

i

Enhancing Remanufacturing

Automation Using Deep Learning

Approach

Chigozie Enyinna Nwankpa

A thesis submitted to the Department of Design Manufacturing and Engineering Management,

Faculty of Engineering,

University of Strathclyde Glasgow

In fulfilment for the award of Doctor of Philosophy

March 2022

ii

 Dedication

The work is dedicated to God almighty, my parents, Elder Godwin and Joy Nwankpa, my wife

Loveth and children, Obianuri and Ebubechukwu, my siblings, and my extended family,

without whom there would have been no success.

iii

 Acknowledgement

I want to appreciate God Almighty for His faithfulness to see me through to the end of this research. It

has come with diverse challenges, but God faithfully delivered me. I want to appreciate my immediate

and extended family, especially for providing the funding to support me through the research period,

supporting my tuition, conference travels, and every other support required to complete the research. I

remain indebted to you all.

Furthermore, I appreciate the support of my spouse Loveth and children, Obianuri and Ebubechukwu,

for their understanding; despite the deprivations, they accepted to support me so far. To my Siblings, I

appreciate your support and encouragement. On a sad note, my parents, Elder Godwin and Joy

Nwankpa, who passed on to glory during this time. I feel inconsolable that you are not here to witness

this joyous moment in our family. May your souls rest in perfect peace.

I appreciate your constructive criticisms and advice to my supervisors, Prof. Winifred Ijomah and Prof.

Anthony Gachagan; without it, the work could last longer. I also acknowledge the following: Dr

Carmelo Mineo, Dr Rahul Summan, Dr Gordon Dobie, Prof. Gareth Pierce, the Lab Technicians,

especially Mr Fuad Warsame, who assisted in the data collection setup, and all the other University

staff who helped in one way or another. I acknowledge your support. Also, to my colleagues who

assisted me through their encouragement, advice and feedback, I could structure the research to a

conclusion; I appreciate your support.

I appreciate your support and contributions of the research industry partners at Mackie Transmission

Limited, led by Mr John Mackie, who provided the practitioner inputs in the research. I am grateful.

Finally, I appreciate the encouragement and prayers of everyone who supported the research through

the good and dark moments, including Chigozie Ekwuonu, Kingsley Emeana, and Solomon Eze, among

many others. God bless you all.

iv

 Publications

The author’s publications during the research include three journal publications and six

conference contributions, among other contributions that are not relevant to the thesis. These

contributions are outlined as follows.

 Journal Publications

• Nwankpa, C.E*, Eze, S., Ijomah, W., Gachagan A, Marshall S “Achieving Remanufacturing

Inspection Using Deep Learning” Journal of Remanufacturing vol 11, no. 2 pp. 89–105, 2020.

• Nwankpa C.E*. “Advances in Optimisation Algorithms and Techniques for Deep Learning”.

Advances in Sc. Technology and Engineering Systems Journal, vol 5, no. 5 pp. 563–577, 2020.

• Nwankpa, C.E*, Ijomah, W. and Gachagan, A. "Design for Automated Inspection in

Remanufacturing: A Discrete Event Simulation for Process Improvement," Clean. Eng. Technol.,

vol. 4, 2021: 100199.

 Conference Publications

• Nwankpa, C.E*, Eze, S., Ijomah, W., Gachagan A, Marshall S. "Deep Learning-Based Vision

Inspection System for Remanufacturing Application," 17th Int'l Conf. on Manuf. Res. 2019

• Nwankpa, C.*, Ijomah, W., Gachagan, A. and Marshall, S., “Activation Functions: Comparison

of Trends in Practice and Research for Deep Learning” Int'l Conf. on Comp Sci and Tech, 2020

• Nwankpa, C.E*, Eze, S., Ijomah, W., “Deep Learning-Based Automated Sorting System for

Remanufacturing” 12th IEEE Green Technologies Conference 2020.

• Olisah M.C, Nwankpa C*, Whitfield I, Ion W, “The exploration of collaborative supply chain

factors in the Oil and Gas industry” British Academy of Management Conference, 2020.

• Olisah M.C, Nwankpa C*, Whitfield I, Ion W, “The investigation of collaborative supply chain

drivers in Oil and Gas industry” EurOMA Conference 2020.

• Nwankpa, C.E*, Ijomah, W. and Gachagan, A. "Artificial Intelligence for Process Control In

Remanufacturing," Going Green Eco-design Conference 2021.

v

 Author Declaration

I declare that except where specific references were cited in the thesis, the content is original

and has not been submitted in part or whole for consideration for any other degree at this or

any other University. This thesis is my original work and contains nothing that is the outcome

of any research done in collaboration with others except collaborative publications from the

study. Relevant seminars, workshops, and conferences were attended where the author

presented some of the research outcomes, including visits to external institutions.

Signed: Chigozie Enyinna Nwankpa Date: 31st March 2022

vi

"A wise man is strong; yes, a man of knowledge increases strength"

 - King Solomon

vii

 Table of Contents
Dedication .. ii

Acknowledgement ... iii

Publications ... iv

Author Declaration ... v

List of Figures ... xiii

List of Tables .. xv

Abbreviations .. xvi

Abstract .. 1

CHAPTER ONE .. 2

INTRODUCTION AND BACKGROUND ... 2

1.0 Introduction .. 2

1.2 Research Background and Context .. 3

1.3 Deep Learning .. 4

1.4 Research Questions .. 5

1.5 Research Motivation and Justification ... 6

1.6 Scope of the Research .. 7

1.7 Research Design ... 8

1.8 Research Deliverables and Novelty ... 9

1.9 Research Beneficiaries ... 10

1.10 Contributions from the research .. 11

1.11 Thesis Structure .. 12

1.12 Chapter Summary ... 12

CHAPTER TWO.. 13

RESEARCH PHILOSOPHY AND DESIGN .. 13

2.0 Introduction .. 13

2.1 Research Design ... 13

2.1.1 Procedural Issues in the Research ... 15

a) Implementation Decision ... 15

b) Weighting Decision ... 16

c) Integration Decision ... 16

2.1.2 Research Delimitations ... 16

2.2 Research Philosophy .. 17

2.3 Rational for Adopting Mixed Method Research .. 18

2.4 Legitimacy of the research ... 19

2.4.1 Construct validity .. 19

viii

2.4.2 Internal validity ... 20

2.4.3 External validity .. 20

2.4.4 Reliability .. 21

2.5 Vital Research Considerations ... 21

2.5.1 Researcher Involvement .. 21

2.5.2 Practitioner Needs ... 21

2.5.3 Domain of Research .. 23

2.5.4 Model Choice and Requirements. ... 24

2.5.5 Identification of Remanufacturing Processes for Modelling .. 24

2.6 Industrial Collaboration.. 25

2.6.1 Benefits of the Collaboration .. 26

2.7 Data Collections ... 26

2.8 Research Data ... 27

2.8.1 Limitations of Existing Dataset ... 29

2.8.2 Remanufacturing Data for Deep Learning Research .. 29

2.8.3 Dataset Naming Convention ... 30

2.9 Chapter summary ... 31

CHAPTER THREE .. 32

LITERATURE REVIEW ... 32

3.0 Introduction .. 32

3.1 Overview of Remanufacturing ... 32

3.2 Benefits of Remanufacturing ... 33

3.3 Remanufacturing Automation .. 34

3.3.1 Challenges in Remanufacturing .. 35

3.3.1.1 Collections .. 35

3.3.1.2 Remanufacturing Process ... 36

3.3.1.3 Redistribution ... 37

3.4 Learning Models and Technologies as Solutions ... 37

3.5 General Learning Approaches .. 38

3.6 Learning Models in Remanufacturing .. 39

3.6.1 Operations Management ... 39

3.6.2 Forecasting .. 40

3.6.3 Factory Improvement .. 40

3.6.4 Decision Making and Support Systems .. 41

3.6.5 Remanufacturing Processes and Process Planning ... 42

3.6.6 Remanufacturing Technologies ... 43

ix

3.7 Opportunities for Deep Learning ... 43

3.7.1 Operations Management ... 44

3.7.2 Forecasting .. 44

3.7.3 Factory Improvement .. 45

3.7.4 Decision Making and Support Systems .. 45

3.7.5 Remanufacturing Technologies ... 45

3.8 Suitability of Deep Learning Models ... 46

3.9 Deep Learning .. 48

3.9.1 Brief History of Deep Learning Research ... 51

3.9.2 Taxonomy of Deep Learning Methods ... 52

3.10 Deep Learning Architectures ... 53

3.10.1 Deep Unsupervised Learning Models ... 55

3.10.2 Deep Semi-Supervised Models ... 57

3.10.3 Deep Supervised Learning Models ... 58

3.11 Convolutional Neural Networks... 60

3.11.1 Evolution of Neural Network Architectures ... 62

3.11.1.1 Spatial Exploitation .. 62

3.11.1.2 Depth and Width Exploitation.. 63

3.11.1.3 Multi-path Exploitation .. 65

3.11.1.4 Feature- Map Exploitation ... 65

3.11.1.5 Attention Exploitation .. 65

3.11.2 Components of the Convolutional Neural Networks .. 66

3.11.2.1 Convolutional Layer ... 66

3.11.2.2 Pooling Layers.. 67

3.11.2.3 Fully Connected Layers ... 69

2.11.2.4 Activation Functions .. 69

3.11.3 Loss Functions... 76

3.11.3.1 Regression Loss Functions ... 77

3.11.3.2 Binary Classification Loss Functions ... 78

3.11.3.3 Multiclass Classification Loss Functions ... 79

3.11.4 Optimisation and Optimisation Functions... 80

3.11.5 Regularisation Techniques .. 88

3.11.6 Evaluation Metrics .. 91

3.11.6.1 Accuracy... 91

3.11.6.2 Error rate .. 92

3.11.6.3 Precision and Recall ... 92

x

3.11.6.4 𝑭𝜷 Score... 93

3.11.6.5 Receiver Operating Characteristics (ROC) .. 93

3.11.6.6 Area under the Curve (AUC) ... 94

3.11.6.7 Confusion Matrix ... 94

3.11.7 Applications of Deep Convolutional Neural Networks .. 95

3.12 Inspection Techniques in Remanufacturing ... 96

3.13 Sorting Systems in Remanufacturing. .. 100

3.14 Process Control Methods in Remanufacturing... 102

3.15 Chapter Summary ... 105

CHAPTER FOUR .. 106

MODEL DESIGN AND APPLICATION TO INSPECTION IN REMANUFACTURING USING DEEP

LEARNING 106

4.0 Introduction .. 106

4.1 Background to the Modelling and Development ... 106

4.1.1 Modelling Remanufacturing Processes ... 107

4.1.2 Model Development Boundaries ... 108

4.2 Research Model Design ... 108

4.3 Frameworks and Tools for Deploying Deep Architectures.. 110

4.4 Data Representation, Preparation and Pre-processing ... 111

4.4 1 Data Preparation .. 112

4.4.2 Splitting the Data ... 114

4.5 Learning Model and Development Considerations .. 115

4.5.1 The Computational Model Design .. 115

4.5.2 Model Parameters and Hyperparameters .. 116

4.5.3 Metric Selection .. 117

4.6 Computational Model Exploration ... 117

4.6.1 Transfer Learning .. 118

4.6.2 Novel Architecture .. 119

4.7 Learning Algorithms for Remanufacturing Application .. 120

4.7.1 Understanding the Architecture .. 121

4.7.2 Architectural Arrangement and Initialisation .. 123

4.7.3 Parameterising the mapping from Images to Label Scores ... 124

4.8 Modelling Surface Inspection in Remanufacturing Using Deep Learning .. 124

4.8.1 Inspection Applications and Data ... 125

4.9 Model Architecture, Parameters and Hyperparameters ... 126

4.10 Model Components, Hyperparameter Selection and Optimisation .. 127

xi

4.11 Surface Fault Identification and Classification .. 128

4.11.1 Model Components and Hyperparameters .. 129

4.11.2 Model Selection for Transfer Learning ... 130

4.11.3 Model Training and Evaluations ... 130

4.11.4 Results and Discussions .. 138

4.12 Adapting the Developed Model to Torque Converter Component Inspection .. 139

4.12.1 Experiment and Model Training ... 140

4.12.2 Results and Discussions .. 140

4.13 Extending the Deep Learning Modelling to Achieve Automated Inspection .. 142

4.13.1 Benefits of Design for Automated Inspection ... 146

4.14 Chapter Summary ... 147

CHAPTER FIVE .. 148

MODELLING COMPONENT SORTING AND PROCESS CONTROL IN REMANUFACTURING USING

DEEP LEARNING .. 148

5.0 Introduction .. 148

5.1 Modelling Sorting in Remanufacturing Using Deep Learning .. 148

5.2 Sorting Application and Data ... 149

5.3 Model Parameters / Hyperparameters and Modification ... 150

5.4 Experiment and Model Training .. 151

5.6 Results and Discussions ... 152

5.7 Modelling Process Control in Remanufacturing Using Deep Learning .. 155

5.7.1 Process Control Application and Data .. 155

5.8 Model Components, Hyperparameters and Modification .. 156

5.9 Experiment and Model Training .. 157

5.10 Results and Discussion ... 159

5.11 Chapter Summary ... 160

CHAPTER SIX .. 161

QUANTITATIVE ANALYSIS AND INDUSTRY FEEDBACK .. 161

6.0 Introduction .. 161

6.1 Analysis of the Learning Algorithm... 162

6.2 Model Hyperparameters ... 162

6.2.1 Model Initialisation ... 164

6.2.2 Selection of Batch Size ... 166

6.2.3 Effect of Batch Normalisation on Model Performance ... 168

6.2.4 Selection of Activation Function... 169

6.2.5 Selection of Learning Rate .. 171

xii

6.2.6 Selection of Optimisation Techniques .. 172

6.3 Evaluating the Model Layers ... 174

6.4 Model Confirmatory Test ... 178

6.4.1 Transfer Learning .. 179

6.4.2 Training from Scratch Results... 181

6.4.3 Developed Model Results ... 183

6.5 Cost Benefit Analysis ... 185

6.6 Basis for Testing Research Success ... 186

6.7 Model Research Validation .. 187

6.7.1 Experimental Validation ... 188

6.8 Industry Feedback .. 190

6.8.1 Model Validation Protocol ... 192

6.8.2 Industry Feedback Process .. 194

6.8.3 The Industry Validation Exercise .. 195

6.9 Results of Model Validation .. 195

6.10 Alterations to Enhance Clarity ... 196

6.11 Modelling Inspection, Sorting and Process Control in Remanufacturing .. 196

6.11.1 Descriptive Relevance ... 197

6.11.2 Goal Relevance ... 198

6.11.3 Operational Validity .. 198

6.11.4 Timeliness ... 199

6.11.5 Non-obviousness ... 199

6.12 Chapter Summary ... 200

CHAPTER SEVEN: CONCLUSION .. 201

7.0 Introduction .. 201

7.1 Achieving Research Objectives ... 201

7.2 Contributions to Knowledge and Research Originality ... 202

7.3 Recommendations and Future Research .. 203

7.4 Limitations of the Research.. 203

References .. 205

Appendix 1 Research code design tree .. 221

Appendix 2 Validation Results .. 223

Appendix 3A Developed inspection application model codes... 225

Appendix 3B Developed sorting application model codes .. 226

Appendix 3C Developed process control model codes .. 227

xiii

 List of Figures

Figure 1.1 Block diagram of a typical deep learning model .. 5

Figure 1.2 Cross-section of the core components of the torque converter units used as research data. 5

Figure 1.3 Block diagram of the evolved action research method in operations management adapted from [35].

 .. 7

Figure 1.4 Research method visualisation.. 9

Figure 1.5 Research deliverables and contributions ... 10

Figure 2.1 Overall research structure ... 14

Figure 2.2 Study research design ... 15

Figure 2.3 Validated block diagram of the TC unit remanufacturing showing the focus processes as shades . 22

Figure 2.4 Adapted block diagram of the production and operations management system [59] 23

Figure 2.5 Schematic of the generic remanufacturing process. ... 24

Figure 3.1 Literature review ideation scope ... 32

Figure 3.2 Taxonomy of deep and machine learning models .. 48

Figure 3.3 Typical neural connections in a deep learning model ... 49

Figure 3.4 Typical neural network model .. 50

Figure 3.5 Taxonomy of deep learning architectures adapted from [113] ... 54

Figure 3.6 The auto-encoder .. 55

Figure 3.7 Components of a typical convolutional layer of a CNN showing the layer design approach 61

Figure 3.8 Sample convolution filters output used to learn different patterns in data [125] 61

Figure 3.9 Taxonomy of the CNN evolutions .. 62

Figure 3.10 The convolutional layer showing sparse interactions ... 66

Figure 3.11 The fully-connected layers showing the typical neural connections .. 69

Figure 3.12 Test response of the SiLU and dSiLU function [236] .. 71

Figure 3.13 Confusion matrix table.. 94

Figure 4.1 Model development stages.. 1078

Figure 4.2 Design conceptual model .. 1089

Figure 4.3 Actual model design ... 1090

Figure 4.4 Code development block diagram .. 109

Figure 4.5 Data splitting method .. 114

Figure 4.6 Model design approaches.. 118

Figure 4.7 Model modification stages showing the original model A, feature extraction model B, and the fine-

tuned model C. ... 118

Figure 4.8 Flow diagram of the stages of achieving transfer learning ... 119

Figure 4.9 Architectural design block diagram .. 120

Figure 4.10 Sample of the inspection data ... 129

Figure 4.11 Model training pipeline ... 131

Figure 4.12 Pictorial representation showing model inputs, network, layers, loss function and optimiser 132

Figure 4.13 Pretrained VGGNet model performance on the surface inspection dataset 134

Figure 4.14 VGG model prediction visualisation using the confusion matrix... 134

Figure 4.15 Training from the scratch loss and accuracy response on the VGGNet model 135

Figure 4.16 Model prediction visualisation for the training from scratch using the confusion matrix 136

Figure 4.17 Researcher developed model response on inspection data ... 137

Figure 4.18 Developed model prediction visualisation using the confusion matrix 137

Figure 4.19 A batch of samples for inspection II application used to train the model..................................... 139

Figure 4.20 Model training results on the Torque Converter surface inspection ... 141

Figure 4.21 Inspection II model predictions visualisation ... 141

file:///C:/Users/Admin/Desktop/PhD%20Corrections/Final_Thesis_Submitted.docx%23_Toc111120296

xiv

Figure 4.22 Model inspection predictions result from the connected camera inputs 142

Figure 4.23 Automated inspection design approach. ... 143

Figure 4.24 High-level design approach of the design for automated inspection .. 144

Figure 5.1 Typical learning model block diagram ... 148

Figure 5.2 One batch of the original torque converter samples used to train the model 149

Figure 5.3 Sorting model training and validation responses .. 152

Figure 5.4 Sorting model confusion matrix ... 153

Figure 5.5 Sorting model predictions result from single-camera inputs .. 154

Figure 5.6 Model training results using the process control data... 158

Figure 5.7 Cross-section of the model predictions from connected camera .. 160

Figure 6.1 Adapted Model analysis approach for comparing predictive classification tasks [329] 161

Figure 6.2 Effect of weight initialisation on performance: at the top - inspection I, middle - inspection II,

bottom - sorting. 165

Figure 6.3 Effect of batch size on performance: top - inspection I, middle - inspection II, bottom - sorting. . 167

Figure 6.4 Effect of batch-normalisation on performance: top - inspection I, middle - inspection II, bottom -

sorting. .. 169

Figure 6.5 Effect of activations on performance: top - inspection I, middle - inspection II, bottom - sorting. 170

Figure 6.6 Effects of learning rates adapted from [256] .. 171

Figure 6.7 Effect of learning rate on performance: top - inspection I, middle - inspection II, bottom - sorting.

 .. 172

Figure 6.8 Effect of optimisers on performance: top - inspection I, middle - inspection II, bottom - sorting. 173

Figure 6.9 VGGNet Layer 1 block visualisation.. 175

Figure 6.10 VGGNet Layer 2 block visualisation.. 175

Figure 6.11 VGGNet Layer 3 block visualisation.. 175

Figure 6.12 VGGNet Layer 4 block visualisation.. 175

Figure 6.13 VGGNet Layer 5 block visualisation.. 176

Figure 6.14 Layer 1 of the researcher developed model ... 176

Figure 6.15 Layer 2 of the researcher developed model ... 177

Figure 6.16 Layer 3 of the researcher developed model ... 177

Figure 6.17 Layer 4 of the researcher developed model ... 177

Figure 6.18 VGG model prediction visualisation using the confusion matrix... 180

Figure 6.19 Model prediction visualisation for the training from scratch using the confusion matrix 182

Figure 6.20 Developed model prediction visualisation using the confusion matrix 183

Figure 6.21 Comparison of the three models' final training accuracy ... 189

Figure 6.22 Comparison of the three models' final training losses .. 189

Figure 6.23 Model validation ... 190

Figure 6.24 The conceptual model design ... 190

Figure 6.25 Adapted Model validation Process [371]... 192

Figure 6.26 Validation protocol ... 193

Figure 6.27 The model validation process ... 194

Figure 6.28 Identified camera blind spot for improvement ... 196

Figure 6.29 Formal model .. 196

xv

List of Tables

Table 2.1 Tabular description of the recorded research data ... 30

Table 3.1 A comparison of different learning approaches adapted from [75]. .. 39

Table 4.1 Categorical encoding of model inputs .. 1134

Table 4.2 Model architecture for the inspection application .. 126

Table 4.3 Model I parameters and hyperparameters .. 129

Table 5.1 Model architecture optimised for the sorting application .. 150

Table 5.2 Model architecture optimised for the process control application ... 1567

Table 5.3 Model components and hyperparameters ... 15758

Table 6.1 Model parameter and hyperparameter definitions ... 1635

Table 6.2 Contingency table showing the Rater prediction probabilities ... 17879

Table 6.3 Evaluation of Kappa coefficient for the transfer learning model. .. 1812

Table 6.4 Evaluation of Kappa coefficient for the VGGNet models training from scratch 1834

Table 6.5 Evaluation of Kappa coefficient for the developed model... 1845

Table 6.6 Cost benefit problem selection matrix. .. 186

Table 6.7 Factor ranking for automation and no-automation. .. 187

Table 6.8 Weighted factor ranking for automation and no-automation. .. 187

Table 6.9 Model data components and parameter outline ... 188

Table 6.10 Interpretation of the Likert scale feedback ... 199

xvi

 Abbreviations

AI Artificial intelligence

AM Additive manufacturing

API Application programming interface

ARM Additive remanufacturing

AR Augmented reality

AUC Area under the ROC curve

AWS Amazon Web Service

BGD Batch gradient descent

BoL Beginning-of-life

CC Cloud computing

CNN Convolutional neural networks

COBOTS Collaborative robots

COCO Common objects in context

CPS Cyber-physical systems

CPU Central processing unit

CUDA Compute unified device architecture

DC Decision tree

DiF Diversity in Faces dataset

DL Deep learning

DLT Distributed ledger technology

DMEM Design Manufacturing and Engineering Management

DAE Deep Autoencoders

DBN Deep belief networks

DDPG Deep deterministic policy gradient

DNN Deep neural networks

DQN Deep Q networks

DRL Deep reinforcement learning

DT Digital twin

EHD Edge histogram descriptor

ELU Exponential linear units

EoL End-of-life

FPGA Field programmable gate arrays

GAN Generative Adversarial Networks

GB Gigabyte

GPU Graphics processing units

GRU Gated recurrent units

HOG Histogram of oriented gradient

HORNN Higher-order recurrent neural networks

ICT Information and communication technology

IoT Internet of things

KWh Kilowatt-hour

LReLU Leaky ReLU

LSTM Long-short-term memory

xvii

MAE Mean absolute error

MDP Markov decision processes

ML Machine learning

MLP Multi-layer perceptron

MNIST Modified National Institute of Standards and Technology

MoL Middle-of-life

MSE Mean square error

NAF Normalising advantage functions

NDI Non-destructive inspection

NN Neural network

OEM Original equipment manufacturer

PCA Principal component analysis

PEID Product embedded information device

PELU Parametric ELU

PID Proportional integral derivative

PIE Pose, Illumination and Expression

PTAW Plasma transferred arc welding

PReLU Parametric ReLU

PLC Product life cycle

POM Productions and operation management

RAM Random access memory

RBM Restricted Boltzmann Machines

ReLU Rectified Linear Units

RLReLU Randomised leaky ReLU

RFID Radio-frequency identification

RL Reinforcement learning

RNN Recurrent neural networks

RUL Remaining useful life

ROC Receiver operating characteristics.

SARSA State-Action-Reward-State-Action

SELU Scaled ELU

SIFT Scale-invariant feature transform.

SGD Stochastic gradient descent

SM Subtractive manufacturing.

SURF Speeded up robust features

SVM Support vector machines

tf TensorFlow

QR Quick response

USB Universal serial bus

VLSRC Very-large-scale image recognition challenge

VOC Visual Object Classes

XOR Exclusive OR

WEEE Waste Electrical and Electronic Equipment.

xviii

1

 Abstract

In recent years, remanufacturing has significant interest from researchers and practitioners to improve

efficiency through maximum value recovery of products at end-of-life (EoL). It is a process of returning

used products, known as EoL products, to as-new condition with matching or higher warranty than the

new products. However, these remanufacturing processes are complex and time-consuming to

implement manually, causing reduced productivity and posing dangers to personnel. These challenges

require automating the various remanufacturing process stages to achieve higher throughput, reduced

lead time, cost and environmental impact while maximising economic gains. Besides, as highlighted by

various research groups, there is currently a shortage of adequate remanufacturing-specific technologies

to achieve full automation.

This research explores automating remanufacturing processes to improve competitiveness by analysing

and developing deep learning-based models for automating different stages of the remanufacturing

processes. Analysing deep learning algorithms represents a viable option to investigate and develop

technologies with capabilities to overcome the outlined challenges. Deep learning involves using

artificial neural networks to learn high-level abstractions in data. Deep learning (DL) models are

inspired by human brains and have produced state-of-the-art results in pattern recognition, object

detection and other applications. The research further investigates the empirical data of torque converter

components recorded from a remanufacturing facility in Glasgow, UK, using the in-case and cross-case

analysis to evaluate the remanufacturing inspection, sorting, and process control applications.

Nevertheless, the developed algorithm helped capture, pre-process, train, deploy and evaluate the

performance of the respective processes. The experimental evaluation of the in-case and cross-case

analysis using model prediction accuracy, misclassification rate, and model loss highlights that the

developed models achieved a high prediction accuracy of above 99.9% across the sorting, inspection

and process control applications. Furthermore, a low model loss between 3x10-3 and 1.3x10-5 was

obtained alongside a misclassification rate that lies between 0.01% to 0.08% across the three

applications investigated, thereby highlighting the capability of the developed deep learning algorithms

to perform the sorting, process control and inspection in remanufacturing. The results demonstrate the

viability of adopting deep learning-based algorithms in automating remanufacturing processes,

achieving safer and more efficient remanufacturing.

Finally, this research is unique because it is the first to investigate using deep learning and qualitative

torque-converter image data for modelling remanufacturing sorting, inspection and process control

applications. It also delivers a custom computational model that has the potential to enhance

remanufacturing automation when utilised. The findings and publications also benefit both academics

and industrial practitioners. Furthermore, the model is easily adaptable to other remanufacturing

applications with minor modifications to enhance process efficiency in today's workplaces.

2

 CHAPTER ONE

INTRODUCTION AND BACKGROUND

1.0 Introduction

Environmental issues such as climate change have become a crucial discussion among experts in

various fields to make more sustainable decisions about the current and future generations. These issues

have spurred circular economy concepts that redefine how resources are managed, most importantly

designing systems with the least waste and pollution, keeping products and materials in more prolonged

use and many other approaches [1]. Despite these strategies, manufactured products still find their way

to end-of-life (EoL), and the need to manage them at EoL becomes inevitable. To address these EoL

products, reuse, remanufacturing, and recycling are among the dominant strategies to recover values

from the EoL products, among other existing approaches [2]. The product recovery hierarchy has

remanufacturing towards the top layers as it supports the reuse of products and components with the

least additional raw materials [3].

Remanufacturing is the process of returning used products "to at least original equipment manufacturer

(OEM) performance specification from the customers perspective and giving the product a warranty

that is at least equal to that of the newly manufactured equivalent" [4]. It guarantees to return products

with a warranty, matching that of a new product, proving more advantageous than other management

approaches. More recently, remanufacturing is estimated to be worth about EURO 30 billion, and the

industry continues to grow [3]. It is an end-of-life activity after a product has passed through its useful

life. The product life cycle (PLC) consists of three vital stages, including the beginning-of-life (BoL),

where the product is first designed and manufactured, and the middle-of-life (MoL), where the product

is used, serviced and maintained. In the end-of-life (EoL) stage, used products are re-collected as cores,

disassembled, remanufactured, recycled, reused and or disposed [5]. In these stages of the PLC,

information flows across each process. However, the EoL stage suffers from significant information

loss compared to the BoL and MoL stages, making most product decisions based on insufficient,

inaccurate and incomplete product life cycle information with higher and increasing product complexity

[6]. These make remanufacturing process activities more challenging to undertake.

Conversely, products for remanufacturing have vital characteristics, including: high recoverable value,

stable product technology, good process technology, and must not suffer obsolescence [7], [8].

However, the design team's decision to remanufacture a product is an early thought during the product

development stage. Remanufacturing makes it possible to recover some of the values invested in

production at the end of its first life cycle. These decisions are based on the potential for value recovery

against the cost of providing additional features to the product. The products are recycled or disposed if

the cost cannot be recovered with some reasonable profit.

3

Nevertheless, researchers have outlined that the remanufacturing processes are complicated, manually

performed and lack the suitable tools and methodologies to maximise profitability[9]–[11]. Moreover,

using the existing approaches brings a time-delay bottleneck in remanufacturing, especially manual

inspection, and the labour-intensive nature causes stress[12]–[14]. This research focuses on exploring

the capabilities of deep learning algorithms to simplify these processes and enhance the tools and

methods to achieve more sustainable remanufacturing. These technologies will provide vital benefits

with their adoption, boost productivity, improve quality, increase capacity, and save operating costs

[15].

1.2 Research Background and Context

The remanufacturing process is a complex process that returns used products to “as new” conditions in

parts or complete with matching or greater warranty compared to the new products [16], [17]. It

involves numerous processing stages, including identification, disassembly, inspection, cleaning,

rework, reassembly and testing [18], [19]. Remanufacturing enhances the sustainable use of raw

materials and provides environmentally safe productions with colossal energy-saving benefits [20],

[21]. However, most of these processes are manually performed despite these potentials, making them

slow, posing serious safety concerns to personnel, and unrepeatable results in most cases[6], [22]. These

challenges result in reduced quality of remanufactured products, prolonged remanufacturing time, and

increased costs, leading to significantly poorer value recovery from EoL streams. Besides, the

availability of numerous simulation models that outline several novel technologies for improving

remanufacturing process performances [23]–[25] and the validations that support productivity

enhancements [26], [27] have not witnessed any success.

A solution to these concerns is developing process and hybrid automation technologies, identified as

vital tools that can improve the remanufacturing process [6]. It explores technologies and systems to

achieve safer, more repeatable, and improved results. This research examines the possibility of attaining

hybrid technologies that could enhance remanufacturing processes, focusing on inspection, sorting, and

process control. The problem statement highlights the need to explore the outlined challenges, including

• Remanufacturing processes are primarily manual and require experienced personnel to perform

specific tasks efficiently [6], [22], drawing attention to new and emerging technologies for

automating remanufacturing processes to reduce the dependence on expert judgement.

• The performance of production systems is always a critical concern, including remanufacturing;

therefore, exploring approaches to make them repeatable is vital to enhance quality.

• Parameter tuning and optimisation are time-consuming, eliminating guesswork errors and saving

time by automating feature detection algorithms using deep learning.

Besides considering these highlighted challenges, deep learning models offer a systematic process to

achieve optimal performances by making the processes repeatable and continuous, improving service

4

quality, and enhancing resource utilisation. This scope brings another big question that this research

tries to answer, "How can emerging deep learning models automate the remanufacturing process or

parts of the remanufacturing process?". This research explores possible solutions that could

significantly automate remanufacturing or parts of the remanufacturing process since it is practically

impossible to automate the entire remanufacturing process for all products without human interference.

1.3 Deep Learning

Deep learning refers to the acronym used to describe deep neural network models developed using

artificial neural networks. Deep learning is a subfield of machine learning(ML) where computational

models, composed of multiple processing layers, are used to learn representations in data with various

abstraction layers [28]. It is an emerging technology that plays a significant role in enhancing industrial

activities worldwide, and remanufacturing can leverage the benefits provided by the technology in other

industries. Researchers outline that the deep learning field is driven by experimental findings rather

than theory, with advances in algorithm design made possible through appropriate hardware and data

[29]. However, modern enterprises are recently experiencing new revolutions from traditional

manufacturing to intelligent manufacturing [30], with research on the impact of these technological

advancements, especially for remanufacturing, attracting industry interest [31]. This research explores

the potential of these deep learning algorithms to address identified remanufacturing challenges to meet

the remanufacturing industry's specific needs. They have the potential to drive automation in

remanufacturing; however, the general adoption of these technologies is still not vast across industries,

including remanufacturing.

Nevertheless, artificial intelligence is a branch of computer science aiming to make computers perform

up to human-style intelligence. AI systems use deductive logics whose rules depend on human

ingenuity. Among artificial intelligence components, machine learning allows computers to learn data

patterns without being explicitly programmed. Machine learning models also use statistical inference,

where rules are inferred directly from data. It has significantly improved technological advances across

diverse fields, with deep learning being the most significant driver of machine learning research lately,

with massive state-of-the-art results [28].

Deep learning is inspired and modelled by the biological brain and thrives by learning high-level

abstraction in data using multi-layered hierarchical architecture [28], [32]. A typical deep learning

model schematic outline shows the stages to set up a standard deep learning-based system.

5

Figure 1.1 Block diagram of a typical deep learning model

These algorithms involve developing computational models, after which the obtained process data is

modified to suit the model through a preparation process and used to train the model. Finally, the model

is evaluated for performance and optimised through model improvement approaches. These stages are

performed in all deep learning models to ensure that the model performs to desired standards.

Nevertheless, why should the potential of deep learning for remanufacturing be explored? To further

highlight the need to study deep learning models, they do not require designers to develop and obtain

hand-crafted features but automatically learn these features. It can also work on raw data and generalise

well on different tasks, exceeding human-level recognition in predictive studies [28], [33]. The samples

of the collected torque converter cores for remanufacturing used in this research are shown in Figure

1.2.

Figure 1.2 Cross-section of the core components of the torque converter units used as research data.

Besides, by exploring these DL concepts, novel solutions are produced to mitigate some of the

associated hazards of remanufacturing processes, especially for automotive products, which are usually

contaminated when returned.

1.4 Research Questions

This research builds on deep learning algorithms and models' ability to perform remarkably in diverse

applications. Hence, this study explores how deep learning models can be deployed in different

remanufacturing contexts to improve efficiency through automation. The following questions are set as

guidelines to fulfil these aims. This research breaks the big question "How can deep learning enhance

remanufacturing productivity?" into the following seven research questions to attain the aims and

objectives of this study

6

Q1. What is the current level of deep learning applications in remanufacturing?

Q2. Can a novel method be developed using deep learning to automate various remanufacturing

processes?

Q3. How can the understanding of the deep learning model results be improved?

Q4. How can the developed deep learning models be adaptable to other remanufacturing applications?

Q5. How can the study support future deep learning research in remanufacturing?

Nevertheless, these questions help to enhance the understanding of the existing deep learning literature

and highlight the practical algorithms for use in the remanufacturing sector. It also outlines the

techniques of applying and deploying the developed technologies in remanufacturing alongside

discussions on the observed improvements achieved.

1.5 Research Motivation and Justification

This research is driven by the vital circular economy paradigms where sustainable habits and

developments play significant roles in enhancing resource efficiency by reducing consumption of

resources, materials, energy, and the corresponding environmental impacts while maintaining

competitiveness in the global business environment. Moreover, remanufacturing refers to tools,

technologies, systems, and knowledge-based methods to recover and reuse materials from end-of-life

products [6]. As these technologies and techniques are not fully yet explored, it also outlines the need to

delve further into the capabilities of emerging deep learning. Deep learning provides an abstract

approach to learning patterns from data using computational models. The focus is exploring the deep

learning algorithms in the remanufacturing context alongside the other enabling technologies.

Nevertheless, improving remanufacturing requires analysing the available process big data for

understanding, using computational models capable of reading these extensive data and inferring

helpful information from them. Machine learning, especially the deep learning subfield, has become the

first choice and state-of-the-art for this application. The remarkable performance across almost every

field of application draws further interest to explore remanufacturing applications. The following key

factors inform the justification of the methods and techniques adopted in this research

• The opportunity to apply intelligent algorithms to remanufacturing and explore the challenges.

However, integrating and achieving automated remanufacturing solutions has not been fully

attained [22], [34].

• The available data limitations make them unsuitable for modelling remanufacturing processes as

they were, thereby making it impossible to conduct empirical research on deep learning models

for process-specific remanufacturing applications.

• To explore deep learning capabilities for remanufacturing by investigating the vast quantities of

data produced by industrial processes to identify and understand the underlying trends.

7

• Exploring deep learning for remanufacturing productivity improvement by automating processes,

increasing speed and accuracy since the algorithms have enhanced almost every application [28].

• To enhance the overall product quality by automation, eliminating total dependence on experts'

judgement in the remanufacturing inspection, sorting and process control.

• To further investigate existing learning algorithms that have not been applied to specific

remanufacturing tasks, primarily to perform inspection, sorting and process control.

1.6 Scope of the Research

The central theme of the study is to explore emerging deep learning technologies that could enhance the

remanufacturing process. In addition, the general application of deep neural networks is investigated to

provide empirical evidence that supports their application in remanufacturing. The research focuses on

modelling inspection, sorting and process control in remanufacturing and considers the relationships

between various model parameters on the performance of deep neural networks. Based on these

findings, this research drives a comprehensive automated model for deploying deep neural network

models for remanufacturing inspection, sorting and process control.

This scope is informed by the production and operations management action research theory-building

approach that focuses on developing and applying various concepts to build knowledge [35].

Nevertheless, a holistic approach to action research includes the components of action research. The

most significant considerations are finding specific areas of focus, obtaining industry collaborations to

enhance transparency, data access, analysis, evaluation, and disseminating the findings from the

research. This scope is highlighted in the dotted outline of Figure 1.3, the block diagram of action

research in operations management.

 Figure 1.3 Block diagram of the evolved action research method in operations management adapted from [35].

The role of collaboration highlights the process of two unrelated entities working together to determine

how mutual goals, risks, information and resources are shared to achieve a common goal [36].

Understanding the collaboration components is vital to ensure that parties involved discern their roles

throughout the process, transparently building trust and sharing information [37]. The primary benefits

Focus:

Collaboration

(s)

Scope of

investigation,

refine,

research

method

Develop:

Subsequent

collaboration

Repeat

method,

develop

theory

Apply:

Express

theory as an

applicable

technique.

Final

applications

Decide a

broad area

of study

Design

research

around

crucial

method(s)

Evaluate

approach

Publish

8

of this collaboration include providing the researcher with first-hand experience of the remanufacturing

process, which is significant for understanding the processes, assessing the remanufacturing challenges

from the practitioners' perspective, sharing knowledge to improve processes and providing access to the

process data for model development and evaluation.

The rationale behind this scope was that only image data was collected, which would aid the evaluation

of the different test cases during the research. These images were used to recognise parts from

disassembly, inspection, and sorting. However, the disassembly requires additional specialised

hardware, while the sorting and inspection applications require an actuator and visual sensors. The

hardware requirements restrict the choice of sorting, inspection and process control for easy evaluation

and validation.

1.7 Research Design

This research adopts the applied research method that focuses on obtaining empirical observation to

solve critical societal problems. The use of applied research is the dissemination of the findings for ease

of implementation, especially for practitioners, with authors suggesting the vital strength of the

approach is the ability to test the results obtained from research [38]. Nevertheless, researchers added

that applied research could benefit from building theories and testing the developed hypotheses [39],

thereby expanding the scope of the basic knowledge to obtain additional values, usually for

practitioners.

Moreover, the research design uses the sequential mixed research strategy, where the quantitative and

qualitative research techniques alongside the strength of action research, to develop, understand and

highlight the benefits of the emerging deep learning technologies in remanufacturing inspection,

sorting, and process control. The action research perspective details the collaborations, scope,

developments, and application of theories to build new knowledge alongside disseminating the findings

This research uses the in-case and cross-case analysis of various remanufacturing processes as an

enquiry technique for developing new knowledge for applying deep learning models in

remanufacturing. It follows an engineering research design approach that outlines that specific cases in

engineering differ from the original case-study method with the contemporary component where

historical data from any process cannot meet the definition of case-study research [39]. The in-case

analysis focuses on the application familiarisation and thorough documentation of the process, while the

cross-case highlights the differences and similarities in the models and results.

9

Figure 1.4 Research method visualisation

Moreover, the dependent sequential mixed method research uses deep learning algorithms for

modelling inspection, sorting, and process control for remanufacturing applications. Afterwards, a

validation by review assesses the usefulness of the developed automated systems for remanufacturing

from a practitioner's perspective.

1.8 Research Deliverables and Novelty

The uniqueness of the research focuses on the method of achieving process automation using deep

convolutional neural network models. Besides, the deliverables of the study include literature reviews

on activation functions and optimisation techniques for deep learning alongside a CNN architecture for

use in remanufacturing. Furthermore, it highlights various methods to model and deploy deep neural

network models in remanufacturing inspection, sorting and process control applications. It also delivers

convolutional neural network architecture that can quickly adapt to other remanufacturing processes.

Nonetheless, another vital delivery of the research comes from industry collaboration. The study

proposes improved process automation methods to enhance industry practices using deep learning and

further outlines a process approach to achieve automated inspection, thereby providing tools that help

decision-making before remanufacturing. Finally, the principal research deliverables and contributions

to the body of knowledge are outlined in Figure 1.5.

Inspection Case Process Control Case Sorting Case

Sorting Case inference Inspection Case

inference

Process Control Case

inference

Cross-case conclusions

Design data collection

protocol

Deep learning theory

Validation

Conclusion

10

 Figure 1.5 Research deliverables and contributions

1.9 Research Beneficiaries

This research's beneficiaries are four-fold: academia, remanufacturing practitioners, machine learning

practitioners, and supply chain practitioners. These include

• Academia benefits from current remanufacturing practices that have depended chiefly on

simulations to highlight the viability of adopting emerging technologies; however, implementing

these technologies has not been fully explored for practicality. The research helps to outline how

to achieve practical deployment of deep learning models in remanufacturing, thereby enabling

researchers to understand how to practically use them in remanufacturing applications,

supplementing remanufacturing processes knowledge and improvement techniques.

• The research provides remanufacturing-specific tools for inspection, sorting, and process control

for the remanufacturing practitioners, closing the gap in the scarcity of adequate technologies and

tools for improvement.

• It also benefits the machine learning community by providing valuable insights on improving

model designs and understanding in choosing model parameters, including the choice of activation

functions and optimisation techniques for deep learning, summarised with published literature

reviews from this research, among other unpublished findings.

• Supply chain practitioners also benefit from the contributions of this research by understanding the

factors of supply chain collaboration, including trust, information sharing and other vital benefits

Review of optimisation techniques in deep learning

Optimisation methods
Strengthens the modelling, teaching and learning of the vital
optimisation methods used in deep learning research

Review of activation functions in deep learning practices and research

Activation function
Improves the modelling, teaching and learning of the major
activation functions used in deep learning research

Designing for automated inspection in remanufacturing

Design for automated inspection (DfAI)
Enhances undertanding of the requirements to achieve deep learning
based automated inspection in remanufactuiring

Modelling remanufacturing processes using deep learning

Deep learning for inspection, sorting and process control
Improves the undertanding of other approaches to achieving
automation using AI based models and opens up new research area
for remanufacturing

Establishing collaboration

Evaluating the benefits of collaboration to particiapants
Enhances the understanding of remanufacturing and best practices
alongside contributions to the general collabration literature

11

of cooperation. The benefits of this collaboration were helpful in understanding the essential

elements that support collaboration, especially with the industry stakeholders

1.10 Contributions from the research

Research contributions often referred to as research gaps in the literature, are "an area for which

missing or insufficient information limits ability to reach a conclusion for a question" [40]. These gaps

constitute some research needs that limit the ability to make decisions. For remanufacturing, previous

research focussed on understanding the processes involved in product remanufacture alongside the

constraints and challenges faced by remanufacturers. Most importantly, In the field of inspection and

sorting, researchers have shown the possibility of deploying emerging technologies, especially machine

learning and deep learning, to improve some of the processes involved in remanufacturing products

[41]. However, most of the existing machine learning research in the remanufacturing field is modelled

as regression-based problems, where system performance predictions use numeric data, and the

modelled outputs are also numeric [41], [42]. Conversely, the research models the remanufacturing

inspection, process control, and sorting processes as a classification problem that use image data to

achieve component and product inspection, sorting and process control.

The research provides numerous academic contributions to the field of remanufacturing and machine

learning, which include:

• A published review on the optimisation techniques for deep learning.

• A published review on the activation function trends for deep learning

• Summary of the research progress in sorting, process control and inspection technologies used in

remanufacturing to enhance understanding.

• Outlines novel approaches to modelling inspection, sorting and process control using deep

learning methods to achieve automated inspection and process control in remanufacturing.

• A published framework for automating inspection in remanufacturing using the design for

automated inspection.

• Developing a Python-based deep convolutional neural network model that performs sorting,

inspection and process control in remanufacturing. Furthermore, these models enhance the

automation of the remanufacturing sorting, inspection, and process control applications.

• A dataset of torque converter components for supporting further research on deep learning in

remanufacturing.

Besides, the industrial deliverables include simplified methods of achieving component inspection,

sorting and process control using computational models that can improve various remanufacturing

processes and techniques, thereby enhancing efficiency and productivity.

Nevertheless, a summary of the research publications was included as publications on page iv.

12

1.11 Thesis Structure

The remaining parts of this thesis are structured in chapters, which include the following;

Chapter 2 presents a brief introduction to remanufacturing, automation, challenges, benefits of

remanufacturing, and a brief introduction to deep learning algorithms. It further outlines the

architectures of deep neural networks, focusing on the deep convolutional neural networks, their

evolution and components, among others. Finally, the current inspection, sorting and process control

methods in remanufacturing were discussed alongside the limitations.

Chapter 3 presents the research design and philosophical approaches used in the study. It also details

the procedural issues encountered during the investigations—the rationale for adopting the sequential

mixed-method research approach alongside the legitimacy of the research. Finally, the data collection

methods and the vital research considerations were evaluated to attain the research objectives.

Chapter 4 presents the modelling and design techniques for using the deep convolutional neural

network algorithms for modelling various remanufacturing processes. The design, data preparation,

training and evaluation metrics used in modelling the remanufacturing applications are presented. It

also explains the modelling approach of deep convolutional neural networks for the modelling

inspection process in remanufacturing.

Chapter 5 presents the process adaptation approach for remanufacturing sorting and process control

using the researcher-developed deep convolutional neural networks model. It details the modelling

method and architectural modification to perform sorting and process control in remanufacturing

alongside the in-case analysis and deductions from the respective models.

Chapter 6 presents the quantitative analysis of the developed model, where the cross-case analysis of

the different model parameters was evaluated to obtain the optimal performance parameters used in the

final model and the model industry feedback. Finally, the experimental validation and industry

feedback interpretations supporting the research findings were discussed.

Chapter 7 provides the conclusions drawn from the investigation. In addition, it highlights the

significant contributions of the research, recommendations and other areas of future research not

explored by the research.

1.12 Chapter Summary

This chapter introduces remanufacturing, the benefits and challenges, and provides an overview of

emerging deep learning technologies for improving remanufacturing. It further highlights the research

background, context, aims and objectives, motivations, scope and beneficiaries. It also briefly discussed

the research method and structure of the overall thesis.

13

 CHAPTER TWO

 RESEARCH PHILOSOPHY AND DESIGN

2.0 Introduction

This chapter discusses the research methodology and design approach. It outlines the rationale for

adopting the applied research, focusing on empirical analysis to understand the best practices of

deploying deep learning models in remanufacturing. The chapter addresses the research questions (Q3)

on the specific remanufacturing processes that could be modelled using deep learning. It highlights how

the research could support future remanufacturing research (Q5) by describing the created datasets to

support future deep learning research.

2.1 Research Design

The research design refers to the science of performing specific research. The research design details

the plans, procedures, assumptions, data collection methods, and analysis used in a given research.

These plans include all the decisions made in the order that makes sense alongside the presentation

order. On the other hand, science has been defined as a systematic and methodological approach to

obtaining new knowledge [43]. Scientific research details the methods and principles that enable

researchers to draw a valid and reliable conclusion from a study. The main benefit of the scientific

approach to research is that it provides a structured approach for gathering, evaluating and reporting

results in the research context. This technique allows researchers to design and present their research in

the most logical approach.

Moreover, the research design also helps judge the quality of research according to specific logical

steps: data dependability, credibility, trustworthiness, and conformability [44]. The approach to

achieving the research objectives is summarised in the four stages of activities summarised in Figure

2.11.

14

 Figure 2.1 Overall research structure

Conversely, the mixed-method approach combines quantitative and qualitative research techniques,

whose strength is higher than independently using qualitative or quantitative methods. Moreover, it

involves the use of data from both views in tandem. The study's research design is outlined in the block

diagram in Figure . The various process data for collection include images of objects recorded as videos

and converted to images for further analysis and quantitative evaluation.

 Literature review

• To identify the gaps in the emerging deep learning literature in remanufacturing.

• Assess the level of technology development and usage in remanufacturing

• To evaluate the model design, architectures and parameters for better understanding

 Validation

• Validate the use cases as beneficial to practitioners (Measures important issues).

• Highlight the reliability of the approach (Reproducible and adaptable to new cases).

 Testing

• To implement, and evaluate the developed model parameters on the obtained

remanufacturing data and highlight any limitations observed.

• To explain the performance results obtained from the model

 Research design

• To evaluate the suitability of deep learning for modelling the inspection, sorting and

process control processes in remanufacturing.

• To develop a research strategy for obtaining valid results through a rigorous data

collection and analysis.

•

15

`

 Figure 2.2 Study research design

2.1.1 Procedural Issues in the Research

This study adopts the mixed research method to explore both quantitative and qualitative approaches;

however, there are several issues of procedure to manage. These include the issue of implementation,

where a decision of which method is explored first, the weighting issue that decides the dominant

method and finally, the integration issues, where the findings of the respective methods are combined

[45], [46]. These procedural issues in the research are outlined as follows.

a) Implementation Decision

There are two approaches to implementation, including concurrent implementation and sequential

implementation. The concurrent implementation involves performing both qualitative and quantitative

analysis simultaneously. At the same time, the sequential allows one method to follow the other, either

quantitative before qualitative or qualitative followed by the quantitative method [45]. This research

Action / Empirical

Mixed research

Steps

Research design

Research approach

Research Method

Data collection

Validity and reliability

Data analysis and

validation

Integration

Results

Deductions

Research outputs

Qualitative research

Thematic analysis

Questionnaire

Dependability and

credibility

Quantitative research

Various process data

External, internal and

construct validity

Model development

and analysis

Triangulation

16

adopts the sequential design as the research objective is to quantitatively develop and adapt the deep

learning techniques across various remanufacturing processes and evaluate the performance. The

qualitative study expands the scope through practitioner inputs by capturing their viewpoints and using

them to enhance the understanding of the results. The quantitative stage models the remanufacturing

inspection, sorting and process control alongside analysing the model's performance. At the same time,

the qualitative study complements the results and their applicability to remanufacturing. These results

are integrated to support the conclusions derived from the research.

b) Weighting Decision

Weighting refers to the magnitude of importance of the qualitative and quantitative methods to answer

the research questions by assigning equal or unequal weight to the respective methods [45]. The

research prioritised the quantitative evaluation method as it effectively addresses the vital research

objectives with the qualitative evaluation used to enhance the credibility of the findings. The results

from both evaluations were integrated to further the conclusions drawn from the study.

c) Integration Decision

The point of interface of the research is often referred to as the point of integration when the study's

quantitative and qualitative components are combined. It represents one of the most crucial decisions in

the research design, with researchers suggesting that the most common integration point is the results

and analysis [47]. Integration refers to the stage in research where the findings of the qualitative and

quantitative investigations merge [45], [46]. Without explicitly linking the findings of the two research

methods, the research output becomes a collection of multiple research methods rather than mixed-

method research. However, it has both components of a mixed research method. Hence, it is essential to

link the methods at different stages of the research. The research integrates qualitative and quantitative

data analysis and results. These integrations are described as follows.

• Data analysis - The modelling and quantitative evaluation findings provide a meaningful

interpretation of the data. At the same time, the qualitative practitioner feedback helped validate

the findings as worthy contributions to the body of knowledge.

• Results - The quantitative and qualitative methods were integrated to answer the research

questions used in the study. In addition, the findings of the respective assessments were

connected to enhance the understanding of the research in general.

2.1.2 Research Delimitations

This research focused on the exploration, design, development, analysis and testing of deep learning

methods in remanufacturing and will only concentrate on deep learning algorithms. The deep

convolutional neural network algorithms have shown state-of-the-art performance across domains.

Therefore, the research focuses on convolutional neural networks for modelling inspection, process

control and sorting in remanufacturing. The other statistical machine learning models are not considered

17

with the deep learning algorithms discussed in Sections 3.9 and 3.10 of the literature review in chapter

three. Moreover, these other models were not considered in the later stages of the research.

2.2 Research Philosophy

The research philosophy consists of four basic philosophical worldviews: positivism, constructivism,

advocacy/participatory, and pragmatic worldviews [45]. These worldviews directly shape the general

research approach. As presented by the researchers, an overview of these four viewpoints is as follows.

The positivist worldview represents traditional research, with the assumptions true for quantitative

analysis and not for qualitative research. Hence, it is often referred to as empirical science or

postpositivist research.

Furthermore, the pragmatic approach also considers the reality of achieving the research goals, not just

theoretical perspectives. It focuses on the situations, actions, and consequences rather than past

conditions, emphasising the research problems to understand them further. On the other hand, the

authors outline that the advocacy worldviews have political agendas intertwined with the research. In

contrast, the social constructivist worldview refers to the social construction of reality where the

research depends mainly on the participant's views of the situation under investigation. The advocacy

and social constructivist worldviews have no relational relationship with this study. In contrast, the

positivist and pragmatic worldviews form the basis of the research to evaluate the possibility of

modelling various remanufacturing processes using deep learning.

The research follows a holistic deductive paradigm that emphasises five vital themes across quantitative

and qualitative research methods: empirical enquiry, pragmatic enquiry, deductive analysis, and

quantitative and qualitative research. The reality of these models is a pragmatic enquiry, while the

generalised conclusions drawn from the results are deductive. The empirical enquiry refers to the

modelling and analysis of the respective applications developed and used in the research, including the

sorting, inspection and process control application data alongside the validation feedback.

Moreover, the quantitative research approach concerns the modelling and explanations of concepts and

controls. It starts the investigation from the existing theories. In contrast, qualitative research concerns

the interpretations of the feedback obtained after the model validation, with the researcher being distant

from the subjects. However, the qualitative enquiry proponents believe that knowledge is constructed,

which counters the quantitative proponents that knowledge is discovered by refining the existing

theories [48]. The adopted quantitative approach involves the experimental enquiry into the use of deep

neural networks in developing models for remanufacturing inspection, sorting, and process control

applications, while the qualitative evaluation considers the output of the models alongside the

practitioner feedback used for the validation of the research findings.

18

2.3 Rational for Adopting Mixed Method Research

Research methodology refers to assumptions, data collection, analysis, interpretation, and methods used

to present research, making the findings open to critique and replication [49]. The research adopts the

sequential mixed-method research approach, a hybrid technique where the researcher expands on one

research method's findings using another. It starts with a quantitative analysis that explores concepts

and theories, followed by a qualitative evaluation involving a few individuals or stakeholders and vice

versa [44], [45]. However, researchers have outlined that mixed-method research can enhance

understanding of more complicated research questions, with more substantial evidence from the broader

data scope though it is more challenging to execute [44]. In addition, the mixed method offers the

benefit of using the qualitative data to explore the quantitative findings further, augmenting the research

findings and involving the research's community-based stakeholders [50]. Finally, the mixed method

adopted in the current study gives the flexibility to develop deep learning models for remanufacturing

applications and test the concepts in various cases to validate, refine and consolidate the results.

The quantitative component of the research evaluates the process data to explain the experimental

observations between test variables using theories [45]. At the same time, the qualitative approach

brings the practitioner's views on the obtained outcomes. The typical empirical research is prominent by

the investigator's activities, which set the study's conditions alongside developing, building, and

controlling the investigation's experimental conditions [51].

The empirical research method is considered as it offers the advantage of using direct observation and

measurement of the considered process to make deductions about the process [49]. The research

explores the case approach with five essential components, including an empirical inquiry, with real-life

and contemporary components, using multiple sources of evidence alongside having no defined

boundary between the context and phenomenon [39], [44]. It evaluates the "how" and "what" questions

that the research poses [44], alongside combining the strengths of an applied and experimental study to

the usefulness and application of knowledge [49]. However, the role of the researcher has become a

crucial factor that highlights the difference between case research and other research methods, which

considers the researcher's control over events. Multi-case research requires that the researcher works

with the participants, similar to being involved in action research [39].

The research method is an experimental mixed-method research process that relies on the quantitative

postpositivist research view while recognising that the qualitative approaches will benefit the research.

The purpose of adopting the sequential dependent mixed research approach is to demystify the

complexity of understanding the application of deep learning models in remanufacturing. The outcomes

of the quantitative investigation are discussed further by academics and industrial experts to outline if

the research objectives and outcomes were met or not.

Nonetheless, the research adopts a case-based approach used by other researchers, allowing for two

stages of data analysis, including in-case analysis and cross-case analysis [268], alongside permitting

19

data triangulation. The case approach is grounded in the lack of theoretical work in the deep learning

field. Because of this lack of theory, most ground-breaking research is primarily based on heuristics

arguments derived from specific case investigations, and the same method is adopted in the research.

Moreover, another important reason for adopting case-based mixed-method research is the type of

collected data and the best ways of making sense of it. The collected data were qualitative image data,

while the numerical and computational analysis of the results is quantitative. Also, the validation

protocol used to ascertain the research findings is qualitative, obtained as feedback from the

questionnaires. Hence, the research objectives include investigating deep learning algorithms to

enhance remanufacturing efficiency and productivity.

The multi-case investigation approach was adopted as the most appropriate method because research

suggests that they provide greater generalisation and have a higher capability for creating and

developing theories than single cases [52], [53]. In addition, it helps to model and evaluate systems on

different real-world applications to determine their performance and generalisability. Perhaps,

researchers have also outlined that implementing the simulation-based model results in remanufacturing

has not witnessed appreciable deployment due to the practical implementation constraints, which are

still lacking [6]. Therefore, this research outlines the practical steps and methods of deploying deep

learning-based models in remanufacturing applications.

Nevertheless, research suggests two approaches to bridge the gap between theories and measurement:

the top-down strategy, the theory-driven approach, and the bottom-up strategy, the data-driven

approach [54]. The theories-driven approach starts with "the constructs and works towards the

observable variables", while the data-driven method starts with the "observations and works towards the

theoretical constructs". Furthermore, this research adopted the bottom-up approach where the process

data are collected first and used to model the deep learning-based systems.

2.4 Legitimacy of the research

The legitimacy of research outlines the criteria used in research design to justify the research

approaches. According to researchers, the research design outlines the logical set of statements, which

helps judge the quality of a research design [44]. The author further highlights four critical design

criteria for judging the quality of research design: construct validity, internal validity, external validity,

and reliability. These criteria are described in the following subsections

2.4.1 Construct validity

Construct validity helps establish the chain of evidence using multiple sources of evidence. Construct

validity issues arise when the researcher measures variables based on inadequate definitions [55]. It also

measures the conformability of the correct operational measures in the research. This research

construct adopts a data triangulation approach where various remanufacturing application cases of

20

inspection, process control, and sorting were used to test the quality of research findings, strengthening

the overall research's validity. The process-specific data were collected and used to train the model and,

afterwards, compare the performance.

This research has limited construct validity threats. There was an explicit definition of the variables

used in the literature review in chapter 2. The respective applications have all the factors well defined

and presented in detail with their effect on the learning algorithm outlined.

2.4.2 Internal validity

Internal validity refers to the researcher's degree of confidence about the inferences and conclusions of

the research by establishing causal relationships between variables [46]. In addition, internal validity

outlines certain conditions that lead to other processes or systems behaviours. Therefore, researchers

suggest that internal validity should be given special attention in experimental research. The vital

approaches to internal validity include using logical models to build explanations, pattern matching, and

addressing rival explanations [44]. The logical model approach was adopted to detail the relationships

between different design stages, from the conceptual model to the final actual model, alongside

explaining the different stages.

Nevertheless, internal validity is achieved through a complex model analysis, using various in-case

analyses that enable control over variables. Nevertheless, the variables used for the research evaluation

are based on theoretical foundations and findings from empirical research on applying deep learning

models. The various control variables that impact the research's dependent variables, including

prediction accuracy and error rate, were introduced to the model following other empirical research

with interpretations and deductions presented to enhance internal validity. The control variables used to

evaluate the impact of various thematic factors on model performance include:

• The model activation functions

• The optimisation methods

• The batch sizes

• the model parameter initialisation techniques

• The batch normalisation

• The loss functions

The developed model was tested against the above factors for performance evaluations and analysis

with corresponding inferences and deductions outlined.

2.4.3 External validity

External validity refers to the ability of the research to be generalised across a population that is

applying research findings in other instances of the phenomenon[44], [45]. It is another primary

criterion for judging the quality of the research design, as it outlines the domain where the study

21

findings can be generalised. The study adopted the mixed research method that combines the qualitative

and quantitative research methods alongside data triangulation to obtain a robust method of improving

external validity.

Moreover, the quantitative evaluation has a lesser external validity threat since there are limited data for

the investigated processes. However, the external validity of the research was achieved by adapting the

original model developed for the remanufacturing inspection process to other applications, including

sorting and process control applications in remanufacturing. Besides, the research examined the

relationship between several model parameters on the performance alongside the qualitative

interpretation of the findings. By doing these, the consistent performance results across the various

applications improve the overall validity of the research.

2.4.4 Reliability

Research reliability refers to the ability to obtain similar outcomes on research by repeating the study,

thereby demonstrating that the study's findings can be repeated with the same results. The reliability of

the research is achieved by adopting researchers' suggestions to either develop a case investigation

protocol or a case database [44]. These techniques ensure that the model is made repeatable through the

many documented operational steps taken during the research. The repeatability of the results is

achieved through the set of results obtained from the individual cases of the model application that

achieved significantly high prediction accuracy across the different remanufacturing inspection, sorting,

and process control applications.

2.5 Vital Research Considerations

The researcher considered several factors to decide the scope of the investigation. The study adopts the

cross-case analysis method for the reasons outlined in Section 1.7. Therefore, selecting a research

method that supports the case analysis is required. The research method must be appropriate for use in

the research domain and can obtain results that satisfy the needs of the remanufacturing practitioners.

Besides, the vital considerations for the investigation include the researcher's involvement, the research

domain, the practitioner's needs, the model choice and requirements and the choice of application cases.

2.5.1 Researcher Involvement

The researcher was not employed by the industry partner involved during this research. Perhaps, the

research epistemology of the qualitative paradigm requires the principal investigator to interact with

those being researched. The researcher interacted with the practitioners, which improved the

researcher's understanding of the overall remanufacturing processes.

2.5.2 Practitioner Needs

The affiliate company is a vital part of the POM research as collaborators are critical to the success of

POM research since they provide crucial practitioner feedback. The activities of this company include

gearbox and torque converter (TC) remanufacture, diagnostics, overhaul and other automotive repair

22

activities. The partners provide the researcher access to the industry process data for investigation. The

research was also conducted primarily in the Mackie Transmission remanufacturing facility in

Glasgow, UK, to further understand the challenges faced by practitioners. The routine activities helped

identify other critical areas of need for the practitioners.

The TC remanufacturing process is the primary focus of the investigation because the remanufacturing

process data can be acquired with the available setup. Perhaps, when a customer returns a faulty TC, the

company examines the unit according to the process activities outlined in Figure 2.3. However, the

pre-remanufacturing activities include the job book-in, examination, initial quotation, and job

confirmation. These activities are not discussed as they are out of the shop floor remanufacturing

process.

 Figure 2.3 Validated block diagram of the TC unit remanufacturing showing the focus processes as shades

The TC remanufacturing process starts with the EoL unit opening, which is the stripping process of the

product after the preliminary inspection of the core on arrival, intentionally omitted as part of the

reverse logistics. Further mechanical activities include fibre removal, pressure refitting, component

remanufacture or replacement, pressure testing, cleaning, and antirust application. However, automating

these processes has been identified as a vital challenge to remanufacturing practitioners from the

literature. Furthermore, researchers outlined that the remanufacturing processes are complicated,

manually performed, and lack the tools and methodologies to achieve them [9]–[11]. Therefore, these

practitioner needs inform the study's focus on developing tools to automate some of the manual

processes in TC remanufacturing. Understanding these unexplored applications in the industry can

improve the overall remanufacturing process efficiency.

Furthermore, the detailed description of these mechanical activities is not covered; however, the other

processes, including sorting, inspection and process control during the TC remanufacturing, form a vital

part of the automation investigation. The choice of these processes was informed by the capability to

detach them from the entire loop for automation, thereby improving the speed of achieving the

Opening / cutting

open

Cleaning /

Inspection
Fibre removal Cleaning /

inspection

Pressure

refitting of fibre
Inspection

Application of

antirust Repackaging Shipping Inspection

Component

welding
Weld pressure

testing

Sorting

23

remanufacturing through semi-automated remanufacturing, where parts of a process can be automated.

Nevertheless, the ability to model these processes with similar or identical data types was vital for using

only image data to evaluate the performance of the developed models in remanufacturing product

sorting, inspection, and process control. In addition, the process control application considers the post-

cleaning inspection in remanufacturing, where inspection helps decide if the process would activate a

pressurised drying system if there are waterlogs on the components.

2.5.3 Domain of Research

The domain of research is production and operation management (POM). Researchers have outlined the

gaps between the theory of operations management and the practice [56], [57]. As the operations

research domain considers data from the real world to investigate desired trends from specific research

[58], these deviations of practical realities from theories continue to attract researchers to close the

understanding. This research aims to close the gap in understanding the use of deep learning-based

models in enhancing remanufacturing processes.

Conversely, as people are vital components of the operations management research domain, researchers

have outlined the process approach to satisfy the needs of these people, especially customers. The

process approach includes five vital stages: identifying the needs, analysing and designing a product or

service to meet that need, obtaining the inputs to test the design, transforming it into a service or

product, and finally, delivering the service or product [59]. The five-step process in the block diagram

of the adapted POM approach is highlighted in Figure 2.4.

Figure 2.4 Adapted block diagram of the production and operations management system [59]

Moreover, these needs of customers in POM are adaptable to the needs of practitioners in

remanufacturing.

Satisfiers

Resources (materials, model and data)

Product or service

Stage 5
Deliver the service or distribute product

Stage 4
Transform into product or service

Resource estimate

Explicit forecast

Stage 2
Analyse and design the service / product

Stage 3
Obtain the inputs

Need

Stage 1
Identify needs and forecast requirements

Practitioners

24

2.5.4 Model Choice and Requirements.

The choice of a computational model is vital as it considers the available data for modelling the

processes. Since there is no available data for the processes to initiate the investigation, the researcher

has to decide on the processes and the computational model to investigate based on the data collected

from the remanufacturing facility where the research data is to be collected. Hence, the decision was

made to record the samples' images for remanufacturing. The qualitative image data were recorded for

processing by the model. The computational model that can process grid-like data becomes the most

appropriate choice for the research, informing the selection of convolutional neural network models as

they are suitable for analysing image data.

2.5.5 Identification of Remanufacturing Processes for Modelling

The generic remanufacturing process involves several steps that describe the entire process of returning

a used product to 'as new' conditions with matching or higher warranty. The remanufacturing process

involves identification, disassembly, cleaning, inspection, reconditioning, re-assembly, and final testing

to arrive at a remanufactured product. This process is depicted in Figure 2.5.

 Figure 2.5 Schematic of the generic remanufacturing process.

The identification stage involves checking and reviewing a product to determine its make, model, and

suitability for remanufacturing [60]. Unfortunately, the availability of all these product data is not

readily available, making the application of these models in the identification stage unrealistic in the

current settings. Besides, the disassembly stage separates the returned cores into single parts and is

further classified into reusable and non-reusable products during the inspection. Early attempts to

highlight whether a product is remanufacturable or not resulted in the development of significant

importance for identifying the viability of remanufacturing, with researchers outlining that products for

remanufacturing must meet the following conditions [61]:

• There must be a core for remanufacturing.

• The core cost is low compared to the actual value.

Identification

Disassembly

Cleaning

Inspection
Reconditioning

Reassembly

Final testing

25

• The technology to restore to its original condition exist.

• Product technology is not evolving rapidly.

• The products are made to standard and with interchangeable parts.

• The remanufactured products sell for a high percentage of the original product market price.

Furthermore, these factors were considered when categorising a product for remanufacturing with

subsequent stages following afterwards. Nevertheless, the inspection determines if the part condition

has deviated from the original specifications. In addition, it ascertains the state of returned cores and

makes the best and most profitable decisions about their future use [62]. Moreover, the cleaning stage

involves numerous cleaning materials and methods, including water and high-pressure jet cleaners to

degrease, de-rust and de-oiling the disassembled products for further work [63].

Nevertheless, the reconditioning, reassembly and final testing stages involve a series of repairs,

replacements, testing, and coupling of the remanufactured parts into products. These final stages

complete the remanufacturing process in a typical automotive remanufacturing setup. It is worth

outlining that there could be additional or even lesser stages to achieve product remanufacture in some

other industries. An industry case-by-case remanufacturing setup was investigated and outlined in the

literature [64].

Conversely, an investigation into the automation of the entire remanufacturing process cannot be

achieved in single research based on the complexities of the processes, thereby creating a limit to what

is obtainable within the research. Therefore, selecting the specific remanufacturing processes for

improvement through automation in the research is based on significant factors, most importantly, the

ability to model the processes from the collected research data. The remanufacturing processes include

the identification stage referenced as sorting, inspection and process control applications. This scope is

informed mainly by the research design protocol in section 2.1, which outlines that only qualitative

video data would be collected for further processing. Therefore, these aforementioned processes are

suitable for modelling using the collected data.

2.6 Industrial Collaboration.

Collaboration refers to working across organisational boundaries to manage and build value-adding

systems to meet customer needs [276]. It enhances knowledge sharing and the relationship between

organisations, providing the platform to improve product offerings and deliver essential customer

demands. Furthermore, the general supply chain collaboration literature outlines numerous crucial

factors that enhance performance through collaboration, including information sharing, trust and

information technology [37]. These factors were essential to achieving seamless collaboration during

the research. Besides, researchers suggest that successful collaboration can be achieved when

organisations evolve against the factors that hinder collaboration. These include a lack of trust, poor

strategic planning, vision, and commitment, poor organisational culture, inadequate information

26

sharing, and lack of standardised methods of measuring performance [37]. Understanding these vital

factors enhanced the researcher's contributions while interacting with the practitioners during the

research to achieve success.

Moreover, the case selection explored the possibility of collaborating with the industry, enabling the

incorporation of experts with domain knowledge in the investigation. Hence, it will enhance the

understanding and validation of the studied data.

2.6.1 Benefits of the Collaboration

The benefits of collaborating in remanufacturing research are tremendous, especially for participating

institutions to share knowledge, meet customer needs, improve quality of work, enhance competitive

advantage, improve delivery time, enhance product accessibility and improve revenue [37]. In addition,

the research output on collaboration enhanced understanding of the requirements for successful

collaboration among institutions, with significant potential to advance industrial practices.

Conversely, research benefit from the collaboration includes enhancing the understanding of

remanufacturing processes, identifying vital processes for improvement, and accessing

remanufacturing-specific data to advance future investigations on using various learning algorithms in

modelling remanufacturing process challenges as well as establishing links to various remanufacturing

industry stakeholders.

2.7 Data Collections

Data refers to any recorded factual material collected, processed, stored or used to justify or validate an

original research result. It is also a collection of information used to approve or disapprove a research

claim, theory or extend knowledge around a specific topic [49]. Research data can be qualitative, where

verbal and non-verbal data, including questionnaires, documents, lab and field notes, audio, video,

images, and transcripts or quantitative when numerically expressed or classified [49], [65].

Furthermore, for systems and processes, asking practitioners, observations and system documentation

are vital sources of information [66].

Nevertheless, researchers highlight broad data collection techniques, including observation, secondary

data, experiments, and derived forms [65]. However, the specific data collection type determines how to

manage and store them for future use and processing. In industrial context, product conditions are

recorded to properly assess and monitor health using various sensor systems, including cameras,

ultrasonic, acoustic, accelerometer, current, thermocouple, radio-frequency tags, built-in encoders etc.

[30], [279]. These sensor signals help to process system, product or component status[30], [67][30].

Conversely, the empirical data collected for this research were images of torque converter components

obtained through the connected camera. The torque converter system is an assembly that primarily

couples fluids found in automatic transmission engines, transferring rotational power from a prime

27

mover to a driven load. It is located between the transmission and the engine flexplates. Besides, the

data acquisition systems used for collecting the data include a universal serial bus (USB) camera of

resolution 640 X 480 pixels, with lens F/2.0 and f=4mm, programmed to record the video of the object

samples. To achieve the setup, a computer with pre-installed Python software and codes to open, record

and capture a three-minute video of the samples from the camera and a clamp to fix the camera to a

permanent position. It was necessary to minimise the inherent measurement errors where possible, as

researchers highlight that most errors in research are caused by the data collection procedure [54],

thereby enhancing repeatability. The respective videos provided the samples of each object class used

to create the dataset, which helped train the developed learning algorithm, as detailed in Section 2.8.

Nevertheless, most of the collected data were videos of objects recorded from the experimental setup

and converted to image data alongside the validation data. The location of the primary data collection

includes the Mackie Automatic Transmission Limited Glasgow UK and the University of Strathclyde

Design, Manufacturing and Engineering Management Workshop. The data collection involves

recording videos of the samples using the researcher-developed Python algorithms and stored on a hard

drive for further processing and analysis. In contrast, the validation data were returned through the

validation questionnaires. The recorded visual data provides holistic conditional information about a

product or component conditions. The videos are converted to images, with each image representing a

data point and the collection of the data points making up the dataset.

Moreover, the data collection process of the torque converter components for remanufacturing

considered the lighting and background of the actual remanufacturing operation, with the samples

recorded directly on the conveyor systems during operation. This is informed by validated research that

considering the operation background improves the model classification accuracy [86]. The video

stream was set to always preview to quickly identify when the camera malfunctions while working.

2.8 Research Data

The research uses a collection of image data recorded using standard USB cameras. These collections

of samples are often referred to as datasets. Datasets are generally a collection of examples or data

points [68]. Researchers have outlined that the general characteristics of a given dataset fundamentally

influence the behaviour of any reference model [69]. These examples constitute the experiences the

learning systems will use during training, thereby attaining the ability to perform a given task.

Furthermore, researchers have also suggested that the amount of skills required to deploy a deep

learning-based model continues to reduce as more and more data becomes available to the models [68],

making data an essential component for improving deep learning models.

Besides, dataset creation is a tedious job requiring a lot of time. It is expected to have information about

its creation process and essential details about the makeup. The early datasets in general machine

learning research include the Iris dataset, which contains measurements of different parts of 150

28

selected iris plants, with each plant corresponding to one example [70]. The features within this dataset

are the respective sepal length and width alongside petal length and width measurements, representing

three species of plants in the dataset. This dataset inspired numerous collections and annotations of

research data, leading to the creation of other massive datasets, including ImageNet, COCO, CIFAR,

FERET, and many others.

Moreover, the general computer vision challenges use standard datasets containing millions of images

helpful in training deep learning model architectures for the specific application area. These datasets are

characteristic of being huge in numbers and valuable for extracting features in the data. The first

computer vision dataset is the classic handwritten image dataset of the Modified National Institute of

Standards and Technology (MNIST), released in 1999. As the learning algorithms and techniques

advance, this dataset has continued as a reference dataset. Other standardised datasets used in various

state-of-art results reported in published computer vision articles include ImageNet [71], CIFAR [28],

MNIST [72], [73], PASCAL VOC [74], COCO [75] etc. The MNIST dataset contains 70,000

handwritten images, with 60,000 training and 10,000 test samples [72], [73]. The MNIST was used for

digit recognition tasks, but the visual recognition challenge was birthed due to advancements in

algorithm development and the need to track the advancements.

Furthermore, the PASCAL Visual Object Classes challenge, known as the PASCAL VOC dataset,

consists of two components: an annual competition with a workshop alongside a publicly available

image with annotation of ground truth and standardised evaluation software. This competition started in

2005 and increased the number of objects used in the datasets in the subsequent years. The PASCAL

VOC has five challenges: recognition, detection, segmentation, action classification, and person layout

[76]. However, it is worth stating that the PASCAL VOC dataset is used to test new advancements in

algorithm developments; however, the PASCAL VOC challenge has now finished [74].

Nevertheless, the early object recognition and image classification tasks used the large-scale visual

recognition challenge (ILSVRC) dataset, also known as ImageNet. It is the pioneer dataset of millions

of labelled images used for training and testing deep learning algorithms. Furthermore, this dataset is

used to test the progress of computer vision applications for extensive scale image annotation and

retrieval[71]. Besides, these standard datasets are usually grouped into two categories; the publicly

available datasets and the annual competition datasets, where entrants train their algorithms using the

provided training images and automatically annotate the test images as results, alongside submission to

the evaluation server. After the competition, the results of the state-of-the-art algorithms are published,

with the authors invited for insights.

In addition, the COCO dataset, the Common Objects in Context, is another standardised dataset for

large-scale object detection, segmentation, and captioning, with ninety-one object classes and over two

million labelled images. It represents objects in the natural environment with specialised features,

including recognition in context, object segmentation and super-pixel segmentation [75]. In addition,

29

the developers focus on finding objects within a scene from varied viewpoints [77]. Other more recent

scene recognition datasets are the Places dataset, with over seven million labelled images [78] and the

SUN dataset, with around a million labelled images for each of the ten scene categories and twenty

object categories [79].

Conversely, It is worth highlighting that these datasets have continued to advance as the algorithms

improve; however, the growth of the datasets has been slow, as suggested by researchers [79]. In

addition, the contributions of the standard datasets have been massive, especially in stirring more

interest in developing more advanced learning algorithms over the years. Furthermore, these datasets

have provided robust techniques to detect and recognise objects, describe scenes alongside scene

attributes.

However, it is also worth stating that these datasets consist of different data formats, including images,

videos, texts, tabular forms etc. and have been used in traditional machine learning research. However,

most of these datasets have been extensively used in deep learning applications from digit recognition,

face recognition, gesture recognition, video classification, text characterisation and many other

applications, with no dataset specific to the remanufacturing. This crucial observation provides another

gap that the current research addresses by providing computer vision data for modelling

remanufacturing processes, especially for sorting components of the torque converter system.

2.8.1 Limitations of Existing Dataset

The existing dataset for research in machine learning applications has recently been criticised for biases

attributed to the makeup of the datasets, with other fields like remanufacturing not having field-specific

datasets for deep learning research. However, these biases tend to cause the AI models to produce

undesired results. To remedy these biases, IBM recently released a new dataset for face recognition

research called the Diversity in Faces (DiF) dataset, containing one million human facial images [80].

This dataset aims to correct the biases in the current face recognition algorithms.

However, other research fields with similar biases in the current datasets or no datasets require

improved, more balanced datasets to complement the performance of these state-of-the-art algorithms.

The industry collaboration provides remanufacturing specific industry data for deep learning

applications. The respective data for modelling the torque converter systems provide new data for

inspecting and sorting torque converter components and units during remanufacturing.

2.8.2 Remanufacturing Data for Deep Learning Research

The remanufacturing dataset created by this research is described. The data collection process outlined

in Section 2.7 details the data recording methods. The created dataset becomes the first public

remanufacturing computer vision dataset of torque converter components and units for

remanufacturing. Datasets generally have been highlighted as an integral part of object recognition

research and the main reason for measuring techniques for comparing and evaluating the performances

30

of algorithms over the years. Perhaps, datasets have also been identified as the main limiting factor that

has constrained the focus of general learning-based research since the performance benchmark number

has been used for evaluating successes [81].

Nonetheless, there is no dataset specific to the remanufacturing sector, which is a significant barrier to

advancing the application of learning models in remanufacturing. Therefore, the research contributes

the torque converter component dataset, consisting of 71560 image samples. This dataset will attract

more researchers to investigate other applications of learning models to other remanufacturing sectors

and processes. The summary of the recorded data used in the research investigation is presented in

Table 2.1, showing the applications, data type, number of classes, the number of images, and the

number of images per class used in the training and evaluation of the models.

Table 2.1 Tabular description of the recorded research data

Process Data type Number of

classes

Number of

Images

Number of

images per class

Sorting Images 20 71560 3578

Inspection I Images 8 28800 3600

Inspection II Images 8 28624 3578

Process control Images 2 14312 7156

2.8.3 Dataset Naming Convention

The naming convention adapted for the collected data includes the actual component's name and a

suffix of numbers denoting the unique sample in the collection. For example, the inspection I and

inspection II cases had eight classes of sample images named as follows: Dry samples (DS1), (DS2),

(DS3), (DS4), (DS5), and wet samples (Wet1), (Wet2), and (Wet3). Furthermore, the second eight

samples considered for the surface inspection application were: no defect (Nodef), crack fault (CF),

pitting fault (PF), rust fault (RF), pitting and crack (PnC), rust and crack (RnC), rust and pitting (RnP),

alongside pitting rust and crack (PnRnC) defects. Besides, the sorting process had twenty (20) classes

of sample input images named as follows; Damper1, Damper1, Damper3, Housing1, Housing2,

Housing3, Impeller1, Impeller2, Impeller3, PressurePT1, PressurePT2, Reman1, Reman2, Reman3,

Stator1, Stator2, Stator3, Turbine1, Turbine2, and Turbine3. Furthermore, the process control case had

two (2) classes of sample input images named wet and dry with an additional three-number suffix. The

samples had 7156 images in each object class used in the process control experiment.

Finally, these samples will be made available to support future research on applying deep learning

models in remanufacturing, thereby providing the first remanufacturing-specific dataset for modelling

deep learning-based inspection and process control applications. These primary data were explored to

achieve the experimental aims of the research by interpreting and predicting the contents of the

collected image samples using computational models. Furthermore, this research adopts the non-

31

probability sampling method, allowing for proper inference from the research data, ensuring an in-depth

understanding and knowledge of the specific contexts used as test cases, and restricting generalisation

on similar cases.

2.9 Chapter Summary

This chapter describes the research design method and research philosophy. It further outlines the

rationale for selecting the sequential mixed method research approach alongside a description of the

data collection approach limitations of existing data. Finally, it discusses the datasets used in the

research. It also outlines the research domain, the researcher's involvement, and vital research

considerations to achieve valid and reliable research outcomes.

32

 CHAPTER THREE

 LITERATURE REVIEW

3.0 Introduction

Chapter three provides the research literature review that first introduces remanufacturing, automation,

benefits and challenges. It also introduced deep learning modelling, the generic learning models and

their respective remanufacturing applications alongside the opportunities in remanufacturing. It also

outlined the different deep learning modelling parameters to address the research question (Q3) on

understanding and improving deep learning algorithms, including the architectures of deep neural

networks (DNN) used for modelling various applications and their makeup. Hence, the application of

these models is reviewed from remanufacturing perspective to understand the state of research in

DCNN (Q1). The literature review conception approach of this research is outlined in Figure 3..

.

Figure 3.1 Literature review ideation scope

3.1 Overview of Remanufacturing

Remanufacturing is an essential means of achieving sustainability in material, energy use and

environmental protection[61] by restoring used products to as good as new quality, using only about

90% less material and one-sixth of the energy used for manufacturing equivalent new products [82].

Besides, It is a valuable strategy for continuing product usage that the manufacturers are no longer

producing, supplies spare parts and manages warranty returns by industry operators [83], [84].

Identify vital processes

for modelling

Learning models

Introduce automation and

challenges in remanufacturing

Technologies as solution

approaches

Overview of remanufacturing and

benefits

Deep learning architectures, convolutional neural networks, evolution,

components including pooling, activation, losses, optimisation, evaluation

metrics etc and applications of deep learning models

Assess the suitability

of modelling using

deep learning

Review existing

practices and limitations

33

Remanufacturing has been described as an end-of-life activity to restore used products to "as new"

condition with matching or more extended warranty. Remanufacturing has become a viable solution to

increasing products' availability [85].

3.2 Benefits of Remanufacturing

Remanufacturing is an end-of-life strategy that provides numerous benefits, depending on the

stakeholder in reference. These benefits are obtainable from different perspectives: the remanufacturer,

customer and environmental benefits. The remanufacturers' gains include that It creates highly skilled

jobs, improves profit margins, provides new manufacturing techniques, and creates a platform for better

customer relationships through better trade-in opportunities [86], [87] and enhanced economic activities

[88].

Nevertheless, environmental benefits arise from introducing the element of compliance with directives

and regulations within territories. These have successfully increased the target level of recycling and

reuse up to 95% as of 2015 [6]. Remanufacturing also maximises the added value throughout a given

product's life cycle. It provides a platform to decrease the number of materials sent to landfills by

reducing product waste, energy and material consumption, and carbon emissions into the environment

through industrial activities[60], [86]. Specifically, remanufacturing reduces the number of raw

materials consumed and energy used in the production process to about 10% to 15% of new materials

and energy used for a typical remanufacturing activity[61].

Besides, remanufacturing customer benefits include providing superior quality products with good

reliability compared to other product recovery techniques. The individual products are disassembled,

assessed and restored independently or even replaced if the product cannot replicate original

performance specifications[89], [90]. Furthermore, it enhances product availability, guarantees lower

product prices, and provides flexibility in purchasing options when needed. It provides about 20% to

80% cost savings alternatives[87], [90] and serves as a source of spare parts highlighted from previous

research[10]. It also offers economic benefits as the products are sold, on average, for much less than

the price of equivalent new ones.

Despite these benefits provided by remanufacturing, other researchers have outlined that

remanufacturing operations may not offer the vast gains anticipated. The expensive labour cost of

remanufacturing since the procedures are human-intensive, the energy consumption and the carbon

footprint to remanufacture a product have significant impacts [6], [91]. These authors suggest that

emissions from transporting the products for remanufacturing and the effect of the chemicals used to

clean products during remanufacturing are significant to ignore. Moreover, it is worth highlighting that

not all remanufacturing operations use chemical cleaning techniques, which downplays the

environmental pollution concerns. Furthermore, the supply chain concerns about transporting these

products are case-specific as some remanufacturing facilities are located within the collection points,

34

minimising the carbon footprint and enhancing the energy recovered from the process. Also, the

considerable labour cost of remanufacturing has witnessed business owners sending most labour-

intensive tasks to regions with lower wages. For example, Bosch performs her labour-intensive jobs in

Ukraine and Slovakia while performing automation-intensive remanufacturing in Germany [6]. These

downplayed issues highlight the need for further research to find new and novel approaches to enhance

remanufacturing operations using emerging technologies like deep learning.

Nonetheless, the reverse logistics and the remanufacturing process pose severe challenges due to the

lack of product information [92], the difficulty in disassembling the products, the indefinite quantity of

returned products [93], the complex nature of the cleaning process [10], complicated nature of the

remanufacturing process, uncertainty in ascertaining the condition of returned products [82], [94],

challenges in reassembling the products and testing the products to verify that the quality meets the "as

new" condition to mention a few. These and many other factors contribute to the challenges that must

be addressed to enhance productivity in remanufacturing.

3.3 Remanufacturing Automation

Automation refers to using computer-aided systems and hardware such as sensors and programmable

controllers to automate processes, reducing the dependence on human operators. To attain fully

automated remanufacturing, systems should be adaptive to adjust to various product variations and

conditions [95]. Furthermore, these systems sometimes allow collaborative work between humans and

robots to interact, and the interaction has been defined as an interdisciplinary field of research. For

example, robots can be deployed through collaboration and practical risk evaluation to perform

hazardous operations while humans perform other cognitive and more flexible operations [96]. Besides,

recent research has witnessed the automation of car remanufacturing case study using the human-robot

collaboration where the sealant of an assembly was successfully performed using the cobots [97].

However, researchers have outlined vital challenges for practitioners in remanufacturing to achieve

enhanced performance. These include the inconsistency of the quality of the remanufactured products

and the labour-intensive nature of the remanufacturing process [98]. However, the systems' inputs are

vital to address these challenges. Noteworthy are the two vital inputs to the production system,

including the materials and labour, and these have been identified as the primary sources of poor

performance [99]. Material productivity refers to using newer concepts, including material substitution

techniques, to reduce components' input materials and weight, thereby improving performance and

technologies.

In contrast, labour productivity entails using technologies, automation systems, and management

methods across the production line to enhance throughput. Researchers outline that the manufacturing

productivity sector has improved by more than three hundred percent in the past five decades due to

improved labour productivity [99]. However, despite the outlined successes of these productivity

35

initiatives, remanufacturing still lags in developing and adopting similar performance enhancement

strategies, most notably the labour productivity techniques.

Conversely, the sources of inputs to the production system are vital control points to enhance

performance. Recent research has focussed on techniques for enhancing material selection and usage

during remanufacturing, including additive remanufacturing, also known as 3D printing [98]. At the

same time, labour improvement is obtainable through different sustainable production approaches,

including the use of active disassembly [100], procurement digitisation [101], pre-process inspection

[102], automated inspection [103], electrochemical honing for the removal of hard mechanical alloys

[104], cyber-physical systems [98], collaborative robots [105], and other technologies embedded in the

Industry 4.0 framework. However, despite the technologies and processes specific activities to enhance

performance, researchers outline that remanufacturing still suffers from poor automation due to a low-

skilled workforce, lack of willingness to invest in automated systems, and lack of adequate tools and

technologies, among others [6]. These challenges are broadly discussed as follows.

3.3.1 Challenges in Remanufacturing

The remanufacturing processes currently face crucial challenges that impede their overall throughput.

These challenges have been discussed in detail in various remanufacturing literature. However,

researchers classified the remanufacturing challenges into three categories: collections, often referred to

as reverse logistics, remanufacturing process, and redistribution stages, differentiating the stages where

these challenges appear in the overall cycle [106]. Perhaps, as there are no clear boundaries between

these remanufacturing stages in practice, some of the difficulties in one step affect the subsequent

stages.

3.3.1.1 Collections

The core acquisition and management constitute the first challenge that remanufacturing businesses

have to deal with at the very beginning of the process. The primary core acquisition methods include

volunteer-based returns and buy-back returns [107], ownership-based, service contract-based (leasing),

deposit-based, credit-based (trade-in) and direct orders methods [108]. Some remanufacturers use these

acquisition techniques independently and together to achieve the most profitable product collection.

Nevertheless, the remanufacturing core management focuses on how products are managed, with the

most critical decisions in procuring cores being the time, quality and quantity of cores.

Furthermore, another difficulty of core management is the complicated nature of reverse logistics as

various groups are involved, including the OEMs, workshops, private suppliers, recycling, and disposal

companies. Also, the challenges posed by the enormous logistics of the direct core supply by consumers

and the scarcity of product life-cycle data helpful for predicting the remaining useful life [109].

36

Besides, inventory management is another critical challenge of the collections stage that

remanufacturers have to manage. It involves predicting the supply and demand needs of the products

alongside providing the balance for capital investment for products while keeping the stocks at an

acceptable minimum to maximise profit. Research suggests that the available supplies must meet the

short-term repairs needs of the remanufacturing process, and inventory management provides various

methods of managing inventories, including make-to-order (MTO), make-to-stock (MTS), assembly-to-

order (ATO), and the pull principle [89], [110]. However, the above inventory management techniques

faced similar challenges of reducing or increasing stocks, causing avoidable costs for storage and

disposal in the industry [111]. Perhaps researchers suggest that most remanufacturers have adopted

mixed business models to reduce product demand and supply uncertainties, especially the MTO model

[89]. Besides, research outlines that only one in three remanufacturers currently include prognosis in

their inventory management [89], creating the need to develop more robust techniques to enhance

remanufacturing efficiency, which is vital for production planning and control.

3.3.1.2 Remanufacturing Process

The remanufacturing processes constitute the most contributory factors to poor productivity in

remanufacturing. These processes involve all the product remanufacture stages, including inspection,

cleaning, sorting, disassembly, reconditioning, reassembly, testing, and storage. In addition, these

processes have different inherent challenges that make the remanufacturing process difficult, including

the small batch sizes of operations, vast product diversity, complicated production planning and

disassembly, low degree of automation of processes, stochastic routing, and products not designed for

remanufacturing, among others [89], [110].

Conversely, another area of challenge in remanufacturing is resource planning which includes activities

to manage labour, raw materials and parts supply [107]. Besides, research also suggests that

remanufacturers have managed the vast product varieties through different approaches, including the

use of customised material requirement planning (MRP), theory of constraints (TOC) such as drum-

buffer rope and classic inventory control methods, including economic reorder levels and reorder points

and finally the Just-In-Time methods like the Kanban systems [89]. Furthermore, the disassembly

process also introduces some complexities in the remanufacturing process. It directly impacts the

production plans, material and resource plans, scheduling and shop floor controls and requires a

reasonably high degree of coordination to improve productivity [89].

Perhaps, the most critical concern in the remanufacturing process is the complicated processes involved

in the remanufacturing of EoL products, which are too broad to discuss independently. In addition,

these concerns draw attention to the possibilities of incorporating new technologies to improve process

automation in remanufacturing, focusing on the sub-processing to enhance efficiency and productivity.

37

3.3.1.3 Redistribution

The challenges of the remanufactured product redistribution are also an important consideration to

achieve optimal productivity. These challenges arise from the uncertain demands for remanufactured

products caused by crucial factors of the perceived differences between remanufactured and new

products and the young state of the remanufacturing market in general [110]. These factors are also

vital to maximising productivity as adequate efforts to provide storage facilities for remanufactured

products that are not immediately dispatched are essential to enhance smooth operations alongside

forecasting the size of the storage facility required.

Perhaps, the investigation of remanufacturing practitioners' challenges cannot be exhausted in single

research; however, some of these challenges could be addressed using learning algorithms. Following

the successes of the outlined prevalence of machine learning and digital automation in the

manufacturing industry [112], remanufacturing can benefit from replicating compatible applications.

However, as the remanufacturing processes are more complicated than the manufacturing processes,

developing similar or new methods and technologies for automating remanufacturing processes is

necessary to achieve holistic automation since the existing technologies in the manufacturing sector

cannot work in the remanufacturing without adequate modifications. Therefore, exploring these new

methods and technologies for improving remanufacturing is critical to addressing the technology gaps,

alongside implementing and adopting the developed technologies. The investigation, design and

implementation of these digital automation strategies in the remanufacturing industrial context supports

the research on developing and deploying deep learning models, especially the convolutional neural

networks in various remanufacturing applications. This context is informed by the excellent results of

the deep convolutional neural network models, which have surpassed human-level accuracy in

recognition tasks [33].

3.4 Learning Models and Technologies as Solutions

The learning models and technologies represent one of the solution methods for addressing crucial

remanufacturing challenges. These approaches present vital opportunities for learning algorithms to be

incorporated in systems design for remanufacturing process improvement, thereby enhancing

productivity. These technologies will address specific productivity concerns and provide significant

benefits, including insightful and data-driven decisions using product life cycle data, improving the

efficiency and quality of remanufactured products. These digital technologies have played essential

roles in the industrial landscape in the last decade and will continue to dominate even in the nearest

future. The beneficial roles of these technologies have been outlined for the manufacturing industry,

especially for digital automation, where researchers have highlighted that it is currently the general

automation approach alongside machine learning models [112]. Besides, these technologies provide

cheaper options for achieving process automation, enhancing overall efficiency when deployed.

38

Moreover, deep learning is a subfield of artificial intelligence (AI), an emerging technology that has

witnessed tremendous applications across different industries, transforming the predictive capacity of

learning models. AI refers to the simulation of intelligent behaviours by perceiving the environment,

understanding the behaviours and responding to the perceived behaviours [68]. The AI models adapt

artificial neural networks, machine learning, deep learning, reinforcement learning, and other

technologies to learn the underlying patterns in data. The learning models research has advanced to

address the challenges of early adoption of machine learning which includes processing raw data and

automatically providing model features without manual inputs[28], [113], resulting in high-performance

models with low resource and time investment [112]. These improvements reflect the current design

methods that involve creating a model, preparing the data, training, evaluation, and deployment. The

respective components of the pipeline consist of a set of codes that perform the specific task in the

pipeline representing the typical deep learning modelling approach. These advances have inspired

countless improvements across industries and encouraged more developments of new methods of

improving processes and workflows.

3.5 General Learning Approaches

Learning models are mathematical algorithms that represent the relationship between different parts of

a given data. These models map certain variables in the data to specific targets or responses. The

learning models have adopted various approaches to achieve pattern learning. The general objective of

these algorithms is to obtain a function that minimises some loss over specific data. These approaches

are usually categorised based on the type of data features available to the learning algorithm. For

example, the rule-based system uses hand-crafted features to obtain its corresponding output. The

traditional learning approach uses similar hand-crafted feature designs to map features from input to

output. Other techniques include representation learning, which uses mapped features to obtain the

corresponding outputs. In contrast, the deep learning approach learns simple features from inputs and

more complex features from the hidden layers, mapped together to get the output.

Nevertheless, the main difference between the traditional and other learning techniques to deep learning

focuses on the feature extraction techniques. Most early design approaches were implemented

successfully to classify images using hand-crafted features. However, these design approaches are

inherently time-consuming and require immense domain knowledge and careful engineering of features

[28]. A comparison of these learning paradigms is shown in Table , which outlines that the DL

approaches use a layered learning structure where simpler features are learned by the initial layers, with

the more complex features learned by the multiple hidden layers before feature mapping to obtain the

output representation of the inputs.

39

 Table 3.1 A comparison of different learning approaches adapted from [75].

Approach Learning Steps

Deep Learning

Inputs

Simple features Complex

features

Mapping from

features

Output

Representation

learning

Features Mapping from

features

Output

Traditional

machine

learning

Hand-designed

features

Mapping from

features

Output

Rule-based

learning

Hand-designed

features

Output

3.6 Learning Models in Remanufacturing

The application of learning models in remanufacturing is not a new trend in remanufacturing research;

however, deeper architectures are emerging as researchers investigate the more recent architectural

advancements across different application areas. The deep architectures and other enabling emerging

technologies, most importantly big data, overlap in actual implementation, suggesting that the learning-

based models have other enabling technologies that support their deployment. Moreover, the

remanufacturing sector has several challenges that require novel technologies to address across various

remanufacturing stages, including core management, inventory management, product life cycle

management, disassembly, process sequencing, material matching, and lean remanufacturing, among

others [111]. The role of these learning algorithms in remanufacturing applications is presented to

enhance inventory management, capacity planning, production planning, scheduling, forecasting, and

many other benefits [8].

3.6.1 Operations Management

Learning algorithms have found various applications in remanufacturing operations management,

including optimising reverse logistics, reliability and quality assurance [112] and redistribution. The

reverse logistics involve managing returned products to capture value through remanufacturing,

recycling, reuse and proper disposal [114]. Reverse logistics is mainly concerned with planning and

forecasting product return quantities, probability and quality of product returns. It has witnessed the use

of various artificial neural networks and neuro-fuzzy models [115], adaptive network fuzzy inference

systems [116], Fuzzy Petri Net [117], and Fussy expert systems [118] to forecast product returns in

remanufacturing. This modelling process enhances the planning of the product returns and collection

processes. In addition, researchers also explored simulation models based on ordinal optimisation of

remanufacturing process planning using machine learning methods [119], with the learning algorithms

showing huge potentials in optimising reverse logistics however, the capabilities of these technologies

is still an active research.

Another application of learning models in remanufacturing is inventory management. An adequately

designed inventory system that meets the stock demand and supply improves overall productivity and

40

throughput. The application accounts for the use of deep belief networks (DBN) to experimentally

determine the feasibility of estimating the remaining useful life of the equipment. The authors

successfully predicted the optimal remanufacturing time of mechanical transmission equipment [42],

with the trained DBN model producing a prediction error of 27%. Despite the poor results, the

application has enormous potential with advances in developing these computational models.

Furthermore, another inventory management application of learning algorithms is the reinforcement

learning (RL) approach in the planning and predicting the optimal strategy of maintaining service levels

and switching between sources of materials during remanufacturing when core inventory is running low

[120].

Nevertheless, using the computational models that focus on realising closed-loop product life cycles by

enabling remanufacturing, reuse and customisation according to the customer needs is another excellent

application of learning models. These models include customer specifications at an early stage in the

value chain to meet the individual customer specifications and create the opportunity for product

customisation [121]. Hence, this allows the remanufactured products to have new functionality and

meet the original specifications.

3.6.2 Forecasting

Forecasting is another significant application of learning algorithms that plays a vital role in various

remanufacturing aspects, including economic risk management, policymaking, and decision-making.

Researchers have outlined two forecasting categories, casual and time series forecasts, which provide

different benefits [122]. Time series forecasting is the dominant method due to the convenience of data

collection, stability and high accuracy. At the same time, the authors identified causal forecasts as

having inherent limitations due to the availability and reliability of independent variables.

Besides, some remanufacturing literature on learning algorithms has focused mainly on time series

forecasting, which can benefit product returns and cost predictions, with the cost prediction model using

semi-supervised learning, least-square support vectors regression algorithms considering failure

characteristics, and the K-nearest neighbour algorithms to enhance forecast precision, being

investigated [123]. Moreover, these learning models have also been helpful in the modelling and

simulation of tyre remanufacturing for estimating product profit break-even points for different retreads

[124]. The forecasting application is another area with massive potential for improving remanufacturing

productivity and efficiency.

3.6.3 Factory Improvement

Factory improvement is another area that learning algorithms can enhance by using their vast capacity

to model complicated processes, thereby improving them [112]. It involves creating additional

functionalities to equipment to extend their use, with retrofitting being the essential use, where more

functionalities are added to the products beyond the original state when manufactured [121]. It provides

41

a cost-effective way of upgrading existing equipment with actuators and sensor systems, supporting

sustainable remanufacturing. The learning models have been helpful for a decentralised identification

system for components using mobile applications to enhance responsive on-site identification of parts

based on their mobile photo [125], thereby strengthening the sorting process of products on return.

Furthermore, these models have also been helpful in the recent development of smart factories, where

the data-driven simulation of the WEEE remanufacturing process for material flow behaviour during

remanufacturing is modelled and simulated using data from the intelligent factory-like connected sensor

systems to highlight the information requirements and service layers to collect process data [25]. The

factory improvement represents another area where learning models can significantly improve,

especially in mining data from connected sensor systems.

3.6.4 Decision-Making and Support Systems

Decision-making and support systems rank among the first tasks performed to achieve remanufacturing,

starting from reverse logistics, identification, sorting, and other remanufacturing processes.

Remanufacturing decision-making is another vital application area where learning models find a

considerable advantage due to the industry's ever-increasing product and process data [112]. Deep

learning can leverage these massive product data to provide the information that can improve products

and processes by extracting data, logging, processing, and retrieval, thereby generating meaningful

insight necessary to provide highly efficient and reliable results. Nevertheless, data-driven decisions

highlight the benefits of using the overall product or process data in decision-making. It involves using

learning models to access large quantities of data and making more informed decisions about the

process from its data. It is essential to highlight that researchers have recently suggested that data-

driven decisions and demand prediction systems are getting attention in remanufacturing [26], [34].

Furthermore, another application of learning models in remanufacturing decision-making is using

reinforcement learning methods to evaluate the feasibility of remanufacturing using the rough set

approach to establish the relationship between a remanufacturing plan and its feasibility. The RL

algorithms helped enhance confidence in feasibility analysis to determine whether to remanufacture a

product and the resource needed, thereby aiding resource planning [126].

Recently, remanufacturing decision-making has witnessed the integration of data and knowledge

systems among the effective methods of enhancing remanufacturing decisions. For example, the data-

driven product return forecast has seen the use of shallow multi-layer perceptron (MLP) and support

vector machines (SVM) algorithms to model the consumer storage behaviour statistically for electronic

wastes [127]. Furthermore, data mining and ML techniques have helped predict customer demand for

remanufactured products in the electronics remanufacturing industry, proving to be another application

of learning algorithms, with the effects of demand analysed using partial dependence plots [128]. In

addition, the multidimensional, deep neural networks have helped predict the technological life of

42

electrical and mechanical products, thereby estimating the rate of technological degradation and

informing the decision for developing higher technology products to extend their technological life

[129]. This application adopted an ensemble model incorporating a convolutional neural network and

long short-term memory model designs to predict degradation rate.

Furthermore, researchers have recently investigated the benefits of using data mining techniques to

enhance reverse logistics decision-making using computer vision, text mining, and ML concepts to plan

the remanufacturing process [130]. Although the results look promising for optimising reverse logistics,

they outlined that the work is still in progress.

However, using learning models in decision-making is one of the most critical applications to enhance

remanufacturing. Therefore, the availability of tools to improve decision-making is vital to optimising

remanufacturing.

3.6.5 Remanufacturing Processes and Process Planning

Process planning is a crucial aspect of remanufacturing that helps manage remanufacturing activities

and significantly enhances process efficiency and automation [131]. Remanufacturing, in general, has

various uncertainties associated with the processes, primarily due to the complex nature of the

techniques. Therefore, process planning is another area where learning models find application across

the multiple remanufacturing stages, including identification, sorting, disassembly, inspection, cleaning,

reconditioning, and testing [112]. First, the disassembly stage is one of the most complicated stages in

remanufacturing because of its manual and labour-intensive activities, and it remains an active research

area to date. Researchers identified the ease of disassembly as a crucial factor in achieving

remanufacturing automation alongside being disassembly-friendly, making the design for disassembly

an essential consideration during the product design [132] to enhance remanufacturing. However, the

remanufacturing processes have a minimal application of learning algorithms.

Conversely, remanufacturing has already benefitted from these algorithms in modelling scheduling

problems where various algorithms, including the discrete Bees and the multi-objective harmony search

algorithms, have been used to simulate scheduling optimisation problems and optimal disassembly

sequence [13], [14], [133]. These applications help to generate an optimal disassembly sequence that

streamlines the disassembly process, thereby enhancing efficiency. Furthermore, the learning models

are helpful in scheduling optimisation, including the repair, maintenance and overhauling of products

[134] using the ant colony, a swarm intelligent algorithm based on probabilistic techniques and in the

constrained ordinal optimisation of the remanufacturing planning for estimating the feasibility plans

thereby selecting the most effective plan(s) with high probability [119].

Nevertheless, researchers have also explored the reinforcement learning (RL) approach to model

uncertainty and management in optimal disassembly process planning using the Petri-net modelling

approach [135]. However, the model was limited to being dedicated to a particular product type in the

43

remanufacturing facility, restricting its usage. Furthermore, learning models have also witnessed

practical application in disassembly sequence generation, where a CNN model and disassembly rules

helped achieve disassembly sequences [136]. Overall, these learning models help plan and schedule

remanufacturing activities, effectively improving process efficiency.

3.6.6 Remanufacturing Technologies

The learning models have found tremendous applications across various stages of remanufacturing, and

some of the use cases are outlined. The learning models have found application in the design of the

remanufacturing inspection technology, where researchers investigate the use of the machine learning

approach and Gaussian mixture probabilistic models for automating the detection of corrosion in

components [137]. Furthermore, these models have also been helpful in the design of the vision

inspection system for remanufacturing [103]. Also, these models have been used to simulate the direct

energy deposition of titanium alloys in additive remanufacturing and manufacture, where the Taguchi

experimental setup was used to obtain training and test examples for the artificial neural network

(ANN) [138]. The method successfully determined the grain growth behaviour during the fabrication

process, thereby enhancing the reliability of reconditioned components of a product.

Furthermore, the application of learning algorithms, including the deep and recurrent neural networks,

has improved the prediction of thermal field distribution from laser scanning, improving the

understanding of the residual stress and distortion distribution in laser-aided additive manufacturing,

and adding new materials to a product during reconditioning [139].

3.7 Opportunities for Deep Learning

The remanufacturing application of most of the learning algorithms is composed of shallow

architectures used for extracting features for training the learning algorithms. However, the capacity of

these shallow architectures in modelling complicated processes is limited, thereby drawing further

attention to the investigation of the deeper architectures for remanufacturing applications. This is

evidenced by the scarcity of research publications on deep architectures, often described as deep

learning in literature.

The deep learning applications in remanufacturing remain an active research area, primarily to manage

the complexities inherent in remanufacturing systems and to explore the complete automation of

remanufacturing processes that have not been achieved [34]. These algorithms have been incorporated

in remanufacturing process planning; however, improvements can be obtained by fully exploring the

emerging technologies' scope, including data mining, big data, and optical character recognition.

Besides, AI technologies, especially DL, can also help remanufacture data compression, improving the

storage capacity of data management systems. It is another area focusing primarily on techniques to

manage and store the product's MoL data, which significantly lags behind other research areas

compared to the different sectors. Data compression has recently become a research focus for

44

researchers investigating methods of incorporating general machine-learning models in

remanufacturing [130]. In addition, with further research to maximise the storage of MoL data,

practitioners can develop and deploy models to make predictive decisions from the product usage data

to optimise usage by extracting and utilising product information using data mining methods and deep

learning models.

These product usage data can also enhance pre-disassembly assessment and inspection of products with

the learning models aiding effective decision-making on the products to accept for remanufacturing

alongside their remaining useful life, thereby determining the probable cost of the returned products.

3.7.1 Operations Management

The opportunity of learning algorithms in operations management, including improving the

redistribution network to enhance productivity, is another optimistic area; however, there must be

available data for the redistribution processes to stand a chance of achieving good insight using learning

models. Furthermore, the learning algorithms, alongside other enabling technologies like distributed

ledger technology (DLT) and IoT technologies, can improve reverse logistics, especially with smart

contracts, which guarantee transparent, secure and tamper-proof systems to monitor and manage the

product return process [140]. Furthermore, this approach can enhance the recovery of products through

incentives to customers who return their products by providing adequate product tracking, real-time

assessment of product health, cost-saving for remanufacturers from buying products without economic

value, and maximising storage facility. However, these have not been fully explored for

remanufacturing and represent a future research direction for reverse remanufacturing logistics.

3.7.2 Forecasting

Forecasting is one of the most practical applications of learning models across their application

domains. These models have found use cases in developing and deploying predictive systems in the

industry. The emerging trend in deploying predictive algorithms in remanufacturing has witnessed

learning algorithms useful for planning and forecasting purposes, thereby improving decision-making

and management of remanufacturing operations. Forecasting is another area that has seen more

applications as researchers understand these models, guaranteeing core availability through excellent

core return forecast and enhancing overall process efficiency. However, remanufacturing applications

of these models are broad and cut across many trends that have not been fully explored.

The specific applications that can benefit from the predictive capability of these learning models

include the product identification, analysis and forecasting of the middle of life and product data,

alongside the other process-specific data where predictive models can play a significant role in

improving the overall productivity. The models can also be helpful in prognostics where

remanufactured product health can be monitored in real-time, thereby helping to track the product's life

cycle. Furthermore, another area where learning models have not been fully explored in

45

remanufacturing is the prediction of the remanufactured product demand and supply factors of the

market. However, further exploration of the collections and returns data is also essential.

3.7.3 Factory Improvement

Factory improvement is another area where the learning algorithms can benefit remanufacturing,

especially in the remanufacturing shop floor design. It is an application area where the potential of

emerging deep learning technologies, alongside other enabling technologies, including IoT, big data,

and data mining, can gather product information, process, and store data. However, these technologies

effectively extract useful information from the stored product and process information. In contrast,

simulation technologies and CPS can provide prototype processes for evaluating, optimising, and

developing reconfigurable remanufacturing, thereby enhancing productivity. Furthermore, these

algorithms and technologies for modelling the remanufacturing shop floor activities can also benefit the

factory operations through robotic disassembly sequence planning, improving throughput [13], [141],

and other remanufacturing stages.

3.7.4 Decision-Making and Support Systems

Decision-making is one of the most practical applications of learning models in remanufacturing. It has

witnessed numerous applications involving data-driven decisions based on these algorithms; however,

there is no current research on improving remanufacturing data management and storage, which can

preserve the product data for future data-driven decisions. Furthermore, these algorithms can play

significant roles in enhancing the forecast of uncertainties in demand, supply, and quality of products,

and estimates on inventory with appropriate data for modelling, thereby providing potential

improvements for remanufacturing. The learning algorithms, alongside other enabling technologies,

including CPS, big data, and IoT technologies, are helpful in developing a data-driven system for

scheduling and inventory of real-time manufacturing processes, thereby providing adequate decision-

making at every stage during remanufacturing [142]. Another opportunity for the learning algorithms to

enhance productivity in remanufacturing is improving prognosis, especially in inventory management.

These represent vital areas of future research endeavours in remanufacturing that have not been fully

explored and represent an area of future research.

3.7.5 Remanufacturing Technologies

The opportunities for learning models in developing new technologies are enormous, and it represents

one of the most active research areas for learning models in recent times. However, the use of these

models across the various stages of remanufacturing has not been fully explored yet; more recent

investigations have witnessed the use of learning models in inspection, sorting, and process control

[41], [103], [137], [143].

Nonetheless, developing innovative technologies for product identification is one of the essential

technologies required in remanufacturing. These technologies will enhance the evaluation of products

46

on return, alongside sorting products for remanufacturing. The learning algorithms and other enabling

technologies that can improve product identification include RFIDs, IoT, ICT and wireless

communication. Besides, there are several opportunities to strengthen remanufacturing using deep

learning and other technologies, including IoT and CPS, to automate the processes to remotely monitor

critical indicators, especially during identification, disassembly, cleaning, and reconditioning to assure

quality [144].

Furthermore, another area where deep learning models can potentially enhance remanufacturing is

automated robotic applications and machine tools, which are effective methods to flexibly adapt to

changes in the products and processes during remanufacturing. Also, comparing the stages of

remanufacturing, the use of deep learning and other AI technologies in the development of cleaning

solutions, and testing reconditioned units for remanufacturing is another future research area as more

investigation is needed to develop model solutions for testing and cleaning.

However, regardless of these opportunities offered by the learning algorithms, the potential application

of remanufacturing is usually determined by the availability of data on the specific applications.

Therefore, the areas of application where data could be obtained for training these deep learning models

are vital in developing and deploying deep learning-based systems in remanufacturing.

3.8 Suitability of Deep Learning Models

The suitability of learning algorithms to model remanufacturing processes was a crucial consideration

since remanufacturing processes are complicated. However, researchers have outlined that a possible

approach to managing these complicated processes includes breaking down the complex processes into

smaller functional units and developing automation systems for the smaller units, which could be

cascaded together to achieve a fully automated system [145]. This approach is significant because if the

process cannot be broken into sub-processes, automating the process is unlikely, thereby hindering

productivity.

Nevertheless, deep learning is already defined in Section 1.3 as a new valuable technique for

identifying patterns in data using hierarchical layers and potentially benefiting various industries.

Furthermore, these models have recently attracted researchers' interest in the deep learning literature,

suggesting that there is minimal research extending the applications of these technologies to

remanufacturing compared to the manufacturing sectors. As the remanufacturing industry has not been

fully explored, the study focuses on extending these applications to remanufacturing.

Moreover, the other remanufacturing stages and processes require various automation methods,

including hardware and software automation. Specific processes, including disassembly and

reassembly, need mainly necessary hardware to achieve process automation, including mechanical

robots and other sensor systems [146]. However, different stages of remanufacturing, including

inspection, process control and sorting, among others, can benefit from the software automation

47

methods, which require a sensor system to perceive the signal and the low-level algorithms that process

and provide the desired control [41].

Conversely, the learning model involves two vital components: algorithms and data. The algorithms are

a sequence of instructions that learn underlying patterns in data without requiring explicit instructions

[32]. It outlines how the models learn from data while the data is a collection of historical samples on a

given process. A typical example of these models is linear regression, which helps predict a function's

value based on a specific number of inputs. The linear regression model takes the form:

 𝑦 = 𝜃1𝑋1 + 𝜃2𝑋2 + 𝜃3𝑋3 + … . . + 𝜃𝑛𝑋𝑛 + 𝛽 3.1

Where the 𝑦 is the output, 𝑋 is the set of inputs, 𝜃1 𝑡𝑜 𝜃𝑛 is a set of model parameters, and 𝛽 is the bias

term. The model tries to learn the relationship between the inputs and output as the data is fed to the

model. The model obtains the appropriate values of the parameters 𝜃1 𝑡𝑜 𝜃𝑛 using gradient descent

optimisation. The optimisation techniques will be discussed in detail in the subsequent sections. The

machine learning approach eliminates the need to explore model parameter values manually. Hence,

these obtained weight parameters are used for predicting new values of the output 𝑦 based on the values

of the inputs 𝑋1 𝑡𝑜 𝑋𝑛 . These models infer from training data some set of parameters 𝜃 that models the

relationship between the target variable and some inputs. Mathematically, we can represent the model

as follows

 𝑃𝑟(𝑦|𝑥; 𝜃) 3.2

The model represents the probability of an output 𝑦 given a vector of variables 𝑥, parameterised by 𝜃.

The machine learning modelling approach eliminates complicated conditional statements in direct

programming, improving the model's overall performance. The taxonomy of the machine learning and

deep learning modelling shown in Figure 6 highlights the crucial similarities of these models since the

models work on similar types of data; however, the pre-processing stage and subsequent stages outline

the vital differences between these models.

The machine learning models use hand-crafted features extracted using specific feature detection

algorithms like the scale-invariant feature transform (SIFT) [147], speeded-up robust features (SURF)

[148], and the histogram of oriented gradient (HOG) [149], thereby making the performance of these

models depend on the experience of the designer of the feature extractor. Furthermore, the ML models

use feature selection algorithms like principal component analysis (PCA), decision trees (DC) and

support vector machines (SVM) etc., to learn the patterns in the data before inference [150]. In contrast,

deep learning uses multilayer architectures, including convolutional neural networks (CNN) and

recurrent neural networks (RNN), alongside the model hyperparameters, optimisers and loss functions

to learn the underlying features in the data before evaluation automatically.

48

The working of the deep learning models differs considerably from the general traditional feature

extraction techniques that use filters and statistical properties of the image, like a histogram, to detect

features within a given image. The traditional recognition methods used either thresholding techniques,

edge detection, contour geometry, template matching, keypoint feature matching, semantic features

matching, scale-invariant feature transform, and histogram of oriented gradients techniques etc., to

identify interest points within images and use the features to recognise the objects within the images

using algorithms like SVMs [149].

Figure 6 Taxonomy of deep and machine learning models

However, these techniques are time-consuming and suffer heavily from noise, and are primarily

computationally expensive to implement. Hence, the deep learning models offer a speed advantage

compared to the traditional learning approach, thus saving time to manually develop feature vectors that

describe the objects within a scene before performing the classification. Furthermore, these DL models

automatically learn these features without human interference. Therefore, automatic feature extraction

ranks among the most significant advantages of DL as the model selects the features that best represent

the available data, thereby improving inference results.

3.9 Deep Learning

Deep learning (DL) is a component of artificial intelligence research that uses hierarchical learning

concepts to understand patterns in data. It uses the neuron as the basic building block and combines the

DL architecture like

CNN, RNN etc.

DL Model design

Layer n

Layer 1

Layer 2

Loss

Learning

algorithm

Hyper-

parameter

tuning

Pre-

processin

g

Data

(samples)

Evaluation

Hand-crafted

feature extraction

Feature selection

(PCA, ICA, etc)

ML Model

(ANN, SVM, etc)

Training and

Testing

Evaluation

Pre-processing

Data

49

neurons in parallel sequences to form layers. The neural network architecture design consists of the

input, hidden, and output layers. The algorithm breaks down the input data into layers of abstraction,

with the behaviours defined by the magnitude of the weights and the connections of the individual

elements of the architecture. These weights are automatically modified during the training according to

some specified learning rules until the model performs the desired tasks satisfactorily. Deep learning

algorithms use an automatic feature extraction that differs from machine learning, which requires

carefully designed features. The automatic feature extraction methods are not new since there are

classic techniques of feature extraction, including singular value decomposition [151], principal

component analysis [152], and non-negative matrix factorisation [153]. Besides, in the basic form, these

algorithms obtain variables that are linear combinations of the old.

In contrast, deep learning algorithms learn non-linear combinations of variables, enabling more

complicated modelling capability. This sequence of layers is helpful for mapping higher-level feature

vectors from raw input images to the output layers [113]. The connections of a typical DNN

architecture are depicted in Figure 7, highlighting the complicated nature of the interactions between

neurons.

Figure 7 Typical neural connections in a deep learning model

The respective layers have several nodes connected to the previous layers, whose typical weights are

adjusted during training (learning process). The magnitude of the weight parameter determines the

changes in the strength of the signal to the specific connected neurons. Hence, the cascade of multiple

layers creates the 'deep' networks, which refer to multiple layers of neurons stacked together. These

features are learned when the micro-network strides over the presented input images to produce the

feature maps [28], [154].

Moreover, the combinations of neurons produce neural networks, representing real-valued

computations defined by some connected directed graphs [155]. The neural network nodes receive real

numbers on their incoming edges, compute a function of these real numbers, and transmit the results to

their outgoing edges. The root nodes perform their computations to the vector provided as inputs to the

network, while the internal nodes compute their output to the output of other nodes. Hence, different

nodes can add various functions to produce the desired outcomes. The distinctive characteristic of

neural networks is that they can compute multiple layers to deliver results by combining an arbitrary

50

number of non-linear operations. The typical neural network model is depicted in Figure 8, showing the

inputs, weights, biases, activation function and outputs.

Figure 8 Typical neural network model

These models' output is obtained as a linear combination of the weighted sum of the inputs and biases.

The vector product of the weights 𝑤 and inputs 𝑥 helps to get the model output; therefore, the inner

product of the input and weight vectors denoted as ℎ is given by

ℎ = [𝑥1, 𝑥2 ⋯ 𝑥𝑛] . [

𝑤1
𝑤2
⋮
𝑤𝑛

] 3.3

The output of the model is obtained using the vector dot product where the output 𝑦 is

𝑦 = 𝑥1𝑤1 + 𝑥2 𝑤2 + 𝑥3 𝑤3 +⋯ + 𝑥𝑛𝑤𝑛 + b 3.4

The computation of the output of the model's respective layers is cascaded in multiple terms to obtain

the very-deep neural network model. The deep learning architectures provide a significant advantage

over the shallow architectures on complex learning tasks by stacking various linear and non-linear

processing units in a layer-wise approach, providing the ability to learn complicated representations at

multiple levels of abstraction. Hence, empirical research has proven mathematically that deep neural

networks have more representational power. Furthermore, the deeper architectures gain more

representation power by hierarchically composing shallow feature representations into deep model

representations [155]. Besides, the advances in deep convolution neural network architectures have

witnessed significant depth increments since the first architecture, LeNet, was used for digit recognition

[156]. The depth of the newer architectures has multiplied rapidly, with AlexNet [157], VGGNet [158],

GoogleNet [159], and ResNet [33] having eight, nineteen, twenty-two, and one hundred and two layers,

respectively, among other architectures.

Deep learning has witnessed significant applications with unprecedented success rates across different

domains, including image recognition, segmentation, video processing, object detection and natural

language processing [32]. These successes have been attributed to the considerable research interests

that have continued exploring the different approaches to enhance these models. These models allow

learning from high dimensional raw data to automatically discover the underlying pattern, which is

51

applicable in almost all fields with large historical data. These data are typical of most industrial

processes, including remanufacturing processes. The ability of DNN to learn and generalise on unseen

data after training gives it the ability to be deployed in new fields with new datasets, thereby enhancing

the understanding of trends in the investigated data.

Conversely, the improved computational capability of newer hardware has aided the development and

rapid deployment of DL models, especially the graphics processing units (GPU). Furthermore, recent

advancements in image recognition have been attributed to the availability of large or big data and the

ever-increasing computing power of computers, especially the graphic computing units (GPU), thereby

facilitating the learning of very deep architectures. These advances led to the state-of-the-art results

obtained in the annual Olympics of computer vision, known as the very-large-scale image recognition

challenge (VLSRC) [160]. The GPUs are multi-processor graphics cards used widely in video games.

They excel in the fast matrix and vector multiplications required for neural network training, thereby

improving the learning speed by up to 50 or more [161]. In addition, GPUs have aided parallel

computing, enhancing data access and computation speed. Similarly, the software is another primary

driver of recent advances in deep learning. As a result, many newer toolboxes and models have been

developed with improved code and techniques for implementing deep learning models.

Nevertheless, despite the benefits of improved performance provided by the deep neural network

models, researchers suggest that even the smaller architectures can provide significant application

enhancement, including the need for less communication to servers during distributed training, the need

for smaller bandwidth to export models from the cloud and ease of deployment on field-programmable

gate arrays (FPGA) and other memory limited hardware [162]. These challenges continue to drive the

research on deep learning models to improve their architectural designs and model performances.

3.9.1 Brief History of Deep Learning Research

Artificial neural networks started in the 1940s after the first mathematical modelling of neurons[163].

The field attracted much more research interest until another remarkable breakthrough resulted in the

perceptron, which used a single neuron to perform classification tasks [164]. Furthermore, the authors

detailed the perceptron learning rule, which outlines how the perceptron works. However, a significant

limitation of the perceptron is that it could not learn the exclusive OR (XOR) logic function. Further

research continued, and the algorithm developments progressed until the back-propagation was

proposed [165]. Additional application of the perceptron concepts continued. The use of neural

networks for pattern recognition was first explored by Fukushima in 1980 when the self-organising

neural network model that could recognise patterns based on geometric shape similarity without being

affected by their positions was proposed [166]. This result, now known as the hierarchical multilayer

neural networks, increased research interest in using neural networks for pattern recognition and further

highlighted the huge potentials of neural networks.

52

Nevertheless, the back-propagation algorithm was reinvented to facilitate the training of neural

networks[167]. The backpropagation algorithm provided the advantage of minimal preprocessing of the

data before using them for training neural networks[168]. The researchers implemented the hierarchical

architecture for object recognition and used backpropagation techniques to learn data representation.

This approach involves an iterative adjustment of the weights of the hidden neural units, thereby

minimising the difference measure between the actual and desired output vectors of a given network,

creating new features about the inputs, captured by the interactions as the weights, which are used

afterwards to learn a feature-based representation of objects by hidden layers [167]. These research

results suggested that the hierarchical architecture outperforms the existing techniques for object

recognition tasks.

However, the initial adoption of learning models were unsuccessful due to various challenges; limited

data, when to stop the training, overfitting, wrong non-linearity models, little attention to the network

initialisation parameters. These challenges contributed to the poor performance of these models,

limiting development until 2006, when some remarkable breakthroughs in deep learning research

manifested [28], [169], [170]. The field remains a very active research area in machine learning to date.

Conversely, the early machine learning techniques exploited shallow neural network architectures.

Single neurons were used for signal processing, thereby containing a single non-linear feature

transformation element with multiple inputs, where raw data conversion into problem-specific feature

space is performed. These shallow neural networks include support vector machines, logistic

regression, kernel regression, Gaussian mixture models, and hidden Markov models [171].

Besides, every instance found in any given dataset used by general learning algorithms is represented

using the same feature set. However, these features can appear in binary, categorical or continuous

forms [172]. The binary output produces one output from just two inputs. In contrast, the categorical

output produces more than one output class during prediction alongside the continuous outputs with

infinite numeric values.

3.9.2 Taxonomy of Deep Learning Methods

The general deep learning models use different learning approaches, including supervised,

unsupervised, semi-supervised, and reinforcement learning. Supervised learning is the most common

machine learning technique that uses labelled training examples to learn patterns in data and make

accurate predictions. Furthermore, unsupervised learning uses unlabelled training examples to find the

patterns in data. The architectures used in supervised models are mainly the convolutional and recurrent

neural networks, while the unsupervised learning algorithms include other restricted Boltzmann

machines, autoencoders, generative adversary networks (GAN), and some variants of RNN-based Long

Short Term Memory (LSTM) and the reinforcement learning techniques.

53

Conversely, reinforcement learning techniques are models where the environment provides training

information to the learning system[28], [172]. These algorithms learn interactions with the environment

through actions, observations and rewards [173]. Besides, before selecting any actions by the agent

(software or hardware), it must understand and have a befitting representation of its environment; thus,

perception is a crucial problem that the agent must resolve before deciding on the optimal action to

take. However, human experts provide the features of the environment to the reinforcement learning

algorithms. Perhaps the features are learned automatically in some real-world applications to provide

more accurate feature extraction. The RL algorithms allow an agent to learn by trial and error until a

good understanding of the environment is achieved. The reinforcement learning technique is most often

referred to as semi-supervised learning in some literature. It usually has restricted access to the

optimisation function and, thus, interacts and queries it during learning to understand the process.

Besides, for a learning agent interacting with the environment, the number of parameters for

optimisation determines the type of network to adopt. Models with fewer optimisation parameters use

the reinforcement learning algorithm, while in models with many optimisation parameters, deep

reinforcement learning techniques are adopted for the best results [170]. The RL agents are usually

modelled as Markov decision processes (MDP), and depending on the states and actions spaces; the

problem is modelled as infinite or finite MDP.

Nonetheless, most applications of machine learning models use supervised learning, and this learning

model forms the basic theory of this research. It aims at performing classification tasks from labelled

training examples. In addition, some general insights about the capabilities of deep learning, highlighted

by an early study, produced the theoretical effectiveness of using deep learning, which attracted more

research interest in deeper architectures [174]. Further research continued until 2012 when the first

groundbreaking results on the application of deep CNN for image classification tasks [157]. Finally, the

evolution of the learning models is discussed.

3.10 Deep Learning Architectures

The neural network architecture outlines the composition of the model with specifics on the number of

units and the interconnection between units. The idea of a single neuron used for information

processing is often referred to as the perceptron. The deep neural network refers to the multilayer stack

of modules used to compute non-linear input-output mappings during learning [28]. The architecture

also details the direction of the flow of signals in a model, from inputs to outputs.

 The modules are subject to learning, with each in the multilayered stack transforming its input to

increase its selectivity and invariance of the representation. The deep architectures of depth ranging

from 5 to 20 can perform a highly complex transformation of its inputs to output, sensitive to minute

details and distinguishing irrelevant and insensitive variations like lighting, background, surrounding

objects, and pose [28].

54

Hence, good internal representations are hierarchical [175], and the architectures of the multilayer

neural networks work in similar hierarchies for different types of data presented in the model.

Furthermore, these models exploit compositional hierarchies where higher-level features are learned by

combining lower-level features [28], [68]. For example, the deep architectures for speech and text exist

alongside the images, with the make-up of the architectures differing significantly. The speech and text

are obtained from sound inputs to phones, phonemes, syllables, words, and sentences. The method is

similar to image inputs, where a local combination of pixels from the edges within an image, edges

form motifs, motifs combine into parts, and finally, objects [28], [175]. The deep learning model

taxonomy is shown in Figure 9.

 Figure 9 Taxonomy of deep learning architectures adapted from [113]

Conversely, the forward propagation of information is the multiplication of the given inputs by the

model weights and biases before summing them together and applying the non-linearity function to

produce the outputs for the given neural network. The deep architecture is a multilayer stack of simple

modules that learn model parameters by computing the non-linear input-output mappings in data. The

respective modules transform their input to increase the selectivity and invariance in

representations[28]; thus, each architecture has numerous layers of non-linear processing elements, with

the lower layer's output fed directly to the immediate higher layer [171]. The learning methods for deep

architectures include multiple-layered neural networks [176], multi-layered graphical models [73], non-

linear embedding algorithms [177] etc.

Consequently, the multi-layer neural networks use layers organized and arranged in a chain structure,

with each layer being a function of the preceding layer. In this way, the model output is obtained by

computing the outputs of the successive layers from the input layer to the second layers, and the

following relationships give their outputs:

• Deep Q Net (DQN)

• Deep Deterministic Policy
Gradients (DDPG)

• Normalised Advantage
Functions(NAF)

• Auto-Encoders(AE)

• Restricted Boltzmann
Machines (RBM)

• Deep Boltzmann
machines (DBM)

• Generative Adversarial
Networks (GAN)

• RNN

•Deep neural
Networks(DNN)

•Convolutional neural
networks(CNN)

•Recurrent Neural
Networks(RNN)

• Long Short Trem
Memory (LSTM)a Deep

Supervised
Learning

Deep
Unsupervised

Learning

Deep
Reinforcement

Learning

Deep Semi-
supervised
Learning

55

 ℎ(1) − 𝑔(1) (𝑤(1)𝑇 + 𝑥 + 𝑏(1))

ℎ(2) − 𝑔(2) (𝑤(2)𝑇 + 𝑥 + 𝑏(2))
3.5

Where h = outputs of the layer, x = input, g = activation function, and b = bias. The multi-layer neural

network is a straightforward approach achieved using stacking layers together and formed the basis for

the model design adopted in the research.

Moreover, the bias term is helpful to shift the activation function to either the left or right or allow the

activation function to move in either direction, as the case may be. Furthermore, it ensures that a

positive output is obtained even when no input is applied to the neural network. These subsequent

layers are represented by referencing the superscripts which represent the layers. These architectures

discussed in this review include the feed-forward neural networks, restricted Boltzmann networks

(RBN), recurrent neural networks (RNN), convolutional neural networks (CNN), deep belief networks

(DBN), generative adversary networks (GAN) and autoencoders.

3.10.1 Deep Unsupervised Learning Models

Deep unsupervised models do not require labelled data for training, and they learn the vital

characteristics in data to determine the underlying structure. For example, deep autoencoders,

generative adversarial networks (GAN) and recurrent neural networks (RNN) are typical unsupervised

neural network models and are helpful in clustering, dimensionality reduction and generative models

applications [113].

Conversely, the deep autoencoder (DAE) is an unsupervised model that uses more than one hidden

layer to learn the encoding of input data. The autoencoder neural networks are trained to copy input

data to an output. They use sets of recognition weights to convert a given input vector to a code vector

and a set of generative weights to convert the code vector into an approximate reconstruction of the

input vector [178]. Pictorially, the autoencoder is shown in Figure 10, where the input vector is

represented as 𝑥, the output 𝑟, and an internal representation ℎ.

 Figure 10 The auto-encoder

It consists of two-component units, namely the encoder function 𝑒, which maps the input 𝑥 to an

internal representation ℎ, and a decoder function 𝑑, which maps the internal representation to the output

𝑟. The autoencoder output is given by

𝑟(𝑖) = 𝑥(𝑖) 3.6

Where 𝑟 is the target or output, 𝑥 is the input, 𝑖 is an integer. During the DAE training, the network

parameters are learned and compiled as feature vectors using one of the back-propagation techniques

r x

h

56

like the steepest descent, conjugate gradient method [171] and the recirculation techniques, with the

newer technique, a biological training method rarely used for machine learning algorithms[179].

However, the DAE have the sparse variant, which has sparse features obtained by adding sparsity

constraints to the hidden layer units, thereby modifying the loss function to

𝐽𝜗 =

1

𝑚
∑(𝑦(𝑖) − 𝑥(𝑖))

2
𝑚

𝑖=1

 + ∑𝐾𝐿(𝑝||𝑝𝑗)

𝑛

𝑗

 3.7

Where 𝑛 is the number of neurons in the hidden layer and 𝐾𝐿 is the divergence term. The 𝐾𝐿 −

𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 term with respect to the 𝑗𝑡ℎ neuron is given as

𝐾𝐿(𝑝||𝑝𝑗) = 𝑝 𝑙𝑜𝑔 (

𝑝

𝑝𝑗
) + (1 − 𝑃)𝑙𝑜𝑔 (

1 − 𝑝

1 − 𝑝𝑗
) 3.8

Where 𝑝 is a predefined sparse parameter that is close to zero and 𝑝𝑗 denotes the average activation

value of the 𝑗𝑡ℎ neuron in the hidden layer over the entire training examples. The autoencoders produce

a very sparse hidden representation of the input when the value of 𝑝 is close to zero. Another variant of

the autoencoder is the weight-decay added to a loss function to reduce the overfitting problem. The

weight-decay AE is given by

𝐽𝜗 =
1

𝑚
∑(𝑦(𝑖) − 𝑥(𝑖))

2
𝑚

𝑖=1

+ 𝜏 ∑‖𝑊(𝑗)‖

2

𝑗=1

 3.9

Where 𝜏 is a hyperparameter that controls the decay strength. Nevertheless, the most significant

strength of the AE models is that they are helpful in dimensionality reduction and can be modified to

learn different representations; however, their main limitations include that they are not good at

ignoring random noise in the training data, requires extensive training data, slow to train and fine-tune

[113].

Besides, deep reinforcement learning (DRL) models are another form of unsupervised learning model

with a foundation in Markov Decision Processes. These models learn behavioural policies by mapping

states to actions, maximising cumulative rewards. In simplified form, the policy can be represented as a

look-up table where the appropriate action for any state is listed. However, these listings are infeasible

in more complicated environments and must be encoded as a parameterised function[180]. Furthermore,

these models learn by punishments and rewards rather than explicit instructions [180], thereby

understanding "how to act in a dynamic environment from experience" and responding by minimising

some cost functions or maximising some payoff functions [181]. Besides, the learning process occurs

by trial and error methods as the reinforcement signals are obtained from the experience of the

interactions between the environment and the agent. A typical RL model with samples: 𝑥𝑡 ~ 𝜌, and

agent forecasts: �̂�𝑡 = 𝑓 (𝑥𝑡), the probabilistic agent received cost: 𝑟𝑐𝑡 ~ 𝑃(𝑟𝑐𝑡|𝑥𝑡 , 𝑦𝑡). This is

57

synonymous with semi-supervised models. These model derivations are beyond the scope covered as

RL was not used in the research; however, the derivations can be found in the literature.

Furthermore, the different approaches of RL models include deep Q networks (DQN), Q - learning,

deep deterministic policy gradient models (DDPG), normalising advantage functions(NAF), and the

State-Action-Reward-State-Action (SARSA) methods [113]. The DQNs are the value learning models

that learn utility values of the state and action pairs, often referred to as Q - values. The DQN models

are the most used deep reinforcement learning models and have successfully trained self-driving cars

[182]. However, a deeper review of the DQN architectures is not covered.

3.10.2 Deep Semi-Supervised Models

The deep semi-supervised models use labelled and unlabelled data in modelling and training tasks

before inference. These models include the restricted Boltzmann Machines (RBM), which have two

variants: deep belief networks (DBN) and deep Boltzmann machines. However, the respective semi-

supervised models' characteristics distinguish them, and these characteristics are discussed as follows.

The RBM is one of the deep semi-supervised models that have found applications in dimensional

reduction, regression, classification, filtering and feature learning applications. The restricted

Boltzmann machines are a particular type of altered Boltzmann machines, consisting of a fixed number

of two-valued units linked together by symmetrical connections [183]. These machines are

symmetrically connected neuron-like network units that make stochastic decisions of being on or off in

a probabilistic way. They are also used to discover fascinating features that represent complex

regularities in a given training data [184]. The general Boltzmann machines are modelled based on

parallel distributed computing techniques, where randomly initialised coefficients are helpful to modify

the inputs. There are three different Boltzmann machines: conditional Boltzmann machines [185],

higher-order, and mean-field Boltzmann machines. They also differ based on the network arrangement,

either by conditional modelling or by the model initialisation technique. However, almost all

Boltzmann machines have speed constraints, which could be addressed by restricting some network

layers, thereby making some units invisible. These machines learn one hidden layer at a time, after

which the activity of the hidden layer is applied for training subsequent restricted Boltzmann machines.

This process is repeated to train as many Boltzmann machines as possible, producing the deep

Boltzmann machine.

Conversely, the RBMs are primarily useful in unsupervised learning applications, especially in text

classification, where the gradient-descent algorithm and an exponential loss function were used to tune

the network, with active learning applied to train the text classifier [186]. However, perceptual learning

and inference are simplified as the RBMs with no specific connections between their hidden units

[187]. This stochastic dynamics of the RBMs can be described for a given unit entity 𝑖, having the

opportunity to update its state in binary form; the first becomes computing the total available inputs 𝑥𝑖

58

which is the sum of the weights on interconnections 𝑤𝑖𝑗 and biases 𝑏𝑖 coming from the active units,

thereby producing the total input as

 𝑥𝑖 = ∑𝑤𝑗𝑎𝑗
𝑗

+ 𝑏𝑖 3.10

where the variable 𝑎𝑗 is the output state, and it is one if j is on and zero elsewhere. It turns out that the 𝑖

unit turns on with a probabilistic logistic function as

 𝑃(𝑎𝑖 = 1) =
1

1 + 𝑒−𝑥𝑖

3.11

Perhaps, the main limitation of the DBM is the slower training process which limits the functionality

and performance of the DBM models to mostly feature extraction applications

Conversely, deep belief networks are specialised semi-supervised models useful for efficient layer-by-

layer top-down learning procedures with a generative weight that suggests how variables in one layer

depend on the layer's variables above it [188]. The DBNs are composed of multi-layer stochastic latent

variables, and the latent variable has binary values often referred to as feature detectors or hidden

layers. The top two layers have undirected symmetric connections that form an associative memory. In

contrast, the lower layers receive a top-down directed link from the layer directly above, with the lowest

layer states representing the data vector. A significant property of the DBNs is that the layers are

connected symmetrically, but there is no connection within the layers. The DBN also has a simple

learning module containing an RBM, with visible units representing the data and a hidden layer that

learns the high-order correlations. The unsupervised applications allow the DBNs to learn the features

to reconstruct their inputs probabilistically. The pre-training stage learns the features, which are the

initial weights parameters, while the fine-tuning modifies the architecture to achieve desired results.

The DBNs models produce better results by treating the hidden vectors produced by the training data as

the input for the subsequent learning modules [73].

Finally, the semi-supervised models have found applications in similar fields like the supervised

learning models, where research outlines that these models have been successful in recognising images,

generating images, video sequence analysis, motion capture data and analysis, dimensionality reduction

as well as document retrieval [188], thereby making the semi-supervised models highly relevant in

current and future applications.

3.10.3 Deep Supervised Learning Models

The supervised models use properly labelled data for training and inference on the computational

models. The supervised models have found applications in feedforward, convolutional, and recurrent

neural networks. These models are briefly introduced, their derivations and specific applications.

59

The feed-forward neural networks are algorithms where the inputs flow into the network and continue

in one direction through the hidden layers until it reaches the output. The feed-forward networks have

the values of any current node dependent on the previous layer nodes where 𝑥𝑖 is the input layer, 𝑖 is a

function of 𝑥𝑖−1 [68]. These networks are defined by the relationship that maps a fixed size input 𝑥 to a

fixed size output 𝑦, and are given by [28]

 𝑦 = 𝑓(𝑥; 𝒃) 3.12

These models are trained to learn the parameters 𝑏, which best describes the function by minimizing its

loss function 𝐿(𝑦, ŷ) across the set of training data. The mapping function is a linear relationship

between the input signal and the output; therefore, the output becomes

 𝑦 = 𝛼(𝑊𝑖𝑥𝑖−1 + 𝑏𝑖) 3.13

The mapping function can be re-written in linear algebraic form as 𝑋 = ⌊
𝑥1
𝑥2
..
.

𝑥𝑖−1

⌋, where 𝑏 = ⌊

𝑏1
𝑏2
..
.
𝑏𝑖

⌋ and α is

a nonlinear activation function. The feed-forward architecture with multiple hidden layers is often

called the deep neural network.

Moreover, recurrent neural networks are specialised algorithms for sequence data like voice. It is more

complicated than the feed-forward neural network and uses the same weights at every time slice to

obtain inputs at every time portion of their operation. The RNN uses the parameter-sharing property of

early machine learning models to extend the model applications and generalisation [68]. They can also

remember the data in their hidden state for a long time since they have memories, although it is more

challenging to train them to remember the hidden states. However, more recent algorithms have been

successful in achieving this. The RNN usually has two sources of input, namely the recent past and

present, combined to ascertain how best to respond to new datasets and a feedback loop connected to

past decisions. The symmetrically connected networks use similar weights in both directions. However,

their capability is more restricted because they obey an energy function.

Besides, the deep recurrent neural network recognises audio signals by first grouping them into low-

level, and high-level frequencies or audio wave features grouped into phonemes and the phonemes

grouped into words and the words grouped into phrases and sentences in a typical audio recognition

system. The training of the RNN has successfully predicted the following sequences in data, especially

the next character in a text [189] and the next word in a sentence [190]. When the RNN unfolds the

time sequence in the data, it is visualised as a very deep feedforward neural network, with all the layers

sharing similar weights. However, researchers have highlighted that learning and storing information

about these long-term dependencies is challenging [191], creating room for improved approaches to

succeed.

60

However, to remedy this, network augmentation with explicit memory was suggested. The long-short-

term memory (LSTM) was proposed with special hidden units to remember the inputs for a long time

using a memory cell [192]. The LSTM is one of the two main recurrent architectures, including the

gated recurrent units (GRU). It consists of a cell that remembers values over an arbitrary time alongside

input, output, and forget gates that control the flow of information in and out of the cell [192]. In

contrast, the GRUs are gated mechanisms used as a forget gate and contain fewer parameters than the

LSTM due to the lack of an output gate [193]. However, researchers have compared these architectures

and highlighted that the GRU performs better than the LSTM with a fixed number of parameters for all

models. The authors further assert that the performance metrics included CPU convergence time,

generalisation, and parameter updates.

Finally, the major applications of the RNN architectures, including the LSTM and GRUs, have been in

speech and audio modelling, natural language processing, and sentiment analysis; however other

applications of excellent performance include the use of LSTM for the prediction of part quality in

additive manufacturing [194]. Other notable applications include machine translation, automatic speech

recognition [195], [196] and medical applications, where the RNN helped discover complex rules of

biological protein application [197]. Finally, the closest application of the RNN to remanufacturing is

the prognostic application, predicting the remaining useful life (RUL) of components [198] and

bearings [199] alongside time series prediction[200].

3.11 Convolutional Neural Networks

The CNN is a feedforward neural network with multiple convolutional and pooling layers, helpful in

providing end–to–end learning of the parameters of a given model. They are modelled according to the

universal approximation theorem that a single-layer feedforward neural network can sufficiently

represent any function given enough capacity. They are specialised neural network model for

processing grid-like data and uses a mathematical operator known as convolution, which is a typical

linear operation in one of the layers of the network instead of the general matrix multiplication used by

the standard neural networks, in at least one of the layers of the models[68]. The convolution operation

works by dividing an image into small slices, usually referred to as receptive fields. These smaller

divisions help extract features from the images, thereby simplifying them. On the other hand, matrix

multiplication involves separate parameters describing the interactions between component units,

making each output unit interact with the input unit and causing the implementation of early neural

networks to be computationally expensive. Moreover, making these architectures deeper to achieve

higher accuracy has been a recent trend, giving birth to deep learning modelling.

Nevertheless, an attractive feature of the CNN models is the ability to exploit spatial and temporal

correlation in data. The topology consists of multiple learning stages, including the convolutional, sub-

sampling, and non-linear processing units [201]. The respective layers use a bank of kernels to perform

numerous input transformations by extracting valuable features from locally correlated points.

61

Figure 11 Components of a typical convolutional layer of a CNN showing the layer design approach

Moreover, empirical research outlines that given enough training data, CNNs can learn invariant

representations in data to achieve and exceed human-level performance, as shown in Figure 12 [33].

Figure 12 Sample convolution filters output used to learn different patterns in data [125]

Besides, the 2012 annual Olympics of the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) opened a new phase of CNN research as authors classified over one million images into

1000 classes using a deep convolutional neural network named AlexNet, setting a new world record

accuracy in image recognition competition [157]. The research increased attention to using CNN in

many other image classification problems. It produced other record-breaking architectures in the

subsequent years, including ZFNet[202], GoogleNet[159], VGG16 and VGG19[158], and ResNet [33],

to mention a few. The success of the CNNs has witnessed numerous valuable applications in real-world

problems, including image recognition [157], [175], self-driving cars [182], object detection and

segmentation [203], medical image analysis [204], emotion detection[205], remote sensing especially

the synthetic aperture radar systems[206], [207], remanufacturing sorting [41] and inspection

applications[143] among others.

Despite the early success and commercialisation of CNN, there was limited interest due to the limited

amount of data, low computational capability of the available computers, and poor algorithms to

compute the weights and biases of the neural networks. These challenges led to the evolution of CNN

research, with researchers investigating methods of improving the design of CNN architectures to

achieve improved performances. The components of these CNNs and their architectural evolutions are

outlined in the subsequent sections.

Input layer

Next layers

Activation(non-linearity)

Convolutional layer

Pooling layer

62

3.11.1 Evolution of Neural Network Architectures

The architectures of the neural networks are a vital part of model development as these architectures

influence the models' ability to generalise. However, research suggests that good generalisation ability

is a function of developing architectures with a certain amount of prior knowledge about the problem.

Nevertheless, the early research on CNN and their workings were not very clear on the internal

workings of the CNN components, thereby treating them as black boxes [32], with the models having

huge hyper-parameters and parameters including weights, biases, number of layers, number of neurons,

stride, filter size, learning rate, activation functions and other hyperparameters. Moreover, recent

research has improved and provided answers to the problematic research questions on CNN

architecture, addressing the shortcomings of the previously proposed architectures and providing new

structural formations.

The architectural evolution of CNNs highlights the advancements in structuring processing units and

advanced block designs. In addition, these architectures also explored parameter optimisation methods,

structural reformation, regularisation, and other techniques to improve model performance. These

advances are outlined in the taxonomy CNN research. The description of the various design

improvement methods is shown in Figure 13.

Figure 13 Taxonomy of the CNN evolutions

3.11.1.1 Spatial Exploitation

The spatial exploitation considers the neighbouring input pixels within the same locality and explores

the correlations extracted using different kernels. These additional filters obtain different levels of

detail, with the large filters extracting coarse-grain information while the small filters reveal fine-

grained information. The early CNN research considered spatial filters to improve the CNN models

alongside the relationship of the filters to the model's performance. These researchers observed that

adjusting the model kernels improved results on the ability of the models to perform specific tasks.

These spatial dimensions made new CNN architectures that became state-of-the-art in recognition tasks,

including the LeNet [208], AlexNet [157], ZfNet [202], and GoogleNet [159] architectures, to mention

a few. The LeNet5 architecture consists of two convolutional layers, two average pooling layers, a

convolutional flattening layer, two fully connected layers and a softmax classification layer, used to

Architecture
design

Spatial
exploration

Depth and
width

connection
Multi-path Feature map

Channel
boosting

63

perform digit recognition on 28 x 28 greyscale images [208] and was used for almost two decades

before the recent explosion of the CNN research arrived, with another groundbreaking architecture

called AlexNet. The AlexNet architecture is an eight-layer improvement of the LeNet, consisting of five

convolutional layers and three fully connected layers, alongside some ReLU and softmax activation

functions applied across each of the hidden layers of the architecture. The network was trained on input

images of size 227 x 227 x 3, with about a thousand object categories obtained from over one million

images of the ImageNet database of images [71]. The architecture has some dropout applied just before

the first and second fully connected layers to reduce overfitting and produced state-of-the-art results

that surpassed the best-handcrafted image recognition and localisation entries [157].

Furthermore, these early CNN architectures explored the spatial details in data, including using

different filters, padding, stride, and other hyperparameters to obtain state-of-the-art results with

features extracted using large filters for more coarse details and smaller filters for fine-grained features.

However, these architectures witnessed similar challenges because the results were based on trial and

error because there were no clear reasons for the improved performances observed from the models

[32]. Besides, other researchers propose using fixed topologies that are repeatable within the

architecture and a handful in the design of VGGNet [158]. This architecture design method changed the

CNN architecture design approach towards adopting the uniform layer design approach. Furthermore,

deploying these repeatable units opened the door to developing innovative architectures that work in

similar methods.

3.11.1.2 Depth and Width Exploitation

The depth and width of the CNN architecture is another vital architectural design method explored by

researchers to enhance the understanding and performance of the architectural design of CNNs. The

underlying assumption is that the deeper the architecture, the better the model's target approximation

[209]. Besides, it is worthy of outlining that the deeper models have advanced the adoption of

supervised learning research, with the early architectures exploring architectural depth in their design,

including the network in network architecture [210], Highway networks [211], Inception-v1 also known

as GoogLeNet [159], VGGNet [158] and the ResNet [33] architectures. These architectures focused on

learning-rich features by exploring the model's width and depth. For example, the VGGNet and

Inception architectures achieved the best performance at the 2014 ImageNet challenge using depth and

width-based very deep architectures [158], [159]. However, as this depth increases, the gradient

propagation diminishes, with increased computational cost, and longer training times, limiting the

models. Therefore, researchers explored connecting intermediate layers to address these challenges,

obtaining limited success.

Consequently, other methods, including the use of skip connections and gating mechanisms, provided

improved performances of the deeper architectures [33], alongside the introduction of dropout in the

64

residual blocks, which offers network regularisation [212], and the stochastic depth method that skips

layers during training to reduce effective depth [213]. Nevertheless, the Highway network introduced

depth and multipath in the design of CNNs. It increased the ease of information flow across several

layers ranging from 50 to 900 [211], with the network having about 2.3 million parameters and a

prediction accuracy of 92.24%.

Besides, the ResNet architecture is another depth and width-based model that uses identity shortcut

connections to skip one or more layers during training. These identity shortcuts provide the advantage

of not introducing additional parameters to the model alongside computational complexity and a higher

prediction accuracy [33]. The ResNet model has the ReLU activation in the hidden layers alongside the

softmax output layer [212] and was the first CNN architecture to surpass human-level performance with

a record 5.6% top-5 recognition accuracy on the ImageNet challenge. Furthermore, the ResNet allows

stacked model layers to fit a residual mapping rather than directly fit the desired mappings with

multiple architectural variants, including ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152.

These variants have different convolutional layers, increasing the model's depth, complexity and

accuracy.

Conversely, the width of the learning models has also been exploited in the design of model

architectures since researchers suggested that stacking layers together may not learn the expected

feature representations to improve the model learning power [32]. To address this challenge,

researchers have focussed on the narrow architectural design approach towards achieving thinner and

wider architectures. For example, the wide ResNet model explored the model width by introducing a

factor 𝑘 that controls the model width, providing improved performances compared to the residual

networks [212]. Furthermore, the Pyramidal networks provided another architectural performance

improvement compared to the depth-based methods, where the model width is extended per the residual

units, thereby increasing the dimensions of the channel instead of the downsampling method used by

the depth-based architectures [214].

The other width-based architectural improvement includes the Xception model, which uses depth-wise

separable convolutions, decoupling the spatial and feature-map correlation and improving

computational efficiency [215]. At the same time, the ResNeXt introduced cardinality, an additional

dimension that describes the size of transformation used to split, transform and merge the model layers

[216]. Perhaps, the newer architectural design outlined as the various versions of the original Inception

and ResNet models were proposed to minimise the limitations of the original architectures, especially

the computational burdens with Inception-v3, Inception-v4 and Inception-ResNet architectures [217],

[218], while the Pyramidal network enhanced model generalisation [214], and the Xception and

ResNeXt improved computational efficiency [215], [216].

65

3.11.1.3 Multi-path Exploitation

The multi-path model design, known as cross-layer connectivity, is another architectural design

technique where a layer is systematically connected to another by skipping one or more intermediate

layers, thereby creating a specialised path to the flow of information across layers. This technique was

exploited in the design of Highway networks [211], DenseNet [219], ResNet [33] and dual-path

networks, which use higher-order recurrent neural networks (HORNN) [220]. The multi-path design

approach has become a dominant design approach in the architectural design of CNN. The cross-layer

connectivity approach was inspired by the design of long short-term memory (LSTM) models, where

gating units help decide the parameters that flow across layers. Furthermore, it partitions models into

block units, which tries to resolve the vanishing gradient challenges of deeper architectures by making

the gradients accessible in lower layers.

Moreover, the different methods used to establish cross-layer connectivity, often referred to as shortcut

connections, include using skip connections [33], sub-sampling or zero-padding [211], a direct

connection between layers using dense blocks [219], dual path networks [220], identity-mapping [221]

and the 1 𝑥 1 connection methods[32].

3.11.1.4 Feature- Map Exploitation

The model feature maps are essential components of every learning model since the models create

features that represent the entire population during training and use these features to map the targets to

the true labels in supervised learning models. Deep architectures have become a vast research area as

deep learning models use the layered approach to identify data patterns, often called hierarchical

patterns. A notable characteristic of the CNN models is that they perform excellently in automatically

extracting discriminating features based on the tasks [28]. However, researchers suggest that not all

feature maps support object discrimination in reality [222]; with enormous feature sets, model

overfitting is likely due to noise. Therefore, selecting features is crucial for the model design to ensure

that only supportive features are selected during training while the other features are dropped out.

3.11.1.5 Attention Exploitation

Attention networks are convolutional networks that focus on specific tasks at different time steps. The

benefits of such mechanisms have been explored for image understanding, localisation and sequencing

models. These models use an attention mechanism to obtain higher accuracy by finding global

dependencies between data points without considering the distance between the input and output

sequence, often referred to as the transformer [223]. The model architecture uses a gating function like

the sigmoid and softmax units alongside a sequential model like the encoder-decoder structure to map a

query and a key-value pair to an output where the queries, keys, values and outputs are all vectors

[222]. The transformer network allows for increased parallelisation and achieves state-of-the-art

performance in translation quality.

66

In summary, each architectural design approach offers some form of model improvement in the depth,

width, space, paths, feature mapping, attention and gating, among others. However, none of the

methods has achieved state-of-the-art performance on computational cost, accuracy, generalisation, etc.

These suggest that providing the balance between these performance parameters is the most vital

decision of the model designer. These decisions guide the design of the CNN architecture used in the

research alongside other heuristics from the experiments.

3.11.2 Components of the Convolutional Neural Networks

The components of the CNN include the convolutional layer, activation, pooling, batch normalisation,

dropout, and fully-connected layers alongside the inputs and output layers that make up the CNN

architecture. Moreover, it is essential to highlight that all the outlined components of the convolutional

neural networks are not present in every architecture since the designer chooses the layers to include

based on the proposed model improvement. The convolutional layers learn the feature representations

of the inputs using filters, usually referred to as kernels, used to compute the feature maps, with each

neuron directly connected to its neighbouring neuron. The new features are obtained by convolving the

input image and the kernel to get the set of features that are further propagated in the model. These

components of the convolutional neural networks are as follows.

3.11.2.1 Convolutional Layer

The convolutional layer consists of several kernels used to learn and compute feature maps from a

given input. A fundamental property of the convolutional layers is that the weights are shared,

providing the advantages of reduced model complexity and ease of training the network by reducing the

amount of time to learn model parameters due to the use of the receptive field of the NN and kernel size

[224]. The individual neurons of the feature map are mapped to a region of neighbouring neurons in the

preceding layers. Some new feature maps are obtained by convolving the inputs with a learned kernel

and applying some element-wise activation function on the output.

Figure 14 The convolutional layer showing sparse interactions

Besides, the kernel is shared by all the inputs' spatial locations to obtain these feature maps, and these

features are computed mathematically. The feature value of a specific area (𝑖, 𝑗) in the 𝑘th feature map

of the 𝑙th layer is given by

 𝑍𝑖,𝑗,𝑘
𝑙 = 𝑤𝑘

𝑙 𝑇𝑥𝑖,𝑗
𝑙 + 𝑏𝑘

𝑙
3.14

67

Where 𝑥𝑖,𝑗
𝑙 is the input patch centred at location (𝑖, 𝑗) of the 𝑙th layer, with 𝑤𝑘

𝑙 and 𝑏𝑘
𝑙 representing the

respective weight vector and bias terms of the 𝑘th filter of the 𝑙th layer. There are numerous techniques

for performing convolution operations, including tiled convolution, dilated convolution, transposed

convolution [115], etc. The tiled convolution approach learns separate kernels within the same layer,

while complex invariance is learned implicitly using square-root pooling over neighbouring units. The

tiled convolution has a convolutional operation applied after every k-units where 𝑘 represents the tile

size that controls the distance of weight sharing [225]. Furthermore, the transposed convolution, often

called deconvolution, is the opposite of vanilla convolution, which associates multiple input activations

to a single activation. The deconvolution connects single input activation with numerous activations. It

first upsamples the inputs by the padding and stride values before convolving the upsampled versions.

The stride factor also provides a dilation factor for the input feature maps [226]. The deconvolution

operation has been helpful in model visualisation [202], [226].

Nevertheless, the dilated convolution uses model hyperparameters in the convolutional layers to learn

input patterns. For example, it uses zero padding between filter elements to increase the receptive field

size of the model to capture more relevant information[227]. Besides, other compounded convolutional

operations are used in the CNN architecture design, including the network architecture network

alongside the inception module [210].

The CNN has the equivariant capability of the convolution operation, which assures that changes in

input cause the same changes in the output, thereby making the operation translation invariant. In

addition, the sparse interactions property also ensures that the memory storage space is maximised by

using smaller kernels than the input data, guaranteeing that smaller data is available for storage, thereby

improving the computation efficiency and reducing the convolutional computation cost. However, the

convolution property does not guarantee invariance to all transformations, including changes in the

image scale, rotation of an image and many others. However, an identified challenge with the

convolution operation is the high computation cost, especially for very deep architectures, thereby

consuming lots of memory resources. The pooling layers resolve this limitation of the convolutional

layers by down-sampling the inputs.

3.11.2.2 Pooling Layers

Pooling reduces the computational cost between the model's convolutional layers [160]. It simplifies the

layer output by non-linear downsampling, thereby reducing the number of parameters the model learns,

building translation invariance and robustness to slight distortions by computing a max or average of

the filter responses within the pool. The primary function of this layer is to reduce the spatial resolution

of the feature map's size of the input. It is applied over space, scale and space alongside similar feature

types [201]. These layers drop the CNN's computational burden by reducing the connections between

respective convolutional layers, thereby reducing their size. Pooling operations generally introduce

68

translation invariance in the images, making the models classify objects regardless of their position

within the image. It is a vector-to-scalar transformation which operates on every local region in a photo

by computing mostly the maximum or average of the pixels within an area and discarding the other

remaining features.

There are different types of pooling layers, including maxpooling, average pooling, mixed pooling, 𝑙𝑝,

Stochastic pooling, spatial pyramid pooling, spectral pooling, and multi-stage order-less pooling. The

most common pooling techniques include max pooling, which computes the maximum value from a

pooled region, and average pooling, which calculates the average value over a pooled area.

The ℓ𝑝 pooling is a biologically inspired operation modelled after the average and max pooling

techniques. The ℓ𝑝 pooling is given by the ℓ𝑝 norm of the pooling inputs obtainable using [228]

 (|𝑥𝐼𝑖|
𝑝 + ⋯+ |𝑥𝐼𝑙|

𝑝)
1
𝑝⁄ 3.15

Where 𝑥𝐼𝑖 ,⋯ , 𝑥𝐼𝑙 are the input nodes in the pool, with the value of 𝑝 lying between 1 and ∞. However,

the authors outlined that for 𝑝 → ∞, the ℓ𝑝 pooling reduces to the ordinary max-pooling while for 𝑝 =

1, it becomes the average pooling. Consequently, another pooling method named mixed pooling is a

compound pooling technique that is similar to the ℓ𝑝 pooling in terms of the form. The mixed pooling

assigns a random value of 1 or 0 to parameter 𝜆 during the forward pass of the training. It uses the

assigned number during backpropagation, indicating the choice of average or max-pooling. The mixed

pooling is given by [229]

𝑦𝑘𝑖𝑗 = 𝜆 ∙ 𝑚𝑎𝑥(𝑝,𝑞)∈ℛ𝑖𝑗 𝑥𝑘𝑝𝑞 + (1 − 𝜆) ∙

1

|ℛ𝑖𝑗|
 ∑ 𝑥𝑘𝑝𝑞
(𝑝,𝑞)∈ℛ𝑖𝑗

 3.16

Where 𝜆 is a random parameter, 𝑦𝑘𝑖𝑗= 𝑡ℎ𝑒 output of the pooling operator for the 𝑘𝑡ℎ feature map,

𝑥𝑘𝑝𝑞 = elements at points (𝑝, 𝑞) within the local pooling region, and ℛ𝑖𝑗 = pool size.

Furthermore, stochastic pooling is another pooling approach inspired by dropout regularisation. The

stochastic pooling selects the pool feature map response by sampling from a multinomial distribution

obtained from the respective pooling region and randomly picks an activation that ensures that only

non-maximal feature maps are selected. The stochastic pooling methods reduce the risk of model

overfitting due to the stochastic nature [230]. Other pooling techniques include spatial pyramid pooling,

which generates fixed-length representations regardless of the input sizes [231]. Spectral pooling uses

frequency domain components of an image to generate feature maps [232] and multiscale order-less

pooling, which considers local and global features of the inputs independently and uses it to provide

feature maps for the model [233].

69

3.11.2.3 Fully Connected Layers

The fully-connected layer is the layer preceding the output and is often used as the output layer of some

CNN models [210]. It is a global operation and valuable at the final layer in most CNN model designs

for combining the non-linear selected features in the classification pipeline. The fully-connected layer is

composed of a vector of 𝑘 dimensions where the 𝑘 − parameter is the number of classes the model can

predict. These classes of 𝑘 −vector contain the probabilities of the respective predicted classes of the

images under investigation. These fully connected layers depicted in Figure 15 are used to perform

deductive reasoning from the learned features obtained using the convolutional and pooling layers.

Figure 15 The fully-connected layers showing the typical neural connections

Moreover, the fully connected have much more connections than the convolutional layers. It takes a

vector of arbitrary real-valued scores and squashes it into another vector, whose values will range from

0 - 1, with the sum equal to one for a softmax. These values represent the softmax activation output and

the models' predictions. They achieve the needed high-level reasoning for the neural network [157],

[158], [202]. After constructing the feature map hierarchy of the network, the model is fine-tuned, and

the final layers are added such that each output neuron produces a conditional probability that maps the

input image to a specific class with a non-linear function applied to the output. The output layer is the

classification layer that usually contains a function that predicts the output. This function can be either

the sigmoid or softmax function for a typical image-based application.

2.11.2.4 Activation Functions

Activation functions are functions that help the models to approximate any other functions or

behaviour. Theoretically, a two-layer neural network can approximate any other function provided it

contains a sufficient number of hidden units to achieve that. The position of the activation function in

an architecture determines its function in the architecture. The most crucial work of these functions

includes making decisions during the intricate pattern learning process alongside accelerating the

learning process in the hidden layers. It achieves this by adding non-linearity to the learned features by

further propagation[234]. The activations work by modifying the output of a feature map, given as

 𝑓𝑙
𝑘 = 𝛼 (𝑂𝑙

𝑘) 3.17

where 𝑂𝑙
𝑘 is the output of a convolution layer, 𝛼 is the activation function, and 𝑓𝑙

𝑘 is the transformed

output. The literature outlines the numerous developed activation functions, including rectified linear

70

units (ReLU), Sigmoid, HardSigmoid, Swish, Hyperbolic tangent, Softmax, Softplus, Maxout, and their

variants, among other functions not mentioned. A worthy note is that the ReLU is the most used

activation function in the hidden layers of the deeper architectures [234]. A comprehensive review of

the various activation functions in deep learning research is found in the literature [234].

 Moreover, a necessary condition for training the gradient-based models is that the activations are

continuously differentiable, allowing the gradients to be computed, thus obtaining the parameters that

minimise the loss function. If this condition is not satisfied, the gradient-based methods cannot succeed.

These definite range helps to achieve more stable performance when using gradient-based techniques

than the infinite range functions. Other significant factors in choosing an activation layer for deeper

architectures include smooth, symmetric, behaving like identity functions around the origin [235]. An

overview of the most crucial activation functions is outlined as follows.

a) Sigmoid Function

The Sigmoid is a non-linear AF used in neural networks to convert discrete signals to continuous

signals, often referred to as a logistic function or squashing function in the literature [8]. The Sigmoid

is a bounded differentiable function defined for real input values, with positive derivatives everywhere

and a degree of smoothness [16]. The most vital property of the Sigmoid is that it produces numbers

very close to 1 for large positive numbers, numbers very close to zero for large negative numbers, and

numbers close to zero output numbers very close to 0.5. The Sigmoid is given by

 𝑓(𝑥) =
1

1 + 𝑒−𝑥

3.18

It often appears at most DL architectures' output layers and helps predict probabilistic outputs. The

Sigmoid has been successfully applied to classification, logistic regression, and other domains, with

researchers highlighting the most significant advantage as being easy to understand [17]. Moreover,

researchers have suggested that the Sigmoid should be avoided when initializing neural networks,

generally from small random weights [12]. Other crucial limitations of the Sigmoid include the sharp

damp gradients during backpropagation from deeper hidden layers to the input layers, slow

convergence, gradient saturation, and non-zero-centred output that causes the gradient updates to

propagate in different directions. Nevertheless, newer activations have been investigated and proposed

to manage these drawbacks suffered by the Sigmoid functions, including the HardSigmoid [236],

Sigmoid weighted linear units (SiLU) and the derivative of the Sigmoid weighted linear units (dSiLU)

[237], and the logistic Sigmoid [238] etc.

The HardSigmoid is a variant of the Sigmoid that offers improved computational cost compared to the

original Sigmoid and finds practical applications in deep learning classification [236]. The

HardSigmoid is obtainable using the function.

 𝒇(𝒙) = 𝒄𝒍𝒊𝒑 (
𝒙 + 𝟏

𝟐
, 𝟎, 𝟏) = 𝐦𝐚𝐱(𝟎,𝐦𝐢𝐧 (𝟏, (

𝒙 + 𝟏

𝟐
)))

3.19

71

Conversely, Sigmoid's SiLU and dSiLU variants are reinforcement learning-based approximation

functions. In the case of state-value-based learning, state vector 𝒔, an RBM approximates to state-value

energy function 𝑽 by the expected negative energy of an RBM network. The activation 𝜶𝒌 of the 𝒌 −

𝒕𝒉 SiLU for inputs 𝒛𝒌is obtained as the multiple of the input and the Sigmoid given by [237]

 𝜶𝒌(𝒛𝒌) = 𝒛𝒌 𝜶 (𝒛𝒌) 3.20

Where 𝜶 is a Sigmoid function. However, the authors outlined that the substantial values of 𝒛𝒌, the

SiLU approximates to a ReLU function. In contrast, the dSiLU resembles an overshooting Sigmoid,

comparable to the Sigmoid function and computed.

 𝜶𝒌(𝒛𝒌) = 𝜶 (𝒛𝒌)(𝟏 + 𝒛𝒌 (𝟏 − 𝜶(𝒛𝒌))) 3.21

The dSiLU has a minimum value of −𝟎. 𝟏 and a maximum value of 𝟏. 𝟏 for 𝒛𝒌 ≈ ± 𝟐. 𝟒. The typical

response of the SiLU and dSiLU functions is shown in Figure 16.

 Figure 16 Test response of the SiLU and dSiLU function [237]

Besides, the logistic Sigmoid units (LSigmoid) is another activation proposed for the recurrent neural

networks that address the problem of ReLU and LReLU in DBN applications [238]. These functions are

not able to maximise the pre-training effects of RBNs. The LSigmoid addresses the vanishing gradients

during backpropagation by combining the benefits of unsaturation from the leaky ReLU function. The

LSigmoid is given by

𝒇𝑰 (𝒙) = {

𝜶(𝒙 − 𝒃) + 𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝒃) , 𝒙 ≥ 𝒃

𝑺𝒊𝒈𝒎𝒐𝒊𝒅 (𝒙) , − 𝒃 < 𝒙 < 𝒃

𝜶(𝒙 + 𝒃) + 𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝒃) , 𝒙 ≤ −𝒃

3.22

Where 𝑏 = threshold and 𝛼 = slope. Both of these parameters are usually preset. Finally, the Sigmoid is

primarily helpful in binary classification problems; as such, it cannot work in multi-class problems,

requiring other functions that can manage more than two class inputs. A function for multi-class

prediction is the softmax function.

b) Softmax Function

The Softmax is a valuable function for multi-class neural computing that returns the probabilities of

each class and the target class having the highest probability. It helps compute the probability

distribution from a vector of real numbers. The output of the Softmax function ranges between 0

72

and 1, with the sum of the probabilities equal to 1. The Softmax is obtained using the following

relationship [68]

 𝑓(𝑥𝑖) =
𝑒(𝑥𝑖)

∑ 𝑒
(𝑥𝑗)

𝑗

 =
𝑒(𝑥𝑖)

𝑒(𝑥1) + 𝑒(𝑥2) + ….. + 𝑒(𝑥𝑛)
 3.23

Where 𝑗 is a linear function of scores for values ranging from 1 to 𝑛. The softmax function appears at

the output layer of almost all the major deep convolutional neural network architectures.

c) Softsign

Softsign is one of the earliest activation functions that has found application in deep learning research.

It is a quadratic polynomial function that converges in polynomial form, and it differs from 𝑡𝑎𝑛ℎ

function, which converges exponentially. The Softsign is given by [239]

 𝑓(𝑥) = (
𝑥

|𝑥| + 1
) 3.24

Softsign is mainly applied in regression applications but has recently been useful in deep learning

modelling of Text-to-Speech systems showing promising results [240].

d) Softplus

The Softplus is another activation function and a primitive of the Sigmoid. It can be viewed as a

smoothened version of the ReLU activation, which has a non-zero gradient and smoothing properties,

thereby stabilising the performance of the models [241]. The Softplus is given by

 𝑓(𝑥) = log(1 + 𝑒𝑥) 3.25

Besides, comparing the Softplus function against the Sigmoid and ReLU functions suggests that the

Softplus produced faster convergence with lesser epochs during training and finds practical application

in speech recognition systems, among other applications [242].

e) Rectified Linear Units (ReLU)

The ReLU is a fast learning activation function used in almost all the existing deep learning

architectures[28]. It is the most widely used function in deep learning research [234] due to its

simplicity and reliability in deeper architectures [243]. It offers better performance and generalization in

deep architectures than other activations [244], [245]. The ReLU represents a nearly linear function

that preserves the properties of linear models, making them easy to optimise using gradient-descent

techniques [68]. It performs a threshold operation on each input element where values are less than

zero, setting them to zero. The ReLU is given by [243]

 𝑓(𝑥) = max(0. 𝑥) = {
𝑥𝑖 , 𝑖𝑓 𝑥𝑖 ≥ 0
0, 𝑖𝑓 𝑥𝑖 < 0

 3.26

73

The ReLU activation cuts off the values of the inputs less than zero, thereby forcing them to zero;

however, it suffers from the vanishing gradient c h a l l e n g e . The ReLU and its variants have found

significant application in different deep architectures, including the restricted Boltzmann machines [243]

and the CNN architectures[33], [157], [159]. In the majority of the existing architectures, the ReLU

function has been helpful in the hidden layer and another activation at the output layers of the

network, especially in object recognition[33], [246], and speech recognition tasks [247]. The ReLU

improves model computation speed since it does not perform exponentials and divisions [203] and

introduces sparsity in the hidden layers as it squishes the values in the range of zero and maximum.

Nevertheless, the ReLU function, like other activations, has some limitations, including being prone to

overfitting. Researchers explored using the dropout technique to reduce the effects of overfitting,

improving the performance of ReLU activation in very deep architectures [248]. Besides, the ReLU is

sometimes fragile during training which causes some gradients to die, giving zero activation [68] and

causing the weight updates not to activate future data points, hindering the learning. These challenges

of the ReLU function were addressed by the newer variants of the ReLU, including the leaky ReLU that

specifically addresses the dead neuron issues. The variants include the parametric ReLU [33], leaky

ReLU [247], randomised ReLU [249], and displaced ReLU [250], among other variants.

Furthermore, the leaky ReLU (LReLU) is a variant of ReLU that introduced a slight negative slope to

the original ReLU function, parameterised as α, to keep and sustain the weight updates during the

entire propagation process [247]. The α parameter resolves the ReLUs dead neuron problems using a

minimal constant value for the negative gradient in the range of 0.01. Therefore there will be no zero

gradients at any point in time during model training. The LReLU is computed as follows.

 𝑓(𝑥) = 𝛼𝑥 + 𝑥 = {
𝑥, 𝑖𝑓 𝑥 > 0
𝛼𝑥, 𝑖𝑓 𝑥 ≤ 0

 3.27

Nevertheless, the LReLU has identical results to the standard ReLU except for the non-zero gradient

throughout the training process. Nevertheless, the parametric rectified linear units (PReLU) is another

improved variant of the ReLU function where the negative part of the original ReLU is adaptively

learned while the positive linear part is maintained. The PReLU is given [33]

 𝑓(𝑥𝑖) = {
𝑥 , 𝑖𝑓 𝑥𝑖 > 0
𝛼𝑖𝑥 , 𝑖𝑓 𝑥𝑖 ≤ 0

 3.28

Where 𝛼𝑖 is the learned negative slope control parameters. However, when the 𝛼𝑖 parameter is zero; the

PReLU becomes the same as the original ReLU. Moreover, another modification is the randomised

leaky rectified linear units (RLReLU), which is a dynamic variant of leaky ReLU where 𝛼𝑗𝑖 is a

random number sampled from a uniform distribution U (l, u) and used to train the network. The

RLReLU is given by

 𝑓(𝑥𝑖) = {
𝑥𝑗𝑖 , 𝑖𝑓 𝑥𝑗𝑖 > 0

𝛼𝑗𝑖𝑥𝑗𝑖 , 𝑖𝑓 𝑥𝑗𝑖 ≤ 0
 3.29

74

Where the 𝛼𝑖 ~ 𝑈(𝑙, 𝑢), 𝑙 < 𝑢 𝑎𝑛𝑑 𝑙, 𝑢 ∈ [0,1]. Besides, the test phase averages all 𝛼𝑗𝑖 during the

training without the dropout. The 𝛼𝑗𝑖 parameter is obtained as 𝛼𝑗𝑖 =
𝑙+𝑢

2
. The test output is given by

 𝑦𝑗𝑖 =
𝑥𝑗𝑖

(
𝑙+𝑢

2
)

3.30

However, comparing the ReLU and some variants have been investigated on crucial classification

datasets. As a result, researchers validate that the LReLU, RLReLU, and PReLU perform better than

the ReLU on classification problems [249]. Yet, the ReLU remains the dominant function in the state-

of-the-art architectures used in deep learning research.

f) Exponential Linear Units (ELU)

The ELU is another activation function developed to speed up the training of deep neural networks

[251]. The ELU provides the crucial advantage o f alleviating the vanishing gradient problems of the

ReLU function by using identity for positive values, thereby improving the learning characteristics. The

negative values also push the mean unit activation closer to zero, improving learning speed and

reducing the computational burden. The ELU is a reasonable alternative to ReLU as it reduces the

bias shifts by shifting the mean activations towards zero during training. The ELU is given by

 𝑓(𝑥) = {
𝑥 , 𝑖𝑓 𝑥 > 0

𝛼 𝑒𝑥 − 1, 𝑖𝑓 𝑥 ≤ 0
 3.31

Where 𝛼 = hyperparameter that controls the saturation point for negative inputs. Besides, research

suggests that the performance of ELU is significantly comparable to the ReLU and LReLU and even

better in learning faster as well as generalisation [252]. However, an identified limitation of the ELU

function is that it does not centre the values at zero. This limitation is addressed by the newer ELU

variants, including the parametric ELU [251] and Scaled ELU [253] variants.

Nonetheless, the parametric exponential linear units (PELU) were proposed by [251] to address the

zero-centring of values limitation of the ELU. It achieves this by reducing the bias shifts with additional

parameters to control the gradient flow. The PELU function is given by

𝑓(𝑥) = {

𝑐𝑥 , 𝑖𝑓 𝑥 > 0

𝛼 𝑒(
𝑥

𝑏
) − 1, 𝑖𝑓 𝑥 ≤ 0

 3.32

Where 𝛼, 𝑏, 𝑐 > 0. 𝛼 controls the negative quadrant saturation, 𝑏 controls the exponential decay scale,

and 𝑐 controls the changes in the positive quadrant slope [251]. The PELU is most useful in

applications that require fewer bias shifts and vanishing gradients, like convolutional neural networks.

Conversely, the scaled exponential linear units (SELU) are another ELU variant introducing self-

normalisation. The SELU is a scale multiple of the original ELU function with approximately zero

mean and unit variance. Also, it converges towards unit variance and zero mean when propagated

75

through multi-layers during training. The SELU enables a strong regularisation that allows robust

feature learning in deep neural networks. The SELU is given by

 𝑓(𝑥) = 𝜏 (
𝑥 , 𝑖𝑓 𝑥 > 0

𝛼𝑒𝑥 − 𝛼, 𝑖𝑓 𝑥 ≤ 0
)

3.33

Where 𝜏 = scale factor, which ensures that the slope is large than 𝑜𝑛𝑒 and 𝛼 is a hyperparameter that

controls the saturation of inputs. Moreover, the SELUs have positive and negative values for regulating

the mean, a slope and are not affected by the vanishing gradient challenges as the ReLU and cannot be

derived from other activations including the ReLU, scaled ReLU, Sigmoid, LReLU, among others

[253].

g) Maxout

 The Maxout function is an activation that generalises the ReLU and leaky ReLU, where the neurons

inherit the properties of the ReLU and LReLU to avoid saturation and dying neurons during training.

The Maxout has a non-linearity applied as a dot product of the data and the neural network's weights.

The Maxout is given by [254]

 𝑓(𝑥) = max(𝑤1
𝑇 𝑥 + 𝑏1, 𝑤2

𝑇 𝑥 + 𝑏2) 3.34

Where 𝑏 = biases, 𝑤 = weights, 𝑇 = transpose. However, the limitation of the Maxout is the

computationally intensive nature of the function, as it doubles the number of parameters used in all

neurons, increasing the number of parameters.

h) Swish

The Swish function is a compound function that combines the Sigmoid and the input to provide the

hybrid Swish function. The Swish uses a reinforcement learning-based automatic search technique to

achieve the activation, with better smoothness, non-monotonic and unbounded at the upper and

bounded in the lower limits, producing better optimisation and generalisation. The Swish is derived as

 𝑓(𝑥) = 𝑥 . 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
𝑥

1 + 𝑒−𝑥

3.35

Perhaps the Swish's advantage is its simplicity and improved accuracy as it avoids the vanishing

gradient while learning rich features. In addition, the authors outlined that Swish outperformed the

ReLU on deep learning classification tasks.

Finally, activation function research has evolved significantly over the years. The more recent functions

combine other existing functions to improve performance, including Softplus, Swish, dSILU, Maxout

and PELU. Besides, the parameter learning functions have also become the new trend with PELU and

PReLU functions. These AFs help to learn higher-order polynomials for deeper architectures, with their

function in the architectures dependent on the position of the AFs in the respective architectures.

The specific roles of these activations differ, with researchers exploring the balance in the network's

width, depth, and resolution to obtain improved performance. Moreover, the most vital activations

76

outlined in the literature include the ReLU, Softmax, Sigmoid, Swish and SiLU, which have witnessed

significant applications in CNN architectures, alongside the ReLU and Sigmoid having other

applications in RNN and SAE architectures. Besides, the most used activation in the deep architectural

designs is the ReLU which has witnessed applications in almost all the ImageNet winning CNN

architectures, except the EfficientNet architecture, which adapted the SiLU and Swish activations.

The output layer has the activation helpful in making model predictions, including classification

problems where the softmax, sigmoid, and SiLU functions have been previously used at the output of

the deep CNN architecture [212], [255], [256]. The hidden layers also have different activations used in

the design to ensure that the signals propagate to the output layer, especially the ReLU and Swish

functions, which have been the dominant function in the deeper architectures.

Moreover, choosing the appropriate activation function for a given deep architecture requires the

heuristic testing of the existing activations on the architectures and observing the performance of the

models during training. The process ensures that the most efficient activation for specific architecture is

easily selected and deployed in the desired deep learning applications.

3.11.3 Loss Functions

The loss functions are estimators that measure how well a model can predict the desired outcome. It

uses the maximum likelihood framework as a helpful method to derive the best set of weights and

performs well in optimising the weights. It uses a candidate solution that smoothly maps to a high-

dimensional landscape to update the model weights iteratively. The loss function accepts the ground

truth and the model's predictions and evaluates how well the model predicts the outcome. A higher

value of loss means that the model performed poorly, and a low value implies that the model performed

well during training. Selecting the appropriate loss function for a model is crucial in successfully

training the model, with each loss function having different properties and capabilities. These properties

define how the model learns, especially in managing outliers.

Moreover, deep learning theory generally adapts and uses statistical approaches to solve learning tasks.

These tasks include training and generalisation of model performance of different applications. The

overall foundational concepts of parameter estimation, bias and variance are handy for characterising

the performance of a model, including overfitting, underfitting and generalisation [68].

Moreover, point estimates provide a single best prediction of the parameter of interest, which can be

either a vector of parameters or a single parameter [68]. To distinguish a set of parameters from their

actual values, the convention of a given point estimate 𝜃 is denoted by 𝜃. These assumptions would

differentiate a predicted values from the true values. The point estimators help determine the

relationship between some inputs and the target variables. These estimators, often called function

estimators or function approximators, help to predict a variable 𝑦 from a set of input vectors 𝑥. For a

function 𝑓(𝑥) that defines the relationship between 𝑥 and 𝑦, it can be described as

77

 𝑦 = 𝑓(𝑥) + 𝜀 3.36

Where 𝜀 represents the part of 𝑦 that is not predictable from 𝑥. The function estimation involves

approximating 𝑓 with a model. These approximations are typical in modelling even more extensive

problems, including deep learning-based problems. The estimates often involve mapping a function

from 𝑥 to 𝑦 or estimating a model parameter [68]. However, the vital sources of estimation error in

results outlined by researchers include biases and variance. While the bias measures the deviation from

the actual value, the variance measures the deviation from the expected estimator value that any data

sampling can cause. Hence, if the true value obtained from training a model is 𝑦, the model's loss is the

difference between the prediction and the actual value. This simple loss 𝐿 becomes

𝐿 = 𝑓(𝑥) − 𝑦 3.37

Where 𝑥 represents the inputs, therefore, to obtain the loss 𝐿 over 𝑛 items in a dataset, the average of all

losses is

𝐿 =

1

𝑛
 ∑𝑓(𝑥𝑖) − 𝑦𝑖
𝑛

𝑖=1

 3.38

Besides, the above loss functions are adapted to various deep learning applications and grouped into

three categories: regression, multiclass, and binary classification. These categories are briefly discussed

as follows.

3.11.3.1 Regression Loss Functions

The regression application involves the modelling and prediction of real-value quantities. The loss

function capable of predicting real-valued inputs includes the mean square error (MSE) and mean

absolute error (MAE) and their variants. The mean square error is one of the most straightforward loss

functions, and it models the average squared difference between the model's predicted output and the

ground truth. The MSE helps predict continuous data when the outputs are numerical predictions, and it

is obtained as follows

𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

3.39

Where n = model number of samples. The square functions ensure that the obtained outputs are always

positive. Besides, the MSE offers the advantage that the model has few outlier predictions with huge

errors since the MSE increases the error due to the square function. However, the major limitation of

using the MSE is that if the model makes a slight mistake, the error is amplified by the squaring

function, making the MSE unsuitable for models with many outliers.

Conversely, the mean absolute error is the average absolute difference between the model's predicted

output and the ground truth. The MAE can never be a negative value, and it is given by

78

𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

3.40

Moreover, the main advantage of the MAE is that all the referenced errors are compiled on the same

linear scale to produce the desired outputs. On the other hand, the MAE's limitation is that it ignores

outliers instead of managing them, making the models prone to very poor decisions in some significant

cases and not ideal for crucial applications.

Furthermore, the Huber loss function is another regression loss function that offers some common

advantages over the MAE and MSE losses. It manages the outliers by balancing the MAE and MSE

using a range of values that keep the loss for minor errors as a quadratic function and linear otherwise.

The relationship gives the Huber loss.

𝐿𝛿(𝑦, 𝑓(𝑥)) = {

1

2
(𝑦 − 𝑓(𝑥))

2
 , 𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)| ≤ 𝛿

𝛿|𝑦 − 𝑓(𝑥)| −
1

2
𝛿2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 3.41

Where 𝐿, 𝑦, 𝑎𝑛𝑑 𝑥 represents the respective loss, actual outputs and inputs, 𝛿 is the delta parameter. The

Huber loss is ideal when considering model outliers whose effects are negligible [68].

3.11.3.2 Binary Classification Loss Functions

The binary cross-entropy loss is the default function used for binary classification problems. It helps

predict the probability output of a neural network with a single unit output layer. The binary cross-

entropy is often referred to as log loss, logistic loss, and logarithmic loss in other literature [29], [68],

[257]. The binary cross-entropy loss calculates a weighted sum of the feature array and bias, with the

outputs logits produced using the sigmoid function.

�̌� = 𝛼(𝑥𝑇 𝜃) 3.42

Where 𝛼 is a sigmoid function that ensures the output takes either of the two states of 0 and 1. The

Sigmoid function is described in detail in Section 3.11.2.4. Besides, as soon as the model estimates the

probability of an instance belonging to a positive class, it predicts the class using the following rules;

 �̌� = {
0, 𝑖𝑓 �̌� < 0.5
1, 𝑖𝑓 �̌� ≥ 0.5

 3.43

The binary cross-entropy loss is obtained by computing the function

𝑙 = −∑𝑦𝑖 log 𝑓(𝑥𝑖

𝑛

𝑖=1

, 𝜃) + (1 − 𝑦𝑖) log(1 − 𝑓(𝑥𝑖 , 𝜃)) 3.44

Where 𝑙 is the obtained model loss, the negative sign converts the overall computation to a positive

quantity.

Moreover, the Hinge loss is another binary loss function used primarily on support vector machine

classifiers whose labels are encoded as 1 𝑎𝑛𝑑 − 1. The Hinge loss is obtained as follows [258].

79

𝑙(𝑦) = max (0, 1 − 𝑡 . 𝑦) 3.45

Where 𝑦 = raw output and 𝑡 = intended output given as ± 1. The Hinge loss tries to simplify the SVM

algorithm by maximising the loss and has the squared version named Squared Hinge Loss, which

computes the square of the obtained Hinge losses for a model. The squared Hinge loss is given by

𝑙(𝑦) =∑(max(0, 1 − 𝑦𝑖 . �̂�𝑖)

2)

𝑛

𝑖=0

 3.46

However, the binary loss functions have the limitation that they can only support the binary

classification, making them unsuitable for multiclass classification problems, which require the model's

output to predict more than two outputs at a time.

3.11.3.3 Multiclass Classification Loss Functions

The multiclass problems are classification tasks modelled to predict that specific samples belong to one

of more than two classes. They are modelled to predict the likelihood of the example belonging to each

class. The categorical cross-entropy loss function is for multiclass applications that eliminate the class

limitations of binary cross-entropy functions. It uses the softmax loss function to generalise and

perform multi-class classification effectively. Besides, the categorical cross-entropy is a multiclass loss

function useful when the target class are text-based labels [29]. For each instance, the model estimates

the sample's probability of belonging to the class. The softmax loss predicts the class with the highest

probability as the output, as described in Section 3.11.2.4. The cross-entropy loss is given by

𝐿(𝑋𝑖𝑌𝑖) = − ∑𝑦𝑖𝑗 ∗ 𝑙𝑜𝑔(𝑝𝑖𝑗)

𝑛

𝑗=1

3.47

Where 𝑌𝑖 = labels or target vector encoded as one-hot as (𝑦𝑖1, 𝑦𝑖2… 𝑦𝑖𝑛) and 𝑝𝑖𝑗 = 𝑓(𝑋𝑖) which

outlines the probability that the element is in the class 𝑗. Besides, it is worth outlining that the cross-

entropy is inversely proportional to the total probability of an event; thus, higher cross-entropy implies

a lower chance for an event occurrence. The cross-entropy can be re-written as follows

 𝐿 = −(𝑦𝑙𝑜𝑔(�̂�) + (1 − 𝑦)𝑙𝑜𝑔(1 − �̂�)) 3.48

The negative sum of the maximum likelihood produces the cross-entropy in which a low cross-entropy

means the model performs well. In contrast, a high cross-entropy implies that the model is performing

poorly. For example, given some probabilities, the cross-entropy of a set of events is low if the events

are more likely to happen and significant if the event does not occur.

However, a limitation of the categorical cross-entropy function is the considerable memory required to

store variables when the number of inputs is significantly large. The sparse categorical cross-entropy

addresses the encoding challenge of categorical cross-entropy by encoding the targets as integers labels

[29] and computing the loss using the output index as ground truth.

80

Conversely, the Kullback Leibler (KL) divergence loss is another multiclass loss function that measures

the differences between various models' probability distribution, with zero divergences indicating

identical models [68]. Perhaps, the KL divergence for two distributions, A and B, is given by

𝐷𝐾𝐿(𝐴||𝐵) =

{

 −∑𝐴(𝑥). log

𝐵(𝑥)

𝐴(𝑥)
𝑥

 = ∑𝐴(𝑥). log
𝐵(𝑥)

𝐴(𝑥)
𝑥

 , 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

−∫𝐴(𝑥). log
𝐵(𝑥)

𝐴(𝑥)
. 𝑑𝑥 = ∫𝐴(𝑥). log

𝐵(𝑥)

𝐴(𝑥)
. 𝑑𝑥 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

 3.49

The limitation of the KL divergence is that it is an asymmetric function. Therefore, it is not usable in

simple classification problems or for estimating distance metrics. However, it can approximate more

complex functions like the variational autoencoders.

Overall, the loss functions use the maximum likelihood for finding the best statistical estimates of

parameters from training data. The interpretation of the maximum likelihood estimate is similar to

minimising the dissimilarity between the empirical distribution described by the training set and the

model probability distribution using KL divergence. The results correspond to minimising the cross-

entropy of the distributions.

3.11.4 Optimisation and Optimisation Functions

Optimisation is an iterative process of comparing different model solutions to obtain satisfactory

performance. It is helpful to evaluate a candidate's solution by either minimising or maximising an

objective function by altering the values of the functions to get the solution with the lowest or highest

scores, respectively [68]. The loss, error, and cost functions are different terms used to refer to the

objective functions in literature. The standard notation to denote values that maximise or minimise a

function is often outlined with a 𝑠𝑢𝑝𝑒𝑟𝑠𝑐𝑟𝑖𝑝𝑡∗ that is for minimisation, the function becomes

𝑥∗ = argmin 𝑓(𝑥) 3.50

Where 𝑥 = input. Similarly, the maximisation is the same with the max function used in place of min

 𝑥∗ = argmax 𝑓(𝑥) 3.51

However, the optimisation of a function can produce several local minimums depending on the

function's parameters. Still, it can only have one global minimum, which is the point that gives the

absolute lowest value on the parameters. The obtained cost function reduces all the bad and good

aspects of the complex model to a single scalar number that allows for the ranking of the candidate

solution.

Furthermore, the optimisation techniques help improve the speed and memory performance of learning

algorithms [259] and represent one of the numerous ways to improve deep learning models'

performance, as outlined in the literature [260]. Perhaps, there are multiple methods of optimising

models, especially for deep learning applications, including gradient, weight initialisation, data

81

augmentation, batch normalisation, and shortcut connections [160]. A summary of these techniques is

presented as follows.

a) Gradient Optimisation

The gradient is the rate at which change occurs over time. It measures the change in the output rate for a

little change in the inputs. On the other hand, gradient descent (GD) outlines whether a function is

decreasing or increasing at a particular point. It is an optimisation method that addresses specific

challenges, especially when the gradient of a loss function with respect to each parameter helps to

obtain the optimal direction to adjust the model parameters. The rate of this movement is determined

when the learning rate is usually denoted by α. The learning rate is fixed to avoid changing too fast,

causing overfitting or the model being too slow to converge. The gradient descent algorithm is given by

 𝜃
𝑦𝑖𝑒𝑙𝑑𝑠
→ 𝜃 − 𝛼

𝜕𝐿

𝜕𝜃
 3.52

Where 𝜃 = parameter, 𝛼 = learning rate. The first-order gradient computation produces a tangential line

on a given error surface. These gradients are easy to compute and less time-consuming to converge,

even on large datasets. Perhaps gradient propagation across very deep architectures during model

training is challenging, justifying the need to modify the gradient to accept gradient updates. Several

researchers have explored and continue to study techniques to resolve these challenges; the

modifications to the gradient descent algorithm is active research, with numerous novel optimisation

methods and algorithms proposed in recent time.

The batch gradient descent (BGD), also known as the vanilla gradient descent, is the default gradient

descent algorithm that computes the gradient of a loss function with respect to each of the parameters of

the entire training examples 𝜃, before updating the model. The BGD is given by

𝜃 = 𝜃 − 𝜂 . ∇𝜃 𝐽(𝜃) 3.53

Where the ∇𝜃 𝐽(𝜃) = the gradient term, 𝜂 = learning rate, 𝜃 = model parameters. However, a

significant limitation of the BGD is that it is inherently slow and unsuitable for extensive training

examples that cannot fit into the computer's memory and does not guarantee convergence at a global

minimum for convex surfaces [261].

Conversely, stochastic gradient descent (SGD) was developed to address the limitation of BGD. The

SGD resolves these limitations by randomly selecting the following training examples to update the

trainable parameters, enhancing the speed. The SGD helps to take small steps in the direction of

optimality, with the steps being stochastic and guaranteed to get to the minimum[160]. The SGD is

given by

 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 ∇𝜃 𝐿(𝜃𝑡; 𝑥
(𝑡), 𝑦(𝑡)) 3.54

Where 𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡) represents the selected examples, and the other parameters are the same as the

BGD. The advantage brought by SGD is that instead of computing a gradient based on the aggregate

82

across the entire dataset, the gradient is based on the data contained in a single batch and continues to

update the loss, batch by batch, until the training is complete. However, a significant drawback of the

SGD is that there is no adaptive way of obtaining the optimal learning rate. It also has the gradients

tending to zero at some point during training, which is not ideal in very deep architectures and does not

scale well on large datasets [262].

Moreover, the mini-batch gradient descent (MGD) optimisation aims to improve the training speed of

deep architectures by performing an update after a mini-batch of training examples is passed. The MGD

reduces the variance parameter updates, thereby enhancing convergence. The MGD is computed as

 𝜃 = 𝜃 − 𝜂 . ∇𝜃 (𝜃; 𝑥
(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) 3.55

However, there are outlined limitations of the MGD, including that it does not guarantee excellent

convergence and the difficulty in choosing an appropriate learning rate for the model, which is a

parameter of the dataset used in training the model.

Furthermore, the stochastic gradient descent with momentum (SGDM) proposes to speed up the

optimisation process based on the model dimensions. It involves accelerating the process by following

the directions where the gradient is pointing while slowing the path where there is a sign of an inherent

changing gradient. The SGDM is given by

 𝑣𝑡+1 = 𝛾𝑣𝑡 − 𝜂𝑡 ∇𝜃𝑙 (𝜃𝑡; 𝑥
(𝑡) , 𝑦(𝑡)) ; 𝜃𝑡+1 = 𝜃𝑡 − 𝑣𝑡+1 3.56

Where 𝛾 = momentum term, usually set to 0.9, 𝑣𝑡+1 = current velocity vector. However, the SGDM

has a drawback because the learning rate is manually optimised, making it dependent on expert

judgement.

Conversely, Nesterov's accelerated gradient (NAG) is another robust optimisation approach that

provides better convergence than gradient descent-based optimisers[263]. The inspiration for the NAG

algorithm is the Polyak classical momentum method of accelerating gradient descent that accumulates

some velocity vectors in the direction of the continuous decreasing objective function[264]. The NAG

algorithm is given by

𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜖 ∇ 𝑓(𝜃𝑡) ; 𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1 3.57

Where 𝜖 = learning rate and it is always greater than zero, 𝜇 ∈ [0,1] = momentum coefficient, and

∇ 𝑓(𝜃𝑡) = the gradient at 𝜃𝑡. The NAG updates are performed as follows

𝑣𝑡+1 = 𝛾𝑣𝑡 − 𝜖 ∇ 𝑓(𝜃𝑡 + 𝜇𝑣𝑡) ; 𝜃𝑡+1 = 𝜃𝑡 − 𝑣𝑡+1 3.58

The NAG at first computes the known gradient 𝜃𝑡+1, approximates the following steps by choosing an

optimal step size and then moves in the direction of 𝛾𝑣𝑡, which represents the past accumulated

gradients, computes the current gradient and updates it accordingly. The NAG has a similar limitation

to most other gradient-based optimisers, as the learning rate is manually fixed. However, the NAG

83

optimisers inspired the development of the adaptive optimisers that have their learning rates as a

learnable hyperparameter of the model.

The AdaGrad optimiser is an early adaptive optimiser with adaptive learning rates that update relative

to the parameter updates during model training. The vital features of the AdaGrad include that it

considers every model parameter when selecting the learning rates, thereby making it possible to

increase or decrease learning rates depending on the model features and converges quicker than the

gradient-based optimisers[265]. The AdaGrad modifies the learning rate 𝜂 at every iteration of time

step 𝑡 for all parameters 𝜃𝑖 based on the past compiled gradients for 𝜃𝑖 . The AdaGrad update is

computed as follows

 𝑔(𝑡, 𝑖) = ∇𝜃 𝐽 (𝜃𝑡,𝑖) ; ∆𝑥𝑡= −
𝜂

√∑ 𝑔𝑡
2𝑡

𝑟=1

 . 𝑔𝑡
3.59

Where 𝑔(𝑡, 𝑖) = gradient of the loss function with respect to 𝜃𝑖 parameter at time step 𝑡, 𝜂 = global

learning rate shared by all dimensions and the denominator gives the 𝜄2 norm of all past gradients on

each dimension. Researchers identified the limitation of the AdaGrad as the continuous decay of the

learning rate throughout the learning process [266].

Moreover, the aggressive reduction in AdaGrad was improved with AdaDelta. This new adaptive

optimiser restricts the window of past gradients to a specific size denoted as 𝑤 to update the learning

rates. The AdaDelta uses the sum of the exponential decaying average of squared gradients to update

the learning rate. The running average is given by

𝐸[𝑔2]𝑡 = 𝜌 𝐸[𝑔

2]𝑡−1 + (1 − 𝜌)𝑔𝑇
2 3.60

Where 𝜌 = decay constant. The update rule is given by

 ∆𝑥𝑡 = −
𝑅𝑀𝑆 [∆𝑥]𝑡−1
𝑅𝑀𝑆 [𝑔]𝑡

 3.61

Where 𝑡 = time, 𝑔 = gradient, ∆ = 𝑡ℎ𝑒 sum of the numerator terms. The AdaDelta enables automatic

learning rate fixing, lesser computation cost, robustness to noise due to large gradients and automatic

hyperparameter tuning, making it easier to implement than the gradient descent optimisers [266].

Conversely, the root means square propagation (RMSProp) optimiser works similarly to AdaGrad but

changes the gradient accumulation into a weighted moving average. The RMSProp modifies the

learning rate into an exponentially decaying average of squared gradients given by [68], [267]

 𝐸[𝑔2] = 𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2 ; 𝜃𝑡−1 = 𝜃𝑡 −

𝜂

√𝐸[𝑔2]𝑡 + 𝜖
 . 𝑔𝑡

3.62

Where the 𝜂 = learning rate set to 0.001 and 𝛾 = 0.9

The RMSProp automatically adjusts the learning rate but has an identified limitation: it lacks the bias

correction term, which causes large step sizes in practical applications, causing model divergence [267].

84

Besides, the Adam algorithm is another adaptive moment (Adam) optimisation technique that uses

adaptive estimates of moments of lower-order degrees. Adam offers improved memory, computational

efficiency and invariance to diagonal scaling of gradients and is suited for large-scale parameter

optimisation. It combines the properties of AdaGrad and RMSProp to obtain the first and second-order

moment estimates representing the uncentred variance and mean of the respective gradients. The

gradient 𝑚�̂� (mean) and squared gradient 𝑣𝑡 (variance) is given by [268]

 𝑚𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 ; 𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 3.63

Where 𝛽1, 𝛽2 ∈ ⌈0,1⌉ are the hyperparameters that control the exponential decay rate of the moving

averages. The gradient update is estimated directly from the moving averages of the first and second

moments as

 𝜃𝑡−1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜀
𝑚�̂� 3.64

Where 𝛽1, 𝛽2 = 0.9 and 0.999 respectively and 𝜀 = 10−8. The advantage of the Adam optimiser is that

it converges fast and does not suffer from vanishing gradients. The AdaMax is a variant of Adam

modelled using an infinity norm. It is sometimes superior to Adam in specific applications. The velocity

parameter of the AdaMax scales the gradient inversely to the ℓ2norm of the past gradients 𝑣𝑡 and

current gradient |𝑔𝑡|
2 terms. The gradient is given by

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) |𝑔𝑡|

2 3.65

The AdaMax update rule is obtained as the maximum between the present and past gradients given by

 𝜃𝑡−1 = 𝜃𝑡 −
𝜂

𝑢𝑡
𝑚�̂� 3.66

Where 𝜂 = 0.002, 𝛽1 = 0.2, 𝛽2 = 0.999, and the other parameters are the same for Adam.

Furthermore, the Adam algorithm has been improved in various ways, including rectifying the variance

term. The rectified Adam (RAdam) addresses the enormous variance challenges in the early adaptive

learning rates by reducing the variance of the model parameters. The rectified variance is given by

𝑟𝑡 = √

(𝑝𝑡 − 4)(𝑝𝑡 − 2)𝑝∞
(𝑝∞ − 4)(𝑝∞ − 2)𝑝𝑡

 3.67

Where the parameter 𝑝∞ ≤ 4. The authors outlined that the RAdam optimiser produced a comparable

performance to Adam with fewer epochs, making it a faster optimiser [269]. Nevertheless, the Nesterov

accelerated adaptive moment estimator (NAdam) is another improvement to the Adam optimiser.

NAdam is a compound optimisation technique that combines the properties of the NAG and Adam

optimisers to improve model optimisation by modifying the momentum term 𝑚�̂� instead of including

the momentum twice. The NAdam update rule becomes [260]

 𝑚�̂� ⟵ (1 − 𝜇𝑡)𝑔𝑡 + 𝜇𝑡+1𝑚𝑡 ; 𝜃𝑡 = 𝜃𝑡−1 − 𝜂
𝑚�̂�

√𝑣𝑡 + 𝜀
 3.68

85

Moreover, another compound optimisation is the AMSGrad which combines the Adam and RMSProp

optimisers as a moving average optimiser that guarantees faster convergence of learning models.

AMSGrad uses a lower learning rate with slowly decaying gradients than Adam [270]. It also adopts

the maximum of past squared gradients like the AdaMax instead of the most common exponential

moving averages to update the optimiser parameters. The maximum of the past gradients is given by

𝑣�̂� = 𝑚𝑎𝑥(𝑣𝑡−1̂, 𝑣�̂�) 3.69

The AMSGrad update rule is obtained as follows

 𝜃𝑡−1 = 𝜃𝑡 − 𝜂
𝜂

√𝑣𝑡 + 𝜀
𝑚𝑡 3.70

The AMSGrad shows promising results compared to the Adam optimiser, with researchers suggesting

even better performance [270]. Perhaps, the Lookahead is another gradient-based optimisation

technique that improves model performance by iteratively updating two sets of model weights. The

Lookahead optimiser updates the model weights by choosing its search in the direction of the fast

sequence of weights produced by the embedded optimiser. The weight update rule is given by [271]

 𝜃𝑡,𝑖+1 = 𝜃𝑡,𝑖 + 𝐴(𝐿, 𝜃𝑡,𝑖−1, 𝑑) 3.71

Where 𝐿 = objective function, 𝐴 = optimisation method, 𝑑 = current mini-batch training examples.

Other optimisation techniques include the second-order derivatives, often referred to as the Hessian

matrix approximations, swarm intelligence optimisers and parallel computing. The second-order

optimisers have Newton's method, Quasi-Newton's method, and the sum of functions method [68].

These optimisation methods are inherently faster but computationally expensive, slower to compute,

and not memory efficient. On the other hand, swarm intelligence optimisers are evolutionary, reliable

and quick techniques for finding solutions to optimisation problems, inspired by biological methods of

solving complex distributed computational problems using behavioural approaches of organisms. These

behavioural approaches of ants, honey, wasps, bees, birds, and termites are the inspiration of the swarm

optimisers, with the various biological optimisation methods including particle swarm optimisation

[272], grey wolf optimiser [273], ant colony, firefly algorithms [274], artificial fish swarm optimisation

etc. A detailed review of these optimisation techniques can be found in the literature [259].

Besides, parallel computing is another optimisation technique that improves model convergence by

using multi-core tight coupling of processing units, ensuring low latency between the processor's

computing gradient updates. A popular parallel computing method is the SGD parallelised method,

which improves the SGD optimisation method for deep learning applications[275], [276]. Parallel

computing can be synchronous or asynchronous depending on the configurations, with synchronous

computing affected by slow computers on the network. In contrast, the asynchronous is not affected by

the computer hardware issue. The parallelised SGD is obtained as follows.

𝑣𝑖 = 𝑆𝐺𝐷(𝑐

1,⋯ , 𝑐𝑚 , 𝑇, 𝜂, 𝑤0) 3.72

86

Where 𝑇 = 𝑡ℎ𝑒 number of instances per machine, and the values of 𝑖 lie between 𝑖 𝜖 1 ⋯𝑘. The

overall sum of the computer gradients aggregate becomes

𝑣 =

1

𝑘
 ∑𝑣𝑖

𝑘

𝑖=1

 3.73

Furthermore, parallel asynchronous computing provides improved training speed by distributing the

processing to many central processing units (CPU) and graphics processing units (GPU). However,

combining multiple (four) GPUs enhances training speed thrice compared to a single GPU [277].

In summary, the gradient-based SGD has been the dormant optimisation method for deep neural

network applications and has offered good promise since its invention. It has also performed

significantly better than the most adaptive optimisers for prolonged training time to tune the model

hyperparameters [278], while the adaptive optimisers offer improved convergence speed. On the other

hand, the second-order optimisers and the more recent swarm intelligence optimisation methods have

limited applications in deep learning research. However, the latter is still a new research area. However,

it is worth highlighting that no single optimisation technique offers the best performance on converge

speed, accuracy, and model generalisation, thereby choosing the most appropriate optimiser heuristic.

Therefore, a trial of the different optimisers as a model hyperparameter is the only guaranteed technique

for selecting the best optimiser for an application.

b) Parameter Initialisation

The parameter initialisation for neural networks is another vital optimisation technique in neural

network models. It determines the initial weights and biases for the chosen model and the overall

performance of the neural network. Research suggests that deep neural networks have many parameters

and a non-convex loss function response, making them challenging to train in real-time [68]. However,

proper weight initialisation is crucial to training these models to achieve fast convergence [246], [263].

Model weights and biases are essential parameters of the neural networks alongside the learning rate,

which determines how fast the gradient descent algorithm attains the global minimum and defines the

starting point of a training process [29].

Furthermore, it helps the model avoid exploding and vanishing gradients during propagation[157],

[263]. The primary goal of parameter initialisation is to break symmetry within the model's hidden

layers. A proper initialisation ensures that signals are not inappropriately magnified or reduced but kept

under control during the training [33].

Weight initialisation is a research area that focuses on the different techniques researchers adopt to

improve model performance. The early weight initialisation approach includes sparse initialisation,

where units are initialised to a constant non-zero value [279]. However, the arbitrary weight

initialisation can slow down or stall the convergence process entirely due to the small variances

received by the very deep layers, which reduces the back-propagation process during training [246].

87

Nevertheless, the Xavier initialisation technique is another weight initialisation approach that uses a

scaled uniform distribution and assumes that the activations are linear to maintain variance across each

layer. The Xavier initialisation is obtained as a random number with a uniform probability distribution

that lies between
−1

√𝑛
 and

1

√𝑛
, with 𝑛 = 𝑡ℎ𝑒 number of inputs to the node. The authors also proposed the

normalised weight initialisation method that considers the number of inputs and output to the model's

node to provide weight that can break symmetry during training successfully. The normalised weight

initialisation also uses random numbers with a uniform probability that lies between
−√6

√𝑛+𝑚
 and

√6

√𝑛+𝑚

where 𝑛 = number of inputs to the node and m = the number of outputs from the node [280], however,

the major limitation of the Xavier initialisation methods was that it assumed that the models were all

linear, while this is not the case when the model has rectified activations and suffers poor convergence

with very deep architectures having over thirty layers [33].

Besides, the early attempt to use Gaussian distribution in weight initialisation saw researchers exploring

the initialisation of model weights using Gaussian distribution with a standard deviation of 0.01 for

weights and the biases set to 1 [157]. This method was not very successful as it suffers from poor

convergence too [33], but an improvement in the use of the Gaussian distribution produced a new

initialisation method for non-linear activations that used Gaussian distribution with 𝑧𝑒𝑟𝑜 mean and

standard deviation of √
2

𝑛
 where 𝑛 = number of inputs to the node. This approach named Kaiming

initialisation was successful to initialise the ReLU activations and further improve the performance of

deep architectures.

More recently, a statistical weight initialisation technique using data statistics has been proposed. The

data-dependent initialisation was used to initialise the network and tested on practical datasets. The

authors reported better performance than other initialisation techniques on practical datasets [281].

However, a critical condition is that the learning rate must be fixed across all the layers during the

training, making it prone to prolonged training time. Furthermore, the model learning rate must be set to

a small value to prevent the model from converging at a local optimum level.

Another early initialisation approach was the orthonormal matrix initialisation, where a carefully

selected scale factor accounts for the non-linearity [282]. It is a layer-sequential unit variance

initialisation approach where the orthonormal matrix was helpful to pre-initialise the weight of the

respective convolutional layers, with the first layer output normalised to 1 [246]. The researchers

outlined that this approach performed better than the initialisation from a Gaussian distribution.

Conversely, another recent initialisation technique proposed is the decision trees initialisation technique

for deep learning applications, especially for feedforward networks. This technique involves training a

collection of decision trees and mapping them to a group of initialized neural networks, with the

88

network structure determined by the tree structure. The technique has been used in training predictive

models on complex datasets and produced promising results on regression and classification tasks.

Numerous initialisation methods not covered in detail include the identity matrix technique and the

variance scaling approaches [282].

Research suggests that choosing the uniform or Gaussian distribution does not matter much. However,

the scale of the initial distribution is vital [2], with a more significant initial weight providing a higher

symmetry-breaking effect, avoiding signal losses during the forward and backward passes alongside

exploding gradients. Furthermore, selecting optimal weight and bias parameters alone cannot guarantee

optimal performances. Most importantly, the model behaviour during training is dynamic, and the

parameters are not only the biases and weights but critical for enhanced performances.

3.11.5 Regularisation Techniques

Regularisation addresses the overfitting challenge of the CNN models during model training. It is

helpful to improve the overall performance of learning models [283], reduce overfitting and other

essential parameters in neural networks that enhance model generalisation on unseen data. It achieves

this by altering the learning algorithm to improve its performance by modifying the connections

between sequential network layers to discourage co-adaptation [284]. Different techniques for

regularising deep neural networks include regularisations at the respective nodes, data regularisation,

and loss regularisation. These techniques provide various degrees of model improvement.

a) Loss Regularisation

The loss regularisation involves adding a cost to a model loss. The methods to achieve loss

regularisation include L1 and L2 regularisation. These regularisation methods update the general cost

function by adding an external penalty term. The L1 regularisation has the penalty term proportional to

the absolute value of the weights, while the L2 has the penalty term proportional to the squared value of

the weights. Loss values regularization is added by penalising the large weights, thus

⋌∑ (𝜃)2

𝑘

𝑙=1

3.74

Where ⋌ = weight decay hyperparameter that controls the strength of the regulariser. The regulariser

approach term is often called L2 regulariser, with the regularisation and loss terms combined to give

𝐿 =

1

𝑛
∑−log(𝑠𝑗) + ⋌∑ (𝜃)2

𝑘

𝑙=1

3.75

The effect of the L2 regulariser is that higher parameters will produce higher errors and would be less

likely to be selected in the final parameter set.

89

b) Node Regularisation

Node regularisation involves modifying the parameters of a model node to enhance performance. These

techniques of node regularisation include dropout, dropConnect, dropPath, scheduledDropPath and

BinaryConnect during training. Dropout is the most common node regularisation method used in deep

learning. It randomly omits or drops a subset of activations within each layer during the training of deep

neural networks, thereby preventing co-adaptation of activations. The dropout proposes to reduce

overfitting problems observed during training neural networks with state-of-the-art performances on

supervised learning tasks [241]. The dropout helps determine the number of nodes to omit during model

training and can be applied at a model's input or hidden layers. The authors suggest that dropout can

also be set as a fixed probability independent of other units derived from the validation set of the model

or a specific value of 0.5.

Moreover, the dropConnect is another regularisation method that randomly sets a subset of the model

weights to zero during propagation. It drops the model connections rather than output units, with the

drop probability obtained as 1 − 𝜌, making the dropConnect, a sparsely connected layer [285]. The

DropConnect layer output is randomly selected during training with the output given by

 𝑟 = 𝜎((𝑀 ∗𝑊) 𝑣) 3.76

Where 𝑀 = binary matrix encoding the connection information, 𝑊 = weights, and 𝑣 = model input.

Conversely, binaryConnect regularisation is another recent technique that explores using binary weights

to train neural networks. For each minibatch, the model randomly picks one of the two values of each

weight, forward and backwards, and propagates it, not during parameter updates [236]. It is a method

that constrains the model weight parameters into two values of either −1 or +1 during propagation. It is

similar to dropConnect but uses Gaussian noise for binary sampling. The BinaryConnect weight is

given by

𝑤𝑏 = {
+1 with probability ρ = σ(w)

−1 with probability 1 − ρ

3.77

Where 𝜎 is the HardSigmoid function, the authors outlined that the BinaryConnect produced state-of-

the-art results on two standard datasets.

Nevertheless, the ScheduledDropPath regularisation technique also improves the existing DropPath

regularisation. It proposes an architecture designed to generalize on specific datasets during training and

afterwards transfer the learned architectures with state-of-the-art results on available datasets [286].

Researchers first proposed transferring learned architectures using genetic algorithms to design deep

learning structures [287]. DropPath first encodes some fixed-length binary string to represent each

network structure and uses genetic approaches like crossover and mutation to search the available

90

spaces efficiently. Next, they tested the genetic algorithm on CIFAR-10 and ImageNet datasets with

notable poor performance results. However, they established that deep learning structures are learnable

and transferrable despite poor performance.

Finally, other dropout techniques exist in the literature, including dropPath regularisation, where paths

are dropped stochastically within a cell of fixed probability [284], spatialDropout adds another dropout

layer before the 1 x 1 convolutional layer [288], and entropy regularisation for deep reinforcement

learning models [289], among others. It is vital to outline that the majority of these dropout methods

are only applicable during training to enhance generalisation and avoid model overfitting in most cases;

however, at test time, all the activations are helpful to test the performance of a model.

c) Data Regularisation

The data regularisation involves modifying the data to achieve improved model performance. The

methods of attaining data regularisation include batch training, data augmentation, data normalisation,

etc. Data augmentation is another valuable model improvement technique in deep learning research. It

is a process of sending batches of images and randomly applying a series of transformations on each of

the images in the batch, replacing the initially obtained batches with the randomly transformed batches,

and afterwards using the new batches to train the model. It involves creating more dataset samples with

specific transforms, which helps the model better generalise when deployed to classify unseen data. The

augmentation transforms include image translation, rotations, scaling, shearing and flipping[257]. Data

augmentation is mainly used to increase the size of training examples. Still, researchers have suggested

that it reduces the need for model regularisation, especially in deeper architectures where augmentation

enhances model performance significantly, producing a reduced error rate in model predictions [213].

d) Batch Training and Normalisation

Batch normalisation is another valuable technique for addressing internal covariance shifts in feature

maps. It standardises the inputs to subsequent layers of the neural network during training, improving

the performance of the deep learning models [290]. The internal covariance shift refers to the changes

in the value distribution within the hidden units that limit model convergence by enforcing a small

learning rate [32]. The batch normalisation enhances the training speed of deep neural networks and

model stability. It uses the first and second statistical moments (mean and variance) to normalise the

activation vectors of hidden layers in a DNN. The batch normalisation can be applied before or after the

non-linear activations in a neural network and is mainly implemented as a layer in most deep learning

libraries.

Moreover, the mean (𝜇) and variance (𝜎) of the feature map of the mini-batch are respectively

determined by the batch normalisation layer during training as

 𝜇 =
1

𝑛
 ∑ 𝑍(𝑖)𝑖 , 𝜎 =

1

𝑛
 ∑ 𝑍(𝑖)𝑖 − 𝜇 3.78

The transformed feature maps or activation vectors are then normalised using the relationship

91

𝑍𝑛𝑜𝑟𝑚
(𝑖)

=
𝑍(𝑖) − 𝜇

√𝜎2 − 𝜖
 3.79

Where 𝑍(𝑖) = input feature map, 𝑍𝑛𝑜𝑟𝑚
(𝑖)

=normalised feature-map, 𝜖 = numerical stability constant. It

ensures that the neuron's output maintains and follows a normal standard distribution across the batch of

samples. The output of the batch normalisation layer is obtained by applying a linear transformation

using

 𝑍 = 𝛾 ∗ 𝑍𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽 3.80

Where 𝛾 and 𝛽 are trainable parameters that modify the standard deviation and bias of the model,

respectively. The model computes the mean and standard deviation of each batch iteration and then uses

gradient descent to train the 𝛽 𝑎𝑛𝑑 𝛾 parameters using an exponential moving average to give credence

to the iteration.

e) Early Stopping

The early stopping technique is another regularisation method used in deep learning models. It is a

simple and effective technique that allows for saving the best model validation weights during training

and returning to the parameters set at a future time with the best weights parameters [68]. This

technique has been one of the most successful regularisation techniques for training deep architectures.

Finally, it is worth outlining that regularisation is a heuristic process that enhances the model's

generalisation ability. Perhaps, since it is heuristic, combining and adapting different regularisation

techniques can achieve optimal performance.

3.11.6 Evaluation Metrics

The model evaluation metrics are parameters helpful in evaluating the performance of a given model.

The metric functions are similar to the loss function; however, the output of the metrics is helpful

during model training [29]. The metrics used to evaluate the performance of deep learning-based

classification models include accuracy, precision, recall, 𝐹1 score, false positive rate, false negative

rate, receiver operating characteristics and area under the curve [29], [68]. These metrics outline the

various performances of any given model based on the known model parameters.

3.11.6.1 Accuracy

The accuracy of the model prediction is one of the most important metrics to outline the performance of

a model on a given dataset. Accuracy is a measure of true and false positives in the model predictions.

The evaluation of the accuracy of these models considers two different approaches that assess

performance. The model accuracy describes the ratio of correct predictions to the total number of

predictions. It highlights the proportion of the training examples predicted correctly by the model [68].

Accuracy is given by

92

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑛
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑛 + 𝐹𝑛

 3.81

Where 𝑇𝑃 = true positive, 𝑇𝑛 = true negative, 𝐹𝑃 = false positive, and 𝐹𝑛 = false negative, all obtained

from the model predictions. The rank-1 and rank-5 accuracies are the two classification accuracy

assessment methods found in deep learning classification literature. These different assessment criteria

offer specific advantages that mainly depend on the dataset's size. The rank-1 accuracy in classification

problems refers to the percentage of predictions where the top prediction from a test matches the exact

ground truth label. The rank-1 accuracy is practical when testing classification problems where the

number of inputs is few.

In contrast, rank-5 accuracy refers to accumulating the top-5 predictions from the developed model. All

predictions in the top-5 are considered in the accuracy of this type of model. The top-5 is most helpful

in classifying large datasets with hundreds to thousands of input predictions and has found typical

applications in benchmark datasets [68].

Amongst these accuracy evaluation methods, the rank-1 accuracy was selected to reflect the size of our

dataset, as there are fewer object classes to predict. At the same time, the top-5 accuracy was not

considered as it would be meaningless; there are a few classes and samples in all the test datasets.

Moreover, the model misclassification 𝑀 is the number of wrong classifications produced by a model.

It is an of accuracy, and it is given by

 𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 3.82

3.11.6.2 Error rate

The error rate is another metric that is useful to describe the performance of a given learning algorithm.

It outlines the fraction of the training examples that the model predicted incorrectly [68]. The error rate

is like probabilistic outcomes, with values ranging between 0 and 1. An incorrectly classified outcome

gives a loss of 1, and a correctly classified outcome gives 0.

3.11.6.3 Precision and Recall

Precision and recall are other metrics used to evaluate models in deep-learning classification problems.

The precision is the positive predictive value representing the fraction of the correct model predictions

[68]. The relationship gives the model precision

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

3.83

Conversely, the model recall is defined as the true positive rate of the model. It outlines the fraction of

true events detected by the model and is often described as the model sensitivity [68]. The recall is

given by

93

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

3.84

It is essential to highlight that precision and recall are important classification metrics that are most

helpful for evaluating models with an imbalanced dataset. These solely depend on the most important

desired outcome of the model, either to have a low false positive or a low true negative.

3.11.6.4 𝑭𝜷 Score

The Fβ score, often referred to as Fnumber is a measure of a model's test accuracy using precision and

recall. It is another metric used in evaluating imbalanced classification tasks and is often referred to as a

harmonic mean of the model's precision and recall. Fβ can apply additional weights to the precision or

recall to emphasise the model's precision or recall. The Fβ can take multiple weight values depending

on the application, and these numbers can range from zero to small positive numbers. The Fβ is given

by [291]

𝐹 =

(1 + 𝛽2) × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙

3.85

Where the 𝛽 is the weight factor controlling the recall or precision more heavily. However, the perfect

Fβ is 1 highlighting the equal contribution of both the model's precision and recall, and is often referred

to as F1 number. The F1 number is essential to summarise the performance of these models with a

single number instead of creating the precision and recall curve. This 𝐹1 number is the harmonic mean

of the model precision and recall, given by

 𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

3.86

3.11.6.5 Receiver Operating Characteristics (ROC)

The receiver operating characteristics is another model assessment technique for selecting and

interpreting the performance of binary classification models. It uses the false positive rate and true

positive rate metrics to highlight the relationship between true positives and false positives. It also helps

to visualise a confusion matrix at different thresholds. It shows the proportion of negative classes in a

model classified as positive with the false positive rate displayed on the x-axis.

The ROC curve is obtained by plotting the true positive rate (TPR), often described as the model

sensitivity, and it defines the proportion of positives adequately classified. The TPR is obtained using

the following relationships

𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

3.87

94

The false-positive rate (FPR) describes the portion of the negative classes incorrectly classified in a

given model. The FPR is often referred to as a Type 1 error and is given by

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
= (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 3.88

Conversely, the true negative rate (TNR), often called specificity, describes the proportion of negatives

that a given model correctly classifies. The specificity, also defined as the TNR, is obtainable using the

relationship

 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 3.89

The false-negative rate describes the portion of the positive class incorrectly classified by the model.

The FNR is often referred to as a Type II error and is obtained using the following relationship

 𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

3.90

Conversely, it is desirable to have a model with a higher TPR and lower FNR to effectively classify the

positive classes and a higher TNR with a lower FPR to classify the negative classes correctly.

3.11.6.6 Area under the Curve (AUC)

The AUC is another binary classification metric used to evaluate model performances. It differs from

the ROC metric in that the AUC gives the average sensitivity for all possible specificity values and the

average specificity values over all possible sensitivity values [292]. A classifier with an AUC of 1

produces a perfect classification of all the classes, an AUC of 0 outlines that the model got all

predictions wrong, while an AUC of 0.5 shows that the model cannot distinguish the classes. The

higher value of the AUC, the better the model performs at classifying the different instances.

3.11.6.7 Confusion Matrix

The confusion matrix is a table used to describe the performance of a classifier when true values are

known. It is a model prediction visualisation tool that shows the model's ground truth and the

predictions in matrix form. It uses the true positive, false positive, true negative and false negative

metrics to visualise the model performance, with the diagonal shaded elements showing accurate

predictions

 Predicted negative Predicted positive

Actual negative True Negative (TN) False Positive (FP)

Actual positive False Negative (FN) True positive (TP)

 Figure 17 Confusion matrix table

Finally, it is crucial to outline that choosing a performance metric is explicitly dependent on the

application of the model. As researchers suggested, the model's intended behaviour is vital in selecting

95

the evaluation metrics. However, since the applications are primarily classification-based models, the

accuracy and error rate parameters are the most valuable metrics. Therefore, these performance metrics

are used in assessing all the models investigated in the research.

The selected architecture will process images and produce a suitable output from the fully-connected

layer. The general model output is vital since it can be probabilistic or non-probabilistic. For example,

the softmax probabilistic output takes a vector of arbitrary real-value scores. Then, it squashes it into

another vector, whose values will range from 0 - 1, with the sum equal to one. The non-probabilistic

output uses the receiver operating characteristic (ROC) and area under the ROC curve (AUC) to outline

the performance of a model.

Overall, the performance evaluation of the deep learning models uses the different metrics outlined;

however, the choice of a metric depends on the application and the desired results. Accuracy and error

rate are the most used metrics in classification problems. The accuracy metric is often the default metric

because it is a single number comparison metric that enhances decision-making on model performance.

On the other hand, precision and recall are two numbers, making them more difficult to compare model

results and the ROC and AUC curves.

3.12 Applications of Deep Convolutional Neural Networks

Convolutional neural networks have found tremendous applications in diverse fields, from developing

models for classifying noisy data, controlling dynamic systems, and recommending and predicting

future actions or events. These applications are found across different domains, including object

recognition, segmentation, object detection, optical character recognition (OCR), natural language

processing, regression, medical image analysis, tracking, robotics, self-driving cars, facial recognition,

smartphones, cameras, and so on [28]. However, CNN is primarily useful in object detection and

recognition, widely modelled as classification problems. However, this myth is because of the state-of-

the-art performance of CNN in classification problems since it was proposed and validated by different

authors in literature[28], [156], [157].

The CNN recognition application includes identification and object classification modelled using

human perception concepts, where some sensing elements are used to capture scenes for interpretation.

These vision systems try to recognise objects by identifying and sometimes localising the objects where

the three-dimensional coordinates of the objects are obtained [293]. Furthermore, object detection is

similar to recognition. The model takes an input image, extracts regions using bottom-up region

proposals, computes region proposals using CNN and finally performs a classification, usually with a

classifier model like linear support vector machines (SVM). The detection system uses feature

extraction techniques to identify regions of interest within the images and uses them to perform object

detection [203].

96

Conversely, the regression application outlines the relationships between a response variable (output)

and some predictor variables (inputs). These CNN applications have also found broader industrial

applications in machine fault diagnosis [294], agricultural rocks classification [224], remanufacturing

time of equipment prediction [42], sorting of components for remanufacturing [41], [143], and so on.

Furthermore, optical character recognition is another application of CNNs that has become state-of-the-

art in digit recognition. These models helped recognise banking notes, making it the first commercial

application of the CNN models [156]. The OCR application brought other use cases of the CNN models

in today's legal, insurance and general document digitisation applications.

Furthermore, facial recognition is another very recent application of CNN models where the CNNs are

helpful in the effective extraction of facial features. Afterwards, these features are combined to achieve

face recognition using CNN [295]. Moreover, the face recognition application has been extended to

smartphones and cameras to identify faces in scenes before capture. Besides, medical image analysis is

another application area where the CNN models have witnessed tremendous success, where they are

helpful in image detection and predictive analysis of various medical data. This application helps

patient diagnosis, drug discovery, precision medicine and predicting protein sequences [296], [297].

Finally, the CNN models have witnessed tremendous applications across domains, as outlined across

industrial applications. These applications are increasing as researchers investigate different techniques

for improving existing computational models across the domain. This trend will continue and likely

birth even more applications of the CNN models. However, it is worth highlighting that the

remanufacturing application of the CNN models is still in the infancy stage. It requires much more

research to establish the extent and benefits that CNN models could bring to remanufacturing.

3.12.1 Inspection Application

Inspection is a quality control technique that identifies product or component non-conformities to

assure quality and reliability [298]. It is a crucial stage in remanufacturing used to assess the economic

value of a product and the reusability and reconditionability of such product [82], thereby enhancing

remanufacturing process and inventory planning [299], [300]. In addition, it determines the extent of

value recovery and reconditioning required to return the used product to "as new condition". Research

suggests that the inspection process increases business profit by minimising the risk of loss for products

that are not remanufacturable before disassembly [309] while mitigating the risks associated with

uncertainty in core quality [301].

3.12.1.1 Inspection Techniques in Remanufacturing

The remanufacturing inspection consists of three stages: core acceptance, part, and final product testing

[62]. These different stages of inspection offer different benefits and address different challenges. The

core acceptance stage is a pre-disassembly inspection that sorts cores uneconomical to remanufacture,

thereby determining the core model, the quality or identification of vital indicators that suggest its

97

remanufacturability [94]. Conversely, the part inspection is a post-disassembly inspection that removes

unusable parts of the product and confirms that the parts are reusable. It includes all forms of inspection

performed during the remanufacturing process up to the reassembly before the final testing. Finally, the

final product inspection ensures that the product is in complete working order and meets the desired

quality before the warranty is placed on the product.

Moreover, there are three different methods of performing an inspection in remanufacturing, including

manual inspection, automated inspection, and semi-automated inspection, also referred to as hybrid

inspection in some literature [302]. The manual inspection involves human experts checking for defects

and deciding to reject, rework or accept the product. Since its inception, manual inspection has been

characterised by low quality and slow output. These inspection cells are usually integrated into the

functional remanufacturing workshop floor [303] for easy core classification and to determine the

extent of the core deterioration [304]. Perhaps, early research outlines that vision-based inspection

systems are expensive to develop and deploy and further highlights that the primary driver of

automation is the error-prone and slow expert inspection outcomes due to the massive production

volumes, requiring 100 percent inspection, longer inspection time, and the high litigation costs if faulty

products are delivered to customers [302].

Conversely, the hybrid inspection explores automating some of the tasks involved in the inspection

instead of having experts perform all the activities. In contrast, automated inspection systems use

sensors to capture process data, process the sensor signals, and classify based on the sensor data. The

automated inspection does not include manual activities or human experts in the inspection process,

with the two early inspection methods including feature matching and image subtraction [302]. The

image subtraction matches a recorded image against a perfect image for similarities. However, the

subtraction technique has minimal applications and is usually slow. In addition, some parts do not

always match at end-of-life due to usage wear, making it very difficult to deploy in remanufacturing

applications.

Similarly, the feature-matching approach compares selective features and the features corresponding to

the perfect pattern. The feature matching approach is called local feature extraction or template

matching. Perhaps, another approach to automated inspection includes the learning model approach,

where a neural network is used to create a computational model that automatically learns the patterns in

the data without human interference.

Nevertheless, researchers have adopted different techniques while developing systems for deployment

in remanufacturing inspection. The methods include the metal magnetic memory technique, visual

inspection, Taguchi method-3 pattern recognition, FUZZY Technique for Order Preference by

Similarity to Ideal Situation (FUZZY TOPSIS), etc. These inspection methods are discussed in detail.

98

Firstly, the metal magnetic memory (MMM) is a non-destructive inspection technique helpful in

evaluating the degree of damage to cores, interfaces and coatings of components and products in

remanufacturing. The method's advantages include cheap and quick implementation and not requiring

data preprocessing, making it suitable for evaluating early damages on cores for remanufacturing.

Furthermore, it can assess different fault types, including crack length, plastic deformation, stress

concentration and fatigue life of ferromagnetic materials [305]. This technique considers the MMM

signals induced by the component damages, applied stress and frictional wear.

Besides, using the MMM has witnessed researchers investigating the MMM inspection technique for

predicting the residual life of structural cores [306]. Researchers demonstrate the potential of MMM in

detecting micro and macro-crack and predicting the residual useful life of a core, which is necessary to

ensure that reused cores do not have inherent faults capable of causing premature failure. The MMM

are particularly useful for detecting sub-surface faults in cores and have helped detect damage in

remanufactured coatings using plasma transferred arc welding (PTAW) [307]. However, this method

detects only crack faults on ferromagnetic materials, making them unsuitable for inspecting non-

metallic materials, thereby limiting the use of MMM methods alone to achieve automated inspection

without incorporating other techniques to inspect non-metallic cores.

Secondly, the Taguchi method-3 pattern recognition technique is another helpful method to identify

features that enhance pre-processing inspection. It is a Mahalanobis-Taguchi System (MTS) technique

that uses Mahalanobis distance to recognise multivariate data patterns and is implemented for

inspecting automotive crankshaft remanufacturing [63]. The MTS approach has also been helpful in the

diagnosis of freshwater quality to determine carbon steel corrosion [308]. However, the Taguchi system

only applies to quantitative data, limiting the application to process having historical quantitative data.

Thirdly, the FUZZY method is a multi-criteria decision-making approach applied across domains to

select and rank alternatives based on the weight of the criteria. Researchers highlight that the FUZZY

method has a common characteristic: multiple objectives and multi-criteria usually conflict with each

other [309]. It is another recent inspection approach extended to remanufacturing using the FUZZY

Technique for Order Preference by Similarity to Ideal Situation (FUZZY TOPSIS), proposed as a

valuable technique for selecting and ranking several possible alternatives using Euclidean distance

measurement [310]. The principle assumes that the chosen inspection option will have the longest

distance from the perfect negative solution and the shortest distance from the ideal positive solution.

This inspection model uses core and component dimensions such as diameter, height, length, surface

roughness, groove thickness, and other parameters to optimise the selection of used engine pistons for

remanufacturing. However, the technique is complicated, as the majority of the product data is not

inherently available, making it difficult to adopt in the remanufacturing context where there are

heterogeneous products with different dimensions.

99

Finally, visual inspection is another NDT method that uses optical signals from a connected camera to

perform product inspection. The cameras, lenses or mirrors produce images, which are a projection of

three-dimensional (3D) scenes of the world points to two-dimensional (2D) points of known intensity

value. These images represent the visual objects, scenes or persons produced by optical devices. Visual

inspection is closely related to the image processing field of research, where scientists crave to extract

possible information from captured images using computers. It involves three basic steps: importing the

image, analysing or manipulating it, and predicting an output.

Perhaps, the image properties are modified to perform any form of image processing, highlighting the

key features to be adjusted, including the noise and contrast [311], thereby helping to improve the

quality of the images and enhancing object recognition from the scenes. However, low-level image

processing is computationally expensive and time-consuming; thus, the need to use optimized hardware

and software to enhance the processing time of the image processing system. To achieve this, the use of

advanced computing systems that would implement these algorithms, with sizeable random access

memory (RAM), central processing unit (CPU) and graphics processing unit (GPU) upgraded to meet

the expected results, is recommended [312].

However, the aim of image processing can be summarised: detect interest regions and points, usually

referred to as features points within images, and process the information using those features, saving

resources including memory storage spaces, transmission time and bandwidth for networked devices,

thereby producing optimal results from the available big data, obtainable in real-time systems.

These processing actions perform different forms of transformation on the image data depending on the

capability of the developed algorithms, including image-to-image modifications like image

enhancement, image-to-information transformations like feature extraction and pattern recognition, or

information-to-image transformations like image reconstruction to produce the desired goals. These

transformations help practitioners and developers to focus on specific aspects of the project for

enhancement using various technologies.

Moreover, computer vision and machine learning are increasingly finding applications in different

industries. They have achieved state-of-art in these new applications, including image analysis,

classification, recognition, video analysis, natural language processing, and even recommender systems

[28]. The remanufacturing application of this modelling technique has witnessed researchers

investigating the use of image data for modelling remanufacturing inspection to obtain an automated

visual inspection system for remanufacturing [137]. They used the Gaussian mixture model to train a

machine learning-based inspection model to assess high-value components' surface corrosion [137].

Although this method successfully categorises corroded and non-corroded areas of tested engines, it

was only able to detect one type of surface fault, making it unsuitable for holistic inspection of typical

components in remanufacturing; that return multiple defects. Besides, a remanufacturing inspection

application was also explored by researchers using ensemble learning, where automotive constant

100

velocity joints were investigated and classified only wear defects [313]. This application is also limited

by the number of faults evaluated.

Nevertheless, these existing inspection technology requirements complicate the inspection process,

requiring new and more effective solutions. Hence, developing novel systems and algorithms that could

enhance and optimise the inspection approaches becomes a research gap for improving inspection in

remanufacturing.

3.12.2 Sorting Application

Sorting is another crucial stage of component remanufacturing where parts of a product or returned EoL

products are identified and classified. It is usually performed at different remanufacturing stages,

including pre-disassembly, during remanufacturing and post-remanufacturing stages. The use of deep

learning models in remanufacturing sorting is outlined as follows.

3.12.2.1 Sorting Systems in Remanufacturing.

Convolutional neural network models are architectures used in deep learning research to investigate

learning grid-like patterns from data. These models have been explored in various applications.

Researchers investigate the application of CNN models for sorting, especially image recognition and

object detection, which ranks among the most researched problems in computer vision and machine

learning. Machine learning enables computational models to obtain high-level features in data

automatically. In contrast, computer vision research enables visual object recognition from historical or

real-time data. These fields support well-defined modelling approaches, especially computer vision

problems where models are described in three well-defined pipelines, including the pre-processing,

feature description and correspondence [314]. Besides, the design of sorting systems has adopted

similarly defined pipelines in the different sorting approaches as researchers propose and justify their

design methods. These design techniques include the use of the keypoint-based approach, the rule-

based approach, the radio frequency identification, and the vision-based approach.

The keypoint-based approach is a low-level image processing technique where the local gradient

information of an image is helpful to obtain features, also referred to as keypoints. It uses the changes in

the image pixel local neighbourhood characteristic to obtain the key points used to describe the contents

within an image. The keypoint feature extraction research has witnessed massive research over the

years with several algorithms, including the histogram of oriented gradient (HOG) [149], scale-

invariant feature transform (SIFT) [147], speed-up robust transform (SURF) [148], the Implicit Shape

Model (ISM) and the Oriented FAST and rotated BRIEF (ORB) algorithms [315], to mention a few.

These algorithms differ in their feature computation method, with the SIFT algorithm convolving

images with different scales of Gaussian filters and approximating the Laplacian of the Gaussian using

101

the Difference of Gaussian (DoG) technique. The minima and maxima of the obtained DoG are used as

the SIFT key points.

Furthermore, the ISM technique is another feature description technique that uses a probabilistic

recognition framework to obtain a category-specific segmentation. It is similar to the SIFT algorithm

with a two-stage recognition approach that combines recognition and segmentation into a common

probabilistic framework. The ISM recognition pipeline uses image patches extracted around interest

points, compared against the Codebook, with matching patches casting a vote of probabilities to

produce the object hypothesis. The object hypothesis is then refined to compute the category-specific

segmentation [316]. The ISM model has numerous models for recognition that have been applied across

domains in object recognition and tracking [316], [317]. Besides, the other keypoint based technique is

the oriented FAST and rotated BRIEF algorithm, which combines a key point detector FAST, and the

BRIEF binary feature descriptor to provide a robust, fast and free alternative to the patented SIFT

descriptor, which is a computationally more expensive keypoint descriptor, for recognition and sorting

applications [315]. However, an identified limitation of the keypoint-based feature extraction is the

inherent time consumption and difficulty in designing the detectors since they are hand-crafted designs

and require profound domain knowledge to develop a sorting system based on the models.

Conversely, the rule-based decision technique is a sorting method developed mainly for the automated

identification of components for remanufacturing, proposed to reduce the challenges of the keypoints-

based design method. The rule-based method is more straightforward to design than the keypoint

method. It uses a recognition logic consisting of identification numbers, barcodes, and other inherent

features like dimensions, weight, visual appearance, and volumetric representations [41]. These systems

consist of a camera unit, a weight scale to obtain the input data to the system, and a vision classification

algorithm that processes the images for the rule-based decision system. The parts are sorted into

remanufacturable parts, recyclable parts and waste. The authors outlined that the rule-based sorting

system could identify objects to an accuracy of 96% on the dataset used to train and test the design.

However, a unique challenge for deploying the rule-based sorting system is that the automation

provided by the system is time-consuming, as the returned cores are first tagged with bar codes before

passing them to the sorting system.

Nevertheless, radio frequency identification tags (RFID) is another sorting method identified in

remanufacturing. The technique uses RFID, a wireless communication technology that allows systems

to read and identify distant electronic tags without requiring a battery in the tags [318]. The tags gather

information about an embedded product, store and transfer relevant product data through an effective

communication system that is processed to ascertain the product conditions. These devices used to

gather data through this method is often referred to as product-embedded information device (PEID)

[5]. This method offers crucial benefits compared to the rule-based approach that uses bar codes to

102

gather and process product data quickly and accurately, alongside performing well in significantly harsh

environmental conditions. However, a limitation of the RFID sorting system is the inaccuracies arising

from missing data and reading errors, which makes them unsuitable for most applications [319].

Moreover, the learning-based sorting systems use machine learning models to recognise end-of-life

products from video streams, thereby enhancing waste stream management [320]. This technique

considers sorting product streams where the incoming items are recorded and recognised automatically,

thereby predicting the required process for each sorted product. It primarily uses computer vision

pipelines that require product pre-processing feature extraction. Pre-processing refers to the initial

image conversion, resizing, denoising and normalisation, among others, while the feature description

stage involves the identification of the interest points in the reference images, as well as the

correspondence, where the input images are classified using the interest points also referred to as

features[314].

The learning-based model design mainly uses convolutional neural networks (CNN), modelled as a

supervised deep-learning problem where labelled data are used to train these predictive models. The

learning approach has become very successful lately due to more efficient graphics processing units

(GPU), improved optimisation methods, activation functions, regularisation, and augmentation

techniques to generate more training examples and speed-up model training [28]. These improved

developments have made CNNs, the dominant approach for recognition and detection tasks. Moreover,

the advantages of the learning-based techniques include that there is no manual feature detection and

extraction compared to the keypoint methods. They also do not suffer missing data as the RFID

methods and do not require the bar codes like the rule-based techniques. These advantages support

exploring the learning-based models as suitable for automating remanufacturing sorting.

3.12.3 Process Control Application

The process control application explores the use of deep learning algorithms for remanufacturing

process control, especially the torque converter post-cleaning process, that aims to remove the

contaminations on the surfaces of the cleaned Eol products.

3.12.3.1 Process Control Methods in Remanufacturing

The process control application enhances the inspection and repair of damaged components, improving

their outlook. The cleaning process is also essential to develop automated processes during

remanufacturing. Cleaning is a very complicated and costly process, identified as the second most

expensive remanufacturing process after disassembly due to the inherent costs of detergents, machinery

and electricity to put the machines to service[10]. The process generally consists of machine-assisted or

semi-automated and manual cleaning processes, which are time-consuming and labour-intensive.

Nonetheless, researchers have identified a significant concern for cleaning systems in measuring

103

cleanliness [10]. In most industries, cleanliness is an expert judgment-based task, which depends on the

worker's experience and the post-cleaning inspection is another manual process. The automation of the

post-cleaning inspection is the focus, where vision sensors are used to verify the cleaning status.

Besides, this application aims to automate the process control by using convolutional neural networks

to model and assess the post-cleaning process output of an automated cleaning system. It is achieved by

obtaining data about the expected cleanliness condition, training a deep neural network model to

classify the cleaned objects, and using the obtained output to control the subsequent processes.

Researchers suggest that most quality inspection investigations focus on the surface detection of

component issues while paying little attention to the process and control factors [321]. The

consideration of the process control factors births a new remanufacturing application that explores deep

convolutional neural networks for achieving process control in remanufacturing. This control approach

is described as soft sensors in literature [322], [323]. Experts manually examine the torque converter

system's post-cleaning inspection, with this method being an expensive inspection approach. An

alternative decision-making tool is proposed to achieve the same result or even better. The CNN model

decides the next process for activation, enhancing the system's post-inspection process and overall

productivity.

Conversely, process control is crucial in industrial applications to ensure that the quality of products

meets expectations and achieves consistent processing quality [324]. As remanufacturing aims to return

used products to as-new conditions with a warranty, the differing quality of these end-of-life products is

a crucial challenge, most significantly, to provide tools that can automatically assess the products'

conditions quickly. Besides, novel technologies have been developed to automate various

remanufacturing processes, namely disassembly, cleaning, inspection, sorting, reconditioning, and

testing, to improve process efficiency. However, most of these technologies cannot handle substantial

quantities of process data, making the traditional methods requiring prior knowledge of the systems

impractical [325].

Nevertheless, emerging technologies like deep learning algorithms can unlock the various use cases of

different technologies, primarily to achieve end-to-end digitisation of physical assets. Industry 4.0

represents the fourth industrial revolution. It increasingly enables the use of data to create higher value

and customer benefits by connecting organisations, resources, and products alongside enhancing

availability[15]. Nonetheless, process control technologies are a vital aspect of the industrial revolution,

improving remanufacturing.

Besides, there are two process control forms: the data-driven models and the model-driven (first-

principle models) [322], [326]. The model-driven control describes a process's physical and chemical

backgrounds and uses the ideal steady-state process conditions in the model development [326]. In

contrast, the software control uses computational models and historical process data to reflect real-time

104

conditions in modelling processes. These different techniques provide various benefits based on the

application. However, in industry 4.0, process automation has gained wider acceptance as more sensors

and actuators are installed in process plants to gather process data, generating massive process data

[325]. As these big data are obtained from the processes, it becomes paramount to develop tools and

technologies that can leverage them to make insightful decisions. These technologies and tools include

proportional integral derivative (PID) controllers, multivariate statistical analysis methods, and model-

data integrated techniques [325].

PID control is the earliest and most successful technology for process-based industrial applications. It

uses quantitative measurement methods where the input-output measurements from the plant and some

controller parameters are adapted to achieve process control [325]. These process variables are good

feedback loops to determine product quality rather than its product. This technique makes the PID

control mainly used in most manufacturing applications. However, the online measurement of critical

process variables has been identified as a significant limitation of the PID control method due to their

economic (high cost of the sensing systems) and technical limitations [322], making them unsuitable in

most remanufacturing applications.

Nevertheless, statistical control is another process control approach that depends on product usage data.

These process data are described as data-rich but information-poor [327], with researchers suggesting

that latent variables are suitable for characterising low-dimensional subspaces in such a scenario. The

principal component regression and partial least squares are the most used approaches for managing

industrial data correlations [322]. However, these methods are also limited since it requires vast

amounts of data for proper generalisation. Furthermore, they can also provide tremendous benefits at

the core collection stage, where product usage data help determine the remaining useful life of the

product before core acceptance for remanufacturing. Besides, as the product usage data are not

inherently available in remanufacturing [111], this constitutes a barrier to using the statistical

approaches to adequately monitor and analyse the sensor measurements over time, making the

statistical methods more useful in manufacturing applications.

Conversely, the data-driven measurement technique also uses historical data to control processes. The

data-driven techniques often referred to as soft sensors in literature find practical applications in

processes with massive historical data that can be used to model the soft sensor. These deep learning

architectures consist of multiple layers of parameterised non-linear functions; the algorithms achieve

better generalisation for highly dynamic non-linear systems [328]. The ability of deep learning

algorithms to represent these highly dynamic functions is an attraction to the remanufacturing industry.

The algorithms have also become the state-of-the-art method for modelling data-driven control systems,

with applications in crude distillation [322], bioprocess fermentation [323], and other industrial cases

already investigated.

105

Nevertheless, one of the practical difficulties encountered by soft sensors is the gradual degradation of

the predictive accuracy of the systems due to changes in the state of the process, parameters and sensor

drifts. These challenges are overcome by the adaptive nature of neural network weight updates after

each training batch, ensuring optimal performance [329].

Perhaps, as the process data from the connected sensors increases due to the ever-increasing need to

enhance the monitoring and control of systems, and processes, better decision-making tools that support

insightful decisions using the process data become inevitable. Exploring the methods for using process

data for process control involves developing and deploying computational models that can process

these data to make insightful decisions. For example, soft sensor systems have been helpful in fault

detection, process monitoring, and online prediction [326].

However, the remanufacturing processes have witnessed the software and hardware controls used to

automate the laser remanufacturing process. The application has an embedded piezoelectric sensor,

infrared thermometers, and a PID controller used in the design [330].

Nevertheless, to the author's knowledge, no standalone soft sensor applications are documented for

remanufacturing processes; therefore, exploring these alternative qualitative controls for industrial

remanufacturing applications is critical for enhancing various remanufacturing activities. However, the

primary concern for soft sensor controls is the substantial computational cost of processing (training)

the models necessary to achieve the control. They inherently apply to deep learning, computer vision,

and other learning-based models that use high computing power to process the application's data. This

limitation is often avoided by training the model once and deploying the trained model with the trained

weights, with model retraining scheduled when there is a significant increase in the recorded process

data.

3.13 Chapter Summary

The chapter provides an overview of remanufacturing the benefits, alongside the productivity issues in

remanufacturing. The existing remanufacturing practices and limitations were reviewed to understand

the current challenges and outline the technology-based solution in the deep learning modelling. It

further reviews various deep learning modelling parameters, including activation function, optimisation

techniques, regularisations, loss functions, and evaluation metrics, among others, thereby improving the

understanding of the deep learning models. Finally, the technology's suitability was discussed alongside

the deep learning architectures, evolution, components and applications of the deep convolutional

neural network models, closing the gap in understanding the level of deep learning deployment in

remanufacturing (Q1) and theory (Q3).

106

 CHAPTER FOUR

 MODEL DESIGN AND APPLICATION TO INSPECTION IN REMANUFACTURING

4.0 Introduction

The previous chapter presented the research design and the model choice and requirements. This

chapter outlines the conceptual and actual design, frameworks for deploying deep learning models,

dependencies, dataset preparation, model design considerations, development, and testing of the

models. It also includes the model development assumptions used in the model design and details the

interactions between the layers of the architecture during training/learning. This chapter answers the

(Q3) question on developing new deep learning models to improve remanufacturing and applying the

model to component inspection in remanufacturing (Q5). It compares the developed model to a state-of-

the-art VGGNet architecture to evaluate its performance and applicability to two remanufacturing

inspection applications. Finally, the in-case results and analysis are evaluated for proper deductions.

4.1 Background to the Modelling and Development

The modelling and development stage is an essential part of the investigation. It involves numerous

activities that support the research's final goal, which concerns modelling and evaluating various

remanufacturing processes using deep learning. The model design approach explores modelling the

remanufacturing processes as a deep learning problem and analysing the results. Deep learning refers to

the process of learning patterns from raw data without being explicitly programmed [28]. The

modelling involves two activities which include

• Developing a learning algorithm.

• Performing the classification.

First, a learning model is a function that constructs a classifier given some examples and their classes.

In contrast, a classifier is a function that, given any inputs, assigns the input to one of the provided

classes [331]. The learning algorithm is also described as the computational model in the thesis. The

existing remanufacturing application of learning models for object recognition applications was

modelled as regression problems and used to classify cores and parts of a remanufacturing process [42],

[63], [137]. However, other approaches to modelling machine learning problems besides regression

include classification and Bayesian optimisation problems. Hence, the sorting, process control and

inspection applications are explored as a classification problem while evaluating their respective

performances. The respective activities of the model development are divided into six main stages, as

outlined in Figure 18.1, showing the sequence of steps to obtain the model.

107

 Figure 18.1 Model development stages

Furthermore, the data collection stage is where the videos of samples used for the research were

collected. This process was discussed extensively in Section 2.7. The data preparation, processing,

training, testing, and evaluation are other stages of the model design that make crucial decisions about

the computational model. The preparation and pre-processing involve converting the data to images,

resizing the images where necessary and creating the image split for training, validation, and testing of

the model. The training stage outlines learning the features from the data and saving the best model

weights for reuse. The evaluation and testing stage outlines the model's performance on the data and

possible needs for improvement. The deployment stage is the final stage of the modelling, where the

models are used in a real-time process for achieving process automation. The core model development

and selection involve creating the computational algorithm, setting the initial hyperparameters and

selecting the appropriate architectures for specific applications.

Conversely, the model consists of the convolutional neural network algorithm, kernel filters, pooling

layers, activation function, loss function, and optimisation algorithm. It also includes other layers:

stride, padding, flatten, dense, dropout, batch normalisation etc. Detailed discussions on the respective

model development, frameworks and model parameters are presented in Sections 4.5 and 4.6

4.1.1 Modelling Remanufacturing Processes

The first step in modelling the research application of deep learning models to remanufacturing is to

decide the type of problem that the algorithm would model. The decision is solely informed by the data

type described in Section 2.8. The data for the research is solely qualitative image data; therefore, the

deep convolutional neural network algorithm developed is modelled as a classification problem.

Classification models have two main components: the scoring function that maps the raw data to

specific class scores and a loss function that measures the agreement between the ground truth and the

Modelling

Data
collection

Preparation
and

preprocessing

Model
development
and selection

Model training

Evaluation and
testing

Model
deployment

108

predicted labels. This classification problem is afterwards framed as an optimisation problem where the

loss function is minimised with respect to the parameters of the scoring function. The algorithm is a

data-driven model that depends on the vast collections of labelled research data that help train the

model.

4.1.2 Model Development Boundaries

The research requires the data of the respective processes for adequate modelling of the processes. The

inspection, sorting, and process control application data were recorded, labelled, pre-processed, and

afterwards used to train a supervised deep convolutional neural network. The supervised learning

algorithm is already defined as a computational model or function that constructs a classifier, given a

set of examples and their classes. In contrast, a classifier is a computational model or function that,

when presented with sample input, predicts or assigns the sample to one of the known 𝑘 − classes

[331]. These definitions further highlight that the developed model is adaptable to make future

predictions without holistic changes or modifications to the model. The most crucial goal of the

developed model is to find the best classifier that sufficiently predicts an output with very high accuracy

on unseen examples. Using these labelled process data provides the boundaries of the research to

supervised learning modelling for all the processes and algorithms investigated in the research.

4.2 Research Model Design

The research model design is grouped into two stages: the conceptual and the actual models. The

conceptual model for the research is depicted in Figure 4.19. It consists of the cameras (vision sensors)

used to record the images of the process, the control scripts to capture image frames, and the

computational model to process the images and predict the outputs used to control the process.

 Figure 4.19 Design conceptual model

Besides, the actual model outlines the implementation approach of the remanufacturing application of

deep learning models. The design outlines the considerations, including storage facilities, transport, and

sensor systems. The other design components include the functions that pre-process the data, train the

model, and make predictions using the provided metrics and various evaluations performed in the

research. Another vital function is the time delay, which helps manage the transport system's speed for

the model to predict the output. The time-delay function helps to control the number of objects the

camera sees at any point as it controls the speed at which components reach the point of capture. The

actual model design is shown in Figure 20.

Camera

(images)

Computational model

and control script

Outputs Process

109

Model

Inbound
Products

Transport
system

Visual
sensors

Data
preprocessor

Output
metrics

Delay
Transport

system

Output

Next
 stages

Control

Model
weights

Figure 20 Actual model design

The code development of the design is grouped into layers depicted in the block diagram of Error!

Reference source not found.. The layered structure simplifies the model code development into

specific functions where the designs folder contains all the test codes for testing the model and analysis.

Furthermore, the trained weight folder contains the serialised weights obtained after training the model,

while the remanAI folder contains all the other functions, including the CNN design contained in the

models, the algorithms used to operate the camera for data collection and split contained in the

functions, the pre-processor function used to resize and convert the data into array for loading alongside

an external datasets folder containing the datasets for the three application with their corresponding

labels.

Figure 21 Code development block diagram

Furthermore, the code tree view of the model code development is shown in Appendix 1. The parameter

names in blue represent the folders described in Appendix 1, while the executable code functions have

remaNet

Designs

Test
codes

Design
codes

remanAI

Data

loaders

data

loader

Models

Four
models

Preproces
sors

Preproces
sing codes

Functions

Different
functions

trained
weights

Weight
files

Datasets

surface
Defects

Water
Detection

Sorting

110

the (.py) extension in the file outline. The dataset and the model analysis folder contents are

intentionally hidden to save space, as the contents are massive for display.

Conversely, the tree shows the functional groupings of the codes developed and used to achieve the

model presented in the research. The groups include the data loader group that contains the necessary

commands to load the data and functions containing codes for recording the data, converting it to

images and splitting the data. The Pre-processing contains commands primarily used for data splitting,

resizing and reshaping alongside the model folder containing the developed neural network algorithms

for the research. The frameworks for developing the models are described in the following section.

4.3 Frameworks and Tools for Deploying Deep Architectures

The design of a computational model involves writing the codes to achieve the properties of the chosen

mathematical model. The existing tools useful for code development include Python software [332],

MATLAB software [333], and R-software [334], among others. Besides, there are also major deep

learning libraries and packages developed to enhance the ease of code development, including Caffe

[335], Pytorch [336], Keras [337], MXNet [338], and TensorFlow [339] etc. The use of these libraries

witnessed most of the deep architectures, modelled as black boxes in multiple-layer networks, hindered

quality checks and interpretations at specified points within the data. However, deep architectures are

powerful computational models that can quickly learn and represent patterns in high-dimensional data

like images, texts, numeric and voice data. The need to understand these models' workings is

paramount, and this research further adds to the understanding of these models.

Nonetheless, Python's software for developing the research models is an open-source software that

helps developers create and integrate systems easily [293]. Python was chosen because it eliminates

software licensing costs and has broader community support when there are code bugs. It is free and

compatible with almost all systems, making it suitable for deployment on most computers. It has

numerous valuable libraries of functions instead of re-investing all the functions needed in an

application. These libraries are included and used in the model development. The model development

dependencies include all existing libraries not developed during this research and other open-source

libraries, including Keras, TensorFlow, Argparse, Scikit Learn, Matplotlib, Seaborn, os, NumPy, and

OpenCV, among others.

Besides, the specific function of the libraries includes NumPy for numerical calculation and Argparse to

run command-line codes while selecting the specific files at the exact location and passing other code-

specific variables required for the algorithm to run successfully. In addition, TensorFlow library

provides deep learning-specific libraries, including activation, dense, flatten, batch normalisation,

conv2D, Maxpooling and Keras. Furthermore, Matplotlib and Seaborn provide the model responses;

OS helps find the paths to load data and save the trained model. Furthermore, Scikit Learn provides

111

split functions and evaluation metrics, and OpenCV provides image processing functions. The method

for importing these dependencies is outlined in the architecture design codes in Appendices 2A, 2B and

2C.

Nevertheless, deploying and training deep network architectures is usually a tedious task primarily

because of the enthusiasm shown in computer vision and beyond. Moreover, replicating the state-of-

the-art research results in deep network-based systems has been identified as one of the most significant

challenges for researchers. Therefore, developing tools for deploying deep networks is a core research

area. The early frameworks or tools developed include Torch7, Keras, MATLAB Neural Network

Toolbox, TensorFlow, MXNet, Microsoft Cognitive Toolkit and many other new application

programming interfaces (API) and tools developed to date. Finally, TensorFlow and Torch7 were the

final toolkits considered. They were developed with Python integration; Torch7 is a framework for fast

numerical computation with a straightforward extension of its capabilities with library functions

developed in Lua scripting language, implemented as a library written in clean C [340]. It can run on

CPU and GPU, with the capability to train new architectures of deep networks. However, researchers

highlighted its limitation that Torch7 is primarily helpful to prototype models but not for deployment

[335], leaving TensorFlow as the final choice for developing ad deploying the research models.

Besides, TensorFlow is another end-to-end, highly scalable machine learning library used for deploying

deep learning models in mobile, internet-of-things and production environments. It supports the

modelling and experimentation of various machine-learning algorithms. It has found applications from

research to industrial practitioners using TensorFlow and its application programming interface (API)

for solving complex problems, including image classification, machine translation, speech recognition,

and hardware optimisation [341]. The development of these computational tools has aided clear and

convenient access to deep architectures, exploring novel training algorithms optimisation techniques

and providing faster testing and deployment of deep learning-based models [335], [341]. The

TensorFlow library was chosen because it provides an easy pathway to developing, testing, and

deploying computational models, thereby reducing the burdens associated with model deployment.

4.4 Data Representation, Preparation and Pre-processing

The array structure is the primary data representation in neural networks, often called tensors. These

tensors are usually matrices helpful in representing the inputs and outputs of the given model. Besides,

there are two data representation forms: scalar and vector representations. The scalars are single

numbers or tensors, described as rank-0 tensors having zero dimensions. In contrast, vectors are an

array of numbers used to represent the parameters of a system. These vectors' dimensions range from

one-dimensional (1D) quantities to n-dimensional quantities. A one-dimensional quantity is often

referred to as a rank-1 tensor, two-dimensional quantities (2D) as rank-2, three-dimensional tensors

(3D) as rank-3, four-dimensional (4D) tensors as rank-4 and up to five-dimensional tensors(5D) as

112

rank-5. The typical deep learning applications use image data, 4D data consisting of samples, height,

width, and channels, and 5D video data of shape parameters, including samples, frames, height, width,

and channels [29].

Overall, these utilities grab the data, process the images using the data processor function, load the data

using the data-loader function, convert the data to an array using the image-to-array processor, and

finally rescale the pixels to lie between the values of 0 and 1. These utilities are required for all the

applications developed in the research, and they ensure that the data becomes helpful in the learning

algorithm. Nonetheless, the data for the classification model had a shuffle included before the split to

ensure that all the samples in the training set appeared in the validation, ensuring that the entire class of

data was randomly selected and used for the training of the models.

Conversely, data preparation is a critical stage of the research because understanding the pixel-level

components of the image is necessary. Images are a multi-dimensional grid of values often referred to

as picture elements or pixels. These pixels are the building blocks of images and represent the intensity

of light in an image. Images are generally described by three parameters: width, height, and depth. The

width parameter of an image represents the number of columns in the multi-dimensional matrix.

In contrast, the height parameter refers to the number of rows, and the depth represents the number of

channels in the image [257]. Furthermore, these images are represented differently, with the grey-scale

and colour images being the most common formats. The primary differentiation between the two image

formats is the number of channels in the image, whereas grey-scale images have one channel

representing the depth. The colour images have three channels representing depth. The grey-scale

images have pixel values ranging from 0 as black to 255 as white, and the darker pixels are found close

to 0. In contrast, the coloured images have three channels represented with the red, blue, and green

(RGB) colour space and other colour spaces that specify different ordering approaches for the pixels.

Besides, image understanding and contents remain a vital challenge to researchers, with various authors

exploring image kernels which are small filters helpful in applying various effects on images through

the convolution operation [257]. These kernels are specially designed filters that perform pre-assigned

effects on an original image. Then, the neighbourhood pixels of the image are convolved with the

kernel to obtain an output, which is the x-y centre coordinate of the kernel. The kernel effects

applicable to images include blurring, smoothing, sharpening, embossing, edge detection, etc. and are

essential to process these images.

4.4 1 Data Preparation

The data preparation is the first step to making the data suitable for the respective models. This stage

includes structuring the data for the learning model and creating the datasets for the different

applications. Data for modelling in machine learning are usually structured to suit the model

architecture, which determines the expected data structure. For example, supervised learning requires

113

the data to follow the table structure, with a value pair for each data point [257]. In the tabular structure,

each feature is represented as a column and named for recognition, with the order of arrangement of the

features not very important. Each item of these variables is represented in rows.

Moreover, the first stage of the preparation in supervised learning is the labelling of the data for the

respective classes. These classes are then encoded as categorical variables, where each row and column

represents the models' respective outputs. The typical encoding matrix is determined using the number

of inputs, which determines the size of the matrix. Table 4.represents an 8-input system used to model

the inspection application. The Scikit Learn Binariser was adopted for encoding the labels into

categorical data using one-hot encoding. One-hot encoding is the process of converting the direct labels

in text form into categories.

 Table 4.1 Categorical encoding of model inputs

Furthermore, the second stage is the splitting stage since the datasets for machine learning and deep

learning models are usually divided into training, test, and validation sets. The models are trained and

evaluated on the training and validation sets, with the optimiser guiding the loss. The test set helps

assess the model performance after training. The noteworthy point is that the test data is not used to

train the model. If the performance evaluation results are reasonably high, the model is more likely to

perform well in unseen data. Also, the validation set is another vital part of the data for evaluating the

model during training and fine-tuning the model hyperparameters described in the subsequent sections.

Nonetheless, the pre-processing stage is another stage of data preparation, which includes data

selection, cleaning, normalisation, transformation, cropping etc [342]. After the pre-processing stages,

the data becomes ready for the computational model. The typical scaling approach in general machine

learning includes normalisation and standardisation techniques. The normalisation entails rescaling the

actual value range in the data to lie between 0 and 1. At the same time, standardisation refers to

modifying the distribution of the attributes in the data to have zero mean and unit variance or standard

deviation of 1 [257]. These data inputs were normalised after pre-processing by converting the images

114

to float data type and dividing the pixels' range within the images by 255 to obtain the respective

datasets for the model.

Conversely, the data format for the neural networks usually adopts one of the following formats: arrays,

tensors, list of tensors for multiple inputs, a dictionary (dict) variable mapping input names to arrays or

tensors when the model uses named inputs, a generator variable and TensorFlow data defined as tf.data

that returns a tuple of inputs, inputs, targets and weights [337]. The above data structures helped present

the data to the model during training by passing the images through the ImageToArrayProcessor

function to obtain an image array.

Another critical parameter is setting the path where the data is stored. These paths can be relative paths,

where the data is stored in the same folder with the model or absolute paths, where the data is stored in

another location with the entire path directory used to call the data. The absolute path approach was

used to store the data, while the Argparse and OS libraries were helpful in retrieval.

The CNN model requires fixed square images to be passed to the model during training. These images

were obtained by resizing the images to 52 x 52 x 3 square pixels in the final data used across all the

applications.

4.4.2 Splitting the Data

The data for training deep learning models are usually split into training validation and test sets. The

training set helps the model achieve the lowest loss possible by adjusting the weight and bias

parameters using gradient descent. The validation set is useful to fine-tune the model parameters,

thereby selecting the most appropriate features representing the data for better decision-making and

generalisation. Furthermore, it helps to direct where appropriate changes are to be made in the model

parameters. Besides, the test set helps to evaluate the model's generalisation ability as these samples are

kept for evaluation only. The data split is outlined in the block diagram of Figure 22, with the

percentage of the split set to 70% and 30% for training, and validation sets, with the test set being the

live camera feed.

 Figure 22 Data splitting method

Nonetheless, model training aims to achieve the most negligible loss and the highest accuracy, thereby

obtaining the best model weight parameters for deployment in new or memory-deficient devices.

Dataset

Test set Training set

Training set Validation set

115

An observable way to evaluate performance is to observe the model validation loss and accuracy

alongside the training loss and accuracy. These parameters start approximately at the same values and

end at very similar values showing that the model learned vital features during the training. If the

validation accuracy lags well behind the training accuracy, there is an overfitting problem in the model

learning, and there is a need to explore possible solutions to it.

4.5 Learning Model and Development Considerations

The choice of model considerations has been outlined in Section 2.5 4, highlighting that the data is the

primary consideration for the architecture. First, an appropriate architecture suitable for processing

images is selected. The deep learning literature in Section 3.9 suggests that the convolutional neural

network is the most suitable model for processing image data. However, to select a suitable CNN

model, a hypothetical generalisation of the model's performance must be a function of the

hyperparameters of the CNN architecture [343].

 Besides, the considerations for general learning-based systems are primarily judged on the model's

performance. These performances are accessed based on the ability of the algorithms to produce

minimal training errors and high accuracy [68]. Therefore, the following design considerations for

implementing deep learning-based models are outlined based primarily on the experiences of the author

to investigate, design, and implement deep learning-based algorithms for remanufacturing applications.

These vital considerations include but are not limited to the following:

• The choice of the computational model – Depends mainly on the type of data under investigation.

• The size and availability of training examples.

• The available computational resources for training the developed model – The availability of

enhanced hardware is vital to train huge models.

• The place of model deployment after the design is crucial – Using lighter or smaller models for

mobile applications is crucial when deploying to the cloud or memory-deficient computers.

• A good understanding of the model parameters and hyperparameters, including the learning rate,

batch size, the number of epochs, dropout, loss functions, activations, regularization techniques

etc., is essential [160] – This knowledge guides the choice of an appropriate model for specific use.

However, selecting the optimal parameters for the hyperparameter is usually an iterative process that

requires a good understanding of the processes and careful parameter tuning to achieve significant

results. These factors are not exhaustive, as there are other factors to consider in designing and

implementing deep learning-based models since experience is always essential in successfully

developing and deploying learning algorithms.

4.5.1 The Computational Model Design

The typical building block of a deep neural network is the neuron. The structure of these models

consists of interconnected nodes of multiple layers, including the input, hidden, and output layers, with

116

the layers connected to both the preceding and subsequent layers [68]. The output of the respective

layers is usually weighted units followed by the activation functions, which are nonlinear functions that

distinguish data that is not non-linearly separable. The neuron is a computational model that consists of

units that accept input vector 𝑥 ∈ 𝑅𝑛, the weight vectors 𝑤 ∈ 𝑅𝑛 and the bias term 𝑏, with the output

unit 𝑦 described by the following relationship.

𝑦 = 𝛼 (∑𝑥𝑖 . 𝑤𝑖 + 𝑏

𝑛

𝑖=1

)
4.1

Furthermore, the design of the computational model uses the mathematical dot product to evaluate the

product of two equal-length sequences of numbers to give a single number. Algebraically, this product

gives the sum of the product of the two sequences under consideration. The dot product of two vectors

𝑥𝑖 = [𝑥1, 𝑥2⋯ 𝑥𝑛] and 𝑤𝑖 = [𝑤1,𝑤2⋯ 𝑤𝑛] is given by

𝑥.𝑤 = ∑𝑥𝑖

𝑛

𝑖=1

∙ 𝑤𝑖 = (𝑥1𝑤1 + 𝑥2𝑤2 … 𝑥𝑛𝑤𝑛) 4.2

Where 𝑛 = dimension of the vector space and ∑ = summation. However, matrices are generally

described by their rows and columns. The appearance of a given matrix is a row matrix if the dot

product can be written in matrix product where 𝑥. 𝑤 = 𝑥𝑤𝑇 where 𝑤𝑇 is the transpose of matrix w.

The computational model design defines the entire network's structural arrangement, including the type

of layers, the number of layers, the width of the layers, the arrangement of the layers in the architecture,

etc.

4.5.2 Model Parameters and Hyperparameters

The model parameters are intrinsic to a model and are optimised during model training. The model

weights are the most crucial parameter in neural network models and are vital for optimisation. The

model tries to obtain the optimal weights that return the best model prediction during training. In

contrast, the hyperparameters are predefined before training, constraining the model to fit the specified

data. The hyperparameters are not directly learnt by the learning algorithm and are very important to

achieving a high-performing model as they minimise generalisation errors.

Furthermore, these parameters improve model generalisations and prevent overfitting during training.

Finding the best parameters of the model is often referred to as hyperparameter optimisation. The best

hyperparameters maximise the learning model's performance and differ depending on the dataset. The

parameter search consists of searching the hyperparameter space for optimal parameters [68]. However,

there is no specific formulated approach to obtain these best hyperparameters for any given model,

requiring the heuristic approach to explore and find the parameters that maximise the model learning

performance.

117

Model regularisation was also another critical consideration in the design. Early stopping regularisation

was added to the algorithm to ensure that the model's best weights were saved during training and

retained in case of subsequent performance depreciation.

4.5.3 Metric Selection

The choice of metrics for evaluating the performance of the developed models was solely dependent on

the data considered in the research. The data investigated in the research is a balanced dataset across all

the applications, which highlights that the ratio of training samples is equal across the respective

classes, thereby informing the decision to use prediction accuracy for model evaluation. Other

researchers have adapted this evaluation method to analyse deep learning-based automated surface

inspection weld and wood defects [344].

Furthermore, most classification algorithms use the accuracy metric to evaluate the model performance,

evidenced across the developed state-of-the-art models in image recognition challenges beginning from

the AlexNet architecture, which won the first image recognition challenge using deep learning

architecture [157]. The selection of the final evaluation metrics in those state-of-the-art models

considered the number of classes in the data. It provided the top-1 accuracy and top-5 accuracy results

that represent the model's single top predictions for each class and the top-5 predictions as results for

over one thousand classes used to evaluate the model's performance [33], [217], [345]. The top-1

accuracy metric was chosen as the evaluation metric for the developed model because we have a limited

number of classes in the data, with a maximum of 20 classes used in the research. The accuracy metric

has been described in section 3.11.6.1 as

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑛
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑛 + 𝐹𝑛

 4.3

Moreover, another metric used to evaluate the deep-learning model performance is the misclassification

rate [344], [346]. The model misclassification rate (M) is obtained as

 𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 4.4

In addition, the error rate is another metric used in the model evaluation. It has also been discussed in

Section 3.11.6.2. Overall, the accuracy, error rate, and misclassification metrics helped quantify the

performance of the developed models.

4.6 Computational Model Exploration

There are two approaches to model design: developing a novel architecture from scratch and the

transfer learning method. The novel design approach allows the modeller to tweak the architectural

parameters to obtain a high-performing model. In contrast, the transfer learning approach uses state-of-

the-art architectures to evaluate the new problem. The pictorial representation of the model design

method is shown in Figure 4..

118

 Figure 4.6 Model design approaches

4.6.1 Transfer Learning

Transfer learning is a method of adapting a developed model to new problems. Transfer learning can

achieve by either fine-tuning or feature extraction. Fine-tuning is the act of modifying the current model

output to fit another dataset. These methods differ based on the type and position of modification

performed on the original architecture [257]. The feature extractor method involves the removal of the

original architecture fully-connected layer and extracting the features from the data directly from the

final pooling layer, with the other model parameters left unchanged. These feature extractors are

primarily valuable on smaller datasets.

Similarly, the fine-tuning method involves replacing the fully-connected layer of the original

architecture with a new fully-connected layer that fits the data parameters, with all other model

parameters being frozen. Fine-tuning is an important technique to obtain classifiers from pre-trained

CNN models on custom datasets. Researchers suggest that transfer learning instead of training from

scratch improves results on limited data [347]. In most cases, the parameters of the new fully-

connected layers are usually smaller than the original architecture as these layers usually have fewer

classes than the original architecture. The pictorial representation of the model modifications is outlined

on the block diagram in Figure 23, showing the original architecture of the feature extraction

modification alongside the fine-tuned modifications.

Figure 23 Model modification stages showing the original model A, feature extraction model B, and the fine-tuned model C.

The initial model exploration considers the transfer learning approach, where the final layers of the model

architecture are replaced with the data-specific requirements and used to train the model. The vital stages of

Model A

Conv Layer

FC Layer

Output

label

Model B

Conv Layer

Output

label

Model C

Conv Layer

FC Layer

Output

label

Novel Architecture

Deep CNN

Using existing weights Training from scratch

Transfer learning

119

the transfer learning model detailed in Figure 24 include loading the pre-trained model modifying the final

layers of the model, tweaking the model hyperparameters, training the model, evaluation and deployment.

Figure 24 Flow diagram of the stages of achieving transfer learning

The transfer learning approach was first considered because it requires modifying a pre-trained model

to learn new tasks, thereby transferring learned features using smaller training examples. Therefore, it is

often referred to as fine-tuning, and it is much faster than training a new neural network model from

scratch, with a very high computational burden. Moreover, the choice of the pre-trained model was

based on the state-of-the-art performance of the pre-trained models from published research [348],

[349]. Besides, the preliminary investigation considered the VGGNet architecture to evaluate the

performance of transfer learning and training from scratch because the architecture was the first to

explore the very deep depths for image recognition problems [158].

4.6.2 Novel Architecture

The architecture development stage involves all the model parameterisation approaches. The Keras

model has two modelling techniques: the sequential and functional models. The sequential model helps

stack layers of the model together where each layer has one input and out tensor respectively [337].

Conversely, the functional model is more flexible as it accepts a non-linear model definition where

parameters can be shared with even multiple inputs and outputs. The model development process

involves describing the task in a suitable form for modelling. The starting point for the general machine

learning problem formulation is finding the hyper-plane or straight line that best fits the data points.

Where the output (y) is predicted from a set of inputs (x), the relationship is given by the response is

given by the straight-line equation 𝑦 = 𝑚𝑥 + 𝑐 which has the machine learning equivalent of 𝑦 =

𝑊𝑥 + 𝑏 where the slope 𝑚 is equivalent to the weights 𝑊, and the intercept 𝑐 is equivalent to the

biases 𝑏, and y and x represents the output and inputs respectively. Besides, the multiple inputs into the

machine learning model can be represented in more than one dimension as

 𝑦 = 𝑊𝑖𝑥𝑖 + 𝑏 4.5

Load
pretrained
model

Replace final
layers

Specify Model
Parameters

Train Model

Predict and
Evaluate Model

Accuracy

Deploy Model

120

The sequential model is a linear stack of layers with the input shape specified before the first hidden

layer. When the desired output of the model is expected without modification, the linear activation

function, also known as pass-through, is applied to the model's expected output, causing no changes to

the model output as the same signal is propagated [350]. However, the deep CNN models require the

output to be non-linear, thereby requiring the non-linear activation functions applied at the output of the

linear layers of the deep CNN architectures.

The novel architecture outlines the cascading of the new CNN architecture used to perform the

remanufacturing inspection tasks to enhance productivity. These improvements can be obtained from

either training improvement, memory improvement or the general model design techniques and

optimised for the specific application. The development of the novel architecture involves using the

knowledge of existing architectures to implement a simpler yet effective model that can perform at

similar levels compared to the state-of-the-art. In addition, the new model guarantees lesser

computational requirements and provides an application suitable for memory-deficient devices.

Moreover, the design backbone of the architecture consists of the layers as the building block that

transforms data into a valuable form for further processing. These layers are banks of filters used to

extract the representations in the data [29]. The new architecture is inspired by the need to investigate

the effect of different model parameters on the performance of these models alongside the overall

model parameter size. Since the existing architectures have a specific architectural design, modifying

and naming them after the original is not ideal since the modification will perform like the original

design. Therefore, the design considered vital factors outlined in the literature in Sections 3.11 and 4.5

to achieve the model used in this research.

4.7 Learning Algorithms for Remanufacturing Application

The convolutional neural network used in the research is a deep architecture that consists of a stack of

multi-layer neural units that performs numerous dot products and linear combinations. The model layers

are stacked from a few layers and units and gradually increase heuristically as the model performance is

observed. The typical stack of the CNN model is described in the block diagram of Figure 254.9,

showing the input, the filters or kernel, the convolutional layer, the pooling layer, the activation layers,

the fully-connected layers (Fc), and the output or classification layer. The stacking of the multiple

layers is represented as the hidden layers in the block diagram.

 Figure 25 Architectural design block diagram

Output Activation Hidden Fc

Classification

Pooling Conv Input

Feature extraction

121

The model architecture comprises six layers, usually counted as layers with learnable parameters,

including four convolutional layers and two fully connected layers. The pooling layers have not been

weighed and are not included in the number of layer counts reported in the model. The model's

configuration is outlined in Table 4.2.2, which outlines the model's layer-wise makeup, including the

activation size of each component in the architecture alongside the number of parameters. The

architecture was obtained from heuristically experimenting with the research data.

4.7.1 Understanding the Architecture

The architectural design is essential to determine the number of parameters expected in the model

output. Therefore, understanding the architecture is crucial and helps in making vital decisions about

the size of the kernel to use, the number of features expected and determining the overall computational

requirements of the model. The block diagram design of the architecture is shown in Figure 25.9, with

the following explanations of the essential components.

First, the convolutional layer is one of the essential layers in a CNN algorithm. It consists of four

hyperparameters, including the number of kernels, the size of the kernels, the number of strides and the

padding factor. These four parameters are valuable for the convolution processes of sliding the kernel

over the input images. Besides, the kernel is a valuable filter for feature extraction from the images,

with its height and width always being nearly square when used in CNN models [257]. It is a matrix

that slides over the input data, performs a dot product with the sub-region of input and produces a dot

product output or feature map, often called convoluted output. The kernel size is another crucial

hyperparameter that must be set before training the models. Previous research recommended the kernel

size of 3 x 3, and this dimension has been used in most recent state-of-the-art models to break the

symmetry of parameters [158]. Finally, the stride factor controls the sliding of the kernel over an image.

Besides, the convolutional layer parameters used in the architecture include several filters of size 64, 32

and 16, a kernel size of 3 x 3, and stride one with zero padding. Besides, the padding and stride

parameters are critical to down-sample model features to reduce the computational cost. The stride

parameter determines the extent of shifting of the kernel, and it helps determine the rate of pixel down-

sampling. The larger the stride, the smaller the convolutional layer output unless the input images are

padded to maintain the input size. In addition, the padding determines the size of the inputs. When set

to "same", a zero is added around the input borders to maintain the size. In contrast, when the padding

is "valid", the actual size of the inputs is maintained with the trailing features outwitting the stride and

kernel dropped at the right-hand end of the features map alongside the bottom of the feature map.

Conversely, the size of the feature map represents the output of each convolution operation, and it is

determined as follows

Feature map = (𝑊 − 𝐹) + 1 4..6

122

Where 𝑊 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡, 𝑎𝑛𝑑 𝐹 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙. Therefore the feature map of an image input of

size 52 x 52, convolved by a 3 x 3 kernel, produces a CNN feature output of (52 - 3) +1 = 50 x 50

feature map without padding, thereby reducing the size of the output. This map assumes that stride is 1.

Moreover, the padding concept was also introduced to manage the size of the input images. Padding

introduces some additional pixels added to the convolutional filters to process the edge pixels outside

the pixels in the image. It ensures that the size of the input is preserved. It fixes the border effect issues

in input images to a CNN model, preserving information at the object's edges. Thus, the feature map

with padding of one zero across the input images becomes

 Feature map = (
𝑊−𝐹 +2𝑃

𝑆
) + 1 = (

52−3+2(1)

1
) + 1 = 52 x 52 features 4.7

𝑤ℎ𝑒𝑟𝑒 𝑃 = 𝑝𝑎𝑑𝑑𝑖𝑛𝑔, 𝑆 = 𝑠𝑡𝑟𝑖𝑑𝑒. However, the stride parameter moves across the image from left

to right, top to bottom, with corresponding one-pixel changes in horizontal and vertical directions. It is

worth outlining that the obtained features must be an integer to obtain a valid convolutional layer;

otherwise, the implication is that the stride parameters are not properly set, and the neurons cannot be

properly tiled to fit into the input volume [257].

Furthermore, the pooling layer is responsible for down-sampling the model size. It requires two

hyperparameters that control the pooling operation, including the kernel size and the stride factor.

Conversely, the pooling layers reduce the number of features detected by the model. It achieves this by

summarising the input features with the local regions or patches using maximum value, ensuring that

the learnt features become more robust, invariant, and sparse.

Perhaps, once the features are extracted, the obtained output features are flattened into a one-

dimensional vector using the flattening layers, followed by the fully-connected layer. The fully-

connected layer is the final layer in the architectural design before the output layer of the CNN. It

applies a linear combination of the features from the previous layer before the final activation, flattened

and dense layers. Finally, a SoftMax output corresponding to the number of model inputs is used to

predict the output where the sum of the total scores is 1. The other model parameters include activation

functions, categorical cross-entropy loss functions, batch normalisation, and dropout layers.

Nonetheless, the interaction of the model layers is the most vital design constraint for deep neural

networks. These interactions are governed by modelling the behaviour of the respective layers by

creating the types of input expected, the outputs, the number of layers, selecting the types of layers,

specifying the stride, padding, selection of performance metrics etc, defines how the computational

model processes the input and output.

123

4.7.2 Architectural Arrangement and Initialisation

Architectural arrangement and initialisation are the design consideration during the model development.

It involves specifying the number of layers, types of layers and cascading method, number of filters,

strides, etc., thereby determining the model's sequence and size of information flow. The components of

the CNN model are described in Section 3.11.2 and the model design considerations.

The convolution layers are usually more than one to obtain a deep architecture, requiring more than one

convolutional layer to obtain deep architecture to extract features from the images. Increasing the

number of convolutional layers enhances the model feature detection capability; however, the larger the

number of layers, the longer it takes the model to train, and the likelihood of overfitting increases. The

number of convolutional layers used in the architecture is 4.

Besides, the pooling layers help reduce the computational cost of the model alongside model overfitting

by reducing the input data dimensionality. For example, the average pooling layer was used to average

all kernel values and produce a single score. In addition, a dropout layer was also added to the

architecture, which randomly omits some nodes during model training to improve model generalisation

and reduce overfitting. A description of the node regularisation techniques is outlined in Section 3.11.5.

Finally, as the model's performance is observed, the dropout value used in most high-performing deep

architectures is set heuristically between 25% and 50%.

Nonetheless, the model initialisations for the respective layers were of paramount importance as

different initialisations for the linear and non-linear parts of the model were considered. The ReLU

outputs were initialised using the He initialisation, while the Dense layers were initialised using the

Glorot initialisation. The model initialisation was kept to the default Keras initialisation method, which

uses the Glorot initialisation method that computes a uniform normal distribution by averaging the

number of inputs to the layer, often described as fan_in (𝐹_𝑖𝑛) and the number of outputs from the layer

known as fan_out (𝐹_𝑜𝑢𝑡), and taking the square root [280]. The uniform distribution provides a random

value from a range of lower and upper limit values where every value has an equal probability of being

drawn. The initialisation was achieved using the model parameters where the inputs to the layer (32)

and the outputs (20) to obtain the limit of values of weights available for random selection as follows

𝐿𝑖𝑚𝑖𝑡𝑠 =

√2

𝐹_𝑖𝑛 + 𝐹_𝑜𝑢𝑡
 4.8

 𝐿𝑖𝑚𝑖𝑡𝑠 =
√2

64+20
= ±0.017

The initialisation restrains the initial weights parameter of the model to lie between ±0.017, thereby

keeping the model initialisation simple during training.

124

4.7.3 Parameterising the mapping from Images to Label Scores

The parameterisation of the mappings from the images to label scores starts with defining the scoring

function that maps specific pixel values of an image to the confidence scores for each class. Let the

training examples of images be represented as 𝑥𝑖 ∈ 𝑅
𝐶 with associated label 𝑦𝑖 where 𝑖 = 1,… ,𝑁 and

𝑦𝑖 ∈ 1,…𝐾. When the number of training examples for the respective datasets is represented as N,

from Table 2.1, the total number of samples used for the respective applications is N = 71560, N =

28800, N = 28624 and N = 14312. Also, let the number of distinct objects be represented as K where

the applications have K = 20, K = 8, K = 8, and K = 2 for the four applications. The scoring function

parameters include C represents the size of the images where C = 52 ∗ 52 ∗ 3 = 8112 pixels, and the

categories K. Finally, the scoring function that maps the raw pixels to the class scores is defined as

follows:

𝑓 ∶ 𝑅𝐶 → 𝑅𝐾 4.9

This function describes the expected classifier performance where the pixels in an image represented by

the 8112 pixels are mapped directly to a specific category in the overall true class.

4.8 Modelling Surface Inspection in Remanufacturing Using Deep Learning

The modelling approach for the surface inspection application is developed as a multiclass

classification problem that performs a classification as positive or negative for the respective classes.

The multiclass classification differs from the binary classification problems modelling by the model's

loss function and the output classifier, a SoftMax function. The parameter modifications are performed

in the learning algorithm before model training and evaluation. The surface inspection application is

modelled as a supervised learning problem using labelled data. It explores deep convolutional neural

networks for developing sorting systems to categorise remanufacturing products and components.

Perhaps, it is worth outlining that the ML techniques were not considered in this study because

researchers have outlined that some ML algorithms, including support vector machines (SVM) and

Naïve Bayes algorithms, were not very efficient in recognising and classifying automotive components

for remanufacturing after extracting features using scale-invariant feature transform (SIFT), and edge

histogram descriptor (EHD) algorithms [351]. This research supported further investigation into the

application of deeper architectures.

Conversely, surface faults refer to defects highlighting a suspected product abnormality, like what

visual inspection experts identify during remanufacturing. Surface inspection mostly depends on image

analysis, which is the most significant application in medical image analysis, especially image

scanning. Computer vision techniques have more recently been attracting attention across industries,

with researchers investigating the application of machine learning and deep learning for

remanufacturing inspection using computer vision techniques [137]. However, the application was

125

inefficient as it considered only corrosion faults, while the current application explored multiple fault

recognition, including pitting, corrosion, crack, and other combination faults.

Nevertheless, the inspection data consists of objects recorded with varying surface defects for

recognition using the research data collection setup. The model is a vision-based inspection system

consisting of multi-layer convolutional neural networks that perform a quick and reliable real-time non-

contact inspection. The system can check and sort components into scraps and remanufacturable parts

and is helpful in the post-cleaning inspection, where products are inspected during any of the stages of

the remanufacturing process, including cleaning, reconditioning or even final testing. The novelty of

this method is that it considered the same objects having different surface conditions as the categories.

In contrast, other existing vision-based applications consider objects of different categories, making

them suitable for visual inspection and sorting systems for remanufacturing. The advantage of the

developed model is that it can be easily incorporated into other remanufacturing stages with minor

modifications.

4.8.1 Inspection Applications and Data

The investigation of deep convolutional neural network algorithms for automated surface inspection in

remanufacturing consists of an object recognition system that aims to identify objects in the video

stream. These object streams are afterwards inspected and sorted using the designed system. The

inspection technique can be adopted for the pre-disassembly sorting, post-disassembly and other stages

of operations during or after remanufacturing. The existing surface inspection techniques have been

discussed extensively in Section 4.8 alongside the limitations of the existing methods. Finally, the

development of the deep CNN-based surface inspection system for remanufacturing applications is

presented.

Besides, the surface inspection application considers the torque converter system components and

planar bars recorded during this research. The experiment investigates the possibility of detecting

abnormalities in the objects from the video stream. The data consist of eight (8) categories of 3600

images per class, making up 28800 images. The distance between the camera and the objects on the

conveyor system was limited to approximately 40" to ensure that the camera's coverage was restricted

to one object at a time. As lighting contributes to visual sensing, the recordings were made in an

industrial work setting to reduce lighting effects after development. The data consist of two separate

eight (8) object categories of the torque converter components and some planar metal components used

to evaluate the inspection application. These data compositions have been outlined in detail in Section

2.8.3 and used to train the supervised learning model.

126

4.9 Model Architecture, Parameters and Hyperparameters

The developed inspection model architecture consists of four convolutional filters of sizes

64, 32, 32 and 16 and two fully connected layers of sizes 512 and 8, respectively. In addition, the

architecture has the Swish activation and Maxpooling layers sandwiching the convolutional filters, with

a dropout layer added across some of the hidden layers. The number of model parameters obtained from

layers with learnable parameters amounts to 1,423,192, approximating to 1.423 million parameters that

are learnable during training. The architectural makeup is depicted in Table 4.2.2.

Table 4.2 Model architecture for the inspection application

Layer Type Output shape Activation size Parameters

Input

(None, 52,52,3) 8112 0

Conv2D (None, 52,52,64) 173056 1792

Activation (Swish) (None, 52,52,64) 173056 0

Conv2D (None, 52,52,32) 86528 18464

Activation (Swish) (None, 52,52,32) 86528 0

Maxpooling (None, 26,26,32) 21632 0

Dropout (None, 26,26,32) 21632 0

Conv2D (None, 26,26,32) 21632 9248

Activation (Swish) (None, 26,26,32) 21632 0

Conv2D (None, 26,26,16) 10816 4624

Activation (Swish) (None, 26,26,16) 10816 0

Maxpooling (None, 13,13,16) 2704 0

Dropout (None, 13,13,16) 2704 0

Flatten (None, 2704) 2704 0

Dense (None, 512) 512 1384960

Activation (Swish) (None, 512) 512 0

Dropout (None, 512) 512 0

Dense (None, 8) 8 4104

Activation (SoftMax) (None, 8) 8 0

Besides, understanding how the convolutional layer learns depends on knowing how the parameters

move from one layer to another. These learnable parameters depend on the shape of the input and

subsequent layers of the model. Furthermore, the number of parameters on every layer is determined by

considering the layer kernel sizes, including the width 𝒎, the height 𝒏, the number of filters in the

previous layer 𝒅, the bias term 𝒃 usually =1 for the respective filters, and the number of filters in the

current layer under consideration 𝒌. Therefore, the number of parameters 𝑷 is a given [352]

 𝑃 = ((𝑚 ∗ 𝑛 ∗ 𝑑) + 𝑏) ∗ 𝑘

𝑃 = ((𝑚 ∗ 𝑛 ∗ 𝑑) + 1) ∗ 𝑘

4.10

Conversely, the total number of parameters of the developed model is estimated as follows with the

kernel size of [3,3], which represents 𝒎,𝒏, channels in input 𝒅 =3, and current layer 𝒌 = 64, giving the

following layer outputs.

127

𝐿𝑎𝑦𝑒𝑟 1 = ((3 ∗ 3 ∗ 3) + 1) ∗ 64 = 1792

𝐿𝑎𝑦𝑒𝑟 2 = ((3 ∗ 3 ∗ 64) + 1) ∗ 32 = 18464

𝐿𝑎𝑦𝑒𝑟 3 = ((3 ∗ 3 ∗ 32) + 1) ∗ 32 = 9248

𝐿𝑎𝑦𝑒𝑟 4 = ((3 ∗ 3 ∗ 32) + 1) ∗ 16 = 4624

 Nevertheless, the fully connected layer parameters are somewhat different from the above equations as

some models have more than one fully connected layer. The fully connected layer's parameters can be

determined using the activation (activ) size of the model as follows

𝑃 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣 ∗ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣 4.11

𝐿𝑎𝑦𝑒𝑟 5 = 512 ∗ 2704 + 512 = 1384960

𝐿𝑎𝑦𝑒𝑟 6 = 5 ∗ 512 + 8 = 4104

The overall architecture for implementing the deep learning inspection application in remanufacturing

is attached as Appendix 2A.

4.10 Model Components, Hyperparameter Selection and Optimisation

The model hyperparameters are another essential factor in developing deep learning models. These

hyperparameters include batch size, learning rate, etc. The proposed model consists of considerable

weight and bias parameters that require optimisation to minimise the empirical classification errors on

the labelled training data. A loss function that supports multiclass input is required, and the categorical

cross-entropy loss function is selected and already defined in Section 3.10.3. The cross-entropy loss

minimises the prediction error on the training data to achieve good predictions. The cross-entropy loss

increases as the predicted probability deviates from the ground truth.

Generally, the performance of a model is measured from the error observed in the model response

obtained after fitting the data on the model and following the difference between the model's training

and test errors. The two important terms used to quantify these errors are bias and variance. The bias

term refers to the error of the training data, while the variance relates to the error of the test data.

Conversely, model underfitting occurs when the model's error is very high compared to the training

data (low accuracy) and performs poorly on the test data (low accuracy). Underfitting is also

undesirable when training a model, as the model performance would not meet the desired performance

levels. The property of the underfit model includes a high bias and high variance. Besides, model

overfitting is the case of poor generalisation when a model performs well on training samples and

poorly on unseen test samples, thereby obtaining low training errors during training (high accuracy) and

high testing error during the testing stage (low accuracy). The overfit model has the property of low

bias and high variance. Researchers have explored various methods to minimise overfitting early in the

model design; overfitting was minimised using different model regularisation methods, including

dropout and model checkpoint [160].

128

However, balancing the training and test error in the developed model is required as low training and

test errors are desirable, constituting a model with high accuracy on both training and test data.

Considering the bias-variance trade-off, a desirable model should have an ideal low bias and low

variance property. This property of a developed model considers reducing the model estimated variance

across samples by increasing the bias in the estimated parameters. It ensures that the developed models

generalise well on unseen data.

4.11 Surface Fault Identification and Classification

The experiment involves investigating the identification of surface defects on planar metals. These

defects are similar to those in EoL automotive parts, including inherent rusts, cracks, and pitting faults.

The samples were obtained from the DMEM workshop at the University of Strathclyde Glasgow. The

different fault conditions on the samples were recorded as labels, and a three-minute video of samples

was recorded as training samples. The recorded videos were pre-processed into images and used for the

inspection application. The machine for training the developed models consists of a graphics processing

unit that enhances the speed of training the neural network models. In addition, it is a compute unified

device architecture (CUDA) enabled NVIDIA GeForce RTX 2080 Super GPU hardware, useful to

speed up the training of the models, thereby enhancing the training and model evaluation time. The

other pre-processing activities on the data include resizing the data to suit the architecture input

(52,52,3), splitting the data into training, validation and test sets, vectoring the data and labels by

converting them into arrays for easy access and suitable for the chosen optimisation algorithm. The

label vectorisation used in the model is the one-hot encoding which converts the class labels into

categorical data of all zero vectors with a one (1) in place of the label index against using the integer

tensor that transforms all the classes to integer values. The one-hot encoding allows the class labels to

identify the respective predictions, enhancing model performance. The respective Keras utility for the

pre-processing was used in the vectorising and encoding of the labels, while a data split function was

created and used to partition the model data.

Moreover, this inspection application considers the identification of different surface fault conditions

from samples of the objects with various inherent faults, including crack faults (CF), pitting faults (PF),

rust faults (RF), and the combination faults: rust and crack (RnC), pitting and crack (PnC), pitting and

rust (PnR), and rust, pitting and crack (PnRnC) faults. These inherent product faults are described in

brief. Pitting faults are defects formed by the localisation of corrosion confined within a small area on a

metal [353], while rusting occurs due to the exposure of metals to moisture and air, forming iron oxides.

In contrast, crack defects originate at the surfaces and increase with continued stress [354]. Besides, the

pre-processing for the designed inspection application includes converting the video streams into

images and resizing the images to suit the model architecture, converting the data into arrays, and

129

shuffling during the batch passes. The pre-processed images were used as data to train the model. A

cross-section of the original samples used to train the model is depicted in Figure 26.

Figure 26.10 Sample of the inspection data

However, the CNN model requires a series of predefined parameters to optimise the generalisability

and learning accuracy of the model. These parameters and hyperparameters are outlined as follows.

4.11.1 Model Components and Hyperparameters

The model hyperparameters of the CNN model used to investigate the sorting application includes the

batch size, the number of epochs, learning rate, dropout, optimiser, activation functions, loss function,

and evaluation metric. The vital components and hyperparameter set used are detailed in Table 4.. The

dropout parameter for the model is set to 25% after the second hidden layer and 50% after the fourth

hidden layer, which minimises the chances of overfitting. Furthermore, the Swish activation function

was used in the hidden layers and a SoftMax activation at the output layer.

Table 4.3 Model I parameters and hyperparameters

Parameter/Hyperparameter Value

Batch size 16

Epochs 50

Learning rate 0.005

Dropout 0.25/0.5

Optimiser AdaMax

Activation Swish and SoftMax

Loss Categorical-crossentropy

Metrics Accuracy

The planar object inspection data were used to train the VGGNet model using transfer learning, training

from scratch and the newly developed model. The size of the available data is also important because

the model does not exhaust the host device's memory. As there are approximately 5.5 Gigabytes (GB)

of data for training and evaluation, the model data cannot fit into the computer random access memory

(RAM); selecting an appropriate optimisation is necessary from the group of optimisation techniques

discussed in Section 3.11.4. The batch gradient descent algorithm benefits from loading the data in

130

small fractions, often called mini-batch gradient, allowing the model to train all examples before

updating the model parameters. The size of these mini-batches used is 16 images, and the model

continues o loop over the samples until all the data is exhausted during the training.

Conversely, from the definitions in Section 2.4.3, the parameters 𝜃, which represents the model's

weights, are usually initialised before calling. The initialisation methods of the NN differ depending on

the expected output and the different initialisation techniques discussed in Sections 3.11.4.

Nonetheless, transfer learning was first explored before developing a new architecture for comparison

because the state-of-the-art models can perform the various classification tasks without significant

modifications. Furthermore, the choice was informed by research that developing new architectures that

compete against the current state-of-the-art is a very challenging task involving selecting numerous new

hyperparameters and layer configurations [222].

4.11.2 Model Selection for Transfer Learning

The Visual Geometry Group (VGGNet) is one of the state-of-the-art deep CNN architectures selected to

compare a transfer learning approach and training a model from scratch. In addition, the architecture

was selected to explore transfer learning applications for remanufacturing because it is one of the first

very deep CNN architectures that achieved state-of-art performance on large-scale datasets using

replicated filters. The VGGNet architecture consists of the first two convolutional layers containing 64

and 128 respective 3 x 3 filters. The VGGNet uses a max-pool layer alongside a pool size of 2 and a

stride of 2 in all the layers. The third, fourth and fifth layers have three convolutional layers with 256,

512 and 512 filters. The architecture also has the fifth and sixth layers as fully-connected layers. The

fifth layer is flattened to produce 4096 units. The sixth fully connected layer contains eight (8) dense

units and a SoftMax function used for classification. This model was selected and used to evaluate the

initial inspection application.

4.11.3 Model Training and Evaluations

The model training involves optimising the model's weight parameters that ensure the best transfer of

features from the inputs to the model's output. The training process ensures that the weight parameters

are updated after each batch of the data passage. To achieve that, the model predicts the images in the

batch, computes the loss value for those predictions given the actual data labels, and obtains the

gradient of the loss function with respect to the model weights before updating the model weights by a

minor factor in the direction opposite to the gradient.

Conversely, there are two broad methods of training deep learning models, including transfer learning

and training from scratch. The process of training from scratch is a computationally more expensive

technique than the transfer learning approach that uses pre-trained model weights trained with large

datasets, including ImageNet and Microsoft COCO [75], [355]. However, to initiate the training

131

process, the model is first compiled. The compilation involves the selection of an appropriate

optimisation algorithm that ensures that the model updates itself based on the training data to improve

its performance, a loss function that measures the distance between two probability distributions,

including the predicted output and the true output, and finally a metric to evaluate the model

performance [29]. The model training pipeline involves four vital stages that must be completed to learn

the data features [29]. These stages are outlined in Figure 27 as follows.

 Figure 27 Model training pipeline

Moreover, the feature extraction begins the training process after the data is read into the model. It is a

vital stage in traditional machine learning modelling that involves applying some computational

algorithms to obtain the feature vectors that quantify the data. These vectors are hand-engineered in the

traditional context and used to describe the contents of the presented input. However, there are

numerous challenges to achieving effective feature learning, as outlined by researchers. These

challenges include background clutter, illumination, occlusions, scale variation, viewpoint variation,

deformation, and intra-class variation, among other factors [68], with various architectures proposed,

especially CNN, to address these challenges, achieving optimal feature learning.

Nevertheless, effective training is obtained by optimising different modelling stages, including the data

pre-processing, parameter initialisation, batch normalisation, architecture design, choices of activation

functions, pooling techniques, regularisation techniques, and optimisation techniques. These

considerations help to obtain the most optimised training for the model. The training process involves

seven key stages highlighted as follows:

1) Get the batch from the training set.

2) Pass batch to the model.

3) Use backpropagation to calculate the model loss.

4) Use optimisation techniques to calculate the gradient of that loss function with respect to the

model's weight.

5) Update the obtained weights using the gradient to reduce the loss.

6) Repeat the respective steps 1 to 5 above until one epoch is completed.

7) Repeat steps 1 to 6 above until the desired accuracy level is obtained.

Nevertheless, for a model with input 𝑥, weights 𝑊1,𝑊2, biases 𝑏1, 𝑏2, layers 𝐿1, 𝐿2, and activation 𝐴, the

training process involves using gradient descent to propagate the gradient of the loss forward and

backwards through the model as follows

𝜕𝜄

𝜕𝑊1
=
𝜕𝐿1
𝜕𝑊1

𝜕𝐴

𝜕𝐿1

𝜕𝐿2
𝜕𝐴

𝜕𝜄

𝜕𝐿2
 4.12

Feed data Train model Predictions Verification

132

The update of the weights with the learning rate 𝜎 is given by

 𝑊1
′ = 𝑊1 − 𝜎

𝜕𝜄

𝜕𝑊1
 4.13

Nevertheless, the learning rate 𝜎 controls the speed of the model's training and obtaining an optimal

learning rate is challenging. Therefore, minimal values of learning rates are used as guesses to train the

network. However, It is important to note that very low learning rates might cause the model to freeze

at some local minima. In contrast, high learning rates will likely cause poor convergence, making

choosing an optimal learning rate a critical factor in successful training [68].

The AdaMax optimiser algorithm is selected with mini-batches, and the backpropagation is

implemented to optimise the model's parameters. The number of epochs selected for training the model

is based on heuristics. The model performance was observed, and the number of epochs was modified

to achieve reasonably high prediction accuracy and a low error rate.

Nevertheless, the model predictions are a vector of the same length as the number of inputs, with the

vector coefficient summing to 1 as the probability distribution is formed. The largest value in the

probability distribution is the predicted class. The SoftMax function sums the entire vectors to 1 in a

multi-class application, with the top probability score being the predicted class. This SoftMax is

obtained from the relationship detailed in Section 3.11.2.4

𝛼(𝑧)𝑘 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑗 = 1,… . . , 𝐾

Overall, the training minimises the model loss function, enhancing prediction accuracy. However,

passing huge batch sizes is not recommended as it might be difficult for the data to fit into the computer

RAM, thereby degrading performance. The pictorial representation of the learning process is shown in

Figure 4.12.

Inputs (x)

Layer (data transformation)

Layer (data transformation)

Predictions y' True label y

Loss function

Loss score

Weights

Weights

Optimiser

Figure 28 Pictorial representation showing model inputs, network, layers, loss function and optimiser

133

Nonetheless, the Keras callback function helps manage and make specific decisions during training. For

example, it was helpful to save the model weights during training when the model accuracy improves

and manage the training process if the training stops. The callback function also helps to specify the

epoch you wish to restart the training [29].

I Training and Evaluation of the Pretrained Model

The pre-trained model considered was VGGNet architecture, once a state-of-the-art object recognition

architecture with about 138.4 million parameters for an image size of 52 x 52 x 3. The 16-layer

VGGNet model was selected and used to train the model using supervised learning. The model

parameters and hyperparameters used for training and evaluating the VGGNet model are detailed in

Table 4. and help train the model, including from scratch. The batch sizes reflect the number of images

to load when the model performs forward and backward propagation of gradients which is highly

computationally intensive work for the machine. In contrast, no gradients are propagated during

evaluation, and the model can read many images.

Moreover, these models learn the data patterns during training, and the training process involves

automatically extracting the samples' specific features to represent the image data patterns. The model

uses the convolutional and pooling layers to learn the data patterns from the small, localised regions

known as receptive fields. The first layer learns from the raw image pixels to motifs by detecting

irregular edges to parts of objects, which are further combined in the hidden layers to reproduce the

patterns as the underlying features [28]. During the training, the algorithm predicts the model's outputs

after each epoch with two outputs computed for both the training and validation data, including training

and validation accuracy and training and validation losses, with the model weights serialised after

training. However, a critical aspect of modelling predictive systems is the evaluation stage. The

evaluation requires estimating the model skill when predicting unseen data after training. Therefore, the

performance of pre-trained models on the research data was first evaluated to visualise the goodness of

fit for the remanufacturing applications, while the evaluation of the model was analysed to highlight the

performance [331]. The performance of the pre-trained models was impressive, with the pre-trained

VGGNet model producing a final training accuracy of 99.72% and a validation accuracy of 99.2%

while classifying the faults on the metal bars. The results highlight that the model predictions the test

data to a high accuracy level and generalises very well on the test data due to the high validation

accuracy. Besides, generalisability is very important in evaluating the performance of predictive

models.

Consequently, the model's training and validation errors are comparatively low since overfitting occurs

when the validation error is significantly higher than the training error, as shown in Figure 4.129. These

results highlight that the model has a low bias and low variance in predicting the classes of objects

considered in the investigation.

134

Figure 4.129 Pretrained VGGNet model performance on the surface inspection dataset

Furthermore, the pre-trained model misclassification defined in equation (2.80) is given by

𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑀 = 1 − 0.9972 = 0.0028

Overall, the pre-trained model produced a misclassification error of 0.28% on the inspection I data.

These results highlight that the model can identify, inspect, and classify the products for

remanufacturing with a very low error rate.

Nonetheless, the output is the testing is visualised using the confusion matrix, which shows the models

misclassified twelve (12) crack defects to ten (10) pitting defects and two (2) pitting and rust defects, as

outlined in Figure 304.14. Furthermore, another five (5) non-defective components were misclassified

as rust defects, while six (6) pitting and rust defects were misclassified as four (4) rust defects and two

(2) no defects. Finally, one pitting, rusting and crack-defected component was misclassified as rusting

defects. These huge misclassifications highlight the pre-trained VGGNet model in its original form is

inefficient to be deployed in a critical real-world remanufacturing application without improvement.

 Figure 30 VGG model prediction visualisation using the confusion matrix

135

II Training from Scratch and Evaluation

The model training process from scratch was performed to understand the impact of training the model

without considering the pr-trained weights. It is quicker and simpler to initiate as there are no existing

model weight parameters to load; therefore, the pre-trained model was retrained using the same set of

parameters. The training results from scratch produced a perfect prediction accuracy of 100% for

training and validation and a zero-validation loss. In addition, the model's response shows similar low

bias and low variance, as depicted in Figure 31.15.

 Figure 31 Training from the scratch loss and accuracy response on the VGGNet model

Moreover, the model training results highlight that the learning algorithm attained 100% training and

validation accuracy before the 10th epoch, as shown in Figure 31.15. However, the model afterwards

maintained the maximum performance, suggesting an excess capacity for the problem under

investigation. Furthermore, the training and validation reached the lowest of zero before the 10th epoch

and maintained the performance until the end, supporting the peak accuracy obtained during training.

Finally, the zero-loss obtained also highlights that the model can generalise well on unseen data.

Furthermore, the VGGNet model misclassification from scratch is obtained as defined in equation

(2.80) is obtained as

𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

 𝑀 = 1 − 1 = 0

Nonetheless, the testing output is visualised using the confusion matrix in Figure 326, which shows that

the models achieved a perfect prediction across the entire test set, justifying the model's very high

prediction accuracy.

136

Figure 32 Model prediction visualisation for the training from scratch using the confusion matrix

Consequently, the training of the VGGNet model produced a perfect prediction with no

misclassification errors, thereby highlighting that the VGGNet model is likely too complicated for the

dataset. Besides, the VGGNet had a wide architectural depth at its debut and produced a state-of-the-art

performance in the ImageNet competition. Moreover, the model loss also shows a comparable low loss

performance justifying the high model prediction accuracy observed after training the model. However,

the perfect prediction results obtained from training from scratch account for the enormous

computational cost of the training, which is a significant limitation as the model trained for more than

seven hours compared to the transfer learning, which trained within an hour. Besides, an identified

challenge of training from scratch was the prolonged training time, which increases the cost required to

hire graphics processing units or rent a cloud-based GPU.

III Training the New Architecture and Evaluation

The model's training results in Figure 33.17 show that the mode accuracy peaked just before the 20th

epoch and maintained a high accuracy over the 50 epochs that the model was trained. The newly

developed model produced a top-1 training accuracy of 99.92% and a validation accuracy of 100%,

highlighting the generalisability of the model on new data. Furthermore, the model training loss

observed the lowest loss after about 15 epochs, with the loss stabilising to maintain the final training

loss of about 0.0038 alongside the validation loss of 0.000013. These reported losses for the training

and validation highlight that the model predictions follow the training accuracy, which peaked after

about 17 epochs.

137

Figure 337 Researcher developed model response on inspection data

Furthermore, the misclassification error of the researcher developed model prediction is given by

𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑀 = 1 − 0.9992 = 0.0008

Moreover, the model's performance is significant as it produced a minor misclassification error of

0.08% on the torque converter dataset. Nevertheless, model testing is the final stage of deep neural

network development before deployment. The testing involves loading the serialised model weights

obtained after training and inferring the model performance using the separated test set. The model

evaluation is obtained by computing and selecting the model's top predictions over the test images and

comparing it against the actual value, obtaining the output as an un-normalised final model prediction.

Finally, the test output is visualised using the confusion matrix in Figure 34.18. The table shows that the

models misclassified a single pitting and crack defect to a crack defect in the entire predictions on the

test set, justifying the very high prediction accuracy and low misclassification result produced by the

model.

Figure 34 Developed model prediction visualisation using the confusion matrix

138

4.11.4 Results and Discussions

The deep learning modelling for remanufacturing process inspection highlights the necessary steps to

model remanufacturing surface inspection using visual sensor data and deep convolutional neural

network algorithms. The supervised modelling approach effectively represented the remanufacturing

inspection, attaining a satisfactory performance across the two algorithms and three individual cases

tested, including the pre-trained model, training from scratch, and using the researcher-developed

algorithm. In addition, the top-1 prediction accuracy was used to evaluate the performance of the

algorithms.

Besides, the challenges of obtaining rich features from the model highlighted by researchers [68] were

addressed from the beginning of the model development. The measures and techniques used to address

them include background clutter and illumination minimised by capturing the data on the conveyor

system and in the actual work environment lighting, thereby ensuring that the images used to train the

model will look similar during testing. Furthermore, the occlusion challenge was addressed by timing

the product's arrival speed to the point of inspection, ensuring that the camera viewpoint is restrained to

one object at a time.

Furthermore, scale and viewpoint variations were minimised using data augmentation, a low-level

approach to introduce various transforms to the object before passing them to the model. Data

augmentation primarily enhances the model's generalisation ability as the model sees slightly modified

input versions of the input data. A significant feature of the augmentation class is that the data labels are

not changed during the process. A utility to facilitate data augmentation is the Keras

ImageDataGenerator, which accepts data, transforms them randomly, and returns the newly

transformed data. The possible transforms used in computer vision augmentation include translation,

rotations, horizontal flips, vertical flips, changes in scale, shearing, etc. Finally, the transformed data

were used to train the models and evaluated on the unmodified test samples, which showed consistently

high test accuracy with a noticeable reduction in the training accuracy. In summary, model

generalisation was vital when training deeper neural network architectures and helped to improve

model performance on unseen data.

Nonetheless, an ideal model should have a very high training and validation accuracy and low training

and validation errors. These properties ensure the model performs well predicting new data and

generalising well on unseen data. Nevertheless, the comparison of the model performance on the

research data highlights that the training from scratch (VGGS) model produced the highest and

maximum prediction accuracy of 100% on the surface inspection data. The newly developed model,

alongside the VGGNet transfer learning models, produced a top-1 accuracy of 99.92% and 99.67%,

respectively. These highlights that the models can effectively perform the desired inspection and further

generalise to unseen data as the validation accuracy was significantly high across the three applications.

139

These performances were coherent across the three models, producing a low validation error on the test

data.

However, despite the success of the pre-trained models, they have the limitation of high memory

demands. The memory demands remain a vital challenge to deploying pre-trained models in

remanufacturing and other applications that run on devices with limited storage. Therefore, it calls for

exploring models that can achieve comparable results with smaller capacities. This exploration is

worthy because the algorithms have many training parameters, making them significantly challenging

to deploy in smaller applications with memory constraints. Nevertheless, it is worth outlining that the

research-developed architecture has 1.423 million parameters making it far less model to train than the

VGGNet architecture, which has 138.4 million parameters. These model parameters account for the

required storage capacity of the trained model weights and the training time required to train and deploy

the models.

4.12 Adapting the Developed Model to Torque Converter Component Inspection

This application considers the post-cleaning inspection in remanufacturing the torque converter units,

ensuring that the components are appropriately dried after cleaning. The application assumes that the

components are properly cleaned. The model is developed based on the process structure in the data

collection facility, as there are no automated methods of returning the improperly cleaned parts to the

cleaning system. The crucial application of the model helps to eliminate the need for expert inspection

of the cleaning process, thereby enhancing productivity through the 100% guaranteed inspection

provided by design. After cleaning, the model differentiates the dry and wet samples, named dry sample

(DS1), DS2, DS3, DS4, DS5, Wet1, Wet2, and Wet3. A batch of the original samples used to train the

model is depicted in Figure 35.19.

Figure 35 A batch of samples for inspection II application used to train the model

140

4.12.1 Experiment and Model Training

Adapting the developed model involves using the developed architecture without any modification

since the product surface inspection data has the same number of classes and is in the same format. The

data consist of eight (8) categories of 3578 images per class, making up the 28624 images, helpful in

evaluating the adaption of the developed model to achieve automated component inspection during

remanufacturing. The developed model was trained on the new remanufacturing post-cleaning

inspection data of the torque converter components. The training adopted the supervised learning

technique, where the data and labels were used to train the deep convolutional neural network model.

The training tunes the weight parameters that enhance the model's performance using the model

hyperparameters outlined in Table 4. and saved for future inference.

Furthermore, the training incorporates the AdaMax optimiser, a categorical cross-entropy loss. In

addition, a small amount of dropout is applied to the hidden layers of the model, 25% and 50% in the

first and second fully connected layers, to minimise overfitting, enhancing robustness. Besides, the

saved file is stored in h5 format, a hierarchical data format (HDF) format used to store

multidimensional arrays of scientific data. The h5 format enables the storage of the following model

components, including the architecture, sets of weights, optimisers, loss and metrics used for model

evaluation [356].

4.12.2 Results and Discussions

The modelling results in Figure 36.20 show that the deep learning technique can achieve surface

inspection in remanufacturing applications, attaining significantly high performance using supervised

learning. Notably, the researcher-developed architecture performs comparably to the state-of-art

VGGNet model, with significantly lesser computational demands. The model produced a significant

performance comparable to the initial test case, with a top-1 training accuracy of 99.97%. In addition, a

validation accuracy of 100% was obtained, highlighting that the model generalises well on the new

data. The results highlight that the model performs well on training and test data, guaranteeing good

prediction and generalisation of unseen data.

Furthermore, the model's misclassification error is given by

𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑀 = 1 − 0.9997 = 0.0003

It is crucial to outline that the model's performance is impressive as it produced a misclassification error

of 0.03% on the torque converter dataset, which is negligible.

141

Figure 36 Model training results on the Torque Converter surface inspection

 Conversely, the model performance visualisation results using the confusion matrix in Figure 371

highlight that the samples' predictions conformed with the obtained prediction accuracy of the Torque

Converter inspection application, with no observable misclassifications.

Figure 37 Inspection II model predictions visualisation

Besides, the inference from the connected camera focuses on a conveyor carrying cleaned end-of-life

products for post-cleaning inspection. First, the surfaces are automatically inspected using the model

and the connected camera to verify the surface dryness. Furthermore, the model predictions are

visualised using OpenCV, a computer vision library that supports the execution of deep learning

models. Then, the data is loaded, converted to an array, resized, and the serialised weights to predict the

inputs. Finally, the model predictions were performed, and the predictions were displayed with custom

texts, including the predicted class, position, text colour, and size inserted in the algorithm. In addition,

the inspection model predictions from the live video feed outline the model's impressive performance,

with the respective class predictions displayed in Figure 38.

142

 Figure 38 Model inspection predictions result from the connected camera inputs

These results highlight that the modelling approach effectively achieves surface inspection in

remanufacturing. Furthermore, the method helps predict the surface conditions of the product using the

camera data as inputs, thereby validating the effectiveness of the design and modelling to achieve

surface inspection in remanufacturing.

4.13 Extending the Deep Learning Modelling to Achieve Automated Inspection

Sections 4.11 and 4.12 have outlined the various algorithms and techniques for achieving surface

inspection in remanufacturing using two different surface-defected data. However, there are still

subsurface defects that are inherent in some products as they return for remanufacturing. Therefore, the

model's extension towards a holistic, automated inspection considers the inspection of surface and sub-

surface defects on components and proposes a structured approach to achieving automated inspection in

remanufacturing. The approach is described as a framework for achieving automated inspection in

remanufacturing, summarised in four vital steps: presentation, examination, decision, and action stages.

This sequence of activities is depicted in Figure 39.23.

143

Figure 39 Automated inspection design approach.

The presentation stage involves getting the products and components to the inspection point alongside

enabling the inspection process. This step enhances automated inspection by using a conveyor

transportation system and, where necessary, a robotic arm to enhance proper product inspection through

picking and rotation to achieve a full view of the object. Furthermore, the examination stage evaluates

the conforming features obtained through connected sensors' recordings. It uses sensors to collect data

about the conditions of the components alongside historical data obtained from the products MoL. The

sensors include visual, non-visual, ultrasonic, and other sensors that can detect internal defects in

components. Besides, the decision stage can be likened to a binary decision to accept or reject the

component or product, achieved using the learning algorithm. Therefore, the decision stage is critical in

achieving automated inspection and forms the basis of modelling using deep learning algorithms.

Lastly, the action stage uses an actuation system to activate the next remanufacturing sub-processes to

sort, inspect, control, or exit the process.

However, to achieve the full automated inspection for remanufacturing, the examination stage is

modified to include sensor systems that can assess surface and sub-surface defects on components,

alongside any historical data about the product usage during the MoL. These modifications were

investigated with the design for automated inspection proposed as the framework for achieving

automated inspection in remanufacturing.

The proposed design for automated inspection captures the requirements to automate vital processes in

remanufacturing using deep learning-based models and other associated technologies. The design for

automated inspection (DfAI) model evaluates the automated inspection in remanufacturing, which

Action - includes all mechanical systems useful for achieving the implementation of

the model output. It includes all forms of actuation systems that enables seamless

accomplishment of the automation. It is usually mechanisms and in advanced

applications, include robots for performing specific activities.

Decision - includes all algorithms used to process the sensor data. These algorithms

include data pre-processing, classification, clustering, and other predictive

algorithms used in the model.

Examination - Includes all forms of sensors used to record product information. It

includes smart sensors, cameras, ultrasonic probes, metal magnetic memory device,

RFID tags, Bluetooth devices etc.

Presentation - includes conveyor systems, robots, communication protocols and

codes used to establish connection between the product and the sensors systems.

144

differs from the automated inspection in manufacturing, most notably to evaluate and identify inherent

internal properties of a product to undergo a new life cycle without failure. In addition, the integrity test

is not always applicable in automated inspection in manufacturing, where the wear and strength

properties of products are not verified before the product is returned for reuse during remanufacturing,

thereby making the DfAI in remanufacturing a vital tool to enhance productivity.

The DfAI system details the integration of a product's historical data and status data to achieve

automated inspection by inspecting the product's surface and sub-surface defects. The connected visual

sensor systems detect surface defects, while non-destructive inspection (NDI) methods identify the sub-

surface defects. In addition, other inherent usage information obtained from the IoT system is fused

with the NDI and visual inspection results to obtain a holistic inspection system that can perform at

every stage of remanufacturing, including the reverse logistic stage.

 Figure 40 High-level design approach of the design for automated inspection

The vital components of the design for the automated inspection system in Figure 40.24 are summarised

as follows:

• Cores - products returned for remanufacturing.

• Conveyors - The transport system of the products to the point where remanufacturing starts.

• Manipulator - Robot device used to achieve multiple viewpoints for the fixed visual sensor.

• Camera - A visual inspection sensor to record images/videos of products.

• Sensor data - The ultrasonic inspection sensor from sub-surface defected components

• IoT Data - The product's historical MoL (usage) data.

• Storage - Storage consists of products for recycling and disposal.

• Remanufacturing - Subsequent stages of product remanufacturing after acceptance.

• Model - The decision-making unit of the automated inspection model.

Nevertheless, the inspection faults anticipated by the model are pre-determined at the model design

stage, and it helps in selecting the appropriate sensing devices and sensors used for recording the

product conditions, which are labelled for use as training samples. Furthermore, the DfAI system

Recycling and

Disposal

Remanufacture

Sensor

Data

IoT Data

Cam

Cores
Conveyors Manipulator robot

Model

145

involves six key stages: data loader, pre-processing, modelling and model selection, training,

evaluation and improvement [28], [30], [103].

First, the data loader refers to the process of reading the data into the model. At the same time, the pre-

processing step involves resizing the data to suit the model architectural requirements and partitioning

the data into training, validation, and test sets, obtained as a percentage of the entire data and used for

evaluating the model performance. Besides, the model is a computational algorithm consisting of multi-

layer CNNs. The modelling involves creating the types of input, outputs, the type, and the number of

layers, specifying the stride, padding, selection of performance metrics, etc. It also defines how the

computational model processes the input and output. Finally, the model selection consists of choosing a

state-of-the-art model and performing transfer learning using new data. Moreover, this approach to

visual inspection modelling has successfully identified seven visible fault types, including rusting,

crack, pitting, and other combination faults. The samples were recorded, pre-processed and used to train

a deep convolutional neural network model for remanufacturing inspection [103], [344].

Furthermore, another crucial stage of non-destruction inspection is determining the products' structural

integrity. The structural integrity test guarantees that the product for reuse can work optimally for

another life cycle without failure, thereby making the test for components for reuse a vital part of

remanufacturing. It ensures the product's internal characteristics are assessed before providing quality

assurance. The design for testing in remanufacturing has been proposed and acts as a mathematical

framework for achieving NDT inspection as a remanufacturing design consideration. The design for

testing considers the components' shapes and data acquisition geometry to provide the advantage of

enhancing in-service inspection and increasing the range of components suitable for remanufacturing

[357].

Moreover, the sub-surface inspection involves adopting the design-for-testing method like the multi-

objective optimisation that focuses on maximising the coverage of ultrasonic fields throughout

components while also minimising the number of ultrasonic transducers used for the assessment.

Researchers investigated the practical implementation of the design-for-testing to understand the

optimal placement of ultrasonic sensors on the product boundary and the ultrasonic field coverage area

using the PZFlex software [357], thereby confirming the product's shape is a vital design consideration.

Furthermore, the design for testing enhances non-destructive testing, thereby improving integrity and

certifying the quality of products after remanufacturing.

Nevertheless, internet-connected devices, also known as the internet of things (IoT), is another essential

technology to enhance remanufacturing by providing connectivity and interaction between the cyber

world and the physical devices. It allows for the recording and analysis of historical data about product

conditions to make data-driven decisions. Recent advancements in hardware, software, and

communication technologies have advanced IoT-connected sensing devices to provide observation and

146

data measurements from the physical world [358]. The technology uses a more recent design of

embedded chips to record product health data during use and decides the product conditions at end-of-

life. The IoT data includes the middle-of-life data incorporated in the pre-disassembly inspection, which

are only available to OEMs that remanufacture their products at end-of-life. Perhaps, since these MoL

data are not readily available to third-party remanufacturers for almost every product for

remanufacturing, making these data publicly available would enhance the design of automated

inspection systems for remanufacturing applications.

Conversely, the design for automated inspection uses the photogrammetry approach requires the

optimal camera placement for adequate coverage of the objects using the triangulation of multiple

viewpoints [359], with the highest model prediction from the respective camera outputs returned as the

final model prediction. The method was not implemented directly due to cost constraints. However, the

implemented DfAI system incorporated a single camera with multiple low-level transformations,

including rotations, flipping, width and height shifts, scaling etc., introduced to enhance the model's

generalisation ability during training [360].

4.13.1 Benefits of Design for Automated Inspection

The benefits of the design for automated inspection include enhancing throughput, product inspection

accuracy, and reducing workplace hazards associated with remanufacturing processes, alongside factory

lead times [361]. These benefits are achievable using the DfAI approach, enhancing the

remanufacturing process. Automating the remanufacturing processes, especially the inspection stage,

reduces the complications in the process, alongside the efficient reuse of materials and components,

thereby reducing the non-remanufacturable parts and waste, improving value recovery and quality

assurance of remanufactured products and reducing remanufacturing cost [362]. The DfAI provides the

platform to explore new process improvement methods and improve inventory management. These

benefits have been outlined using a discrete event simulation of an automated inspection system for

remanufacturing [361]. The DfAI framework addresses the following critical issues in remanufacturing

• Process requirements for achieving and deploying an automated inspection in remanufacturing.

• Outlines the high-level hardware setup requirements for automated inspection in

remanufacturing.

• Understand the situational considerations for achieving automated remanufacturing inspection.

• Expand the methodologies for achieving automation inspection in remanufacturing.

• Enhance the understanding of the different levels of inspection in automated inspection.

• Apply deep learning techniques for automating processes in the remanufacturing industry.

In summary, the most significant advantage of the DfAI is that it can be incorporated into existing

remanufacturing processes by re-engineering the systems, thereby creating new systems and designs for

automated inspection.

147

4.14 Chapter Summary

This chapter presented the modelling and development approach, including the research design,

frameworks, model dependencies, data preparation and pre-processing, computational model design

and development considerations, training, and evaluation. It further outlined the deep learning-based

approach for surface inspection applications in remanufacturing. It presented two different inspection

cases and compared the performance of three models, including the pre-trained VGGNet, training from

scratch, and the newly developed model. The model's performance suggests that the developed models

can also be used at the initial point of product collection to assess the condition of components on

arrival. The chapter has successfully addressed research questions (Q2) by modelling remanufacturing

inspection using the developed algorithm, thereby automating the process and improving efficiency.

Besides, these inspection applications have already been helpful in the industrial post-cleaning

inspection of torque converter remanufacturing. The application is new knowledge in the form of a

learning algorithm that can be used in automated inspection processes in remanufacturing alongside the

proposed design for the automated inspection framework. Furthermore, the chapter also presented a

holistic, automated inspection technique achieved by extending the developed deep learning-based

inspection application to include assessing and detecting sub-surface faults. The framework named

design for automated inspection (DfAI) is another tool that helps remanufacturers quickly identify the

automated inspection setup requirements.

148

 CHAPTER FIVE

MODELLING COMPONENT SORTING AND PROCESS CONTROL IN

REMANUFACTURING USING DEEP LEARNING

5.0 Introduction

This chapter focuses on adapting the researcher's deep learning algorithms to the remanufacturing

sorting and process control applications. It addresses the research question (Q4), where the developed

model is adapted in other remanufacturing applications. The chapter presents the design modification of

the developed convolutional neural network model to achieve remanufacturing sorting and process

control. The training and evaluation are explored on EoL products during remanufacturing, with the in-

case results and analysis evaluated for proper deductions.

5.1 Modelling Sorting in Remanufacturing Using Deep Learning

The modelling approach for the sorting application is developed as a multiclass classification problem

that performs a classification as positive or negative for the respective classes. The multiclass

classification differs from the binary classification problems modelling across other applications,

including the model's loss function and the output, which is a SoftMax function. These parameter

modifications are performed on the learning algorithm before training and evaluating the model. The

sorting application is modelled as a supervised learning problem using labelled data. It explores deep

convolutional neural networks for developing sorting systems to categorise remanufacturing products

and components. Nevertheless, the sorting application uses the deep learning recognition application,

where specific parts are identified from the images of the components taken by a connected camera

system. The typical pipeline of a machine learning model is depicted in Figure 415.1. It consists of the

camera unit used to obtain data and a pre-processing unit that prepares and presents the data in the

model format. During this training, the model learns the patterns in the data and the testing stage, where

predictions are evaluated as the model output and finally improvement stage, where the model

performance is enhanced after evaluation.

Figure 41 Typical learning model block diagram

Obtain
data

Prepare
data

Train
model

Test model

Improve
model

149

5.2 Sorting Application and Data

The investigation of the use of DCNN for automated sorting in remanufacturing consists of an object

recognition system that aims to identify objects in the video stream. These identified objects are

afterwards sorted into categories using the designed system. The sorting technique can be adopted for

pre-disassembly, post-disassembly, and other operations during or after remanufacturing. The existing

sorting techniques have been discussed extensively in Section 3.12.2 alongside the limitations of the

existing methods. Finally, the development of the deep CNN-based sorting system for remanufacturing

applications is presented.

The sorting application considers the torque converter system components recorded during this

research. The experiment investigates the possibility of detecting faults as the intended sorting solution

is based on fault recognition. The distance between the camera and the objects on the conveyor system

was limited to approximately 40" to ensure that the camera's coverage was restricted to one object at a

time using the existing programmable logic controller's time delay. As lighting contributes to visual

sensing, the recording was made in an industrial work setting to reduce lighting effects after

development.

 The data consist of twenty (20) object categories of the torque converter units, including the dampers,

stators, housing, impellers, turbine, pressure plates and a whole torque converter system. The twenty

(20) object classes corresponding to each object under consideration are Damper1, Damper1, Damper3,

Housing1, Housing2, Housing3, Impeller1, Impeller2, Impeller3, PressurePT1, PressurePT2, Reman1,

Reman2, Reman3, Stator1, Stator2, Stator3, Turbine1, Turbine2, Turbine3. The sample mini-batch is

shown in Figure 42, which highlights a single batch of 16 images read by the model during training.

The mini-batches were read until all the samples were taken into the model to complete the single

epoch and afterwards repeated until the total epochs were covered.

Figure 42 One batch of the original torque converter samples used to train the model

150

5.3 Model Parameters / Hyperparameters and Modification

The architectural modification for the CNN model used for the inspection application is necessary to

adapt the developed model to perform component inspection in remanufacturing. The modified

architecture used in the experiment is described in Table , highlighting the number of filters used in the

input, hidden, and output layers of the model alongside the expected number of inputs and outputs

specified as the target in the output (SoftMax) layer. The architecture consists of four convolutional

layers of filter sizes 64, 48, 36 and 20 and two fully-connected layers of 512 and 20 filters. The number

of model parameters amounts to 1,792,908 learnable parameters, which approximates 1.8 million

parameters learnable during training. The architectural modifications and the calculations are outlined

in Table , showing the shape modifications as the model learns the patterns in the data alongside the

total number of parameters learned at each stage of the transformation.

Table 5.1 Model architecture optimised for the sorting application

Layer Type Output shape Activation size Parameters

Input

(None, 52,52,3) 8112 0

Conv2D (None, 52,52,64) 173056 1792

Activation (Swish) (None, 52,52,64) 173056 0

Conv2D (None, 52,52,48) 129792 27696

Activation (Swish) (None, 52,52,48) 129792 0

Maxpooling (None, 26,26,48) 32448 0

Dropout (None, 26,26,48) 32448 0

Conv2D (None, 26,26,36) 24336 15588

Activation (Swish) (None, 26,26,36) 24336 0

Conv2D (None, 26,26,20) 13520 6500

Activation (Swish) (None, 26,26,20) 13520 0

Maxpooling (None, 13,13,20) 3380 0

Dropout (None, 13,13,20) 3380 0

Flatten (None, 3380) 3380 0

Dense (None, 512) 512 1731072

Activation (Swish) (None, 512) 512 0

Dropout (None, 512) 512 0

Dense (None, 20) 20 10260

Activation (SoftMax) (None, 20) 20 0

Consequently, like the original architecture, the width 𝒎, the height 𝒏, the number of filters in the

previous layer 𝒅, the bias term 𝒃 and the number of filters in the current layer under consideration 𝒌, all

contribute to estimating the number of parameters in the model. The number of parameters 𝑷 of the

model is obtained using the kernel size of [3,3], which represents 𝒎,𝒏, channels in input 𝒅 =3, and

current layer 𝒌 = 64 [352]. The layer-specific parameters of the model are obtained using equation 4.12

as follows.

𝑃 = ((𝑚 ∗ 𝑛 ∗ 𝑑) + 1) ∗ 𝑘

151

𝐿𝑎𝑦𝑒𝑟 1 = ((3 ∗ 3 ∗ 3) + 1) ∗ 64 = 1792

𝐿𝑎𝑦𝑒𝑟 2 = ((3 ∗ 3 ∗ 64) + 1) ∗ 48 = 27696

𝐿𝑎𝑦𝑒𝑟 3 = ((3 ∗ 3 ∗ 48) + 1) ∗ 36 = 15588

𝐿𝑎𝑦𝑒𝑟 4 = ((3 ∗ 3 ∗ 36) + 1) ∗ 20 = 6500

However, the fully connected are modified to suit the data for the remanufacturing sorting application

with twenty classes; therefore, the layer parameters are determined using the activation size of the

model using the relationship of equation 4.13.

𝑃 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∗ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝐿𝑎𝑦𝑒𝑟 5 = 512 ∗ 3380 + 512 = 1731072

𝐿𝑎𝑦𝑒𝑟 6 = 20 ∗ 512 + 20 = 10260

 The total number of parameters becomes the sum of the respective layer parameters of the model,

giving the 1,792,908 parameters. The overall architecture for implementing the deep learning inspection

application in remanufacturing is attached as Appendix 2B.

5.4 Experiment and Model Training

Adapting the developed model for sorting in remanufacturing involves the modification of the

developed architecture to suit the data for the sorting application. The data consist of twenty (20)

categories of 3578 images per class, making up the 71560 images, helpful in evaluating the adaption of

the developed model to achieve automated component sorting during remanufacturing. Besides, the

developed model is a multilayer architecture consisting of filters and other components useful for

learning patterns in each data. A supervised learning approach is used to train the model, where data

and labels are required to train the models.

The training process is similar to the other applications where the model incorporates an optimiser that

updates the model parameters, a scoring function that compares the predictions and true values and a

metric to assess the performance, thereby obtaining the model's optimal weight and bias parameters

after multiple iterations over the train set. These model layers must be compiled before the training is

initiated. The compilation is achievable using compile method in Keras, which builds the model and is

ready for training. The training process optimises the weight parameters that enhance the model's

performance using the model hyperparameters outlined in Table 4..1, after which the model is saved for

future inference after training. In addition, the model incorporates an AdaMax optimiser, a categorical

cross-entropy loss, and the accuracy metric used to score the model's performance. Similarly, a 25%

dropout is applied to the first fully-connected layers and a 50% dropout to the last fully-connected

layers to minimise overfitting during training.

152

5.6 Results and Discussions

The evaluation involves performing predictions using the serialised model weights, passing the unseen

test data and labels to the model, and evaluating the performance. The evaluation was performed across

two stages: the test set and the live feed from a connected camera to return the number of correctly

classified images. The evaluation results outline that the model features achieved high performance.

The model's training results in Figure 43 show that the accuracy peaked just after the 10th epoch and

maintained high performance over the 50 epochs used to train the model; however, the performance

was slightly degraded. Nevertheless, the sorting model accuracy of 99.99% was obtained during

training alongside a validation accuracy of 100%. Moreover, the model loss obtained was negligible

since the model's training, and validation losses were almost zero after the 40th epoch, supporting the

model's high prediction results.

Figure 43 Sorting model training and validation responses

The misclassification of the researcher developed model prediction adapted for the sorting application

is given by

𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑀 = 1 − 0.9999 = 0.0001

Conversely, the sorting misclassification of 0.01% obtained from the model predictions suggests that the

model successfully sorted the Torque Converter components into categories.

Moreover, inference involves making predictions on a model using the serialised model weights.

Finally, the model inference step includes passing the unseen data on the model to evaluate its

generalisation ability. The test output was visualised using the confusion matrix in Figure 44, showing

no misclassification in the sorting application, justifying the model's high prediction accuracy and low

misclassification result.

153

Figure 44 Sorting model confusion matrix.

Moreover, the inference from the connected camera focuses on a conveyor carrying the cleaned end-of-

life products ready for the post-cleaning inspection, where the components are automatically identified

and sorted into different classes using the model and the connected camera. The online testing helped

visualise the model's predictions in real time, as shown in Figure 45. The codes to load the serialised

model weights and make prediction was started, and the corresponding results from the live video feed

were observed and recorded. As a result, the model accurately sorted the respective torque converter

components into categories. A cross-section of the online sorting predictions is shown.

154

 Figure 45 Sorting model predictions result from single-camera inputs

Nonetheless, the model can be incorporated primarily into both the pre-disassembly and post-

disassembly inspection stages, where products are mixed during the reverse logistics and cleaning

processes, prompting the need for an automated sorting process. The developed deep learning-based

sorting system becomes a handy technology to automatically assess the product conditions and classify

them into similar products.

155

Moreover, like every other data-hungry model, the sorting application requires a significant amount of

training data, representing a challenge for applying CNN models for sorting in remanufacturing.

Furthermore, the datasets used to train the models cannot contain all defects available by default for the

industrial application under investigation, making holistic generalisation unreasonable. However, other

authors have identified these similar limitations in using the CNN models in other industrial

applications like Agriculture [363].

5.7 Modelling Process Control in Remanufacturing Using Deep Learning

The modelling approach for the process control application is developed as a binary classification

problem that performs a classification as positive or negative for the respective classes. The binary

classification differs from the multiclass problems modelled for the other applications, including the

model's loss function and the output. These parameter modifications are performed on the learning

algorithm before training and evaluating the model. The process control application is modelled as a

supervised learning problem using labelled data.

5.7.1 Process Control Application and Data

The investigation of the use of DCNN for automated sorting in remanufacturing consists of an object

recognition system that aims to identify objects in the video stream. These identified objects are

afterwards used to trigger the actuation system to control a pressure valve to dry the cleaned torque

converter units. The process control technique can be adopted for post-cleaning and pre-disassembly

process control during or after remanufacturing. The existing process control techniques have been

discussed extensively in Section 3.12.3 alongside the limitations of the existing methods. Finally, the

development of the deep CNN-based process control system for remanufacturing applications is

presented.

The process control application considers the torque converter system components recorded during this

research. In addition, the experiment investigates the possibility of detecting wet surfaces after EoL

product cleaning. The distance between the camera and the objects on the conveyor system was limited

to approximately 40" to ensure that the camera's coverage was restricted to one object at a time using

the existing programmable logic controller's time delay. As lighting contributes to visual sensing, the

recording was made in an industrial work setting to reduce lighting effects after development.

 The data consist of two (2) object categories of the torque converter units, including the wet and dry

samples of the torque converter system. The two (2) object classes corresponding to each object under

consideration are Wet and Dry. These labels helped identify and highlight the model predictions after

training.

156

5.8 Model Components, Hyperparameters and Modification

The architectural modification for the CNN model used for the inspection application is necessary to

adapt the developed model to perform process control in remanufacturing. The modified architecture

used in the experiment is described as follows in Table 5.2, which highlights the number of filters used

in the input, hidden, and output layers of the model, the expected number of inputs and outputs

specified as the target in the output (Sigmoid) layer and the scoring function. The architecture consists

of four convolutional layers of filter sizes 16, 16, 8 and 8, one fully-connected layer of size 512 and a

dense filter. The architecture has a total of 697,761 parameters, all trainable parameters obtained by

modifying the number of filters and the output layer, alongside monitoring the performance of the

developed model.

Table 5.2 Model architecture optimised for the process control application

Layer Type Output shape Activation size Parameters

Input

(None, 52,52,3) 8112 0

Conv2D (None, 52,52,16) 43264 448

Activation (Swish) (None, 52,52,16) 43264 0

Conv2D (None, 52,52,16) 43264 2320

Activation (Swish) (None, 52,52,16) 43264 0

Maxpooling (None, 26,26,16) 10816 0

Dropout (None, 26,26,16) 10816 0

Conv2D (None, 26,26,8) 5408 1160

Activation (Swish) (None, 26,26,8) 5408 0

Conv2D (None, 26,26,8) 5408 584

Activation (Swish) (None, 26,26,8) 5408 0

Maxpooling (None, 13,13,8) 1352 0

Dropout (None, 13,13,8) 1352 0

Flatten (None, 1352) 1352 0

Dense (None, 512) 512 692736

Activation (Swish) (None, 512) 512 0

Dropout (None, 512) 512 0

Dense (None, 1) 1 513

Activation (Sigmoid) (None, 1) 1 0

Besides, like in the original architecture, the width 𝒎, the height 𝒏, the number of filters in the previous

layer 𝒅, the bias 𝒃 and the number of filters in the current layer under consideration 𝒌 helped estimate

the model's number of parameters. The number of parameters 𝑷 of the model is obtained using the

kernel size of [3,3], which represents 𝒎,𝒏, channels in input 𝒅 =3, bias term 𝒃 = 1, and current layer

𝒌 = 16 [352]. The model parameters are obtained using the relationship of equation 4.12 as follows

𝑃 = ((𝑚 ∗ 𝑛 ∗ 𝑑) + 𝑏) ∗ 𝑘

𝐿𝑎𝑦𝑒𝑟 1 = ((3 ∗ 3 ∗ 3) + 1) ∗ 16 = 448

𝐿𝑎𝑦𝑒𝑟 2 = ((3 ∗ 3 ∗ 16) + 1) ∗ 16 = 2320

157

𝐿𝑎𝑦𝑒𝑟 3 = ((3 ∗ 3 ∗ 16) + 1) ∗ 8 = 1160

𝐿𝑎𝑦𝑒𝑟 4 = ((3 ∗ 3 ∗ 8) + 1) ∗ 8 = 584

Nevertheless, the fully connected are modified to suit the data for the process control application to suit

the suit classes used in the investigation; therefore, the layer parameters are determined using the

activation size of the model using the relationship of equation 4.13.

𝑃 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∗ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝐿𝑎𝑦𝑒𝑟 5 = 512 ∗ 1352 + 512 = 692736

𝐿𝑎𝑦𝑒𝑟 6 = 1 ∗ 512 + 1 = 513

The total number of parameters becomes the sum of the respective layer parameters of the model,

giving 697,761 parameters. The other model parameters and hyperparameters useful for the training are

outlined in Table 5.3. The most significant modification in the hyperparameters was the loss function

and output activation. The binary cross-entropy loss scoring function was used alongside the Sigmoid

squashing function at the output required for the two-class input data.

 Table 5.3 Model components and hyperparameters

(Hyper)parameters Value

Batch size 16

Epochs 50

Learning rate 0.005

Dropout 0.25/0.5

Activation Swish and Sigmoid

Loss Binary-crossentropy

Optimiser AdaMax

Metric Accuracy

The overall model architecture for implementing the deep learning inspection application in

remanufacturing is attached as Appendix 2C.

5.9 Experiment and Model Training

Adapting the developed model for process control in remanufacturing involves the modification of the

developed architecture to suit the data for the sorting application. The data consist of two (2) categories

of 7156 images per class, making up the 14312 images, helpful in evaluating the adaption of the

developed model to achieve automated process control during remanufacturing. The developed model

is a multilayer architecture consisting of filters, convolutional and pooling layers, helpful in learning

patterns in each data. A supervised learning approach is used to train the model, where data and labels

are required to train the models. The model data was partitioned such that each class contained either

the dry or wet samples. The test samples are loaded with the flow_from_directory function, which uses

an alphabetical order to assign each class, making the class labels 0 for dry and 1 for wet samples. The

158

test images are loaded at first and then resized to 52 x 52 x 3, which is the size of the inputs used to

train the model.

The training process incorporates an optimiser that updates the model's parameters, a loss function that

compares the predictions and actual values and a metric to assess the performance, thereby obtaining

the model's best weight and bias parameters after multiple iterations over the training set. First, the

model is compiled using the Keras build function before training. Next, the training process adjusts the

weight parameters of the model using the model hyperparameters outlined in Table 5.3 until the

specified epochs are complete, after which the model is serialised and saved for future inference after

training. In addition, the model incorporates an AdaMax optimiser, a binary cross-entropy loss, and the

accuracy metric used to score the model's performance. Besides, the dropout of 25% and 50% were

applied to the model's first and final fully-connected layers to minimise overfitting.

Conversely, the model evaluation involves making predictions using the serialised model weights and

testing the unseen data alongside predicting from connected camera sensor data. The serialised weights

are loaded and used for classifying the wet and dry samples. However, the adapted process control

application's performance was evaluated. As a result, the model produced final training and validation

accuracies of 99.98% and 100%, respectively, while classifying the wet and dry components. The high

prediction accuracy highlights that the model performed impressively on the test data. Furthermore, the

high validation accuracy suggests that the model generalised well on unseen data, which is essential for

deploying the developed model in real-time.

Consequently, Figure 46 shows that the model's training and validation errors are comparatively low.

Moreover, towards the end of the training, the model produced approximately zero loss justifying the

excellent performance. The validation and training errors are almost equal, highlighting a low bias and

low variance in predicting the classes under investigation.

Figure 46 Model training results using the process control data

Nevertheless, the misclassification rate of the researcher developed model prediction adapted for process

control is given by

159

𝑀 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑀 = 1 − 0.9998 = 0.0002

Overall, the model produced a minimal misclassification error of 0.02% on the process control data

used in the first stage of the evaluation. These results further support that the model can achieve process

control in remanufacturing, thereby attaining holistic process automation.

5.10 Results and Discussion

The method of adapting the deep learning techniques for process control in remanufacturing is

investigated in the application. The researcher developed deep convolutional neural network model for

recognising objects for process control to identify and classify wet parts that require the pressurised

drying system to activate and dry the component. As a result, the process control application recognised

various torque converter components, including dry and wet ones, with very high accuracy and used the

results to control the valve for drying the components.

Conversely, the model prediction visualisation using OpenCV, a computer vision library, helped

evaluate the performance of the developed model for process control during remanufacturing. First, the

serialised weights are loaded and used to predict the inputs from the connected camera. Then, the model

predictions were performed, with the predictions displayed using custom texts that show the predicted

class. The text was also adjusted in position, colour, and size and inserted in the algorithm to show the

predicted class around the top area in the original image. Besides, the inspection model predictions

from the connected camera's live video feed highlight the model's performance, with some of the

respective class predictions shown in Figure 47.

160

 Figure 47 Cross-section of the model predictions from connected camera

5.11 Chapter Summary

This chapter outlined the process of adapting the developed deep learning model to achieve an

automated sorting and process control in remanufacturing alongside evaluating the model performance

using deep convolutional neural networks. The results highlight that the products and components for

remanufacturing were successfully sorted into different categories using the developed model,

suggesting that deep learning models can achieve automated visual sorting in remanufacturing. Besides,

the model was also successfully adapted to remanufacturing process control and tested using the torque

converter components. Finally, the chapter has successfully addressed research questions (Q4) by

applying the newly developed model to the remanufacturing process control and sorting applications,

automating the processes (Q2) and providing the benefit of process improvement.

161

 CHAPTER SIX

 QUANTITATIVE ANALYSIS AND INDUSTRY FEEDBACK

6.0 Introduction

This chapter evaluates the cross-case analysis of the various parameters of the developed models to

assess and understand the model performance alongside addressing the research question Q3. Chapter 2

presented various reviews and summaries of different model parameters, including activation function,

optimisation, batch normalisation, and other model regularisation methods to improve model

performance and generalisation. The effect of these parameters on the different process data used to

model the respective remanufacturing processes is evaluated. Furthermore, it highlights the research

validation and verification exercises performed, which are a series of processes to assess the reliability

and accuracy of computational models. Chapters 4 and 5 outlined the various deep learning models for

remanufacturing sorting, inspection, and process control applications.

Besides, the analysis of the single-domain models highlights that the learning algorithm's performance

and the classifier's performance are two broad approaches to testing classifier models [331]. This

research analysis extends from the experimental design of the research. An experiment is "a carefully

worked-out and executed plan for data collection and analysis" [364]. A properly designed experiment

allows for the inference of causations. The plan for the model analysis is structured to consider vital

parameters of the algorithm that can be analysed from the model to improve performance. The

overview of the performances adapts the proposed taxonomy of statistical questions, as shown in Figure

48, which outlines the crucial questions that general learning models focus on [331]. These vital

questions are structured from the model hyperparameter, which helps make critical decisions.

Figure 48.1 Adapted Model analysis approach for comparing predictive classification tasks [331]

It is worth outlining that both single and multiple domains consider similar questions; however, the

specific applications make the difference. Unlike the single domains where the intense focus is to

design an algorithm or classifier that can perform well in a particular task like the remanufacturing

Model

Single domain

Analyse
classifier

Chose between
classifiers

Compare the
different

classifiers

Predict
classifier
accuracy

Analyse
algorithms

Choose between
algorithms

Compare VGGNet,
and new model

Predict
algorithm
accuracy

Multiple
domains

162

inspection, sorting, or process control tasks. The analysis of the single-domain models focuses on either

of the following [331]:

• Performance of the learning algorithm

• Performance of the classifier

The developed algorithm's analysis focuses on the model's hyperparameters to support decisions made

in the design and enhance understanding of the model. Besides, it is essential to highlight that the

analysed models fall into single-domain applications that require algorithm modifications to work on

different domains where necessary.

6.1 Analysis of the Learning Algorithm

The analysis of the developed model is performed to evaluate the model's performance. Researchers

suggest that classification models require a minimal statistical analysis if there is enough data to

accommodate keeping a test set out of the training set during training [331]. This approach changes the

model design focus from providing statistical hypotheses to focusing on the model-specific parameters

to evaluate the performance. The performance of the newly developed learning algorithm is evaluated

and presented based on the crucial parameters that affect the performance of these models. The

evaluation of the VGGNet used to explore the initial model is not considered because the VGGNet

model was tested and optimised during development before they were released; therefore, altering the

internal components of those architectures creates another new model that requires optimisation. This

hyperparameter optimisation aims to achieve optimal performance from the model. The code tree for

the model analysis is shown in Appendix 1B.

Nevertheless, the effect of different parameters and hyperparameters of the neural network has been

evaluated by other researchers; however, the empirical investigation of the performance of CNN and

RNN models when the architectural designs are modified validates that there are substantial

performance fluctuations when changes in the number of hidden layers, batch size, and learning rate of

a given model, thereby highlighting the need to consider these factors when designing the

computational models [365].

6.2 Model Hyperparameters

The deep learning model hyperparameters are variables predefined before training a given deep

learning model. These hyperparameters constrain the model to fit the provided data and are passed as

arguments to the constructor used in the model estimators. The nature of model hyperparameters is also

vital for determining how they are used. There are continuous, discrete, and categorical

hyperparameters. The discrete hyperparameters are valuable for evaluating the number of estimators in

ensemble learning models. Conversely, the categorical helps to implement model regularisation and

loss functions while the continuous help to determine the penalisation coefficient and the number of

sample splits. The nature of model hyperparameters effectively outlines the intervals of parameter

search during the investigation. Moreover, the most significant tuning considerations include the total

163

number of model parameters, the nature, the available computational resource, and the low effective

dimensions. The low effective dimension avoids searching the hyperparameter spaces where the model

performances do not increase.

Moreover, there are different methods of hyperparameter search optimisation, including manual search,

grid search, random search, and Bayesian search, among others [366]. The manual search is an initial

technique for finding the model parameters that produce a near-optimal performance. It provides an

intuition of the vital area to focus the parameter search and the initial values for the grid search method.

The manual search helps familiarise model hyperparameters and their effects while setting up a

benchmark comparison model before optimisation. However, the manual search is often limited

because it is time-consuming and lacks reproducibility due to the undocumented random combination

of parameters at the initial testing stage. In addition, it does not explore the entire hyperparameter space

or scale because a small part of the model parameters was used in the manual search.

Conversely, the various hyperparameters that describe the CNN models are outlined in Table 6.16.1,

which make up the model architecture. These model parameters include the number of layers, dropout

rate, optimisation technique, number of neurons per layer, activation functions, loss models, batch sizes,

epochs, learning rate, verbose, output metrics, etc. Model parameter choices involve deciding the

appropriate design configurations to achieve the research aims and objectives. The individual decisions

at the design stage include the model architecture, activations, pooling and regularisation techniques,

optimisation, and the frameworks to use. The model development considers these hyperparameters used

to control the model performance.

 Table 6.1 Model parameter and hyperparameter definitions

(Hyper)Parameters Function

Layers Layers describe the model topology of the given architecture.

Batch size Number of samples to pass to the model at a given time

Epochs Number of times to present samples to the model

Verbose Debug parameters are used to control the display on the shell screen.

Learning rate The parameter that controls the minimum step size that the model uses for

moving toward a minimum loss

Dropout A technique to drop node units randomly during training.

Optimiser Process of finding the parameters that give the minimum or maximum output

Loss The loss defines the objectives on what performance is evaluated

Metrics The parameter used to determine the model performance include accuracy,

error rate, false positive rate etc

However, an identified challenge of learning models is the heuristic nature of finding the

hyperparameters since there are no specific formulas to obtain the best model parameters. Therefore,

164

the choice of the number of hyperparameter combinations to test is critical. The higher the number of

combinations, the better the performance at the cost of the improved computational burden. However, a

cautious approach to increasing the parameters can lead to non-improved performances when the model

capacity is reached.

6.2.1 Model Initialisation

Model initialisation is essential when training deep convolutional neural network models from scratch.

This is because it helps to ensure the model parameters do not vanish during training, often referred to

as a vanishing gradient, which results when specific model parameters are so small to propagate to the

output layer of the model. Instead, the initialisation ensures that model parameters are kept within

ranges during the entire training process using the variance of the distribution. Moreover, three

experiments were performed on the sorting and inspection application datasets to evaluate the

repeatability effects on different tests. The researcher-developed model was used, and the effect of both

the Gorot and He initialisations methods were evaluated for both uniform and normal distributions. The

uniform distribution has a constant probability of occurrence and the normal distribution; usually, a

Gaussian distribution has zero mean and standard deviation of 1. Figure 2 shows the plots of the effect

of initialisation methods. The results highlight a correlation between the model losses reducing across

the four initialisation methods and the accuracy increasing across the four methods.

Furthermore, the two-inspection data produced identical performance on model loss and accuracy;

however, the sorting application produced a slightly downgraded performance compared to the

inspection applications. Moreover, these performances highlight that model initialisation slightly

impacts the performance after training the designed architecture, although the two mainly used deep

learning initialisation methods were considered. However, the He uniform initialisation works best on

the architecture as it achieved very high accuracy and obtained the most negligible loss.

165

 Figure 6.2 Effect of weight initialisation on performance: at the top - inspection I, middle - inspection II,

 bottom - sorting.

Furthermore, the He initialisation works better for both the uniform and normal distributions of weights

used in the model evaluation, with the Gorot's normal initialisation producing the worst performance.

On the other hand, the He uniform initialisation achieved the best performance on the sorting and

inspection I data. In addition, it obtained the highest prediction accuracy and lowest loss, attaining

166

significant results in the inspection II application. This result informs the choice of He uniform

initialisation as the default initialisation of the architectures used in the research.

6.2.2 Selection of Batch Size

Batch training is a model regularisation method that enhances performance. The batch size is a mini-

batch of training samples that make up a training batch, and it represents the number of samples read by

the model per iteration before updating the model weights parameters. The batch size ensures that the

computer's memory is not overwhelmed by the total samples passed at any given time during training,

thereby maximising the use of the system memory. It also impacts the training speed as the larger

batches increase training speed in contrast to the smaller batch sizes, causing an increase in training

time. The stochastic gradient descent with parameters 𝜃 considers the model training as a non-convex

optimisation problem that corresponds to the loss minimisation 𝐿(𝜃) with respect to the parameter 𝜃

where the loss is defined as the average loss per training example 𝐿𝑖(𝜃) over the entire training

examples. The model loss is given by

𝐿(𝜃) =
1

𝑚
 ∑𝐿𝑖(𝜃)

𝑚

𝑖=0

Where 𝑚 = size of the training set. The batch size significantly affects the generalisation of a deep

learning model alongside the training time, as tiny batch sizes increase the overall training time. The

effect of batch size on the network's performance has been investigated by researchers with notable

performances outlining that the batch size improves performance for more effective learning rates while

lower learning rates produce good performances on smaller batch sizes [367].

The effect of the batch size on the three applications was evaluated. The results highlight the smaller

batch sizes seem to perform well across the applications, with the batch size of 16 samples producing

the best performances, as outlined in Figure . Besides the batch size of 16 representing the number of

iterations to run one epoch for the 70% of the datasets used for the model training is given by

The number of iterations per epoch for the first inspection application is
20037

16
 = 1252 iterations /epoch.

The number of iterations per epoch for the sorting application is
50092

16
 = 3130 iterations/epoch.

The number of iterations per epoch for the second inspection application is
20160

16
 = 1260 iterations/

epoch. These iterations are completed before any model weight updates during training. This batch size

was chosen and fixed in the training of the final models.

167

Figure 6.3 Effect of batch size on performance: top - inspection I, middle - inspection II, bottom - sorting.

However, the results suggest that the smaller batch sizes obtain better performance to attain peak

accuracy alongside the least losses during training, highlighting that smaller batch sizes enhance

optimal performance, with the larger batch sizes showing poor performance. However, balancing the

speed and accuracy informs the choice of a batch size of 16 as it achieved comparable loss and

accuracy to the smallest batch size.

168

6.2.3 Effect of Batch Normalisation on Model Performance

The batch normalisation aims to improve the training speed of the model by normalising the activations

of the given input volume before propagating to the subsequent layers. The batch normalisation has

been discussed in detail in Section 3.11.5, and It considers the mini-batch of the activations 𝑍(𝑖)as the

input feature map, to produce a normalised output as follows

𝑍𝑛𝑜𝑟𝑚
(𝑖)

=
𝑍(𝑖) − 𝜇

√𝜎2 − 𝜖

Where 𝑍𝑛𝑜𝑟𝑚
(𝑖)

 = normalised feature-map, 𝜖 = numerical stability constant usually set to 0.001. These

features are controlled by the mean (𝜇) and variance (𝜎) of the mini-batch feature map obtained using

the relationships

𝜇 =
1

𝑛
 ∑ 𝑍(𝑖)𝑖 , 𝜎 =

1

𝑛
 ∑ 𝑍(𝑖)𝑖 − 𝜇

However, the value of these selected parameters is of reasonable concern to the designer as significant

computations cause numerical instability; thereby, the need to normalise the data becomes paramount.

Normalisation entails scaling the values of the network weights to range between 0 and 1 or between -1

to 1. It is achieved by dividing every pixel in an image by 255, the maximum obtainable number of

pixels. Normalisation makes the learning process seamless when we train the model.

A plot comparing the effect of batch normalisation on the model performance highlights that a slight

prediction accuracy improvement is achieved across the three applications but is not very significant, as

outlined in Figure 49.

169

Figure 49 Effect of batch-normalisation on performance: top - inspection I, middle - inspection II, bottom - sorting.

6.2.4 Selection of Activation Function

The activation functions are vital parameters of deep convolutional neural network models. These

functions convert the linear parameters of the model to non-linear parameters for further propagation to

the subsequent layers, thereby ensuring that there are no dead neurons during training. The different

activation functions have been reviewed in detail in section 3.11.2.4. However, the selection of the most

appropriate activation function for the model was evaluated in this section. Exploring the different

activations in the model helps select the most appropriate function for the designed architecture to attain

optimal performance. The six selected activations were part of the principal identified functions used in

deep learning research.

170

Nevertheless, investigating and plotting the six considered activations, including ReLU, Swish,

Softsign, Softplus, ELU, and Selu, highlights that these functions compete significantly against each

other except for the Softplus function, whose accuracy and loss responses were poorer than the other

five activations. In addition, the ReLU, ELU, Selu, Swish and Softsign performed remarkably well;

however, some functions produced slightly better performances, as shown in Figure 50. Moreover, the

Swish function produced the best performance, with the highest prediction accuracy across the three

datasets and the most negligible loss after training, thereby supporting the findings that the Swish is an

emerging activation used in deep learning research [234]. Therefore, the Swish function was chosen as

the activation function used in the researcher-designed architecture's hidden layers.

Figure 50 Effect of activations on performance: top - inspection I, middle - inspection II, bottom - sorting.

171

Perhaps, any activations that achieve peak performance at obtaining the most negligible loss and peak

accuracy in the fastest possible time is the candidate for ideal activation, and the function selected was

based on these vital performance benchmarks.

6.2.5 Selection of Learning Rate

The effect of the learning rate in the training of various learning algorithms is significant to achieving

an optimal model. The learning rate helps the designer achieve a model that does not overfit or underfit

the training data while converging to a local minimum, often called the best accuracy. The effect of

these learning rates is best observed on the learning curves where an ideal learning rate achieves the

least loss and the best accuracy during the neural network model training. In contrast, a high learning

rate produces a model with a very high loss, and a low learning rate creates a model that takes a very

long time to converge if it converges. The pictorial view of the effect of these learning rates is shown in

Figure 51.

 Figure 51 Effects of learning rates adapted from [257]

Moreover, the training process involves the backpropagation of the gradient of the loss function with

respect to the model's weights and, afterwards, updating these weights with respect to the learning rate

using the relationship.

𝑊1
′ = 𝑊1 − 𝜎

𝜕𝜄

𝜕𝑊1

Where 𝑊1
′ = new weight, 𝑊1 = original weights, 𝜎 = learning rate, and 𝜕𝜄 = loss function. The

learning rate determines the decrease applied to the weight parameters during training and controls how

long it takes to complete the training. Moreover, since the most important goal of model training is to

obtain the best weights that produce the least losses, thereby minimising the model's error rate, it is

important to evaluate the learning rate that would produce a high-performing model after training.

The heuristic process of selecting the learning rate for the model considered five learning rates obtained

from a range of recommended rates from deep learning practitioners, ranging from 0.001 to 0.00001.

The evaluation of these rates on the model data highlights that the lowest learning of 0.00001 requires a

very long training time for convergence. At the same time, the highest rate of 0.1 also did not produce

the most optimal performance, suggesting that the model did not reach the global minimum during

training with the highest rate, as shown in the training response of Figure 52.

172

Figure 52 Effect of learning rate on performance: top - inspection I, middle - inspection II, bottom - sorting.

However, comparing the other four learning rates highlights that the rate of 0.005 was the most optimal

learning rate, producing the lowest model loss after training. Furthermore, the model prediction

accuracy comparison also justifies that the learning rate of 0.005 was the most optimal rate to achieve

the highest accuracy at the quickest time at approximately five epochs, thereby choosing the model

learning rate of 0.005 for the training of the subsequent models.

6.2.6 Selection of Optimisation Techniques

The effect of the optimisation method on the model's accuracy is outlined for different optimisation

methods used in deep learning applications to evaluate the model performance. The different optimisers

173

considered in the model include SGD, Adam, AdaMax, RMSProp, AdaGrad, and AdaDelta optimisers,

among the outlined optimisers in Section 3.10.4.

Furthermore, the results highlight that the Adam and AdaMax functions achieved peaked performances

early during training and maintained high accuracy until the end. Besides, the SGD and AdaGrad were

quick and attained peak accuracy in less than five epochs, maintaining Adam's exact performance level.

However, the Adagrad proved to have the slowest convergence and requires a longer time to achieve

optimal loss and accuracy than the other optimisers. The overall performance of the optimiser is

depicted in Figure 53.

Figure 53 Effect of optimisers on performance: top - inspection I, middle - inspection II, bottom - sorting.

174

Similarly, the effect of the optimisation on the model loss is similar to the training accuracy. Moreover,

training losses are inversely related to training accuracy; the larger the value of the models' loss, the

lesser the accuracy of the model's predictions and the more work required to improve the model

performance. The loss response suggests that the learning is progressive on all the optimisers as the

losses consistently decrease; however, the Adagrad function produced the highest loss, suggesting that

the optimiser is not performing well on the architecture. Perhaps, from the results, the most appropriate

optimiser is the Adam family. The AdaMax function was selected as the optimiser for the developed

CNN architecture and used in subsequent applications as it performed better than the original Adam on

the architecture.

Finally, other model parameters evaluated during the investigation include the loss function, dropout,

augmentation and shuffling. The dropout was added to the hidden layers to reduce overfitting, while the

different augmentation methods added to the training data include zoom, flipping, and rotation.

However, the augmentation introduced various effects that the fixed camera could not capture during

data collection. The augmentation ensures that the model generalises well on unseen data during testing.

Similarly, a shuffle effect was added to the training examples to ensure the randomness of the data

during model training. The shuffle and augmentation together enhance the model generalisation.

6.3 Evaluating the Model Layers

The evaluation of the model layers is another analysis performed to ascertain that the developed model

is suitable for the modelled tasks. The evaluation of the state-of-the-art VGGNet alongside the

researcher developed models was studied to understand how the deep learning architectures derive the

architectural patterns. Visualising the model learning across the five blocks of convolutional layers of

the VGGNet architectures highlights learning patterns using deep architectures. The comparison of the

state-of-the-art model with the researcher's developed model was performed to visualise the differences

and similarities, especially since the VGGNet model has over 14 million learnable parameters

compared to the 1.423 million learnable parameters in the researcher's developed model.

Moreover, the evaluation involves feeding the VGGNet model with an input image of the same

dimension used to train the model, with the model's output taken from the model's respective hidden

layers. The outputs of the five convolutional block layers of the VGGNet model were obtained as

follows.

175

Figure 54 VGGNet Layer 1 block visualisation

Figure 55 VGGNet Layer 2 block visualisation

Figure 561 VGGNet Layer 3 block visualisation

Figure 6.12 VGGNet Layer 4 block visualisation

176

 Figure 573 VGGNet Layer 5 block visualisation

Hence, it is evident that the initial hidden layers act as edge detectors from Figure 54.9. The second

hidden layer in Figure 55 obtained even more refined features than the first hidden layer. Perhaps, the

third hidden layer has the least human-recognisable features in the images, as shown in Figure 56.11.

The deeper hidden layers of Figure .12 and 6.13 have low-level features that can not be distinguishable

by the human eyes.

Conversely, the outputs of the four hidden layers of the researcher developed model were also obtained

to evaluate the performance of the hidden layer filters. The first hidden layer produced almost a replica

of the VGGNet initial hidden layer output, as outlined in Figure 586.14. The other hidden layers also

had similar features extracted and combined in Figure 596.15 and Figure 606.16 to obtain the final

outputs shown in Figure 6.17. The model uses these rich features to understand the patterns in unseen

examples.

Figure 58 Layer 1 of the researcher developed model

177

Figure 595 Layer 2 of the researcher developed model

Figure 60 Layer 3 of the researcher developed model

Figure 6.17 Layer 4 of the researcher developed model

The visualisation from both models highlights that the initial layers of the convolutional neural

networks are similar to edge detectors that capture fine details about the objects. In contrast, the last

178

layers are usually dark sheds of grey, which are unrecognisable by humans. Besides, the details in the

hidden layers diminish as the depth of the model increases; however, the model learns these

abstractions to better reconstruct the inputs during classification, thereby making it robust to identify

and perform classification on unseen inputs. Lastly, the darker sheds found in the last layers of the

models are inhibitory weights in the learned features. In contrast, the white square sheds represent the

excited weights of the models and highlight that the researcher developed model successfully learned

the patterns in the data, which is helpful to achieve high classification accuracy.

6.4 Model Confirmatory Test

The developed model's analysis is presented, including the compilation of the predictive results of the

developed classifier, the training from scratch and transfer learning on the VGGNet architecture.

Finally, the confirmatory test is presented to evaluate and relate the model's performance using the

Kappa coefficient, which removes the possibility of the model predictions and random guesses agreeing

alongside measuring the number of predictions that random guesses cannot explain.

The Kappa coefficient or statistic is a chance standardised and corrected measure of agreement between

categorical scores produced by two raters and is valuable for representing agreements between raters on

categorical variables. The Kappa statistic lies between 1 and −1, with 1 representing complete

agreement and 0 or lower meaning chance agreement [368]. After removing the chance agreement, the

Kappa coefficient represents the proportion of agreement between two observers. It is usually a scale

proportion of each category used in the model.

The contingency table of the model prediction is used to obtain the parameters of the kappa coefficient,

used to evaluate and obtain the Kappa coefficient. For a table consisting of 𝑁 subjects assigned

independently to one of the k-categories by two separate raters, with 𝑝𝑖𝑗 representing the portions of

subjects that Rater I classified in category 𝑖 and Rater II, classified as j, and 𝑖, 𝑗 = 1,2,… , 𝑘. The

proportion of 𝑝𝑖 and 𝑝.𝑗 are the frequencies of assignment into categories 𝑖 and 𝑗, respectively for the

Raters I and II. Perhaps, where the inputs to the contingency table are probabilities, the respective Rater

category frequencies sum to one, as shown in Table 6.2.

 Table 6.2 Contingency table showing the Rater prediction probabilities

Rater II

Rater I 1 2 ⋯ k Total

1 𝑝11 𝑝12 ⋯ 𝑝1𝑘 𝑝1

2 𝑝21 𝑝22 ⋯ 𝑝2𝑘 𝑝2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

k 𝑝𝑘1 𝑝𝑘2 ⋯ 𝑝𝑘𝑘 𝑝𝑘

Total 𝑝.1 𝑝.2 ⋯ 𝑝.𝑘 1

Nevertheless, the diagonal proportions 𝑝𝑖𝑖 represents the portion of the subjects that both Raters I and

II predictions agreed on the assignment. The overall proportion of the observed agreement is given by

179

𝑝𝑜 = ∑ 𝑝𝑖𝑖
𝑘

𝑖=1

Furthermore, the overall expected agreement by chance is given by

𝑝𝑒 = ∑ 𝑝𝑖.𝑝𝑖
𝑘

𝑖=1

The overall Kappa coefficient measures the degree of rater agreement and is obtained as follows

𝐾 =
𝑃𝑜− 𝑃𝑒

1− 𝑃𝑒
 =

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

where the 𝑝𝑜 is the observed proportion on which observers agree, 𝑝𝑒 is the proportion of observation

where agreement is expected by chance, 𝑝𝑜 − 𝑝𝑒 is the proportion of agreement expected beyond

chance, and 1 − 𝑝𝑒 is the maximum possible agreement beyond by chance expectation [369].

Furthermore, this analysis of the model predictions highlights the patterns within the predictions. It also

compares the agreement of the model's prediction to the ground truth (reality) to validate that the high

prediction accuracy was correct.

The rationale for using the Kappa coefficient is that Kappa relates the predictions of two raters

comparable to the model ground truth and the predictions, thereby making Kappa useful in the model

confirmatory tests. Besides, the developed model and evaluation data meet the vital criteria for

evaluating models using Kappa, including having a sample size of over one hundred, as outlined by

researchers [370]. Finally, it is worth outlining that the contingency table requires conversion to the

confusion matrix in supervised classification problems.

6.4.1 Transfer Learning

The VGGNet model transfer learning results outlined that the model predictions were 99.72% accurate;

however, the evaluation of the prediction using the model statistics is considered to confirm the

performance. The VGGNet model results shown using the confusion matrix visualisation in Figure 6.18

highlight the model's performance on the inspection data.

180

Figure 6.18 VGG model prediction visualisation using the confusion matrix

Conversely, from the model predictions confusion matrix, the overall proportion of the observed

agreement of the transfer learning model is given by

𝑝𝑜 = ∑ 𝑝𝑖𝑖
𝑘
𝑖=1 = 1097+1023+1063+1113+1102+1075+1097+1046 =8616/8640

𝑝𝑜 = 0.9972

Also, the overall expected agreement by chance is given by

𝑝𝑒 = ∑ 𝑝𝑖.𝑝𝑖
𝑘

𝑖=1

𝑝𝑒 = 0.127 ∗ 0.128 + 0.118 ∗ 0.12 + 0.123 ∗ 0.123 + 0.129 ∗ 0.131 + 0.128 ∗ 0.128 + 0.124

∗ 0.124 + 0.127 ∗ 0.128 + 0.121 ∗ 0.121

𝑝𝑒 = 0.016 + 0.014 + 0.015 + 0.017 + 0.016 + 0.015 + 0.016 + 0.015

The expected agreement by chance is 𝑝𝑒 = 0.125

Hence, substituting the obtained expected agreement and expected agreement by chance, the Kappa

coefficient becomes 𝐾 =
𝑃𝑜− 𝑃𝑒

1− 𝑃𝑒
 =

0.9972−0.125

1−0.125
 = 0.99.68

The Kappa coefficient of 0.9968 obtained from the model predictions highlights a significant agreement

between the predictions and reality, validating that the model's performance is not by chance. The

evaluation of Kappa is shown in Table 6.3.

181

Table 6.3 Evaluation of Kappa coefficient for the transfer learning model.

 Nodef CF PF RF RnC PnC PnR PnRnC Sum 1 Pi=s

Nodef 1097 0 0 5 0 0 0 0 1102 0.128

CF 0 1023 0 10 0 0 0 2 1035 0.12

PF 0 0 1063 0 0 0 0 0 1063 0.123

RF 0 0 0 1113 0 0 0 0 1113 0.129

RnC 0 0 0 0 1102 0 0 0 1102 0.128

PnC 0 0 0 0 0 1075 0 0 1075 0.124

PnR 2 0 0 4 0 0 1097 0 1103 0.128

PnRnC 0 0 0 1 0 0 0 1046 1047 0.121

Sum 2 1099 1023 1063 1133 1102 1075 1099 1046 8640

p.i 0.127 0.118 0.123 0.131 0.128 0.124 0.127 0.121

Moreover, Table 6.3 shows that the classifier's predictions agree with the ground truth up to 99.72%,

with the remaining 0.28% being by chance in percentage terms by deduction. This is because the Kappa

agreement factor is the same as the accuracy of the model predictions in simple terms for balanced

classification problems. A Kappa of less than zero means that the model is worse than chance and is a

rare case when evaluating a model.

6.4.2 Training from Scratch Results

The results obtained from training the VGGNet from the scratch outline that the model performed

excellently. It is due to the rich architectural make-up of the VGGNet model, having many more hidden

layers in the architecture. Enabling the training of the hidden layers enhanced feature learning from the

data, with the effect outlined as improved model performance and visible in the model confusion matrix

of Figure .

182

Figure 6.19 Model prediction visualisation for the training from scratch using the confusion matrix

However, in the model predictions confusion matrix of Figure .19, the overall proportion of the

observed agreement of the researcher developed model is given by

𝑝𝑜 = ∑ 𝑝𝑖𝑖
𝑘
𝑖=1 = 1102+1035+1063+1113+1102+1075+1103+1047 =8640/8640

𝑝𝑜 = 1

Also, the model's overall expected agreement by chance is given by

𝑝𝑒 = 0.122 ∗ 0.122 + 0.1198 ∗ 0.1198 + 0.123 ∗ 0.123 + 0.1288 ∗ 0.1288 + 0.1276 ∗ 0.1275

+ 0.1244 ∗ 0.1244 + 0.1277 ∗ 0.1277 + 0.1212 ∗ 0.1212

𝑝𝑒 = 0.0163 + 0.0144 + 0.0151 + 0.0166 + 0.0163 + 0.0155 + 0.0163 + 0.0147

The expected agreement by chance is 𝑝𝑒 = 0.1251

Similarly, substituting the obtained expected agreement and expected agreement by chance, the Kappa

coefficient becomes 𝐾 =
𝑃𝑜− 𝑃𝑒

1− 𝑃𝑒
 =

1−0.1251

1−0.125
 = 1

The Kappa coefficient of 1 obtained from training the model from scratch predictions outlines a perfect

agreement between the model predictions and the reality, thereby suggesting that the model's

performance is not by chance. The result also shows an improved performance compared to the pre-

trained model. The evaluation of the Kappa coefficient from training the model from scratch is shown

in Table 6.4.

183

 Table 6.4 Evaluation of Kappa coefficient for the VGGNet models training from scratch

 Nodef CF PF RF RnC PnC PnR PnRnC Sum 1 Pi

Nodef 1102 0 0 0 0 0 0 0 1102 0.1275

CF 0 1035 0 0 0 0 0 0 1035 0.1198

PF 0 0 1063 0 0 0 0 0 1063 0.1230

RF 0 0 0 1113 0 0 0 0 1113 0.1288

RnC 0 0 0 0 1102 0 0 0 1102 0.1276

PnC 0 0 0 0 0 1075 0 0 1075 0.1244

PnR 0 0 0 0 0 0 1103 0 1103 0.1277

PnRnC 0 0 0 0 0 0 0 1047 1047 0.1212

Sum 2 1102 1035 1063 1133 1102 1075 1103 1047 8640

p.i 0.1276 0.1198 0.1230 0.1288 0.1276 0.1244 0.1277 0.1212

6.4.3 Developed Model Results

The training time factor was not included as a metric for performance evaluation because the usability

of the model was the most important factor considered. The ability of the model to replicate the inputs

is vital and informs the decisions made during the design and testing of the models presented in this

chapter.

Figure 61.20 Developed model prediction visualisation using the confusion matrix

184

Nonetheless, from the model predictions confusion matrix in Figure 6.20, the overall proportion of the

observed agreement of the researcher developed model is given by

𝑝𝑜 = ∑ 𝑝𝑖𝑖
𝑘
𝑖=1 = 1054+1079+1051+1087+1098+1105+1090+1076 =8639/8640

𝑝𝑜 = 0.9999

Therefore, the overall expected agreement by chance is given by

𝑝𝑒 = 0.122 ∗ 0.122 + 0.1249 ∗ 0.1248 + 0.1216 ∗ 0.1216 + 0.1258 ∗ 0.1258 + 0.1271 ∗ 0.1271

+ 0.1279 ∗ 0.1279 + 0.1262 ∗ 0.1263 + 0.1245 ∗ 0.1245

𝑝𝑒 = 0.0149 + 0.0156 + 0.0148 + 0.0158 + 0.0162 + 0.0164 + 0.0159 + 0.0155

The expected agreement by chance is 𝑝𝑒 = 0.125

Similarly, substituting the obtained expected agreement and expected agreement by chance, the Kappa

coefficient becomes 𝐾 =
𝑃𝑜− 𝑃𝑒

1− 𝑃𝑒
 =

0.9999−0.125

1−0.125
 = 0.9998

The Kappa coefficient of 0.9998 obtained from the model predictions outlines a total agreement

between the model predictions and reality, further validating that the model's performance is not by

chance. The evaluation of the Kappa coefficient for the researcher developed model is depicted in

 Table 6.5.

 Table 6.5 Evaluation of the Kappa coefficient for the developed model

 Nodef CF PF RF RnC PnC PnR PnRnC Sum 1 Pi

Nodef 1054 0 0 0 0 0 0 0 1054 0.1220

CF 0 1078 0 0 0 0 0 0 1078 0.1248

PF 0 0 1051 0 0 0 0 0 1051 0.1216

RF 0 0 0 1087 0 0 0 0 1087 0.1258

RnC 0 0 0 0 1098 0 0 0 1098 0.1271

PnC 0 0 0 0 0 1105 0 0 1105 0.1279

PnR 0 1 0 0 0 0 1090 0 1091 0.1263

PnRnC 0 0 0 0 0 0 0 1076 1076 0.1245

Sum 2 1054 1078 1051 1087 1098 1105 1090 1076 8640

p.i 0.1220 0.1249 0.1216 0.1258 0.1271 0.1279 0.1262 0.1245

A cross-case deduction to evaluate the model's performance across the three datasets highlights that the

developed model is comparable to the state-of-the-art model in performance even with a less

complicated architecture, providing a robust and faster computational model for remanufacturing

applications. Hence, the prediction results from the three remanufacturing applications validate that the

developed model performs comparably to the state-of-the-art models on the selected applications.

185

6.5 Cost Benefit Analysis

The cost of remanufacturing refers to the overall cost of achieving product or part remanufacturing. It is

a total cost comprising pre-production, production, and overhead costs. These costs are combined to

produce the overall remanufacturing cost [371]. Besides, the overall remanufacturing cost includes

reverse engineering, data processing, setup, deposit, grinding, administration’ machine maintenance,

and other overhead costs. It is difficult to holistically support the cost-benefit estimation since most

factors are inherent in manual and automated remanufacturing. Based on the above research proposition

[371], the criterion eliminates the pre-production and overhead costs, leaving the remanufacturing

production cost for further evaluation towards estimating the cost-benefit of the model and other non-

quantifiable costs through the automation.

Moreover, the composition of these costs differs and depends on the processes involved in

remanufacturing a given product. The cost-benefit estimation considers only the required modification

of the existing remanufacturing cell to achieve automation for inspection, sorting and process control

applications. The reported cost-benefit analysis helps evaluate the benefits of adopting the deep learning

approach to automate remanufacturing processes. However, the cost-benefit analysis is unsuitable for

this research because of the difficulties in quantifying the dollar cost of the benefits alongside

predicting all the potential risks involved in remanufacturing, impacts and customer satisfaction.

6.5.1 Cost Benefit Justification.

The justification for exploring other methods of quantifying the impacts of automation remanufacturing

is obtainable using the problem selection matrix, a vital tool for evaluating and selecting the best option

between various choices. The problem selection matrix is often referred to as the Pugh matrix, decision

matrix, grid analysis, decision grid and multi-attribute utility theory.

Nevertheless, the decision to automate the remanufacturing or not can be justified using the problem

selection matrix considering six critical factors to support automating or not automating the

remanufacturing processes investigated in the research. These vital factors include the quality of

products, cost, exposure impact, especially the risk of accidents due to manual operations, time savings,

the environmental impact of additional pollution from the new machines added for automation, and

customer satisfaction. The problem selection matrix for the justification is outlined in Table 6.6.

Table 6.6 Cost-benefit problem selection matrix

 Quality Cost Exposure

impact
Time

savings
Environmental

impact
Customer

satisfaction
Automate

No-automation

Furthermore, by rating the factors on a scale of 1 to 5, where five is the best and one is the least, the

research results are translated as follows:

• Automation provides consistent quality of products (5), a more expensive process (2),

with minimal exposure to the risk of work accidents (4). It also offers better time savings (4),

186

increased environmental pollution due to more energy requirements (2) and finally, better

customer satisfaction as product remanufacturing is performed faster (4).

• No-automation provides less consistent quality of products due to poorer inspection (3),

less expensive (4), high exposure to the risk of accidents working with slippery Eol products

(2), taking longer time (2), and less additional environmental pollution (3). Finally, lesser

customer satisfaction as product remanufacturing takes longer (3).

These criteria and their rankings are outlined in Table 6.7 as follows.

Table 6.7 Factor ranking for automation and no-automation

 Quality Cost Exposure

impact

Time

savings

Environmental

impact

Customer

satisfaction

Automate 5 2 4 4 2 4

No-automation 3 4 2 2 3 3

However, since some factors are deemed more critical, practitioners are mainly concerned with cost

before other factors since most of them are third-party remanufacturers, while customers are concerned

with quality. Therefore, a weighted score was helpful to estimate the potential impact of the various

factors considered, not possible to evaluate in dollar terms to decide the better option to pursue.

Table 6.8 Weighted factor ranking for automation and no-automation

 Quality Cost Exposure

impact

Time

savings

Environmental

impact

Customer

satisfaction

Score

Weights 7 6 4 3 2 5 -

Automate 35 12 16 12 4 20 97

No-automation 21 24 8 6 6 25 90

Finally, the weighted score is obtained, which emphasizes the more essential considerations, helping to

select the best option. The highest total score obtained gives the best option to adopt. From Table 6.8, it

is evident that the benefit of automating the remanufacturing processes outweighs the no-automation

option, thereby supporting the decision to automate remanufacturing processes using deep learning

algorithms.

6.6 Basis for Testing Research Success

The basis for testing the research success is categorised into two sections to highlight the distinctness of

the academic and practitioner needs of the study. First, academics assess the quality and credibility of

the research based on crucial elements, the rigorous method of gathering high-quality data, analysis,

and the credibility of the researcher, including training, status and presentation of self alongside the

philosophical beliefs, including inductive analysis and holistic thinking among others [372]. This

academic validity is achieved by collecting and analysing the data for two different inspection

applications of deep learning models in remanufacturing described in Chapter 4 to achieve data

triangulation. A synthesis of these applications was evaluated to identify the similarities and differences

and how the different models affect the results, providing academic validity.

187

On the other hand, the research domain discussed in Section 2.5.3 outlines the research domain as

production and operation management, which tries to bridge the gap between the theory of operations

management and practices [56], [57]. The practitioner's needs are evaluated using the validation-by-

review approach. This validation provides a platform to test the usefulness of research in the industry

and highlight the practical relevance, with POM researchers suggesting practitioners as the frame of

reference [373]. To consider practitioners as a reference, the authors outlined practitioners' vital needs,

summarised in five key categories: descriptive relevance, goal relevance, operational validity, non-

obviousness, and timeliness. The following explains the implications of the five needs of practitioners,

namely:

• Descriptive relevance - Is the modelling approach a sufficient representation of the inspection,

sorting and process control processes?

• Goal relevance - Is the model applicable to the stakeholders?

• Operational validity - Is the model presented so practitioners and academics can operate and use

it?

• Timeliness - Is the model available when remanufacturers need them?

• Non-obviousness - Is the model a new knowledge or simple, common-sense knowledge available

to practitioners?

6.7 Model Research Validation

The developed deep learning models for the various remanufacturing applications have had the model

validation included at the design stage using a train test split, which is helpful to keep some parts of the

data for testing. In contrast, the remaining are used for training and validation during training. The test

set, usually referred to as the hold-out set in some literature, is used to assess the model generalisation

on unseen data, which is the vital aim of model evaluation. However, the samples used in the research

are not probabilistic; researchers suggest that statistical inference is not the appropriate method to

generalise the results; instead, other techniques of generalising the results should be explored [54].

Moreover, Section 6.6 above outlines that research validation tests the researcher's quality and

credibility, which helps to generalise the research findings. The validation compares the respective

applications of deep learning models in remanufacturing on the similarities, differences, and methods

affecting the results presented in Chapter 4, where two different inspection data were evaluated. This

comparison is vital to achieve result generalisation and support the academic validations obtained from

the review process during the review of the publication process of the respective chapters.

 Table 9 shows the model parameters for the individual application of deep learning

models in remanufacturing.

188

 Table 6.9 Model data components and parameter outline

Process Data type Number of

classes

Number of

Images

Number of images

per class

Number of

inputs

Number of

outputs

Sorting Images 20 71560 3578 20 20

Inspection I Images 8 28800 3600 8 8

Inspection II Images 8 28624 3578 8 8

Process control Images 2 14312 7156 2 1

Furthermore, Table 6.9 shows that the deep convolutional neural network model used in the

investigation is similar in a great sense but requires slight architectural modifications at the input and

output layers.

The control over the model's input solely depends on the new application. At the same time, the output

depends on the design's expectations, where the desired outcome is coded into the model as observed in

the sorting and process control applications that were evaluated using the same model. Besides, it is

also evident that the respective applications have different input-output variables representing the

individual application needs. Besides, the sorting model requires twenty categories, the two inspection

applications require eight categories, and the process control requires only two input-output variables.

6.7.1 Experimental Validation

The experimental validation of the model considers the data triangulation approach, where multiple data

sources were useful to evaluate the model's performance. The developed model considers the model

accuracy and loss as two dependent variables, while the number of epochs was used as the independent

variable. The other dependent variables used in the evaluations are the model's parameters that control

its performance, including the type of optimisation, activation function, batch sizes, dropout, batch

normalisation, and others. These parameters comparison provides the basis for the validation to infer

the generalisability of the developed model.

Conversely, the architectural design parameters analysis presented in Chapter 7 outlines that the model

parameters used in the respective applications performed relatively well across the various model

parameters. However, the metric for evaluating the classification problem is predominantly the

classification accuracy and loss, and these parameters were used to assess the data triangulation.

Moreover, the results highlight that the training from scratch obtained the best accuracy while transfer

learning and the researcher-developed model progressively obtained high accuracy, highlighting that

the developed model performs comparatively to the state-of-the-art VGGNet model on the test

applications, as shown in Figure 62. The VGG and VGGS represent transfer learning and training from

scratch.

189

Figure 621 Comparison of the three models' final training accuracy

Consequently, a comparison of the final model losses shown in Figure 63 outlines that the VGGNet

transfer learning (VGG) produced the highest model loss of the three models, confirming the poorer

prediction accuracy obtained from using the VGGNet transfer learning modelling method. Besides, the

training of the VGGNet model from scratch produced the lowest loss from the compared models,

thereby suggesting that the training from scratch has over-capacity for the data, with the newly

developed model producing a higher training loss compared to the VGGNet from Scratch. (VGGS).

Figure 63 Comparison of the three models' final training losses

Finally, comparing the model's performance on the different datasets against vital model parameters

suggests that the deep learning algorithms have successfully modelled the respective remanufacturing

applications. The subsequent applications attest that the model can generalise alongside being adaptable

to other remanufacturing-based applications.

190

6.8 Industry Feedback

Industry feedback is another type of validation on its merit. It is a "process of determining the degree to

which a model is an accurate representation of the real world from the perspective of the intended uses

of the model" [374]. These user inputs come from the remanufacturing practitioners, and the validation

technique adopted is the modelling-validation process, where model building and model validation are

integrated into a single operation. The main goal of the validation process is to improve the model

quality and, most importantly, to highlight the model's key components that need improvement and

outline the specific stages of the model that has reached the predetermined benchmarks [375]. The

modelling-validation process consists of four vital interrelated components: the problem statement,

conceptual model, formal model, and solution, outlined in Figure 64.

Figure 64 Model validation

The problem case refers to the poor productivity of remanufacturing processes and systems, leading to

operational dissatisfaction with the performance. On the other hand, the conceptual model represents

the developed mental picture of the problem investigated and the value judgement from both the

decision-makers and model developers. For example, the conceptual model shown in Figure 6.24

describes the problem approach, the elements that would be excluded or included, and the level of

aggregation. These components are captured in the problem or process under investigation before data

collection, analysis and deployment.

Figure 6.24 The conceptual model design

Moreover, the model proposed conceptual solution must first satisfy the design's conceptual validity,

which refers to the relevance of the theories and assumptions underlying the conceptual model for the

problem case. Finally, the problem is modelled to comprise the relationships and elements judged

relevant by the end-users and conform to the available techniques and tools.

Conceptua
l model

Formal
model

Proposed
solution

Problem
statement

Process
(Problem)

Data
collection

Data
preprocessing

Choose
/Design
model

Train
model

Evaluate
model

Deploy
model

(Solution)

191

Besides, another vital requirement the conceptual model must satisfy includes the model's logical and

data validity. Logical validity refers to the ability of the formal model to correctly and accurately

describe the problems described by the conceptual model. It also relates the correctness of the

translation from the conceptual model to a formal model, and it is primarily dependent on the

translation language, which is the computational algorithms. This translation aims to maintain a faithful

transfer of the critical elements of the process into the model and the verification of these vital elements

enhances the logical validity. By contrast, data validity refers to the accuracy, sufficiency,

appropriateness, and availability of the data within acceptable cost limits. The assessment of the

difficulties involved in collecting and processing the process data and resolving the challenges

alongside their impact are vital components of data validity.

Nonetheless, the formal model refers to translating the conceptual model into mathematical models for

further investigation to obtain solutions useful for effective decision-making. Therefore, the formal

model shown in Figure 6.29 must also meet the experimental validity requirements of the design.

Moreover, experimental validity refers to the efficiency and quality of the proposed solution [375], and

it highlights the efficiency of obtaining the desired solutions sensitive to changes in model parameters.

Finally, the solution is the output of the model validation process that forms the basis for

recommending an answer to one of the problems under consideration. Therefore, it is expected to meet

the operational validity goals, which refer to the users' ability to implement the theory's action

implications by operating the independent variables.

Besides, the model-validation process involves multiple validation stages that include conceptual,

logical, experimental, operational, and data validation, which requires the model developer to have

reasonable knowledge and understanding of the acceptable levels of model validity [375]. These

multiple validations are detailed in Figure 6.25.

192

Figure 6.25 Adapted Model validation Process [375]

6.8.1 Model Validation Protocol

The validation adopts the questionnaire tool, a vital research tool for gathering primary data from

respondents. It consists of a series of standardised questions for obtaining the same information from a

group of individuals [44]. The available data from the questionnaires include awareness or knowledge,

attributes, experiences, attitudes, and opinions from the practitioner's point of view. This feedback

validates the model's effectiveness by confirming that each aspect attains the predetermined benchmark

and highlighting possible areas for improvement through better modelling [375]. The Likert scale was

chosen to obtain participants' feedback because it allows for degrees of opinion, either in agreement or

disagreement, thereby aiding the analysis of the various views of evaluators on a piece of given

information [376].

Generally, the design of questionnaires adopts two common types of questions; open-ended and close-

ended question methods as outlined by researchers [45]. The kind of questionnaire to use provides

specific advantages during analysis. The design uses the close-ended question approach to obtain the

practitioner's feedback on questions that would help answer the validation questions, including data,

experimental, logical, conceptual, and operational validity. These questions were combined in random

order to obtain the validation protocol used in the research. Figure 6.26 shows the Industry feedback

(validation) protocol used in the study.

Conceptual

model

Formal

Model

Problem

statement

Solution

Data

Validity

Experimental

validity

Operational

validity

Conceptual

validity

Logical

validity

193

 Figure 6.26 Industry feedback protocol

194

6.8.2 Industry Feedback Process

The validation plan was planned through email communication to Mackie Transmission Limited to

arrange the day for the evaluation and discussion of the model performance and the expectations during

the validation. The validation took place at the host company facility due to the tight schedules and loss

of personal hours if the exercise was scheduled outside the facility.

Figure 6.27 The industry feedback process

Activity Outcome

Model testing.

• To assess the correctness of the design

• To assess the performance accuracy

• To assess the usefulness

• Generalise the ability of the

model to perform the desired

tasks.

Individual block assessment to evaluate the validity and

sufficiency of the model diagrams.

• Examine the conceptual model

• Examine the actual model

• Examine the computational model

• Obtain clarity, sufficiency

and accuracy of the model

designs.

Model enhancement

• To include the recommended amendments

• To assess the performance accuracy

• To assess the usefulness

• Validated model

Deep learning model description and demonstration.

• Ensure that participants understand the

modelling approach and assumptions

• Improve understanding of deep

learning modelling approach.

• Documentation and information

required to undertake the

validation

Distribution of validation document

• Have the validation documents

• Understand the requirements from them

• Understand how to use the document

195

6.8.3 The Industry Validation Exercise

The validation exercise started with the author presenting the model design considerations obtained

from the challenges identified from the literature and process observations to the five-person focus

group of remanufacturing practitioners that work at Mackie transmission Limited. Next, the conceptual

design, model, and actual design were presented before testing the developed model. The practitioners

were also allowed to ask questions for further clarification, and afterwards, the questionnaires were

issued. The author outlined the purpose of the questionnaires and described the methods of proper

completion. The author allowed the practitioners to complete the questionnaires without bias and email

the feedback to the author. Finally, the practitioners completed the questionnaires as a focus group and

returned consensus feedback interpreted in the subsequent sections.

The questionnaire feedback sheet contained thirty-five questions used to record the participant feedback

on using deep learning algorithms for modelling remanufacturing inspection, sorting and process

control applications alongside a space for additional comments. The feedback assesses the model in

three vital criteria for suitability, clarity and sufficiency. This process involves asking the participants

the same question in different words about the model to assess their understanding. The last question

was an empty comment box for the participants to document any additional information they wished to

add. Once the feedback sheets were completed and returned, the data from the validation exercise were

collated and used to improve the model. The completed feedback sheets are contained in Appendix 1.

6.9 Results of Model Validation

The validation feedback focus group believed that the model design described by the research

accurately represents the remanufacturing inspection, sorting, and process control applications

alongside the minor details involved in achieving the processes. This is highlighted by the information

given in the validation feedback in Appendix 1. Besides, the focus group also agreed that the model

presents new techniques to enhance the remanufacturing sorting, inspection and process control, and the

modelling finds practical applications in remanufacturing.

Conversely, the sufficiency of the data for modelling the processes provided some conflicting feedback

as the focus group outlined a moderately high acceptance that the data was sufficient for the use cases

but were not sure if the variety of data was enough to generalise to other remanufacturing processes by

giving an average or neutral support. However, they further suggested that more data was required to

generalise the implementations. This is because of the other remanufacturing processes have not been

explored. Therefore, more research is needed to accept the models as an efficient method of improving

the other remanufacturing processes aside from the considered applications.

Besides, the focus group provided moderately high support for the experimental model development

and setup for data collection; however, they outlined their concerns about the fixed camera blind spot

and the cost of deploying these models as it could be expensive for smaller remanufacturing companies,

constituting a vital limitation to adoption. This concern is not unexpected as the company is not very

196

large to invest in such a technology. However, they unanimously agreed that the modelling approach is

a recent technological advancement and serves as a solution to vital remanufacturing challenges.

6.10 Alterations to Enhance Clarity

The proposed alteration to the actual design included a manipulator (robot) fitted with end effectors to

grip and flip components for the camera to capture the camera blind spot, indicated by the two upward

arrows in Figure 6.2. This approach enhances the 360 degrees inspection since the model incorporated a

single fixed camera during testing.

 Figure 6.28 Identified camera blind spot for improvement

This alteration was necessary for the fixed camera to inspect the parts of the products placed directly on

the conveyor to ascertain the product surface conditions in those underlying areas. The modified design

approach is shown in Figure 6.29.

Model

Visual
sensors

Data
preprocessor

Output
metrics

Delay
Transport

system

Output

Next
 stages

Control

Model
weights

Inbound
Products

Transport
system

Manipulator

Figure 6.29 Formal model

6.11 Modelling Inspection, Sorting and Process Control in Remanufacturing

Before the validation exercise, the participants were unaware of deep learning modelling. However,

they found the model approach understandable after the introductory presentation and modelling

conception, design, testing and discussions about the final model. The researcher believed that clarity of

the model was vital; however, the technical nature of their jobs is also contributory, as the designs were

represented using different levels of block diagrams. The practitioner's opinion outlines that deep

Component under inspection

Conveyor

197

learning-based modelling was adequate for modelling the inspection, sorting and process control

applications in remanufacturing.

These opinions were interpreted from the feedback received during the validation. The questionnaire

results were converted from the 7-scale Likert of 1 to 7 to verbal interpretations. The lowest rank

corresponds to the strongly disagreed inputs, and the highest represents the strongly agreed inputs. The

respective windows with these verbal interpretations are shown in Table 6.10.

The window of each input is obtained as

𝑤𝑖𝑛𝑑𝑜𝑤 =
𝑟𝑎𝑛𝑔𝑒

𝑚𝑎𝑥
=
7 − 1

7
= 0.86

The window range helps to categorise the feedback into a scale that can be easily interpreted using

verbal interpretation.

Table 6.10 Interpretation of the Likert scale feedback

Scale 1 2 3 4 5 6 7

Range 1.0 - 1.86 1.87 -2.72 2.73 - 3.58 3.59 - 4.44 4.45 - 5.3 5.31 - 6.16 6.17 - 7.0

Response Strongly

Disagree

Disagree Somewhat

Disagree

Neural Somewhat

Agree

Agree Strongly

Agree

Verbal

Interpretation

Very

low

Low Moderately

low

Average Moderately

high

High Very

high

6.11.1 Descriptive Relevance

The descriptive relevance describes the accuracy of the research findings in expressing the phenomena

witnessed by practitioners. The validation feedback outlines that the developed deep learning models

sufficiently represent the sorting, process control and inspection process in remanufacturing and,

therefore, could help describe the processes. The feedback that "the design is an accurate representation

of the sorting, inspection and process control applications" received moderately high and high support

for the model's representation of the processes. Also, the exact opposite of the question "the design does

not correctly represent the remanufacturing inspection, sorting and process control" received holistic

moderate low feedback across all the applications. Conversely, the practitioners outlined that the model

omitted some essential design considerations to achieve a holistic view of the components during the

inspection. Despite the minor improvement recommended by the practitioners to improve the

robustness of the developed model, they felt that it did not constitute a significant error in the design.

The suggested alteration is described in Section 6.10 alongside the author's improved amendments.

These responses highlight that the practitioners believe that the modelling approach brings potential and

generalisable methods that could enhance various process scenarios in remanufacturing.

198

Furthermore, the practitioners have a moderately high belief that the modelling approach is a recent

technological advancement and represents a solution to vital remanufacturing challenges, thereby

outlining that the model sufficiently presents crucial answers to some of their challenges. Overall, the

deep learning models offer a new and practical approach to addressing remanufacturing inspection,

sorting, and process control automation challenges, thereby enhancing productivity and efficiency.

6.11.2 Goal Relevance

Goal relevance refers to how relevant the model would be to the stakeholders. The stakeholders include

everyone that has an interest in the research. Thomas (1979), cited in [373], outlined that research is

helpful to practitioners if only research outcomes correspond to practitioners' concerns. It makes a case

for the immediate applicability of the study, an essential component for the research to be valid.

Nevertheless, the practitioners believed that the deep learning modelling approach is an effective

technique to enhance efficiency in remanufacturing as the feedback outlines a moderately high

agreement to three of the questions on the model's usefulness. Furthermore, the practitioners also have a

high agreement that "the model represents a suitable solution to vital challenges in remanufacturing",

"the implication of the model can be useful to improve remanufacturing decision-making", and

provided moderately low support that the model is not helpful to remanufacturing practitioners,

confirming that the model can contribute significantly in automating various processes in

remanufacturing. Finally, the practitioners also provided average support that the design will improve

the overall remanufacturing efficiency.

Nevertheless, the practitioners also supported averagely that the modelling approach to inspection,

sorting and process control is not applicable but can be helpful in the future. This feedback is not out of

place for the case-study company as it is a small private establishment with a strict budget for

technological expansion. The lack of funds was evidenced by their high agreement that "the cost of the

model implementation outweighs the benefits", alongside their profound concern that "the model is

expensive to set up and represents a barrier to entry", suggesting that they might not be willing to invest

in the technology at present.

Overall, the practitioner's feedback across the five questions on the model's usefulness highlights that

they have a moderately high understanding of the usefulness and benefits of the developed models in

remanufacturing.

6.11.3 Operational Validity

Operational validity refers to the ease of practitioners using the new knowledge, and it outlines the

ability of practitioners to understand alongside the ease of manipulating the developed models after

development. The validation feedback sheet suggests that the practitioners misunderstood the

operational validity questions. For example, the first question about the model adaptation, "the

design/model approach could be adapted to other processes with ease," received a moderately high

199

agreement alongside the practical use of the model, "the model works well in practical terms", which

they provided an average agreement.

However, the practitioner feedback highlights their concerns about ease of implementation and usage

when deployed, as they provided a moderately low agreement to the questions that relate to the usage

and performance, including that "the model looks promising and easy to implement" and "practitioners

can use the design/model with ease". In addition, they provided an average agreement that the model is

too complicated to use in the remanufacturing sector. These feedbacks suggest that they are unclear

about the model's parameters to modify when exploring new tasks and the requirements for the model

deployment. This feedback is an obvious expectation because the author performed every requirement

for setup and deployment before the validation, with the practitioners only available to see the

demonstration and feedback on the outcomes. However, it also highlights the need for some domain

knowledge to develop and deploy deep learning-based models that require additional modification for

adaptation in other processes.

Overall, the practitioner feedback highlights that they understood the new knowledge produced by the

deep learning-based modelling technique in remanufacturing.

6.11.4 Timeliness

Timeliness refers to the availability of the theory in times of need by practitioners to deal with their

challenges [373]. The fact that new knowledge takes time to adopt is a common trend; however, the

deep learning model's applicability and adoption were already found in various implementations in

remanufacturing through this study, thereby making the model ready for deployment.

Moreover, the practitioners highlighted that these models present current solutions to their everyday

challenges. They gave an overwhelming high agreement to the question that "the model is useful to the

remanufacturing sector in the present time". They also provided average support that the model

addresses the current practitioner needs through the question "the proposed solution approach addresses

the current practitioner needs", suggesting that they agree that the model can resolve some of their

automation challenges.

These responses outline that the practitioners appreciate the potential of deploying the deep learning

models in remanufacturing, thereby validating that the proposed modelling approach can benefit

remanufacturing practitioners in enhancing their productivity.

6.11.5 Non-obviousness

Non-obviousness refers to how a theory meets or exceeds practitioners' common sense of knowledge.

For example, the practitioners were not familiar with deep learning modelling techniques before the

research, suggesting they were not likely to consider using the model to automate parts of the process in

their remanufacturing process. However, the validation feedback highlights a high agreement of the

200

practitioners that the modelling method, presentation and discussions outlined new ways of automating

sorting, inspection and process control in remanufacturing, thereby enhancing the process efficiency.

Hence, the practitioners disagreed that the model does not present anything new to the remanufacturing

sector, highlighting the contributions of the research was significant and beyond their common-sense

knowledge.

6.12 Chapter Summary

This chapter presented the analysis of the critical factors considered while selecting the parameters used

in the developed algorithm alongside the performance of the developed model, including the type of

initialisation, batch size, batch normalisation, activation, activations, loss functions, and optimisation

techniques, among others. In addition, the chapter evaluated the learning process across each of the

model layers for proper understanding. It also presented the developed model confirmatory test using

the Kappa coefficient to highlight that the model performs and achieves component inspection, sorting

and process control in remanufacturing, enhancing performance and productivity. The chapter further

outlined the cost-benefit analysis of the developed model alongside the research industry feedback

methods used to meet the different needs of the stakeholders in the research. Furthermore, the data

triangulation validation helped evaluate the understanding of the use of deep learning models in

remanufacturing alongside generalisability. Overall, the industry feedback highlights the practitioner's

support that the developed models have the potential to enhance remanufacturing productivity and

efficiency.

201

 CHAPTER SEVEN: CONCLUSION

7.0 Introduction

Research has identified remanufacturing as a highly complex process that lacks effective techniques,

tools and innovation to maximise value recovery due to the current manual processing. The manual

state of remanufacturing processing causes efficiency losses due to reduced product quality, increased

lead time and cost due to human errors, thereby requiring remanufacturers to explore techniques of

improving performance to remain competitive compared to traditional manufacturing.

Consequently, the deep learning models already described as computational algorithms used to learn

hierarchical patterns in data were explored to evaluate opportunities for improving remanufacturing

using these models. It has achieved state-of-the-art performance across different applications and has

continued to gain attention across new domains. The remanufacturing application of deep learning

models has produced significant results, suggesting that these models can find even greater applications

in remanufacturing with further investigation. The benefits of exploring deep learning-based models for

remanufacturing applications are enormous, with different remanufacturing stages having various

potential use cases.

The advantages of modelling remanufacturing processes using deep convolutional neural networks

include producing a complete and consistent performance alongside the ability to modify these models

to suit other applications with ease. The investigated use cases in remanufacturing identification,

sorting, inspection, and process control have proved to be successful in achieving automated sorting,

inspection and process control in remanufacturing [103], [143], [377], thereby enhancing the overall

efficiency of the remanufacturing process. These automated methods and algorithms guarantee

improved value recovery, reduced product cost, and reduced lead time to remanufacture end-of-life

products, providing an effective alternative to purchasing products with up to a 30% discount.

7.1 Achieving Research Objectives

The research objectives explored various methods of improving the overall remanufacturing process's

competitive advantage by analysing and developing deep convolutional neural network-based models

for automating sorting, inspection, and process control applications. These objectives were achieved

through the following activities:

• Identified the critical remanufacturing operational challenges that require automation.

• Evaluated the type of process data that could be collected.

• Evaluated if the processes could be modelled using the collected research data.

• Developed deep convolutional neural network architectures for identifying and predicting

patterns in the various remanufacturing data.

• Analysed the model results for proper inference and deductions.

202

• Validated the findings of the research using data triangulation and industry feedback.

• Articulated and published the research findings for stakeholders, including remanufacturing

practitioners and academics, to enhance understanding.

• Supported future research in deep learning modelling for remanufacturing by providing the

torque converter datasets for further investigation.

Nonetheless, the crucial questions that the research addressed include understanding the current level of

deep learning practice in remanufacturing, where the current applications of deep learning algorithms in

remanufacturing were discussed in the literature review. Besides, the understanding of the deep learning

modelling results was also enhanced through the findings from the published reviews on activation

functions and optimisation techniques for deep learning. In addition, the developed model was

investigated for the inspection of torque converter components for remanufacturing and adapted

successfully to sorting and process control remanufacturing applications with little modifications using

the different datasets for the specific application. Finally, the study supports future remanufacturing

deep learning research by providing the torque converter dataset for further investigations of deep

learning in remanufacturing.

7.2 Contributions to Knowledge and Research Originality

The research contributions to the body of knowledge are evident from the publications and conference

contributions to enhancing the understanding of deep learning models and their applications to

remanufacturing. These contributions include three (3) journal publications in Springer Journal of

Remanufacturing, Elsevier's Cleaner Engineering and Technology Journal and the Advances in Science,

Technology and Engineering Systems Journal, alongside another six (6) conference contributions,

which have attracted over one thousand one hundred (1100) citations and counting. The primary

deliverables of the research include

• A review paper on activation functions used in deep learning research supports understanding the

role of activation functions in deep learning architectures.

• A journal review paper on the optimisation techniques used in deep learning research to support

the selection and understanding of optimisers in deep learning architectures.

• A deep learning architecture for modelling various remanufacturing processes and used for

modelling inspection, sorting and process control in remanufacturing.

• A dataset to support further deep learning research in remanufacturing.

• A robust framework for achieving automated inspection for remanufacturing.

The originality of the research outlines the facts from the literature that indicates that outlines the

following contributions:

1. First, to compare various activation functions used in deep learning for further understanding.

203

2. Secondly, to provide a framework for automated inspection in remanufacturing named design

for automated inspection (DfAI).

3. Thirdly, to explore the modelling inspection, sorting and process control for the torque

converter components remanufacturing application using deep learning method.

7.3 Recommendations and Future Research

Adopting deep learning algorithms in remanufacturing is promising and requires further research to

explore other use cases. However, implementing deep learning models for automating various

remanufacturing processes can be enhanced by including at least three fixed cameras to record different

viewpoints of the objects on arrival. This approach would improve the model's accuracy for various

components and sizes. However, this research used one camera with data augmentation to achieve the

deep learning-based system for sorting, process control and inspection applications due to the cost of

obtaining multiple pieces of equipment for the project.

Nevertheless, the research also identified other potential aspects of remanufacturing that require further

investigation by using deep learning models for modelling remanufacturing processes. These include

• Extending deep learning models to evaluate sub-surface product defects requires recording data

about the product's internal properties using magnetic, ultrasonic, or eddy-current sensor systems.

This application will complement the surface defects investigated in the research to achieve a

holistic, automated inspection.

• Consider other sub-processes in remanufacturing, including disassembly, testing, and reassembly,

to leverage the success of the deep learning models to improve the overall remanufacturing

processes.

• Use historical numeric and text data from the MoL product usage information in decision-

making. The stage will be enhanced with sensor-connected devices connected through IoT to log

this product use data, improving the remanufacturing decision-making. However, as the MoL

data are not readily available, this extension requires extensive planning.

7.4 Limitations of the Research

Certain limitations encountered during this research come from different research stages. These

limitations include model development, use cases, generalisability, and integration of the developed

model after the investigation. An outline of these limitations is presented

• The main limitation of the experimental research relates to the developed CNN architecture since

the architecture has been optimised for classifying objects classes up to twenty objects. However,

adapting the developed model to large applications with hundreds of classes would not be

optimal. The performance will degrade since the number of kernels used to learn patterns in the

204

data would be so small. Therefore, subjecting the model to a more significant number of inputs

will require some modification to perform optimally.

• The use cases and generalisability were also vital since the general CNN models are data-

intensive, making the models' performance depend hugely on obtaining quality data about the

process under investigation. Since data is expensive to gather to obtain significant portions for

providing the train, test, and validation samples, thereby constituting a research limitation.

• The number of practitioners consulted during the research constitutes another limitation,

especially in accessing other forms of data for the investigation, thereby improving the use cases

alongside obtaining a broader range of practitioner feedback. This limitation affected the depth

and spread of data collected, which also impacted the generalisability and the number of

practitioner inputs received as industry feedback since the industry feedback involved the

members of staff of the host company.

• The system integration challenges include the cost of additional actuation hardware, accessories,

and set-up for the respective processes. The expenses add to the cost of achieving product

remanufacturing; however, the additional cost could be offset by the wages of hiring experts for

the jobs, thereby achieving automation while saving costs in the future.

• Finally, other operational challenges to the integration include fixing the camera at a point of

sight away from the conveyor system and achieving multi-views while capturing the data. The

challenge of viewpoint is minimised by low-level data augmentation in the model, which helps to

reduce the chances of poor generalisation, as discussed in Section 4.11.4. In addition,

augmentation could be avoided if a robot is integrated into the design to pick and rotate the

product 360 degrees while the camera captures the different viewpoints of the object. Other

challenges include the high computational cost of training the deep learning models requires

graphics processing units (GPUs). These memory units are expensive but reduce the time

required to train the model on the high-dimensional image data used in the research. However,

training cost is a single cost to cater for before deployment. It can be remedied by training the

models in the cloud using Amazon Web Services (AWS), Google Colaboratory or other cloud

computing sources for a small fraction of the cost of buying a GPU.

205

References

[1] X. Zhang, M. Zhang, H. Zhang, Z. Jiang, C. Liu, and W. Cai, “A review on energy, environment and

economic assessment in remanufacturing based on life cycle assessment method,” Jor.of Clean. Prod.,

vol. 255, p. 120160, 2020.

[2] G. D. Hatcher, W. L. Ijomah, and J. F. C. Windmill, “Design for remanufacture: A literature review

and future research needs,” Journ.of Clean. Prod., vol. 19, no. 17–18, pp. 2004–2014, 2011.

[3] T. E. Goltsos, A. A. Syntetos, and E. van der Laan, “Forecasting for remanufacturing: The effects of

serialization,” J. Oper. Manag., vol. 65, no. 5, pp. 447–467, 2019.

[4] W. L. Ijomah, “Addressing decision making for remanufacturing operations and design-for-

remanufacture,” Int. J. Sustain. Eng., vol. 2, no. 2, pp. 91–102, Jun. 2009.

[5] H.-B. Jun, J.-H. Shin, Y.-S. Kim, D. Kiritsis, and P. Xirouchakis, “A framework for RFID applications

in product lifecycle management,” Int’l Jor. Comp. Integr. Manuf., vol. 22, no. 7, pp. 595–615, 2009.

[6] T. Tolio et al., “Design, management and control of demanufacturing and remanufacturing systems,”

CIRP Ann., vol. 66, no. 2, pp. 585–609, 2017.

[7] J. Wang, S. Prakash, Y. Joshi, and F. Liou, “Laser Aided Part Repair-A Review,” 13th Annu. Solid

Free. Fabr. Symp., pp. 57–64, 2002.

[8] M. Matsumoto, S. Yang, K. Martinsen, and Y. Kainuma, “Trends and research challenges in

remanufacturing,” Int’l Jor. Prec. Eng. Manuf. Green Tech., vol. 3, no. 1, pp. 129–142, 2016.

[9] S. J. Ridley, W. L. Ijomah, and J. R. Corney, “Improving the efficiency of remanufacture through

enhanced pre-processing inspection – a comprehensive study of over 2000 engines at Caterpillar

remanufacturing, U.K.,” Prod. Plan. Control, vol. 30, no. 4, pp. 259–270, 2019.

[10] J. . Gemage, Ijomah W.L, and J. Windmill, “What makes cleaning a costly operation in

remanufacturing,” in 11th Global Conf. on Sust. Manuf., 2015, pp. 219–223.

[11] C.-M. Lee, W.-S. Woo, and Y.-H. Roh, “Remanufacturing: Trends and Issues,” Int’l Jor. Prec. Eng.

Manuf. Green Tech., vol. 4, no. 1, p. 113, 2017.

[12] P. Oyekola, A. Mohamed, and J. Pumwa, “Robotic model for unmanned crack and corrosion

inspection,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1, pp. 862–867, 2019.

[13] J. Liu, Z. Zhou, D. T. D. T. Pham, W. Xu, C. Ji, and Q. Liu, “Robotic disassembly sequence planning

using enhanced discrete bees algorithm in remanufacturing,” Int’l Jor.of Prod. Res., vol. 56, no. 9, pp.

3134–3151, 2018.

[14] K. Li, Q. Liu, W. Xu, J. Liu, Z. Zhou, and H. Feng, “Sequence planning considering human fatigue for

human-robot collaboration in disassembly,” in Procedia CIRP, 2019, vol. 83, pp. 95–104.

[15] D. Peraković, M. Periša, and P. Zorić, “Challenges and issues of ICT in industry 4.0,” in Lecture Notes

in Mech. Eng., Pleiades Publishing, 2020, pp. 259–269.

[16] D. A. P. P. Paterson, W. L. Ijomah, and J. F. C. C. Windmill, “End-of-life decision tool with emphasis

on remanufacturing,” J. Clean. Prod., vol. 148, pp. 653–664, 2017.

[17] W. L. Ijomah, C. A. McMahon, G. P. Hammond, and S. T. Newman, “Development of design for

remanufacturing guidelines to support sustainable manufacturing,” Robot. Comput. Integr. Manuf., vol.

23, no. 6, pp. 712–719, 2007.

[18] W. L. Ijomah, C. A. Mcmahon, G. P. Hammond, and S. T. Newman, “Development of robust design-

for- remanufacturing guidelines to further the aims of sustainable development Development of robust

design-for-remanufacturing guidelines to further the aims of sustainable development,” Int. J. Prod.

Res., vol. 45, pp. 4513–4536, 2007.

[19] M. Thierry, M. Salomon, J. Van Nunen, and L. Van Wassenhove, “Strategic Issues in Product

Recovery Management,” Calif. Manage. Rev., vol. 37, no. 2, pp. 114–136, 1995.

[20] W. L. Ijomah, S. J. Childe, G. P. Hammond, and C. A. McMahon, “A Robust Description and Tool for

Remanufacturing: A Resource and Energy Recovery Strategy,” in 4th Int’ Symp. on Enviro. Consc.

Design and Inv. Manufa., 2005, pp. 472–479.

[21] W. L. Ijomah, S. Childe, and C. McMahon, “Remanufacturing: A key strategy for sustainable

development,” 3rd Int’l Conf.on Des. Manuf. Sust. Dev., vol. 22, pp. 99–102, 2004.

[22] A. Aprilia, W. L. K. Nguyen, A. Khairyanto, W. C. Pang, S. B. Tor, and G. Seet, “Towards automated

206

remanufacturing process with additive manufacturing,” in Int’l Conf. on Progress in Additive Manuf.,

2018, pp. 696–701.

[23] N. K. N. K. Dev, R. Shankar, and F. H. Qaiser, “Industry 4.0 and circular economy: Operational

excellence for sustainable reverse supply chain performance,” Resour. Conserv. Recycl., vol. 153, p.

104583, 2020.

[24] O. Okorie, F. Charnley, A. Ehiagwina, D. Tiwari, and K. Salonitis, “Towards a simulation-based

understanding of smart remanufacturing operations: a comparative analysis,” J. Remanufacturing,

2020.

[25] P. Goodall, R. Sharpe, and A. West, “A data-driven simulation to support remanufacturing operations,”

Comput. Ind., vol. 105, pp. 48–60, 2019.

[26] B. Surajit and A. Telukdarie, “Business Logistics Optimization Using Industry 4.0: Current Status and

Opportunities,” IEEE Int’l Conf. Indus.Engi. Engi. Mgt., pp. 1558–1562, 2019.

[27] H. Tokucoglu, X. Chen, A. E. L. Rhalibi, and T. Opoz, “Sensor based cost modelling for a knowledge

support system development,” IEEE Int’l Conf. Auto. Comp., pp. 1–6, 2019.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[29] François Chollet, Deep Learning with Python, 2nd ed. Manning Publications, 2021.

[30] J. Jiao, M. Zhao, J. Lin, and K. Liang, “A comprehensive review on convolutional neural network in

machine fault diagnosis,” Neurocomputing, vol. 417, pp. 36–63, 2020.

[31] S. Zahoor, W. Abdul-Kader, and M. Zain, “The prospect of smart-remanufacturing in automotive

SMEs: A case study,” in Int’l Conf. on Indus.Eng. and Operations Mgt, 2019, pp. 735–736.

[32] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep

convolutional neural networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, 2020.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification,” in IEEE Int’l Conf. on Compu. Vision, 2015, pp. 1026–

1034.

[34] M. Kerin and D. T. Pham, “A review of emerging industry 4.0 technologies in remanufacturing,”

Journal of Cleaner Production, vol. 237. Elsevier, 2019.

[35] R. Westbrook, “Action research : a new paradigm for research in,” Int. J. Oper. Prod. Manag., vol. 15,

no. 12, pp. 6–20, 1995.

[36] H. Allaoui, Y. Guo, and J. Sarkis, “Decision support for collaboration planning in sustainable supply

chains,” J. Clean. Prod., vol. 229, pp. 761–774, 2019.

[37] M. C. Olisah, C. Nwankpa, I. Whitfield, and W. Ion, “The exploration of collaborative supply chain

factors in the oil and gas industry,” in 34th British Academy of Management, 2020.

[38] R. L. Ackoff., Scientific Method: Optimizing Applied Research Decisions. New York: University of

Chicago Press, 1962.

[39] C. Wohlin, “Case Study Research in Software Engineering—It is a Case, and it is a Study, but is it a

Case Study?,” Inf. Softw. Technol., vol. 133, p. 106514, 2021.

[40] K. A. Robinson, I. J. Saldanha, and N. A. Mckoy, “Framework for identifying research gaps,” Natl.

Collab. Cent. Methods Tools, no. 2, pp. 1–3, 2012.

[41] M. Schlüter, C. Niebuhr, J. Lehr, and J. Krüger, “Vision-based Identification Service for

Remanufacturing Sorting,” Procedia Manuf., vol. 21, pp. 384–391, 2018.

[42] L. Wang, X. Xia, J. Cao, and X. Liu, “Modeling and predicting remanufacturing time of equipment

using deep belief networks,” Cluster Comput., vol. 22, no. s2, pp. 2677–2688, Dec. 2019.

[43] G. Marczyk, D. DeMatteo, and D. Festinger, Essentials of Research Design and Methodology. John

Wiley and Sons Inc, 2005.

[44] R. K. Yin, Case Study Research: Design and methods, 5th ed. USA: SAGE Publications Inc., 2014.

[45] J. W. Creswell, Research Design, Qualitative Quantitative and Mixed Methods, 3rd ed. California:

SAGE, 2009.

[46] A. Tashakkori, C. Teddlie, and C. B. Teddlie, Mixed methodology: Combining qualitative and

quantitative approaches, vol. 46. Sage, 2018.

[47] J. Schoonenboom and R. B. Johnson, “How to Construct a Mixed Methods Research Design,” Kolner

207

Z. Soz. Sozpsychol., vol. 69, pp. 107–131, 2017.

[48] Bubaker S., “Qualitative and Quantitative Case Study Research - Method on Social Science:

Accounting Perspective,” Int. J. Econ. Manag. Eng., vol. 10, no. 12, pp. 3849–3854, 2016.

[49] L. Given, “The SAGE Encyclopedia of Qualitative Research Methods.” SAGE, California, p. 490,

2008.

[50] J. Wisdom and J. W. Creswell, “Mixed methods: integrating quantitative and qualitative data

collection and analysis while studying patient-centered medical home models,” Rockv. Agency

Healthc. Res. Qual., 2013.

[51] W. L. Neuman, Social Research Methods: Qualitative and Quantitative Approaches, 7th Ed. Pearson

Education, 2014.

[52] K. M. Eisenhardt, “Building Theories from Case Study Research,” Acad. Manag. Rev., vol. 14, no. 4,

pp. 532–550, 1989.

[53] C. A. Romano, “Research Strategies for Small Business: A Case Study Approach,” Int’l Small Bus. J.

Res. Entrep., vol. 7, no. 4, pp. 35–43, 1989.

[54] E. D. de Leeuw, J. J. Hox, and D. A. Dillman, International handbook of survey methodology. London:

Taylor and Francis, 2008.

[55] S. Modell, “Triangulation between case study and survey methods in management accounting

research: An assessment of validity implications,” Mgt. Account. Res., vol. 16, no. 2, pp. 231–254,

2005.

[56] G. K. Groff and T. B. Clark, “Commentary on ‘Productions/Operations Management: Agenda for the

“80s,”’” Decis. Sci., vol. 12, no. 4, pp. 578–581, 1981.

[57] E. S. Buffa and L. Angeles, “Commentary on ‘Productions/Operations Management: Agenda for the

“80s,”’” Decis. Sci., vol. 12, no. 4, pp. 1–2, 1981.

[58] B. B. Flynn, S. Sakakibara, R. G. Schroeder, K. A. Bates, and E. J. Flynn, “Empirical research

methods in operations management,” J. Oper. Manag., vol. 9, no. 2, pp. 250–284, 1990.

[59] R. . Khanna, Productions and Operations Management, 2nd ed. Delhi: PHI Learning, 2015.

[60] N. Nasr and M. Thurston, “Remanufacturing: A Key Enabler to Sustainable Product Systems,” in

CIRP International Conference on Lifecycle Engineering, 2006, pp. 15–18.

[61] R. Steinhilper and Rolf Steinhilper, “Remanufacturing: The Ultimate Form of Recycling,” J. Ind.

Ecol., pp. 189–192, 1998.

[62] M. Errington and S. Childe, “A business process model of inspection in remanufacturing,” Nat.

Resour. Res., vol. 8, no. 3, pp. 219–232, 1999.

[63] A. M. Yazid, J. K. Rijal, M. S. Awaluddin, and E. Sari, “Pattern Recognition on Remanufacturing

Automotive Component as Support Decision Making Using Mahalanobis-Taguchi System,” Procedia

CIRP, vol. 26, pp. 258–263, 2015.

[64] S. Butzer and S. Schötz, “Map of Remanufacturing Processes Landscape,” 2016.

[65] G. Lancaster, Research Methods in Management, 1st ed. Elsevier, 2005.

[66] C.-H. Kuo, K. D. Dunn, and S. U. Randhawa, “A case study assessment of performance measurement

in distribution centers,” Ind. Mgt Data Syst., 1999.

[67] A. D. A. D. Joshi and S. M. S. M. Gupta, “Evaluation of design alternatives of End-Of-Life products

using internet of things,” Int’l Jor. Prod. Eco., vol. 208, pp. 281–293, 2019.

[68] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA: MIT Press, 2017.

[69] T. Gebru et al., “Datasheets for Datasets,” CoRR abs/1803.09010, Mar. 2018.

[70] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Ann. Eugen., vol. 7, no. 2,

pp. 179–188, Sep. 1936.

[71] Imagenet, “Large Scale Visual Recognition Challenge (ILSVRC),” Stanford Vision Lab, 2018. .

[72] H. Wang and S. Bengio, “The MNIST Database of Handwritten Upper-case Letters,” 2002. .

[73] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” Neural

Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[74] Mark Everingham, Luc van Gool, Chris Williams, John Winn, and Andrew Zisserman, “The PASCAL

208

Visual Object Classes Homepage,” PASCAL-VOC, 2018. [Online]. Available:

http://host.robots.ox.ac.uk/pascal/VOC/. [Accessed: 07-Aug-2018].

[75] T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 8693 LNCS, no. PART 5, Springer, Cham, 2014, pp. 740–755.

[76] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The

Pascal Visual Object Classes Challenge: A Retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–

136, Jan. 2015.

[77] Tsung-Yi Lin et al., “COCO - Common Objects in Context,” COCO Dataset, 2018. .

[78] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning Deep Features for Scene

Recognition using Places Database,” in Advances in NIPS, 2014, pp. 487–495.

[79] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Construction of a Large-scale Image Dataset using

Deep Learning with Humans in the Loop,” CoRR abs/1506.03365, 2015.

[80] “IBM offers free 1m face dataset to combat bias,” Biometric Technol. Today, vol. 2019, no. 2, p. 1,

Feb. 2019.

[81] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR 2011, 2011, pp. 1521–1528.

[82] M. Errington and S. J. Childe, “A business process model of inspection in remanufacturing,” J.

Remanufacturing, vol. 3, no. 1, 2013.

[83] C. Gray and M. Charter, “Remanufacturing and Product Design Designing for the 7th Generation,”

2007.

[84] M. A. Seitz, “A critical assessment of motives for product recovery: the case of engine

remanufacturing,” Jor. Clean. Prod., vol. 15, pp. 1147–1157, 2007.

[85] P. Goodall, E. Rosamond, and J. Harding, “A review of the state of the art in tools and techniques used

to evaluate remanufacturing feasibility,” J. Clean. Prod., vol. 81, pp. 1–15, Oct. 2014.

[86] D. Parker et al., “Remanufacturing Market Study,” 2015.

[87] R. Steinhilper, “Recent trends and benefits of remanufacturing: From closed loop businesses to

synergetic networks,” in 2nd Int’l Symp. on Environmentally Conscious Design and Inv. Manuf., 2001,

pp. 481–488.

[88] Robert T. Lund, Remanufacturing : The experience of the United States and implications for

developing countries. World Bank, 1984.

[89] V. D. R. Guide, “Production planning and control for remanufacturing: industry practice and research

needs,” Jor.of Oper. Mgt., vol. 18, no. 4, pp. 467–483, 2000.

[90] W. Ijomah, “A model-based definition of the generic remanufacturing business process,” University of

Plymouth, 2002.

[91] M. Kosacka, “Sustainability in Remanufacturing Operations,” in Sustainability in Remanufacturing

Operations, K. F. Golinska-Dawson P., Ed. Springer, 2018, pp. 25–45.

[92] J. Kurilova-Palisaitiene, E. Sundin, and B. Poksinska, “Remanufacturing challenges and possible lean

improvements,” Jor. Clean. Prod., vol. 172, pp. 3225–3236, 2018.

[93] A. Gungor and S. M. Gupta, “Disassembly sequence planning for products with defective parts in

product recovery,” Comput. Ind. Eng., vol. 35, no. 1–2, pp. 161–164, Oct. 1998.

[94] C. Zikopoulos, S. Panagiotidou, and G. Nenes, “The value of sampling inspection in a single-period

remanufacturing system with stochastic returns yield,” IFIP Adv. Inf. Commun. Technol., vol. 338

AICT, pp. 128–135, 2010.

[95] J. Pfrommer et al., “An ontology for remanufacturing systems,” Automatisierungstechnik, vol. 70, no.

6, pp. 534–541, 2022.

[96] V. Gopinath and K. Johansen, “Understanding situational and mode awareness for safe human-robot

collaboration: Case studies on assembly applications,” Prod. Eng., vol. 13, no. 1, pp. 1–9, 2019.

[97] M. Hochwallner, E. Sundin, and K. Johansen, “Automation in Remanufacturing: Applying Sealant on

a Car Component,” in SPS2022, IOS Press, 2022, pp. 147–158.

[98] N. C. Y. C. Y. Yeo, H. Pepin, and S. S. S. Yang, “Revolutionizing Technology Adoption for the

Remanufacturing Industry,” Procedia CIRP, vol. 61, pp. 17–21, 2017.

209

[99] R. Giutini and K. Gaudette, “Remanufacturing: The next great opportunity for boosting US

productivity,” Bus. Horiz., vol. 46, no. 6, pp. 41–48, 2003.

[100] J. D. Chiodo and W. L. Ijomah, “Use of active disassembly technology to improve remanufacturing

productivity: automotive application,” Int. J. Comput. Integr. Manuf., vol. 27, no. 4, pp. 361–371,

2014.

[101] S. Bag, L. C. Wood, S. K. Mangla, and S. Luthra, “Procurement 4.0 and its implications on business

process performance in a circular economy,” Resour. Conserv. Recycl., vol. 152, p. 104502, 2020.

[102] S. J. Ridley and W. Ijomah, “A novel pre-processing inspection methodology to enhance productivity

in automotive product remanufacture: an industry-based research of 2196 engines,” Journal of

Remanufacturing, vol. 5, no. 1. SpringerOpen, 2015.

[103] C. Nwankpa, S. Eze, W. Ijomah, A. Gachagan, and S. Marshall, “Achieving remanufacturing

inspection using deep learning,” J. Remanufacturing, 2020.

[104] H. Singh and P. K. Jain, “Remanufacturing with ECH--a concept,” Procedia Eng., vol. 69, pp. 1100–

1104, 2014.

[105] W. Xu, Q. Tang, J. Liu, Z. Liu, Z. Zhou, and D. T. D. T. Pham, “Disassembly sequence planning using

discrete Bees algorithm for human-robot collaboration in remanufacturing,” Robot. Comput. Integr.

Manuf., vol. 62, 2020.

[106] P. Lundmark, E. Sundin, and M. Björkman, “Industrial challenges within the remanufacturing system,”

in 3rd Swedish Prod. Symp., 2009, pp. 132–138.

[107] S. Wei, O. Tang, and E. Sundin, “Core (product) Acquisition Management for remanufacturing: a

review,” J. Remanufacturing, vol. 5, no. 1, 2015.

[108] J. Östlin, E. Sundin, and M. Björkman, “Importance of closed-loop supply chain relationships for

product remanufacturing,” Int. J. Prod. Econ., vol. 115, no. 2, pp. 336–348, 2008.

[109] E. Sundin and O. Dunbäck, “Reverse logistics challenges in remanufacturing of automotive

mechatronic devices,” J. Remanufacturing, vol. 3, no. 1, pp. 1–8, 2013.

[110] J. Kurilova-Palisaitiene and E. Sundin, “Challenges and opportunities of lean remanufacturing,” Int’l

Jor.of Auto. Tech., vol. 8, no. 5, pp. 644–652, 2014.

[111] S. Butzer, D. Kemp, R. Steinhilper, and S. Schötz, “Identification of approaches for remanufacturing

4.0,” in IEEE Europ.Techn. and Eng. Mgt Summit, 2017, pp. 1–6.

[112] M. Sharp, R. Ak, and T. Hedberg, “A survey of the advancing use and development of machine

learning in smart manufacturing,” J. Manuf. Syst., vol. 48, pp. 170–179, 2018.

[113] M. Mishra, J. Nayakb, B. Naikc, and A. Abraham, “Deep learning in electrical utility industry: A

comprehensive review of a decade of research.” 2020.

[114] H. El Hachimi, M. Oubrich, and O. Souissi, “The optimization of Reverse Logistics activities: A

Literature Review and Future Directions,” in IEEE Int’l Conf. on Techn. Mgt. Operations and

Decisions, 2018, pp. 18–24.

[115] T. Efendigil, S. Önüt, and C. Kahraman, “A decision support system for demand forecasting with

artificial neural networks and neuro-fuzzy models: A comparative analysis,” Expert Syst. Appl., vol.

36, no. 3 PART 2, pp. 6697–6707, Apr. 2009.

[116] D. T. Kumar, H. Soleimani, and G. Kannan, “Forecasting return products in an integrated
forward/reverse supply chain utilizing an ANFIS,” Int’l Jor. Appl. Maths. Comp.Sci., vol. 24, no. 3, pp.

669–682, 2014.

[117] J. Hanafi, S. Kara, and H. Kaebernick, “Generating Fuzzy Coloured Petri Net forecasting model to

predict the return of products,” in IEEE Int’ Symp. on Electronics and the Environment, 2007, pp. 245–

250.

[118] G. T. Temur, M. Balcilar, and B. Bolat, “A fuzzy expert system design for forecasting return quantity

in reverse logistics network,” J. Enterp. Inf. Manag., vol. 27, no. 3, pp. 316–328, 2014.

[119] C. Song, X. Guan, Q. Zhao, and Q.-S. Q. S. Jia, “Remanufacturing planning based on constrained

ordinal optimization,” Front. Electr. Electron. Eng. China, vol. 6, no. 3, pp. 443–452, 2011.

[120] P. Shah, A. Gosavi, and R. Nagi, “A machine learning approach to optimise the usage of recycled

material in a remanufacturing environment,” Int’l Jor. Prod. Res., vol. 48, no. 4, pp. 933–955, 2010.

210

[121] T. Stock and G. Seliger, “Opportunities of Sustainable Manufacturing in Industry 4.0,” Procedia

CIRP, vol. 40, no. Icc, pp. 536–541, 2016.

[122] D. Wei, J. Wang, K. Ni, and G. Tang, “Research and application of a novel hybrid model based on a

deep neural network combined with fuzzy time series for energy forecasting,” Energies, vol. 12, no.

18, p. 3588, 2019.

[123] X. Zhang, X. Ao, Z. Jiang, H. Zhang, and W. Cai, “A remanufacturing cost prediction model of used

parts considering failure characteristics,” Robot. Comput. Integr. Manuf., vol. 59, no. July 2018, pp.

291–296, 2019.

[124] W. Abdul-Kader and M. S. Haque, “Sustainable tyre remanufacturing: An agent-based simulation

modelling approach,” Int. J. Sustain. Eng., vol. 4, no. 4, pp. 330–347, 2011.

[125] J. Lehr, M. Schlüter, and J. Krüger, “Decentralised identification of used exchange parts with a mobile

application,” Int. J. Sustain. Manuf., vol. 4, no. 2–4, pp. 150–164, 2020.

[126] C. Song, X. Guan, Q. Zhao, and Y.-C. Ho, “Machine Learning Approach for Determining Feasible

Plans of a Remanufacturing System,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 3, pp. 262–275, 2005.

[127] M. Sabbaghi, B. Esmaeilian, A. Raihanian Mashhadi, S. Behdad, and W. Cade, “An investigation of

used electronics return flows: A data-driven approach to capture and predict consumers storage and

utilization behavior,” Waste Manag., vol. 36, no. 2015, pp. 305–315, 2015.

[128] T. Van Nguyen, L. Zhou, A. Y. L. Chong, B. Li, and X. Pu, “Predicting customer demand for

remanufactured products: A data-mining approach,” Eur. Jor. Oper. Res., vol. 281, no. 3, pp. 543–558,

2020.

[129] J. Yang, Z. Jiang, S. Zhu, and H. Zhang, “Data-driven technological life prediction of mechanical and

electrical products based on Multidimensional Deep Neural Network: Functional perspective,” Jor.

Manuf. Syst., vol. 64, pp. 53–67, 2022.

[130] J. Dekhtiar, A. Durupt, M. Bricogne, D. Kiritsis, H. Rowson, and B. Eynard, “Toward an Extensive

Data Integration to Address Reverse Engineering Issues,” in IFIP Advances in Info. and Comm. Tech.,

2016, pp. 478–487.

[131] R. Zhang, S. K. Ong, and A. Y. C. Nee, “A simulation-based genetic algorithm approach for

remanufacturing process planning and scheduling,” Appl. Soft Comput., vol. 37, pp. 521–532, 2015.

[132] A. Priyono, W. Ijomah, and U. Bititci, “Disassembly for remanufacturing: A systematic literature

review, new model development and future research needs,” J. Ind. Eng. Manag., vol. 9, no. 4, p. 899,

Nov. 2016.

[133] L. Liu, Q. Zhang, and Y. Sha, “Research on Remanufacturing Scheduling optimization with Uncertain

Process,” in 5th Int’l Conf. on Autom., Cont. and Rob. Eng., 2020, pp. 439–443.

[134] L. V. Tran, B. H. Huynh, and H. Akhtar, “Ant colony optimization algorithm for Maintenance, Repair

and Overhaul scheduling optimization in the context of Industrie 4.0,” Appl. Sci., vol. 9, no. 22, p.

4815, 2019.

[135] S. A. Reveliotis, “Uncertainty management in optimal disassembly planning through learning-based

strategies,” IIE Trans. (Institute Ind. Eng., vol. 39, no. 6, pp. 645–658, 2007.

[136] T. Gu, “Automation disassembly sequence generation based on visual recognition and rules in

remanufacturing,” in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA),

2021, pp. 428–433.

[137] T. Gibbons, G. Pierce, K. Worden, and I. Antoniadou, “A Gaussian mixture model for automated

corrosion detection in remanufacturing.,” in 16th Int’l Conf. on Manuf. Research, 2018.

[138] J. Li, M. Sage, X. Guan, M. Brochu, Y. Zhao, and Y. F. Fiona, “Machine Learning-Enabled

Competitive Grain Growth Behavior Study in Directed Energy Deposition Fabricated Ti6Al4V,” Jom,

vol. 72, no. 1, pp. 458–464, 2020.

[139] K. Ren, Y. Chew, Y. F. F. Zhang, J. Y. H. Fuh, and G. J. J. Bi, “Thermal field prediction for laser

scanning paths in laser aided additive manufacturing by physics-based machine learning,” Comput.

Methods Appl. Mech. Eng., vol. 362, p. 112734, 2020.

[140] M. Andoni et al., “Blockchain technology in the energy sector: A systematic review of challenges and

opportunities,” Renew. Sustain. Energy Rev., vol. 100, pp. 143–174, Feb. 2019.

[141] C. Yang, W. Xu, J. Liu, B. Yao, and Y. Hu, “Robotic Disassembly Sequence Planning Considering

211

Robotic Movement State Based on Deep Reinforcement Learning,” in IEEE 25th Int’l Conf. on Comp.

Supp. Coop. Work in Design, 2022, pp. 183–189.

[142] D. A. D. A. Rossit, F. Tohmé, and M. Frutos, “A data-driven scheduling approach to smart

manufacturing,” Jor. Ind. Info. Integr., vol. 15, pp. 69–79, 2019.

[143] C. Nwankpa, S. Eze, and W. L. Ijomah, “Deep Learning Based Visual Automated Sorting System for

Remanufacturing,” in IEEE Green Techn. Conf. (GreenTech), 2020, pp. 196–198.

[144] E. Manavalan and K. Jayakrishna, “A review of Internet of Things (IoT) embedded sustainable supply

chain for industry4.0 requirements,” Comput. Ind. Eng., vol. 127, pp. 925–953, 2019.

[145] D. T. Sturrock and C. D. Pegden, “Introduction to SIMAN.pdf,” in Winter Simulation Conference,

1990, pp. 109–114.

[146] A. Khan, C. Mineo, G. Dobie, C. Macleod, and G. Pierce, “Vision guided robotic inspection for parts

in manufacturing and remanufacturing industry,” J. Remanufacturing, 2020.

[147] David G. Lowe, “Object Recognition from Local Scale-Invariant Features,” in Int’l Conf. on Computer

Vision-Volume 2, 1999, p. 1150.

[148] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis.

Image Underst., vol. 110, no. 3, pp. 346–359, 2008.

[149] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp.

886–893.

[150] G. A. Ruz, P. A. Estévez, and P. A. Ramírez, “Automated visual inspection system for wood defect

classification using computational intelligence techniques,” Int. J. Syst. Sci., vol. 40, no. 2, pp. 163–

172, 2009.

[151] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular value decomposition and principal

component analysis,” in A practical approach to microarray data analysis, Springer, 2003, pp. 91–

109.

[152] R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods, vol. 6, no. 9, pp. 2812–

2831, 2014.

[153] M. F. Rabbi, C. Pizzolato, D. G. Lloyd, C. P. Carty, D. Devaprakash, and L. E. Diamond, “Non-

negative matrix factorisation is the most appropriate method for extraction of muscle synergies in

walking and running,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020.

[154] M. Hussain, J. J. Bird, and D. R. Faria, “A study on CNN Transfer Learning for Image Classification,”

in Advances in Intelligent Systems and Computing, 2018, vol. 840, pp. 191–203.

[155] M. Telgarsky, “Benefits of depth in neural networks,” in MLR, 2016, vol. 49, pp. 1–23.

[156] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[157] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional

Neural Networks,” Adv. Neural Inf. Process. Syst. 25, 2012.

[158] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” in ICLR, 2015.

[159] C. Szegedy et al., “Going deeper with convolutions,” in IEEE Conf.on Comp. Vision and Pattern

Recognition (CVPR), 2015, pp. 1–9.

[160] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern Recognit., 2017.

[161] J. Schmidhuber and Jürgen Schmidhuber, “Deep Learning in neural networks: An overview,” Neural

Networks, vol. 61, pp. 85–117, 2015.

[162] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size,” in ICLR, 2017.

[163] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull.

Math. Biophys., vol. 5, no. 4, pp. 115–133, 1943.

[164] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Optimisation in the

Brain,” Psychol. Rev., vol. 65, no. 6, pp. 19–27, 1958.

[165] A. E. Bryson, W. F. Denham, and S. E. Dreyfus, “Optimal Programming Problems with Inequality

212

Constraints,” AIAA J., vol. 1, no. 11, pp. 2544–2550, 1963.

[166] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, Apr. 1980.

[167] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating

errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[168] Y. Le Cun et al., “Handwritten Digit Recognition with a Back-Propagation Network,” in NIPS, 1989,

pp. 396–404.

[169] M. Gheisari, G. Wang, and M. Z. A. Bhuiyan, “A Survey on Deep Learning in Big Data,” in IEEE Int’l
Conf. on Com. Sci. and Eng. (CSE) and IEEE Int’l Conf. on Embedded and Ubiquitous Comp. (EUC),

2017, pp. 173–180.

[170] M. Z. Alom et al., “The History Began from AlexNet: A Comprehensive Survey on Deep Learning

Approaches,” CoRR abs / 1803.01164, 2018.

[171] L. Deng, “A tutorial survey of architectures, algorithms, and applications for deep learning,” Trans.

Signal Inf. Process., vol. 3, p. 2, 2014.

[172] Ilias Maglogiannis, K. Karpouzis, M. Wallace, and J. Soldatos, Emerging artificial intelligence

applications in computer engineering : Real word AI systems with applications in eHealth, HCI,

information retrieval and pervasive technologies. IOS Press, 2007.

[173] S. S. Mousavi, M. Schukat, and E. Howley, “Deep Reinforcement Learning: An Overview,” in SAI

Intelligent Systems Conference, 2016, pp. 426–440.

[174] Y. Bengio and Yoshua, “Learning Deep Architectures for AI,” Found. Trends® Mach. Learn., vol. 2,

no. 1, pp. 1–127, 2009.

[175] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applications in vision,” in

ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics

and Systems, 2010, pp. 253–256.

[176] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features

with denoising autoencoders,” in 25th int’l conf. on Machine learning, 2008, pp. 1096–1103.

[177] J. Weston, F. Ratle, and R. Collobert, “Deep Learning via Semi-Supervised Embedding,” in ICML,

2008, pp. 1168–1175.

[178] and R. S. Z. Hinton, Geoffrey E., “Autoencoders, Minimum Description Length and Helmholtz free

Energy,” Advances in Neural Information Processing Systems, vol. 3, no. 3., 1994.

[179] G. E. Hinton and J. L. McClelland, “Learning Representations by Recirculation,” in Neural

Information Processing Systems (NIPS 1987), 1987, pp. 358–366.

[180] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and D. Hassabis, “Reinforcement

Learning, Fast and Slow,” Trends in Cognitive Sciences, vol. 23, no. 5. Elsevier, pp. 408–422, 2019.

[181] E. Yang and D. Gu, “Multiagent Reinforcement Learning for Multi-Robot Systems: A Survey,” Tech.

Rep., 2004.

[182] S. O. Ali Chishti, S. Riaz, M. Bilal Zaib, and M. Nauman, “Self-Driving Cars Using CNN and Q-

Learning,” Proc. 21st Int. Multi Top. Conf. INMIC 2018, 2018.

[183] R. M. Neal, “Connectionist learning of belief networks,” Artif. Intell., vol. 56, no. 1, pp. 71–113, 1992.

[184] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann machines,”

Cogn. Sci., vol. 9, no. 1, pp. 147–169, 1985.

[185] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira, “Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data,” in 18th Int’l Conf. on Machine

Learning, 2001, p. 643.

[186] S. Zhou, Q. Chen, and X. Wang, “Active deep learning method for semi-supervised sentiment

classification,” Neurocomputing, vol. 120, pp. 536–546, 2013.

[187] G. Hinton, “Where Do Features Come From?,” Cogn. Sci., vol. 38, no. 6, pp. 1078–1101, Aug. 2014.

[188] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, p. 5947, 2009.

[189] I. Sutskever, J. Martens, and G. Hinton, “Generating Text with Recurrent Neural Networks,” in 28th

Int’l Conf. on Machine Learning, 2011, pp. 1017–1024.

[190] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of Words and Phrases and

213

their Compositionality,” in Advances in NIPS, 2013, pp. 3111–3119.

[191] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is

difficult,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

[192] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp.

1735–1780, 1997.

[193] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural Machine

Translation:Encoder–Decoder Approaches,” in 8th Workshop on Syntax, Semantics and Structure in

Statistical Translation, 2014, pp. 103–111.

[194] J. Zhang, P. Wang, and R. X. Gao, “Modeling of Layer-wise Additive Manufacturing for Part Quality

Prediction,” Procedia Manuf., vol. 16, pp. 155–162, 2018.

[195] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in

IEEE Int’l Conf.on Acoustics, Speech and Signal Processing, 2013, pp. 6645–6649.

[196] X. Chen, X. Liu, Y. Wang, M. J. F. Gales, and P. C. Woodland, “Efficient Training and Evaluation of

Recurrent Neural Network Language Models for Automatic Speech Recognition,” IEEE/ACM Trans.

Audio, Speech, Lang. Process., vol. 24, no. 11, pp. 2146–2157, 2016.

[197] S. T. Hill et al., “A deep recurrent neural network discovers complex biological rules to decipher RNA

protein-coding potential.,” Nucleic Acids Res., vol. 46, no. 16, pp. 8105–8113, 2018.

[198] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining useful life estimation of engineered

systems using vanilla LSTM neural networks,” Neurocomputing, vol. 275, pp. 167–179, 2018.

[199] L. Guo, N. Li, F. Jia, Y. Lei, and J. Lin, “A recurrent neural network based health indicator for

remaining useful life prediction of bearings,” Neurocomputing, vol. 240, pp. 98–109, 2017.

[200] S. Sivakumar and S. Sivakumar, “Marginally Stable Triangular Recurrent Neural Network

Architecture for Time Series Prediction,” IEEE Trans. Cybern., vol. 48, no. 10, pp. 2836–2850, 2018.

[201] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for

object recognition?,” in Proceedings of the IEEE International Conference on Computer Vision, 2009,

pp. 2146–2153.

[202] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2014, vol. 8689 LNCS, no. PART 1, pp. 818–833.

[203] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern

Recognition, 2014, pp. 580–587.

[204] G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., vol. 42,

pp. 60–88, 2017.

[205] Z. Fei et al., “Deep Convolution Network Based Emotion Analysis towards Mental Health Care,”

Neurocomputing, vol. 388, pp. 212–227, 2020.

[206] Z. Yue et al., “A Novel Semi-Supervised Convolutional Neural Network Method for Synthetic

Aperture Radar Image Recognition,” Cognit. Comput., pp. 1–12, 2019.

[207] F. Gao, Z. Yue, J. Wang, J. Sun, E. Yang, and H. Zhou, “A Novel Active Semisupervised

Convolutional Neural Network Algorithm for SAR Image Recognition,” Comput. Intell. Neurosci.,

vol. 2017, pp. 1–8, 2017.

[208] Y. Le Cun et al., “Handwritten digit recognition: applications of neural network chips and automatic

learning,” IEEE Commun. Mag., vol. 27, no. 11, pp. 41–46, 1989.

[209] Y. Bengio, “Deep learning of representations: Looking forward,” in Int’l conf. on statistical lang. and

speech processing, 2013, pp. 1–37.

[210] M. Lin, Q. Chen, and S. Yan, “Network In Network,” CoRR abs/1312.4400, 2013.

[211] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway Networks,” CoRR abs/1505.00387, 2015.

[212] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in IEEE Conf.

on Computer Vision and Pattern Recog., 2016, pp. 770–778.

[213] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic depth,” in

European conference on computer vision, 2016, vol. 9908 LNCS, pp. 646–661.

214

[214] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 5927–5935.

[215] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in 30th IEEE Conf. on

Comp. Vision and Pattern Recog., 2017, pp. 1800–1807.

[216] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural

networks,” 30th IEEE Conf. Comp. Vis. Pattern Recog., pp. 5987–5995, 2017.

[217] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Rethinking the Inception Architecture for

Computer Vision,” in IEEE Conf on Computer Vision and Pattern Recog., 2016, pp. 2818–2826.

[218] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact

of residual connections on learning,” in 31st AAAI conference on artificial intelligence, 2017.

[219] G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, L. Van Der Maaten, and K. Q. Weinberger,

Densely Connected Convolutional Networks. IEEE, pp. 2261–2269.

[220] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual Path Networks,” in 31st Conference on

Neural Information Processing Systems, 2017, pp. 1–9.

[221] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in European

conference on computer vision, 2016, pp. 630–645.

[222] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE Conf.on Comp. Vision and

Pattern Recog., 2018, pp. 7132–7141.

[223] A. Vaswani et al., “Attention Is All You Need,” in 31st Conf. on Neural Info. Proc. Systems, 2017.

[224] A. Ferreira and G. Giraldi, “Convolutional Neural Network approaches to granite tiles classification,”

Expert Syst. Appl., vol. 84, pp. 1–11, 2017.

[225] J. Ngiam, Z. Chen, D. Chia, P. Koh, Q. Le, and A. Ng, “Tiled convolutional neural networks,” Adv.

Neural Inf. Process. Syst., vol. 23, 2010.

[226] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation,” in

Proceedings of the IEEE international conference on computer vision, 2015, pp. 1520–1528.

[227] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in Int’l Conf. on

Learning Representation, 2016.

[228] J. B. Estrach, A. Szlam, and Y. LeCun, “Signal recovery from Pooling Representations,” in 31st Int’l

Conf. on Machine Learning, 2014, vol. 32, no. 2, pp. 307–315.

[229] D. Yu, H. Wang, P. Chen, and Z. Wei, “Mixed pooling for convolutional neural networks,” in

International conference on rough sets and knowledge technology, 2014, pp. 364–375.

[230] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convolutional neural

networks,” CoRR abs/1301.3557, 2013.

[231] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for

Visual Recognition,” in European Conference on Computer Vision (ECCV), 2014, pp. 346–361.

[232] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for convolutional neural networks,” in

29th Advances in Neural Information Processing Systems, 2015, pp. 2449–2457.

[233] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid, “Aggregating local image

descriptors into compact codes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–

1716, 2011.

[234] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of

Trends in Practice and Research for Deep Learning,” in 2nd Int’ Conf. on Comput.Sci. and Tech.,

2020, pp. 124–133.

[235] N. Ketkar, Deep Learning with Python - A Hands-on Introduction. Bangalore: Apress, 2017.

[236] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep Neural Networks with

binary weights during propagations,” CoRR abs/1511.00363, 2015.

[237] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function

approximation in reinforcement learning,” Neural Networks, vol. 107, pp. 3–11, Nov. 2018.

[238] Y. Qin, X. Wang, and J. Zou, “The Optimized Deep Belief Networks with Improved Logistic Sigmoid

Units and Their Application in Fault Diagnosis for Planetary Gearboxes of Wind Turbines,” IEEE

Trans. Ind. Electron., vol. 66, no. 5, pp. 3814–3824, 2019.

215

[239] J. Turian, J. Bergstra, and Y. Bengio, “Quadratic features and deep architectures for chunking,” in

Human Language Technologies: The 2009 Annual Conf. of the North American Chapter of the

Association for Comp. Linguistics, Companion Volume: Short Papers, 2009, pp. 245–248.

[240] W. Ping et al., “Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning,” in

International Conference on Learning Representations - ICLR, 2018, vol. 79, no. 14, pp. 1094–1099.

[241] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way

to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[242] Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng Li, “Improving deep neural

networks using soft plus units,” in Int’l Joint Conf. on Neural Networks, 2015, pp. 1–4.

[243] Vinod Nair and Geoffrey E. Hinton, “Rectified linear units improve restricted Boltzmann machines,”

in Proceedings of the 27th International Conference on International Conference on Machine

Learning, 2010, pp. 807–814.

[244] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks for LVCSR using

rectified linear units and dropout,” in ICASSP, 2013.

[245] M. D. Zeiler et al., “On rectified linear units for speech processing,” in 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, 2013, pp. 3517–3521.

[246] D. Mishkin and J. Matas, “All you need is a good init,” CoRR abs/1511.06422, Nov. 2016.

[247] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic

Models,” in International Conference on Machine Learning (icml), 2013.

[248] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” in 14th Int’l Conf. on

Artificial Intelligence and Statistics, 2011, pp. 315–323.

[249] B. Xu, N. Wang, H. Kong, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in

Convolution Network,” 2015.

[250] D. Macêdo, C. Zanchettin, A. L. I. Oliveira, and T. Ludermir, “Enhancing batch normalized

convolutional networks using displaced rectifier linear units: A systematic comparative study,” Expert

Syst. Appl., vol. 124, pp. 271–281, 2019.

[251] L. Trottier, P. Giguere, and B. Chaib-draa, “Parametric Exponential Linear Unit for Deep

Convolutional Neural Networks,” in ICLR, 2017.

[252] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUs),” CoRR abs / 1511.07289, 2015.

[253] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-Normalizing Neural Networks,” Adv.

Neural Inf. Process. Syst., vol. 30, 2017.

[254] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout networks,” in

30th Int’l Conf. on Machine Learning, 2013, pp. 1319--1327.

[255] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,”

2019.

[256] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image classifier

architecture search,” in 33rd AAAI Conf. on Artifi. Intelli., 2019, vol. 33, no. 01, pp. 4780–4789.

[257] A. Rosebrock, Deep Learning for Computer Vision with Python, 2nd ed. PyImageSearch, 2018.

[258] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, “Are loss functions all the same?,”

Neural Comput., vol. 16, no. 5, pp. 1063–1076, 2004.

[259] C. E. Nwankpa, “Advances in Optimisation Algorithms and Techniques for Deep Learning,” Adv. Sci.

Technol. Eng. Syst. J., vol. 5, no. 5, pp. 563–577, 2020.

[260] T. Dozat, “Incorporating Nesterov Momentum into Adam,” in ICLR, 2016.

[261] Sabastian Ruder, “An Overview of Gradient Descent Optimization Algorithms,” CoRR abs /

1609.04747, pp. 1–14, 2017.

[262] S. Sigtia and S. Dixon, “Improved music feature learning with deep neural networks,” in IEEE int’l

conf. on acoustics, speech and signal processing, 2014, pp. 6959–6963.

[263] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum

in deep learning,” in Proceedings of Machine Learning Research, 2013, pp. 1139–1147.

[264] Herbert Robbins and Sutton Monro, “A Stochastic Approximation Method,” Ann. Math. Stat., vol. 22,

216

no. 3, pp. 400–407, 1951.

[265] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for Online Learning and Stochastic

Optimization,” J. Mach. Learn. Res., vol. 12, pp. 2121–2159, 2011.

[266] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” CoRR abs / 1212.5701, 2012.

[267] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” CoRR, abs/1412.6980, 2014.

[268] D. Lee and K. Myung, “Read my lips, login to the virtual world,” in IEEE Int’l Conf. on Consumer

Electronics, 2017, pp. 434–435.

[269] L. Liu et al., “On the Variance of the Adaptive Learning Rate and Beyond,” in ICLR, 2020.

[270] S. J. Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and Beyond,” in ICLR, 2018.

[271] M. R. Zhang, J. Lucas, G. Hinton, and J. Ba, “Lookahead optimizer: k steps forward, 1 step back,” in

Neural Information Processing Systems, 2019.

[272] K. Lan et al., “Multi-view convolutional neural network with leader and long-tail particle swarm

optimizer for enhancing heart disease and breast cancer detection,” INDIA INTL. Congr. Comput.

Intell., 2018.

[273] X. Chen, F. Kopsaftopoulos, Q. Wu, H. Ren, and F. K. Chang, “A self-adaptive 1D convolutional

neural network for flight-state identification,” Sensors, vol. 19, no. 2, 2019.

[274] M. Revathi, I. Jasmine Selvakumari Jeya, and S. N. Deepa, “Deep learning-based soft computing

model for image classification application,” Soft Comput., vol. 24.

[275] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized Stochastic Gradient Descent,” in

Advances in Neural Information Processing Systems 23 (NIPS), 2010, pp. 2595–2603.

[276] M. Zinkevich, A. J. Smola, and J. Langford, “Slow learners are fast,” in NIPS, 2009, pp. 2331–2339.

[277] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin, “A fast parallel SGD for matrix factorization in

shared memory systems,” in 7th ACM Conf. on Recommender systems, 2013, pp. 249–256.

[278] C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical study of their

impact to deep learning,” Multimed. Tools Appl., pp. 1–39, 2020.

[279] J. Martens, “Deep learning via hessian-free optimization.,” in ICML, 2010, vol. 27, pp. 735–742.

[280] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,”

in Int’l Conf. on Artifi. Intelli. and Statistics, 2010, pp. 249–256.

[281] S. Koturwar and S. Merchant, “Weight Initialization of Deep Neural Networks(DNNs) using Data

Statistics,” CoRR abs/1710.10570, 2017.

[282] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics of learning

in deep linear neural networks,” Int’l Conf. Learn. Represent., 2013.

[283] D. D. E. Wong, S. A. Fuglsang, J. Hjortkjær, E. Ceolini, M. Slaney, and A. De Cheveigne, “A

comparison of regularization methods in forward and backward models for auditory attention

decoding,” Front. Neurosci., vol. 12, p. 531, 2018.

[284] G. Larsson, M. Maire, and G. Shakhnarovich, “FractalNet: Ultra-Deep Neural Networks without

Residuals,” CoRR abs/1605.07648, May 2016.

[285] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of Neural Networks using

DropConnect,” in 30th Int’l Conf.on Machine Learning, 2013, vol. 28, no. 3, pp. 1058–1066.

[286] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Architectures for Scalable

Image Recognition,” CoRR abs /1707.07012, 2017.

[287] L. Xie and A. Yuille, “Genetic CNN,” IEEE Int’l Conf.on Comput. Vis., pp. 1388–1397, 2017.

[288] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object localization using

convolutional networks,” in IEEE conf. on computer vision and pattern recog., 2015, pp. 648–656.

[289] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” in 33rd Int’l Conf. on

Machine Learning, 2016, vol. 48, pp. 1928–1937.

[290] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift,” CoRR abs/1502.03167, 2015.

[291] G. Hripcsak and A. S. Rothschild, “Agreement, the F-measure, and reliability in information retrieval,”

J. Am. Med. Informatics Assoc., vol. 12, no. 3, pp. 296–298, 2005.

217

[292] X.-H. Zhou, D. K. McClish, and N. A. Obuchowski, Statistical methods in diagnostic medicine, vol.

569. John Wiley \& Sons, 2009.

[293] S. Vongbunyong and W. H. Chen, “Vision System In: Disassembly Automation. Sustainable

Production, Life Cycle Engineering and Management.,” Springer, Cham, 2015, pp. 55–93.

[294] J. Zhang, S. Yi, G. U. O. Liang, G. A. O. Hongli, H. Xin, and S. Hongliang, “A new bearing fault

diagnosis method based on modified convolutional neural networks,” Chinese J. Aeronaut., vol. 33,

no. 2, pp. 439–447, 2020.

[295] P. Lu, B. Song, and L. Xu, “Human face recognition based on convolutional neural network and

augmented dataset,” Syst. Sci. \& Control Eng., vol. 9, no. 2, pp. 29–37, 2021.

[296] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the sequence specificities of

DNA- and RNA-binding proteins by deep learning,” Nat. Biotechnol., vol. 33, no. 8, pp. 831–838,

2015.

[297] S. Zhang et al., “A deep learning framework for modelling structural features of RNA-binding protein

targets,” Nucleic Acids Res., vol. 44, no. 4, pp. e32–e32, Feb. 2016.

[298] S. T. M. Kin, S. K. Ong, and A. Y. C. Nee, “Remanufacturing Process Planning,” Procedia CIRP, vol.

15, pp. 189–194, 2014.

[299] M. A. Ilgin and S. M. Gupta, Environmentally conscious manufacturing and product recovery

(ECMPRO): A review of the state of the art, vol. 91, no. 3. Elsevier Ltd, 2010, pp. 563–591.

[300] R. Subramoniam, D. Huisingh, and R. B. Chinnam, “Remanufacturing for the automotive aftermarket-

strategic factors: literature review and future research needs,” J. Clean. Prod., vol. 17, no. 13, pp.

1163–1174, 2009.

[301] A. Robotis, T. Boyaci, and V. Verter, “Investing in reusability of products of uncertain

remanufacturing cost: The role of inspection capabilities,” Int’l J. Prod. Econ., vol. 140, no. 1, pp.

385–395, 2012.

[302] P. Kopardekar, A. Mital, and S. Anand, “Manual, Hybrid and Automated Inspection Literature and

Current Research,” Integr. Manuf. Syst., vol. 4, no. 1, pp. 18–29, 1993.

[303] H. K. Aksoy and S. M. Gupta, “Buffer allocation plan for a remanufacturing cell,” Comput. Ind. Eng.,

vol. 48, no. 3, pp. 657–677, 2005.

[304] M. Errington, “Remanufacturing Inspection Models,” 2006.

[305] H. Huang, Z. Qian, and Z. Liu, Metal Magnetic Memory Technique and Its Applications in

Remanufacturing. 2021.

[306] Y. Zhang, D. Zhou, P. Jiang, and H. Zhang, “The state-of-the-art surveys for application of metal

magnetic memory testing in remanufacturing,” Adv. Mater. Res., vol. 301–303, pp. 366–372, 2011.

[307] H. Huang, Z. Qian, and Z. Liu, “Detection of Damage in Remanufactured Coating,” in Metal Magnetic

Memory Technique and Its Applications in Remanufacturing, Springer, 2021, pp. 169–179.

[308] M. Itagaki, E. Takamiya, K. Watanabe, T. Nukaga, and F. Umemura, “Diagnosis of quality of fresh

water for carbon steel corrosion by Mahalanobis distance,” Corros. Sci., vol. 49, no. 8, pp. 3408–3420,

2007.

[309] S. NǍdǍban, S. Dzitac, and I. Dzitac, “Fuzzy TOPSIS: A General View,” Procedia Comput. Sci., vol.

91, pp. 823–831, 2016.

[310] M. Ramachandran., U. Ragavendran, and V. Fegade, “Selection of used piston for remanufacturing

using fuzzy TOPSis optimization,” in Fuzzy systems and data mining IV : Proceedings of FSDM, 2018,

pp. 61–67.

[311] F. Russo, “An image enhancement technique combining sharpening and noise reduction,” IEEE Trans.

Instrum. Meas., vol. 51, no. 4, pp. 824–828, Aug. 2002.

[312] Ruigang Yang and M. Pollefeys, “Multi-resolution real-time stereo on commodity graphics hardware,”

in IEEE Comp.Society Conf. on Computer Vision and Pattern Recog., pp. I211–I217.

[313] F. A. Saiz, G. Alfaro, and I. Barandiaran, “An Inspection and Classification System for Automotive

Component Remanufacturing Industry Based on Ensemble Learning,” Information, vol. 12, no. 12, p.

489, 2021.

[314] S. Krig, Computer Vision Metrics Textbook Edition Survey, Taxonomy and Analysis of Computer

218

Vision, Visual Neuroscience, and Deep Learning, 2nd ed. Springer Nature, 2016.

[315] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,”

in 2011 International Conference on Computer Vision, 2011, pp. 2564–2571.

[316] B. Leibe, A. Leonardis, and B. Schiele, “An Implicit Shape Model for Combined Object

Categorization and Segmentation,” in Toward Category-Level Object Recognition. Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, 2006, pp. 508–524.

[317] Kai Jungling and M. Arens, “Feature-based person detection beyond the visible spectrum,” in IEEE

Comp. Society Conf.on Computer Vision and Pattern Recog., 2009, pp. 30–37.

[318] B. Nath, F. Reynolds, and R. Want, “RFID Technology and Applications,” IEEE Pervasive Comput.,

vol. 5, no. 1, pp. 22–24, 2006.

[319] W.-J. Gao, B. Xing, and T. Marwala, “Teaching - Learning-based optimization approach for enhancing

remanufacturability pre-evaluation system’s reliability,” in IEEE Symposium on Swarm Intelligence,

2013, pp. 235–239.

[320] M. L. Dering and C. S. Tucker, “A Computer Vision Approach for Automatically Mining and

Classifying End of Life Products and Components,” in 20th Design for Manuf. and the Life Cycle

Conf.; 9th Int’l Conf. on Micro- and Nanosystems, 2015.

[321] X. Li, S. Siahpour, J. Lee, Y. Wang, and J. Shi, “Deep learning-based intelligent process monitoring of

directed energy deposition in additive manufacturing with thermal images,” Procedia Manuf., vol. 48,

pp. 643–649, 2020.

[322] C. Shang, F. Yang, D. Huang, and W. Lyu, “Data-driven soft sensor development based on deep

learning technique,” J. Process Control, vol. 24, no. 3, pp. 223–233, 2014.

[323] V. Gopakumar, S. Tiwari, and I. Rahman, “A deep learning based data-driven soft sensor for

bioprocesses,” Biochem. Eng. J., vol. 136, pp. 28–39, 2018.

[324] D. Hu and R. Kovacevic, “Sensing, modeling and control for laser-based additive manufacturing,” Int’l

Jor. Mach. Tools Manuf., vol. 43, no. 1, pp. 51–60, 2003.

[325] S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-based techniques focused on modern industry: An

overview,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 657–667, Jan. 2015.

[326] P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven Soft Sensors in the process industry,” Comput.

Chem. Eng., vol. 33, no. 4, pp. 795–814, 2009.

[327] D. Dong and T. J. McAvoy, “Nonlinear principal component analysis—based on principal curves and

neural networks,” Comput. \& Chem. Eng., vol. 20, no. 1, pp. 65–78, 1996.

[328] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep

networks,” Adv. Neural Inf. Process. Syst., vol. 19, 2006.

[329] H. Kaneko and K. Funatsu, “Adaptive soft sensor model using online support vector regression with

time variable and discussion of appropriate hyperparameter settings and window size,” Comput. \&

Chem. Eng., vol. 58, pp. 288–297, 2013.

[330] X. D. Hu, F. Z. Kong, and J. H. Yao, “Development of monitoring and control system for laser

remanufacturing,” in Applied Mechanics and Materials, 2011, vol. 44–47, pp. 81–85.

[331] T. G. Dietterich, “Approximate Statistical Tests for Comparing Supervised Classification Learning

Algorithms,” Neural Comput., vol. 10, no. 7, pp. 1895–1923, 1998.

[332] Python - Foundation, “Python Programming,” python.org, 2022. [Online]. Available:

https://www.python.org/. [Accessed: 03-May-2022].

[333] Mathworks, “MATLAB - MathWorks - MATLAB & Simulink,” 2022. [Online]. Available:

https://uk.mathworks.com/products/matlab.html. [Accessed: 03-May-2022].

[334] R-Foundation, “R: The R Project for Statistical Computing,” 2022. [Online]. Available: https://www.r-

project.org/. [Accessed: 03-May-2022].

[335] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,” in CEUR Workshop

Proceedings, 2014, vol. 1436, pp. 675–678.

[336] G. C. Adam Paszke, Sam Gross, Soumith Chintala, “PyTorch - From Research to Production (An open

source Deep Learning Platform),” Pytorch.org, 2022. [Online]. Available: https://pytorch.org/.

[Accessed: 03-May-2022].

219

[337] François Chollet, “Keras - The Python Deep Learning library,” 2022. [Online]. Available:

https://keras.io/. [Accessed: 03-May-2022].

[338] Apache - Software - Foundation, “MXNet: A Scalable Deep Learning Framework,” 2022. [Online].

Available: https://mxnet.apache.org/. [Accessed: 03-May-2022].

[339] Google-Brain, “TensorFlow,” Google Brain Team, 2022. [Online]. Available:

https://www.tensorflow.org/. [Accessed: 03-May-2022].

[340] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for Machine

Learning,” in BigLearn, NIPS Workshop, 2011.

[341] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” in 12th USENIX

Symposium on Operating Systems Design and Implementation, 2016.

[342] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data Preprocessing for Supervised Learning,”

Int. J. Comput. Electr. Autom. Control Inf. Eng., vol. 1, no. 12, pp. 111–117, 2007.

[343] Z. Li, L. Jin, C. Yang, and Z. Zhong, “Hyperparameter search for deep convolutional neural network

using effect factors,” in IEEE China Sum. and Int’l Conf.on Sig. and Info. Proc., 2015, pp. 782–786.

[344] R. Ren, T. Hung, and K. C. Tan, “A Generic Deep-Learning-Based Approach for Automated Surface

Inspection,” IEEE Trans. Cybern., vol. 48, no. 3, pp. 929–940, 2018.

[345] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp.

2481–2495, 2015.

[346] O. Silvén, M. Niskanen, and H. Kauppinen, “Wood inspection with non-supervised clustering,” Mach.

Vis. Appl., vol. 13, no. 5, pp. 275–285, 2003.

[347] J. Krüger, J. Lehr, M. Schlüter, and N. Bischoff, “Deep learning for part identification based on

inherent features,” CIRP Ann., vol. 68, no. 1, pp. 9--12, 2019.

[348] J. Donahue et al., “DeCAF: A Deep Convolutional Activation Feature for Generic Visual

Recognition,” in Int’l Conf. on machine learning, 2014, pp. 647--655.

[349] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” in

IEEE Conf. on Comp. Vision and Pattern Recog., 2014, pp. 3606–3613.

[350] Tensorflow, “Tensorflow Documentation,” 2022.

[351] S. Hu, X. Zhang, H. Liao, X. Liang, M. Zheng, and S. Behdad, “Deep learning and machine learning

techniques to classify electrical and electronic equipment,” in Int’l Design Eng. Techn. Conf. and

Comp. and Info. in Eng. Conf., 2021, vol. 85413.

[352] A. Ng, “Convolutional neural networks,” 2020.

[353] B. N. Popov, Corrosion Engineering: Principles and Solved Problems. Elsevier Inc., 2015.

[354] P. Broberg, “Surface crack detection in welds using thermography,” NDT E Int’l, vol. 57, pp. 69–73,

2013.

[355] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int’l Jor. Comput. Vis.,

vol. 115, no. 3, pp. 211–252, 2015.

[356] TensorFlow, “Save and load Keras models | TensorFlow Core,” Jan-2022. [Online]. Available:

https://www.tensorflow.org/guide/keras/save_and_serialize. [Accessed: 22-Mar-2022].

[357] K. M. M. Tant, A. J. Mulholland, A. Curtis, and W. L. Ijomah, “Design-for-testing for improved

remanufacturability,” J. Remanufacturing, vol. 9, no. 1, pp. 61–72, 2019.

[358] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, “Machine

learning for internet of things data analysis: a survey,” Digit. Commun. Networks, vol. 4, no. 3, pp.

161–175, 2018.

[359] G. Olague and R. Mohr, “Optimal camera placement for accurate reconstruction,” Pattern Recognit.,

vol. 35, no. 4, pp. 927–944, 2002.

[360] L. Taylor and G. Nitschke, “Improving Deep Learning using Generic Data Augmentation,” 2017.

[361] C. E. Nwankpa, W. Ijomah, and A. Gachagan, “Design for automated inspection in remanufacturing:

A discrete event simulation for process improvement,” Clean. Engi. Techn., vol. 4, p. 100199, 2021.

[362] M. U. R. Siddiqi et al., Low cost three-dimensional virtual model construction for remanufacturing

industry, vol. 9, no. 2. Springer, 2019, pp. 129–139.

220

[363] P. Sharma, Y. P. S. Berwal, and W. Ghai, “Performance analysis of deep learning CNN models for

disease detection in plants using image segmentation,” Information Processing in Agriculture, vol. 7,

no. 4. pp. 566–574, 2020.

[364] G. Keppel, Design and Analysis: A Researcher’s Handbook. Prentice-Hall Inc, 1991.

[365] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of CNN and RNN for natural language

processing,” CoRR abs / 1702.01923, 2017.

[366] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-Parameter Optimization,”

in Advances in Neural Information Processing Systems 24, 2011, pp. 2546–2554.

[367] I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional neural

networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, 2020.

[368] J. Cohen, “A coefficient of agreement for nominal scales,” Educ. Psychol. Meas., vol. 20, no. 1, pp.

37–46, 1960.

[369] K. J. Berry and P. W. Mielke, “A Generalization of Cohen’s Kappa Agreement Measure to Interval

Measurement and Multiple Raters,” Educ. Psychol. Meas., vol. 48, no. 4, pp. 921–933, 1988.

[370] H. J. Flack, V.F., Afifif, A. A., Lachenbruch, P.A., Schouten, “Sample size determinations for two

rater kappa,” Psychometrika, vol. 53, no. 3, pp. 321–325, 1988.

[371] Y. Xu and W. Feng, “Develop a cost model to evaluate the economic benefit of remanufacturing based

on specific technique,” J. Remanufacturing, vol. 4, no. 1, 2014.

[372] M. Q. Patton, “Enhancing the quality and credibility of qualitative analysis.,” Health Serv. Res., vol.

34, no. 5 Pt II, pp. 1189–1208, 1999.

[373] K. W. Thomas and W. G. Tymon, “Necessary Properties of Relevant Research: Lessons from Recent

Criticisms of the Organizational Sciences.,” Acad. Manag. Rev., vol. 7, no. 3, pp. 345–352, 1982.

[374] W. L. Oberkampf and T. G. Trucano, “Verification and validation benchmarks,” Nucl. Eng. Des., vol.

238, no. 3, pp. 716–743, 2008.

[375] M. Landry, J. L. Malouin, and M. Oral, “Model validation in operations research,” Eur. J. Oper. Res.,

vol. 14, no. 3, pp. 207–220, 1983.

[376] S. Jamieson, “Likert scales: How to (ab)use them,” Med. Educ., vol. 38, no. 12, pp. 1217–1218, 2004.

[377] C. Nwankpa, W. Ijomah, and A. Gachagan, “Artificial Intelligence for Process Control In

Remanufacturing,” in 12th International Symposium on Environmentally Conscious Design and

Inverse Manufacturing (Ecodesign), 2021.

221

Appendix 1A Research code design tree

222

Appendix 1B Model analysis code tree

223

Appendix 2 Validation Results

224

225

Appendix 3A Developed inspection application model codes

#Import dependencies

from keras.layers.core import Activation, Flatten, Dropout, Dense

from keras.layers.convolutional import Conv2D, MaxPooling2D

from keras.models import Sequential

from tensorflow import keras

from keras import backend

import tensorflow as tf

initialiser = tf.keras.initializers.HeUniform(seed=1)

activationType = "swish"

class Model:

 @staticmethod

 def build(width, height, depth, classes):

 model = Sequential()

 inputShape = (height, width, depth)

 chanDim = -1 # if "channels first",

 if backend.image_data_format() == "channels_first":

 inputShape = (depth, height, width)

 chanDim = 1

 model.add(Conv2D(64, (3, 3), padding="same", kernel_initializer=initialiser,

 bias_initializer='zeros', input_shape=inputShape))

 model.add(Activation(activationType))

 model.add(Conv2D(32, (3, 3), padding="same", kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 model.add(Conv2D(32, (3, 3), padding="same", kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(Conv2D(16, (3, 3), padding="same", kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.5))

 model.add(Flatten())

 model.add(Dense(512))

 model.add(Activation(activationType))

 model.add(Dropout(0.5))

 model.add(Dense(8))

 model.add(Activation("softmax"))

 return model

226

Appendix 3B Developed sorting application model codes

#Import dependencies

from keras.layers.core import Activation, Flatten, Dropout, Dense

from keras.layers.convolutional import Conv2D, MaxPooling2D

from keras.layers import BatchNormalization

from keras.models import Sequential

from tensorflow import keras

from keras import backend

import tensorflow as tf

initialiser = tf.keras.initializers.HeUniform(seed=1)

activationType = "swish"

class Model:

 @staticmethod

 def build(width, height, depth, classes):

 model = Sequential()

 inputShape = (height, width, depth)

 chanDim = -1 # if "channels first"

 if backend.image_data_format() == "channels_first":

 inputShape = (depth, height, width)

 chanDim = 1

 model.add(Conv2D(64, (3, 3), padding="same", kernel_initializer=initialiser,

 bias_initializer='zeros', input_shape=inputShape))

 model.add(Activation(activationType))

 model.add(Conv2D(48, (3, 3), padding="same",kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 model.add(Conv2D(36, (3, 3), padding="same", kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(Conv2D(20, (3, 3), padding="same", kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(1024))

 model.add(Activation(activationType))

 model.add(Dropout(0.5))

 model.add(Dense(20))

 model.add(Activation("softmax"))

 print(model.summary())

 return model

227

Appendix 3C Developed process control model codes

#Import dependencies

from keras.layers.core import Activation, Flatten, Dropout, Dense

from keras.layers.convolutional import Conv2D, MaxPooling2D

from keras.layers import BatchNormalization

from keras.models import Sequential

from tensorflow import keras

from keras import backend

import tensorflow as tf

initialiser = tf.keras.initializers.HeUniform(seed=1)

activationType = "swish"

class Model:

 @staticmethod

 def build(width, height, depth, classes):

 model = Sequential()

 inputShape = (height, width, depth)

 chanDim = -1 # if "channels first"

 if backend.image_data_format() == "channels_first":

 inputShape = (depth, height, width)

 chanDim = 1

 model.add(Conv2D(16, (3, 3), padding="same",

kernel_initializer=initialiser,bias_initializer='zeros',input_shape=inputShape))

 model.add(Activation(activationType))

 model.add(Conv2D(16, (3, 3), padding="same",kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 model.add(Conv2D(8, (3, 3), padding="same",kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(Conv2D(8, (3, 3), padding="same",kernel_initializer=initialiser,bias_initializer='zeros'))

 model.add(Activation(activationType))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.5))

 model.add(Flatten())

 model.add(Dense(512))

 model.add(Activation(activationType))

 model.add(Dropout(0.5))

 model.add(Dense(1))

 model.add(Activation("sigmoid"))

 print(model.summary())

 return model

	Dedication
	Acknowledgement
	Publications
	Author Declaration
	List of Figures
	List of Tables
	Abbreviations
	Abstract
	CHAPTER ONE
	INTRODUCTION AND BACKGROUND
	1.0 Introduction
	1.2 Research Background and Context
	1.3 Deep Learning
	1.4 Research Questions
	1.5 Research Motivation and Justification
	1.6 Scope of the Research
	1.7 Research Design
	1.8 Research Deliverables and Novelty
	1.9 Research Beneficiaries
	1.10 Contributions from the research
	1.11 Thesis Structure
	1.12 Chapter Summary
	CHAPTER TWO
	RESEARCH PHILOSOPHY AND DESIGN
	2.0 Introduction
	2.1 Research Design
	2.1.1 Procedural Issues in the Research
	a) Implementation Decision
	b) Weighting Decision
	c) Integration Decision

	2.1.2 Research Delimitations

	2.2 Research Philosophy
	2.3 Rational for Adopting Mixed Method Research
	2.4 Legitimacy of the research
	2.4.1 Construct validity
	2.4.2 Internal validity
	2.4.3 External validity
	2.4.4 Reliability

	2.5 Vital Research Considerations
	2.5.1 Researcher Involvement
	2.5.2 Practitioner Needs
	2.5.3 Domain of Research
	2.5.4 Model Choice and Requirements.
	2.5.5 Identification of Remanufacturing Processes for Modelling

	2.6 Industrial Collaboration.
	2.6.1 Benefits of the Collaboration

	2.7 Data Collections
	2.8 Research Data
	2.8.1 Limitations of Existing Dataset
	2.8.2 Remanufacturing Data for Deep Learning Research

	2.8.3 Dataset Naming Convention
	2.9 Chapter Summary
	CHAPTER THREE
	LITERATURE REVIEW
	3.0 Introduction
	3.1 Overview of Remanufacturing
	3.2 Benefits of Remanufacturing
	3.3 Remanufacturing Automation
	3.3.1 Challenges in Remanufacturing
	3.3.1.1 Collections
	3.3.1.2 Remanufacturing Process
	3.3.1.3 Redistribution

	3.4 Learning Models and Technologies as Solutions
	3.5 General Learning Approaches
	3.6 Learning Models in Remanufacturing
	3.6.1 Operations Management
	3.6.2 Forecasting
	3.6.3 Factory Improvement
	3.6.4 Decision-Making and Support Systems
	3.6.5 Remanufacturing Processes and Process Planning
	3.6.6 Remanufacturing Technologies

	3.7 Opportunities for Deep Learning
	3.7.1 Operations Management
	3.7.2 Forecasting
	3.7.3 Factory Improvement
	3.7.4 Decision-Making and Support Systems
	3.7.5 Remanufacturing Technologies

	3.8 Suitability of Deep Learning Models
	3.9 Deep Learning
	3.9.1 Brief History of Deep Learning Research
	3.9.2 Taxonomy of Deep Learning Methods

	3.10 Deep Learning Architectures
	3.10.1 Deep Unsupervised Learning Models
	3.10.2 Deep Semi-Supervised Models
	3.10.3 Deep Supervised Learning Models

	3.11 Convolutional Neural Networks
	3.11.1 Evolution of Neural Network Architectures
	3.11.1.1 Spatial Exploitation
	3.11.1.2 Depth and Width Exploitation
	3.11.1.3 Multi-path Exploitation
	3.11.1.4 Feature- Map Exploitation
	3.11.1.5 Attention Exploitation

	3.11.2 Components of the Convolutional Neural Networks
	3.11.2.1 Convolutional Layer
	3.11.2.2 Pooling Layers
	3.11.2.3 Fully Connected Layers
	2.11.2.4 Activation Functions
	a) Sigmoid Function
	b) Softmax Function
	c) Softsign
	d) Softplus
	e) Rectified Linear Units (ReLU)
	f) Exponential Linear Units (ELU)
	g) Maxout
	h) Swish

	3.11.3 Loss Functions
	3.11.3.1 Regression Loss Functions
	3.11.3.2 Binary Classification Loss Functions
	3.11.3.3 Multiclass Classification Loss Functions

	3.11.4 Optimisation and Optimisation Functions
	a) Gradient Optimisation
	b) Parameter Initialisation

	3.11.5 Regularisation Techniques
	a) Loss Regularisation
	b) Node Regularisation
	c) Data Regularisation
	d) Batch Training and Normalisation
	e) Early Stopping

	3.11.6 Evaluation Metrics
	3.11.6.1 Accuracy
	3.11.6.2 Error rate
	3.11.6.3 Precision and Recall
	3.11.6.4 ,𝑭-𝜷. Score
	3.11.6.5 Receiver Operating Characteristics (ROC)
	3.11.6.6 Area under the Curve (AUC)
	3.11.6.7 Confusion Matrix

	3.12 Applications of Deep Convolutional Neural Networks
	3.12.1 Inspection Application
	3.12.1.1 Inspection Techniques in Remanufacturing

	3.12.2 Sorting Application
	3.12.2.1 Sorting Systems in Remanufacturing.

	3.12.3 Process Control Application
	3.12.3.1 Process Control Methods in Remanufacturing

	3.13 Chapter Summary
	CHAPTER FOUR
	MODEL DESIGN AND APPLICATION TO INSPECTION IN REMANUFACTURING
	4.0 Introduction
	4.1 Background to the Modelling and Development
	4.1.1 Modelling Remanufacturing Processes
	4.1.2 Model Development Boundaries

	4.2 Research Model Design
	4.3 Frameworks and Tools for Deploying Deep Architectures
	4.4 Data Representation, Preparation and Pre-processing
	4.4 1 Data Preparation
	4.4.2 Splitting the Data

	4.5 Learning Model and Development Considerations
	4.5.1 The Computational Model Design
	4.5.2 Model Parameters and Hyperparameters
	4.5.3 Metric Selection

	4.6 Computational Model Exploration
	4.6.1 Transfer Learning
	4.6.2 Novel Architecture

	4.7 Learning Algorithms for Remanufacturing Application
	4.7.1 Understanding the Architecture
	4.7.2 Architectural Arrangement and Initialisation
	4.7.3 Parameterising the mapping from Images to Label Scores

	4.8 Modelling Surface Inspection in Remanufacturing Using Deep Learning
	4.8.1 Inspection Applications and Data

	4.9 Model Architecture, Parameters and Hyperparameters
	4.10 Model Components, Hyperparameter Selection and Optimisation
	4.11 Surface Fault Identification and Classification
	4.11.1 Model Components and Hyperparameters
	4.11.2 Model Selection for Transfer Learning
	4.11.3 Model Training and Evaluations
	I Training and Evaluation of the Pretrained Model
	II Training from Scratch and Evaluation
	III Training the New Architecture and Evaluation

	4.11.4 Results and Discussions

	4.12 Adapting the Developed Model to Torque Converter Component Inspection
	4.12.1 Experiment and Model Training
	4.12.2 Results and Discussions

	4.13 Extending the Deep Learning Modelling to Achieve Automated Inspection
	4.13.1 Benefits of Design for Automated Inspection

	4.14 Chapter Summary
	CHAPTER FIVE
	MODELLING COMPONENT SORTING AND PROCESS CONTROL IN REMANUFACTURING USING DEEP LEARNING
	5.0 Introduction
	5.1 Modelling Sorting in Remanufacturing Using Deep Learning
	5.2 Sorting Application and Data
	5.3 Model Parameters / Hyperparameters and Modification
	5.4 Experiment and Model Training
	5.6 Results and Discussions
	5.7 Modelling Process Control in Remanufacturing Using Deep Learning
	5.7.1 Process Control Application and Data

	5.8 Model Components, Hyperparameters and Modification
	5.9 Experiment and Model Training
	5.10 Results and Discussion
	5.11 Chapter Summary
	CHAPTER SIX
	QUANTITATIVE ANALYSIS AND INDUSTRY FEEDBACK
	6.0 Introduction
	6.1 Analysis of the Learning Algorithm
	6.2 Model Hyperparameters
	6.2.1 Model Initialisation
	6.2.2 Selection of Batch Size
	6.2.3 Effect of Batch Normalisation on Model Performance
	6.2.4 Selection of Activation Function
	6.2.5 Selection of Learning Rate
	6.2.6 Selection of Optimisation Techniques

	6.3 Evaluating the Model Layers
	6.4 Model Confirmatory Test
	6.4.1 Transfer Learning
	6.4.2 Training from Scratch Results
	6.4.3 Developed Model Results

	6.5 Cost Benefit Analysis
	6.5.1 Cost Benefit Justification.

	6.6 Basis for Testing Research Success
	6.7 Model Research Validation
	6.7.1 Experimental Validation

	6.8 Industry Feedback
	6.8.1 Model Validation Protocol
	6.8.2 Industry Feedback Process
	6.8.3 The Industry Validation Exercise

	6.9 Results of Model Validation
	6.10 Alterations to Enhance Clarity
	6.11 Modelling Inspection, Sorting and Process Control in Remanufacturing
	6.11.1 Descriptive Relevance
	6.11.2 Goal Relevance
	6.11.3 Operational Validity
	6.11.4 Timeliness
	6.11.5 Non-obviousness

	6.12 Chapter Summary
	CHAPTER SEVEN: CONCLUSION
	7.0 Introduction
	7.1 Achieving Research Objectives
	7.2 Contributions to Knowledge and Research Originality
	7.3 Recommendations and Future Research
	7.4 Limitations of the Research
	References

	Appendix 1A Research code design tree
	Appendix 1B Model analysis code tree
	Appendix 2 Validation Results
	Appendix 3A Developed inspection application model codes
	Appendix 3B Developed sorting application model codes
	Appendix 3C Developed process control model codes

