignant tumours [124]. Malignancies from various organs - such as breast, lung, 

colon, prostate and cervical tissues - have previously been studied which has 

provided a platform of promising results [125–131]. Despite the high volume of 

published research, the technique has yet to make a successful transition into the 

clinic [132]. More recently there has been further interest in biofluid spectroscopy 

due to the ease of collection and handling, and minimal sample preparation is 
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required. Blood components such as serum and plasma are commonly analysed in 

clinical tests, as they carry information regarding both intra- and extra-cellular 

events. Biobanks exist as a valuable stock both serum and plasma, with the ability to 

repeat analysis or monitor treatment or disease progression [133]. More specifically, 

blood serum perfuses all body organs, gaining proteomes from surrounding tissues 

and cells, thus contains over 20,000 different proteins [134]. Within a typical blood 

serum sample, there are a plethora of molecules that represent biochemical changes 

associated with malignancy and tumour growth, hence it represents an attractive 

sample medium for the early identification of cancerous events. The detection of 

biomolecules implicated in cancer with a serum-based triage system would be well-

suited to the clinical environment. As serum tests are already utilised in clinical 

practice – for example, the prostate-specific antigen (PSA) liquid biopsy for prostate 

cancer – it would not significantly interrupt current practices, potentially enabling a 

smooth transition into diagnostic pathways [135]. 

 

Attenuated total reflection (ATR) – Fourier transform infrared (FTIR) spectroscopy 

has proven to be a promising screening tool for detecting ovarian cancer from human 

blood, where both serum and plasma were used to discriminate ovarian cancer 

patients from healthy controls with a success rate of ~95% and ~97%, respectively 

[136]. Backhaus et al. used serum spectroscopy to differentiate between patients in 

good health and those with breast cancer, reporting sensitivities and specificities of 

>92% for both [137]. Another pilot study found that the serum biosignature for 

cirrhotic patients, with and without hepatocellular carcinoma (HCC), could be 

successfully separated using support vector machine (SVM) classification and leave-



 30 

one-out cross validation [138]. Furthermore, patients with extensive fibrosis in the 

liver have been separated from those without fibrosis by using their FTIR serum 

spectra, which is a common disorder in the early developmental stages of HCC. 

Ollesch et al. introduced automated sampling for the first time, robotically spotting 

serum for high throughput FTIR measurements, in their quest to identify and validate 

spectroscopic biomarker candidates for urinary bladder cancer [139]. In a proof-of-

concept study, Hands et al. were able to differentiate the serum spectra of brain 

tumour patients and healthy controls by using as little as 1 µL of blood serum for 

ATR-FTIR analysis, highlighting the great potential for the detection of brain 

tumours [140]. Paraskevaidi et al. demonstrated that ATR combined with 

chemometrics was capable of differentiating patients with various neurodegenerative 

diseases. Alzheimer’s disease (AD) was identified with a sensitivity and specificity 

of 70%, and the AD patients were further segregated from those with dementia with 

90% accuracy [141].  

 

1.4.1 Clinical Translation 

The high volume of research in the field of biomedical vibrational spectroscopy has 

indicated the potential utility of the technique in a clinical environment. Numerous 

diagnostic and disease monitoring studies have reported extremely promising results, 

in some cases achieving sensitivity and specificity values greater than 90% [142]. 

The major hurdle to successful translation is arguably acceptance by health 

technology regulatory agencies, who determine which technologies are made 

available for public health. Criteria for successful acceptance require statistically 

verified clinical trials to prove clinical utility, but also clear understanding of the 
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current clinical pathway in order to determine the economic and clinical impact of 

new technologies.  

 

Current advances in technology may also facilitate the uptake of vibrational 

spectroscopy into standard clinical practice in the near future. Automated or high-

throughput instrumentation would be best suited to clinical settings so as to minimise 

pressure on personnel resource. High-throughput technologies are available in IR 

transmission (or transflection) systems, largely attributed to the development of 

multichannel detectors and IR sources for discrete frequency spectroscopy, as well as 

the use of sample substrates which can be batch processed. This could have specific 

impacts on the translation of tissue imaging applications which have the potential to 

complement histopathology [143]. On the other hand, ATR-FTIR spectroscopy is 

inherently limited to a single point of analysis, the internal reflection element (IRE). 

The fixed IRE restricts the overall sample throughput, particularly when taking into 

account cleaning the crystal between measurements as well as background 

subtraction. However, the development of low cost IREs may provide a disposable 

substrate for ATR-FTIR spectroscopy, similarly enabling batch processing of 

samples and high-throughput spectral acquisition alongside the development of novel 

instrumentation [144]. 

 

ATR is preferred over other sampling modes for biofluids analysis, but the strong 

absorbance of water is still evident in biological spectra, which can obscure protein 

absorbance in liquid samples. Hence, the analysis of biofluids has been 

predominantly performed on air dried samples, which can lead to chemical and 
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physical inhomogeneity. The complex patterns that arise from dried biofluid drops 

have been of great interest over that past few decades, and various models have been 

published in an attempt to explain the complicated drying behaviour [145].  

In analysing dried droplets using single-point transmission FTIR, Hughes et al. 

found the absorbance of the Amide I/II protein region to be highly variable across a 

small drop of blood serum. Spectra obtained from random locations across the dried 

serum spot, showed evidence of differences in sample thickness and heterogeneity. 

IR transmission imaging verified that there were biochemical differences across the 

drop [146]. Furthermore, the presence of cracks throughout the sample – along with 

varied drop thickness – caused scattered IR light and led to the conclusion that 

samples need to be smooth and evenly spread for transmission measurements [147]. 

Deegan et al. proposed the coffee ring effect, whereby capillary flow forces 

biomolecules to move out towards a drop’s edge leaving behind dense ring at the 

periphery [148]. This is common when drying biofluid drops, which is a concern for 

spectroscopists, as the centre of the drop may not be representative of the whole 

sample (Figure 1.12). Specifically in blood serum a process known as the Vroman 

effect is of interest, whereby a series of molecular displacements arise through 

protein exchange [149]. It is thought that when biological fluids are applied to a solid 

surface, low molecular weight proteins attach to the surface first, before being 

displaced by larger protein molecules over time. Therefore, the adsorption of 

proteins on to the substrate surface will be based on their differing affinities [150–

152]. Gelation and cracking patterns have also been observed in dried biofluid drops, 

which are thought to be dependent on protein concentration [153,154].  
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Figure 1.12 – Complex drying patterns in biofluid droplets as a potential cause of 
spectral variance. 

 

These are the main limiting factors of using dried biofluids, as the surface 

inhomogeneity has shown to cause peak shifts and alterations in band intensities 

[146]. Environmental - temperature and humidity - and experimental - volume and 

concentration - conditions have also been shown to affect the drying patterns. 

However, when measured in the ATR mode the sample deposit can be completely 

contained within the area of the crystal, such that the evanescent wave measures the 

average of the entire drop, and in theory, should average out any inhomogeneities. 

Nonetheless, it is desirable that the drying conditions are controlled and optimal 

protocols are developed in order to obtain a more homogenous deposition across the 

sample [145,155]. 

 

While promising proof-of-principal studies have supported clinical suitability, there 

have been few reported clinical trials employing IR spectroscopy to confirm the 

utility in a prospective patient population. One of the examples closest to translation 



 34 

is the analysis of whole blood for the detection of malarial infection, currently being 

tested in a prospective cohort in Papua New Guinea [156]. This application of ATR-

FTIR spectroscopy also looks to quantify levels of parasitaemia in blood, providing 

clinically relevant information more rapidly than current methods [157]. The 

potential implementation analysis of blood serum using ATR-FTIR spectroscopy for 

the early detection of cancer in a primary care environment, would enable a 

paradigm shift in the clinical management of patients. 

 

1.5 Aims & Objectives 

The project outlined in this thesis aims to develop a rapid, label-free spectroscopic 

test for the detection and stratification of brain tumours. The theme of this thesis can 

be described by the following scenario. 

 

Patient X is presenting with persistent headaches at their local GP surgery, but lacks 

any other ‘common’ symptoms. The GP currently has two options: (1) presume the 

patient is fine and send them away with pain relief medication, telling them to return 

if the headaches continue, or (2) send the patient for a brain scan in order to rule out 

a potential lesion. At present the former is the most common choice, as brain 

imaging is costly and many of those referred to the neurology department will not 

have a tumour. Yet, as already discussed, the main concern around current brain 

tumour pathway is the delay to diagnosis, as early detection is vital. This thesis is 

focused on implementing a cost-effective test which can help GPs in primary care 

with referral decisions, assist neurologists in secondary care with subtype 

differentiation, and ultimately improve patient survival and quality of life. 
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The main aims of this project are to see how far we can push the capabilities of IR 

spectroscopy. The following questions will be addressed: 

§ Can our spectroscopic test determine whether patient X is likely to have a 

brain tumour? 

§ Can we tell which type of brain tumour? 

§ Can we provide data on molecular status, which may offer prognostic 

information?  

§ Lastly, is this health technology translatable, and would the health services be 

interested? 

 

Herein, the objectives undertaken to achieve the thesis aims include: 

1) Rapid detection of brain cancer with ATR-FTIR serum spectroscopy using 

novel high-throughput technology (Chapter 3 and 4); 

2) Stratification of brain tumour subtypes via serum spectroscopy for secondary 

care applications (Chapter 3 and 4); 

3) Identification of molecular gene expression in gliomas through interrogation 

of IDH1 status (Chapter 5); 

4) Health economic evaluation of a serum-based blood test for brain tumour 

detection and stratification (Chapter 6). 
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Chapter 2  

Experimental Theory and Data Analysis 

2.1 Infrared Spectroscopy 

2.1.1 Electromagnetic Spectrum 

Spectroscopy is the study of the interaction between electromagnetic radiation and 

matter. Electromagnetic radiation involves photons travelling at the speed of light, 

producing oscillating electric and magnetic fields. The magnetic and electric vectors 

undulate in planes perpendicular to one another, and to the direction of the wave [1]. 

The oscillating waves go through cycles, as the motion of the resulting wave is 

repetitive (Figure 2.1).  

 

 

Figure 2.1 – Electromagnetic wave showing electric field oscillating perpendicular to 
the magnetic field, where l represents wavelength. Adapted from ref [2]. 
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The type of electromagnetic radiation varies depending on frequency and 

wavelength. The wavelength (l) of a wave is the distance travelled during one 

complete cycle. For a photon moving at the speed of light ! (2.998x108 m/s), 

wavelength is inversely proportional to frequency (#), which is described as the 

number of cycles per unit time (Eq. 2.1) [3]. 

  	# = 	 !
"
               (2.1) 

An expansion of Planck’s Law directly relates the energy of a photon ' to the 

frequency and wavelength of the radiation (Eq. 2.2). 

' = ℎ# = 	 #!
"

    (2.2) 

where ℎ is Planck’s constant (ℎ = 6.626 x 10-34 J·s). 

 

The wavenumber (#)) corresponds to the reciprocal wavelength (Eq. 2.3), which is 

defined as number of cycles per distance, with the units cm-1. 

                                                      	#) = 	 $
"
       (2.3) 

The electromagnetic spectrum defines the different types of radiation, ranging from 

low frequency radiowaves (long wavelength) to high frequency (short wavelength) 

cosmic rays (Figure 2.2) [4]. The area of interest for IR spectroscopy exists between 

the visible and microwave regions, ranging between wavelengths of ~780 nm – 1 

mm, and can be broadly spilt into near- (~12820-4000 cm-1), mid- (~4000-400 cm-1) 

and far-IR (~400-33 cm-1) sub-regions.  
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Figure 2.2 – Electromagnetic Spectrum with focus on the IR region. 
 

IR spectroscopic methods are rapid and convenient for both qualitative and 

quantitative analysis [5]. Mid-IR and near-IR are the most widely used regions in IR 

spectroscopy, with mid-IR generally preferred for analytical investigations due to the 

abundance of molecules that absorb strongly within 4000-400 cm-1. Determination of 

chemical structures is also easier in this spectral region, due to the clear absorption 

bands of organic functional groups and biomolecular components [6]. 

 

2.1.2 Molecular Transitions 

The total energy of a molecule ∆' is described by the Born-Oppenheimer 

approximation as the combination of electronic ∆'%, vibrational ∆'&, rotational 

∆''	and translational ∆')	energies (Eq. 2.4). The energy of electron transitions from 

ground state to excited state is discretely quantised. Vibrational energy relates to the 

specific atomic vibrations within a molecule. The molecular rotations around the axis 
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perpendicular to the inter-nuclear axis is related to rotational energy, and the 

translational energy is associated with movement of the molecule’s centre of gravity 

[7].  

∆' = 	∆'% +	∆'& +	∆'' +	∆')    (2.4) 

 

There are multiple rotational energy levels in within the vibrational energy states, 

and likewise, many vibrational energy levels within an electronic energy state. As a 

general rule ∆'% >	∆'& > ∆'', therefore promoting an electron from the ground 

state to an excited state requires more energy than raising the vibrational state, which 

then requires more energy than raising a rotational energy state (Figure 2.3) [7]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Types of energy changes associated with molecular spectra.  
Duplicated from ref [7]. 
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Ultraviolet, visible and x-ray radiation are all capable of electronic excitation, 

however the energy gap is too large for IR radiation. As shown in Figure 2.3, IR 

spectroscopy is concerned with vibrational energy levels [3]. The concept of infrared 

spectroscopy is based upon the vibration of chemical bonds when irradiated with 

polychromatic light. When molecules absorb this IR radiation, they can be promoted 

to an excited state, but only if there is a change in dipole moment µ during the 

vibration [8]. The fundamental transition is between the ground state and the first 

excited vibrational state (-* → 1). Each vibrational mode involves harmonic 

displacements of the atoms from their equilibrium positions. When considering a 

simple diatomic molecule, Hooke’s Law suggests the two masses are bound together 

by a spring. The harmonic oscillator obeys Hooke’s Law (Eq. 2.5); 

								0 = −23           (2.5) 

where F is the overall force, k is the force constant (stiffness of the spring) and x 

represents the displacement from equilibrium.  
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At any instant of oscillation, a mass m is accelerated at a rate 4 = (5+3/	57+), and 

according to Newton’s 2nd law of motion (force = mass x acceleration); 

−23 = 	8(5+3/	57+)          (2.6) 

By dividing by the mass;  

(5+3/	57+) + 9+3	 = 	0         (2.7) 

where 9 = ;,
-

  and represents angular frequency. This is commonly related to 

frequency by;  

									9 = 2=#           (2.8) 

where # is the frequency of the vibration. From this, we can determine the frequency 

of IR radiation required to successfully quantise a diatomic molecule, in order to 

promote it to a higher vibrational energy level (Eq. 2.9). 

     # = 	 $
+.;

,
µ
                (2.9)                    

where	µ =	 -!-"
-!/-"

 and represents the reduced mass (8$ and 8+ are the masses of the 

two atoms in the diatomic molecule). 

 

Each molecule has a frequency that is characteristic of its atomic structure. The 

wavenumber position on an IR spectrum can be altered by a change to the masses of 

atoms and their bond strengths. As described in Eq. 2.9, molecules with smaller 

atoms will result in a lower reduced mass, causing vibrations at a higher frequency. 

Likewise, stronger bonds will mean a larger force is required to displace the atoms 

from equilibrium, also resulting in peaks at higher frequencies. For each mode of 

vibration i, all atoms in a given molecule will vibrate at a characteristic frequency #0, 

and Eq. 2.10 describes for those in which the atoms vibrate with simple harmonic 
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motion [9]. This equation is only fitting for extremely low values of -0, and in 

reality, molecules vibrate with anharmonic (Morse) motion (Eq. 2.11) [7]. 

>01 =	ℎ#0 ?-0 +
$
+
@      (2.10) 

where >01 is the vibrational energy states, -0 is the vibrational quantum number of the 

ith mode and h is Planck’s constant, and;  

  >01 =	ℎ#0 ?-0 +
$
+
@ +	ℎ#030 ?-0 +

$
+
@2  (2.11) 

where 30 is the anharmonicity constant.  

 

The relationship between force and displacement for an anharmonic oscillator is non-

linear and is dependent on the amplitude of the displacement and the energy levels, 

therefore differs to the equidistant harmonic oscillator (Figure 2.4). The harmonic 

energy levels are evenly spaced by hν, which means all transitions would occur at the 

same frequency. The harmonic oscillator does not predict bond dissociation, 

suggesting bonds would refrain from breaking no matter how much energy is 

introduced. The anharmonic potential includes the effects of bond breaking and 

accounts for the anharmonicity of real bonds. In this model, the energy level spacing 

decreases as the energy approaches the dissociation energy A2	, where A*	is the true 

energy required for dissociation from the zero-point energy of the lowest vibrational 

level -*	. 
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Figure 2.4 – Potential energy graphs for the harmonic (orange) and anharmonic 
(blue) oscillators. The horizontal lines represent the quantised vibrational energy 

levels.  
 

Transitions involving ∆- > 1 would not be allowed if the vibrational modes were 

strictly harmonic, therefore the fundamental transition would generally only be 

permitted, as per the selection rule ∆- ± 1. The anharmonicity relaxes this selection 

rule such that the promotion to higher vibrational energy levels becomes possible. 

This gives rise to overtone bands, which are multiples of the fundamental absorption 

frequency. The first overtone band (-*	 → -+) will appear at twice the wavenumber 

of the fundamental in the spectrum, as it would require twice the amount of 

excitation energy. The band intensity will become progressively weaker as the 

overtone number increases (-* →	-3, -4…). When two fundamental bands absorb at 

the same wavenumber, combination bands are often observed [8]. Hot bands have 

also been found where high temperatures can further excite molecules that have 

already been promoted to a higher energy level (-$	 → -+). In the harmonic oscillator 

model the hot bands are not easily distinguishable due to the equidistant energy 
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levels, but since the spacing in the anharmonic oscillator becomes smaller with 

increasing vibrational states, the hot bands occur at lower frequencies than the 

fundamental bands [10]. Fermi resonances can appear whenever a fundamental 

vibrational level lies closely to an overtone. Quantum mechanical mixing causes 

shifting of the intensities and energies of both the fundamental and overtone bands 

which results in two relatively strong bands in the form of a doublet [11].  

 

2.1.3 Vibrational Modes 

The number of vibrational modes for a given molecule will depend on its structure. 

For a molecule with N number of atoms, it will have 3N degrees of freedom. As a 

general rule, non-linear molecules will exhibit 3N-6 vibrational modes, 

corresponding to three translational and three rotational modes around the x, y and z 

axes. That said, some molecules that have symmetrical elements may be IR inactive, 

as some vibrational modes will be degenerate, i.e. homonuclear diatomic molecules. 

In contrast, a linear molecule is unable to rotate upon its axis, so one of the rotational 

degrees of freedom is lost thus e can be described as having 3N-5 vibrational modes 

[12]. 

 

Bond stretching and bending are the two fundamental types of molecular vibration. 

There can be either symmetric or asymmetric stretching which alters the bond length, 

while bending vibrations consist of changing the bond angle by twisting, rocking, 

wagging and scissoring (Figure 2.5). 
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Figure 2.5 – Common vibrational modes of chemical bonds. 

 

When these bond vibrations occur, there is a consequent alteration to the energy of 

the incident photon. The incident light can be transmitted, reflected, absorbed, or 

scattered when it comes into contact with the sample [13]. The fundamental principle 

of IR spectroscopy obeys the Beer-Lambert law, which relates the absorbance with 

the intensity of the incident radiation E* and the amount of light that passes through 

the sample E (Eq. 2.12).  

F = G!H = HIJ ?5#
5
@     (2.12) 

The absorbed IR light F is also directly proportional to the concentration of a given 

sample !, the molar absorptivity G and pathlength H. Hence, the concentration of 

biomolecules can be found by the absorbance at a single wavelength. IR 

spectroscopy therefore can quantify the levels of biomolecules, as the proportion of 

light absorbed by the sample correlates with the concentration of molecules present 

within that sample [9].  
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2.2 Fourier-Transform Infrared Spectroscopy 

2.2.1 FTIR Instrumentation 

Dispersive infrared instruments were traditionally used in the 1940s, although more 

recently Fourier-transform infrared (FTIR) spectrometers have become more 

commonly employed, due to their superior speed and sensitivity [5]. FTIR 

spectroscopy utilises a Michelson interferometer, which is based on the concept that 

when there is an interference of radiation between two beams, then there will be a 

change in pathlength producing signals that result in an interferogram [8]. The 

spectrum obtained is a function of time, which is then converted to the frequency 

domain through Fourier transformation. Standard benchtop FTIR spectrometers are 

comprised of a light source, a Michelson interferometer and a detector. 

 

2.2.1.1 Light sources 

The most common mid-IR light source found in traditional benchtop instruments is a 

resistively heated silicon carbide rod, known as a globar or thermal IR source, which 

behaves like a black body source where radiance is dependent on temperature [9]. 

More recently there has been the implementation of superior alternatives, such as 

quantum cascade lasers (QCL), that are capable of providing high intensity light and 

acquiring spectra over discrete frequencies resulting in a greater signal-to-noise ratio 

(SNR) [14,15]. Unlike typical inter-band semiconductor lasers – that emit 

electromagnetic radiation through the recombination of electron-hole pairs across the 

material band gap – the emission in QCLs is achieved through the use of inter-sub-

band transitions [16]. QCL-based instruments provide a coherent and polarized light 

source that emit photons of narrow line widths, with increased spectral power 
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densities compared to globar sources [17]. Thus, the discrete frequency approach in 

QCL instruments may reduce long acquisitions times by allowing more selective 

sampling, particularly in FTIR imaging experiments [18]. 

 

2.2.1.2 Synchrotron at Diamond Light Source 

Synchrotron light sources can further improve the spectral quality and spatial 

resolution. Synchrotrons are electron storage rings that use magnetic fields to bend 

electrons into a closed orbit, which in turn generates IR radiation up to 103 times 

brighter than conventional IR sources [19]. For globar sources the SNR is often 

limited due to their low intrinsic brightness, but with the superior flux of the 

synchrotron radiation recent studies have been able to achieve spatial resolution in 

the nanoscale [20,21]. Globally, there are various synchrotron facilities available for 

research proposals – Diamond Light Source at the Rutherford Appleton Laboratory, 

Oxford, is the only facility based in the UK. Figure 2.6 describes the layout of the 

Diamond Light Source synchrotron, which essentially acts as an electron accelerator 

[22].  
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Figure 2.6 – Schematic of the Synchrotron facility at Diamond Light Source, UK.  

A: Electron Gun; B: Linac; C: Booster Synchrotron; D: Storage Ring; E: Beamline.  
Sourced from ref [22]. 

 

The electrons are generated through thermoionic emission in the electron gun (A), 

then fired through three particle accelerators up to extremely high speeds. Firstly, 

they move through a linear accelerator, or linac (B), into the booster synchrotron (C), 

which both work to accelerate the electrons until they are travelling at the speed of 

light. From there they enter the large storage ring (D), where magnetism is used to 

steer the electrons around the ring, causing them to lose energy in the form of light. 

This light in finally channelled out into the experimental stations, called beamlines 
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(E), and is emitted at a range of wavelengths across the electromagnetic spectrum, 

hence is applicable for IR studies. 

 

2.2.1.3 Michelson Interferometer 

The Michelson interferometer is a device that splits a single beam of light into two 

paths, and then recombines them after a path difference has been introduced. In 

general, the interferometers are composed of a fixed mirror, a movable mirror and a 

beam splitter (Figure 2.7). The purpose of the beam splitter is to reflect some of the 

radiation toward the fixed mirror, meanwhile partially transmitting the rest to the 

adjustable mirror. When the waves return to the beam splitter, they interact and are 

then further reflected and transmitted. The moving mirror causes the split beams to 

travel different pathlengths, thus have altered intensity of beams when recombined 

[23]. The waves can have either constructive or destructive interference. 

Constructive interference occurs when two waves of the same frequency line up and 

the amplitude of the resultant wave is the summation of the two, whereas destructive 

interference is when the waves are out of phase - one wave’s crests will coincide 

with the other wave’s troughs - and essentially cancel each other out resulting in an 

amplitude of zero [9]. The output of this relationship is the interferogram - a 

measurement of the intensity as a function of distance and time. Fourier-

transformation of the interferogram produces a standard IR spectrum, that is a 

function of frequency against spectral absorbance intensity [24]. 
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Figure 2.7 – Michelson interferometer consisting of a fixed mirror (F), movable 

mirror (M) and beam splitter (dashed line). Adapted from ref [9]. 

 

2.2.1.4 Detectors 

There are various different detectors used in benchtop instruments, all of which will 

be either thermal or quantum detectors. The function of the detector is to transduce 

the light intensity into electrical signal [9]. Deuterated triglycine sulphate (DTGS) 

detectors are thermal detectors which are commonly used in laboratory benchtop 

spectrometers. A change in intensity of the IR radiation that strikes the detector 

causes a change in temperature, which in turn causes a change in dielectric constant, 

and hence its capacitance [25]. Quantum detectors seem to be the preferred choice 

for obtaining better spectral quality - mercury cadmium telluride (MCT) detectors 

typically have up to 50 times greater sensitivity than DTGS detectors. The MCT is a 

semiconductor, and the electrons present are promoted from the valence band to the 
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conduction band when they absorb IR light. These electrons generate electrical 

current proportional to the IR intensity. MCT detectors can provide spectra with 

much higher SNR, but they are unable to operate at room temperature and need to be 

cooled with liquid nitrogen [26]. 

 

Single element detectors, where individual point spectra can be obtained across a 

whole sample, can be practical when analysing substances like biofluids. Point 

spectra often have high SNR which can result in high quality spectral acquisition. 

Sample maps can be obtained using step-wise point spectra, but this can become 

rather time consuming when analysing a large sample area. The development of 

array detectors has allowed simultaneous measurements of spectra from defined 

points across a sample, which can improve acquisition times [14]. Focal plane array 

(FPA) and linear array detectors are commonly used for IR imaging techniques, 

which can provide high spatial-resolution images of the target area [27]. The 

multiple detector elements of the FPA detector enable the concurrent acquisition of 

several spectra at each spatial point of the area of the sample under investigation, 

allowing the examination of larger areas at reasonable experimental time periods 

[28]. This method can generate a ‘hypercube’ containing information in two spatial 

dimensions; a pseudo-image and a spectral dimension corresponding to the spectrum 

for each pixel of that image [27]. 
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2.2.3 Background Spectrum 

In order to correct for atmospheric conditions, it is standard procedure to collect a 

background spectrum before sample analysis. Absorbance sample spectra are 

susceptible atmospheric gases such as water vapour and carbon dioxide, thus 

absorptions of IR energy by the gases can result in unwanted bands, obscuring the 

important sample peaks in the process. Obtaining the background spectrum prior to 

sample analysis removes all environmental influences, allowing more accurate 

collection of the biological and chemical information of the sample.  

 

2.2.4 Spectral Signals of Biomolecules 

FTIR spectroscopy monitors the vibrational bending and stretching modes of 

molecules that are active within the infrared region. The wavelengths at which they 

absorb the IR radiation are measured, and as every compound has a characteristic set 

of absorption bands, it results in a unique spectroscopic fingerprint [29]. The 

frequencies of biological bond vibrations exist in the mid-IR region, meaning it is 

well suited for biomedical studies. In recent years, biomedical spectroscopy has 

become a rapidly expanding research area; the technique is quick, simple and 

reproducible, and only tiny quantities of sample are generally required for analysis.  

Lipids, proteins, nucleic acids and carbohydrates are the four biomolecular groups 

characteristically found in a biological spectrum (Figure 2.8). The most important 

spectral region in relation to disease diagnostics is the fingerprint region (1800-1000 

cm-1), which contains the valuable Amide I and II peaks (1700-1500 cm-1) [27]. 

Stretching vibrations are found in the higher-wavenumber region (3500-2500 cm-1), 
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such as CH, NH and OH stretches, whereas bending and carbon skeleton fingerprint 

vibrations tend to occur in the lower-wavenumber regions. The wealth of information 

that exists in a vibrational spectrum of a biological sample, detailed in Table 2.1, 

renders the technique as an interesting tool for investigating molecular systems 

ranging from amino acids, nucleic material, peptides and protein complexes [30–33]. 

Vibrational spectroscopy can enhance the understanding of protein function, as it is 

sensitive to changes to the protonation state of amino acid side chains and the 

strength of hydrogen bonding between amide bonds [34,35]. 

 

In typical biological IR spectra, most characteristic bands are associated with the 

CONH group, referred to as Amide A (NH stretching, ~3300 cm-1), Amide B (NH 

stretching, ~3100 cm-1) and Amide I to III (I: 1600-1700 cm-1, II: 1480-1580 cm-1, 

III: 1230-1300 cm-1) as described in Figure 2.9 [36]. The Amide A band (~3300  

cm-1) originates from the NH stretching vibration, and often exists as a resonance 

doublet with the weakly absorbing Amide B (~3170 cm-1), arising from a Fermi 

resonance between the first overtone of Amide II [36]. The Amide I, which absorbs 

near 1650 cm-1, is primarily caused by the C=O stretching vibrations, with smaller 

contributions from CN stretching, deformation of CCN and NH in-plane bending 

vibrations. The out-of-phase combination of the NH bending and the CN stretching 

vibrations, as well as minor contributions from the CO in-plane bend and the CC and 

NC stretching vibrations, give rise to the Amide II band at ~1550 cm-1 [40].  
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Table 2.1 - Tentative peak assignments for FTIR spectral data of biological samples 
as described in the literature [36–39]. 

 
Approximate 

Wavenumbers (cm-1) Vibration Biochemical Assignments 

3300  ν(N-H) 
Amide A of 

proteins/peptides 

3100  ν(N-H) 
Amide B of 

proteins/peptides 

2957  νas(CH3) 

Lipids 
2920  νas(CH2) 

2872  νs(CH2) 

2850 νs(CH2) 

1740  ν(C=O) Phospholipid esters 

1715-1680  ν(C=O) Nucleic acids 

1650 
>75%ν(C=O),  

ν(C-N), d(N-H) 
Amide I of proteins 

1645 g(HOH) Water 

1550 
~60% d(N-H), ν(C-N),  

d(C-O), ν(C-C) 
Amide II of proteins 

1453 g(CH2) CH2 Scissoring 
1450 das(CH3) Lipid/Proteins 

1395 ds(CH3) Lipid/Proteins 
Carboxylate COO- 1395  ν(C=O) 

1380 gs(CH3) Phospholipid/triglyceride 

1350-1250 
d(N-H), ν(C-N),  

g(C=O), ν(C-C), 

Amide III – 
peptide/protein/collagen 

1242  νas(PO!") DNA/RNA/phospholipid 

1170  νas(C-O) Ester 

1150 ν(C-O), g(COH) Carbohydrates 

1090  νs(PO!") DNA/RNA/phospholipid 

1086 ν(C-O), ν(C-C), def(CHO) Carbohydrates 

1079  ν(C-C) Glycogen 

1065  ν(C-O) DNA and RNA ribose 

1050 ν(C-O) Phosphate ester 

1028 def(CHO) Glycogen 

965  ν(PO#!") DNA and RNA Ribose 

710-620 def(O=C-N) Amide IV 

ν = stretching; d = bending; g = wagging, twisting and rocking; def = deformation; as = asymmetric; s 
= symmetric  
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Figure 2.8 – A typical IR spectrum for a biological sample with peak assignments. 
Replicated from ref [27]. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 - Molecular vibrations of the Amide group - Green: Hydrogen, Orange: 
Nitrogen, Yellow: Carbon, Blue: Oxygen. Adapted from ref [41]. 
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2.3 Sampling Modes 

There are three main sampling modes involved in FTIR spectroscopy; transmission, 

transflection and attenuated total reflection (ATR). Historically FTIR instruments 

used transmission mode, where IR light is irradiated through samples that have been 

prepared on IR transparent windows, i.e. calcium fluoride (CaF+), and is collected at 

a detector at the other side [27]. There are a number of flaws related to transmission 

mode. Sample preparation can be exhaustive, and short pathlengths ( £10 µm) are 

required to prevent full absorption of the IR radiation by the sample before reaching 

the detector. This limiting factor also affects aqueous samples, since water is highly 

IR active [42]. Furthermore, IR transparent substrates that are required for this 

technique are fragile and often rather expensive to replace [43].  

 

In transflection mode, the incident IR beam travels through a sample initially, but 

differs to transmission mode in that the light is then redirected off an IR reflecting 

substrate back through the sample toward the detector. The substrates are generally 

inexpensive low emissivity (low e) slides, and the approximate sample thickness can 

usually be smaller than that required for transmission measurements (1-4 µm c.f.  

2-10 µm) which can be beneficial when sample quantity is limited. On the other 

hand, as the pathlength is effectively doubled there is also a maximum thickness 

limitation. Transflection mode may also be prone to standing wave artefacts that 

cause spectral variance, although the implications of this effect for diagnostic 

applications are still being assessed [27,44,45]. 
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In assessing the suitability of the measurement mode for analysis of biological 

samples which are highly physically and chemically inhomogeneous, it is important 

to recognise the physical processes involved. When a sample is measured in 

reflection, or transflection, a proportion of the light registered derives from the top 

surface, the reflectance of which is governed by the real component of the refractive 

index of the material. The transmitted light, measured in transmission or 

transflectance, can be reduced by the intrinsic absorptions of the constituent 

molecules, giving rise to the desired fingerprint of the sample. However, it can also 

be reduced by “Mie-like” scattering from structures (cells and cell nuclei) which 

have dimensions similar to the wavelength of light employed (5-20 µm). This 

scattering is resonantly enhanced in the neighbourhood of an absorption, and can 

give rise to spectral artefacts in transflection and transmission modes [46,47]. These 

resonant Mie effects can be ameliorated by application of specific pre-processing 

methods [48]. 

 

Adaptations to these standard FTIR spectroscopy methods have further developed 

the technique in the biomedical field. The addition of a microscope for instance has 

allowed the focusing of IR light on microscopic sample areas, providing high spatial 

resolution data [38,49]. As already mentioned, the use of alternative light sources, 

such as broadband radiation with high flux density from a synchrotron source or 

QCL that can provide rapid discrete frequency sampling, can also provide greater 

sensitivity when measuring biological samples [14,20]. The development of imaging 

technologies, largely based upon the detector capabilities in the spectrometers, have 

also allowed greater flexibility in spectral acquisition [19]. 
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2.3.1 Attenuated Total Reflection 

The development of attenuated total reflection-Fourier transform infrared (ATR-

FTIR) spectroscopy has attracted wide interest in recent years. The technique is 

unique in that the incident IR beam does not physically travel through the sample. 

The IR light is directed through a substrate with a high refractive index – such as 

diamond – known as an internal reflection element (IRE). The sample must be placed 

in direct contact with the IRE, as when the incident radiation reflects off the internal 

surface of the IRE, an evanescent wave projects orthogonally into the sample, which 

then attenuates the IR beam before exiting the IRE to the detector (Figure 2.10) [42]. 

Intimate sample-IRE contact must be achieved in order to gain a high resolution 

spectrum, as the evanescent wave only extends a few microns (0.5-5 µm) beyond the 

IRE surface [50]. 

 

Figure 2.10 – Schematic representation of the ATR sampling mode through a 
traditional diamond crystal, where q represents the angle of incidence.  
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The refractive index of the chosen IRE and sample govern the basic ATR 

phenomenon (Eq. 2.13). 

N! =	 sin6$ ?
7"
7!
@          (2.13) 

where N! is the critical angle and R$and R+ are the refractive indices of the IRE and 

sample, respectively.  

 

The IR radiation undergoes total internal reflection when the angle of incidence at 

the sample-crystal interface is greater than the critical angle, hence materials with a 

high refractive index are commonly chosen to minimise the critical angle [8]. 

Another important factor is the depth of penetration 58	of the evanescent wave into 

the sample as it determines how much of the sample is actually analysed - 58	can be 

defined as the distance required for the electric field amplitude to decay into the 

sample by 1/e (Eq. 2.14) [9]. 

58 =	
"

+.7!9:07";6(7" 7!⁄ )"
   (2.14) 

where q  is the angle of incidence. 

 

In contrast to transmission mode, the ATR-FTIR approach negates the need for time 

consuming preparation as the sample can be examined directly on to the IRE, in 

liquid, semi-solid or solid form [50]. However, the ATR IRE must be kept clean to 

ensure there’s no cross-contamination between samples, and traditional IREs are 

rather expensive, e.g. a diamond IRE crystal. Scratches on the surface of the IRE are 

known to affect the sample-IRE contact, and loss of sensitivity is common due to 

shallow penetration depths [1]. That said, the shorter pathlength makes it more 
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applicable for aqueous samples, as there is less IR radiation lost through water 

absorbance compared to transmission measurements [42]. Likewise, the lack of 

scattering effects and high SNR are valuable attributes [27]. 

 

Biological samples, such as human blood serum, are well suited to ATR analysis. 

Only tiny amounts of biofluid drops are required to dry efficiently onto the IRE. This 

has the advantage of ensuring intimate contact occurs between the sample and the 

IRE – allowing effective penetration of the evanescent wave – meanwhile curtailing 

the spectral interference of water [51]. ATR-FTIR has been shown to be a promising 

tool for disease diagnostics [52–55], but efficient clinical translation has been 

inhibited by issues such as long drying times and cleaning the diamond crystal 

between samples. However, it has recently been suggested that a high-throughput 

ATR accessory, comprising a multi-sample IRE could assist with translation into a 

clinical environment [56]. 

 

2.3.2 Silicon Internal Reflection Element  

As the IRE material can impact the penetration depth of the evanescent wave, it is 

important to select a material that’s best suited to the desired experimental protocol. 

The most common IREs used for ATR studies are those composed of diamond, zinc 

selenide (ZnSe) and germanium (Ge), each of which have different optical properties 

(Table 2.2) [57]. Diamond is the gold standard – it is chemically inert and extremely 

robust making it the ideal crystal material. However, diamond is the most expensive, 

so high-throughput analysis is not feasible. ZnSe is a cheaper alternative to diamond 

and can be preferred for liquid and gel-like analysis, but it can only be used for 
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materials with a pH between 5-9. Ge has the highest refractive index, hence is used 

for highly absorbing samples due to its low 58.  

 

Table 2.2 – Common internal reflection element materials and their properties [57]. 

Material Spectral Region (cm-1) Refractive 
Index 

S?	at 45°, 1000cm-1 

(µm) 
Hardness 
(Knoop) 

Diamond 45,000-10 2.40 1.66 9,000 

ZnSe 20,000-500 2.43 1.54 130 

Ge 5,000-600 4.01 0.65 550 

Si 10,000-100 3.42 0.81 11,150 

 

Another material with similar properties is silicon (Si), which is relatively low-cost 

in comparison to its competitors. Si is non-toxic, robust, chemically stable, and its 

transparency to IR light makes silicon (Si) an ideal material for novel low cost IREs 

[58]. For most IR studies, silicon IREs (SIREs) are not usually favoured due to Si 

lattice vibrations presenting within the biologically relevant fingerprint region, 

obscuring information below 1500 cm-1 [59]. Typical multi-reflection SIREs (Figure 

2.11a) lose absorbance signal due to the long pathlength through the IRE. However, 

similar to the phenomena of ATR-FTIR spectroscopy overcoming water absorption, 

by reducing the pathlength of the IR beam through the SIRE the contributions of the 

Si lattice vibrations can be minimised. Microfabricated SIREs can allow single-

bounce internal reflections (Figure 2.11b), which effectively minimises the IR beam 

pathlength (< 3 mm), meaning the IRE absorbs less IR light thus circumventing 

unwanted spectral contributions from Si [60].  
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Figure 2.11 – Schematic representation of the ATR sampling mode through a) a 

multi-reflection silicon IRE and b) a microfabricated silicon IRE utilising v-shaped 
grooves for single bounce internal reflection. 

 

Anisotropic etching of Si <100> wafers enables the production of the characteristic 

‘v-shaped grooves’ displayed in Figure 2.11b. Following the deposition of a SiO+ 

protective layer and application of a light-sensitive photoresist material, the desired 

design is etched into the Si. Recent developments in technology have seen ClinSpec 

Diagnostics Ltd. (ClinSpec Dx) introduce cheap and disposable SIRE optical sample 

slides that allow the rapid preparation and analysis of multiple samples, enabling 
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high-throughput ATR-FTIR spectroscopy optimised for clinical research. Based 

upon the design of a microscope slide, these optical sample slides contain four 

sample analysis areas; one for background measurements and three for repeat 

measurements of a single patient (Figure 2.12a). The SIRE is mounted on a 

polylactic acid (PLA) holder, and the ClinSpec Dx slide indexing unit (SIU) has been 

designed to allow the sample to traverse across the ATR-FTIR accessory to sit 

directly upon the sampling aperture (Figure 2.12b). This interfaces the slides with 

commercial spectrometers, as illustrated in Figure 12c, which is the typical set up of 

the instrument used for this project (Chapters 3 and 4): Spectrum 2 FTIR 

spectrometer (Perkin Elmer, USA) coupled with a Quest ATR accessory (Specac, 

UK).  

 

These novel designs negate the time-consuming drying step and laborious fixed IRE 

cleaning, meaning patient samples can be batch processed and allow high-throughput 

measurements. Meanwhile, the batch processing capability permits more controlled 

drying conditions, guiding the complex dynamics of serum dehydration [61]. These 

developments have the potential to pave the way for clinical utilisation. A reliable 

blood test in a primary care setting would effectively prioritise patients for urgent 

brain imaging, ultimately reducing the time-to-diagnosis. Thus, the ATR-FTIR 

spectroscopy test would fit seamlessly into standard blood analysis (Figure 2.13). 
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Figure 2.12 – Schematic examples of; a) a ClinSpec Dx optical sample slide with 
well 0 blank for background collection and 3 sample wells filled with patient serum, 
b) the slide indexing unit that automates the movement of the slide, and c) the typical 

set up of the accessory on a Perkin Elmer Spectrum 2 FTIR spectrometer. 
 

a) b) 

c) 
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Figure 2.13 - Proposed integration of a blood test for the triage of brain cancer. 
Replicated from ref [62]. 
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2.4 Spectral Pre-processing 

An IR spectrum acts as a biochemical fingerprint which can allow minute differences 

between samples to be identified. Factors such as atmospheric background and noise 

can obscure the true representation of the analysed sample. Hence, it is important to 

try to minimise these unwanted features, and spectral pre-processing aims to ensure 

any information taken from the data comes purely from the sample. In short, the 

main goals of pre-processing are to improve the robustness and accuracy of the data, 

make it more easily interpretable, remove outliers and irrelevant information [63]. 

This section describes some of the steps required to prepare the raw data for 

classification. 

 

Initially, spectral ranges can be cut to reduce variables and the size of the data set. 

For the analysis of biofluids, it is common to cut the spectra to the biologically 

relevant ‘fingerprint region’ which exists between 1800-1000 cm-1. This region is 

often where the vibrations of the biomolecules of interest tend to occur and is known 

to be rich disease-specific information [27]. 

 

2.4.1 Baseline Correction 

The incident beam of IR light can be scattered upon interaction with the sample, 

either at the same frequency, referred to as elastic scattering, or at a different 

frequency, known as inelastic scattering [64]. As IR spectroscopy is based on the 

absorbance of light by a sample, any scatter can impact the resulting spectrum, and 

can give rise to an offset or sloping baseline. This can often mean that the start and 
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the end point of the spectrum are at different absorption intensities, oscillating 

between positive and negative values. This makes it difficult to accurately compare 

absorbance values, as the baseline could introduce discrepancies between spectra. 

Likewise, the replicates of the same sample can seem different due to baseline 

variances, when - in theory - they should be identical. 

 

Baseline correction tends to be the first step in spectral pre-processing. There are 

various correction algorithms that can be applied, but for this project the two main 

approaches that have been used are rubberband correction and extended 

multiplicative signal correction (EMSC). The rubberband correction works by 

dividing the spectra into n ranges. The lowest points in every range act as baseline 

points which are connected linearly. All the points in the spectrum are then ‘pulled’ 

down by the difference between the lowest point in the current range, and the lowest 

point on the baseline [65]. The EMSC algorithm is capable of removing oscillating 

baselines [66]. These are often found as a consequence of Mie scattering, which is a 

form of elastic scattering concerning homogeneous spherical particles that exist at 

the same physical dimensions as the wavelength of incident light [48].  

 

2.4.2 Spectral Derivatives 

Derivatising the spectra can eradicate baseline drifts and deconvolute the spectrum. 

Derivatives are obtained by differentiating the spectral intensity with respect to 

wavelength, and narrows the full width half maximum of bandwidths. Both first and 

second derivatives are used in research, with second derivatives often preferred due 

to easier interpretation. The first-order derivative of an absorption peak may be 
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observed on an IR spectrum as two bands of positive and negative amplitude 

positioned at frequencies that correspond to the inflection point of the zero-order 

band. The second derivative results in a negative band which corresponds to the 

frequency of the zero-order absorption maxima, as depicted in Figure 2.14. 

 

 
Figure 2.14 – Representation of a zero-order absorption band (orange), first-order 

derivative (blue) and second-order derivative (green). Processed from the peak 
maxima within the Amide I protein band (1660-1640 cm-1). 
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This is of interest when there are broad absorption bands within an IR spectrum, 

which can be difficult to be assign. By resolving these overlapping bands, it allows 

subtle differences in spectra to be emphasised. For example, the broad Amide I 

absorption contains various hidden peaks relating to protein secondary structures, 

such as a-helices and b-sheets [34]. Deconvolution of the Amide band and prediction 

of these obscured peaks can be achieved by observing the second derivative 

spectrum [42,67].  

 

2.4.3 Smoothing 

Smoothing algorithms can be beneficial when there are fluctuating baselines or 

relatively poor SNR. These methods essentially aim to increase the SNR by reducing 

the amount of wavenumbers, without greatly distorting the signal [68]. The most 

commonly used smoothing algorithm was developed by Savitzky and Golay [69] in 

the 1960s, now widely known as Savitzky-Golay (SG-) filtering. SG-filters fit a 

polynomial to a fixed number of input data points within a moving window. The 

smoothed data point is determined from the fitted polynomial at each step of the 

algorithm. SG-filters are particularly good at removing high frequency noise from 

input signals, and are well established in the smoothing of biological spectra [27]. 

 

2.4.4 Normalisation 

Spectral normalisation is commonly used to scale the IR spectra within a similar 

range. This can be helpful in accounting for discrepancies in optical pathlength and 

differences in sample quantity and/or thickness. The simplest method is the min-max 
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normalisation, where spectra are first offset-corrected by setting the minimum 

intensity of the spectrum to zero. The maximum absorbance is then set to equal one, 

resulting in scaled spectra (e.g. min = 0 and max = 1). Another frequently employed 

method is vector normalisation, where each wavenumber variable is initially 

averaged and then subtracted from the original spectrum to equal zero. Following 

this, each wavenumber is squared, then divided by the square root of the total sum of 

squared wavenumber variables, thus normalising the spectral dataset to a magnitude 

of one [63].  

 

2.5 Spectral Analysis 

2.5.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a basic linear transformation technique that 

is often used in spectroscopic studies. The main aim of a PCA analysis is to identify 

distinct patterns in complex datasets and detect a correlation between variables [70]. 

This type of analysis retains the majority of the information by defining the 

directions of maximum variance, principal components (PC), in high-dimensional 

data and projecting them into smaller dimensional space [71]. As described in Figure 

2.15, PCA determines a new coordinate system which allows the largest variance to 

be described by the first PC, followed by PC2, and so on. Essentially, the goal is to 

reduce the dimensionality of large datasets, in order to clearly visualise the general 

variation, which can be achieved through scores and loadings plots. 
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Figure 2.15 – Schematic illustration of principal component analysis. Adapted from 
ref [71]. 

 

2.5.2 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is another dimensionality reduction technique, 

but it is also capable of working as a linear classifier. LDA is has similar features to 

PCA, but in addition to finding the component axes that maximise the variance in the 

data, it focuses on maximising the separability among the known categories [72]. 

LDA classifiers make predictions by estimating the probability that a new set of 

inputs belong to each category, and the class that gets the highest probability is 

predicted as the output class [73]. 
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2.5.3 Partial Least Squares Discriminant Analysis 

Partial Least Squares – Discriminant Analysis (PLS-DA) is supervised machine 

learning method that combines PLS regression (PLSR) and LDA. This technique can 

extract important information from complex datasets, by reducing the dimensionality 

to reveal hidden patterns within the data. This technique separates classes by looking 

for a straight line that divides the data space into two distinct regions, and can often 

separate classes better than PCA when known class information has been provided 

(Figure 2.16) [74]. The data points are projected perpendicularly to the line, which is 

known as the discriminator [75]. The distances from the discriminator are referred to 

as the discriminant scores [76]. This information is provided in the form of new 

variables called PLS components, similar to PCs in PCA. The PLS scores plots give 

an overview of the general inconsistences within large datasets, and loadings plots 

further explain the variance, by suggesting where the most variable regions exist e.g. 

which spectral regions display the highest disparity.   

 

 

Figure 2.16 – Comparison of PCA and PLS-DA scores plots. Adapted from ref [77]. 

PCA PLS-DA 
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2.5.4 Random Forest 

Random Forest (RF) is a robust machine learning technique that builds an ensemble 

of decision trees (Figure 2.17) from the training data using the Classification and 

Regression Trees (CART) algorithm [78].  

 

 

Figure 2.17 – Generic structure of a random forest ensemble model. Replicated from 
ref [79]. 

 

Given the training data and the input classes contained within, RF builds a ‘forest’ of 

regression trees and outputs a mean prediction which can then be used on test data. 

The ‘trees’ in the forest are a series of branching decisions. RF analysis can extract 

statistical values based on the number of true positives, false positives, true negatives 

and false negatives, determining both the accuracy and reliability of the 

classification. Using the Gini impurity metric, produced from the combined mean 
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decrease in the Gini coefficient with respect to the wavenumbers, RF can rank the 

spectral features in order of significance [80].  

 

2.5.5 Support Vector Machine 

A support vector machine (SVM) is a supervised algorithm, commonly employed for 

classification purposes [81]. From known data, SVM outputs an optimal dimension 

for the separation of the data, known as the hyperplane. Support vectors are the co-

ordinates of the individual observation and the hyperplane can be used to categorise 

new samples [82]. The optimisation of SVM tuning parameters can considerably 

affect the classification efficiency. The penalty parameter, cost, is responsible for the 

trade-off between smooth boundaries and the ability to classify the data. The gamma 

parameter, g, is responsible for the level of fit. It is important to ensure the model 

does not overfit the data, which can be achieved using a grid search to identify the 

optimal classification performance [83].  

 

2.5.6 Sampling Methods 

If there are an uneven number of samples between classes, then classification models 

can inaccurately overpredict the majority class. Sampling methods can be used to 

counteract this problem, by computationally balancing the dataset to ensure no bias 

is present within the model [84]. Up-sampling, down-sampling and synthetic 

minority over-sampling technique (SMOTE) are well-known methods that can 

balance uneven classes [85]. The up-sampling method consists of repeatedly 

sampling the minority class with replacement to increase the number of samples, 
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whereas down-sampling selects a subset of the majority class at random, removing 

the extra samples to make it the same size as the minority class. SMOTE is unique in 

that it artificially mixes the data to, creating ‘new’ samples to achieve a more 

balanced dataset. 
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Abstract 

Over a third of brain tumour patients visit their general practitioner more than five 

times prior to diagnosis in the UK, leading to 62% of patients being diagnosed as 

emergency presentations. Unfortunately, symptoms are non-specific to brain 

tumours, and the majority of these patients complain of headaches on multiple 

occasions before being referred to a neurologist. As there are currently no methods in 

place for the early detection of brain cancer, the affected patients’ average life 

expectancy is reduced by 20 years. These statistics indicate that the current pathway 

is ineffective, and there is a vast need for a rapid diagnostic test. 

 

Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is 

sensitive to the hallmarks of cancer, as it analyses the full range of macromolecular 

classes. The combination of serum spectroscopy and advanced data analysis has 

previously been shown to rapidly and objectively distinguish brain tumour severity. 

Recently, a novel high-throughput ATR accessory has been developed, which could 

be cost-effective to the National Health Service in the UK, and valuable for clinical 

translation. 

 

In this study, 765 blood serum samples have been collected from healthy controls 

and patients diagnosed with various types of brain cancer, contributing to one of the 

largest spectroscopic studies to date. Three robust machine learning techniques - 

random forest, partial least squares-discriminant analysis and support vector machine 

- have all provided promising results. The novel high-throughput technology has 



 96 

been validated by separating brain cancer and non-cancer with balanced accuracies 

of 90% which is comparable to the traditional fixed diamond crystal methodology.  

 

Furthermore, the differentiation of brain tumour type could be useful for 

neurologists, as some are difficult to distinguish through medical imaging alone. For 

example, the highly aggressive glioblastoma multiforme and primary cerebral 

lymphoma can appear similar on magnetic resonance imaging scans, thus are often 

misdiagnosed. Here, we report the ability of infrared spectroscopy to distinguish 

between glioblastoma and lymphoma patients, at a sensitivity and specificity of 

90.1% and 86.3%, respectively. A reliable serum diagnostic test could avoid the need 

for surgery and speed up time to definitive chemotherapy and radiotherapy. 
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3.1 Introduction 

Brain tumour incidence rates have been increasing since the early 1990s, rising by 

34% in the UK alone [1]. Despite an improvement in patient survival, only 14% of 

patients survive 10 years or more after diagnosis, and the average reduction in life 

expectancy of 20 years is the highest of all cancers [2]. Rapid and timely diagnosis 

and determination of tumour type is crucial for expediting management and 

improving patient outcomes [3].  

 

The symptoms most frequently associated with brain tumours are non-specific, such 

as headache, presenting a challenge for doctors in identifying which patients are 

most likely to have a brain tumour, and should have expedited brain imaging [4]. 

Consequently patients often visit their general practitioner (GP) multiple times 

before diagnosis and for nearly two thirds of patients diagnosis is in the emergency 

department once they deteriorate [5], [6]. Existing referral guidelines lack sensitivity 

and specificity. As few as 1.6% of patients referred for urgent brain imaging from 

primary care actually have a brain tumour, suggesting many brain scans are 

unnecessary [7].  

 

Brain tumours are diagnosed on magnetic resonance imaging (MRI) or computed 

tomography (CT) brain imaging. There are many different types of tumours, 

depending on the underlying cell of origin, each with its own optimal treatment 

regimens. Crucially, it is not possible to identify the tumour type with certainty from 

imaging alone. For example, primary central nervous system lymphoma (PCNSL) 

and glioblastoma (GBM) can have similar appearance on MRI [8], but very different 
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therapy options. Patients therefore require a gold standard histological tissue 

diagnosis. This subjects them to surgical tumour biopsy, with attendant risks, 

including stroke or death, and with consequent delay to commencement of the 

chemotherapy and/or radiotherapy that will best impact on their disease. A rapid 

blood test that can identify patients with tumours amongst those with similar 

symptoms, and that can stratify tumour type would have a profound impact.  

 

Analytical techniques based on vibrational spectroscopy, such as Raman and infrared 

(IR) spectroscopy, have emerged in the field of disease diagnostics [9]–[12]. Fourier-

transform infrared spectroscopy (FTIR) in particular has become increasingly 

popular in medical research, because of its rapid, non-invasive analysis [13]. In FTIR 

spectroscopy, biological samples are irradiated with infrared light. The absorbance of 

this light causes molecular excitation and enables transitions between vibrational 

states, resulting in an IR spectrum. A typical spectrum of a biological sample 

represents a biochemical fingerprint, and can characterise and quantify the levels of 

proteins, lipids, carbohydrates and nucleic acids that are present. The imbalances in 

these biomolecular components can give an indication of disease states [14]. 

Machine learning algorithms learn the differences in IR biosignatures that are 

exclusive to disease and can provide a diagnostic output with a prediction on the 

patient’s state [15].  

 

Many spectroscopic disease diagnostic pilot studies to date have analysed human 

tissue, indicating the possibility to differentiate healthy and cancerous tissue, as well 

as benign and malignant tumours [16]. Breast, lung, colorectal and prostate lesions 
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have been studied, providing a platform of promising results [17]–[21]. More 

recently, biofluid spectroscopy has gained increased interest. Attenuated total 

reflection (ATR)-FTIR spectroscopy is well suited to the analysis of biofluids, as 

only tiny volumes are required and sample preparation is minimal [22], [23]. Blood 

serum contains over 20,000 different proteins and is one of the most complex 

biofluids [24]. Serum perfuses all body organs, gaining proteomes from surrounding 

tissues and cells, hence the spectroscopic biosignature of serum ideal for indicating 

disease states [25], [26]. 

 

There has been many biofluid-based studies looking into various cancers [27]–[30], 

but Hands et al. were the first to use blood serum and ATR-FTIR spectroscopic 

analysis for brain tumour detection. Comparisons have been made between glioma 

and non-cancer patients [31], as well as pilot studies for different brain tumour types 

[32]. In a further study of blood serum from 433 patients [33], the discrimination of 

cancer versus non-cancer of reported and sensitivity and specificity of 92.8% and 

91.5%, respectively [15].  

 

Traditional ATR-FTIR instrumentation was used in these studies, which has barred 

the clinical translation of the technique for a number of reasons. Conventionally, an 

ATR-FTIR spectrometer has a fixed point of analysis, known as the internal 

reflection element (IRE). IREs for ATR analysis are made from materials with high 

refractive indices, the most common being diamond, zinc selenide or germanium 

[34], to contrast with the sample that has a lower refractive index. Biofluid samples 

are deposited directly onto the surface of the IRE before being air dried, in order to 
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combat the spectral interference of water [35]. IR light is directed into the IRE and 

internally reflected, forming an evanescent wave at the IRE-sample interface. This 

evanescent wave interrogates the sample at a defined penetration depth, which is 

dependent upon the refractive indices of the IRE and sample, the angle of incidence 

and the wavelength of IR beam [36].  

 

The traditional approach is limited in both cost and time. The IRE materials tend to 

be high cost, therefore would be expensive to replace. The fixed IRE needs to be 

cleaned between each sample, which is extremely time consuming. It takes 

approximately 8 minutes to adequately dry 1 µL of human serum on to a diamond 

crystal, and with the necessary cleaning steps, as well as the technical and biological 

repeats, it would take over an hour to process one patient [32]. Also, scratches on the 

surface of fixed IREs are known to affect the sample-IRE contact, which is essential 

for ATR-FTIR measurements [37]. These limitations have inhibited the progression 

of the technique thus far, however high-throughput ATR-FTIR could overcome these 

barriers for successful clinical translation. A recently published health economic 

study has suggested a high-throughput alternative to the traditional IRE would be 

cost-effective to the UK’s National Health Service (NHS). Gray et al. highlight the 

clinical and economic benefits of implementing a quick diagnostic test for brain 

cancers into the current pathway [38]. They reported that a serum blood test at the 

primary care level could prioritise patients for neuroimaging, improving patient 

survival and quality of life, whilst also saving on the cost of unnecessary brain scans. 

Furthermore, since blood tests at the primary care level are already in place, an 

additional test at this stage would not significantly disrupt current practices.  
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Silicon (Si) has a high refractive index, and its relatively low cost - cf. diamond - and 

transparency to infrared light makes it an ideal material for Si IREs (SIREs) [39], 

[40]. High-throughput disposable SIREs are now commercially available, that allow 

single-bounce ATR-FTIR (ClinSpec Diagnostics Ltd, UK) [41]. The SIRE replaces 

the expensive fixed crystal, and allow multiple sampling points (Appendix 1, Figure 

A1.1). The design enables the slides to be batch processed, as well as having the 

option of repeating analysis if required, a feature that would not be possible with 

conventional fixed SIREs.  

 

In this study, we further explore the largest retrospective dataset curated to date of 

serum samples from patients with brain tumours, with a specific focus on the 

spectroscopic interpretation of the variances within the brain tumour cohort. 

Specifically, we elucidate the ability of SIRE-based ATR-FTIR spectroscopy to 

successfully identify the cancerous biosignature in serum, and to differentiate 

between GBM and PCNSL.  
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3.2 Materials and Methods 

3.2.1 Sample Collection and Preparation 
 
Following a specified standard operating procedure, a total of 765 serum samples 

were obtained from three sources; the Walton Centre NHS Trust (Liverpool, UK), 

Royal Preston Hospital (Preston, UK), and the commercial source Tissue Solutions 

Ltd (Glasgow, UK). Ethical approval for this study was obtained (Walton Research 

Bank and Brain Tumour North West/WRTB 13_01/BTNW Application #1108). All 

patients were consented. The primary care triage study contains 724 cases - 487 brain 

tumour samples and 237 healthy controls. A respectable balance of male and female 

patients has been included, with a widespread age range – the details of which can be 

found in Appendix 1 (Table A1.1). A large variety of tumour types are involved in 

the brain cancer cohort (Table A1.2). An additional 41 serum samples were collected 

from patients with primary cerebral lymphoma for comparison against GBM samples 

(Table A1.3).  

 

In order to be included in this study, the cancer patients must have had a 

pathologically confirmed primary or secondary brain tumour, and must not have 

been undergoing chemo- or radio-therapy at the time of collection. For control 

patients, obtained as above, inclusion criteria stated that they should not be 

undergoing any medical treatments, nor have any history of cancer. Blood samples 

were collected in serum collection tubes and allowed to clot for up to one hour. The 

tubes were centrifuged at 2200 g for 15 minutes at room temperature, then the 

separated serum component was subsequently aliquoted stored in an -80 °C freezer.  
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Prior to spectral analysis, the frozen serum samples were removed from storage and 

thawed at room temperature (18-25 °C) for an average time of 15-20 minutes. Using 

a micropipette, 3 µL of serum from one individual patient was deposited onto each of 

the three sample wells of the optical sample slide (wells 1, 2 and 3), whilst ensuring 

well ‘0’ remained clean for background collection. The serum drops were spread 

across the well using the pipette tip, in order to create a thin serum film and cover the 

whole IRE for more uniform deposition. Prepared slides were stacked in 3D printed 

polylactic acid (PLA) slide holders, which were designed to enable batch drying. The 

stacked slides were then stored in a drying unit incubator (Thermo Fisher™ 

Heratherm™, GE) at 35 °C for 1 hour. Pre-analytical work prior to beginning this 

study showed this step to be vital, as it provides even heat and airflow for controlled 

drying dynamics of the serum droplet, to obtain a smooth, flat homogenous sampling 

surface [42]–[44].  

 

3.2.2 Spectral Collection 
 
For this study, a Perkin Elmer Spectrum 2 FTIR spectrometer (Perkin Elmer, UK) 

was used for the spectral collection. A Specac Quest ATR accessory unit was fitted 

with a specular reflectance puck (Specac Ltd, UK), allowing the SIRE to sit on top of 

the aperture and replace the traditional fixed diamond IRE. The slide indexing unit 

(ClinSpec Diagnostics Ltd, UK) enabled accurate and reproducible movement across 

the specular reflectance puck, indexing the optical slide between sample wells. With 

the first well acting as a background, the three sample wells provide the biological 

repeats. Each well was analysed in triplicate - resulting in nine spectra per patient. 

The spectra were acquired in the range 4000-450 cm-1, at a resolution of 4 cm-1, with 
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1 cm-1 data spacing and 16 co-added scans. In total 6885 spectra have been collected 

from all serum samples.  

 

3.2.3 Spectral Pre-processing 
 
Here we have used the PRFFECT toolbox within R Statistical Computing 

Environment software for the spectroscopic analysis [45], [46], which can be divided 

into two parts; spectral pre-processing and spectral classification. The pre-processing 

step is commonly applied in spectroscopic studies, as it reduces unwanted variance 

in the dataset. A combination of baseline correction, normalisation and data 

reduction enables the significant biological information to be emphasised and 

improves the classification performance [47]. The optimum pre-processing protocol 

was determined using a trial-and-error iterative approach. The PRFFECT toolbox 

offers various pre-processing methods, such as binning, smoothing, normalisation 

and numerical derivatives - we direct the reader towards Smith et al. [45] for more 

information on the use of this open-source program. Figure 3.1 gives an example of 

the data pre-processing; (a) raw spectra as the mean plot per patient, for the whole 

724-patient dataset, and (b) shows the spectra cut to the fingerprint region, with 

baseline correction and a vector normalisation applied - greatly reducing the spectral 

variation.  
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Figure 3.1 - Pre-processing example; (a) raw infrared spectra of the whole brain 
cancer cohort, and (b) after a spectral cut, rubberband baseline correction and vector 

normalisation. 
 

Extended multiplicative signal correction (EMSC) has recently been shown to be a 

reliable pre-processing tool, that allows more selective correction for various types of 

scattering [48]. The EMSC process scales the IR spectra according to a given 

reference spectrum. In this case, the reference was an average spectrum of 10 

background measurements of the SIRE, which was chosen to minimise the spectral 
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variance caused by silicon lattice vibrations. The optimal pre-processing parameters 

were found to be (in order); EMSC, spectral cut to the fingerprint region (1800-1000 

cm-1), a minmax normalisation and a binning factor of 8. 

 

3.2.4 Spectral Analysis 
 
Spectral analysis was carried out to identify the cancerous biosignature from a 

known patient cohort to develop a trained classification model, and then to use this 

information to predict the presence of cancer in an unknown population. Prior to 

running the classifications, bootstrapping analysis was carried out on the training set 

to search for an acceptable number of iterations. This technique resamples a dataset 

with replacement, to determine an optimal resample value which will maximise 

classification accuracy [49]. To develop the models, patients were randomly split 

into training and test sets, with a 70:30 split. Models were tuned on the training set 

(70%) and then used to make predictions for the spectra in the test set (30%). In 

order to ensure that the models were trained and validated correctly, spectra from a 

single patient’s sample could only appear in one cross-validation fold, and in either 

the training or test set. The consensus vote amongst the nine spectra that were 

analysed for each patient was reported as the diagnostic outcome (cancer or non-

cancer). Model performance is reported in terms of sensitivity, specificity, kappa, 

and balanced accuracy. For those classifications for which the class prevalence in the 

clinical population were known, positive and negative predictive values were also 

computed.  
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Sensitivities and specificities (Eq. 3.1 and 3.2) are based on the number of correct 

and incorrect predictions in the external test set. The sensitivity refers to the ability 

of the test to correctly identify the patients with the disease (brain cancer), and 

specificity is the ability to correctly pick out those without the disease (controls) 

[50]. True positives (TP) result from a patient with the target disease with five or 

more spectra out of their nine spectra correctly identified, whereas true negatives 

(TN) refer to the patients without the target disease who have at least five out of their 

nine spectra correctly identified. False positives (FP) are where a control patient has 

five or more spectra incorrectly identified as cancer, and a false negative (FN) is 

from a patient with the target disease who has five or more spectra incorrectly 

classified as non-cancer.  

VWRXY7YZY7[ = @A
@A/BC

=	 @A
A

    (3.1) 

V\W!Y]Y!Y7[ = @C
@C/BA

=	 @C
C

    (3.2) 

where P is the number of real positives and N is the number of real negatives.  

 

When employing binary classifications on imbalanced datasets, the overall model 

performance is commonly measured using balanced accuracy (Eq. 3.3), which can be 

defined as the average accuracy obtained on either class [51].  
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C
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In order to understand the reliability of the diagnostic model the Kappa value, k, can 

give a quantitative measure of the magnitude of agreement between observers (Eq. 

3.4).  

 

a	 = 8$6	8%
$68%

    (3.4) 

 

where \D is the relative observed agreement and \% is hypothetical probability of the 

chance agreement, which can be calculated from consideration of the number of 

times that cancer and non-cancers occur in the real and predicted data. Values of k 

range from below zero to one and equate to the level of agreement. Where in general, 

k £0 indicates no agreement, 0.01–0.20 accounts for slight, 0.21–0.40 fair, moderate 

agreement is 0.41–0.60, 0.61–0.80 is substantial and lastly 0.8–1.00 is almost perfect 

agreement [52], [53].  

 

Predictive values are useful to clinicians as they indicate the true likelihood of the 

test results. The positive predictive value (PPV) is the proportion of patients with 

positive test results who are correctly diagnosed, and the negative predictive value 

(NPV) relates to those with correctly assigned negative results [54], [55].  
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The predictive values are dependent upon the sensitivity, specificity and the 

prevalence of the disease (Eq. 3.5 and 3.6) - in this case the prevalence of brain 

tumours [56]. In this study the PPV and NPV have been calculated using the mean 

values of sensitivity and specificity from each of the resampled classification models 

and the prevalence is equal to that of the positive class (i.e. cancer) in the clinical 

environment. 

 

																bb> = :%7:0)0&0)E	×	8'%&GH%7!%
:%7:0)0&0)E	×	8'%&GH%7!%	/	($6:8%!0I0!0)E)×($68'%&GH%7!%)

 (3.5) 

															cb> = :8%!0I0!0)E	×	($68'%&GH%7!%)
($6:%7:0)0&0)E)	×	8'%&GH%7!%	/	:8%!0I0!0)E	×	($68'%&GH%7!%)

  (3.6) 

 

To determine the optimum values for the tuning parameters, a 5-fold cross-validation 

was performed - on a patient basis - on the training data. Due to the class imbalance 

present when examining the difference between cancer (487 patients) vs. non-cancer 

(237 patients), various sampling methods were used throughout this study to ensure 

no bias was present within the models [57]; up-sampling, down-sampling and 

synthetic minority over-sampling technique (SMOTE) [58].  
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3.2.4.1 Random Forest 
 
Random forest (RF) is a robust machine learning technique that for classification 

problems builds an ensemble of decision trees from the training data using the 

Classification and Regression Trees algorithm [59]. There are three main tuning 

parameters employed in this technique; ntree is the number of trees, mtry is the 

number of variables available for splitting at each tree node and nodesize refers to the 

depth of the trees. To encourage diversity amongst the forest, each of ntree trees is 

built on a bootstrap sample of the training data, and at each node in each tree the 

optimum feature is selected from a random subset of mtry available features. Each 

tree is grown until the terminal nodes contain no fewer than nodesize observations. 

Classification predictions are reported as the majority vote of all of the decision trees 

in the forest, which allows the method to benefit from the “wisdom of the crowds”. 

Random Forest is well-known to be insensitive to the values of ntree, nodesize, and 

mtry [60]. Here, default values were adopted for ntree = 500 and nodesize = 1 and 

mtry = 30. Additionally, spectral importance results can be graphically viewed in the 

form of Gini plots. The Gini impurity metric accounts for how often a randomly 

selected component from a training set would be incorrectly labelled if it was 

randomly labelled according to the class distribution in a subset [61]. The mean 

decrease in the Gini, also known as Gini importance, is the total decrease in node 

impurities from splitting on the variable, averaged over all trees [62]. This is 

essentially a measure of how important a variable is for estimating the value of the 

target variable across all tress in the forest. Hence, by using this metric, RF can rank 

the spectral features in order of significance - for example, which wavenumbers are 

the most discriminating between the two classes [15].  
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3.2.4.2 Partial Least Squares-Discriminant Analysis 
 
Partial least squares – discriminant analysis (PLS-DA) is supervised machine 

learning method that can extract important information from complex datasets, by 

reducing the dimensionality to reveal hidden patterns within the data [63]. PLS 

scores plots give an overview of the general inconsistences within large datasets, and 

loadings plots further explain the variance, by suggesting where the most variable 

regions exist e.g. which spectral regions display the highest disparity [64]. The 

optimal number of components, ncomp, is determined when tuning the classification 

models. The best value for ncomp provides the most reliable results, so that the 

cross-validation error is minimised. Here, ncomp was determined from a tuning grid 

with a range 1:20. 

 

3.2.4.3 Support Vector Machine  
 
A support vector machine (SVM) is a supervised algorithm, commonly employed for 

classification purposes [65]. As described in Chapter 2 (section 2.5.5), support 

vectors are the co-ordinates of the individual observation and the hyperplane can be 

used to categorise new samples [66]. Linear, radial basis function, and polynomial 

kernels have all been used in SVM models, but here we use the linear kernel that has 

previously been shown to perform well in spectral classification studies [67]. The 

penalty parameter cost has been tuned to search for optimal classification 

performance [68].  
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3.3 Results and Discussion 

3.3.1 Brain Cancer versus Control 
 
Each classification model was executed multiple times to ensure the variance within 

the dataset was fully encompassed. Bootstrapping analysis on the training set showed 

51 resamples to be a reliable number of iterations, as shown in Figure 3.2, the 

standard error adequately converges at around 51 resamples for both (a) sensitivity 

and (b) specificity. A higher number of iterations reduces the variance, but also 

increases the time required to run the classification models. At 51 iterations, the 

standard error for the test set was 0.13% for sensitivity and 0.19% for specificity, 

which was deemed to be an acceptable level of error, with reasonable analysis time. 
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Figure 3.2 - Bootstrapping analysis to determine sufficient number of resamples 
required for the 724 patient dataset: (a) the sensitivity and (b) specificity. 
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3.3.1.1 Random Forest Results 
 
Following optimal pre-processing, a single RF classification model was trained on 

the training data and used to predict the test set. The value of mtry was chosen to be 

30, which gave sensitivity and specificity of 93.8% and 80.1% for the 5-fold cross-

validation on the training data. Initial analysis of the single RF model emphasised the 

ability to successfully pick out the brain cancer patients from the training set, with 

the test set reporting a sensitivity of 92.5%. However, the specificity was much lower 

at 76.1%, meaning this particular model incorrectly predicted many of the control 

patients as having the disease. That said, the lower specificity could be attributed to 

the class imbalance within the dataset. As the sensitivity of a model relates to the 

ability to detect patients with disease, and 487 out of the 724 patient samples were 

cancerous, there was a bias towards the prediction of a brain cancer. The addition of 

statistical sampling techniques can reduce the class imbalance and improve the 

accuracy of the model. Table 3.1 compares classification output of the initial RF 

model with the three different resampling techniques. The up-sampling method was 

not effective in improving this model, losing 0.7% on sensitivity and only increasing 

specificity by 1.4%. On the other hand, down-sampling greatly improved the 

specificity, rising from 76.1% to 85.9%. Some studies have been critical of down-

sampling, as the technique ‘ignores’ data that could provide important differences 

and/or similarities between the two classes [69] That being said, multiple iterations 

could potentially overcome this data loss, as there would be different patients down-

sampled during each iteration. With SMOTE sampling technique, the minority class 

(controls in this case) is synthetically up-sampled in order to be more comparable 
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with the majority class [58]. This was found to provide the best output, with a 

sensitivity and specificity of 94.5% and 88.7% respectively.  

 

Table 3.1 - Sampling comparison for single brain cancer versus control random 
forest classifications. 
 

 RF only Up-sampling Down-Sampling SMOTE 
Sensitivity (%) 92.5 91.8 90.4 94.5 

Specificity (%) 76.1 77.5 85.9 88.7 

 

In Appendix 1, Figure A1.2 shows the confusion matrices of the (a) initial and (b) 

SMOTE models which describe the predictions that were made in the random forest 

test sets. As outlined above in Table 3.1, the specificity increased to 88.7%, 

predicting 63 out of 70 non-cancer patients correctly. The sensitivity remained high, 

only falsely predicting 8 out of 146 cancer patients as non-cancer, resulting in a 

sensitivity of 94.5%. As the SMOTE sampling was found to be optimal in this case, 

it was used for the resampled classification.  

 

The single model results were promising, but to ensure they were reliable the RF 

model was resampled 51 times. The 51 independent RF models were combined to 

provide mean sensitivity and specificity values, as well as the standard deviations to 

account for the statistical variance. Table 3.2 lists the mean and standard deviation 

(SD) values for the sensitivity, specificity, k and balanced accuracy relating to the 51 

RF iterations. The PPV and NPV were also calculated from the mean sensitivity and 

specificity, as well as the prevalence of brain tumours - reported as approximately 

1.6% [7]. The ability to successfully predict the brain cancer patients was high, with 

an average sensitivity of 93.1%. However, despite SMOTE being more beneficial for 
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the singular RF model, the average specificity over the 51 iterations dropped to 

81.1%, ranging from 73.2% to 92.9%. This particular RF classification performed 

well in the detection of brain cancer, but it was incorrectly assigning more of the 

non-cancer patients as ‘cancer’ resulting in a higher number of false positives. 

Clearly this would not be very efficient for the clinic, as the excess brain scans would 

be costly to the health services, meanwhile putting healthy patients through needless 

stress and anxiety. However, these findings are still relatively promising, with a 

health economic study reporting statistics >80% would be cost-effective to the NHS 

[38].  

 

Table 3.2 - Statistical results for the test set in the RF model with 51 iterations. SD, 
standard deviation. 
 

 Mean SD 

Kappa 0.75 0.05 

Sensitivity (%) 93.1 1.97 

Specificity (%) 81.1 3.90 

Balanced Accuracy (%) 87.1 2.35 

PPV (%) 7.4 - 

NPV (%) 99.9 - 
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The Gini impurity metric was examined to identify the most important features 

within the dataset. The accuracy and reliability of the model can be determined from 

the RF statistical value outputs, with the Gini plot highlighting wavenumbers 

responsible for the results for the optimal model (Figure 3.3). Table 3.3 gives an 

overview of the top 15 identified wavenumbers in order of importance, with their 

corresponding wavenumber assignments and vibrational modes. The column 

"∑Gini" in the table is a summation of the mean decrease in Gini for each 

wavenumber, over all nodes in all trees in the ensemble.  

 

 

Figure 3.3 - Gini importance plot from random forest analysis showing the mean 
spectra from brain cancer (black) and control (red). Blue: Protein; Yellow: Lipid; 

Green: Nucleic acid and Orange: Carbohydrate. 
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Table 3.3 - Top 15 wavenumbers from RF classification of brain cancer vs non-
cancer with tentative biochemical assignments [14], [16]. 
 

Wavenumbers (cm-1) ∑Gini Tentative 
Assignments Vibrational Modes 

1524.5 619.1 

Amide II of proteins d(N-H), ν(C-N), d(C-O), ν(C-C) 
1516.5 430.0 

1532.5 425.7 

1508.5 193.2 

1028.5 177.8 
Glycogen ν(C-O), ν(C-C), def(C-OH) 

1036.5 150.0 

1500.5 120.7 
Amide II of proteins d(N-H), ν(C-N), d(C-O), ν(C-C) 

1540.5 95.2 

1020.5 90.9 DNA/Glycogen  ν(PO+
6)/ν(C-O) 

1788.5 83.2 Lipids ν(C=O) 

1044.5 79.3 Nucleic Acids ν(PO+
6) 

1796.5 79.1 Lipids ν(C=O) 

1668.5 76.1 Amide I of proteins ν(C=O), ν(C-N), d(N-H) 

1012.5 67.2 Carbohydrate ν(C-O) 

1492.5 67.1 Amide II of proteins d(N-H), ν(C-N), d(C-O), ν(C-C) 

ν = stretching; d = bending; def = deformation 

 

The most discriminatory region is the Amide II band, making up the top 4 

wavenumbers with extremely high ∑Gini values. The out-of-phase combination of 

the NH bending and the CN stretching vibrations, as well as minor contributions 

from the CO in-plane bend and the CC/NC stretching vibrations, give rise to the 

Amide II band [70]. Certain wavenumbers in the lower wavenumber region - relating 

to carbohydrates, glycogen and nucleic acids – were also shown to be highly 

discriminating. These areas of importance are closely followed by lipid and other 

protein (Amide I) contributions.  
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3.3.1.2 PLS-DA Results 
 
The optimal value of ncomp was found to be 14, which was selected from a tuning 

grid with a range 1:20. This gave sensitivity of 89.4% and specificity of 88.7% for 

the 5-fold cross-validation on the training data. An initial PLS-DA model reported a 

sensitivity of 95.9% and specificity of 81.7% for the external test set. Similar to the 

RF analysis, the sampling techniques were used to balance the classes. All three 

methods greatly enhanced the specificity, each improving by 10% or greater (Table 

3.4), but this was costly for the sensitivity values, each falling below 90%. It is likely 

that the fall in sensitivity is caused by the class imbalance, as the initial model can be 

biased and overpredict the majority of the patients as ‘cancer’, simply because there 

is many more within the dataset. The sampling techniques balance the classes, giving 

an impartial representation and hence more reliable predictions. Again, as with the 

RF, the best results were obtained using SMOTE sampling (Figure A1.3, Appendix 

1), hence 51 iterations of the RF + SMOTE classification was employed.  

 

Table 3.4 - Sampling comparison for single PLS-DA classifications. 

 PLS-DA only Up-sampling Down-Sampling SMOTE 

Sensitivity (%) 95.9 86.3 86.3 89.7 

Specificity (%) 81.7 92.9 94.3 91.6 

 

Table 3.5 lists the results from the 51 resamples of the PLS-DA/SMOTE model. 

PLS-DA was not as effective at predicting the brain cancer patients correctly, 

reporting an average sensitivity of 90.5%, in comparison to 93.1% for the RF model. 

However, the average specificity was 91.1%, meaning PLS-DA was far superior in 
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correctly assigning the control samples as ‘non-cancer’. Out of the three 

classification models, PLS-DA reported the best PPV, at 14.2%, almost double that 

of the RF model (7.4%). 

 

Table 3.5 - Statistical results for the test set in the PLS-DA + SMOTE model with 51 
iterations. SD, standard deviation. 
 

 Mean SD 

Kappa 0.71 0.10 

Sensitivity (%) 90.5 2.09 

Specificity (%) 91.1 3.28 

Balanced Accuracy (%) 90.8 1.83 

PPV (%) 14.2 - 

NPV (%) 99.8 - 

 

Figure 3.4 shows the scores plot between the first and second PLS components. 

There is a substantial amount of overlap between the two classes, with some 

separation across the 2nd PLS component (PLS2). The loadings plot for PLS2 is 

described in Figure 3.5, which suggests the biggest variance within the brain tumour 

dataset exists in the Amide II region (1500-1600 cm-1), and in the lower wavenumber 

region (1000-1100 cm-1). This agrees with the RF Gini importance values, in that the 

Amide II of proteins, and the bands from glycogen/carbohydrate/phosphate 

vibrations are most discriminatory. 
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Figure 3.4 - Partial least squares-discriminant analysis; scores plot for brain cancer 

(black) vs control (red). 
 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3.5 - Loadings plot for the 2nd partial least squares component with tentative 
biological assignments. 
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3.3.1.3 SVM Results 
 
Similar analysis was carried out using an SVM-based classification (Table 3.6). The 

SVM model was tuned using the optimal value for cost, which was determined to be 

0.019 by running a sequence between 0.001 and 0.3 at intervals of 0.018. Again, the 

use of the sample balancing techniques greatly improved the accuracy of the model, 

with SMOTE being the preferred method. The linear-SVM with SMOTE single 

model performed slightly better than RF and PLS-DA, with both sensitivity and 

specificity above 90%, as described in the test set confusion matrices in Appendix 2, 

Figure A1.4. The reported statistics in Table 3.7 are for the 51 SVM iterations using 

SMOTE.  

 

Here, the average sensitivity was 92.1% but the specificity was slightly lower at 

88.7%. Again, we achieve a balanced accuracy over 90%, and the PPV of 13.5% is 

relatively high. The SVM model produced a mean k value of 0.8, indicating almost 

perfect agreement which suggests this particular model was robust and reliable.  

 

Table 3.6 - Sampling comparison for single SVM classifications. 

 SVM only Up-sampling Down-Sampling SMOTE 

Sensitivity (%) 93.2 89.7 87.7 91.7 

Specificity (%) 81.7 94.4 94.4 90.1 
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Table 3.7 - Statistical results for the test set in the SVM model with 51 iterations. 
SD, standard deviation. 
 

 Mean SD 

Kappa 0.80 0.03 

Sensitivity (%) 92.1 2.1 

Specificity (%) 88.7 3.3 

Balanced Accuracy (%) 90.4 1.5 

PPV (%) 13.5 - 

NPV (%) 99.9 - 

 

 

3.3.1.4 Receiver Operating Characteristic Curves 
 
In addition, receiver operating characteristic (ROC) curves can illustrate the 

diagnostic ability of machine learning classifiers, and aid with tuning the 

classification model for clinical applications. The curves describe how the diagnostic 

ability can change when the probability threshold is varied. The area under the curve 

(AUC) represents the measure of separability, with the higher AUC the better the 

model is at distinguishing between classes [71]. The ROC graph in Figure 3.6 

suggests the diagnostic performance of all three models is extremely promising. The 

ROC curves are all relatively symmetrical across sensitivity and specificity - the 

PLS-DA curve is slightly better with an AUC value of 0.948, which is regarded as 

excellent. 
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Figure 3.6 – ROC curves displaying trade-off between sensitivity and specificity of 

the three classification techniques for the cancer vs non-cancer patients: random 
forest; green, partial least squares-discriminant analysis; blue, support vector 

machine; red. 
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In general, the results from this study confirm the ability of serum spectroscopy - 

coupled with computational analysis - to be effective in differentiating brain lesions 

from healthy controls. Using basic machine learning techniques, we have 

successfully separated brain cancer and non-cancer with accuracies greater than 

90%. Both PLS-DA and SVM performed extremely well, with the PLS-DA model 

reporting an average sensitivity and specificity of 90.5% and 91.1% respectively, 

meanwhile the linear-SVM produced 92.1% sensitivity and 88.7% specificity. These 

results are just slightly inferior to the 92.8% and 91.5% reported by Hands et al. [33]. 

However, there are various differences between these studies, meaning they are not 

entirely comparable. The patient cohorts were comprised of different patients, and 

this dataset contains almost 300 more serum samples. Hands et al. employed a radial 

basis function (RBF) based SVM, whereas we compare the capability of linear-SVM 

to basic RF and PLS-DA models, all of which provided promising results. Despite 

these differences, accuracies above 90% suggests that the new SIRE technology is 

comparable with the traditional fixed diamond IRE, indicating the high-throughput 

design could now be implemented into the clinical environment, to enable a quick 

blood test for the early detection of brain cancer. 
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3.3.2 Glioblastoma versus Primary CNS Lymphoma 
 
Neuro-oncologists are particularly interested in the challenge of differentiating of 

PCNSL from GBM. It can often be difficult to distinguish between these diagnoses 

on brain imaging alone, such as MRI. This therefore necessitates patients to have 

surgical biopsy in order to identify the tumour pathology, and to determine the most 

appropriate regimen of surgery, chemotherapy and radiotherapy. A reliable serum 

diagnostic test could avoid the need for surgery and speed up time to definitive 

therapy.  

 

Additional serum samples were collected from the Walton Centre and the Royal 

Preston hospital, to provide a total of 41 PCNSL samples. A random subset of the 

GBM samples from the 724 patient dataset were used for the comparisons. The 

patient information is summarised in Appendix 1 (Table A1.3). Similar to the 724 

dataset, bootstrapping analysis was done on the GBM versus PCNSL training set to 

search for an acceptable number of iterations; 51 resamples were also found to be 

sufficient, with the standard error converging at this point (Figure A1.6, Appendix 

1). An initial RF model provides us with the biochemical differences between the 

PCNSL and GBM patients. The Gini plot (Figure 3.7) suggests the Amide II region 

is of particular importance, closely followed by the Amide I band. Between 1150-

1000 cm-1 there are various significant bands, relating to vibrations within nucleic 

material, glycogen and carbohydrates (Table 3.8).  
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Figure 3.7 - Gini importance plot from random forest analysis showing the mean 
spectra from PCNS lymphoma (black) and glioblastoma (red). Blue: Protein; 

Yellow: Lipid; Green: Nucleic acid and Orange: Carbohydrate. 
 
 

Table 3.8 - Top 15 wavenumbers from RF classification of PCNS lymphoma vs 
GBM with tentative biochemical assignments [14], [16]. 
 

Wavenumbers (cm-1) ∑Gini Tentative 
Assignments Vibrational Modes 

1556.5 95.9 
Amide II of proteins 

d(N-H), ν(C-N), d(C-O), ν(C-
C) 1564.5 91.4 

1676.5 57.9 
Amide I of proteins ν(C=O), ν(C-N), d(N-H) 

1684.5 50.1 

1572.5 42.9 
Amide II of proteins 

d(N-H), ν(C-N), d(C-O), ν(C-
C) 1548.5 32.6 

1668.5 32.2 
Amide I of proteins ν(C=O), ν(C-N), d(N-H) 

1660.5 30.5 

1020.5 19.7 DNA/Glycogen  ν(PO+
6)/ν(C-O), def(C-OH) 

1100.5 19.0 Nucleic Acids  ν(PO+
6) 

1036.5 17.4 Glycogen ν(C-O), ν(C-C)  

1692.5 15.3 Amide I of proteins ν(C=O), ν(C-N), d(N-H) 

1108.5 14.6 Carbohydrate ν(C-O), ν(C-C) 

1628.5 14.5 
Amide I of proteins ν(C=O), ν(C-N), d(N-H) 

1620.5 13.2 

ν = stretching; d = bending; def = deformation 
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For the PLS-DA model, in this case the optimal value for ncomp was found to be 4. 

As with the C/NC set, the scores plot separates the PCNSL and GBM patients across 

the 2nd PLS component (Figure 3.8). Again, we see the highest discrimination arises 

from the Amide bands and the lower wavenumber region on the loadings plot 

(Figure 3.9). For GBM versus PCNSL, the Amide I region is also highly 

discriminatory, substantiating the RF Gini findings outlined previously in Table 3.8. 

The confusion matrix for a single PLS-DA model is described in Appendix 1 (Figure 

A1.5). SMOTE showed to be the best sampling technique for RF and PLS-DA, but 

up-sampling was found to be optimal for the SVM-based model (Table 3.9). The 

PPV and NPV are not included here, as the prevalence value for this particular 

classification is difficult to estimate. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8 – Partial least squares-discriminant analysis; scores plot for PCNS 

lymphoma (black) vs glioblastoma (red). 
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Figure 3.9 - Loadings plot for the 2nd PLS component in the PCNS lymphoma versus 
glioblastoma classification with tentative biological assignments. 

 

For this particular dataset, the sensitivities refer to the ability to detect GBM, and the 

specificity relates to PCNSL. As shown in Table 3.9, the inferior model for this 

dataset was found to be RF – despite having a high sensitivity, the specificity was 

rather low at 70.8%. Although the balance between sensitivity and specificity could 

be tuned by optimising the probability threshold of the classifier, the fact that Kappa 

and balanced accuracy have significantly lower values than for the other models 

suggests that it would not change the rankings of the models. SVM combined with 

up-sampling performed well, reporting a balanced accuracy of 86.4%. The PLS-DA 

+ SMOTE method seemed to be the optimal model, with a sensitivity of 90.1%, a 

specificity of 86.3%, and the highest k value of all three models – mean k = 0.76.  
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Table 3.9 - Statistical results for the GBM versus PCNSL test sets from the three 
different classification models with 51 iterations. SD, standard deviation. 
 

 
RF + SMOTE PLS-DA + SMOTE SVM + UP 

Mean SD Mean SD Mean SD 

Kappa 0.63 0.13 0.76 0.09 0.72 0.11 

Sensitivity (%) 90.9 5.8 90.1 5.7 86.6 8.5 

Specificity (%) 70.8 14.9 86.3 9.4 86.3 9.5 

Balanced Accuracy (%) 80.8 7.2 88.2 5.0 86.4 5.4 

 

The sensitivities were relatively stable, but the predictions for PCNSL were more 

variable. For example, one of the RF resamples reported a sensitivity of 42%, which 

ultimately lowered the mean value. That said, the ROC curves for both the SVM-

based and PLS-DA models still indicate promising diagnostic capability, with AUC 

values of ~0.9 (Figure 3.10). The RF ROC curve is substantially lower across 

sensitivity and specificity compared to the other two techniques, reporting a much 

lesser AUC value of 0.829, which coincides with the lower balanced accuracy from 

the RF classification. For this diagnostic test to be validated, it could be said that 

more patients would have to be introduced. However, these results indicate the 

potential for a serum diagnostic tool at the secondary care stage, that could aid 

clinicians when brain scans are inconclusive. Furthermore, it would be beneficial if 

this type of blood test could prevent patients undergoing unnecessary surgery. 
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Figure 3.10 – ROC curve displaying trade-off between sensitivity and specificity of 
the three classification techniques for the glioblastoma vs lymphoma cohort: random 

forest; green, partial least squares-discriminant analysis; blue, support vector 
machine; red. 
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3.4 Conclusion 

The implementation of a quick blood serum test for the early detection of brain 

tumours at a GP setting could have a huge impact on the quality of life and prognosis 

for patients. The traditional fixed diamond crystal limited the translation of the 

technique as the methodology was laborious, requiring long drying times and 

cleaning of the crystal between measurements [33]. An early health economic 

assessment in advance of prospective clinical data, stated the development of a high-

throughput ATR accessory would be cost-effective to the UK’s NHS if sensitivities 

and specificities >80% were achieved [38]. This study validates the capability of the 

novel ClinSpec Dx SIRE optical sample slides [41]. 

 

We report a sensitivity and specificity of 90.5% and 91.1% respectively when 

separating brain cancer patients from healthy controls, through PLS-DA. Despite the 

prevalence of brain tumours being extremely low (1.6%), the PLS-DA model 

reported a PPV of 14.2%. Three different machine learning techniques have been 

compared, all of which report balanced accuracies of ~90%, which would be deemed 

sufficient to be cost-effective to the NHS. Analysis of blood serum using this novel 

technique would fit ideally in the clinical pathway as a primary care triage tool for 

brain cancer. For the effective treatment of this disease, it is vital to identify the 

tumours early. A test at this stage in the diagnostic pathway would provide GPs with 

further information to inform their referral decision. If a positive result for cancer 

was reported from a spectroscopic triage test, then the ‘at risk’ patients would 

progress into secondary care quicker, whilst a negative result would provide 
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reassurance. The time taken to diagnose brain cancer patients could be reduced 

significantly, whilst also saving on NHS funds.  

 

By training a classification algorithm on this known population, new patient samples 

can be predicted based upon the derivation of cancer signals from the retrospective 

dataset, providing an appropriate measure of the true diagnostic accuracy. The first 

prospective clinical study employing ATR-FTIR spectroscopy is presented in Butler 

et al. [41] which is the first initial analysis of an ongoing clinical study at the 

Western General Hospital, in Edinburgh. 

 

Additionally, we present the ability of this technique to differentiate between brain 

tumour types. Notably, the separation of PCNSL and GBM through ATR-FTIR 

spectroscopy would be particularly attractive for neurologists in a secondary care 

setting, when imaging results are not clear. This proof-of-principle study involved 

112 patients, providing a sensitivity of 90.1% and a specificity of 86.3%. These 

statistics are hugely promising, and a k value of 0.76 indicates the technique is 

reliable. Further analysis with a larger cohort of patients would be valuable, in order 

to make the diagnostic model more robust.  

 

Analysis of the ROC curves and consideration of the prevalence of the diseases to be 

diagnosed suggests that in some cases the models presented here could be optimised 

for clinical applications by modifying the probability threshold that each classifier 

uses to discriminate between positive and negative classes. For example, to identify 

brain tumours, which have low prevalence of ~1.6% in the clinical population [7], 
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the balance between sensitivity and specificity is important, since the probability that 

a positive test result is truly indicative of a brain tumour (i.e. PPV) increases rapidly 

with specificity. Nonetheless, we believe this kind of optimisation can be done more 

accurately once more is understood about the clinical population, which for the 

PCNSL versus GBM test in particular is not yet fully known. Therefore, the 

classifiers presented here all correspond to a default probability threshold of 0.5 used 

to discriminate between positive and negative classes, which is sufficient to 

demonstrate their efficacy. 

The potential for high-throughput spectroscopy in the clinical environment goes 

further than purely brain tumour detection. With more research, this platform 

technology could address the clinical need for various malignancies and other 

diseases. There are also gaps for this technology in secondary care scenarios, for 

patient disease progression, treatment monitoring, and potentially aiding oncologists 

when MRI scans are inconclusive, as discussed in this study. The ultimate goal is to 

make the diagnostic pathways more efficient, cost effective and allow patients to 

obtain early treatment for optimal outcome. 
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Abstract 

Patients living with brain tumours have the highest average years of life lost of any 

cancer, ultimately reducing average life expectancy by 20 years. Diagnosis depends 

on brain imaging and most often confirmatory tissue biopsy for histology. The 

majority of patients experience non-specific symptoms, such as headache, and may 

be reviewed in primary care on multiple occasions before diagnosis is made. Sixty-

two per cent of patients are diagnosed on brain imaging performed when they 

deteriorate and present to the emergency department. Histological diagnosis from 

invasive surgical biopsy is necessary, prior to definitive treatment, because imaging 

techniques alone have difficulty in distinguishing between several types of brain 

cancer. However, surgery itself does not necessarily impact on tumour growth, and 

risks morbidity for the patient. Non-invasive tests that support stratification of 

tumour subtype would enhance early personalisation of treatment selection and 

prognostication, reducing the delay and risks associated with surgery for many 

patients.  

 

Techniques involving vibrational spectroscopy, such as attenuated total reflection 

Fourier transform infrared (ATR-FTIR) spectroscopy, have previously demonstrated 

analytical capabilities for cancer diagnostics. In this study, infrared spectra from 641 

blood serum samples obtained from brain cancer and control patients have 

been collected. Firstly, we highlight the capability of ATR-FTIR to distinguish 

between healthy controls and brain cancer at sensitivities and specificities above 

90%, before defining subtle differences in protein secondary structures between 

patient groups through Amide I deconvolution. We successfully differentiate several 
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types of brain lesions (glioblastoma, meningioma, primary central nervous system 

lymphoma and metastasis) with balanced accuracies >80%. A reliable blood serum 

test capable of stratifying brain tumours would be of great value in secondary care 

applications. 
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4.1 Introduction  

Brain cancer reduces a patient's average life expectancy by 20 years on average, the 

highest reduction of all cancers [1]. Although brain tumours are uncommon the 

annual incidence appears to be rising, with an increase of 19% in the United 

Kingdom (UK) between 2002 and 2014 [2]. Globally, around 330,000 people are 

diagnosed with a central nervous system (CNS) cancer per year, which equates to 

~900 diagnoses every single day [3]. Fewer than 20% of patients survive beyond five 

years [4], which is considerably lower than other cancer types.  

 

The current gold standard investigation for patients with a suspected brain tumour is 

MRI, however determining the exact brain tumour type is not possible from imaging 

alone [5], [6]. Some brain tumours pose particular imaging challenges, e.g. 

differentiating between glioma and primary CNS lymphoma (PCNSL).  

Consequently, oncological treatments (radiotherapy and chemotherapy) can only be 

initiated after histopathological diagnosis are obtained. This necessitates surgery 

(either resection or biopsy), and although surgery is the primary treatment option for 

most brain tumours, it is not always clinically indicated or appropriate. This includes 

patients with borderline performance status who might not benefit from treatment 

[7]. In patients where a biopsy is only required for histological diagnosis, the time 

taken to schedule and recover from surgery delays the instigation of definitive 

treatment.  

 

The detection of brain cancer with a serum-based triage system would be well suited 

to the clinical environment. Serum analysis is already used in clinics, and a new test 
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could be readily integrated into the current clinical pathway [8]. A rapid blood test 

that can stratify brain tumour histological subtype would positively impact on the 

diagnosis and personalisation of patient treatment. Strategies for non-invasive 

assessment of tumour type, so-called liquid biopsy, have to date largely relied upon 

identification of cell-free tumour DNA (ctDNA) in circulating blood. This approach 

has met with significant technical challenges, as well as being expensive.  

 

An alternative strategy uses vibrational spectroscopy, in particular Attenuated total 

reflection Fourier transform infrared (ATR-FTIR) spectroscopy, for serum analysis. 

ATR-FTIR is rapid, cheap and non-invasive, instruments are easy to operate, and the 

technique generates biochemical fingerprints from minute volumes of biological 

fluids. In FTIR spectroscopy, a sample is irradiated with infrared light which causes 

atomic displacements and molecular vibrations. The absorption of this light excites 

vibrational transitions of molecules, producing IR spectra that contain a vast amount 

of chemical and biological information [9]. Specifically, it provides qualitative 

interrogation of all infrared active macromolecular constituents of blood serum. It 

has been shown that biomolecular imbalances in biofluids can give an indication of 

disease states [10]. When coupled with complex data analysis systems, the technique 

has been shown to successfully detect various cancers [11]. Recently, we have 

employed this technology in a clinical study utilising a novel high-throughput 

approach, supporting the possibility of earlier detection of brain tumours by 

identifying which patients with non-specific symptoms of a possible brain tumour 

are most likely to actually have a tumour, demonstrating high sensitivity and 

specificity [12].  
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We have used this same FTIR and data analysis strategy to successfully differentiate 

between two types of brain tumours, glioblastoma (GBM) and PCNSL, which pose a 

dilemma in radiological diagnosis [13]. If we can differentiate likely tumour type 

across a broader range of tumour types when an intracranial abnormality is identified 

radiologically, this would enhance clinical decision and may reduce the need for 

some diagnostic investigations, such as full-body CT in patients with primary brain 

disease [14].  

 

A simple and reliable blood test that is able to differentiate a range of primary brain 

tumours from brain metastases would be invaluable to neurologists in the secondary 

care setting. Thus, in this study we further expand our previous work by assessing 

various brain tumour subtypes – including meningioma, GBM and PCNSL – and for 

the first time we elucidate the capability of high-throughput ATR-FTIR to 

differentiate between GBM and brain metastases. The ability to predict the likely 

diagnosis through a combination of serum spectroscopy and brain imaging would 

have a major impact on the patient pathway, and would facilitate more timely 

treatment. 
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4.2 Materials and Methods 

The methods used in this chapter are similar to those outlined in Chapter 3, section 

3.2. Below is a brief summary of the experimental for this study.  

 

4.2.1 Sample Collection and Preparation 
 
A total of 641 retrospective serum samples were obtained from two biobanks; the 

Walton Centre NHS Trust (Liverpool, UK) and Royal Preston Hospital (Preston, 

UK). Ethical approval for this study was obtained (Walton Research Bank and 

BTNW/WRTB 13_01/ BTNW Application #1108). Figure 4.1 outlines the number 

of samples within the patient cohort for each category. A respectable balance of male 

and female patients has been included, with a widespread age range (Table A2.1, 

Appendix 2). Initially, individual brain tumour types were compared to healthy 

controls. The larger groups of brain tumour patients were analysed, followed by a 

breakdown of tumour types. The ‘glioma’ set was comprised of the tumours 

originating from glial cells; GBM, astrocytomas and oligodendrogliomas. The 

gliomas were contrasted to the meningioma samples, and then these two groups were 

then combined to form the ‘primary’ set, which was tested against the brain 

metastases. Some of the more abundant individual tumour types were then chosen 

for further analysis.  
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Figure 4.1 - Breakdown of the large brain cancer cohort with the number of patient 
samples used for the classifications. 

 

Control patients were healthy individuals who had no history of cancer. Blood 

samples were collected in serum collection tubes and allowed to clot for up to one 

hour. The tubes were centrifuged for 15 minutes at 2200 g. The serum component 

was subsequently aliquoted then stored in a –80 °C freezer until the time of analysis. 

The cancer patients had a histopathologically confirmed brain tumour, but had not 

yet commenced chemo- or radiotherapy at the time of blood sample collection. The 

serum samples were removed from storage and thawed at room temperature (18-25 

°C) for approximately 20 minutes prior to spectral analysis. 3 µL of serum from one 

individual patient was pipetted onto each of the three sample wells on a ClinSpecDx 

optical sample slide (ClinSpec Diagnostics Ltd., UK) [12]. The first well remained 

clean for background collection to subtract atmospheric conditions from the IR 

spectra. The serum drops were spread across the well in order to create thin 

homogeneous serum films. Prepared slides were stored in a drying unit incubator 
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(Thermo Fisher™ Heratherm™, GE) at 35 °C for 1 hour to control the drying 

process [15]. 

 

4.2.2 Spectral Collection 
 
A Perkin Elmer Spectrum 2 FTIR spectrometer (Perkin Elmer, UK) was used for the 

spectral collection. A Specac Quest ATR accessory unit was fitted with a specular 

reflectance puck (Specac Ltd, UK). A slide indexing unit (ClinSpec Diagnostics Ltd., 

UK) automated the movement of the slides across the specular reflectance puck. 

With the first well acting as a background, the three sample wells provide the 

biological repeats. Each well was analysed in triplicate - resulting in nine spectra per 

patient. The spectra were acquired in the range 4000-450 cm-1, at a resolution of 4 

cm-1, with 1 cm-1 data spacing and 16 co-added scans. In total 5769 spectra have 

been collected from all serum samples.  

 

4.2.3 Spectral Analysis 
 
Matlab has been used for the principal component analysis (PCA), and the 

PRFFECT toolbox within R Statistical Computing Environment software was 

utilised for the pre-processing and classifications [16]. Correcting for variation in 

baselines and using appropriate data reduction methods, such as binning and 

smoothing, can emphasise valuable biological information - such an approach is 

known as ‘pre-processing’ [17]. For the PCA, the spectral datasets were cut to the 

biologically relevant fingerprint region (1800-900 cm-1), followed by a rubber band 

baseline correction and a vector normalisation. PCA is a relatively basic linear 
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transformation technique that is often used in spectroscopic studies. The main aim of 

a PCA analysis is to identify distinct patterns in complex data and detect a 

correlation between variables [18]. Ultimately, the dimensionality of large datasets is 

reduced, to clearly visualise the general variation achieved through scores and 

loadings plots.  

 

Curve fitting analysis was carried out on MagicPlot (Magicplot Systems LLC) in 

order to unveil the hidden protein secondary structure bands concealed within the 

broad Amide I region. The mean absorbance and second derivative spectra of the 

control, GBM, PCNSL, metastasis and meningioma patient groups were processed 

using PRFFECT toolbox. A Savitzky-Golay filter was applied to reduce the noise, 

with the number of smoothing points set to 7. The curve-fitting procedure is based on 

the sum of Lorentzian functions, which exist at the location of overlapping peaks 

[19]. Thus, the positions of the minima observed in the second derivative spectra 

were used to calculate the position and intensity of the Lorentzian curves, which 

could then be tentatively assigned as various types of protein secondary structures.  

 

Classifications were undertaken to recognise biological signatures from cohorts of 

patients with known tumour types, then predictions from ‘unknown’ tumour types 

were made using this information. Firstly, the spectra were suitably pre-processed. 

Using a trial-and-error approach, the optimal parameters for the classifications were 

established. An extended multiplicative signal correction (EMSC) was employed 

using a human pooled serum reference, followed by a spectral cut to 1800-1000 cm-1. 

A min-max normalisation between 0 and 1, and a binning factor of 8 were applied. 
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To develop the models, patients were randomly split into training sets, consisting of 

70% of the data, and test sets – the remaining 30%. Model hyperparameters were 

tuned to optimise the value of Cohen’s Kappa coefficient (a) for 5-fold cross-

validation on the training sets. The optimised model was then used to make 

predictions for the spectra in the test sets. The majority vote amongst the nine spectra 

for each patient was reported as the diagnostic outcome. The classification models 

were retrained and tested on 100 different randomly selected training and test set 

partitions to provide a reliable measure of predictive accuracy with a low standard 

error. Due to the imbalances present when examining the different classes, up-

sampling, down-sampling and synthetic minority over-sampling technique (SMOTE) 

were employed in the spectral analysis to reduce the bias in the classification models. 

Similar to the classification analysis reported in Chapter 3, random forest (RF), 

partial least squares – discriminant analysis (PLS-DA), and support vector machine 

(SVM) were employed in this study.  
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4.3 Results 

4.3.1 Brain Tumour versus Healthy Control 

4.3.1.1 Principal Component Analysis 

PCA was first undertaken in order to explore the general variation between the 

controls and the individual brain tumour groups. The data was cut to the fingerprint 

region where biomolecules are known to vibrate (1800-900 cm-1), before a 

rubberband baseline correction and vector normalisation were applied. Firstly, the 

GBM patients were compared to the healthy individuals (Figure 4.2). PC1 accounts 

for 52.3% of the general variation in the dataset, mainly from Amide I and II 

contributions, as shown in Figure 4.2b. Despite some slight overlap, the two groups 

separate across the 2nd principal component. The PC2 loadings also suggest this 

arises from the Amide I (CO and CN stretch, NH bending) and Amide II (NH 

bending, CN stretch) bands between 1500-1700 cm-1. There were also contributions 

from the lower wavenumber region which represents the CO, CC and CH stretching 

modes from carbohydrates and glycogen, and the symmetric PO+
6 stretching 

vibrations within nucleic acids (1100-1000 cm-1).  
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Figure 4.2 - Principal component analysis a) scores plot of PC1 and PC2 displaying 
the variance between GBM (blue) and healthy control (red); b) PC1 loadings and c) 

PC2 loadings describe which wavenumbers account for the most discrimination. 
 

b) 

c) 

a) 
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Meningioma, PCNSL and metastatic patient cohorts were also assessed individually 

against the control group. Figure A2.1 (Appendix 2) displays the PCA results for 

each of the comparisons. The scores plots and loadings presented are those that 

illustrate the most discrimination between classes. Similar to GBM, with the 

meningioma and PCNSL analysis we found that the PC2 suggested the most variance 

arose at the Amide I and II bands and at the phosphate, glycogen and carbohydrate 

region. The ~1030 cm-1 band is associated with the CO stretching and bending 

vibrations of glycogen and carbohydrates. Interestingly, the region around 1080-

1000 cm-1 was shown to exhibit the highest discrepancies in the metastasis versus 

control set. This is consistent with a previous study, where this region was found to 

be distinctive when analysing normal and metastatic brain tumour tissue through 

FTIR imaging and linear discriminant analysis [23]. 

 

4.3.1.2 Amide I Deconvolution 

The PCA analysis highlighted variances in Amide I absorbance between brain 

tumour groups, thus deconvolution analysis was undertaken to further explore these 

differences. A series of overlapping components that represent different structural 

elements are hidden within the broad Amide I band [24], [25]. For example, β-sheets 

involve two or more segments of a polypeptide chain lining up next to each other and 

form a sheet-like structure, as the C=O of one amino acid binds to the N-H of 

another through hydrogen bonding, whereas α-helices are assembled when the 

polypeptide chain twist into a spiral [26]. For the four brain tumour subtype groups 

and the control set, the mean Amide I absorbance spectra were subjected to a second 

derivative deconvolution in an attempt to better understand the nature of the 
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identified spectral differences. Figure 4.3 describes the second derivative spectra in 

the region between 1720-1590 cm-1 for each patient set, which suggests there are 

minute discrepancies at several points across the Amide I band, namely at  

~1650 cm-1 and ~1638 cm-1.  

 

 

 
Figure 4.3 - The mean infrared absorbance and the second derivative spectra in the 

Amide I band (1720-1590 cm-1) for the control, glioblastoma (GBM), PCNS 
lymphoma, meningioma and metastasis patient groups. 
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The position and intensity of the minima across the second derivative spectra 

represent those of the underlying protein bands, so it is possible to predict secondary 

structures using curve fitting. The deconvoluted Amide I profile for each of the 

patient groups are distinctly dissimilar, in terms of the number of bands and their 

relative positions and intensities. The curve fitting analysis is outlined in Figure 4.4, 

where the overlapping protein bands have been tentatively assigned as either α-

helices, β-sheets, turns or random disordered structures with reference to the 

literature [25], [27].  

 

Initially it seems all of the deconvoluted Amide peaks follow a similar trend. From 

left to right, β-sheets exist around 1700-1680 cm-1; followed by turns ~1670 cm-1; 

then the elevated α-helix bands and disordered structures between 1665 and 1645 

cm-1; and finally, additional β-sheet components from 1640 to 1600 cm-1. On closer 

inspection it is clear that the profiles are rather disparate. Despite all patient groups 

consistently encompassing α-helix maxima, they all exist at fluctuating heights and 

positions. Interestingly, this region exhibited discrepancies in the second derivative 

spectra in Figure 4.3, corroborating the differences observed in the curve fitting 

analysis.  
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Figure 4.4 - Amide I curve fitting showing the summation of resolved second 
derivative bands relative to the absorption profile for the: a) control; b) GBM; c) 

PCNSL; d) meningioma and e) metastasis patient groups. 
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4.3.1.3 Partial Least Squares Discriminant Analysis 

Based on our previous work [13], we used PLS-DA to classify each dataset and test 

the diagnostic performance. Initially each model was tested with no additional 

sampling, before using up, down and SMOTE sampling techniques to ensure there 

was no bias present within the classifications, which could be introduced by the 

imbalanced classes. The optimal value of ncomp for each model was determined 

from a tuning grid with a range of 1:20. The sampling method that produced the best 

results with 5 iterations was then chosen for 100 resamples, to generate the most 

accurate and reliable outcome. Table 4.1 outlines the PLS-DA results for each 

tumour type versus control dataset. 

 

Table 4.1: Summary of PLS-DA results for brain tumours against controls. 
Sensitivity, specificity and balanced accuracy are reported as means and standard 
deviations (SD) calculated over 100 resamples. 
 

Tumour type 
against healthy 
control (n=87) 

No. of 
patients Sampling 

Sensitivity 
(%) 

Specificity 
(%) 

Balanced 
accuracy (%) 

Mean SD Mean SD Mean SD 
GBM 96 No 95.5 4.3 94.9 4.2 95.2 2.9 

PCNSL 41 Up 92.2 6.9 96.7 3.5 94.4 3.9 

Meningioma 111 Up 94.7 3.7 98.4 2.2 96.6 2.0 

Metastasis 210 Up 95.9 2.6 95.0 4.2 95.4 2.3 

 

The analysed GBM versus control set contained 96 GBM patients and 87 controls, 

hence the sampling techniques – for equalising imbalanced patient groups – did not 

significantly improve the classification results. After 100 iterations, the PLS-DA 

model reported 95.5% and 94.9% for sensitivity and specificity, respectively. The 

SDs were minimal for both sensitivity and specificity (~4%), suggesting the model is 

robust and reproducible. Likewise, the ability to successfully pick out the PCNSL, 
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meningioma and metastatic patients from their respective training sets was also 

evident. The number of patients in these groups were not well matched, thus 

additional up sampling seemed to improve the performance of the models. The 

sensitivities after 100 resamples were 92.2% for PCNSL, 94.7% for meningioma and 

95.9% for metastasis. The tests were also highly specific, with each model accurately 

predicting the healthy controls as non-cancer at specificities ³ 95%.  

 

The PLS scores plots were very similar to the PCA results, but they provided slightly 

better separation of the classes. Figure 4.5 shows the PLS scores plot between PLS1 

and PLS2, and the loadings for the 1st PLS component based on the GBM versus 

control dataset. The PLS1 loadings in Figure 4.5b generally agree with the PCA 

loadings (Figure 4.2). The most discriminating regions in each of the four brain 

tumour subtypes versus control datasets were generally found between 1000-1100 

cm-1 and 1500-1700 cm-1, along with some minor lipidic contributions. The 

wavenumbers that were mainly responsible for all four classifications are outlined in 

Table 4.2 with their corresponding biological assignments and vibrational modes.  
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Figure 4.5 - a) the PLS scores plot between PLS1 and PLS2 for the glioblastoma 
(black) and control (red) dataset, and b) the loadings for the 1st PLS component with 
tentative biological assignments: lipids (blue), proteins (yellow), phosphates (green) 

and carbohydrates (red). 
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Table 4.2 - The main wavenumbers involved in each of the four brain tumour 
subtypes versus control classifications, with tentative biological assignments. 
 

Approximate 
wavenumbers (cm-1) 

Tentative biological 
assignments Vibrational modes 

1012 Carbohydrate C-O stretch 

1030 Glycogen C-O and C-C stretch, C-OH deformation 

1045 DNA and RNA Symmetric PO!" stretch 

1050 Carbohydrate/Glycogen C-O-C stretching and bending 

1050-1100 DNA and RNA Symmetric PO!" stretch 

1240-1310 Amide III of Proteins N-H in plane bend, C-N stretch 

1245 Phosphodiesters Asymmetric PO!" stretch 

1340 Phospholipids CH2 wagging 

1400 Lipids/Proteins CH3 bending 

1470 Lipids CH2 scissoring 

1500-1600 Amide II of Proteins N-H bending, C-N stretching 

1600-1700 Amide I of Proteins C=O and C-N stretch, N-H bending 

1750 Lipids C=O stretching 

 

Overall, the classification results highlight the ability of ATR-FTIR to successfully 

differentiate individual brain tumour types from control serum samples with 

extremely high accuracies. A recent health economic assessment of current 

diagnostic practices suggested a serum-based test for the detection of brain tumours 

could be cost-effective to the NHS [28]. Thus, the results from this retrospective 

analysis indicate that this platform technology may be well suited to the clinical 

environment. Moreover, the Amide I deconvolution analysis has highlighted 

concealed differences in the proteinaceous structures of the different brain tumour 

types, suggesting that using similar classification techniques, it may also be possible 

to discriminate between brain lesions as well as brain tumour versus control.  
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4.3.2 Brain Tumour Differentiation 
 
We next examined the ability of ATR-FTIR spectroscopy to distinguish the various 

brain tumour subtypes from each other, rather than individual brain tumour subtypes 

from controls. We built on our previously reported method to differentiate GBM and 

PCNSL [13], where RF, PLS-DA and linear SVM were utilised and compared. The 

SMOTE, up and down sampling techniques were initially tested with 5 resamples to 

combat the imbalanced classes, and the best model for each classification (Table 

A2.2, Appendix 2) was iterated 100 times for more reliable results. The optimum 

model is reported for each combination, in terms of sensitivity, specificity and 

balanced accuracy, with their corresponding standard deviations (Table 4.3).  

 
Table 4.3 - The results from the optimal model for each brain tumour differentiation. 
Sensitivity, specificity and balanced accuracy are reported as means and standard 
deviations calculated over 100 resamples. 
 

 

In each instance, the sensitivity refers to the positive class and the specificity refers 

to the negative class. For example, in the glioma versus meningioma classifier, the 

Classification 
(positive class v 
negative class) 

No. of 
patients 

Model + 
Sampling 

Sensitivity 
(%) 

Specificity 
(%) 

Balanced 
accuracy (%) 

Mean SD Mean SD Mean SD 
Primary v 
Metastasis 

303 / 210 RF + up 90.9 3.1 66.4 5.5 78.8 2.8 

Glioma v 
Meningioma 

192 / 111 
SVM + 

down 
70.9 5.5 81.8 6.2 76.3 4.4 

GBM v 
Meningioma 

96 / 111 RF + no 94.4 5.1 83.4 5.6 88.9 3.0 

Metastasis v GBM 210 / 96 
SVM + 

down 
84.3 3.8 96.2 3.4 90.3 2.6 

Metastasis v 
PCNSL 

210 / 41 
PLS-DA 

+ smote 
91.5 3.1 91.1 9.2 91.3 4.6 

Metastasis v 
Meningioma 

210 / 111 
PLS-DA 

+ up 
71.3 6.2 86.1 5.5 78.7 3.6 
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sensitivity relates to glioma and the specificity is based on the meningioma 

predictions. The classification with the largest number of patients was the primary 

brain tumour (n = 303) versus brain metastasis (n = 210). The best model that was 

chosen for 100 resamples was the RF with additional up sampling, which provided a 

sensitivity of 90.9%. This model was evidently very capable of detecting the primary 

brain tumours within the test set, and on average only missed ~9 out of 90 patients in 

the resampled test sets. On the other hand, the RF model struggled to detect the 

metastatic brain tumours in this patient cohort, reporting a rather low mean 

specificity of 66.4%.  

 

The Gini impurity metric was examined to identify the most important features 

within each dataset. The accuracy and reliability of the model can be determined 

from the RF statistical value outputs, with the Gini plot highlighting the main 

wavenumbers responsible for the results (Figure 4.6). Table 4.4 gives an overview of 

the top 15 identified wavenumbers in order of importance, with their corresponding 

wavenumber assignments and vibrational modes. As with the brain metastasis versus 

control results, the top two Gini values come from the lower wavenumber region 

around ~1050 cm-1, which was found to show the most discrimination between the 

metastatic and primary tumour samples. The phosphate and CO stretching vibrations 

from nucleic material and phospholipids give rise to the bands in this region. 

Stretching of the carbonyl groups in proteins and lipids make up the rest of the top 

five wavenumbers. These areas of importance are closely followed by Amide I/II/III 

and lipidic vibrations, as well as contributions from glycogen and carbohydrates. 
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Figure – 4.6 - Gini plot outlining the most important features for the random forest 
classification between primary (Pri) and metastasis (Met). 

 
 
Table 4.4 - The top 15 wavenumbers from the random forest classification between 
primary and metastasis with tentative biochemical assignments. The column “ΣGini” 
is a summation of the mean decrease in Gini for each wavenumber, over all nodes in 
all trees in the random forest ensemble, which suggests the regions of highest 
importance. 
 

Wavenumbers 
(cm-1)  S Gini Tentative biological 

Assignments Vibrational Modes 

1052.5 123.47 DNA and RNA Symmetric PO!" stretch 

1060.5 107.86 Deoxyribose C-O stretch 

1692.5 107.74 Amide I of Proteins C=O and C-N stretch, N-H bending 

1708.5 99.96 Lipids/Fatty acid esters C=O stretch 

1700.5 85.15 Guanine/Thymine C=O stretch 

1068.5 66.56 Ribose/Nucleic acids C-O stretch 

1292.5 49.11 Amide III of Proteins N-H in plane bend, C-N stretch 

1044.5 46.36 Carbohydrate C-O-C stretch and bending 

1684.5 41.31 Amide I of Proteins C=O and C-N stretch, N-H bending 

1532.5 37.61 Amide II of Proteins N-H bending, C-N stretching 

1676.5 32.92 Amide I of Proteins C=O and C-N stretch, N-H bending 

1076.5 30.19 DNA and RNA Symmetric PO!" stretch 

1284.5 29.73 Phosphodiesters Asymmetric PO!" stretch 

1036.5 26.92 Carbohydrate/Glycogen 
C-O and C-C stretch, C-OH 

deformation 

1668.5 25.63 Amide I of Proteins C=O and C-N stretch, N-H bending 
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The optimal results for glioma (n = 191) versus meningioma (n=111) were produced 

from a linear SVM with down sampling, where random selections of the glioma set 

were removed from the resampled training sets to have more evenly balanced 

classes. Down sampling has been criticised in the field for ‘ignoring’ potentially 

important information, but we overcome this by resampling the data as different 

random subsets of patients are removed in each iteration. Using this particular 

method, the SVM model was better at predicting the meningioma patients than 

picking out the gliomas, reporting a mean sensitivity of 70.2% and a mean specificity 

of 81.7%. A range of tumour grades are comprised within the glioma group, with 

lower grade tumours including grade I pilocytic astrocytoma, grade II astrocytomas 

and oligodendrogliomas, and the higher-grade gliomas dominated by GBMs (grade 

IV). On average ~16 of the 57 glioma samples in the test sets were misdiagnosed as 

meningioma, equivalent to a sensitivity of 70%. When the pilocytic astrocytomas, 

grade II astrocytomas and oligodendrogliomas were removed in order to focus on 

only GBM versus meningioma, the classification performance was greatly improved, 

with the sensitivity increasing to 94.4%.  

 

One of the classifications that is of particular interest to clinicians is metastasis 

versus GBM. Tumours that transpire to be primary GBMs on histopathology can be 

confused radiologically with brain metastases [14]. For the resampled SVM model, 

the sensitivity (metastasis) was 84.3%, and the ability to detect GBM (specificity in 

this case) was 96.2%. Likewise, using PLS-DA, metastatic patients were separated 

from PCNSL and meningioma patients with mean balanced accuracies of 91.3% and 

78.7%, respectively. Intriguingly, the lesser performance of the metastasis versus 
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meningioma model was not wholly unexpected. From the second derivative spectra 

and curve fitting analysis (Figures 4.3 and 4.4), it was noticed that their spectral 

signatures were relatively similar, hence a difficult classification was anticipated.  

 

The receiver operating characteristic (ROC) curves each of the brain tumour 

differentiation models are outlined in Figure 4.7. The six models have varying 

diagnostic ability. The GBM versus meningioma, and the metastasis versus PCNSL 

PLS-DA models produce excellent ROC curves, achieving area under the curve 

(AUC) values >0.9. The metastasis versus GBM linear-SVM model is also highly 

promising, reporting an AUC of 0.896. Furthermore, the large cohort of primary 

versus metastasis and the metastasis versus meningioma have AUC values ~0.85. 

The glioma versus meningioma group yielded the poorest diagnostic capability, with 

the lowest AUC of 0.77. The AUC values coincide with the classification results in 

Table 4.3. Analysis of the ROC curves suggests that some of the presented models 

could be optimised for clinical applications. A default probability threshold value of 

0.5 was used here to distinguish between brain tumour types. However, by varying 

the probability threshold that each classifier uses to discriminate between positive 

and negative classes, each model can be fine-tuned to obtain the greatest balance 

between sensitivity and specificity. 
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Figure 4.7 - Receiver operator curves displaying the trade-off between sensitivity and 
specificity for the best model of each of the six brain tumour classifiers: primary 

(Pri) versus metastasis (Met); black, glioma (Gli) versus meningioma (Men); blue, 
GBM versus meningioma; red, metastasis versus GBM; green, metastasis versus 

lymphoma (Lym); orange, metastasis versus meningioma; purple. 
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4.4 Discussion 

The PCA results described differences between each patient group in the Amide 

region, which can be attributed to alterations in the levels of proteins. Many proteins 

exist as circulating markers of inflammation and angiogenesis. For example, C-

reactive protein (CRP) and vascular endothelial growth factor (VEGF) were 

previously reported to be elevated in the plasma of GBM patients [29]. Likewise, 

various studies have highlighted serum YKL-40 as a potential blood-based 

biomarker for gliomas, with levels significantly higher in GBM patients in several 

cases [30], [31]. However, there are currently no protein-based biomarkers used for 

brain tumour differentiation and a signature approach as described here enables a full 

protein assay to be performed. Separation in PCA scores plots was less marked for 

the other tumour groups than the GBM versus control analysis. The chemokines, 

cytokines and other biomarkers that are associated with cancer exist in pg/mL 

concentrations in serum, and are obscured by larger protein molecules that are 

present in high concentration in both cancer and control patients [32], [33]. More 

robust supervised classification techniques are typically required to identify the most 

salient features within such complex datasets. That being said, PCA offers an 

unsupervised platform which can indicate specific regions of interest.  

 

Through deconvolution of the Amide I bands, differences in the assignment of 

certain structures were observed between patient groups. The levels of β-sheets are 

higher in the PCNSL group when compared to the controls, as well as exhibiting a 

minor drop-off in α-helices. This is consistent with a previous study, that 

discriminated lymphoma and normal serum from mouse models [34]. In contrast, 
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there is a decrease in the β-sheet band (~1630 cm-1) in the GBM patient group 

compared to the controls, plus a minor increase in α-helix intensity (~1660 cm-1). 

Interestingly, the PLS1 loadings corroborate these differences (Figure 4.5b); which 

defines the variation between the two classes where the GBM patients are the 

negative cluster and the controls are the positive group, as shown in the scores plot 

between PLS1 and PLS2 (Figure 4.5a). When considering the control set, the higher 

level of β-sheets is described by the intense positive loading at ~1630 cm-1, whilst 

the minor increase in GBM α-helix intensity is observed in the large negative loading 

around 1660 cm-1. Similar findings have been observed recently in a study that 

utilised synchrotron-based IR micro-spectroscopy to analyse human gliomas, and 

which demonstrated a rise in the α-helix content while the content of β-sheets 

decreased with increasing malignancy grade [35]. For the meningioma and 

metastasis groups, the second derivative spectra were somewhat overlaid (blue and 

green lines in Figure 4.3), and their deconvoluted bands also seemed to exhibit some 

noticeable similarities – the intensities of the four largest bands followed the same 

pattern: two high intensity α-helices at ~1658 and ~1650 cm-1, the disordered 

structure at ~1645 cm-1 and a β-sheet at ~1637 cm-1 with a similar intensity of ~0.25 

on the absorbance scale (Figure 4.4d and 4.4e). 

 

The alterations in protein secondary structures between the mean spectra of 

respective patient cohorts reflect major biochemical differences in serum content 

associated with each tumour group. However, blood serum is a complex medium 

which naturally fluctuates between individuals [36]. Hence, the assumption that 

protein content is irrefutably consistent within patient groups is a slight 
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generalisation. Nevertheless, the technique offers a further insight into the potential 

variances between the patient groups that have been highlighted through the loadings 

from PCA and PLS analysis. Furthermore, deconvolution analysis is sensitive to the 

pre-processing and second derivative parameters that are applied, and indeed these 

were consistent for this analysis and there are well-defined differences between 

tumour types.  

 

It is well recognised the systemic response of cancer impacts patients’ spectral 

signatures, which is evident in IR spectroscopy [37], [38]. In the case of primary 

brain tumour versus metastasis (Figure 4.6), it may be that the blood composition of 

the metastasis patients differs slightly from those with brain primaries. One plausible 

theory is that the levels of cell-free circulating tumour DNA and RNA (ctRNA), and 

circulating microRNAs (miRNA) are elevated in the bloodstream as a result of the 

systemic cancer, which could account for the increase in nucleic acid-related 

absorbance in their spectral serum profile [39]–[43]. This particular test is of great 

interest, as if it was possible to tell at an early stage whether a suspected brain 

tumour was more likely to be a brain primary or a metastatic secondary lesion, it 

would be both cost- and time-effective for NHS, with primary brain tumour patients 

not requiring further diagnostic body imaging. There are variety of metastatic brain 

tumours arising from different primary cancers (e.g. breast, lung, etc.) within this 

population. It could be that certain types of lesions have more spectral similarities 

than others, thus breaking the cohort down into subgroups may benefit classification 

performance. That said, a balanced accuracy of 78.8% is respectable, and with more 

thorough tuning of the classification models and by modifying the probability 
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threshold, the sensitivity and specificity could potentially balance out. Moreover, the 

accuracy could potentially improve with a larger population of metastatic patients. 

 

Likewise, it is unclear exactly why the other glioma types were assigned to the 

meningioma class, though it could potentially be due to them having a lower growth 

potential and mitotic activity. This may be reflected by the systemic response to 

tumour grade, which could influence the respective spectral profiles. As many of the 

oligodendrogliomas, astrocytomas and meningiomas range between grade I-III, their 

spectroscopic signature may be more alike than the more aggressive grade IV lesion 

of GBM.  
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4.5 Conclusion 

In this study, we have assessed serum from patients with various brain tumours, by 

comparing and contrasting their spectral signatures against each other, as well as 

against healthy controls. GBM, PCNSL, meningioma and brain metastases have been 

successfully separated from control patients through PLS-DA, all with sensitivities 

and specificities greater than 92%. Deconvolution of their respective mean Amide I 

bands highlighted subtle variations in the levels of various protein secondary 

structures within each tumour type. Hence, further classifications between the lesion 

classes were fulfilled, presenting some very encouraging results. Despite a relatively 

low specificity, the primary versus metastasis cohort showed some initial promise, 

with the RF model being able to pick out 90.9% of the ‘primary’ brain tumour 

samples within the resampled test sets. Most other classifiers performed remarkably 

well for the brain tumour differentiations, achieving balanced accuracies around 

80%. Notably, the metastasis versus GBM linear-SVM classifier reported an 84.3% 

sensitivity, a 96.2% specificity and a ROC curve with an AUC value of ~0.9, 

suggesting that the model has high diagnostic capability. Due to their similar features 

on MRI scans, implementing serum spectroscopy alongside imaging protocols could 

help differentiate brain metastases from GBM, as well as other tumours with similar 

radiological appearances, e.g. PCNSL [13], [14], [44]. 

 

A simple and reliable blood test that is able to differentiate a range of primary brain 

tumour types from brain metastases, would lead to a paradigm shift in the clinical 

management of brain tumour patients. Our findings suggest this is feasible, and by 

using basic serum spectroscopic analysis - despite the fact that some of our sample 
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sets had relatively low numbers of patients - all of the presented models achieve 

balanced accuracies greater than 75% (Appendix 2, Figure A2.2). The ability to 

provide the likely diagnosis based on a blood test, and when combined with 

radiological assessment, would have a major impact on the patient pathway and 

would facilitate more timely treatment in the hospital care setting. 

 

For these proof-of-concept tests to be validated, the models must be used to predict 

tumour type in prospective patients already within the current diagnostic pathway, 

although these results indicate the potential for a serum diagnostic tool at both the 

primary and hospital care stage. This would initially fast-track patients who are in 

urgent need of referral and brain imaging, whilst reassuring those who have a 

negative test result and reduce the number of patients who would normally be sent 

for unnecessary brain scans. Likewise, stratification of brain tumour type through 

serum spectroscopy would assist clinicians when brain scans are inconclusive and 

the primary tumour type is uncertain, and furthermore would prevent patients 

undergoing avoidable surgical biopsy and/or further MRI and CT imaging. The 

results of our study show great potential to improve the diagnostic pathway for 

patients with brain tumours. 
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Abstract 

At present, current brain cancer diagnostics are based on the World Health 

Organisation (WHO) classification system that is composed of classical 

histopathology and molecular biomarkers, namely the IDH1, ATRX and 1p/19q 

status. The tumour grade and marker status are used to determine treatment, as they 

are indicative of response to chemotherapy. Techniques involving vibrational 

spectroscopy, such as Fourier transform infrared (FTIR) spectroscopy, have 

previously demonstrated analytical capabilities for cancer detection, and have the 

potential to become a more powerful tool in the diagnostics field. For example, rapid 

determination of a glioma patient’s IDH1 status facilitates vital neurosurgical 

decisions, such as pursuing with resection or opting for alternative therapeutics. 

Thus, implementation of FTIR spectroscopy during surgical procedures could 

present a fast, label-free method for the molecular genetic classification of gliomas. 

In this study, we utilise synchrotron-based infrared light to probe brain tumour tissue 

microarrays and distinguish between IDH1-mutated and IDH1-wildtype glioma, at a 

sensitivity and specificity of 82.4% and 83.4%, respectively. Additionally, the 

sensitivity of attenuated total reflection (ATR)-FTIR has been examined with the aim 

of detecting biomolecular events and the global epigenetic and metabolic changes 

associated with mutations in the IDH1 enzyme, via centrifugal filtration of patient 

serum. The ability to provide this information prior to resection would enable 

patients to receive personalised chemo- and/or radiotherapy treatment to reduce 

tumour volume, allow a more efficient resection, signifying a shift in the clinical 

management of brain tumour patients.  
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5.1 Introduction  

Somatic mutations in the human cytosolic isocitrate dehydrogenase 1 (IDH1) gene is 

a frequent feature observed in malignant gliomas. The IDH1 mutation tends to occur 

in the early stages of gliomagenesis, thus are regularly found in low-grade diffuse 

astrocytoma and oligodendrogliomas [1]. The mutation rate varies in glioblastoma 

(GBM) cases [2]. The IDH1 mutation is rare in primary GBM – aggressive lesions 

that arise de novo without neural precursor cells, accounting for the vast majority of 

GBM [3]. In contrast, secondary GBM develops from previously diagnosed diffuse 

or anaplastic astrocytoma, and often exhibit the IDH1 mutation. Whilst >80% of 

astrocytomas, oligodendrogliomas and secondary GBM carry IDH1 mutations, the 

genetic alteration is only observed in <10% of primary GBM patients [4,5]. 

Consequently, the IDH1 mutation serves as a valuable diagnostic marker (Table 5.1), 

especially in distinguishing the epigenetic nature of primary and secondary GBM 

lesions that are often indistinguishable through histopathological analysis [5].  
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Table 5.1 - Common genetic and chromosomal aberrations associated with the major 
glioma subtypes [6]. 
 

Glioma entity 
WHO 
grade IDH1 mutation Additional associated 

mutations 
Pilocytic astrocytoma I Extremely rare BRAF, KRAS, NF1, FGFR1 

Diffuse astrocytoma II Common IDH2, TP53, ATRX, LOH 17p 

Anaplastic astrocytoma III Common IDH2, TP53, ATRX, LOH 17p 

Oligodendroglioma II 
Majority of 

cases 

IDH2, TP53, ATRX, 1p/19q 
codeletion 

Anaplastic 
oligodendroglioma 

III 
Majority of 

cases 

IDH2, TP53, ATRX, 1p/19q 
codeletion 

Glioblastoma (primary) IV Rare 
TERT, PTEN, TP53, MGMT, 

EGFR 

Glioblastoma (secondary) IV 
Extremely 

Common 
IDH2, TP53, ATRX, LOH 17p 

NF1, neurofibromatosis type 1; FGFR1, fibroblast growth receptor 1; IDH2, isocitrate dehydrogenase 
2 ; TP53, tumour suppressor protein 53; ATRX, alpha thalassemia/mental retardation syndrome X-
linked mutation; LOH 17p, loss of heterozygosity on chromosome 17; TERT, telomerase reverse 
transcriptase; PTEN, phosphatase and tensin homolog; MGMT, O(6)-methlyguanine-DNA-
methyltransferase; EGFR, epidermal growth factor receptor. 
 

The normal function of the IDH1 enzyme is to convert isocitrate to a-ketoglutarate 

(aKG). Cancer-associated mutations in IDH1 inactivate this standard enzymatic 

activity, but enables a neomorphic conversion of aKG to the oncometabolite 2-

hydroxyglutarate (2HG) [7,8]. This results in an accumulation of 2HG in glioma 

cells, which drives oncogenic activity and tumorigenesis [9]. The vast majority 

(~90%) of IDH1 mutations involve transitions in codon 132, where the arginine 

residue is replaced by histidine (R132H-IDH1) [2]. It is now well established that 

glioma patients who have this IDH1 mutation have significantly better prognosis 

compared to those with IDH1-wildtype lesions of the same histologic grade [10]. 

One study reported a median survival of 65 months for anaplastic astrocytoma 

patients that expressed the IDH1-mutation, compared to only 20 months for those 

classed as IDH1-wildtype [11]. Another study suggested that IDH-mutated GBM 
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patients were projected to have a better prognosis than those with a lower grade IDH-

wildtype astrocytoma [4]. R132H-IDH1 alterations represent an ideal diagnostic and 

prognostic tool. Consequently, testing for IDH1 mutations is now considered 

standard by international guidelines for the management of gliomas patients [12]. 

The presence of R132H-IDH1 can be established through immunohistochemistry 

(IHC) by applying the mIDH1R132H antibody to resected glioma tissue [13]. 

Despite being fairly sensitive and specific to the R132H-IDH1 mutation, there are a 

few limitations with the procedure. Successful IHC relies on invasive biopsies, 

meaning patients will always require a surgical procedure prior to a definitive 

diagnosis. Occasionally, the R132H-IDH1 expression is only present in a fraction of 

tumour cells in some diffuse gliomas, thus several sections of brain tissue are 

generally removed during biopsy to increase the chances of a reliable result. False 

positives have been observed due to non-specific background staining, and regional 

heterogeneity of R132H-IDH1 expression can cause doubt in the diagnosis which 

necessitates confirmatory genetic analysis [14]. In general there are several problems 

associated with IHC analysis, including the experience of the histopathologist, 

differences in clinical opinion and issues with tissue sampling [15,16].  

 

The development of a simple, rapid and label-free diagnostic tool for IDH1 detection 

could be revolutionary for neuropathology. Analytical techniques involving 

vibrational spectroscopy have great potential for diagnosing disease states, namely 

infrared and Raman spectroscopy [17,18]. In particular, Fourier transform infrared 

spectroscopy (FTIR) has been shown to be valuable for the detection of various 

cancers, as it can probe the biochemical composition of normal and pathological 
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tissue, and generate the fingerprint structure of several biomolecular components, 

such as proteins, lipids and nucleic material [19–25]. Several studies have looked 

into diagnosing brain lesions utilising vibrational spectroscopy, focused on Raman 

techniques [26–29]. Similarly, FTIR can detect and stratify brain malignancies 

through analysis of resected tissue sections [30–33]. These spectroscopic studies 

highlight the capability of the technique to become a powerful tool in the diagnostic 

field [34]. For example, complete surgical resection is associated with improved 

survival in patients with the IDH1 mutation [35], therefore rapid determination of a 

glioma patient’s IDH1 status facilitates vital neurosurgical decisions, such as 

pursuing with resection or opting for alternative therapeutics [36]. The 

implementation of FTIR spectroscopy during surgery could afford a fast, label-free 

method for the molecular genetic classification of gliomas. Likewise, attenuated total 

reflection (ATR)-FTIR is suitable for biological fluids, such as blood serum. 

Specifically, it provides qualitative interrogation of all IR active macromolecular 

constituents of blood serum, and it is well established that biomolecular imbalances 

in biofluids can give an indication of disease states [37]. 

 

Uckermann et al. recently highlighted the capability of FTIR in identifying mutated 

IDH1 expression in 34 cryosections of frozen brain tissue samples, and 64 fresh 

unfixed biopsies of human gliomas [38]. This proof-of-concept study yielded 

encouraging results, correctly assigning 88% of the of the frozen cryosections to the 

correct group when combining transmission FTIR imaging with quadratic 

discriminant analysis. Similarly, classification of ATR-FTIR spectra of the fresh 

glioma biopsies reported an accuracy of 86%. In spite of these promising results, 
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they found that the spectra of both the cryosections and fresh tissue biopsies showed 

high inter-patient variability. The variance in the fresh tissue analysis may have been 

accentuated by the use of ATR-FTIR, which only interrogates the region of the 

sample that is in contact with the IRE. Consequently, it can be difficult to ensure the 

biopsy area being examined is representative of the tumour. Likewise, it is well 

recognised that the frozen section procedure can damage the structural integrity of 

tissue, resulting in specimens that may be of lower quality than fresh frozen paraffin-

embedded (FFPE) tissue slides, hence fixed tissue processing is generally preferred 

for more accurate diagnosis [37]. Uckermann et al. proposed that further work would 

be required to fully evaluate the ability of the technique in the application of 

detecting the IDH1 mutation and other potential biomarkers.  

 

Synchrotron radiation-based FTIR (SR-FTIR) spectroscopy is a technique that can 

extract greater detail from biological tissue samples [37]. In SR-FTIR, a synchrotron 

source emits a collimated light beam more intense than standard bench-top 

spectrometers [39]. Synchrotron radiation can be up to 103 times brighter than any 

other conventional broadband IR source, allowing smaller regions of tissue to be 

probed with superior signal-to-noise [40].  

 

The implementation of this powerful biospectroscopy technique may enhance our 

perception of the epigenetic nature within malignant glial lesions. In this study, SR-

FTIR has been used to examine human brain glioma tissue, where single-point 

spectra have been collected from tissue microarray (TMA) sections comprising 

IDH1-mutated and IDH1-wildtype glioma tissue cores, further probing the ability of 
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the technology to potentially assist in the clinical management of glioma patients. 

Furthermore, we examine the potential for earlier molecular subclassification of 

tumours by identifying the systemic and global changes caused by the genetic IDH1 

mutation in gliomas, through centrifugal filtration of patient serum and ATR-FTIR 

spectroscopy, which could be implemented prior to biopsy or resection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 185 

5.2 Materials and Methods 

5.2.1 Sample Collection and Preparation 
 
5.2.1.1 Glioma Tissue 
 
Ethical approval for construction of the TMA was from the Lothian NRS 

Bioresource (15 ES 0094). Inclusion criteria for this retrospective study were: i) 

patients who underwent neurosurgery (tumour biopsy or debulking) ii) patients with 

histologically confirmed glioma, as diagnosed by a consultant neuropathologist. 137 

patients were selected for inclusion in the TMA, representing a range of tumour 

grades and recurrent tumours in the microarray. Clinical information was 

retrospectively collected for these patients. FFPE tumour biopsies were available in 

tumour blocks for all 137 patients. Tissue cores in 0.6 mm diameter were removed 

from the donor block and inserted into a recipient block using a manual tissue 

arrayer. 10 µm sections of the TMA block were sliced with a microtome and floated 

onto 76 x 26 x 1 mm calcium fluoride (CaF+) substrates in a heated water bath (~40 

°C). The CaF+	slides were then placed into an automated Leica ST5010 Autostainer 

XL (Leica, Germany) for a dewaxing protocol, designed to remove paraffin wax 

before spectroscopic analysis: immersion in xylene (3 x 5 min); ethanol wash (2 x 2 

min 100%, 1 x 2 min 80%, 1 x 2 min 50%); rinse in distilled water (2 x 2 min). The 

dewaxed slides were then placed in an oven at 60 °C for 3 hours to dry the tissue 

samples efficiently onto the CaF+ substrates. Once dehydrated, the slides were stored 

in petri dishes at room temperature until the time of IR interrogation. Subsequent 

microtoming of the TMA enabled IHC staining of the tissue cores with the 

mIDH1R132H antibody. Reference microscope images were collected, allowing the 
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determination of the IDH1-status for each sample - a positive result is observed by a 

strong brown colour in the glioma cells (Figure 5.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – Overview of the tissue microarray with IDH1 staining, with focus on a 
mutated core (brown) and wildtype core (blue). 

 
 

5.2.1.2 Patient Serum 
 
A total of 72 retrospective serum samples were obtained the Walton Centre NHS 

Trust biobank (Liverpool, UK). Ethical approval was obtained prior to investigation 

(Walton Research Bank and BTNW/WRTB 13_01/ BTNW Application #1108). 

Blood samples were gathered in serum collection tubes and allowed to clot for up to 

one hour. The tubes were centrifuged for 15 minutes at 2200 g. The serum 

component was subsequently aliquoted then stored in an –80 °C freezer until the 

time of analysis. The serum samples were removed from storage and thawed at room 

temperature for approximately 20 minutes prior to spectral analysis. 3 µL of serum 

100µm 

1000µm 
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from one individual patient was pipetted onto each of the three sample wells on a 

ClinSpec Dx optical sample slide (ClinSpec Diagnostics Ltd., UK) [41]. The first 

well remained clean for background collection to subtract atmospheric conditions 

from the IR spectra. The serum drops were spread across the well in order to create 

thin homogeneous serum films [42]. Prepared slides were dried at 35 °C for 1 hour to 

dehydrate the serum drops [43,44].  

 

5.2.1.2.1 Centrifugal Filtration 

To examine the potential of ATR-FTIR spectroscopy to detect IDH1 mutation, 

centrifugal filtration was undertaken to enable analysis of the low molecular weight 

(LMW) fraction of the serum samples. The whole serum samples from the 72 brain 

cancer patients (Appendix 3, Table A3.2) were filtered to remove the more abundant 

high molecular weight (HMW) biomolecules. Commercially available Amicon 

Ultra-0.5 mL centrifugal filtering devices (Millipore-Merck, Germany) with cut-off 

points at 3kDa were used to fractionate the serum samples. The serum was split into 

two fractions; the ‘filtrate’ and the ‘concentrate’. The filtrate accounts for the 

biomolecular components below the 3kDa cut-off point, and the concentrate 

represents the higher MW serum constituents. Serum from each patient (0.3 mL) was 

placed in the centrifugal filters, and the filtration tubes were centrifuged for 30 

minutes at a speed of 14000 g. The filtrates passed through the membranes into the 

collection vials. The filters were then inverted and centrifuged for 2 minutes at 1000 

g to collect the HMW concentrates. The filtrates and concentrates were stored in a –

80 °C freezer until the time of analysis. 

 



 188 

5.2.2 Spectral Collection and Data Analysis 
 
5.2.2.1 Synchrotron Radiation-based FTIR Microspectroscopy 
 
Experiments were carried out at the Diamond Light Source synchrotron facility, UK, 

namely the MIRIAM B22 beamline [45]. FTIR microspectra were acquired in 

transmission mode via a Hyperion 3000 microscope system with a 36x magnification 

(NA=0.5) Cassegrain objective/condenser optics coupled to a Bruker Vertex 80v 

FTIR spectrometer (Bruker Optics, Germany). A high sensitivity liquid nitrogen 

cooled mercury cadmium telluride (MCT) single element detector with a 50 mm 

pitch size was used to collect data between 4000-600 cm-1, at a spectral resolution of 

4 cm-1. Background spectra were recorded from clean sections on the CaF+ 

substrates. The aperture size was set to have a projected detection area of 10 x 10 µm 

at the sample plane, with FTIR spectral acquisition performed by co-addition of 256 

background scans and 128 sample scans at FTIR nominal scanner rate of 80 kHz 

(equivalent to 10s and 20s per point, respectively). Point spectra were collected as 

linescans through diagonal cross-sections of the TMA cores, acquiring ~70 spectra 

for each TMA core across a line approximately 0.6 mm in length. In total, 8532 

spectra were accumulated from 99 TMA cores (Table A3.1 in Appendix 3), 

comprised of tissue from 79 glioma patients. Each transmission spectrum was ratioed 

to the background spectrum and converted to absorbance.  

 

An initial atmospheric compensation was performed to subtract the contribution of 

spectral water vapour bands in OPUS 8 software (Bruker Optics, Germany), and the 

resulting spectra were cut to 4000-900 cm-1. The spectral data was exported for 

further pre-processing and analysis. Absorbance spectra collected from clean 
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sections of the CaF+ substrates were subtracted from sample absorbance spectra. The 

PRFFECT toolbox on the R Statistical Computing Environment was utilised for the 

pre-processing and classifications [16]. Iterative extended multiplicative signal 

correction (EMSC) was applied five times with five different reference spectra to 

account for Mie scattering [46]. Principal component analysis (PCA) was employed 

on the Quasar software (Orange Data Mining [47]) for a PCA-based quality test, to 

remove spectra that fell outside the central cluster of PC scores. Thereafter, spectra 

with Amide I (1650 cm-1) absorbance < 0.01 or > 2 were removed from the dataset. 

The synchrotron datasets were classified based on IDH1 status using linear 

discriminant analysis (LDA). Firstly, a grid search was utilised to test various pre-

processing parameters, then the top 10 models were further examined with a greater 

number of iterations – this is defined in more detail in the results section.  

 
 
5.2.2.2 ATR-FTIR Spectroscopy 
 
A Perkin Elmer Spectrum 2 FTIR spectrometer (Perkin Elmer, UK) was used for the 

spectral collection. A Specac Quest ATR accessory unit was fitted with a specular 

reflectance puck (Specac Ltd, UK). A slide indexing unit (ClinSpec Diagnostics Ltd, 

UK) automated the movement of the slides across ATR accessory. The spectra were 

acquired in the range 4000-450 cm-1, at a resolution of 4 cm-1, with 1 cm-1 data 

spacing and 16 co-added scans. Each sample well was analysed in triplicate, 

acquiring 9 spectra per patient. Thus, we gathered 648 whole serum spectra, and 648 

spectra were collected from the <3kDa filtrates, resulting in 1296 spectra in total.  
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An EMSC was also employed for the serum data analysis. The ‘whole serum’ dataset 

used a human pooled serum reference, followed by a spectral cut to 1800-1000 cm-1. 

To develop the models, patients were randomly split into training and test sets at a 

70:30 split. Spectra from a single patient’s serum could only appear in one cross-

validation fold, and in either the training or test set to ensure that the models were 

trained and validated correctly. The majority vote amongst the nine spectra for each 

patient was reported as the diagnostic outcome. The classification models were 

retrained and tested on 100 different randomly selected training and test set partitions 

to provide a more reliable result. Classification results of the ATR-FTIR spectra 

through random forest (RF), partial least squares – discriminant analysis (PLS-DA), 

and support vector machine (SVM) have been compared here, as described in 

Chapters 3 and 4.  

 

5.2.2.3.1 Centrifugal Filtration 

For the centrifugal filtration study, the spectra were initially corrected with an EMSC 

using an averaged filtrate spectrum as the reference. As there were two prominent 

bands present between 1000-800 cm-1 in the filtered serum spectrum, the dataset was 

cut down to 800 cm-1 to ensure all potentially important biological information was 

retained. Thus, three spectral cuts were tested; 4000-800 cm-1, 1800-800 cm-1 and 

1800-1000 cm-1. All other parameters were the consistent from the whole serum 

analysis.  

 

 

 



 191 

5.3 Results and Discussion 

5.3.1 Synchrotron Results 
 
The data collected at the Diamond Light Source synchrotron required some initial 

data handling. Due to restricted beamtime, it was decided that the most efficient 

spectral collection method was to collect large images containing multiple tissue 

cores, and accumulate single-point spectra across each individual core. Of the 8532 

spectra that were collected, many were not entirely representative of the tissue 

samples as some of the diagonal cross-sections contained blank CaF+ – mainly at the 

sample’s edge (Figure 5.2). Thus, the spectra of the blank substrate were removed 

from the dataset. As shown in Figure 5.3, the raw spectra collected from the tissue 

samples were highly variable. It is well established that transmission IR microscopy 

of tissue samples can suffer from significant baseline distortions due to scattering 

effects, predominantly resonant Mie scattering [48]. To combat this, an iterative 

EMSC approach was employed in an attempt to correct for the scatter effects at the 

left side of the Amide I band, as described elsewhere [46]. The resulting spectra were 

subjected to a PCA-quality test, described in Figure 5.4 (initial PCA plot in can be 

found in Appendix 3, Figure A3.1). All datapoints positioned outside of the centroid 

ellipse were removed from subsequent analysis. Additional quality testing was based 

of the intensity of the Amide I band, with only spectra falling within an acceptance 

window of 0.01 - 2 being retained. The resulting spectra are outlined in Figure 5.5, 

where the baseline variation and scattering effects have been significantly reduced.  
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Figure 5.2 – Microscope image taken of three brain tumour tissue microarray cores 
prior to infrared interrogation. Green squares (10 x 10 µm) represent the points 

where spectra were collected. 
 

Figure 5.3 - 1000 randomly selected raw spectra from the synchrotron dataset 
displaying highly variable baselines and scattering effects.  

 

150µm 
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Figure 5.4 - PCA-based quality test: PCA scores plot of PC1 and PC2 with focus on 
centre of cluster highlighting the ellipse (black circle) containing the data that was 

carried forward for investigation, all spectral datapoints laying outside of the ellipse 
were removed from subsequent analysis. 

Figure 5.5 - Mean spectra of all samples combined after EMSC, PCA quality test and 
removal of Amide I outliers with the standard deviation shaded in grey. 
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Following initial data management, 4822 spectra were retained for further spectral 

pre-processing and classification. In order to determine the optimal pre-processing 

parameters for the IDH1-mutated versus IDH1-wildtype dataset, a grid search was 

carried out using the PRFFECT toolbox, where the values for normalisation, binning, 

smoothing, order of derivative, and spectral cut were altered, as outlined in Table 

5.2. An unusual spectral cut of 1800-1200 cm-1 was included as there appeared to be 

a drop in absorbance <1200 cm-1 for many samples, which was thought to be due to 

the loss of IR light transmittance through the CaF+ slides (Appendix 3, Figure A3.2). 

This cut-off effect for CaF+ in the low wavenumber region is common in scanning 

microscopy and can be caused by the change in refractive index (RI), e.g. the RI of 

CaF+ decreases from ~1.4 at 5 µm to ~1.3 at 10 µm. Also, when using a synchrotron 

source in scanning microscopy mode for high spatial resolution, the diffraction limit 

is achieved when the microscope’s apertures define a spot size scaled with the 

longest wavelength of the spectral region of interest [49]. Here we used 10 µm slits, 

therefore the diffraction limit could be affecting the signal towards ~1000 cm-1 (l = 

10 µm Û 1000 cm-1). Thus, the fingerprint region with the removal of wavenumbers 

<1200 cm-1 was included in the grid search, along with the typical biological 

fingerprint region (1800-1000 cm-1) and the full spectral region. In total, 576 

combinations of pre-processing parameters were tested.  
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Table 5.2 - Pre-processing parameters examined in machine learning grid search. 

Parameter Variations 
Normalisation (n) None (0) Min-max (1) Vector (2) Amide I (3) 

Derivative (l) None (0) First (1) Second (2) - 

Binning (b) 1 2 4 8 

Smoothing with Savitzky-
Golay filter (s) 

None (0) 2 3 4 

Spectral cut (p) None (0) 1800-1000 cm-1 1800-1200 cm-1 - 

 
 
The processed datasets were split 70:30 into training and testing sets. An LDA 

classifier was trained and predictions made on the testing set, resampled 11 times – 

e.g. repeated for 11 different train-test splits – and the classification probability 

threshold was chosen to optimise Cohen’s Kappa (κ). Briefly, the values of k range 

from below zero to one and measures the level of agreement between the classifier 

and the pathology, with higher values representing better agreement, thus signifying 

a more reliable diagnostic model - see Chapter 3 (section 3.2.4) for a thorough 

description of k. The models predicted IDH1 status on a ‘by sample’ basis, where the 

majority vote for each tissue core was reported as either IDH1-mutated or IDH1-

wildtype. Here, the sensitivity is the ability to detect the positive class (the IDH1 

mutation), and specificity refers to IDH1-wildtype predictions. 

 

The results from all 11 iterations were averaged and compiled for comparison (Table 

A3.3, Appendix 3). The best performing model from the grid search reported a k 

value of 0.65, which demonstrates a ‘substantial’ level of agreement [50]. This 

model provided a sensitivity and specificity of 87.8% and 86.2%, respectively. The 

pre-processing used for this model was a min-max normalisation (scaling the spectra 

between 0 and 1), followed by a binning factor of 4, a Savitzky-Golay (SG)-filter 
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with a filter length 7 and filter order 4, and a spectral cut to between 1800-1200 cm-1. 

The resulting mean spectra for both the IDH1-mutated and IDH1-wildtype patient 

groups are outlined in Figure 5.6. By plotting the difference between the mean 

spectra, it becomes evident that there are dissimilarities between the two IDH1 

groups (Figure 5.7). Arguably the largest difference arises in within the Amide I 

band, associated with the stretching of double-bonded carbonyl groups (C=O) and C-

N bonds, as well as N-H bending vibrations in proteinaceous biomolecules [19]. The 

lower-wavenumber side of the Amide I band (1620-1600 cm-1) was more intense in 

the IDH1-mutated spectra (positive regions in the difference spectrum), whereas the 

band intensities between 1700-1650 cm-1 were lower compared to the IDH1-wildtype 

tissue spectra. Interestingly, these results are consistent with Uckermann et al., where 

IDH1-mutated cell lines exhibited an elevated absorbance at 1610 cm-1, but lower 

intensity around 1690 cm-1 [38]. These findings are not directly comparable to the 

results presented here, as cell lines may not adequately represent primary cells in 

clinical specimens [51]. The observed differences are likely to be due to alterations 

in overlapping bands existing within the broad Amide I envelope, accounting for 

various protein secondary structures that can only be suitably predicted with 

deconvolution techniques (as described in Chapter 4) [52]. Nevertheless, it is thought 

that the large negative peak in the difference spectrum at ~1660 cm-1 may represent 

deviation in the levels of a-helical structures, and the smaller positive peak ~1615 

cm-1 may be tentatively assigned to b-sheet components [53]. The band intensities at 

approximately ~1750 cm-1 and ~1560 cm-1 were lower in the mean IDH1-mutated 

spectrum, while those at ~1495 cm-1 and between 1450-1200 cm-1 displayed a higher 

absorbance than the IDH1-wildtype spectra (Figure 5.7). Several spectral differences 
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are similar to previous findings, namely the variances in Amide III of proteins 

(mainly N-H in plane bending and C-N stretch, ~1300 cm-1), nucleic material such as 

DNA and RNA (PO+
6 asymmetric stretch, ~1230 cm-1), and lipidic contributions 

(C=O stretch, ~1750 cm-1; CH3 bending, ~1450 cm-1) [38]. The disparities in the IR 

spectra could potentially be attributed to the increase in 2HG in the IDH1-mutated 

glioma tissue, which is known to be elevated in tumour cells with the IDH1 mutation 

[8]. With reference to an IR spectrum of pure 2HG [38], the bands around 1589, 

1450, 1416, 1344, 1311, 1267, 1236 and 1203 cm-1 could explain some of the 

differences observed between IDH1-mutated and IDH1-wildtype tissue in this study, 

as the band intensities at these wavenumbers are all elevated in IDH1-mutated 

patients, portrayed by the difference spectrum (Figure 5.7). That being said, it may 

only indicate a global change in biomolecular content, reflected by the systemic 

response of the genetic mutation within glial tumour cells.  

 

Figure 5.6 - Mean pre-processed spectra for the synchrotron-based IDH1 dataset, cut 
between 1800-1200 cm-1. Spectra offset for clarity; mutated (black) and wildtype 

(orange). 
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Figure 5.7 - Difference spectra of mean IDH1-mutated and IDH1-wildtype 

absorbance spectra for the synchrotron-based IDH1 dataset, with tentative biological 
assignments and associated vibrational modes: ν = stretching; d = bending; g = 

wagging, twisting and rocking; as = asymmetric; s = symmetric. 
 
 

11 resamples were employed in the grid search with different randomly selected 

training and test sets each time, and the model reported a substantial level of 

agreement (k = 0.65). To ensure these findings were consistent, the top 10 pre-

processing parameters from the grid search were further examined. Additionally, the 

use of sampling techniques, were utilised to ensure no bias was present within the 

models, due to the class imbalance between mutated and wildtype samples. Each of 

the retained pre-processing combinations were classified by LDA with 51 resamples, 

and four sampling methods were tested in each instance: no additional sampling, up- 

and down-sampling, and synthetic minority over-sampling technique (SMOTE) [54], 

as described in Chapter 3.  
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The optimal pre-processing parameters from the initial grid search were also found to 

be the best in this case, when combined with additional upsampling (Appendix 3, 

Table A3.4). The diagnostic ability decreased slightly, with a reported 82.4% 

sensitivity and 83.4% specificity (Table 5.3), highlighting the importance of 

resampling the data with a reasonable number of iterations in order to minimise the 

variance whilst maintaining a respectable analysis time. Nonetheless, the sensitivity 

and specificity remained well-balanced and above 80%. As shown in Table 5.3, the 

standard deviation is much higher for the sensitivity than the specificity, which is not 

entirely surprising due to the lower number of IDH1-mutated samples within the 

dataset. A 70:30 split between training and testing data meant that there were only 7 

randomly selected IDH1-mutated samples in each of the 51 resampled test sets. 

Therefore, when a known mutated tissue core is misdiagnosed as IDH1-wildtype, it 

has a substantial effect on the sensitivity. As depicted by the confusion matrices in 

Figure 5.8, there is a drop in ~15% sensitivity when an IDH1-mutated sample is 

predicted wrongly. Conversely, there is only a ~4% difference in specificity with a 

misdiagnosed IDH1-wildtype sample, as there were 26 IDH1-wildtype samples in 

every test set. Thus, the addition of more glioma samples with the IDH1 mutation 

would be beneficial for this analysis, in order to minimise the associated error. That 

being said, a balanced accuracy of 82.9% after 51 LDA iterations indicates 

synchrotron-based transmission FTIR may well be capable of detecting minute 

molecular alterations triggered by genetic mutations in the IDH1 enzyme.  

 

 



 200 

Table 5.3 - Classification results from 51 resamples of the optimal LDA model with 
additional upsampling, in terms of sensitivity, specificity and balanced accuracy. SD, 
standard deviation. 
 

Statistic Mean SD 
Sensitivity (%) 82.4 16.8 

Specificity (%) 83.4 8.2 

Balanced Accuracy (%) 82.9 9.6 

 

 
 

Figure 5.8 - Confusion matrices showing the predictions of two of the randomly 
selected test sets in from the linear discriminant analysis classification. 

 
 

Receiver operating characteristic (ROC) curves can also demonstrate a model’s 

diagnostic ability. A ROC curve is a probability curve, which can suggest how 

capable certain models are at distinguishing between classes. The area under the 

curve (AUC) represents the measure of separation, thus a valuable model will have 

an AUC value close to 1 and an excellent measure of separability [55]. On the other 

hand, an AUC <0.5 typically means the model has no class separation, and any 

differentiation is achieved by chance. Figure 5.9 describes a ROC curve obtained 

from the LDA ‘by sample’ classifier between IDH1-mutated and IDH1-wildtype.  
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Figure 5.9 - Mean receiver operator characteristic (ROC) curve displaying the trade-
off between sensitivity and specificity for the linear discriminant analysis (LDA) 

classifier. The grey square is a target region of at least 70% for both sensitivity and 
specificity. The ‘x’ labels are the points on the curve that maximise sensitivity (A), 
specificity (B) and balance the two (C) whilst remaining in the target area, and ‘p’ 

represents the probability thresholds at those points on the curve. 
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The curve is nicely symmetrical across sensitivity and specificity, and reports an 

AUC of 0.8994, which is typically considered an excellent degree of discrimination 

between the two classes [56]. By altering the probability threshold, denoted ‘p’ in 

Figure 5.9, we can maximise the sensitivity (A) or specificity (B), or obtain the 

greatest balance between the two (C). Point A represents the highest sensitivity 

(90%) whilst remaining in the 70-100% target region, whereas B denotes the 

maximum specificity (91%). The most balanced point on the curve reports a 

sensitivity and specificity of 82% and 81%, respectively, again illustrating the high 

diagnostic ability of the model, and signifying some real promise for the 

determination of IDH1 status through SR-FTIR spectroscopy. 
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5.3.2 ATR-FTIR Results 
 
In this section, brain cancer patients - with either astrocytoma, oligodendroglioma or 

GBM - were separated based upon their IDH1 status using ATR-FTIR serum 

spectroscopy. Of the 72 patients included, there were 36 with the IDH1 mutation, 

and 36 IDH1-wildtype. The data was classified through RF, PLS-DA and SVM with 

100 resamples for each, and the findings are reported in Table 5.4 on a ‘by patient’ 

basis. For the whole serum dataset, the SVM model reported a promising sensitivity 

of 75.9% but had an extremely low specificity of 28%. All models seemed to be 

more effective at picking out the IDH1-mutated serum samples from the test sets, as 

the sensitivities were much higher than the specificities in each case. It is not clear 

why this may be as there were an equal number of samples in each class, meaning 

there should be no bias present in the models. However, the results did not appear to 

be reliable, and given the poor balanced accuracies (~50%) it could be assumed the 

correct predictions were ultimately made by chance. 

 

Table 5.4 - Classification results for the IDH1-mutated versus IDH1-wildtype whole 
serum dataset, after 100 resamples. The mean sensitivity, specificity and balanced 
accuracy are reported with their corresponding standard deviations (SD). 
 

 

 

Sample 
fraction Model 

Sensitivity (%) Specificity (%) Balanced accuracy 
(%) 

Mean SD Mean SD Mean SD 

Whole Serum 

RF 50.3 15.2 45.4 15.1 47.9 8.6 

PLS-DA 69.3 13.8 35.3 14.7 52.3 7.4 

SVM 75.9 17.5 28.0 14.6 51.9 7.7 
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Blood serum constitutes thousands of different proteins, ranging from the more 

abundant HMW serum albumin (50 g/L) to the LMW proteins like troponin (1 ng/L) 

[57]. Due to the wealth of various biomolecules that exist in a normal serum sample, 

it was expected to be a significant challenge to identify the subtle alterations in blood 

composition associated with the IDH1 mutation. The LMW fraction of serum is 

believed to contain disease-specific information, making the spectroscopic signature 

of this fraction useful for diagnostics [58]. After the poor classification performance 

for the whole serum data, it was thought that discrete molecular differences could 

potentially be emphasised through the use of centrifugal filtration. Figure 5.10 

provides an example of the IR spectra for whole serum, the >3kDa ‘HMW’ fraction 

and the <3kDa ‘LMW’ fraction. The HMW concentrate appears almost identical to 

the whole serum spectrum – notably, they have a very similar absorbance from the 

more abundant proteins that exist within the Amide region, such as albumin and 

immunoglobulins. With these large proteins and other HMW constituents removed, 

the filtrate spectrum looks remarkably different, with only a few distinct peaks in the 

fingerprint region (red spectrum). Note that the concentrate samples were not 

included in classification analysis, as the spectral collection was not reproducible. 

This was due to severe sample cracking during the dehydration process, causing the 

drops to lift off the substrate surface (Appendix 3, Figures A3.3 and A3.4). 

 

As described in the Materials and Methods (section 5.2.2.3.1), three spectral regions 

were chosen for examination: 4000-800 cm-1 and 1800-800 cm-1 – to encompass the 

two distinct peaks around 950 cm-1 and 850 cm-1 – as well as the typical biological 

fingerprint region (1800-1000 cm-1). The classification results are reported in Table 
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5.5. In each case, the filtrate models were superior than the whole serum models at 

successfully detecting the IDH1-wildtype patients, reporting specificity values above 

60%. The improvement in diagnostic ability due to the filtration step is emphasised 

in Appendix 3, Figure A3.5, which displays single model ROC curves for the three 

whole serum classifiers and the best models for each of the three filtrate datasets. 

The ROC curves for the whole serum models fall on the diagonal line and the 

reported AUC values of ~0.5 suggests the test has essentially no diagnostic accuracy. 

However, the inclusion of centrifugal filtration enhanced the ability to successfully 

discriminate the two IDH1 classes. The corresponding ROC curves in report AUC 

values >0.7, which is often deemed an ‘acceptable’ level of discrimination. 

 

 

 

 

 

 

 

 
Figure 5.10 - Examples of whole serum (orange), the high molecular weight 

concentrate (blue) and the low molecular weight filtrate (red) spectra. Raw spectra 
offset for clarity. 
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PLS1 loadings suggest large differences ~3400 cm-1 and ~1650 cm-1 (Appendix 3, 

Figure A3.6), although there is no apparent class separation across PLS1 in the 

scores plot. Despite some overlap, it is evident that the 2nd PLS component separates 

the two classes better than PLS1. The PLS2 loadings also highlight significant 

spectral differences around ~1650 cm-1 (Figure 5.11b). Interestingly, this is the 

typical location of the large Amide I band in a normal serum spectrum, accounting 

for the bond vibrations within an abundance of protein molecules. Even with the 

HMW proteins filtered out of the sample - like albumin and immunoglobulins - it 

still appears to be a region of importance when examining molecules of very low 

molecular weights (<3kDa), signifying the smaller protein molecules still have 

diagnostic potential. Considerable contributions from lipids (~1450 cm-1) and nucleic 

material (~1100 cm-1) and C-O-C stretching vibrations associated with carbohydrates 

and glycogen were also apparent in the PLS2 loadings, as well as other proteinaceous 

vibrations (~1550 cm-1 and ~1300 cm-1). 

Table 5.5 - Classification results for the IDH1-mutated versus IDH1-wildtype serum 
datasets after 100 resamples. The mean sensitivity, specificity and balanced accuracy 
are reported with their corresponding standard deviations (SD). 

Sample fraction Model 
Sensitivity (%) Specificity (%) Balanced accuracy 

(%) 
Mean SD Mean SD Mean SD 

<3kDa Filtered 
Serum  

(4000-800 cm-1) 

RF 68.4 16.2 67.5 15.9 68.0 11.1 

PLS-DA 75.5 12.3 62.6 15.5 69.1 9.0 

SVM 68.4 16.5 64.2 16.0 66.4 10.2 

<3kDa Filtered 
Serum 

(1800-800 cm-1) 

RF 70.6 17.8 66.4 14.5 68.5 11.2 

PLS-DA 65.0 14.6 64.6 16.5 64.8 8.7 

SVM 63.2 16.3 63.8 16.9 63.5 9.6 

<3kDa Filtered 
Serum 

(1800-1000 cm-1) 

RF 66.6 15.4 68.1 14.1 67.4 9.9 

PLS-DA 65.9 14.6 56.2 15.5 61.1 9.1 

SVM 68.1 15.6 56.8 15.6 62.5 10.1 
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Figure 5.11 - a) the PLS scores plot between PLS1 and PLS2 for the IDH1-mutated  
(black) and IDH1-wildtype (red) <3kDa serum filtrate (4000-800 cm-1) dataset, and 

b) the loadings for the 2nd PLS component. 
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The Gini impurity metric was also examined for the RF models, to identify the most 

important features within each dataset (see Chapter 3 for more details). The Gini 

plots highlighting the main wavenumbers responsible for the RF results can be found 

in Appendix 3 (Figure A3.7). The RF model for the 1800-800 cm-1 dataset also 

reported respectable results, with a sensitivity and specificity of 70.6% and 66.4%, 

respectively. Table 5.6 gives an overview of the top 15 identified wavenumbers in 

order of importance, with their corresponding wavenumber assignments and 

vibrational modes. The top wavenumbers mostly account for stretching vibrations of 

C-O, C-C and C-OH bonds, which are often associated with carbohydrates, glycogen 

and nucleic acids. Additionally, symmetric PO+
6 stretching vibrations from DNA and 

CH2 twisting and bending vibrations associated with lipids were deemed significant 

in the RF classification. Likewise, wavenumbers in the Amide region were 

considered important here, accounting for C=O/C-N stretching and N-H bending 

vibrations in the amide bonds within protein molecules, similar to the PLS loadings 

described in Figure 5.13. 
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Table 5.6 - The top 15 wavenumbers from the <3kDa serum filtrate (1800-800 cm-1) 
random forest classification between IDH1-mutated and IDH1-wildtype with 
associated vibrational modes [19]. The column “ΣGini” is a summation of the mean 
decrease in Gini for each wavenumber, over all nodes in all trees in the random 
forest ensemble, which suggests the regions of highest importance. 
 

Wavenumbers (cm-1)  S Gini Vibrational Modes 

1124.5 12.31 C-O stretch 

1172.5 11.22 C-O, C-OH stretch  

1164.5 9.07 C-C, C-O and C-OH stretch  

1180.5 6.43 CH2 twisting 

1116.5 5.39 RNA; C-OH stretch 

1028.5 5.01 Carbohydrate; C-O stretch 

1188.5 4.46 DNA; Symmetric PO!" stretch 

1740.5 4.19 Lipids; C=O stretch  

1020.5 3.60 Glycogen; C-O stretch  

1132.5 3.49 C-O and C-C stretch  

1588.5 2.77 Amide I; C=O and C-N stretch, N-H bending 

1548.5 2.73 Amide II; N-H bending, C-N stretching 

1444.5 2.57 Lipids; CH2 bending  

1468.5 2.52 Lipids/Proteins; CH2 bending 

1612.5 2.45 Amide I; C=O and C-N stretch, N-H bending 

 

In general, the balanced accuracies were enhanced to between 60-70% for all tested 

models. This is by no means perfect, but the centrifugal filtration step has produced a 

significant improvement on the model performance, by delivering more balanced 

sensitivities and specificities. Similar to the tissue-based results, these findings are 

based on a relatively small cohort with only 36 patients in each class, thus 

misdiagnosed patients have a profound effect on the sensitivity or specificity values. 

Additional analysis with a larger patient cohort would be beneficial in identifying the 

true potential of the technique for this particular clinical application. Moreover, 

Bonnier et al. have suggested that the large absorbance band observed in the filtered 

serum spectrum (~1030 cm-1) is due to glycerine interference - introduced into the 
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sample from the centrifugal filters [59]. This could potentially be obscuring crucial 

information, therefore further analysis with an added washing step prior to 

centrifugation could be useful. There are also many filter sizes to choose from, hence 

filtration with a different cut-off point may also improve classification performance - 

many cytokines and chemokines exist at molecular weights greater than 3kDa, which 

may be indicative of disease. That being said, these findings suggest there is 

potential for the centrifugal filtration of serum to improve the model’s diagnostic 

ability, specifically in detecting spectroscopic signatures that may be related to subtle 

molecular mutations.  
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5.4 Conclusion 

The implementation of FTIR spectroscopy during biopsy could have the potential to 

offer a label-free test for molecular genetic classification of gliomas. Glioma patients 

who have the somatic IDH1 mutation tend to have significantly better prognosis 

compared to those with IDH1-wildtype lesions of the same histologic grade, 

therefore such a test would be a useful prognostic and decision-making tool. 

Knowledge of a glioma patient’s IDH1 status prior to or during surgery may impact 

on neurosurgical decision, e.g. IDH1 mutated patients may have more complete 

resection, whilst IDH1-wildtype may have more limited surgery. 

 

Initial analysis of the synchrotron-based data produced highly promising results, 

where the pre-processing grid search (with 11 LDA iterations) reported an optimal 

model with a k value of 0.65, and a sensitivity and specificity of 87.8% and 86.2%, 

respectively. Further examination utilising a higher number of resamples slightly 

reduced the diagnostic outcome, but with 51 LDA iterations the model was more 

reliable and reported a balanced accuracy of 82.9%. ROC analysis produced a mean 

curve with an AUC of 0.8994, which also suggests a good degree of diagnostic 

separability. These findings demonstrate significant potential and suggest 

synchrotron-based transmission FTIR is capable of detecting molecular alterations 

likely initiated by genetic mutations in the IDH1 enzyme. 

 

Additionally, the ability of centrifugal filtration to improve the classification 

performance when exploring the ability of ATR-FTIR has been highlighted. In a 

cohort of 72 glioma patients, classification models were designed to distinguish 
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between IDH1-mutated and IDH1-wildtype in human serum. Initially, the whole 

serum classifiers performed disappointingly – delivering balanced accuracies of 

~50% - yet with the introduction of centrifugal filtration the classification 

performance considerably improved. For the <3kDa filtered serum ‘full spectra’ 

dataset (4000-800 cm-1), the PLS-DA model provided optimal diagnostic ability, 

delivering a balanced accuracy of 69.1% . Moreover, the RF model for the 1800-800 

cm-1 dataset also reported relatively promising results, with a sensitivity and 

specificity of 70.6% and 66.4%, respectively. These strategies can now be validated 

and optimised in prospective clinical studies, and can be extended to identify other 

important molecular alterations, such as ATRX loss, 1p/19q co-deletion and/or 

MGMT hypermethylation, with which brain cancer type can be stratified pre-

operatively. 
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test for brain tumour diagnosis: cost-effectiveness 

analysis of prospective clinical study and extension to 
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Abstract 

Over the years there have been many proof-of-concept studies highlighting the 

medical utility of vibrational spectroscopy. It is evident that many researchers do not 

fully understand the requirements to translate into the clinic, thus many promising 

studies seem to stall following initial publication. Arguably for successful translation 

of such techniques, it is essential to examine the existing competition, define where 

in the current pathway the new intervention would be suited, and undertake an 

economic evaluation to establish the potential cost and health benefits for the health 

services. Previous work outlined a pre-trial health economic assessment for the 

introduction of a serum-based spectroscopic blood test into the clinic, which 

highlighted the test could be cost-effective to the National Health Service.  

 

Here we explore the results from the prospective clinical data gathered from the first 

385 patients in our ongoing feasibility study, through cost-effectiveness analysis and 

one-way sensitivity analysis. For both primary and secondary care scenarios - based 

on the prospective clinical data - test costs up to £100 would likely be considered 

cost-effective in health technology assessment agency decision making processes. 

Moreover, it is expected that primary care tests set at £75 would be cost-saving to the 

health services.  

 

Additionally, an extension of the economic evaluation has been developed to assess 

the efficiency of the spectroscopic serum test being employed in secondary care for 

the differentiation of brain tumour types, namely, glioblastoma multiforme (GBM), 

primary central nervous system lymphoma (PCNSL) and metastatic brain lesions, 
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through a cost-consequence analysis. When comparing the costs ‘with’ and ‘without’ 

the additional subtype test, the cost-consequence analysis reported an estimated 

saving of ~£138,075 per 10,000 patients, equating to a potential saving of ~£568 per 

individual cancer case. Furthermore, this could prevent up to 8 unnecessary 

surgeries, per 100 patients. Thus, a capable diagnostic test that can stratify brain 

tumour type would have a profound impact for patients as well as the health services. 
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6.1 Introduction 

There has been an abundance of diagnostic studies in the field of biomedical 

vibrational spectroscopy in the last few decades signifying its potential clinical utility 

[1–8]. Thus, it is surprising that there is yet to be a successful transition from 

laboratory benchtop into regular clinical practice. The absence of translation can be 

attributed to various reasons. Firstly, there is often a lack of concrete understanding 

of what the unmet clinical needs are, and the limitations of the current gold standard 

techniques [9]. Secondly, many proof-of-concept studies involve relatively small 

patient cohorts, which can over-estimate the significance of the results as they are not 

entirely representative of larger populations [10]. Likewise, the majority are based on 

retrospective samples, but these studies can be susceptible to bias as the disease 

states of the patients are already known. Hence, when progressing on to a 

prospective study, it is common to observe a lesser diagnostic performance [11]. 

These effects are commonly described as ‘spectrum bias’, which accounts for the 

variation in test performance for prediction, screening and disease diagnostics among 

different population subgroups. For example, a test that has been developed in a 

population with higher disease prevalence, will normally have a lower sensitivity and 

higher specificity when applied in a population with lower prevalence of disease 

[12]. Likewise, symptomatic patients who do not have the disease become more 

prevalent in prospective studies, thus can be more difficult to successfully detect the 

disease in these cohorts. Currently, the standardisation of sample preparation and 

measurement protocols is inadequate, and with a wide array of data pre-processing 

and analysis techniques to choose from, the lack of consistency in the vibrational 

spectroscopy field could be detrimental for potential funding and inhibit progress. 
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There is a vast quantity of research projects being halted at the proof-of-principle 

stage, meaning very few spectroscopic studies have advanced towards the scale of a 

clinical trial [8]. Two major hurdles are placed in the path to successful translation; 

1) approval from regulatory agencies for marketing and 2) the acceptance from 

health technology assessment (HTA) agencies who determine which technologies are 

made available in the public health system. Regulatory agencies are responsible for 

ensuring new medicines and medical devices are safe, such as the Food and Drug 

Administration (FDA) in the USA, and Medicines and Healthcare products 

Regulatory Agency (MHRA) in the UK. These agencies ensure the manufacturer of 

new interventions follow the appropriate conformity assessment procedure, which is 

essential for products to attain CE marking and comply with relevant health, safety 

and environmental requirements [13]. Criteria for successful acceptance require 

statistically verified clinical trials to prove medical utility, but also clear 

understanding of the current diagnostic pathways in order to determine the economic 

and clinical impact of new technologies. For successful translation of such 

techniques, it is vital to examine the existing competition, define where in the current 

pathway the proposed ‘diagnostic test’ would be best suited, and undertake an 

economic evaluation to establish the potential cost and health benefits for the health 

services.  

 

Health economics concerns how the health services allocates its resources. The 

desire of obtaining value for money is evident within this discipline, by promoting 

both efficiency and equity – maximising the benefits meanwhile ensuring a fair 

distribution of available resources. However, due to the scarcity of resources, the 



 223 

health services are faced with tough decisions regarding new and innovative health 

care technologies [14]. They must also consider opportunity costs which is the loss 

of other alternatives when one alterative is chosen; where additional costs in one area 

mean a reduction in what is offered in another area, resulting in a loss of some type 

of health benefit [15]. Thus, health economists will commonly undertake an 

economic evaluation, which analyses alternative courses of action - in terms of both 

their costs and consequences – often in comparison to current practices [16,17]. 

Simply put, this exercise offers a framework for measuring, valuing and comparing 

the costs (negative consequences) and benefits (positive consequences) of different 

health care interventions [16].  

 

How the costs and the benefits are defined will vary according to the desired 

analyses, hence there are a number of health economic models that could be useful; 

cost-minimisation analysis, cost-benefit analysis and cost-utility analysis, to name a 

few [18]. One of the more commonly employed models is cost-effectiveness analysis 

(CEA), which is a comparison of costs in monetary units with outcomes in 

quantitative non-monetary terms [19]. As described by the World Health 

Organisation (WHO), CEA can quantify “the gains, or setbacks, in population health 

as a result of a particular policy or intervention” [20]. This type of analysis compares 

the costs and outcomes for a new intervention with the best currently available 

alternative treatment, strategy or intervention [21]. The benefits of an intervention 

can be portrayed by variety of different outcomes. For example, the differences in 

quality adjusted life years (QALY) incorporates the impact on both the quantity and 

quality of life of a proposed intervention [22]. In the UK, the National Institute for 
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Health and Care Excellence (NICE) make decisions regarding whether a new 

technology will be funded within the NHS, and this is informed by the evidence of 

cost-effectiveness. When a new intervention is deemed to be more effective than 

current practice, but is also more costly, then NICE would have to weigh up the 

additional costs against the additional QALYs, often expressed as the incremental 

cost-effectiveness ratio (ICER), which corresponds to the difference in costs between 

two strategies, to the difference in effectiveness [23]. In general, NICE are willing to 

pay around £20,000-30,000 per QALY gained by new intervention [24].  

 

Economic evaluation and CEA have been progressively employed in the last few 

decades to examine the feasibility of novel pharmaceuticals, drugs, biomarkers and 

medical devices [25]. Notably, the first health economic assessment (HEA) of a new 

technology relating to vibrational spectroscopy was issued recently in BMJ Open. In 

2018, Gray et al. published a pre-trial HEA for the introduction of a serum-based 

spectroscopic blood test into the clinic [26]. The proposed test was for the diagnosis 

of brain tumours, which utilises attenuated total reflection-Fourier transform infrared 

(ATR-FTIR) spectroscopy to detect the biosignature of the disease from a patient’s 

blood serum. Based on a retrospective cohort of 433 patients, ATR-FTIR combined 

with machine learning analysis could successfully identify brain tumour patients at a 

sensitivity and specificity of 92.3% and 91.5%, respectively [27,28]. As brain tumour 

symptoms are non-specific, patients often visit their general practitioner (GP) up to 

five times complaining of headaches or migraines before receiving a referral to 

secondary care, leading to 62% of lesions being diagnosed as emergency 

presentations [29]. Brain tumours reduce average life expectancy by 20 years - the 
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highest of all cancers – highlighting that early detection is imperative for improved 

patient survival and prognosis [30]. The current pathway for brain tumour diagnosis 

consists of magnetic resonance imaging (MRI) or computed tomography (CT) 

imaging followed by surgical biopsy and histopathology. MRI and CT imaging are 

considerably expensive: a single patient costs the NHS around ~£300 for imaging 

alone [26]. This means GPs are faced with a difficult decision when a patient 

complains of persistent headaches. The prevalence of brain tumours in this 

symptomatic population is minimal (~1%), and considering the financial burden of 

medical imaging on the health services, it is not entirely surprising that the GPs 

decide not to refer the patients after their first, or even second, visit. Moreover, 

patients may be unnecessarily exposed to radiation (CT scans) [31], and incidental 

findings - unexpected brain abnormalities - are not uncommon in brain scans, which 

understandably result in anxiety as the vast majority are of no real consequence to 

the patient [32]. A reliable blood serum test at the primary care setting could fast 

track these patients into the diagnostic pathway much quicker. Another benefit of 

such approach would be the reduction in unnecessary brain scans, saving the health 

services on avoidable spending. A patient with a positive result from the triage test 

would progress for an urgent brain scan, enhancing the likelihood of survival and 

improving their prognosis. Likewise, a negative result would allow their GP to 

explore other options, provide reassurance to patients and prevent the needless 

anxiety and stress involved with attending imaging appointments. In addition to 

primary care, the HEA from Gray et al. also looked at the potential implementation 

of the serum triage test into secondary care. In this scenario, the patients are already 

in the diagnostic pathway for a suspected brain tumour. 
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Based on retrospective studies, the early economic evaluation from Gray et al. 

reported highly promising results [26]. Their findings indicated that a blood-based 

spectroscopic test in both a primary and secondary setting, had the potential to be 

cost-effective if the prospective trial replicated the initial success. This research was 

based on traditional ATR-FTIR spectroscopy, which used a fixed diamond crystal for 

the internal reflection element (IRE). Clinical translation has been delayed with this 

approach as the fixed IREs are expensive, and the requirement to clean the crystal 

between samples has inhibited throughput. To combat this, technological 

developments have seen ClinSpec Dx manufacture disposable optical sample slides, 

that are made from microfabricated silicon and have been designed to replace the 

traditional fixed crystal. These commercially available slides allow high-throughput 

spectral analysis, making them ideal for use in a clinical environment. A larger 

retrospective brain tumour cohort, containing 724 patients, has now been analysed 

using the novel accessories. We published this work recently, reporting sensitivities 

and specificities of 93.2% and 92.%, respectively, when differentiating brain cancer 

and control patients [33]. Furthermore, preliminary data from the first prospective 

clinical validation study was presented. From 104 patients that had been referred for 

brain imaging, only 12 were observed to have a brain tumour, yet the test achieved 

83.3% sensitivity and 87% specificity.  

 

Since there is scope to differentiate between tumour types using ATR-FTIR serum 

spectroscopy [34], this approach could reduce the number of chest or full-body scans 

if it is suggested that there is no metastatic brain lesion present. This could also be 

beneficial at this stage in the pathway when brain scans are inconclusive. For 
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example, the aggressive grade IV glioma, glioblastoma multiforme (GBM), is often 

confused with primary central nervous system lymphoma (PCNSL) and brain 

metastases, but all have very different treatment pathways [35–37]. Thus, surgical 

biopsies are always required in order to ascertain the tumour pathology, and to define 

the most appropriate course of treatment. A blood serum test for such cases could 

potentially avoid surgery and speed up the time to definitive therapy [38]. Benefits of 

such a test, with accuracy on subclassification, come from avoidance of unnecessary 

tumour debulking or resection – a type of surgery that carries substantial risks. The 

test could indicate if initial biopsy or additional full body imaging would be required 

prior to surgery. We recently highlighted the potential of the high-throughput 

technique to assist neurologists in secondary care, by successfully predicting 90.1% 

of GBM patients and 86.3% of PCNSL cases in our retrospective cohort of 112 

patients (Chapter 3) [38]. Additionally, by employing a similar approach, we found 

that a linear-SVM binary classifier could differentiate GBM from brain metastases 

with a balanced accuracy of ~90% (Chapter 4) [39]. 

 

In this study, we explore the results from the clinical data gathered from the first 385 

patients in the ongoing prospective trial. From these findings, CEA and sensitivity 

analysis will be carried out based on the updated QALY and ICER values. 

Furthermore, an additional HEA will be developed to assess the efficiency of the 

spectroscopic serum test being employed in secondary care for the differentiation of 

brain tumour types, namely GBM, PCNSL and metastatic brain lesions.  
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6.2 Materials and Methods 

6.2.1 Prospective Clinical Data 

6.2.1.1 Cost-effectiveness Analysis 

We direct the reader to the previously published HEA for a more thorough 

explanation of the methods used [26]. Briefly, a CEA was conducted to calculate the 

effects on health outcomes and costs to the health services on the implementation of 

spectroscopic testing in both primary and secondary care settings, where the health 

outcomes were considered in life-years and QALYs. Separate models were 

considered for primary and secondary care, based on the initial decision tree (Figure 

6.1) where the comparator was imaging alone for all scenarios. The time horizon of 

this model is 2 years due to the short duration of survival for this patient group: 

median survival is approximately 1 year for high-grade gliomas. The primary care 

scenario explored a population of patients with a clinical presentation that warrants 

further investigation of a potential brain tumour. For example, patients with 

consistent headaches and/or neurological deficits. The estimated brain tumour 

prevalence for the primary care model was ~1%. The secondary care model was 

based on the population of patients who were already referred for imaging studies in 

neurology clinics. Understandably, this patient group has the highest positive 

predictive value (PPV), yet even in this high-risk population the odds of a brain 

tumour diagnosis is approximately 1:33 [40–42]. Thus, an estimated prevalence 

value of 3% was employed for the secondary care model.  
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Figure 6.1 – Decision tree model describing the addition of a spectroscopic serum 
test in the current diagnostic pathway and the effect on imaging for suspected brain 
tumour. D1, 1 week; D2, 4 weeks; D3, 8 weeks; LY, life-year; S(t|D), survival time 

in days conditional on ‘delay’. Adapted from ref [26]. 
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6.2.1.2 Resource Use and Costs 

Resource use includes the application of a spectroscopic serum test to all patients 

prior to imaging, the imaging studies used in the diagnostic process, outpatient 

neurology clinic visits and GP visits. Unit costs for imaging studies are taken from 

the latest UK NHS reference costs available at the time of analysis (2017/2018), and 

clinic and GP visits from the Personal Social Services Research Unit (PSSRU) costs 

schedule (Table 6.1). 

 

Table 6.1 - Unit costs for the current brain tumour pathway. 

Parameter 
Cost per unit 

(£) Source 

CT imaging study (CT of head without 
contrast) 

90 
NHS reference costs 2017-

2018, IMAGOP 

MRI imaging study (MRI of brain with 
post-contrast) 

165 
NHS reference costs 2017-

2018, IMAGOP 

Neurology outpatient appointment 35 PSSRU (2016) 

GP visit 47.25 PSSRU (2016) 

Disease monitoring 116 Ref. [43] 

Serum spectroscopy test 25, 50, 75, 100 Examined prices 
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6.2.1.3 Base Case and Sensitivity Analysis 

Firstly, ICERs were calculated for both the primary and secondary care scenarios 

(Eq. 6.1). The ICER can be defined as the comparative cost-effectiveness of 

spectroscopic testing compared to no testing: 

!"#$ = 	 $$%$%&$%&%
     (6.1) 

where e: is the total costs with the implementation of the serum spectroscopy test, 

and e7 is without testing. Likewise, f: and f7 refer to the total QALYs with and 

without the new intervention, and the ICER value is equivalent to the additional cost 

per QALY gained. The base case analysis was carried out for both scenarios using 

the parameters outlined in Table 6.1. Additional one-way sensitivity analysis 

(OWSA) was conducted, where the brain tumour prevalence and survival benefits 

parameters were systematically varied. 

 

6.2.1.4 Patient Recruitment 

Two related cohorts of patients were eligible for inclusion, encompassing different 

points on the cancer referral and diagnosis pathway. Cohort 1 comprised the 

symptomatic population, who were referred for direct access computed tomography 

(DACT) brain imaging for exclusion of significant intracranial pathology. The brain 

cancer population is encompassed in cohort 2 – those with a recent diagnosis of a 

primary or recurrent brain tumour. Data interpretation was blinded to a brain imaging 

and histological diagnosis; DACT imaging outcomes were recorded from the formal 

radiological report and histological tumour diagnosis was available for patients that 

underwent surgery (Table 6.2).  
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Table 6.2 - Patient breakdown per disease classification in eligible population. 

Diagnosis No. of Patients 
No tumour 319 

Astrocytoma – anaplastic grade III 3 

Astrocytoma – diffuse grade II 1 

Ependymoma 1 

Glioblastoma 34 

Medulloblastoma 1 

Meningioma 5 

Metastasis 16 

Oligodendroglioma – anaplastic grade III 2 

Oligodendroglioma – grade II 1 

Pituitary Adenoma 1 

Schwannoma 1 

Subependymoma 1 

TOTAL 385 
 

6.2.1.5 Diagnostic Performance 

The diagnostic performance was determined by comparison of the blinded test 

prediction against the report of the brain imaging performed (Table 6.2). In total, 385 

patients were enrolled in this study, of which 66 had a confirmed brain tumour. A 

large proportion of brain tumour cases were diagnosed as GBM which is considered 

the most common primary brain cancer presentation. Brain metastases are also 

prominent in this dataset, of which 75% have an unknown primary origin. During the 

analysis a range of diagnostic algorithms were compared in order to identify the 

optimum approach. All algorithms were performed in an analyst blind fashion. The 

top performing algorithm reported 81% sensitivity and 80% specificity for the 385 

population (Figure 6.2) [44].  
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Figure 6.2 - Confusion ball visualisation of sensitivity and specificity for the brain 
tumour predictions from the 385 patient prospective clinical study. 

 

6.2.2 Economic Analysis of Subtype Classification 

Diagnostic subclassifications for which a pre-biopsy diagnostic test would add value, 

additional to initial imaging, are GBM versus PCNSL versus brain metastases with 

unidentified primary site. This judgement was made by iterative process of 

consultation with clinical experts and a comprehensive review of medical literature. 

In the selected subclassifications, information about the most likely tumour type can 

influence clinical decision making around surgery, biopsy and additional testing. 

Generally, those thought to have GBM would be expedited to surgery, whereas 

metastatic patients tend to be referred for further imaging [45,46]. Conversely, it is 

more common for patients with PCNSL to be treated with steroids in the first 

instance, in order to shrink the tumour before attempting resection [47].  
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6.2.2.1 Review of the Literature 

Occasionally, GBM may be misclassified as PCNSL or brain metastases [48,49]. 

Although atypical, a small number will occur regularly in all major surgical centres. 

In both of these instances, surgical resection would usually not be required if the 

cancer was not GBM. PCNSL is rare – approximately 5% of all primary brain 

tumours [50] – hence there was a lack of data specific to the misdiagnosis of PCNSL 

observed in the literature. Thus, it was difficult to estimate the proportion of cases 

with mistaken diagnosis from imaging alone. It has been estimated that ~1-4% of 

presumed GBM may be actually be PCNSL. Moreover, the probability of PCNSL 

being misclassified as GBM - even following biopsy and histopathology - is thought 

to range between 0.125-1% of cases. Brain metastases are more common, affecting 

20-40% of cancer patients [37]. Approximately ~15% of brain metastases present 

with an unknown primary diagnosis [51]. Regarding the confusion between GBM 

and brain metastases, many patients will receive full body CT scans in order to rule 

out metastatic disease. This ultimately delays surgery in cases that are almost 

certainly GBM. Figure 6.3 outlines the strategic approach for the addition of serum 

spectroscopy for subtype classification. Without the addition of subtype 

classification, cases where the patient has a presumed/uncertain GBM diagnosis they 

would likely be fast-tracked directly to surgery or be subjected to an invasive open 

biopsy for confirmation. With the addition of subtype classification, a suspected 

GBM case would be expedited to surgery for tumour resection. On the other hand, 

presumed PCNSL would be treated with steroid therapy, and metastatic patients 

would be referred for further imaging to locate the primary tumour origin, thus 
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avoiding unnecessary surgical procedures. This would not only prevent needless 

NHS spending, but provide the patient with the most appropriate course  

of treatment and the best possible prognosis.  

 

Figure 6.3 – Extension of decision tree with the inclusion of the serum spectroscopy 
subtype classification. FP: false positive. 

 

Reducing unnecessary surgeries is undoubtedly most beneficial for the patients. The 

invasive craniotomy is the most commonly employed procedure, where a section of 

bone is sliced and removed from the skull in order to access the brain. As with many 

surgical operations, there are a number of risks associated with these procedures 

(Table 6.3); neurological deficit, infection and post-operative seizures, for example. 

Thus, decreasing the number of patients going through these invasive procedures 

when they are not required would enable the most appropriate treatment regime to be 
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employed, hopefully improve their quality of life and increase their chances of long-

term survival. 

 

Table 6.3 - Complications associated with craniotomy surgical procedures [52,53] 

Complication Risk 

Neurological deficit (short-term or permanent) 1-4% 

Post-operative seizure 1-7.5% 

Infection – wound, meningitis 3% 

‘Systemic complications’, cardiovascular disease and/or respiratory 
disease 

4-8% 

30-day mortality 1.7-3.3% 

Readmission within 30 days 11.5% 

 

6.2.2.2 Resource Use and Costs 

Further to the costs highlighted in Table 6.1 for the CEA, additional parameters were 

required for the economic analysis of the subtype classification in secondary care 

(Table 6.4). The unit costs for surgery, biopsy and imaging were taken from the NHS 

reference costs (2017/2018). The probability values have been estimated based on 

discussions with clinical experts and from reviewing the literature. The analysis 

assumes prevalence of GBM-like PCNSL of 3% and GBM-like brain metastases as 

7% of true positive test cases. 
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Table 6.4 - Additional parameters employed for the subtype analysis. 

Parameters Value Source 

Costs 

Surgical 

excision/debulking 
£7931 

NHS reference costs 2017/18, 

average all AA52 and AA53 

Open biopsy £1888 
NHS reference costs 2017/18, 

AA54C 

CT imaging study (full 

body) 
£139 

NHS reference costs 2017/18, 

IMAGOP 

Prevalence of 
each subtype 

among TP cases 

GBM 0.9 

Test data and assumption PCNSL 0.03 

Metastasis 0.07 

Other 

Probability PCNSL case 

will have primary 

surgery 

0 Ref. [54] 

Probability metastatic 

disease will have 

primary surgery 

0.1 Estimation [55,56]  

Probability a TP case 

will have biopsy for 

possible PCNSL in 

current practice 

0.02 
Estimation based on discussions 

with clinical experts 

 

6.2.2.3 Diagnostic Performance 

Our previous work has reported promising subclassification results based on our 

large retrospective brain tumour cohort. Initially, we highlighted the capability to 

differentiate between GBM and PCNSL at a sensitivity of 90.1% and specificity of 

86.3% using serum spectroscopy [38]. Moreover, we further explored the ability to 

distinguish between several brain tumour subtypes using binary classifications, 

successfully separating metastatic brain lesions from GBM (84.3% sensitivity and 

96.2% specificity) and PCNSL (91.5% sensitivity and 91.1% specificity) [39]. Three 

machine learning techniques were utilised as described in Chapter 3 – random forest 

(RF), partial least squares discriminant analysis (PLS-DA) and support vector 
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machine (SVM). For the purpose of this economic evaluation, additional multi-class 

classifiers were employed to achieve three-way classification results, which has 

slightly reduced the model performance. The results from the ternary classifications 

outlined in Table 6.5, displaying the mean sensitivities and specificities from 51 

resamples of the RF, SVM and PLS-DA classification models.  

 
Table 6.5 - Classification results for the ternary classifier between brain metastases, 
GBM and PCNSL. Mean sensitivities and specificities from 51 iterations are 
reported for random forest, support vector machine and partial least squares 
discriminant analysis. 
 

Model 
(51 iterations) 

Sensitivity / Specificity (%) 
Metastasis GBM PCNSL 

RF 83.6 / 94.2 86.2 / 84.3 74.0 / 96.4 

SVM 82.7 / 94.4 78.5 / 86.4 85.7 / 93.1 

PLS-DA 81.6 / 95.2 73.0 / 87.7 89.7 / 89.9 

 

The superior technique in successfully diagnosing GBM and brain metastases 

appeared to be RF, with mean sensitivities of 83.6%, 86.2% and 74.0% for 

metastasis, GBM and PCNSL, respectively. The metastasis sensitivity was relatively 

consistent between the three machine learning techniques (RF: 83.6%; SVM: 82.7%; 

PLS-DA: 81.6%). Conversely, a higher sensitivity for PCNSL than GBM was 

reported in both the SVM and PLS-DA models. The results in Table 6.5 were 

compared to evaluate how clinical benefits and costs vary with the level of 

diagnostic accuracy. 
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6.3 Results and Discussion 

Similar to the original HEA, the initial triage test scenarios are reported as ICER of 

cost per QALY. The subtype analysis is a cost analysis plus estimate of reduction in 

surgeries, and the benefits of that in terms of surgical complications. The literature 

review highlighted a scarcity of data related to diagnostic uncertainty and clinical 

outcomes for the scenarios of either GBM versus PCNSL or GBM versus brain 

metastases. The literature is limited to case studies involving few patients, or cohort 

studies of broad patient populations. Thus, a full CEA with QALY was considered 

infeasible, and a more limited cost-consequence analysis was carried out.  

 

6.3.1 Prospective Clinical Data 

6.3.1.1 Cost-effectiveness Assessment 

New health care interventions are considered cost-effective where their ICER is 

below the threshold range of £20,000-30,000 per QALY gained [57]. Moreover, they 

may be deemed cost-saving where the new intervention has lower total costs (the 

ICER values are consequently negative). If the new intervention is cost-saving and 

also generates more QALYs then it is strictly better and called dominant. Base case 

results for both the primary and secondary care scenarios are presented in Table 6.6, 

constructed from the results reported in the prospective clinical study. The estimated 

brain tumour prevalence for primary care was 1%, whereas a 3% prevalence was 

used for the secondary care analysis.  
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Table 6.6 - Incremental QALYs, costs and ICERs for primary and secondary care 
based on the reported 81% sensitivity and 80% specificity. 
 

Test cost (£) Primary Care (1% prev.) Secondary Care (3% prev.) 
∆QALY ∆Cost ICER ∆QALY ∆Cost ICER 

25 15.38 -545780 -35487 46.14 274130 5941 

50 15.38 -295780 -19232 46.14 524130 11360 

75 15.38 -45780 -2977 46.14 774130 16778 

100 15.38 204220 13279 46.14 1024130 22197 

∆QALY, ∆Cost: difference in QALYs/costs (with serum spectroscopy test – without test), 10, 000 
patients. ICER, incremental cost-effectiveness ratio; QALY, quality adjusted life year, prev., 
prevalence.  
 

The base case results show that as a triage tool in primary care, the serum 

spectroscopy test could improve health outcomes and reduce overall costs. Where the 

spectroscopic test would cost £75 at the primary care setting, the technology would 

be dominant and cost-saving to the health services, with a reported saving of £45,780 

per 10,000 patients. Even at higher test costs up to £100, the test would be 

considered cost-effective as the ICERs exist below the lower limit of the standard 

threshold of £20,000 per QALY gained. In the secondary care setting additional costs 

are applicable, but the implementation of the serum test would also produce sizable 

health benefits. At test costs up to ~£90, the technology would be likely to be 

considered as a cost-effective use of resources in HTA agency decision processes. It 

could be argued that, based on a sensitivity and specificity of 81% and 80% 

respectively, an increase in the cost of the diagnostic test to £120 may still be 

considered cost-effective to the NHS. Despite not being included in base analysis, 

Figure 6.4 projects the potential ICER for an £120 test in primary and secondary 

care, both of which appear less than the upper limit of the £30,000 per QALY 

threshold.  
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Figure 6.4 - Incremental cost-effectiveness ratios (ICER) at varying test costs for 
both primary (red) and secondary (green) care. Linear projection described by red 
and green dashed lines for primary and secondary care, respectively. The £30,000 

ICER upper threshold limit is displayed as the dashed black horizontal line. 
 

6.3.1.2 Sensitivity Analysis 

The performance of the test with regard to varying levels of brain tumour prevalence 

is addressed using OWSA. The prevalence estimates for primary and secondary care 

were 1% and 3%, respectively, therefore a range of percentages less than and higher 

than those values were selected for the analysis. Table 6.7 outlines the chosen 

prevalence values for a) primary care and b) secondary care, with the resulting 

QALYs, costs and ICERs.  
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Table 6.7 - Sensitivity analysis results from varying brain tumour prevalence in a) 
primary care and b) secondary care, at test costs of £75 and £100. 
 

 

 

At costs of £75, a spectroscopic diagnostic test would be deemed cost-saving across 

the full range of tested primary care prevalence values, with negative ICERs reported 

in each instance. At primary care test costs of £100, it would likely be considered 

cost-effective in populations with a brain tumour prevalence of 0.5% and above 

(Figure 6.5a). Likewise, all tested secondary care prevalence values remained below 

the £30,000 per QALY gained threshold, thus could potentially be deemed to be a 

cost-effective use of NHS resources (Figure 6.5b) 

Prevalence 
(%) 

£75 Test £100 Test 
∆QALY ∆Cost ICER ∆QALY ∆Cost ICER 

0.25 3.84 -56445.07 -14680.46 3.84 193554.93 50340.54 

0.5 7.69 -52890.15 -6877.94 7.69 197109.85 25632.56 

0.75 11.53 -49335.22 -4277.10 11.53 200664.78 17396.57 

1 15.38 -45780.29 -2976.68 15.38 204219.71 13278.57 

1.25 19.22 -42225.36 -2196.43 19.22 207774.64 10807.77 

1.5 23.07 -38670.44 -1676.26 23.07 211329.56 9160.57 

1.75 26.91 -35115.51 -1304.71 26.91 214884.49 7984.00 

2 30.76 -31560.58 -1026.05 30.76 218439.42 7101.57 

Prevalence 
(%) 

£75 Test £100 Test 
∆QALY ∆Cost ICER ∆QALY ∆Cost ICER 

2.5 38.45 770108.65 20029.29 38.45 1020108.65 26531.39 

2.75 42.29 772119.51 18255.99 42.29 1022119.51 24166.99 

3 46.14 774130.37 16778.24 46.14 1024130.37 22196.66 

3.25 49.98 776141.24 15527.84 49.98 1026141.24 20529.46 

3.5 53.83 778152.10 14456.07 53.83 1028152.10 19100.42 

3.75 57.67 780162.97 13527.19 57.67 1030162.97 17861.93 

4 61.52 782173.83 12714.43 61.52 1032173.83 16778.24 

4.25 65.36 784184.70 11997.29 65.36 1034184.70 15822.05 

a) Primary Care 

b) Secondary Care 
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Figure 6.5 - Incremental cost-effectiveness ratios (ICER) at various brain tumour 
prevalence values in a) primary care and b) secondary care, for test costs of £75 

(blue) and £100 (red). The £30,000 ICER threshold is displayed as the dashed black 
horizontal line. 

 

Additional analysis was conducted to observe changes in ICERs and the effect of 

predicted survival benefits of early diagnosis by altering the hazard ratio (HR). The 

HR is a measure of the effect of an intervention – in this case the number of weeks 
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earlier diagnosis – on an outcome (death) over time - and is one of the most uncertain 

in the model. It is based on observational data, some assumptions about tumour 

growth rates and the relationship between tumour size and mortality. Slight changes 

to this parameter were implemented to assess the stability of our results. The original 

HR was 1.015 – estimated from a regression analysis which assumed an exponential 

distribution to survival, conditional on weeks of delay – therefore HRs between 1 

and 1.03 in increments of 0.005 were examined. Regarding the effect on median 

survival, this evaluation uses estimates of the delays in diagnosis, and potential 

improvements in the speed of diagnosis, from a consecutive patient case series [58], 

and assumes decrements in median survival is fixed after 4 weeks delay. Table 6.8 

describes the difference in median survival over time with varying hazard ratios.  

 

Table 6.8 – Sensitivity analysis results; varying the hazard ratio parameter to 
determine effect on median survival. 
 

 
Hazard Ratio 

1 1.005 1.01 1.015 1.02 1.025 1.03 

Weeks 
delay 

Decrements in 
median 
survival 
(weeks) 

Median survival 

0 0 46 46 46 46 46 46 46 

1 3.1 46 44.42 42.91 41.45 40.05 38.70 37.40 

2 5.1 46 42.90 40.02 37.35 34.86 32.56 30.41 

3 6.3 46 41.43 37.33 33.65 30.35 27.39 24.73 

4 6.4 46 40.00 34.81 30.32 26.42 23.04 20.11 

5 6.4 46 40.00 34.81 30.32 26.42 23.04 20.11 

6 6.4 46 40.00 34.81 30.32 26.42 23.04 20.11 

7 6.4 46 40.00 34.81 30.32 26.42 23.04 20.11 

8 6.4 46 40.00 34.81 30.32 26.42 23.04 20.11 

Difference in median 
survival with and 

without spectroscopic 
test per 10K cases 

(weeks) 

0 357.80 673.95 901.42 1134.92 1268.28 1440.81 
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The median survival represents the length of survival time for the average GBM 

patient. After week 4, the window for maximum impact has passed, signifying the 

importance of early detection. Therefore, an accurate estimation of the HR is 

important as it has a large impact on survival within the first 4 weeks. For every 

10,000 patients, the difference in total weeks survival can be estimated for each 

hazard ratio (Figure 6.6). An increase in HR results in a larger difference in weeks 

survival, with an almost linear trend for the tested values. Again, this highlights the 

importance of the HR parameter for reliable health economic evaluation, as altering 

the value can have a substantial effect on the outcome.  

 

Figure 6.6 - Difference in total weeks survival per 10,000 patients against varying 
hazard ratio. 
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Figure 6.7 describes scatter plots of the incremental costs and QALYs associated 

with the addition of a spectroscopic test in primary and secondary care. As expected, 

increasing HR values instigate a rise in incremental QALYs per 10K patients, in both 

scenarios. Likewise, there is a slight increase in incremental costs per 10K patients 

when looking at potential test costs of £75 and £100. In the primary care scenario, all 

tested HR values – except 1.005 for £100 tests – reported datapoints that remain 

below the reference ICER threshold of £30,000 per QALY gained. On the other 

hand, in the secondary care setting, datapoints for an HR of 1.005 for £75 and £100 

test costs, as well as 1.01 for £100 tests, exist above the £30,000 ICER threshold. 

That said, the rest of tested HRs remained below the reference line in this instance. 

In other words, the effect of early diagnosis on survival could be slightly smaller 

than in the base case analysis (e.g. lower HR), and it can still be cost-effective. 

Likewise, if it were significantly larger, then it could be cost-effective even at higher 

prices.  
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Figure 6.7 - Scatter plot of incremental cost per 10,000 patients against incremental 
QALYs, for the implementation of a spectroscopic blood test in a) primary care and 
b) secondary care. Datapoints represent varying hazard ratio estimates for £75 test 

costs (green) and £100 test costs (blue). 

1 1.005 1.01 1.015 1.02 1.025 1.03

1 1.005 1.01 1.015 1.02 1.025 1.03

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

In
cr

em
en

ta
l c

os
t

(p
er

 1
0K

 p
at

ie
nt

s)
£1

00
K

Incremental QALYs 
(per 10K patients)

Secondary Care
Labels: Hazard ratio (per week delay to diagnosis) 

Reference ICER = £30,000

Test cost
£100

Test cost
£75

b) 

1 1.005 1.01 1.015 1.02 1.025 1.03

1 1.005 1.01 1.015 1.02 1.025 1.03

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

In
cr

em
en

ta
l c

os
t

(p
er

 1
0K

 p
at

ie
nt

s)
£1

00
K

Incremental QALYs 
(per 10K patients)

Primary Care
Labels: Hazard ratio (per week delay to diagnosis) 

Reference ICER = £30,000

Test cost
£100

Test cost
£75

a) 



 248 

6.3.2 Brain Tumour Subtype Analysis 

6.3.2.1 Cost-consequence Analysis 

Table 6.9 summarises the main differences in total costs for the inclusion of the 

subtype extension into secondary care. The results presented are based on a scenario 

where the subtype has been predicted by the serum test, then confirmed by imaging 

techniques. When looking at the RF-based results, from the reduction in surgical 

procedures alone, the NHS could save £144,288. Therefore, with the higher number 

of biopsies and the additional full body CT scans required for the metastatic patients 

– accounting for around £12,219 – the health services could potentially save 

~£132,069 per 10,000 patients with the implementation of the serum spectroscopy 

subtype test into secondary care (Table 6.10). This would result in an overall saving 

of ~£54k, meanwhile avoiding ~7-8 needless surgeries per 100 cancer cases. 

 

Table 6.9 - Summary of total costs for additional clinical procedures with and 
without the subtype classification. 
 

Cost category Cost without 
subtype test (£) 

Cost with subtype prediction (£) 

RF SVM PLS-DA 

Surgery 1,927,233 1,782,945 1,777,273 1,776,296 

Biopsy 9,176 19,030 19,319 19,673 

Full body CT 
(additional) 

0 2,364 2,365 2,364 

Total 1,936,409 1,804,339 1,798,957 1,798,333 
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Table 6.10 - The difference in estimated number of surgeries and total cost savings 
with the implementation of the subtype test. 
 

Model 

Difference in 
number of 
surgeries 

Difference in total costs (-£) 

Reduction per 100 
cancer cases 

per 10K patients 
with subtype test 
in secondary care 

per detected 
cancer case (TP) 

per 100 cancer 
cases 

RF 7.49 132,069 543.49 54,349.39 

SVM 7.78 137,451 565.65 56,564.54 

PLS-DA 7.83 138,075 568.21 56,821.26 

 

Despite the RF model successfully predicting more of the GBM patients correctly, it 

actually reported the lowest cost-saving of the three techniques. The higher PCNSL 

sensitivity observed in the PLS-DA model resulted in the biggest difference in total 

costs. With an estimated saving of ~£138,075 per 10,000 patients, the PLS-DA 

model would potentially save ~£568 per individual cancer case. That being said, the 

SVM classifier is perhaps the most consistent model, as it reported more balanced 

sensitivities for all three classes. Nevertheless, all three techniques have highlighted 

the potential for a cost-saving spectroscopic test in predicting brain tumour subtype. 
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6.3.2.2 Sensitivity Analysis 

The estimated prevalence values for the population of patients that this test would be 

applicable were based on discussions with clinical experts, which were 0.9, 0.03 and 

0.07 for GBM, PCNSL and metastasis, respectively. This is based on the 

presumption that for every 100 cases of this type of diagnostic dilemma, the vast 

majority will be true GBM. However, as shown in the analysis of the prospective 

cohort (Figure 6.5), altering prevalence may have a considerable effect on cost-

effectiveness. Therefore, various probability values were chosen for each subtype in 

order to observe the influence on the cost-consequence analysis. Using the 

classification results from the PLS-DA model, the differences in the total cost 

savings per 100 cases are outlined in Figure 6.8. 

 

Figure 6.8 - Difference in costs with the addition of a subtype test into secondary 
care at varying subtype probabilities (GBM_PCNSL_Metastasis). Results presented 

refer total costs per 100 cancer cases. 
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These results show that varying the probability of PCNSL and metastasis does not 

significantly change the overall difference in costs, per 100 cases. Conversely, 

altering the GBM probability has a substantial effect on the cost savings. The health 

services would save considerably more in secondary care populations with lower 

‘true GBM’ prevalence – e.g. higher PCNSL and/or metastasis prevalence. As shown 

in Figure 6.8, when the GBM probability was lowered to 0.8 the total difference in 

costs per 100 cases was around £109,000. Furthermore, the health services could 

potentially save ~£160,000 in populations with the true GBM prevalence around 0.7. 

This analysis is limited in that it is based on various assumptions, but even when 

utilising harsher probabilities - like 0.975 for GBM - meaning only ~2.5% of cases 

would be either GBM-like PCNSL or GBM-like brain metastases, the technology has 

the potential to save approximately £17k of the health service’s funds.  
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6.4 Conclusion 

This economic evaluation has highlighted the potential cost and health benefits of the 

implementation of a serum-based spectroscopic test for the early detection of brain 

tumours. The CEA results presented here are based on the first 385 patients from a 

prospective clinical study in Edinburgh, which is currently reporting a sensitivity and 

specificity of 81% and 80%, respectively. For both primary and secondary care 

scenarios, test costs up to £100 would likely be considered cost-effective in HTA 

agency decision making processes, reporting ICER values below the £30,000 per 

QALY threshold. Furthermore, it is expected that primary care test costs set at £75 

would be cost-saving to the health services, with an estimated difference in costs of 

£45,780 per 10,000 patients, and a negative ICER value of -2977 per QALY gained.  

 

To identify any potential limitations with the economic model that could influence 

the decision, OWSA looked at the effect of varying the estimated prevalence in each 

scenario. All tested secondary care prevalence values (2.5 - 4.25%) remained below 

the £30,000 per QALY gained threshold. Moreover, a spectroscopic diagnostic test 

could be deemed cost-saving across the full range of tested primary care prevalence 

values (0.25 - 2%). £100 tests in primary care would likely be deemed cost-effective 

in populations with a brain tumour prevalence 0.5%. Thus, the change in brain 

tumour prevalence down to this level did not significantly alter the economic 

findings. The HR sensitivity analysis highlighted that the effect of early diagnosis on 

survival is necessary for the intervention to be cost-effective in secondary care. It 

was shown that this effect could be lesser than in the base case, yet the intervention 
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can still be cost-effective. Furthermore, if it were significantly larger then it would 

still be cost-effective even at higher prices. 

 

An extension of the HEA looked at the addition of a brain tumour subtype test, 

specifically to assist with the differentiation of GBM, PCNSL and brain metastases, 

as they can appear similar on MRI scans. When comparing the costs ‘with’ and 

‘without’ the additional subtype test, the PLS-DA model resulted in the biggest 

difference in total costs, reporting an estimated saving of ~£138,075 per 10,000 

patients. This equates to a potential saving of ~£568 per individual cancer case. The 

results also suggest that this test could prevent up to 8 unnecessary surgeries, per 100 

patients. Where it is found that brain tumour patients do not require surgery, the 

avoidance of craniotomy procedures would certainly be a positive impact. The 

addition of the subtype test would be beneficial for both the patients and the health 

services, even in patient populations where MRI confusion is minimal.  

 

The scarcity of related data in the literature meant a comprehensive CEA for the 

implementation of a subtype spectroscopic test was not feasible. However, by 

compiling additional costs and through estimation of various subtype parameters, the 

cost-consequence analysis suggests the test would provide additional economic 

benefits for health services. The accumulation of more relevant publications in the 

field that may highlight factors associated with GBM, PCNSL or metastatic brain 

tumour patients would enable a more robust health economic model to be developed 

– such as peri/post-operative mortality and/or quality of life after biopsy and 

debulking procedures. Additionally, the results from the binary classifiers in our 
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previous work would imply similar multi-class classifiers should have the same 

performance, but the three-way classifiers tested in this study exhibited slightly 

lower diagnostic ability. There are some issues in determining the best way to 

approach binary classification results to fit into a multi-class economic model, yet 

this may benefit from further research. Moreover, serum samples collected from our 

retrospective cohort have been utilised here. Thus, progression into a prospective 

study would aid our understanding of the true diagnostic ability and the true benefits 

and consequences of the translation of a brain tumour subtype spectroscopic test. 
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Chapter 7 

Project Conclusions 

The need for earlier diagnosis of cancer is a crucial evolving strategy for healthcare 

services in order to improve patient prognosis and streamline clinical pathways. To 

this extent, brain cancer is in dire need of low-cost approaches for earlier detection to 

supplement the primary care setting, which would reduce diagnostic delays, better 

inform clinical referrals and remove financial and practical constraints placed on 

current imaging modalities. Consequently, earlier diagnosis translates to improved 

patient outcomes and is a pressing need for healthcare services. 

 

The implementation of a quick blood test for the early detection of brain tumours in 

primary care could have a huge impact on the quality of life and prognosis for 

patients. Blood serum was elected for this project as it represents a convenient, 

highly accessible, minimally invasive sample medium well suited for integration into 

current clinical workflows. Similarly, ATR-FTIR spectroscopy was used for its 

ability to assess the entire biochemical signature of serum, providing access to vast 

quantities of biochemical information relevant to clinical decision making. Until 

now, the traditional fixed diamond crystal limited the translation of ATR-FTIR 

spectroscopy, as the methodology required long drying times and cleaning of the 

crystal between measurements. The study in Chapter 3 validated the capability of the 

recently developed high-throughput ClinSpec Dx SIRE optical sample slides. When 

separating brain cancer patients from healthy controls in the large 724 patient cohort, 

a 90.5% sensitivity and 91.1% specificity was reported. Despite the estimated 
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prevalence of brain tumours being extremely low (1.6%), the optimal model reported 

a PPV of 14.2%. A spectroscopic triage test in primary care would assist GPs with 

referral decisions, where a patient with a positive result for brain cancer would be 

fast-tracked into secondary care quicker, whilst a negative result would provide 

reassurance. Thus, the time taken to diagnose brain cancer patients could be reduced 

significantly, whilst also saving on funds for the health services. 

 
 
The ability of ATR-FTIR serum spectroscopy to differentiate between brain tumour 

types has also been presented. This would be particularly attractive for neurologists 

in secondary care scenarios where brain scans are inconclusive or the primary 

tumour type is uncertain. Moreover, this would prevent patients undergoing 

avoidable surgical biopsy and/or further MRI and CT imaging. Initially, the 

separation of GBM and PCNSL was illustrated in a proof-of-principle study 

involving 112 patients. The PLS-DA classifier reported a sensitivity of 90.1% and a 

specificity of 86.3%, indicating some real potential for tumour stratification. Later 

analysis expanded to additional subtypes of brain lesions. GBM, PCNSL, 

meningioma and brain metastases were successfully separated from healthy control 

patients through PLS-DA classifications, all with sensitivities and specificities 

greater than 92%. Subtle variations in the levels of various protein secondary 

structures within each patient group were assigned by Amide I deconvolution 

analysis. The levels of β-sheets were higher, and the α-helix bands had a lower 

intensity in the PCNSL group when compared to the control set. In contrast, there 

was a decrease in the β-sheet band (~1630 cm-1) in the GBM patient group compared 

to the controls, plus a small increase in α-helix intensity (~1660 cm-1). The intensities 
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of the four largest bands were similar for the meningioma and metastasis groups: two 

high intensity α-helices at ~1658 and ~1650 cm-1, the disordered structure at ~1645 

cm-1 and a β-sheet at ~1637 cm-1. Consequently, most of the binary subtype 

classifications delivered encouraging results. The primary versus metastasis cohort 

showed some early promise, with the RF model able to pick out 90.9% of the 

‘primary’ brain tumour samples within the resampled test sets. The majority of the 

models performed very well for the brain tumour differentiations, achieving balanced 

accuracies ~80%. Notably, the metastasis versus GBM linear-SVM classifier 

reported an 84.3% sensitivity and a 96.2% specificity. This could be of great value in 

instances of radiological confusion as it would limit the volume of unnecessary full-

body CT scans, performed simply to rule out metastatic cancer. The ROC curve 

analysis also suggested high diagnostic capability, with metastasis versus PCNSL, 

GBM versus meningioma, and metastasis versus GBM models all reported AUC 

values of ~0.9, which is regarded as an excellent degree of separability. When 

combined with brain imaging, a spectroscopic diagnosis would have a major impact 

on the patient pathway and would facilitate more timely treatment in the hospital 

care setting. 

 
 
Awareness of a glioma patient’s IDH1 status during surgery would assist vital 

decision making. In Chapter 5, analysis of data collected through SR-FTIR produced 

some promising results, where an LDA classifier with 51 iterations reported a 

sensitivity and specificity of 82.4% and 83.4%, respectively, when differentiating 

between IDH1-mutated and IDH1-wildtype glioma tissue. Due to a relatively low 

number of samples, the standard deviations were 16.8% (sensitivity) and 8.2% 
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(specificity), thus further analysis with more samples would be valuable. 

Additionally, ROC analysis produced a mean curve with an AUC of 0.8994, which 

also suggests a good degree of diagnostic separability. This demonstrates significant 

potential and suggests FTIR spectroscopy is capable of detecting molecular 

alterations initiated by genetic mutations in the IDH1 enzyme. Furthermore, 

knowledge of the molecular status prior to biopsy would enable personalised therapy 

for patients, thus facilitating a more efficient resection. In a cohort of 72 glioma 

patients, classification models were designed to distinguish between IDH1-mutated 

and IDH1-wildtype using clinical patient serum. Initially, the whole serum classifier 

performed inadequately, reporting a balanced accuracy of 52.3%. After the addition 

of centrifugal filtration, the PLS-DA model provided a balanced accuracy of 69.1%, 

and the best RF model enhanced the sensitivity (70.6%) and specificity (66.4%). 

Thus, there may be potential for the filtration step to improve the detection of 

spectroscopic signatures that could be related to subtle molecular mutations. 

 

Lastly, an economic evaluation in Chapter 6 highlighted the conceivable cost and 

health benefits of the implementation of a serum spectroscopy-based brain tumour 

diagnostic test into the clinical setting. For both primary and secondary care 

scenarios, test costs up to £100 could be judged as cost-effective in HTA agency 

decision making processes. Moreover, it was predicted that primary care tests set at 

£75 would actually be cost-saving to the health services. Sensitivity analysis 

examined the effect of varying the estimated prevalence in each scenario. The £75 

test could be deemed cost-saving across the full range of tested primary care 

prevalence values (0.25 - 2%). Likewise, all tested secondary care prevalence values 
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(2.5 - 4.25%) remained below the £30,000 per QALY gained threshold. An extension 

of the HEA explored the addition of a brain tumour subtype test to support the 

diagnosis of GBM, PCNSL and brain metastases. The cost-consequence analysis 

reported an estimated saving of ~£138,075 per 10,000 patients, equating to a 

potential saving of ~£568 per individual cancer case. Furthermore, it was predicted 

that this could prevent multiple avoidable craniotomies, hence the addition of a 

subtype test would be favourable for both the patients and the health services, even 

in populations where MRI confusion is minimal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 265 

Chapter 8 

Future Work 
 
This thesis has demonstrated significant potential for earlier brain cancer diagnostics 

through recognition of biomolecular alterations in patient serum with ATR-FTIR 

spectroscopy. The development of more high-throughput ATR accessories over the 

past few years has enabled the first prospective clinical feasibility study to 

commence in the Western General Hospital, Edinburgh. As described in Chapter 6, 

the study is ongoing with continuous patient recruitment, with the expectation of 

expanding out for multi-centre enrolment in the near future. At present, the 

prospective study is mainly focusing on early brain cancer detection at the primary 

care setting. However, the work in this thesis has illustrated the potential of the 

technique to be employed in secondary care as a stratification tool for brain tumour 

subtypes. Some of the patient groups described here were represented by a limited 

number of samples due to the rarity of certain tumours. For example, it is more 

difficult to source the same number of PCNSL samples as the more abundant brain 

tumour types, like GBM. Continuation of the analysis outlined in this thesis with 

additional patient samples would be inevitably be worthwhile, in order to make the 

diagnostic models more robust. Similarly, as with many studies the datasets are built 

upon retrospective blood serum samples where the disease state of the patients is 

already known. For these proof-of-concept tests to be validated, these models must 

now be used to predict tumour type in prospective patients already within the current 

diagnostic pathway. 
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The prospects for high-throughput spectroscopy in the clinical environment goes 

further than purely brain tumour detection. With more research, this platform 

technology could address the clinical need for various malignancies and other 

diseases. There has been an abundance of proof-of-principle studies in the clinical 

spectroscopy field illustrating the diagnostic potentiality for many cancers, thus 

future work should aim to progress these findings, firstly by determining the needs of 

other cancer diagnostic pathways. There is also potential for this technology to be 

employed for patient disease progression and treatment monitoring, which still needs 

to be examined in greater detail. 

 

The proposed spectroscopic platform has also demonstrated substantial promise of 

stratifying glioma patients based on IDH1 molecular status. Regarding the glioma 

tissue analysis in Chapter 5, the main drawback is the time required to collect and 

process the data. Synchrotron instruments are admirable for high spatial resolution 

but can be subject to lengthy analysis times. Sample preparation is also far more 

complex and laborious than serum analysis. Many steps require suitable equipment 

and well-trained operators, such as microtoming FFPE tissue blocks, using rather 

expensive substrates, and paraffin dewaxing protocols prior to IR interrogation. 

Furthermore, future studies could consider probing fresh tissue biopsies rather than 

FFPE tissue microarrays, which would be better suited to the idea of determining a 

patient’s IDH1 status mid-surgery. It is critical that more efficient methods are 

developed for this application before clinical translation can be realised.  
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The sample population for the serum study in Chapter 5 was also relatively small, as 

immunohistochemistry IDH1 information was not available for many of the patients 

within the brain cancer cohort. Again, an enlargement of the patient database would 

be beneficial in identifying the true potential of ATR-FTIR spectroscopy for IDH1 

detection. It was also thought that there may have been some glycerine interference 

introduced into the samples from the centrifugal filters, which could possibly be 

obscuring important biological information. Hence, further work with an added 

washing step prior to centrifugation may be useful. Equally, filtration with a different 

size of filter may also improve classification performance, as many disease-related 

biomolecules exist at molecular weights greater than 3kDa. 

 

From a clinical perspective, it is currently uncertain whether R132H-IDH1 protein 

molecules are present at sufficient levels in blood serum for diagnostic purposes. 

Therefore, future studies could consider other proteomic techniques, such as mass 

spectrometry, to confirm and validate the presence of IDH1 molecules in clinical 

blood serum samples. This may also elucidate the differences that have been 

observed in this project. Additional research into the capability of FTIR spectroscopy 

to detect other biomarkers may benefit secondary care decision making, such as 

ATRX mutation, MGMT hypermethylation and 1p/19q co-deletion. Furthermore, the 

detection of other biomarkers alongside currently clinically recognised biomarkers 

may also provide additional diagnostic information. A research grant by Cancer 

Research UK was recently awarded to the research group to explore clinical 

biomarkers for glioma through spectroscopic detection techniques, thus significant 

work in this area is expected to be conducted in the immediate future. 
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Appendix 1 – Supplementary Information for Chapter 3 

Table A1.1 – Retrospective 724 patient cohort information. 

 Brain Cancer Non-Cancer 
Total 487 237 

Sex (M/F) 280/207 149/84 

Age Range 21-96 19-69 

Average Age 61 35 

 
 
Table A1.2 - Retrospective 724 patient cohort breakdown. 
 

 Tumour Type WHO Grade Total 

Cancer 

Glioblastoma multiforme IV 260 

Gliosarcoma IV 4 

Oligodendroglioma II 11 

Diffuse astrocytoma II 23 

Anaplastic astrocytoma III 10 

Oligoastrocytoma II 3 

Glioma I 7 

Pilocytic astrocytoma I 9 

Pleomorphic xanthoastrocytoma II 1 

Schwannoma I 14 

Ependymoma II 6 

Hemangiopericytoma II/III 2 

Haemanglioblastoma I 1 

Ganglioglioma I 1 

Medulloblastoma IV 1 

PPTID II/III 1 

Meningioma I 46 

Pituitary adenoma  29 

Lymphoma  2 

Metastasis  56 

Control   237 

  Total 724 
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Table A1.3 - GBM versus PCNSL patient cohort information. 
 

 GBM PCNSL 
Total 71 41 

Sex (M/F) 48/23 27/14 

Age Range 30-85 27-86 

Average Age 61 60 

 

 

 

 

Figure A1.1 - Schematic representation of silicon internal reflection element for 
clinical spectroscopy. a, Sample-side; b, IR facing side; c, v-groove detailing (not to 
scale). From: Butler, H.J., Brennan, P.M., Cameron, J.M. et al. Development of high-
throughput ATR-FTIR technology for rapid triage of brain cancer. Nat Commun 10, 
4501 (2019). https://doi.org/10.1038/s41467-019-12527-5. 
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Figure A1.2 - Confusion matrices for the test set of the 724 dataset (a) initial random 
forest (RF) model, and (b) RF with SMOTE. Grey represents correct predictions, and 

blue represents incorrect predictions. 

 

Figure A1.3 - Confusion matrices for the test set of the 724 dataset (a) initial partial 
least squares-discriminant analysis (PLS-DA) model, and (b) PLS-DA with SMOTE. 

Grey represents correct predictions, and blue represents incorrect predictions. 
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 Figure A1.4 - Confusion matrices for the test set of the 724 dataset (a) initial support 
vector machine (SVM) model, and (b) SVM with SMOTE. Grey represents correct 

predictions, and blue represents incorrect predictions. 
 

 
Figure A1.5 - Confusion matrices for the test set of the glioblastoma v lymphoma 

dataset; partial least squares-discriminant analysis model with SMOTE. Grey 
represents correct predictions, and blue represents incorrect predictions. 
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Figure A1.6 - Bootstrapping analysis to determine sufficient number of resamples 

required for the lymphoma vs glioblastoma patient dataset: (a) the sensitivity and (b) 
specificity 
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Appendix 2 – Supplementary Information for Chapter 4 

Table A2.1 – Age and sex information for each of the tested patient groups. 

 Control Primary Glioma PCNSL GBM Meningioma Metastasis 

Total 87 303 192 41 102 111 210 

Sex (M/F) 39/48 163/140 123/69 27/14 62/40 40/71 84/126 

Age 
Range 20-64 17-85 17-85 27-86 30-85 26-81 30-86 

Average 
Age 35 54 53 60 61 56 61 

 

Table A2.2 – Additional information on the classification tuning parameters. 
 

Classification (positive class v 
negative class) Tuning Parameters Model + Sampling 

GBM v Control ncomp 10 PLS-DA + no 

PCNSL v Control ncomp 14 PLS-DA + up 

Meningioma v Control ncomp 16 PLS-DA + up 

Metastasis v Control ncomp 13 PLS-DA + up 

Primary v Metastasis 
ntree 500, nodesize 1, mtry 

30 
RF + up 

Glioma v Meningioma cost 0.019 SVM + down 

GBM v Meningioma 
ntree 500, nodesize 1, mtry 

30 
RF + no 

Metastasis v GBM cost 0.019 SVM + down 

Metastasis v PCNSL ncomp 10 PLS-DA + smote 

Metastasis v Meningioma ncomp 14 PLS-DA + up 
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Figure A2.1 – PCA scores plots displaying the biggest separation between: healthy 
control (red) versus; a) meningioma (green), c) lymphoma (blue) and e) metastasis 
(bowel: orange rings, breast: pink rings, lung: green rings, melanoma: blue rings). 

Corresponding loadings plots for the principle component that describes which 
wavenumbers account for the separation of; b) meningioma, d) lymphoma and f) 

metastasis against control. 

a) 

c) 

e) 

b) 

f) 

d) 
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Figure A2.2 - Bar graph of balanced accuracies for the differentiation of brain tumour 
types with their associated standard deviations. 
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Appendix 3 – Supplementary Information for Chapter 5 
 
Table A3.1 – Samples included in the synchrotron-based tissue microarray study. 
 

 IDH1-mutated IDH1-wildtype 

Total 21 78 

Sex (M/F) 9 / 12 48 / 30 

Glioblastoma 10 67 

Astrocytoma 4 4 

Pilocytic Astrocytoma 0 2 

Oligodendroglioma 7 5 

 
 
Table A3.2 – Samples included in the centrifugal filtration of serum study. 

 
 IDH1-mutated IDH1-wildtype 

Total 36 36 

Sex (M/F) 21 / 15 23 / 13 

Glioblastoma 0 12 

Astrocytoma 24 24 

Oligodendroglioma 12 0 
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Table A3.3 – Top 50 LDA models from pre-processing grid search, based on Kappa score. 
 

model Accuracy Kappa Sensitivity Specificity F1 Balanced Accuracy 
n1_l0-0_b4_s1-4_p1-1200to1800 0.8652038 0.6468702 0.8787879 0.8616601 0.732303 0.870224 
n2_l0-0_b2_s1-3_p1-1200to1800 0.8902821 0.6314261 0.6515152 0.9525692 0.69312 0.8020422 
n0_l1-0_b4_s0-0_p1-1200to1800 0.8652038 0.6166079 0.7424242 0.8972332 0.7005675 0.8198287 
n3_l2-0_b8_s1-2_p1-1000to1800 0.8777429 0.5954007 0.6363636 0.9407115 0.6674396 0.7885375 
n3_l1-0_b4_s1-2_p1-1000to1800 0.8714734 0.5936348 0.6515152 0.9288538 0.6720128 0.7901845 
n3_l0-0_b4_s1-2_p1-1200to1800 0.8714734 0.591284 0.6363636 0.9328063 0.6641601 0.784585 
n2_l2-0_b2_s0-0_p1-1200to1800 0.8652038 0.5873832 0.6515152 0.9209486 0.6704387 0.7862319 
n2_l0-0_b4_s1-3_p1-1000to1800 0.8432602 0.5841362 0.8030303 0.8537549 0.6837897 0.8283926 
n1_l0-0_b4_s1-2_p1-1000to1800 0.862069 0.5782494 0.6666667 0.9130435 0.6597425 0.7898551 
n2_l0-0_b4_s1-4_p1-1200to1800 0.8526646 0.5766405 0.7424242 0.8814229 0.6684959 0.8119236 
n3_l2-0_b4_s1-2_p1-1200to1800 0.8369906 0.5737398 0.8181818 0.8418972 0.6777389 0.8300395 
n1_l0-0_b1_s0-0_p1-1200to1800 0.8557994 0.5722462 0.6969697 0.8972332 0.66271 0.7971014 
n3_l2-0_b1_s1-4_p1-1200to1800 0.8652038 0.5707929 0.6060606 0.9328063 0.6527745 0.7694335 
n1_l1-0_b4_s0-0_p1-1000to1800 0.8495298 0.5705938 0.7121212 0.8853755 0.6595468 0.7987484 
n3_l1-0_b4_s1-2_p1-1200to1800 0.8714734 0.5653157 0.5757576 0.9486166 0.6402981 0.7621871 
n2_l1-0_b4_s1-3_p1-1200to1800 0.8683386 0.5632158 0.6060606 0.9367589 0.6385675 0.7714097 
n1_l0-0_b4_s1-3_p1-1000to1800 0.8777429 0.5604897 0.530303 0.9683794 0.6263545 0.7493412 
n1_l2-0_b4_s0-0_p1-1200to1800 0.8401254 0.5600921 0.7272727 0.8695652 0.6606487 0.798419 
n2_l1-0_b4_s0-0_p1-1000to1800 0.862069 0.5597247 0.6060606 0.9288538 0.6414767 0.7674572 
n2_l2-0_b4_s1-2_p1-1200to1800 0.8714734 0.5571603 0.5757576 0.9486166 - 0.7621871 
n1_l1-0_b4_s1-4_p1-1200to1800 0.8432602 0.5571262 0.7121212 0.8774704 0.655943 0.7947958 
n0_l2-0_b8_s1-3_p1-1000to1800 0.8777429 0.5568751 0.5 0.9762846 0.6216713 0.7381423 
n3_l2-0_b8_s1-4_p1-1000to1800 0.8526646 0.556261 0.6515152 0.9051383 0.647619 0.7783267 
n0_l1-0_b4_s1-3_p1-1200to1800 0.8401254 0.5533281 0.6818182 0.8814229 0.6529921 0.7816206 
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n0_l0-0_b1_s1-4_p1-1200to1800 0.8714734 0.5528742 0.530303 0.9604743 0.624864 0.7453887 
n3_l0-0_b4_s1-3_p1-1200to1800 0.8557994 0.5504227 0.5909091 0.9249012 0.637072 0.7579051 
n0_l2-0_b2_s1-2_p1-1200to1800 0.8495298 0.5495883 0.6666667 0.8972332 0.6441195 0.7819499 
n1_l0-0_b1_s1-4_p1-1200to1800 0.8557994 0.5464795 0.6212121 0.916996 0.633856 0.7691041 
n1_l2-0_b4_s1-3_p1-1000to1800 0.830721 0.5452847 0.7727273 0.8458498 0.6522455 0.8092885 
n1_l0-0_b4_s1-2_p1-1200to1800 0.8275862 0.5450624 0.7727273 0.8418972 0.6542278 0.8073123 
n2_l0-0_b2_s1-4_p1-1200to1800 0.8338558 0.5411106 0.7272727 0.8616601 0.6446316 0.7944664 
n3_l1-0_b4_s1-3_p1-1200to1800 0.815047 0.5410151 0.8030303 0.8181818 0.6568059 0.8106061 
n1_l2-0_b2_s1-2_p1-1200to1800 0.8401254 0.5357673 0.6818182 0.8814229 0.6363213 0.7816206 
n0_l1-0_b4_s1-3_p1-1000to1800 0.8526646 0.5351708 0.6212121 0.9130435 0.6204923 0.7671278 
n0_l2-0_b4_s1-3_p1-1200to1800 0.8369906 0.5350227 0.6969697 0.8735178 0.6352135 0.7852437 
n2_l0-0_b4_s1-3_p1-1200to1800 0.8746082 0.5348123 0.4848485 0.9762846 0.5971861 0.7305665 
n0_l0-0_b2_s1-3_p1-1200to1800 0.8495298 0.5345926 0.6212121 0.9090909 0.6280417 0.7651515 
n1_l2-0_b8_s0-0_p1-1000to1800 0.8589342 0.5339241 0.5757576 0.9328063 0.6160536 0.7542819 
n3_l1-0_b4_s1-4_p1-1200to1800 0.846395 0.5314692 0.6363636 0.9011858 0.6227329 0.7687747 
n1_l1-0_b4_s1-3_p1-1200to1800 0.8714734 0.5313889 0.4848485 0.972332 0.5975075 0.7285903 
n1_l2-0_b8_s1-3_p1-1200to1800 0.8432602 0.5280296 0.6515152 0.8932806 0.6196915 0.7723979 
n1_l1-0_b4_s1-2_p1-1200to1800 0.8087774 0.5278049 0.7878788 0.8142292 0.6458796 0.801054 
n3_l1-0_b4_s0-0_p1-1200to1800 0.8557994 0.5273934 0.5606061 0.9328063 0.6129608 0.7467062 
n0_l1-0_b4_s1-4_p1-1200to1800 0.830721 0.5270823 0.7121212 0.8616601 0.6339407 0.7868906 
n0_l2-0_b4_s1-2_p1-1200to1800 0.846395 0.5264629 0.6212121 0.9051383 0.6214876 0.7631752 
n1_l0-0_b4_s1-4_p1-1000to1800 0.7899687 0.525957 0.8787879 0.7667984 0.6536246 0.8227931 
n0_l2-0_b1_s1-4_p1-1200to1800 0.8369906 0.5235235 0.6818182 0.8774704 0.6248756 0.7796443 
n0_l1-0_b4_s1-2_p1-1200to1800 0.8056426 0.5232485 0.8333333 0.798419 0.6443412 0.8158762 
n1_l1-0_b1_s1-2_p1-1200to1800 0.8432602 0.5200658 0.6363636 0.8972332 0.6173735 0.7667984 
n0_l2-0_b8_s1-4_p1-1000to1800 

 
0.8369906 

 
0.5200327 

 
0.6515152 

 
0.8853755 

 
0.6224957 

 
0.7684453 
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Table A3.4 –Top 10 LDA models from pre-processing grid search, with sensitivity 
and specificity results from 51 resamples. Optimal results in bold. 
 

Model Name 
Pre-processing Sampling 

Norm Deriv Bin Smooth Cut No Up Down Smote 
- Sensitivity / Specificity (%) 

n0_l1-0_b4_s0-
0_p1-1200to1800 0 1 4 0 1200-

1800 67.3/86.5 69.9/84.6 82.3/76.6 82.3/77.6 

n0_l1-0_b4_s1-
2_p1-1200to1800 0 1 4 2 1200-

1800 76.1/83.5 89.5/72.0 87.9/70.4 81.7/78.4 

n0_l2-0_b2_s1-
4_p1-1200to1800 0 2 2 4 1200-

1800 78.4/73.0 80.4/70.4 78.4/70.0 78.4/70.0 

n1_l0-0_b4_s1-
4_p1-1200to1800 1 0 4 4 1200-

1800 76.5/81.3 82.4/83.4 78.1/85.0 80.7/79.5 

n1_l0-0_b4_s1-
4_p1-1000to1800 1 0 4 4 1000-

1800 89.2/62.0 79.7/77.3 83.0/72.5 76.5/80.3 

n2_l0-0_b2_s1-
3_p1-1200to1800 2 0 2 3 1200-

1800 86.6/68.7 82.7/72.7 80.1/76.8 79.7/75.2 

n2_l0-0_b4_s1-
3_p1-1000to1800 2 0 4 3 1000-

1800 81.7/67.0 74.5/77.2 75.2/78.4 79.7/75.7 

n2_l0-0_b4_s1-
4_p1-1200to1800 2 0 4 4 1200-

1800 82.0/75.1 88.6/71.7 88.2/69.5 87.6/73.1 

n3_l1-0_b4_s1-
2_p1-1000to1800 3 1 4 2 1000-

1800 85.0/65.5 71.2/83.5 88.6/63.5 83.7/73.6 

n3_l2-0_b4_s1-
2_p1-1200to1800 3 2 4 2 1200-

1800 81.7/78.3 87.3/73.8 80.7/76.2 76.8/79.4 

 

 

 

 

 

 

 

 

 
Figure A3.1 - PCA-based quality test: PCA scores plot of PC1 and PC2 before 

selection of central cluster. 
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Figure A3.2 – a) Absorbance spectrum of blank CaF! substrate and b) raw sample 
spectra affected by drop in absorbance <1200 cm-1. 

b) 

a) 
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Figure A3.3 – Microscope image of a dehydrated ‘concentrate’ sample. As the 
sample dries it begins to crack and then lifts off the SIRE surface. 

 

Figure A3.4 – Raw spectra describing the drying process of a concentrate sample. 
After 4 minutes the absorbance begins to decrease as the sample lifts off of the 

substrate surface. 
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Figure A3.5 - Single model receiver operator characteristic (ROC) graphs for the a) 
whole serum dataset displaying the PLS-DA (blue), SVM (red) and RF (green) 

classifiers; and b) the best performing model for each of the tested filtrate fractions: 
the full spectrum (4000-800 cm-1, blue), the fingerprint region (1800-1000 cm-1, red) 

and the extended fingerprint region (1800-800 cm-1, green). 
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Figure A3.6 - The loadings plot for the 1st PLS component highlighting differences 
between IDH1-mutated and IDH1-wildtype, for the <3kDa serum filtrate  

(4000-800 cm-1) dataset.  
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Figure A3.7 – Random forest Gini importance plots for the <3kDa filtrate datasets, 
showing the most important wavenumbers responsible for the IDH1-muated versus 

IDH1-wildtype classifications; a) 4000-800 cm-1, b) 1800-800 cm-1 and c) 1800-1000 
cm-1. 
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Appendix 4 - Presentation List 

Oral Presentations 

Biofluid Disease Diagnostics: A High-throughput Method for the Detection of 

Brain Tumours (FLASH) 

SPEC 2018 Conference, Glasgow, June 2018.  

 

Developing Infrared Spectroscopic Detection for Stratifying Brain Tumour 

Patients: Glioblastoma Multiforme vs. Lymphoma 

Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) presents 

SciX2019 (The Great Scientific Exchange) Conference, Palm Springs, California, 

October 2019. 

 

Developing Infrared Spectroscopic Detection for Stratifying Brain Tumour 

Patients: Glioblastoma Multiforme vs. Lymphoma 

7th Analytical Biosciences Early Career Researchers Meeting, Glasgow, March 

2020 
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Poster Presentations 

The Royal Society of Chemistry Twitter Poster Conference, March 2018. 
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SPEC 2018 Conference, Glasgow, June 2018.  

 

Biofluid Disease Diagnostics: A High-throughput Method for the 
Detection of Brain Tumours

Introduction

James M. Cameron, Holly J. Butler, David S. Palmer, Mark G. Hegarty, 
Matthew J. Baker

WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 
99 George St, Glasgow G1 1RD, UK
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Astrocytoma	vs	Metastasis 77.8/68.0
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