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Abstract

The aim of the current work is to model sulphur dioxide (S02) levels in Scotland

and relate it to health. The first part of the analysis involves basic descriptive

characteristics of the data, where the structure of the dataset was explored, the

missing data pattern and mapping of the spatial locations of the monitoring sta-

tions. The next part of the modelling involves time series modelling of the data

in which several imputation techniques were explored for missing data. There

are missing data and not all stations have measurements for all the years which

necessitated us to use three different imputation techniques.

We examined temporal correlation, time series decomposition into long-term

trend, seasonal and cyclical components as well as random fluctuations. The

temporal modelling techniques of AR, ARMA and ARIMA models are also ex-

plored. We also investigated the spatial distribution and variation of S02 levels

across Scotland using both the Bayesian and ordinary kriging techniques. Kriging

provide optimal spatial prediction of S02 levels across Scotland.

Further modelling involved the use of spatial generalized additive models to incor-

porate the data attributes of both space and time. Univariate spatial smoothers

are applied to the year and month of the observations, while a bivariate smoother

was applied to the spatial location of the data. Gam technique is used in this

thesis as both predictive and exploratory tools. We explored various basis func-

tions and basis dimension.

Lastly, we observe that there is a variation in the S02 levels both within the year

(seasonal variation) and across the years. Most of the stations are concentrated

in Central Scotland. There is an evidence of temporal correlation as suggested by

autocorrelation function (ACF). Bayesian model performs better than ordinary

kriging by producing lower variance and better prediction than ordinary kriging

which could be due to incorporation of uncertainty in the trend and covariance

functions. A low spatial variation is observed in Central Scotland. The joint

effect of the predictor variables from the best model explained just 65.4% of the

variance of the dependent variable.
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Chapter 1

Air pollution, its effects on

health, and description of data

1.0.1 Overview

This thesis investigates modelling air pollution levels over Scotland which may

have an impact on health. The methodology involves investigating both the tem-

poral and spatial pattern of sulphur dioxide (SO2) data separately before going

on to advanced spatio-temporal modelling in which a generalized additive model

is used to incorporate both the spatial and temporal attributes of the S02 data

simultaneously.

The main objective is to obtain a statistical model to predict and estimate SO2

concentrations across Scotland spatially and temporally simultaneously in which

gam technique is adopted. Final results suggested that the there is a variation

in SO2 levels both within and across the years. There is also presence of both

temporal and spatial correlation in SO2 data. For the spatial analysis, Bayesian

kriging performs better than ordinary kriging with better predictions and low

kriging variance. In the spatial gam, the joint effect of the predictor variables

from the best model explained more than 39.3% of the variance of the dependent

variable, which corresponds to the model with REML estimation. High predic-

tions for SO2 are observed in Central Scotland, in accordance with the results of

the Bayesian kriging predictions.

1.1 Thesis outline

The structure of this thesis is as follows. Chapter 1 presents a background on

air pollution, and its effects on health as well as basic description of the data.
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It further gives a general idea about the sources of environmental pollution, the

location of the air pollution recording sites across Scotland focusing more on SO2

data, as well as descriptive statistics about the SO2 data, and preliminary diag-

nostic checks for constance of variance and normality assumptions.

Chapter 2 reviews some of the available literature on air pollution, its effects on

health, and the various modelling techniques and methodology which have been

adopted by various authors.

Chapter 3 describes methods for missing data and applies different imputation

methods to the SO2 data, and also compares the performance of each of the

imputation techniques. Then time series modelling of SO2 is used after the im-

putation. Various methods of parameter estimation and time series modelling

techniques are discussed. Some background is given on time series decompostion

as well as diagnostic checking of residuals. The results are presented in the last

part of the chapter. Chapter 4 involves a model-based geostatistical interpolation

of the SO2 data across Scotland. It gives a general introduction to spatial anal-

ysis as well as outlining a number of topics from the theory of spatial stochastic

analysis and concepts of autocorrelation, variograms and kriging, with emphasis

on ordinary and Bayesian kriging. It later illustrates and identifies sources of

variation in SO2 levels and also estimates the pollution level at unmonitored spa-

tial locations. Prediction outside the range of the present dataset is incorporated

in the cross-validation section. The chapter concludes with sensitivity analysis

and further considerations.

Chapter 5 describes the spatio-temporal analysis of SO2 data using a generalized

additive model. It reviews the theory of generalized additive models focusing

more on the method of fitting, basis functions, basis selection and dimension cri-

teria, and finally discusses the mgcv package in R before presenting the analysis

results.

Finally, Chapter 6 gives the concluding remarks of this thesis based on the ob-

servations and statistical methods described in the first five chapters and also

suggests areas for further work.

1.2 Introduction

Atmospheric pollution is any substance capable of altering the natural composi-

tion of air and causing harm to both humans and their environment. Air pollution

has become an increasingly important focus of interest for European governments

and international policy makers.

2



There is emerging evidence that air pollution may be strongly influenced by

climate and there are several meteorological influences on the dispersion of air

pollutants. This depends on wind direction, wind velocity, vertical turbulence,

temperature and altitude etc. (Baumbach et al., 1996). Air pollutants are also

associated with climatic change as a consequence of global warming and green-

house effects.

There are many different air pollutants. In this thesis we focus on sulphur dioxide

(SO2), which is a corrosive acid gas which usually reacts with water vapour in

the atmosphere to form acidic rain. It has been connected with the damage and

destruction of vegetation, and the decaying of soil’s fertility, building materials

and watercourses are the long term impacts of SO2 accumulation and deposition

in the soil.

The main source of atmospheric SO2 is industrial processing of materials that

contain sulphur. The adverse health effects of some of the air pollutants like

particulate matter (PM), carbon monoxide, ozone, sulphur dioxide and nitrogen

dioxide etc. on daily morbidity and mortality in developed and developing coun-

tries have been confirmed (Samet et al., 2000).

There has been consistent evidence that PM (particles measuring less than 10µm

in diameter) is related to cardiovascular diseases and mortality. The impact of

exposure to PM2.5 concentration (particles with aerodynamic diameter less than

2.5µm) is also associated with acute and chronic mortality (Laden et al., 2006).

Epidemiological evidence has also linked concentrations of sulphur dioxide in the

atmosphere with adverse human health effects (Brunekreef et al., 2002; Shear-

man, 2006; Abramson, 1991; World Health Organisation, 1992). Several studies

on SO2 pollutant have shown its adverse effects on human health (Touloumi et

al. 1994; Schwartz et al. 1991 & 2001).

There has been much development in the assessment of the impact of SO2 on

health at different periods of time for exposure measurements. The interest in

the SO2 pollutant is focused mainly on smoke, which causes health problems,

especially when it mixes with other pollutants. SO2 in ambient air is related to

chronic bronchitis and asthmatic diseases etc.

There has also been emerging evidence relating particulate matter and SO2 to

cardiovascular health effects (Pope et al., 1993, 1995 & 2002). Also, there is a

substantive knowledge regarding interconnected pathways that relate black smoke

and SO2 exposure with mortality and cardiopulmonary morbidity. Governments

are making rigorous policies to combat and reduce the pollutant concentration

levels, especially across Europe.
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Continuous measurement and assessment of the risks and potential dangers asso-

ciated with air pollution is important not only because it helps to protect human

health and maintain a clean environment free of hazards, but also to serve as

a means to identify any areas subject to particularly high pollution levels. It

may also aid government decision-making by providing daily predictions for this

pollutant.

The literature review in Chapter 2 describes in more detail work which has been

carried out to study air pollution and its effects on health.

1.3 Air pollution monitoring stations

Air quality has formed one of the UK governments key indicators of sustainable

development. There are many stations across the United Kingdom which measure

air pollution levels. There are mainly two different types of monitoring stations,

namely automatic and non-automatic networks (see www.airquality.co.uk). In an

automatic network hourly pollutant concentrations are recorded with data being

collected from individual sites by modem. The detailed information for each site

presently in operation is also given by the site information archive.

The Automatic Urban and Rural Network (AURN) is currently the largest au-

tomatic monitoring network in the UK. In 2007, there were 133 sites across the

different countries, with England, Nothern Ireland, Scotland and Wales having

103, 3, 16 and 9 sites respectively. These recording sites provide hourly informa-

tion on many pollutants to the public through online archives.

About 78 automatic stations measured SO2 levels across the UK. A UV-fluorescence

measurement technique is used for SO2 concentration. The UK air quality strat-

egy objective as at July 2007 for SO2 to be achieved by 31st December 2004 was

that ”125µg/m3 (24 hour mean) must not be exceeded more than 3 times in a

year, nor should a 20µg/m3 values of SO2 be recorded more than 10 times within

any given year”.

Non-automatic networks on the other hand measure less frequently, for daily,

weekly and monthly samples. The samples are usually processed and final mea-

surements made available for public use (www.airquality.co.uk/data).
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Figure 1.1: Map showing locations of all recording stations. The colour coding indicates
percentage of data available

Grouping of recording site
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GLASGOW 51
GLASGOW 73
GLASGOW 95
KIRKINTILLOCH 10
KIRKINTILLOCH 8
KIRKCALDY 6
EDINBURGH 14
BO’NESS 2
ARMADALE 3
ABERDEEN 3
EDINBURGH 24
EDINBURGH 25
FALKIRK 8
GLASGOW 20
GLASGOW 69
GLASGOW 98
HADDINGTON 3
HAMILTON 5
HATTON 1
BALLINGRY2
KILMARNOCK 2

KINROSS 1
KIRKINTILLOCH 9
LIVINGSTON 1
LONGSIDE 1
ORMISTON 2
PENICUIK 1
PERTH 1
PETERHEAD 1
PETERHEAD 2
PETERHEAD 3
PRESTONPANS 1
STIRLING (BURGH) 5
TRANENT 2
WHITBURN 3
BONNYRIGG 1
ARMADALE 2
COATBRIDGE 11
COATBRIDGE 5
COWDENBEATH 1
DALKEITH 1

1.4 The SO2 data used in this thesis

This study uses data from 41 stations monitoring air pollutants widely spread

over Scotland (Figure 1.1, listed by abbreviated name in Table 1.1). We obtained

the data from the UK Air Quality Archive website at www.airquality.co.uk/data

using the following criteria: data type (daily mean), SO2 pollutant, monitoring

sites across Scotland, date range between 1996-2007. The data consist of mea-

sured S02 concentration levels obtained from monitoring stations in Scotland that
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measured SO2 concentration as far back as 1961, but for this study we examine

data from 1996-2007 for the 41 different recording stations in Figure 1.1. The

choice of SO2 was largely determined by the availability of data for recent years.

Some of the recording sites around the Glasgow area in particular are an urban

type and the main sources of pollutants are exhaust fumes from car and traffic

congestion. The sites are usually surrounded with city centre businesses, offices

and retail trading.

The data cover a period of 4383 days, from January 1996 to December 2007. The

data represent the average of the SO2 concentrations measured for one day (daily

mean). We choose to use daily measurement because it gives more meaningful

visualization to the seasonal pattern of the data.

We also have data on the geographical locations of the sites (Easting and Nor-

thing) obtained from the geopostcodes websites www.geopostcodes.com/index.php

and www.npemap.org.uk/api/geocodes.shtml. This environmental SO2 data has

both attributes of space and time, as they arise from various locations in Scot-

land. However, there is a considerable amount of missing data and not all stations

have measurements for all the years.

Table 1.1 shows the number of observations missing out of the possible 366 daily

measurements for each site. ”NA” indicates that there is no recorded observation

for the site in that period. The stations highlighted in red have less than 20% of

the data available for the years. Table 1.2 shows the full names of abbreviated

stations in Table 1.1.

Forty recording stations measured SO2 concentration in 1996 and 2,562 observa-

tions were missing (about 17.5% of the total data for that year), while 2003 has

16.4% of observations missing for the 16 recording stations (the lowest percentage

of missing data of any of the years).

Year 2001 has the highest percentage of missing data (3,014 observations missing

for only 22 recording stations that measured SO2 in 2001, equivalent to about

37.5% of the data for that year). For 1997, 1998, 1999, 2000, 2002, 2004 and 2005,

34.5%, 30.1%, 32.8%, 28.5%, 26.1%, 27.2%, and 31.2% of the data are missing

respectively. The minimum recorded value for all the years between 1996 and

2005 is 0µgm−3 and the nearest minimum value measured again is 6µgm−3.

In 2006 and 2007, only 4 recording stations (Aberdeen, Edinburgh St. Leonards,

Glasgow Centre and Grangemouth) recorded S02 data, and 3.9% and 11.3% of

the observations were missing for 2006 and 2007 respectively, as seen in Table

1.1. Only 15 stations have data in 2005, while years 2003 and 2004 have data for

just 16 stations.
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It can be generally observed that there are sparse observations in the later year.

Years 2001 and 2002 have data from just 22 and 19 recording stations respec-

tively, and this decreases in later years to 15 in year 2005

Only 6 out of the 41 recording stations have data available for at least 80% of the

days (Figure 1.2). These are Glasgow 51, Glasgow 73, Glasgow 95, Kirkintilloch

8, Kirkintilloch 10 and Kirkcaldy 6. Three of the sites recorded less than 20% of

the data possible, namely Armadale 3, Boness 2 and Edinburgh 14 (Figure 1.3).

Also, because we have many observations in our data (1996-2007), most of the

illustrative analysis in this thesis will focus mainly on a few years, namely on the

1996, 2000, 2005 and 2007 datasets. We assume these are representative of the

whole data as these selected years represent the early, the middle and the later

years in our data ranging from 1996-2007.
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Table 1.1: Structure of the missing data for each station; number of missing observa-
tions out of 366 possible days for each year; ”NA” indicates that there is no recorded
observation for the site in that period and stations highlighted in red have less than
20% of data available for these years

site 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 obs. Days Total % 2006 2007

AB3 204 133 133 3 179 64 42 0 123 238 3653 1119 36.7 AB 5 132

EH14 365 303 282 145 NA NA NA NA NA NA 1460 1095 89.9 ED. ST. LEO. 5 12

EH24 2 131 131 192 NA NA NA NA NA NA 1460 456 72.4 GLA. CEN. 38 14

EH25 365 342 342 1 141 121 212 230 323 207 3653 2284 62.5 GRANGEM. 9 7

FK8 152 1 0 2 271 NA NA NA NA NA 1825 426 61.6

G20 2 4 4 263 8 161 NA NA 252 172 2190 866 43.7

G51 5 0 0 0 105 69 15 33 24 15 3653 266 7.2

G69 0 1 1 0 262 67 25 291 NA NA 2920 647 37.7

G73 1 1 1 0 1 77 62 129 219 192 3653 683 18.7

G95 1 6 6 168 0 65 77 28 46 23 3653 420 11.5

G98 1 275 276 11 1 165 157 45 131 202 3653 1264 34.6

EH41 NA 275 276 134 NA NA NA NA NA NA 1095 685 78.7

ML3 93 19 18 13 NA NA NA NA NA NA 1460 143 63.8

ML1 25 8 8 117 270 NA NA NA NA NA 1825 428 61.7

KY4 8 109 109 50 0 217 274 NA NA NA 2555 767 50.9

KA1 136 364 NA 17 103 365 274 NA NA NA 2190 1259 63.4

KY13 51 51 51 187 NA NA NA NA NA NA 1460 340 59

KY2 111 45 0 77 109 70 24 44 45 282 3653 807 22.1

G66 12 1 1 188 16 6 26 0 9 0 3653 259 7

G64 3 37 37 180 14 7 0 1 1 75 3653 355 9.7

G64 71 279 280 196 82 343 0 0 277 NA 3285 1528 52

EH54 54 17 17 8 NA NA NA NA NA NA 1460 96 62.5

AB43 16 275 276 103 168 NA NA NA NA NA 1825 838 72.9

ML3 61 19 18 168 NA NA NA NA NA NA 1460 266 67.2

EH26 7 246 247 110 54 273 NA NA NA NA 2190 937 54.7

PH2 4 2 1 188 NA NA NA NA NA NA 1460 195 65.2

B77 3 12 12 207 168 NA NA NA NA NA 1825 402 60.9

AB42 18 31 0 103 178 NA NA NA NA NA 1825 330 58.9

AB43 0 275 276 159 176 NA NA NA NA NA 1825 886 74.2

EH32 150 7 7 364 NA NA NA NA NA NA 1460 528 74.4

FK7 84 275 276 364 110 176 274 NA NA NA 2555 1559 72.6

EH33 112 48 48 NA NA NA NA NA NA NA 1095 208 75.6

EH48 9 253 254 NA 1 113 50 36 6 32 3285 754 31.4

EH51 35 241 242 NA 271 NA NA NA NA NA 1460 789 81.5

EH19 13 57 58 NA NA NA NA NA NA NA 1095 128 73.4

EH48 23 275 276 NA 7 58 25 73 85 37 3285 859 33.5

EH48 185 153 152 NA NA NA NA NA NA NA 1095 490 83.3

EH35 42 158 158 NA 105 215 NA 2 0 8 2920 688 38.8

G69 NA NA NA NA NA NA NA 44 41 167 1095 252 66.8

ML5 71 84 85 NA 81 109 274 NA NA NA 2190 704 59.2

KY4 57 21 20 NA NA 0 2 0 7 61 2920 168 24.5

EH22 10 364 20 NA 37 273 0 NA NA NA 2190 704 48.2

TOTAL 2562 5198 4399 3718 2918 3014 1813 956 1589 1711 97117 27878

No. of site 40 41 40 31 28 22 19 16 16 15

Missing % 17.5 34.5 30.1 32.8 28.5 37.5 26.1 16.4 27.2 31.2
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Table 1.2: Recording stations and their abbreviations

 station

ABERDEEN 3 AB 3 LIVINGSTON 1 EH 54

EDINBURGH 14 EH 14 LONGSIDE 1 AB 43

EDINBURGH 24 EH 24 ORMISTON 2 ML 5

EDINBURGH 25 EH 25 PENICUIK 1 EH 26

FALKIRK 8 FK 8 PERTH 1 EH 2

GLASGOW 20 G 20 PETERHEAD 1 AB 77

GLASGOW 51 G 51 PETERHEAD 2 AB 42

GLASGOW 69 G 69 PETERHEAD 3 AB 43

GLASGOW 73 G 73 PRESTONPANS 1 EH 32

GLASGOW 95 G 95 STIRLING (BURGH) 5 FK 7

GLASGOW 98 G 98 TRANENT 2 EH 33

HADDINGTON 3 EH 41 WHITBURN 3 EH 48

HAMILTON 5 ML 3 BO'NESS 2 EH 51

HATTON 1 ML 1 BONNYRIGG 1 EH 19

BALLINGRY2 KY 4 ARMADALE 2 EH 48

KILMARNOCK 2 KA 1 ARMADALE 3 EH 35

KINROSS 1 KY 13 COATBRIDGE 11 G 69

KIRKCALDY 6 KY 2 COATBRIDGE 5 ML 11

KIRKINTILLOCH 10 G 66 COWDENBEATH 1 KY 4 

KIRKINTILLOCH 8 G 64 DALKEITH 1 EH 22

KIRKINTILLOCH 9 G 64
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1.5 Data description

Table 1.3 shows descriptive statistics of SO2 levels for the years 1996, 2000 and

2005. Both the mean and maximum values generally decline across the years, es-

pecially for those stations that have more than 80% of data available, i.e Glasgow

51, Glasgow 73, Glasgow 95, Kirkintilloch 8, Kirkintilloch 10 and Kirkcaldy 6.

The minimum and maximum recorded values are 0 and 229µgm−3 respectively.

There is no obvious pattern in the standard deviation and median concentrations.

The blanks in the table indicate that there is no recorded observation for the site

in that period.

Figures 1.2-1.4 show the geographical distribution of the monitoring sites accord-

ing to the percentage of available observations. They give the structure of the

missing pattern according to spatial location. Most of the sites are in the Central

region of Scotland. There are no monitoring stations in the North-Western region

of the map because of the low population density and little industrial activities

that involve pollutant emmission in the region. We also have fewer stations along

the Coastal area. In Figure 1.2, the six stations that have a higher percentage

of data available are located in Central Scotland. The stations are Glasgow 51,

Glasgow 73, Glasgow 95, Kirkintilloch 10, Kirkintilloch 8 and Kirkcaldy 6 while

the three stations that have fewest observations are located along the Coast.

These are Edinburgh 14, Bo’ness 2 and Armadale 3. In Figure 1.4, the stations

with 20-80% of data available are located both within the Central Scotland and

North-Western regions.
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Table 1.3: Descriptive statistics for SO2 levels by year, for each recording station

min. mean sd median max.

 station 1996 2000 2005 1996 2000 2005 1996 2000 2005 1996 2000 2005 1996 2000 2005

ABERDEEN 3 0 0 30 15.89 19.93 48.17 6.8 11.2 11.6 14 19 50.5 40 56 64

EDINBURGH 14

EDINBURGH 24 0 20.25 10 20 57

EDINBURGH 25 0 0 24.2 4.709 10.7 5.5 21 0 50 18

FALKIRK 8 0 17.13 12.8 14 78

GLASGOW 20 0 0 0 27.15 24.54 18.51 13.6 7.8 10.2 26 25 19 79 57 53

GLASGOW 51 0 0 0 22.23 22.12 18.81 11.7 7.3 8 20 19 20 58 50 60

GLASGOW 69 0 0 25.59 22.05 13.4 10.1 26 24 41

GLASGOW 73 0 0 0 19.23 16.44 13.72 12.5 7.8 8.4 19 19 13 104 43 39

GLASGOW 95 0 0 0 26.51 16.67 34.26 14.7 7.9 17.4 26 18 32 96 49 106

GLASGOW 98 0 0 0 20.85 18.77 11.71 13.2 7 5.6 20 20 13 68 46 41

HADDINGTON 3

HAMILTON 5 6 26.53 7.7 25 51

HATTON 1 0 6 5.153 7.109 2.9 2.3 6 6 13 12

BALLINGRY2 6 6 16.5 14.05 5.3 5 14 13 34 32

KILMARNOCK 2 6 6 9.83 8.866 3.2 4.4 12 6 14 19

KINROSS 1 6 10.98 4.7 13 26

KIRKCALDY 6 6 6 6 17.4 10.18 7.301 5.9 4.6 1.5 19 12 7 39 30 14

KIRKINTILLOCH 10 7 7 0 25.17 19.53 18.05 10.2 7.9 9 24 20 18 97 74 49

KIRKINTILLOCH 8 6 0 0 14.84 10.16 12.85 7.5 7 7.3 13 7 12 69 76 42

KIRKINTILLOCH 9 0 6 19.3 13.49 9.6 6 18 13 102 74

LIVINGSTON 1 0 9.695 6.9 12 32

LONGSIDE 1 0 0 12.4 5.077 5.2 2.5 13 6 47 12

ORMISTON 2 6 15.46 8.4 12 52

PENICUIK 1 6 6 21.03 17.7 6.8 8.2 19 15.5 43 44

PERTH 1 6 18.21 6.3 18 42

PETERHEAD 1 0 6 12.39 8.7 4.5 3.4 12 6 43 13

PETERHEAD 2 0 0 7.331 5.707 3.2 2.1 6 6 18 13

PETERHEAD 3 0 0 7.997 8.2 4.2 3.5 6 6 50 13

PRESTONPANS 1 6 11.03 4.7 12 38

STIRLING (BURGH) 5 0 6 16.73 11.6 5.9 5.8 18 13 43 38

TRANENT 2 6 6.953 2.5 6 18

WHITBURN 3 0 7 0 10.04 20.18 25.42 8.1 5.8 7.6 13 19 25 39 39 50

BO'NESS 2 6 18.53 8.7 19 27

BONNYRIGG 1 0 15.43 6.6 13 31

ARMADALE 2 0 13 7 44.62 34.02 40.11 27.7 15.8 13.6 40.5 28 39 229 116 99

ARMADALE 3 0 16.91 12.8 18 60

COATBRIDGE 11 0 6 0 35.52 43.43 20.48 16.6 10.8 35 26 19 129 118 61

COATBRIDGE 12 0 13.93 10 13 40

COATBRIDGE 5 0 0 30.39 21.69 14.4 8.2 31 23 126 70

COWDENBEATH 1 0 6 7 15.81 14.43 13.22 16.6 4.7 5.3 14 14 13 34 27 27

DALKEITH 1 0 6 24.97 24.55 8.1 9.1 24 24 55 49
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Figure 1.2: Map showing the 6 recording stations with more than 80% of data available

123
45

6

 >80% of data available

1
2
3
4
5
6

GLASGOW 51
GLASGOW 73
GLASGOW 95
KIRKINTILLOCH 10
KIRKINTILLOCH 8
KIRKCALDY 6

12



Figure 1.3: Map showing the 3 stations with less than 20% of data available
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Figure 1.4: Map of recording stations with 20-80% of data available
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Figures 1.5 shows time series plots of daily mean SO2 for some of the record-

ing stations, for us to see the pattern of the data in 1996. Three of these stations

(Glasgow 51, Glasgow 73 and Glasgow 95) have more than 80% of observations

available, and the remaining stations have 20−80% of data available (Glasgow 20,

Glasgow 69, Glasgow 98 and Falkirk 8). The chosen stations have fewer missing

observations which will enable us to clearly see the variation in pattern of SO2

levels across the stations and time period.

We observe that there is a considerable variation in mean concentration of SO2.

We see that the results for Glasgow 69 hover around (20-60) µg/m3 in January

and come down to around 10 µg/m3 in February, thereafter the level increases

to around 30 and there is a periodic rise and fall between (days 100-180). There

is relatively little variation apart from a period around day 180-200 (July) with

greater volatility. In Glasgow 51 there is much more variability than in Glasgow

69 though the levels are lower. Glasgow 20 also has similar variation in pattern

to Glasgow 51 for the first 2 months (days 1-60) with decreasing levels within

this interval, and there is no obvious pattern for the rest of the period except a

prominent peak around days 180-200, and days 270-280.

Falkirk 8 has a quite different pattern of variation than the other 3 stations with

prominent gaps in the series which are due to missing observations. It has rel-

atively low mean levels with less than 20µg/m3 in January also, with a spike

between days 140-160.

There is a relatively low mean level for Glasgow 73, with little fluctuation but

has a prominent peak around day 230 (August) which is about 100 µg/m3 of con-

centration. Continuous variation in mean levels for Glasgow 95 is also obvious in

the plot with a spike of about 90 µg/m3 which occurs around day 50 (February).

The Glasgow 98 pattern is similar to Glasgow 51 and Glasgow 20 for the first 2

months with a prominent peak around day 300 (October). Generally, each of the

7 stations we consider in 1996 has its own unique pattern. There is no common

pattern in all these figures. Specifically the spike in Glasgow 69 around day 190

is not obvious in the other series.

Some stations we consider in 1996 (Glasgow 51, Glasgow 20 and Falkirk 8) are

not repeated again in the next plots because they have no or few recorded ob-

servations in 2000 and 2005. In Figures 1.6, Glasgow 69 only operates towards

the end of the year (from September) with a gap between November and Decem-

ber which could be due to missing observations. There is a relatively low levels

varies within 0-40 µg/m3. For Glasgow 73, there is a gradual increase in mean

levels between days 1-90 (January-March), and a relatively constant mean level
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between days 90-270 with a little reduction in levels thereafter. This pattern is

similar in Glasgow 95 except for 2 spikes between days 120-160.

Glasgow 98 also has a relatively low mean level which is similar to Glasgow 73

and Glasgow 95. Kirkintilloch 8, Kirkintilloch 9 and Kirkintilloch 10 have very

similar pattern to each other, which could be due to proximity of the stations.

They generally have very low mean level (below 20 µg/m3) throughout the pe-

riod. Few gaps are obvious in all three series. There is a prominent peak around

day 120 (April) common to all three sites.

In Figures 1.7, gaps are getting more obvious in Glasgow 20, Glasgow 73, Coat-

bridge 12 and Cowdenbeath 1. These stations are characterized by unusual iso-

lated fluctuations, also with relatively lower mean levels, as compared to stations

in 1996 and 2000. Glasgow 73 recorded observations for only a very few days

between days 1-200. Coatbridge 12 does not record any data in the early part

of the year (days 1-90) while Cowdenbeath 1 on the other hand has no recorded

observations in the later part of the year (November-December). Glasgow 51 has

little variation in levels throughout the period with a spike around day 110, and

Coatbridge 11 has similar low variation in pattern.

Generally, Figures 1.5-1.7 indicate unique variation in pattern for the stations,

though a few stations have similar pattern for some period of time. Mean levels

of SO2 generally decrease with the years, in which 1996 has the highest mean

levels for most stations (Glasgow 73 spike), and the least concentration in 2005

(Glasgow 73 recorded far below 10 µg/m3 around day 40) in Figure 1.7. We next

use the long term trend across years in Figure 1.8 to justify the fall in mean level

pattern we observe here.

Figure 1.8 shows the long term trend across the years of daily mean concentration

for two of the stations with more than 80% of data recorded (Glasgow 73 and

Glasgow 95). The essence of this is to further observe the changes in variational

pattern of SO2 levels across the years, especially for those stations with fewer

missing observations. This will also enable us to compare the trend pattern on

a yearly basis. Again there is considerable fluctuation in the levels across time.

For Glasgow 73, there is a gradual increase in level between 1996-1998 and then

a decrease thereafter till 2002, with few high fluctuations between this period

and 2005. Glasgow 95 has relatively constant mean levels between 1996 and 2002

after an initial high level, and an increase in levels characterized the 2002-2005

period.
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Figure 1.5: Time series plot of daily mean SO2 concentrations for some stations in 1996
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Figure 1.6: Time series plot of daily mean SO2 concentrations for some stations in 2000
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Figure 1.7: Time series plot of daily mean SO2 concentrations for some stations in 2005
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We consider the monthly averages rather than daily mean levels to investigate

the seasonal effect more closely. Figures 1.9-1.11 show plots of monthly average

SO2 concentration for some sites in 1996, 2000 and 2005 respectively. In Figure

1.9, Falkirk 8 has a gradual increase in mean level between January and August.

August has the highest concentration of about 25 µg/m3 then a decrease in level

to about 15 µg/m3 between August and September. There is no recorded obser-

vation for this station between October and middle of November. The December

level is relatively low.

Glasgow 20 has a decrease in level between January and February with gentle rise
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Figure 1.8: Long term trend of daily SO2 concentrations for Glasgow.73 and Glasgow.95

0
20

60
10

0

G
LA

S
G

O
W

.7
3

0
20

60
10

0

1996 1998 2000 2002 2004

G
LA

S
G

O
W

.9
5

year

Daily concentration 

and fall between February and April and thereafter increases till the end of the

year. It also has a summer peak in August similar to Falkirk 8. Glasgow 51 and

Glasgow 69 have similar decreasing patterns between January and April, similar

to Glasgow 20, with a prominent peak in May, a sudden fall in level between May

and July, and relatively constant levels for the rest of the year (July-December).

In Figure 1.10, Glasgow 20 and Glasgow 51 have increase in level between Jan-

uary and August with a low level in June. Glasgow 20 has a peak in August

similar to Falkirk 8 and Glasgow 20 in Figure 1.9. Glasgow 51 has dual peaks,

one in July, the other around September, and thereafter a rapid decrease then

increase. Glasgow 69 only recorded observations for the last quarter of the year

similar to what we observe in Figure 1.6. There is no obvious pattern for Glasgow

73, though it has relatively constant mean level between April and August.

In Figure 1.11, Kirkintilloch 8 and Kirkintilloch 10 have similar patterns, with

both exhibiting May and September peaks. Whitburn 3 and Armadale 2 also show

similar patterns with Armadale 2 having a prominent peak in July. Generally in

Figures 1.9-1.11 fluctuations in levels are seen in all of these plots, although these

are different for each station and there is a little variation in seasonal pattern

with peak concentrations occurring in summer months.
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Figure 1.9: Time series plot of monthly mean SO2 for some stations in 1996
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Figure 1.10: Time series plot of monthly mean SO2 for some stations in 2000
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Figure 1.11: Time series plot of monthly mean S02 for some stations in 2005
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Figures 1.12-1.14 now show histograms of the daily SO2 concentration for

some stations in 1996, 2000 and 2005. In Figure 1.12 most of the levels are

within the 40 µg/m3 limit and the data points are clustered together. None of

the plots is symmetric. There is a general tendency for skewness to the right,

reflecting occasional high levels of SO2.

In Figure 1.13, Aberdeen 3, Edinburgh 25 and Glasgow 20 histograms are similar

with clustered data points. Concentration levels are very high, Aberdeen 3 is also

right skewed but Glasgow 51, Glasgow 69 and Glasgow 73 have very scanty data

with generally low concentration levels.

In Figure 1.14, Aberdeen 3 has most of its data within 10-20 µg/m3 while Ed-

inburgh 25 has fewer recorded observations, with low mean level, and most data

are within 6-7 µg/m3. Also, Glasgow 20, Glasgow 51, Glasgow 73 and Glasgow

95 seem more symmetric with clustered data points. Generally, the histograms

in Figures 1.12-1.14 show that most of the data are closer together (within the

same range) for 1996 and 2000 than 2005, so the year 2005 histograms have more

dispersed data.

Figure 1.12: Histograms of daily SO2 concentration in 1996
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Figure 1.13: Histograms of daily S02 concentration in 2000
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Figure 1.14: Histograms of daily SO2 concentration in 2005
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Considering trend within year, Figures 1.15-1.17 show boxplots of monthly

SO2 concentration over all sites combined in years 1996, 2000 and 2005 respec-

tively. The boxplots for 1996 in Figure 1.15 have a steady increase in median level

between February and July and decline between August and December. The me-

dian level is relatively very low with little variation from month to month. Sum-

mer months (May-August) are higher than the rest of the year. Outliers (unusual

observations) are also very obvious which is an indication of presence of extreme

observations.

In Figure 1.16, there is almost a constant median level of SO2 between January

and April 2000 though the relative location of the median is quite different from

that of 1996 (where it was almost in the centre of the box). The median levels

decrease between May and August, with a little rise in September before a jump

down to a very low level in November. May has the highest median level.

The boxplots in 2000 are more generally widely varying in levels than those of

1996, which could be as a result of scanty observations. There are still outliers

but not as many as in 1996. In Figure 1.17, the median level also rises from Jan-

uary to April and is almost constant between May and June before a rise again

in August. August has the highest median level, in accordance with some of the

earlier results that emphasize a summer peak. Thereafter, there is no obvious

pattern for September-December. Generally, a cyclical pattern (periodic rise and

fall in median levels) characterized SO2 median level in 2005. Year 2005 has the

least outliers as compared to other years, which can be attributed to very scanty

observations with fewer recording stations operating.

In summary, there is a general variation in SO2 median levels both within the

year, in which summer months have a prominent peak, and across the years, in

which data are more clustered together in 1996 than 2005. We have fewer ob-

servations in the later year (2005) as indicated by wider irregular fluctuations

in median level in 2005 than 1996. Year 1996 has more prominent outliers than

the other years because of clustering of data points and more extreme data. The

patterns of fluctuation in levels for 2000 and 2005 are not as clear as that of 1996.

Figure 1.18 shows variance versus mean plots for daily SO2 levels for all stations

in 1996, 2000, 2002 and 2005. This allows inspection of the variance across sta-

tions. The top-left box represents the 1996 dataset in which we have 41 different

recording stations. In this plot the data points are very clustered with a gradual

rise in variance level as the mean increases. The top-right plot represents the year

2000 with 28 different recording sites and variance also increases with increase in

mean level. The bottom-left and bottom-right plots correspond to 2002 and 2005
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with 19 and 15 recording sites respectively. Variances also increase with increase

in mean levels. Stations here are more widely scattered in the plots than in 1996

and 2000. The highest variance levels for 1996, 2000, 2002 and 2005 are about

800µg2/m3, 1000µg2/m3, 450µg2/m3 and 300µg2/m3 respectively.

In all cases, it can be seen that variance clearly increases with the mean level,

so that a variance stabilising transformation is desirable and necessary, either

through a square root or logarithmic transformation of SO2 data before further

modelling. This will be considered in the subsequent section before time series

modelling and spatial analysis of this data.

Figure 1.15: Boxplots of monthly SO2 concentration for all sites in 1996
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Figure 1.16: Boxplots of monthly SO2 concentration for all sites in 2000
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Figure 1.17: Boxplots of monthly SO2 concentration for all sites in 2005
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Figure 1.18: Plots of variance versus mean daily SO2 levels over all station in a given
year
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1.6 Box-Cox transformation

Many spatial observations show a markedly non-Gaussian behaviour. The Box-

Cox procedure to identify a suitable transformation is a standard method that is

mostly used when a dataset contains outliers or when the dataset is not normally

distributed. Many datasets in real life are skewed and sometimes have a heavy

right tail, and in either situation the data is usually transformed to be approx-

imately Gaussian distributed. Transformation of data is designed to achieve a

specified purpose such as stability of variance, additivity of effects and symmetry

of the density.

Let Y be a random variable on the positive half-line, The Box-Cox transformation

of Y with power parameter λ is defined as

Y λ =

{
Y λ−1

λ
: λ ̸= 0

log(Y ) : λ = 0.

In the geoR package of R, the numerical value of the Box-Cox transformation

parameter λ = 1 corresponds to no transformation. The parameter λ is always

regarded as fixed and data transformation is performed before the subsequent

analysis. Prediction results are back-transformed and returned on the same scale
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as for the original data. We do not use Box-Cox explicitly but the logarithmic

transformation is considered later for our data in Chapters 3, 4 and 5, which

corresponds to λ = 0 (Pengfei Li, 2005; De Oliveira and Ecker, 2002; De Oliveira

et al. 1997; Box and Cox, 1964).

1.7 Conclusion

We generally observe that there is a variation in the levels of SO2 both within

the year (seasonal variation), i.e the concentration levels vary on a monthly basis

with summer months usually having the highest concentration levels, and across

the years, as seen in the boxplots of Figures 1.15-1.17 and time series plots in

Figures 1.5-1.11. The variation is not consistent over the years as each year gives

different variational patterns. Also long-term fluctuation is visible among the

years in Figure 1.8.

The mean-variance plots in Figure 1.19 indicate that the variance increases with

mean levels, thus will necessitate appropriate transformation in our modelling

in subsequent chapters. Some of the histograms are right-skewed, which implies

that the SO2 data is not normally distributed in general.

Most of the stations are concentrated in Central Scotland, and there are no

stations with available data in the North-Western part of Scotland where the

population density is very low and there are low industrial activity, so there is

low risk of high SO2 concentration in this region. The years 1996 and 2003 have

the lowest percentage of missing observations. Edinburgh 14 has the highest

percentage of missing observations, while Glasgow 66 has the fewest number of

observations missing (in Table 1.1), closely followed by Glasgow 51 and Glasgow

64.

Chapter 2 now discusses previous work on air pollution data and the sorts of

models used to describe it.
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Chapter 2

Literature review

2.1 Effects of air pollution, and its relationship

with health

Chapter 1 discusses the general background on air pollution, its effects and rela-

tionship to health, while focusing on SO2 data. Basic description of the SO2 data

with respect to its availability, monitoring locations and the missing structure of

the data was also given.

This chapter reviews some of the previous work on adverse impacts of environ-

mental pollutants on human health in Section 2.1, before discussing some of the

various models used for air pollution data in Section 2.2.

2.1.1 Effects of air pollution on health

Numerous studies have investigated the health impact of environmental pollution

and the adverse effects of airborne pollutants upon human health have been well

established (Katsouyanni, 1997; Dockery, 1993 and 2006; Martuzzi, 2006; Bac-

carelli, 2008). One of the findings of the epidemiological studies was that there is

a short term effect of pollutants on health, with emphasis on death and hospital

admission (Brunekreef, 2002), and that based on several pollution studies, find-

ings have also suggested that a temporal correlation exists between particulate

matter and sulphur dioxide with acute increase in mortality.

SO2 has been related with many adverse health impacts (Brunekreef and Hol-

gate, 2002; Koren, 1995), including high mortality risk, diabetes related deaths,

sudden infant death, heart diseases and bronchitis etc. (Biggeri et al., 2005).

Katsouyanni et al. (1997) assessed the relative risk of death and found that

”in Western European cities an increase of 50µg/m3 in sulphur dioxide or black
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smoke levels was associated with a 3% increase in daily mortality (95% confi-

dence interval 2% to 4%), and was 2% (1% to 3%) for PM10 (particles which

have aerodynamic diameter less than 10µm), while in Central and Eastern Euro-

pean cities the increase in mortality associated with a 50µg/m3 change in sulphur

dioxide was 0.8% (-0.1% to 2.4%) and in black smoke 0.6% (0.1% to 1.1%)”. They

also observed that the pollutant effects were usually stronger during the summer

months.

Burnett et al. (1995) found that a ”13µg/m3 increase in sulphates recorded on a

day before a patient is admitted in hospital (95th percentile) was associated with

a 3.7% (p ≤ 0.0001) and a 2.8% (p ≤ 0.0001) increase in both the respiratory

and cardiac admissions respectively”.

Many papers also concentrate on the short-term health impacts of environmental

pollution (Schwartz, 2001; Samet et al., 2000 and Biggeri et al., 2004) rather than

the long-term effects studies such as Pope et al. (2002), Dockery et al. (1996),

Yap et al. (2006), Skalpe (1964) and Beeson et al. (1998).

It was estimated that 3400-5700 people in the Netherlands died prematurely

through short term exposure to air pollution in 2003, of which 1/3 is caused by

ozone and 2/3 by particulate matter (PM) (Fischer et al., (2004) in Stein and

Dekkers et al., (2006)).

Dockery et al. (2006) confirmed that there have been recent developments in

the assessment of health effects of pollutants at different times and scales of

exposure in various locations, and that there has also been new evidence of inter-

relationship between PM and health effects and emerging evidence of a general

relationship between PM exposure and mortality and cardiopulmonary morbid-

ity.

Sunyer et al. (1996) reported on relationship between daily air pollution lev-

els and emergency admissions for chronic obstructive pulmonary and asthmatic

diseases in Barcelona. They were able to assess the inter-relationship of environ-

mental pollutant and mortality using autoregressive Poisson regression models

that incorporate temperature, relative humidity and variables relating to tempo-

ral and autoregressive patterns. Their findings were that black smoke and SO2

were related to mortality and that there is a growing link between SO2 and mor-

tality during summer.

Beeson et al. (1998) examined the long-term interconnection between atmo-

spheric pollutants and risk of lung cancer in non-smokers, and assessment of risk

of incident cancer was also analysed for ozone, PM10 and SO2 pollutants. The

findings established a substantial link between high risk of lung cancer and PM10

31



and SO2.

From these studies we conclude that increase in SO2 levels is related to increase

in ill health. We next consider and discuss several air pollution models adopted

by various authors.

2.2 Models used for air pollution data

From the previous section we can see that sulphur dioxide is one of the major

pollutants that has negative impacts on health. Most environmental data are

usually characterized by missing observations, and it makes data analysis more

difficult. Thus, there is no generally acceptable or universal approach to adopt

while analysing data of this nature.

Many authors utilize different methods and various statistical approaches. Differ-

ent models have been used to analyse pollution data, from geostatistical kriging

for spatial interpolation, Bayesian modelling, generalized additive models, spatio-

temporal modelling etc. Some of the available literature on air pollution modelling

techniques are reported below.

2.2.1 Kriging models

Geostatistical interpolation, otherwise known as kriging, has been applied in

many spatial applications (Cressie, 1993; Chiles and Delfiner, 1999). There has

been a substantial increase in application of kriging to air quality data, usually to

interpolate measurements at unknown locations. There is a considerable empha-

sis on spatio-temporal interpolation (Wikle et al., 1998; Kyriakidis and Journel,

1999; Huerta et al., 2004). We used kriging in Chapter 4 of this thesis for spatial

interpolation of SO2 levels in Scotland.

Armstrong and Jabin (1981) described the method of estimating and modelling of

variograms and also discussed certain mathematical conditions which a variogram

or a covariance function must satisfy. One of their findings was that the shape of

the variogram model for shorter distances is most important for usage in kriging.

Thus in the sample variogram modelling, the values of the sample variogram for

longer lag distances are not necessarily needed once a reasonable shape at shorter

distance is obtained. They evaluated the sample variogram graphically to visu-

ally display closeness of experimental variograms to the theoretical model for the

same lag distance, and model performance in terms of kriging was examined.

Cressie (1993) discussed general approaches and techniques for modelling spatial

data based on varying assumptions about which parts of the model could be ref-
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ered to as a fixed trend or come from spatial covariance with random effects and

other random parameters, while Hobert et al. (1997) used a similar approach but

focused on the modelling of SO2. Handock and Stein (1993) worked on Bayesian

kriging by predicting a Gaussian random field in a way that includes the uncer-

tainty parameter in the covariance function. The analysis was based on the best

linear unbiased prediction procedure using a Bayesian network. The formulated

model was later applied on topographical data.

De Oliveira et al. (1997) on the other hand extended the findings of Handcock and

Stein (1993) by using transformed Gaussian random fields with a parametric fam-

ily of monotone transformations model for prediction. The Bayesian transformed

Gaussian method is another form of trans-Gaussian kriging incorporating major

sources of uncertainty in the predictive density estimation. Unlike the trans-

Gaussian approach, it adopted a more robust predictive approach and employed

the median as the optimal predictor because the predictive mean distribution

does not exist for most common transformations.

Pilz et al. (1997) worked on a prediction problem by deriving a minimax ap-

proach which accounted for the uncertainty in variogram selection and compu-

tation rather than concentrating on a simple estimated variogram, while Griffith

and Layne (1999) presented graphical, numerical and empirical findings that help

to show the association between geostatistics and spatial autoregression.

Holland et al. (2000) compared the performance of generalized additive models

with the Bayesian method. The trends and their standard errors are estimated

in a two way procedure. Firstly, a generalized additive model is fitted to SO2

data to compute the magnitude of the site-specific trend by incorporating the

meteorology and season in the analysis. A stationary normal random variable

was also adopted for the site dependent measurement error from the estimated

trend. Kriging methodology was later utilized in the constructon of spatially

smoothed estimates of the true trend. The last part of the analysis involves the

use of Bayesian analysis with the Markov Chain Monte Carlo (MCMC) method,

to estimate the regional trends and their standard errors.

Wikle and Royle (2002) utilized the mixed model framework method for charac-

terizing spatial statistics. They focused on the classical geostatistical approach,

kriging, in which they adopted a linear mixed model. Modification was also

made to the generalized linear mixed model to incorporate non-Gaussian spatial

processes. They later used the mixed model framework to describe multivariate

spatial models and many spatio-temporal models.

Diggle et al. (2003) gave an introduction to model-based geo-statistics by for-
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mulating the general modelling network for geo-statistical problems. Spatial pre-

diction was also considered within the framework. Kammann and Wand (2003)

also used the kriging method for spatial prediction. Ruppert et al. (2003) also

considered this approach widely.

Pilz et al. (2005) utilized a non-parametric variogram function that gives a mini-

mum mean square error prediction. They adopted another Bayesian procedure to

predict the model uncertainty by means of reliable posterior probability distribu-

tion for the parameters. Matern covariance functions were used in the variogram

computation. They later examined various parameter estimation methods includ-

ing weighted least squares, generalized least squares, maximum-likelihood, REML

and Bayesian techniques. The method was later applied on log-transformed nor-

mally distributed data.

Pilz and Spock (2007) derived another form of Bayesian kriging which incorpo-

rates uncertainty in covariance estimation and efficient normal transformation of

the data. The method utilized the sample estimate of covariance and Box-Cox

transformation. They also constructed spatial sampling design and optimal plan-

ning of recording stations in order to get better and reliable spatial results, by

approximating the spatial process using a linear regression model with uncorre-

lated errors.

2.2.2 Bayesian models

Xia and Carlin (1998) used a mixture of two approaches by combining the meth-

ods of spatial-temporal mapping with covariate error treatment in a Bayesian

hierarchical model. The posterior distribution of the model parameters was esti-

mated using the MCMC method. The model was applied to data on lung cancer

rates.

Host (1999) presented a statistical method for estimating national emissions of

air pollutants across European countries by formulating models which used SO2

in a spatial linear regression model with the measured deposition as a response

and the emissions as independent variables within a Bayesian framework .

Little and Rubin (2002) discussed widely on classes of missing data and also con-

sidered a Bayesian MCMC procedure for missing data models. This procedure

was used in fitting a Bayesian logistic regression to model and analyse environ-

mental pollution data with missing observations. They also observed that the

procedure performed very well, especially for modelling data with relatively few

parameters, and that the number of parameters which can be specified are unlim-

ited for this method, even though the MCMC procedure may be computationally
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costly for missing data and might also take a longer period of time for its com-

putation.

MacNab (2004) proposed a Bayesian spatial regression model that was used to

estimate the rate of accident and injury. The results demonstrated how Bayesian

modelling techniques can be used in a risk assessment. She later presented a gen-

eral modelling framework that enables in depth investigations into relationship

between injury rates and associated variables. The method was applied to SO2

data. The model result was effective in verification of national compliance with

emissions standards, and the method can also be extended to a wide range of

other pollutants rather than only SO2.

Riccio et al. (2006) presented a hierarchical Bayesian methodology. The model

was applied to ozone data and also used to validate the CAMx (Comprehensive

Air Quality Model with Extensions) result. Fasso et al. (2007), on the other

hand, suggested a hierarchical model as a suitable solution to the dynamics of

spatio-temporal modelling of environmental data, again using the EM algorithm.

They illustrated how the algorithm can be combined with a parametric bootstrap

for the evaluation of the parameter estimation through computation of standard

errors and confidence intervals.

2.2.3 Spatio-temporal models

Handcock and Wallis (1994) presented a spatio-temporal model of winter temper-

ature data by making use of separate spatial analysis in each year and a Gaussian

random field, while Li et al. (1999) worked on spatial-temporal models for ambi-

ent hourly PM10, and found that there was a constant temporal pattern across

the monitoring sites for PM10 observed in the Vancouver area, by adopting a com-

mon temporal correlation structure for all the recording stations in the model.

Also, Smith (2003) analysed and decomposed spatio-temporal data into determin-

istic non-parametric factors of time and space and applied the result for spatial

interpolation. The EM algorithm was used for missing data imputation. The

result was used to predict PM2.5 levels.

In a similar study, Huerta et al. (2004) worked on the spatio-temporal modelling

of ozone levels in Mexico City, using a dynamic linear model framework to calcu-

late prediction values for ozone levels. The model incorporated spatial covariance

functions for the observations and harmonic component parameters. Romanowicz

et al. (2006) presented spatial-temporal interpolation of environmental pollution

data by using time series analysis, and also showed how a non-stationary time

series procedure could be used to analyse the data. The methodology was applied
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to nitrogen oxide concentration.

Yap et al. (2006) worked on the risk assessment of long term exposure to air pol-

lution on mortality by developing a spatio-temporal model for the estimation of

cohort exposure to air pollution. Several methodologies were used, ranging from

multiple imputation for missing data, multilevel and mixed effect modelling.

Fan et al. (2008) worked on spatio-temporal modelling of ambient SO2 concentra-

tions and proposed a modification to the kernel mixing method using a dynamic

linear spatio-temporal model, which improves model flexibility in handling tem-

poral and spatial data. Spatial and temporal autocorrelation are analysed by

fitting semivariograms to determine the range, the sill and the nugget. These

are three parameters that define the semivariogram. The nugget is a measurement

error and is represented by the intercept of the variogram, the range is a constant

that determines the degree of correlation between data, always represented as a

distance, while the sill is the value of the semivariance as lag k tends to infinity

(Cressie, 1993); these are also discussed in Chapter 4. For each monthly dataset,

the map of interpolated regions was also provided in the study.

Several other studies reported modelling of pollutants using other methods. Schwartz

et al. (2001) assessed the short term health impacts of pollutants on daily mor-

tality. Fixed and random effect models were utilized to obtain the combined

individual city regression coefficients. Sensitivity analysis was also invesigated to

examine the effect of the chosen statistical models. The study indicated that ”an

increase in SO2 concentration of 50µg/m3 was associated with 2.2% increase in

mortality when analysis was applied to data for days with S02 concentration of

less than 200µg/m3”. This method was described as a more rigid approach than

generalized additive models.

Fuentes et al. (2006) quantified the effects of PM exposure on mortality. They

used the best available spatial PM2.5 information from monitoring networks to

better estimate the increase in rate of mortality as PM level increases. A gener-

alized Poisson regression (GPR) model was used. The GPR model discards the

standard Poisson model but allows for both under- and over-dispersion to model

mortality data. They also carried out a spatial-temporal analysis to identify the

main constituents of the PM mixture that are the most significant in causing

mortality. The GPR model was not considered in this thesis because we do not

have any observation related to number of counts or rate for which GPR is most

appropriate.

Yanosky et al. (2008) assessed chronic PM10 exposure by fitting a monthly

smooth spatial term and smooth regression term of GIS-derived and meteorolog-
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ical predictors, using a cross-validation approach and other useful pre-specified

selection criteria. Recently, Sabah et al. (2008) used an artificial neural network

to predict the ground levels of SO2 for determination of meteorological factors

that can affect SO2 concentration.

2.2.4 Other spatio-temporal models

Wood and Augustin (2002) presented the basic mathematical and numerical ap-

proaches to generalized additive models implemented in the mgcv package of R,

and they demonstrated the methods by illustrating with two different environ-

mental data examples.

Bowman and Azzalini (2002) gave general theoretical ideas about the computa-

tional aspects of non-parametric smoothing with illustrations using the sm library

in R. This is basically a computationally efficient procedure for analysis of a very

large dataset with many evaluation points or multivariate data. They provided

an efficient matrix formulation of non-parametric smoothing and also derived a

modified binning approach for the data when the sample is very large.

Roca-Padinas et al. (2004) predicted binary time series data of SO2 concentra-

tion by using a generalized additive model that has an unknown link function.

The methodology involves incorporating a non-parametric estimation of the link

function by a local scoring algorithm. The non-parametric estimation stage in-

volves using a local linear kernel smoother, and because of high computational

cost, the binning technique was also adopted to hasten the computation. One

of the findings was that this model performs better than those with transformed

binary regression.

Roca-Padinas et al. (2005) also considered a generalized additive model which

involves a second-order interaction term by using a local scoring algorithm in

combination with local linear kernel smoothers for parameter estimation. This

technique is similar to the approach in Roca-Padinas et al. (2004). A bootstrap

procedure was utilized for estimation rather than the backfitting method, which

is difficult because of high computational cost, and a binning procedure was also

incorporated to speed up computation. The method was applied on SO2 data.

Mentzakis and Delfino (2005) examined the effects of pollution and climate pa-

rameters on human health, and sensitivity of their results was tested under dif-

ferent model specifications, which involve linear models and generalized linear

models as well as generalized additive models.

Also, Bowman et al. (2009) considered spatio-temporal modelling of SO2 using

an additive model procedure. Basic description of the correlation pattern of the

37



dataset was carried out and a binning technique was derived and adopted (as in

Bowman and Azzalini (2002)) to provide an effective computation of the backfit-

ting algorithm, because of the large sample size. A three-dimensional smoothing

technique was also developed and applied to SO2 data collected over European

countries to model the interaction among the space, time and seasonal effects.

Along the same lines, Terzi and Cengiz (2009) utilized a generalized additive

model procedure in multiple Poisson regression for modelling the relationship be-

tween air pollution and increases in hospital admissions for respiratory diseases.

The model was demonstrated on an SO2 dataset.

The following authors also adopted generalized additive models in different ar-

eas to analyse their data Azadeh and Salibian-Barrera (2009); Yee and Mitchell

(1991); Hastie and Tibshirani (1986); Kauermann and Opsomer (2000); Olsson

and Oard (2008); O’Brien and Rago (1996); Lopez-Moreno and Nogues-Bravo

(2005); Jackson et al. (2008); Murase et al. (2009); Wang et al. (2009).

2.3 Conclusion

Having reviewed the literature on health impact of air pollution and various

models that could be used to analyse air pollution data, we conclude that air

pollution really has adverse effects on human health. We are going to use kriging

and spatial GAM models to investigate spatial heterogeneity, as our data consists

of measurements at 41 locations. With both of these methods we will be able to

interpolate SO2 in regions where there is no station and provide an SO2 map of

Scotland. We will not pursue any links to health data in this thesis though it is

an obvious extension to this work.

We now base our subsequent analysis, which involves the imputation of missing

data and time series analysis of S02 data, on the ideas and knowledge we ob-

tained from this review. The next chapter will introduce imputation methods

and time series analysis of SO2 data, before kriging and spatial GAM modelling

are considered in Chapters 4 and 5 respectively. We adoted a gam spatial method

in our analysis because it has been used to analyse similar SO2 level over Euro-

pean countries by Bowman et al. (2009) and the kriging which is also an efficient

method for obtaining optimal spatial prediction for our SO2 was also used by

Hobert et al (1997) and Handock and Stein (1993) to also analyse similar data.
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Chapter 3

Imputation methods and time

series analysis of SO2 data

3.1 Missing value and multiple imputation

Chapter 2 reviews previous work on air pollution and its effects on human health,

before discussing some of the models used for air pollution data. This chapter

focuses on methods for imputation of missing data, then applies these to the

SO2 data using the time series methodology. The chapter also describes some

theoretical background, and some elements of data description software in R and

SPSS.

Section 3.1 discusses the missing value and multiple imputation techniques, fo-

cusing on missing data classifications, EM, regression and MICE procedures.

Section 3.2 applies different imputation methods to the SO2 data, and also com-

pares the performance of each of the imputation techniques, using time series

plots and box plots. Section 3.3 describes time series data, correlograms and

parameter estimation. Section 3.4 describes different time series modelling tech-

niques such as AR, MA, ARMA, ARIMA and time series decomposition as well

as diagnostic checking of residual models. Section 3.5 presents the model results

and Section 3.6 gives the conclusion.

3.1.1 Missing value analysis

Missing data is usually a source of problems in statistical modelling. Proper han-

dling of missing values is important in all analyses, for instance in time series

analysis of environmental data which is usually characterized by missing observa-

tions. The missing data can be attributed to equipment failure or malfunctioning
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and an inability of equipment to measure below certain threshold values and un-

controllable external factors, and administrative decisions to stop recording for a

period of time. The SO2 data we are considering in this thesis have many missing

values.

Data with missing observations usually causes a serious challenge to data anal-

ysis. Many modelling techniques remove completely observations with missing

values from the analysis. The two methods for analysing missing observations in

SPSS are missing value analysis and multiple imputation (MI) procedures. The

central aim of MI is to obtain several possible values for missing data (SPSS,

17.0).

3.1.2 Missing data classifications

Let Z be a matrix of observed value, and Y a matrix of missingness indicator

response with Yi = 1 if the ith element of Z is missing, and 0 otherwise, with

parameters θ. The missing completely at random (MCAR) assumes that the

missing pattern is not associated with any variables either known or unknown, i.e

data are said to be MCAR when the missing pattern does not depend on observed

or unobservable quantities and is defined as

P (Y |Z) = P (Y |Zobs, Zmis, θ) = P (Y |θ). (3.1)

Data are said to be missing at random (MAR) when the missing pattern does

not depend on the unobserved data ( it may depend on observed data). Little’s

MCAR test can be used to determine if dataset are actually missing at random

or not (see section 3.1.5). The assumption of MAR is that

P (Y |Z) = P (Y |Zobs, θ) = P (Y |θ). (3.2)

(Little & Rubin, (2002); Horton & Lipsitz, (2001); www.washington.edu/uware/spss/).

3.1.3 Methods for multiple imputation in SPSS and R

Here, we examine multiple imputation techniques and assumptions that it re-

quires, as well as review some software packages that implement this procedure.

MI involves imputing missing values several times using a correct model specifica-

tions, by incorporating random variation in a dataset. MI introduces appropriate

random error into the imputation process to make it possible to obtain approxi-

mately unbiased estimates of all parameters and repeated imputation often allows
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one to get better estimates of the standard errors. The various imputation mod-

els that can be used include predictive mean matching, logistic regression or

propensity and MCMC (Markov Chain Monte Carlo).

The predictive mean matching and MCMC procedures require assumptions of

normality for the data to be imputed. The inference is still robust to little de-

viations from this assumption (Schafer, 1997; Rubin, 1996 & 1977). Predictive

mean matching (pmm) uses a linear regression model assumption for the distri-

bution of incomplete data conditional on other variables. Let variable Yj have

missing values. Then a model can be fitted using completed observations for

Y1, . . . , Yj−1, as

E[Yj|φ] = φ0 + φ1Y1 + φ2Y2 + . . .+ φj−1Yj−1. (3.3)

On the ith iteration, the parameters φi are sampled from a normal distribution

for the parameters and the missing values are then replaced by

Y i
j = φi

0 + φi
1Y1 + φi

2Y2 + . . .+ φi
j−1Yj−1 + σiε, (3.4)

where σi is the variance estimate from the model, and ε is a simulated N(0, 1)

random variate.

The pmm is based on assumption of a linear regression model, while the propensity

method utilizes a logistic regression model for the missing pattern indicators. The

MCMC method, on the other hand, simulates samples from the posterior den-

sity f(Y mis|Y obs). This can be computed by the method proposed by Schafer

(1997) in which at the jth iteration the imputation step draws Y mis,(j+1) from

f(Y |Y obs, φ(j)) and the parameter estimation step draws φ(j+1) from f(φ|Y obs, Y mis,(j+1))

The Markov chain consists of

({
Y (1), φ(1)

}
,
{
Y (2), φ(2)

}
, . . . ,

{
Y (j+1), φ(i+1)

}
, . . .

)
. (3.5)

TheMCMC method handles data with arbitrary missing patterns but is based on

normality assumptions, and it is complicated as well as computationally expensive

(Horton & Lipsitz, 2001).

3.1.4 Missing value analysis

Missing value analysis as available in SPSS describes the pattern of missing data,

and investigates if data have values missing in multiple cases or are missing ran-

domly. Missing value techniques include listwise, pairwise, regression (described
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above) and Expectation-Maximization methods. We focus mainly on regression

and EM described below.

Missing value analysis addresses several problems caused by incomplete data.

Missing data reduces the precision and accuracy of calculated statistics because

important information may be lost in the missing data, and many statistical as-

sumptions are based on complete observations rather than missing data, which

complicates the required theory.

Missing value analysis is mostly based on the assumption that the pattern of

missing values does not depend on the data values. If the data are not missing

completely at random, then an EM estimation technique may be most suitable

(Little and Rubin, 1987; SPSS 17.0).

3.1.5 Expectation Maximization method in SPSS

The EM estimation method is based on the assumption that the pattern of miss-

ing data is dependent on observed data only, i.e missing at random. The method

assumes a distribution for the incomplete data and bases inferences on the likeli-

hood under that distribution. Each iteration consists of E and M steps. The E

step computes the conditional expectation of the missing data, given the observed

values and current estimates of the parameters. These expectations are then sub-

stituted for the missing value. In the M stage, maximum likelihood estimates of

the parameters are calculated with the assumption that the missing data have

been completed.

A missing completely at random (MCAR) test is usually computed by Little’s

chi-square statistic. The null hypothesis is that the data are missing completely

at random. The test statistic is

d2 =
N∑
i=1

d2i =
N∑
i

Mi(Ȳi − µ̂i)Σ̂
−1(Ȳi − µ̂i)

T , (3.6)

which has an asymptotic χ2 distribution with
∑N

i (Pi − P ) degrees of freedom,

where P is the number of variables, N is the number of patterns of missing

values from a possible 2P , while µ̂ and Σ̂ are the maximum likelihood estimates

of the parameters of a p-dimensional multivariate normal distribution based on

the available data, Mi is the the number of observations with the ith missingness

pattern, Pi is the number of complete observations in pattern i, µ̂ and Σ̂−1 are

the subsets of the parameters corresponding to complete observations for pattern

i (they are vector of length Pi and a matrix of dimension PiXPi, respectively)
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and Ȳi is the Pi- dimensional sample average of the observed data in pattern i. If

the null hypothesis is rejected (when d2 is large), then either the data is missing

at random (MAR) or not missing at random (NMAR) but is not MCAR (Little

and Rubin, 1988; Hesterberg, 1999).

Regression Method in SPSS

The method calculates multiple linear regression estimates by adjusting the esti-

mates with random components. For each predicted value in the iteration proce-

dure a residual from a randomly selected complete variable can be added to the

results or added from a random normal deviate or from a random deviate (scaled

by the square root of residual mean square) from the t-distribution. This adds an

optional random part to a regression estimate of a missing value (SPSS 17.0).

MICE in R

Another method for complex incomplete data is Multivariate Imputation by

Chained Equations, provided in the MICE package of R. This generates mul-

tiple imputation, analyses imputed data and pools analysis results (Rubin, 1987

& 1996).

The main features of this package are columnwise specification of the imputation

model, the ability to deal with arbitrary patterns of missing data, passive imputa-

tion, subset selection of predictors, support of arbitrary complete data methods,

support of pooling various types of statistics, diagnostics of imputations and a

callable user-written imputation function package.

The methods in MICE include predictive mean matching (pmm), Bayesian linear

regression, linear regression, unconditional mean imputation, two-level logistic

regression (logreg) and unordered polytomous regression (polyreg).

The method of predictive mean matching is related to the regression method,

except that for each missing observation an observed value is imputed with a

closest value to the predicted value from the simulated regression model (Rubin,

1987). The method assumes that imputed data are more reliable and may also

perform better than the regression method when there is little departure from

the normality assumption (Horton & Lipsitz, 2001, Van Buuren et al, 2006).
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3.2 Comparison of imputation modelling per-

formance on SO2 data

Before we proceed with time series modelling of the SO2 data it is imperative

for us to explore the appropriate imputation technique for the analysis. In the

basic description of the data in Chapter 1, Table 1.1 describes the missing data

structure, while Figures 1.4-1.13 show the time-series patterns.

We found out that our data has a considerable number of missing observations in

some stations and time periods, thereby necessitating the use of an appropriate

imputation technique. In order to provide a common and universal set of data

for modelling of SO2, the missing data was first imputed. This procedure was

carried out year by year on the whole of the SO2 pollution dataset as some of

the time series modelling techniques to be considered (for instance, the autore-

gressive modelling technique (AR) and autoregressive integrated moving average

(ARIMA)) are not able to handle missing data.

The replacement was based on a missing value analysis using both regression

and EM imputation in SPSS as well as MICE in R (explained in section 3.1.5).

We first log-transformed the data before imputing the missing observations, this

is done to prevent negative imputed values (from results of EM and regression

methods) which are not possible for SO2 in reality, as the values must be non-

negative.

We next compare the performances of each imputation method using the descrip-

tive summary of the imputed data, time series plots, boxplots, and various time

series models using different datasets from each method of imputation. In the

MICE procedure, 5 multiple imputations were used.

The MCAR test results in Table 3.1 are significant for the datasets in 1996-2005,

and this suggests that the data are not missing completely at random for these

years, therefore, the EM method is more appropriate to impute the missing data

in this category. The test is not significant for the datasets in 2006 and 2007,

which may be attributed to the lower number of recording stations and less miss-

ing data in these two years which give their test much lower degrees of freedom

compared to the other years.
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Table 3.1: MCAR test output for SO2 datasets from 1996-2007

year Little’s MCAR test:

____________________________________________________

1996 Chi-Square = 5594.621, DF = 3989, Sig. = .000

____________________________________________________

1997 Chi-Square = 5098.684, DF = 4799, Sig. = .001

____________________________________________________

1998 Chi-Square = 4082.835, DF = 3099, Sig. = .000

____________________________________________________

1999 Chi-Square = 1464.308, DF = 852, Sig. = .000

____________________________________________________

2000 Chi-Square = 1679.393, DF = 849, Sig. = .000

____________________________________________________

2001 Chi-Square = 1679.393, DF = 849, Sig. = .000

____________________________________________________

2002 Chi-Square = 1036.448, DF = 611, Sig. = .000

____________________________________________________

2003 Chi-Square = 1091.382, DF = 621, Sig. = .000

____________________________________________________

2004 Chi-Square = 1192.956, DF = 619, Sig. = .000

____________________________________________________

2005 Chi-Square = 1134.128, DF = 451, Sig. = .000

____________________________________________________

2006 Chi-Square = 9.094, DF = 12, Sig. = .695

____________________________________________________

2007 Chi-Square = 17.140, DF = 18, Sig. = .513

Descriptive statistics for the 1996, 2000 and 2005 datasets after imputation

by the EM, regression and MICE methods are shown in Tables 3.2-3.4. In Table

3.2, the minimum imputed data for all the three years is 3. The maximum value

for EM is 234, which occurs at Armadale 2 (before imputation, the maximum

recorded concentration is 229g/m3 in Table 1.3 in Chapter 1). In Tables 3.3

and 3.4, the maximum value for both regression and MICE is 190 and occurs in

Kirkintilloch 9 for both methods. The regression and MICE methods are similar

but EM is very different.

The minimum recorded observations is 3 for all three methods. The corresponding

maximum values are 120, 118 and 118 for EM, regression and MICE respectively,

and these occur at Coatbridge 11 for the three of them. The mean pattern for

the EM method is generally higher than for the other two methods, while that

of regression is also higher than for MICE. Similarly to the 1996 dataset, there is

no obvious pattern of the standard deviations.

Maximum values are 169, 108 and 106 for EM, regression and MICE respectively,
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which occur in Glasgow 98 for the EM method and Glasgow 95 for both regression

and MICE methods. We observe that the MICE method produce higher mean

and standard deviation than the other two methods except for Aberdeen 3 and

Glasgow 98.

In summary, the three methods show similar results, especially regression and

MICE. The mean level generally decreases across the year in accordance with our

conclusion from Chapter 1 that SO2 mean level decreases with year.

Having imputed the missing values, our subsequent analysis involves comparison

of imputation methods using both daily time series plots and box plots for each

method. We consider the 1996, 2000, and 2005 datasets. The stations in the

subsequent analysis are randomly selected for each of these years.
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Table 3.2: Comparison of descriptive statistics for EM imputed data

EM

1996 2000 2005 1996 2000 2005 1996 2000 2005 1996 2000 2005

station Min Max Mean Sd

ABERDEEN 3 3 3 10 45 57.5 68 17.76 26.57 44.38 6.72 11.3 6.85

EDINBURGH 14 3 5 0.4 0.7

EDINBURGH 24 3 62 20.63 1.7

EDINBURGH 25 3 3 3 5 51.5 41 0.4 26.54 2.21 0.7 8.95 3.91

FALKIRK 8 12 83 15.85 11.84

GLASGOW 20 3 3 3 84 58.5 78 27.51 24.11 18.08 14.32 7.93 9.47

GLASGOW 51 3 3 3 63 51.5 55 22.6 23.91 16.09 12.38 7.42 7.15

GLASGOW 69 3 3 117 52.5 25.99 18.44 14.1 8.25

GLASGOW 73 3 3 3 109 44.5 57 19.66 18.67 10.46 13.23 7.9 7.23

GLASGOW 95 3 3 3 101 50.5 101 26.91 20.77 31.71 15.42 8.04 16.02

GLASGOW 98 3 3 5 73 47.5 169 21.2 3.749 9.49 13.95 7.16 24.65

HAMILTON 5 11 56 26.58 7.54

HATTON 1 3 17 18 8.46 5.59 16.05 3.58 1.1

BALLINGRY2 9 9 39 33.5 16.94 11.16 5.99 5.11

KILMARNOCK 2 9 7 19 20.5 10.27 11.58 3.4 2.74

KINROSS 1 6 31 11.39 5.18

KIRKCALDY 6 9 5 6 44 31.5 9 17.83 12.1 5.27 6.01 4.21 0.21

KIRKINTILLOCH 8 9 3 3 74 77.5 37 15.52 15.28 9.73 8.61 6.97 6.15

KIRKINTILLOCH 9 3 9 107 75.5 19.7 21.46 10.28 7.47

KIRKINTILLOCH 10 10 10 3 102 75.5 44 25.45 7.02 15.55 10.18 7.72 8.13

LIVINGSTON 1 3 37 10.2 7.19

LONGSIDE 1 3 3 52 13.5 12.9 19.83 5.85 1.75

ORMISTON 2 9 57 15.94 8.57

PENICUIK 1 9 9 48 45.5 21.46 10.55 7.42 7.01

PERTH 1 9 47 18.62 6.92

PETERHEAD 1 3 6 48 14.5 12.8 7.61 5.25 2.42

PETERHEAD 2 3 3 23 14.5 7.73 10.3 3.88 1.63

PETERHEAD 3 3 3 55 16.5 8.4 13.7 4.86 2.68

PRESTONPANS 1 7 43 11.31 4.58

STIRLING (BURGH) 5 3 9 48 39.5 16.77 22.17 6.13 5.67

TRANENT 2 7 23 7.36 2.93

WHITBURN 3 3 10 3 44 40.5 45 10.44 2 23.14 8.75 5.92 6.5

BO'NESS 2 9 3 82 1.5 18.86 36.05 9.07 0.1

BONNYRIGG 1 3 36 15.84 7.27

ARMADALE 2 3 16 10 234 118 94 45.8 23.59 37.92 27.91 15.6 12.14

ARMADALE 3 15 65 15.36 12.01

COATBRIDGE 5 3 3 3 131 71.5 56 29.78 38.98 17.92 14.67 7.33 9.81

COATBRIDGE 11 3 5 6 134 120 105 36.6 16.43 10.86 16.26 30.5 26.4

COWDENBEATH 1 3 9 7 39 28.5 22 16.15 27.2 10.36 5.23 4.89 4.16

DALKEITH 1 3 9 60 50.5 25.41 18.4 8.68 7.46
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Table 3.3: Comparison of descriptive statistics for regression imputed data

REG

1996 2000 2005 1996 2000 2005 1996 2000 2005 1996 2000 2005

station Min Max Mean Sd

ABERDEEN 3 4 3 20 38 56 78 16.37 20.4 22 6.926 11 9.6

EDINBURGH 14 3 3 16.34 0.54

EDINBURGH 24 5 59 20.66 10.262

EDINBURGH 25 4 3 5 3 55 23 12.34 24.9 2.97 0.49 10 4.47

FALKIRK 8 13 80 16.22 12.337

GLASGOW 20 3 3 7 81 56 55 27.44 25 17.22 13.825 7.8 8.817

GLASGOW 51 4 3 3 60 53 62 22.45 22.6 17.14 11.918 7.4 6.904

GLASGOW 69 3 3 114 56 25.93 22.2 13.615 10

GLASGOW 73 3 3 3 106 43 43 19.59 16.9 11.51 12.735 7.8 7.387

GLASGOW 95 3 3 3 98 49 108 26.81 17.2 32.6 14.957 7.9 16.031

GLASGOW 98 5 3 8 70 45.1 43 21.17 19.3 9.42 13.437 7.1 4.866

HAMILTON 5 9 53 26.8 7.94

HATTON 1 3 3 56 38 5.52 7.57 3.171 2.3

BALLINGRY2 9 3 36 36 16.87 14.6 5.516 5

KILMARNOCK 2 6 3 19 19 10.25 9.48 3.341 3.5

KINROSS 1 8 28 11.4 4.903

KIRKCALDY 6 9 3 5 141 30 16 17.62 10.4 5.79 5.789 4.6 0.363

KIRKINTILLOCH 8 9 3 3 71 49 44 15.36 10.8 10.48 7.919 7 6.114

KIRKINTILLOCH 9 3 3 190 74 19.65 13.8 9.818 7.5

KIRKINTILLOCH 10 10 3 9 99 75 51 25.32 20 16.45 9.803 7.7 7.832

LIVINGSTON 1 8 34 10.18 7.243

LONGSIDE 1 3 3 49 13 12.83 5.73 5.403 2.5

ORMISTON 2 6 54 15.71 8.334

PENICUIK 1 9 3 45 44 21.36 18.8 6.995 8.1

PERTH 1 9 44 18.54 6.445

PETERHEAD 1 3 3 45 17 12.71 9.14 4.767 3.3

PETERHEAD 2 7 3 20 13.4 7.69 6.22 3.439 2.2

PETERHEAD 3 3 3 52 19 18.34 8.73 4.377 3.4

PRESTONPANS 1 5 40 11.5 4.767

STIRLING (BURGH) 5 3 3 45 38 17.07 12.2 6.123 5.8

TRANENT 2 4 20 7.36 2.723

WHITBURN 3 3 3 3 41 39 52 10.33 20.7 24.15 8.262 5.8 6.469

BO'NESS 2 3 3 79 3 18.84 3.5 8.938 1

BONNYRIGG 1 5 33 15.87 6.823

ARMADALE 2 3 3 3 178 112 101 45.43 34.3 38.61 27.702 16 12.551

ARMADALE 3 3 62 17.42 12.282

COATBRIDGE 5 4 3 5 128 70 63 30.65 22.4 18.68 14.678 8.2 9.693

COATBRIDGE 11 6 3 5 131 118 48 36.49 38.6 13.35 17.097 33 8.784

COWDENBEATH 1 3 3 8 36 27 29 15.93 14.9 11.25 5.013 4.8 4.129

DALKEITH 1 7 3 34 48 25.2 25.3 8.228 8.4
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Table 3.4: Comparison of descriptive statistics for MICE imputed data

MICE

1996 2000 2005 1996 2000 2005 1996 2000 2005 1996 2000 2005

station Min Max Mean Sd

ABERDEEN 3 4 3 20 38 52 76 16.03 19.9 23.6 6.716 10.9 10.8

EDINBURGH 14 3 6 16 0.33

EDINBURGH 24 5 59 20.32 10.052

EDINBURGH 25 4 3 5 8 55 21 12 24.4 4.57 0.28 9.75 5.67

FALKIRK 8 13 80 15.88 12.127

GLASGOW 20 3 3 7 81 57 53 27.1 24.5 18.82 13.615 7.53 10.017

GLASGOW 51 4 3 3 60 50 60 22.11 22.1 18.74 11.708 7.06 8.104

GLASGOW 69 3 8 114 56 25.59 21.7 13.405 10

GLASGOW 73 3 3 3 106 48 41 19.25 16.4 13.11 12.525 7.5 8.587

GLASGOW 95 3 3 3 98 49 106 26.47 16.7 34.2 14.747 7.64 17.231

GLASGOW 98 5 3 8 70 46 41 20.83 18.8 11.02 13.227 6.76 6.066

HAMILTON 5 9 53 26.46 7.73

HATTON 1 3 3 56 38 5.18 7.07 2.961 1.97

BALLINGRY2 9 3 36 32 16.53 14.1 5.306 4.71

KILMARNOCK 2 6 3 19 19 9.91 8.98 3.131 3.17

KINROSS 1 8 28 11.06 4.693

KIRKCALDY 6 9 3 5 141 30 14 17.28 9.93 7.39 5.579 4.26 1.563

KIRKINTILLOCH 8 9 3 3 71 76 42 15.02 10.3 12.08 7.709 6.67 7.314

KIRKINTILLOCH 9 3 3 190 74 19.31 13.3 9.608 7.17

KIRKINTILLOCH 10 10 8 9 99 74 49 24.98 19.5 18.05 9.593 7.39 9.032

LIVINGSTON 1 8 34 9.84 7.033

LONGSIDE 1 3 3 49 13 12.49 5.23 5.193 2.22

ORMISTON 2 6 54 15.37 8.124

PENICUIK 1 9 10 45 44 21.02 18.3 6.785 7.8

PERTH 1 9 44 18.2 6.235

PETERHEAD 1 3 3 45 17 12.37 8.64 4.557 3.03

PETERHEAD 2 7 3 20 13 7.35 5.72 3.229 1.94

PETERHEAD 3 3 3 52 17 18 8.23 4.167 3.15

PRESTONPANS 1 5 40 11.16 4.557

STIRLING (BURGH) 5 3 3.5 45 38 16.73 11.7 5.913 5.53

TRANENT 2 4 20 7.02 2.513

WHITBURN 3 3 3 3 41 39 50 9.99 20.2 25.75 8.052 5.52 7.669

BO'NESS 2 3 3 79 4 18.5 3 8.728 0.3

BONNYRIGG 1 5 33 15.53 6.613

ARMADALE 2 3 3 3 178 116 99 45.09 33.8 40.21 27.492 15.7 13.751

ARMADALE 3 3 62 17.08 12.072

COATBRIDGE 5 4 3 5 128 70 61 30.31 21.9 20.28 14.468 7.88 10.893

COATBRIDGE 11 6 3 5 131 118 46 36.15 38.1 14.95 16.887 32.5 9.984

COWDENBEATH 1 3 6 8 36 27 27 15.59 14.4 12.85 4.803 4.49 5.329

DALKEITH 1 7 7 34 51 24.86 24.8 8.018 8.11
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The time series plots in Figures 3.1-3.3 show the comparison of each imputed

data for the daily mean SO2 concentrations for stations in 1996, 2000 and 2005

respectively. We chose station that have fewer missing observations in each year.

For each box, the upper panel represents EM in green, the middle panel is re-

gression in blue, while the bottom is the MICE method in red.

In the 1996 plot in Figure 3.1, Falkirk 8 has the same pattern for all three impu-

tation methods. Mice has has a double spike around days 130-140 which is not

present in both regression and EM plots in Figure 3.1. Glasgow 20, Glasgow 51

and Glasgow 73 also have similar patterns for each of the three imputation meth-

ods respectively. Glasgow 20 around day 280. Glasgow 69 also has double spike

around days 190-200. There is no prominet peak pattern observed in Glasgow 51.

The patterns we observe here are similar to what we earlier observed in Figure

1.5 from Chapter 1, except that the gaps have been replaced with imputed data.

Also, each station has a unique pattern, different from other stations.

In Figure 3.2, Glasgow 69 has the same pattern for both regression and EM meth-

ods, while the MICE imputation pattern is clearly different from the other two.

Glasgow 73, Glasgow 95 and Glasgow 98 have similar patterns for each of the

three techniques.

Lastly, in Figure 3.3, the EM method for Glasgow 20 is quite different from the

other two methods, with a double spike around day 140 which is not present in

the other methods. Glasgow 51 has a similar pattern for both EM and regression

methods with a prominent peak around day 140, but MICE is different. Glasgow

73 has different patterns for each of the methods and EM has a double spike

between days 120-130, and neither of the other two methods has this feature.

The regression and MICE methods also show different patterns from each other.

We observe that there is more prominent variation in levels after imputation in

all of Figures 3.1-3.3. We conclude that the various imputation methods give

different patterns (though some similarity are also observed).
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Figure 3.1: Comparison of different imputation methods for the daily mean SO2 con-
centrations for stations in 1996. The upper panel represents EM (green), the middle
panel is regression (blue), while the bottom panel is MICE (red) imputation for each
station
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Figure 3.2: Comparison of different imputation methods for the daily mean SO2 con-
centrations for stations in 2000. The upper panel represents EM (green), the middle
panel is regression (blue), while the bottom panel is MICE (red) imputation for each
station
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Figure 3.3: Comparison of different imputation methods for the daily mean SO2 con-
centrations for stations in 2005. The upper panel represents EM (green), the middle
panel is regression (blue), while the bottom panel is MICE (red) imputation for each
station
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The corresponding boxplots for comparison of different imputation methods

for the logarithm of daily mean SO2 concentration for those stations considered

previously are shown in Figures 3.4-3.6 for some stations in 1996, 2000, and 2005

respectively. In each row, the first panel represents EM, the middle panel is

regression while the third panel is MICE imputation.

For 1996 in Figure 3.4, Falkirk 8 has the same median level for the three methods.

Glasgow 20, Glasgow 51 and Glasgow 69 have similar patterns for each method.

Outliers are very prominent in Glasgow 20, Glasgow 51 and Glasgow 69 for all

three methods, unlike Falkirk 8. The three methods give almost similar results.

For 2000 in Figure 3.5, outliers are still very prominent and all three methods also

give similar results. MICE for Glasgow 69 has the highest median level about

3.5. The median is very close to the upper quartile in Glasgow 73, Glasgow 95

and Glasgow 98 for all the three methods.

For 2005 in Figure 3.6, MICE gives the highest median level for Glasgow 20. The

median level is very close to the upper quartile for both EM and regression and

to the lower quartile for MICE in Glasgow 51. In Glasgow 73, median level is

very closer to the upper quartile for both EM and MICE than for regression.

Outliers are more prominent for MICE in Glasgow 51 than any other stations.

Overall, the median level here is generally lower than for 1996 and 2000. The

three methods still give similar patterns.

In summary, we observe that outliers are more prominent in 2005 than in other

years. Mostly, each of the stations has a varying pattern, and each of the methods

gives rise to a different pattern, though some are similar. Generally, we see that

there is a degree of similarity in the effect of the various types of imputation

techniques. We still consider all three methods in our subsequent time series

analysis in section 3.3.
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Figure 3.4: Boxplots of comparison of different imputation methods for the logarithm
of daily mean SO2 concentrations for stations in 1996. In each row the first panel
represents EM, the middle panel is regression, while the third panel is MICE imputation
for each station
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Figure 3.5: Boxplots of comparison of different imputation methods for the logarithm
of daily mean SO2 concentrations for stations in 2000. In each row the first panel
represents EM, the middle panel is regression, while the third panel is MICE imputation
for each station
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Figure 3.6: Boxplots of comparison of different imputation methods for the logarithm
of daily mean SO2 concentrations for stations in 2005. In each row the first panel
represents EM, the middle panel is regression, while the third panel is MICE imputation
for each station
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3.3 Background on time series modelling tech-

niques

The formulation of relevant and appropriate statistical models for temporal data

is very important, relative to the exploration of the structure and shape of the

data in Chapter 1. This section will build on the previous descriptive and ex-

ploratory analysis. We will consider data from 1996, 2000 and 2007 for few

analysis. We will also combine the aggregated data from 1996-2007 for the last

part of the analysis rather than individual year (for ARIMA models). We intro-

duce year 2007 in this analysis rather than 2005 (considered in previous analysis)

in order to make the extrapolation and forecasting more tractable.

The histogram of the raw data is right skewed, as seen from Figures 1.14-1.16,

and Figure 1.20 in Chapter 1 also indicated that the variance increases with an

increase in the mean level, thus variance stabilising transformation is necessary.

Yap et al. (2006) observed a similar pattern for black smoke pollutants and used

a logarithmic transformation, while Li et al. (1999) also observed the same pat-

tern for PM10 and also used a logarithmic transformation. Guttorp et al. (1994)

and Carroll et al. (1997) used a square root transformation for ozone. We will

use time series modelling of log(SO2) data in section 3.5, after describing the

methods.

3.3.1 Time series data

A time series is an ordered sequence of observations with respect to time. Time

series analysis often deals with how a variable such as daily SO2 concentration

varies over time, that is ordered sequences of measurements from a non-random

pattern, unlike the analyses of random samples of observations that are discussed

in the context of most other statistics.

We might be interested in how a measured variable changes on a daily, monthly,

seasonal and yearly basis. One of the principal aims of time series is the investi-

gation of the data generating process by inferring from what is observed to the

underlying structure.

Two basic components of any time series data are trend and seasonality. Trend

can be described as a systematic increasing or decreasing component that changes

with time and does not usually repeat itself, while data with seasonality has a

similar pattern that repeats itself in systematic intervals over time, that is ex-

hibits periodic fluctuation. Some data also exhibit cyclical behaviour.

We are interested in identifying the nature of the phenomenon represented by
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the sequence of SO2 observations, checking and removing temporal correlation,

estimating parameters of multivariate autoregressive (AR) and Autoregressive in-

tegrated moving average (ARIMA) models, diagnostic checking of fitted models

and predicting future observations.

Box Jenkins (1976) described a basic approach for time series analysis which

involves three different stages, namely identification, estimation and diagnostic

checking. The identification stage is where a time series is visually inspected

for stationarity. If it is not stationary, a series transformation may be necessary

either by removing deterministic trend or taking first differences with respect to

time. Variance stability may also be achieved by logarithmic transformation or

other suitable transformation.

The autocorrelation function (ACF) and partial autocorrelation function (PACF)

can be inspected to form a temporary AR(p) or ARMA(p, q) model. The estima-

tion stage involves checking model stability and significance of the parameters,

while the diagnostic stage involves examining the residuals for correlation and

normality or evidence of (over- or under-) fitting of the model (Pfaff, 2008).

3.3.2 Correlograms

Time series analysis usually involves examination of the sample autocorrelation

and partial autocorrelation functions in order to observe the functional form of

the data, and to also check independence of the observations. The autocorrelation

function (ACF) is obtained by computing autocorrelations for the observations

at different time lags. The autocorrelation is the cross-correlation of the series

with itself.

It is a statistical tool for finding repeating patterns, such as the presence of a pe-

riodic pattern. To plot the autocorrelation and partial autocorrelation functions,

we used the ts package of R. The sample autocorrelation at lag k is given as

ρ̂k =
Ck

C0

(3.7)

where Ck is the sample autocovariance function at lag k,

Ck =
1

N

N−k∑
i=1

(Xi − X̄)(Xi+k − X̄), (3.8)

which estimates the actual autocovariance function γk = Cov(Xi, Xi+k), assum-

ing that the series is stationary. The sample size is represented by N , and C0 is
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the variance function

C0 =
1

N

N∑
i=1

(Xi − X̄)2, (3.9)

and −1 ≤ γk ≤ +1. The autocorrelation function is

ρk =
γk
γ0
, (3.10)

where γ0 = V ar(Xi).

The partial autocorrelation at lag k is the autocorrelation between Xt and

Xt−k that is not accounted for by lags 1 through k− 1. The pacf() function in R

is used to plot the PACF which is another method for identifying serial depen-

dencies and the order of autoregressive model.

The sample autocorrelation plot is used to determine if an autoregressive (AR)

model will be appropriate for time series modelling, then a sample partial au-

tocorrelation plot is examined to help identify the order. We look for the point

on the plot where the partial autocorrelations essentially become zero. The sig-

nificance of the test is determined by the lag that falls outside the 95% CI line

(dotted line on the plot) (Chatfield, 1989; Box et al., 1994), see section 3.4.1.

3.3.3 Estimating model parameters

The Maximum Likelihood and Least squares methods are two common techniques

for parameter estimation. The maximum likelihood method is used when the

distribution of residual terms (white noise) is known.

The least squares method employs a regression equation, and assumes that the

error variance in the measurement of each case is identical. The residual variance

around the regression line is the same across all values of the independent variables

(Gebhard et al., 2008). The least squares method will be used for subsequent AR,

modelling while the maximum likelihood method will be employed for ARIMA

modelling of the S02 data in this chapter.

Maximum likelihood method

For any independent and identically distributed random variables X1, . . . , XP

with probability density function f (xt, θ), t = 1, . . . , P and parameter vector θ,

the joint density function is the product of the marginal densities,

f (x, θ) = f (x1, . . . , xP , θ) = ΠP
t=1f (xt, θ). (3.11)
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Viewed as a function of the parameter(s) θ given data x, this is referred to as the

likelihood function, and

L(θ|x) = L(θ|x1, . . . , xt) = ΠP
t=1f (xt, θ). (3.12)

The log-likelihood function is

logL(θ|x) =
P∑
t=1

log f (xt, θ). (3.13)

The method of maximum likelihood estimates θ by obtaining the value of θ that

maximizes L(θ|x). This is the MLE of θ

θ̂mle = argmax
θ∈Θ

ℓ(θ | x1, . . . , xP ). (3.14)

Least squares method

If we are fitting a model to data involving errors or deviations ε from the model,

it may be that var(ε) = σ2I, but it is also possible that the residuals have non-

constant variance or are correlated. In that case let var(ε) = σ2Σ where σ2 is

unknown but Σ is known, which means that we know the correlation and relative

variance between the errors. The generalized least squares method estimates the

parameter β to minimize

(y − xβ)TΣ−1(y − xβ), (3.15)

giving

β = (xTΣ−1x)−1(xTΣ−1y) (3.16)

(Faraway, 2002).

3.4 Time series models

Here, we give basic theoretical background on time series modelling techniques,

namely the AR(p), MA(q), ARMA(p, q) and ARIMA(p, d, q) models.

3.4.1 Models
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Autoregressive AR(p) models

An autoregressive model AR is a simple linear statistical model for stationary

time series data is represented by an AR(p) model

Xt = µ+

p∑
i=1

αiXt−i + ε, (3.17)

where αi are the autoregressive model parameters, µ is the mean or intercept, p

is the order of the AR process and Xt is the value at time t of the series under

investigation. The error term or residual, represented by ε, is always assumed to

be Gaussian white noise. A phenomenon is called white noise if it satisfies the

following conditions:

E(εt) = 0, E(ε2t ) = σ2, E(εtετ ) = 0, t ̸= τ. (3.18)

Using this model, the current term of the series can be estimated by a linear

weighted sum of previous terms in the series in which the weights are the autore-

gression coefficients. AR analysis derives the ”best” values for αi given a series

Xt.

The AR(1) sample autocorrelation function has an exponentially decaying ap-

pearance. However, higher-order AR(p) are usually a combination of sinusoidal

and exponential functions.

We can determine the order of higher order autoregressive processes by exploiting

both autocorrelation and partial autocorrelation plots. The partial autocorrela-

tion of an AR(p) data is usually 0 at lag ≥ (p+ 1).

The sample partial autocorrelation function can also be examined to see if there

is any departure from 0 at any lag k. This could be achieved by adding a 95%

confidence interval to the plot of sample partial autocorrelation function, it is

±2/
√
N , where N denotes the sample size (Box et al., 1994). If the order of the

AR(p) is unknown, AIC (Aikake’s Information Criterion) can be used to deter-

mine the order and a low value indicates a better fitting model. This is defined

as

AIC = log
1

T

T∑
t=1

(µ̂p
t )

2 + n
2

T
, (3.19)

in which (µ̂p
t )

2 are the estimated residuals of the AR(p) process at a time points

t = 1, . . . , T , and n is the number of estimated parameters. We used the ar

function in the R package to fit our data.
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Moving Average MA(q) model

The moving average is used with time series data to smooth out short-term fluc-

tuations from the long-term trends or cycles. The threshold between short-term

and long-term depends on the application. The MA(q) process is given by

Xt = µ+

q∑
i

θiεt−i, (3.20)

where q is the order of the series, the εi satisfy (3.18), and the θi are parameters.

Autoregressive Moving Average ARMA(p, q) model

It also possible to mix both time series processes (AR and MA) together, which

means that time series has been generated by a mixed autoregressive moving

average process (ARMA). An ARMA(p, q) model is represented by

Xt = µ+

p∑
i

αiXt−i +

q∑
i

θiεt−i. (3.21)

Akaike (1981) and Schwarz (1978) in Pfaff (2008) defined information criteria for

ARMA(p, q) process as

AIC = log (σ̂)2 + 2(
p+ q

T
), (3.22)

BIC = log (σ̂)2 + log T (
p+ q

T
), (3.23)

σ̂2 =
∑

residuals
T

as in (3.19), so AIC in (3.23) is same as in (3.19), where σ2 is the

estimated variance of an ARMA(p, q) process. The lag order (p, q) that minimizes

the information criteria is selected as the best.

Autoregressive Integrated Moving Average ARIMA(p,d,q)

model

The autoregressive integrated moving average (ARIMA) model extends an autore-

gressive moving average (ARMA) model by incorporating an integration term.

It is usually applied on non-stationary data. The model is generally referred to

as an ARIMA(p,d,q), and the first component is the autoregressive term (AR)

part, the second is the integration (I) part, while the third component is the

moving average (MA) term. An ARIMA(p, d, q) model is such that the dth dif-
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ference of Xt is a stationary ARMA(p, q) process. The Box-Jenkins procedure for

time-series analysis usually includes ARIMA models (Box and Jenkins, 1976).

3.4.2 Time series decomposition

The most common feature about time series data is that it has values that vary

with time. For instance, SO2 level varies on a daily basis and it is also possible

to explore variation beyond day to day changes. We may decide to examine the

series over a long period of time (years) or the seasonal behaviour of the series.

In either of those cases it is necessary to decompose the time series into separate

components for us to examine their behaviour separately rather than mix them

together (Peng et al., 2008).

The main objective in any time series analysis is to model the main features in the

data either by a trend or seasonal and cyclical effects, and a model formulation

is usually based on these components. A simple additive decomposition model is

given by

Xt = Tt + St + εt, (3.24)

where Xt is the observed series (e.g S02), Tt is the trend which spans across the

years, St is the seasonal effect which is the within-year variation, and εt is the

residual series for short term fluctuations. This is a classical decomposition model.

Classical decomposition essentially has its main advantage as a descriptive tool to

enable the main components of a time series to be viewed prior to any substantial

statistical analysis. If the seasonal effect tends to increase as the trend increases,

a multiplicative model may be more appropriate, i.e

Xt = Tt.St + εt. (3.25)

3.4.3 Model residual checking

A first step in diagnostic checking of fitted models is to analyze the residuals

from the fit for any signs of nonrandomness. The function tsdiag() in R produces

diagnostic plots for a fitted time series model. The BoxPierce test also examines

the null hypothesis of independently distributed residuals. It is based on the

assumption that the residuals of a correctly specified model are independently

distributed. The function Box.test() in R computes the test statistic for a given

lag. The LjungBox test can be defined as follows.

H0: The data are random (uncorrelated).

Ha: The data are not random (correlated).
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The test statistic is:

R = N (N + 2)
n∑

k=1

ρ̂2k
N − k

, (3.26)

in which N is the sample size, ρ̂k is the sample autocorrelation at lag k, and

n is the number of lags being tested. At significance level α, the hypothesis of

randomness is rejected if

R ≥ χ2
1−α,n, (3.27)

in which χ2
1−α,n is the upper α-quantile of the chi-square distribution with n

degrees of freedom (Ljung et al., 1978; Brockwell et al. 2002).

3.5 Model results for SO2 data

In our analysis, the grand average daily SO2 concentrations are obtained as the

mean of the daily average concentrations of SO2 over all the sites and for each

day between 1996-2007. For the ACF, PACF, AR and ARMA we randomly

chose some stations we consider in previous analysis (those with fewer missing

observations). We only consider 1996, 2000 and 2007, but for the ARIMA model

we combine the whole year range from 1996-2007 to form an aggregated data.

Firstly, we examine the ACF and PACF for possible correlation using the time

series dataset generated from 3 different imputation techniques (MICE, EM and

regression methods). We also compare the sensitivity of the analysis results. We

used a logarithmic transformation to stabilise the variance, so the log mean daily

SO2 levels are used.

The autocorrelation function and 95% CI for some stations in 1996, 2000 and

2007 are plotted in Figures 3.7-3.9. In Figure 3.7 for year 1996, Glasgow 51,

Glasgow 73 and Glasgow 95 are significant, thus correlated, for lags 1-10 for all

three methods. The correlations are approximately between 0.2-0.6. Also, Kirk-

caldy 6 is correlated for lags 1-8, and lag 13 is also significant for the EM method.

Correlations range between 0.2-0.4.

Kirkintilloch 8 is significant for lags 1-6 with correlation between 0.2-0.4, and no

higher lags are significant. The results are the same for all three methods. Kirk-

intilloch 10 is significant for all the lags with only a little evidence of periodic

variation (periods 8 and 16), and correlation varies between 0.2-0.6. The results

are also similar for all three methods.

In Figure 3.8 for year 2000, Glasgow 51 is significant for lags 1-3, and correlation

is between 0.2-0.4. The regression method is also significant at lag 11. Glasgow

73 is significant for all the lags with little evidence of periodic variation. The
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patterns are the same for the three methods. Glasgow 95 is significant at lags

1, 2, 4 and 6, and the patterns are the same in all three imputation methods.

Kirkcaldy 6 is significant for lags 1-3 and in some higher lags, and the correlation

is as low as 0.2.

Kirkintilloch 8 is significant for lags 1-10 with correlation between 0.2-0.6. The

correlation is almost linear in trend, which is an indication of non-stationarity.

We observe similar patterns for each imputation method. Kirkintilloch 10 is sig-

nificant for all the lags. The correlation is as high as 0.4-0.7. Each method gives

a similar pattern.

In Figure 3.9 for year 2007, there is no significant lag for the regression method

for Aberdeen, EM is only significant at the first lag while MICE is significant

for all the lags. Each method gives rise to a different pattern. Edinburgh St

Leonards is significant for only lag 1, with the same pattern for each method.

Glasgow Centre is significant for the first 2 lags in both EM and MICE, while

regression is significant for the first three lags. Grangemouth has similar patterns

for the three methods with lags 1-4 significant.

In summary, Kirkintilloch 10 seems to be highly correlated for all the lags irre-

spective of the year and method of imputation. Most of the stations are correlated

in the first two lags. In general, each imputation method produces similar results,

especially for 1996 and 2000. The decreasing autocorrelation pattern is almost

linear in trend for all the stations, with some stations showing a little evidence of

periodic fluctuations (Kirkintilloch 10). A similar procedure was applied to some

of the remaining stations (the output is not shown here). The results are still

consistent and similar to the one above. Generally, it can be assumed tentatively

that the SO2 data are temporally correlated, while carrying out further analysis.

(Nunnari et al. (2004) claimed that there was no temporal correlation in the SO2

data they analysed). The low variability and weather factor as well as wind speed

etc could be responsible for the presence of temporal correlation for SO2 data.

Figures 3.10-3.12 show the corresponding PACF plots for some stations and the

95% confidence interval for the PACF. The partial autocorrelation plots for the

1996 datasets in Figure 3.10 show clear statistical significance for lags 1 and 2,

except for Kirkcaldy 6 and Kirkintilloch 10 which are also significant at higher

lags 13 and 7 for both EM and regression methods respectively. The results are

similar for the three methods. Since the autocorrelation plots in Figure 3.8 indi-

cate that an AR model is appropriate, we can start our modelling in 1996 with

AR(2).

In Figure 3.11, Glasgow 51 and Glasgow 73 are significant at lag 3 and both still
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show evidence of significance at higher lag 11, while Glasgow 95 is significant at

lag 2 with evidence of significance at higher lags 6 and 17. Kirkcaldy is signifi-

cant at lag 3 and some higher lags thereafter. Kirkintilloch 8 and Kirkintilloch

10 are significant for lags 1-4 with evidence of significance at higher lags. The

imputation techniques also give similar results for each station. We can start our

modelling here with AR(3).

In Figure 3.12, Aberdeen is significant only at lag 1 for both the EM and MICE

methods, but the regression method shows evidence of significance at other lags.

Also, Glasgow Centre, Edinburgh St Leonards and Grangemouth are only signif-

icant at lag 1 for all three imputation methods. In summary, the analysis gives

similar results. It is appropriate to start our modelling by fitting an autoregressive

model of order 1 based on the ACF and PACF results. Since the plots we have

observed from 3.7-3.12 are not totally consistent we decided to consider AR(2)

model for the individual stations in the next analysis. We used both maximum

likelihood and least squares methods. The ar function in R is used to achieve the

results.
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Figure 3.7: Comparison of autocorrelation functions for the EM, regression and MICE
imputed datasets for Glasgow 51, Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch
8 and Kirkintilloch 10 in 1996

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 51
Lag

A
C

F

EM

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 51
Lag

A
C

F

Regression

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 51
Lag

A
C

F

MICE

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 73
Lag

A
C

F
EM

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 73
Lag

A
C

F

Regression

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 73
Lag

A
C

F

MICE

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 95
Lag

A
C

F

EM

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 95
Lag

A
C

F
Regression

0 5 10 20

0.
0

0.
4

0.
8

Glasgow 95
Lag

A
C

F

MICE

0 5 10 20

0.
0

0.
4

0.
8

Kirkcaldy 6
Lag

A
C

F

EM

0 5 10 20

0.
0

0.
4

0.
8

Kirkcaldy 6
Lag

A
C

F

Regression

0 5 10 20

0.
0

0.
4

0.
8

Kirkcaldy 6
Lag

A
C

F

MICE

0 5 10 20

0.
0

0.
4

0.
8

Kikintilloch 8
Lag

A
C

F

EM

0 5 10 20

0.
0

0.
4

0.
8

Kikintilloch 8
Lag

A
C

F

Regression

0 5 10 20

0.
0

0.
4

0.
8

Kikintilloch 8
Lag

A
C

F

MICE

0 5 10 20

0.
0

0.
4

0.
8

Kikintilloch 10
Lag

A
C

F

EM

0 5 10 20

0.
0

0.
4

0.
8

Kikintilloch 10
Lag

A
C

F

Regression

0 5 10 20

0.
0

0.
4

0.
8

Kikintilloch 10
Lag

A
C

F

MICE

68



Figure 3.8: Comparison of autocorrelation functions for the EM, regression and MICE
imputed datasets for Glasgow 51, Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch
8 and Kirkintilloch 10 in 2000
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Figure 3.9: Comparison of autocorrelation functions for the EM, regression and MICE
imputed datasets for Glasgow Centre, Aberdeen, Edinburgh St. Leonards and Grange-
mouth in 2007
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Figure 3.10: Comparison of partial autocorrelation functions for the EM, regression
and MICE imputed datasets for Glasgow 51, Glasgow 73, Glasgow 95, Kirkcaldy 6,
Kirkintilloch 8 and Kirkintilloch 10 in 1996
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Figure 3.11: Comparison of partial autocorrelation functions for the EM, regression
and MICE imputed datasets for Glasgow 51, Glasgow 73, Glasgow 95, Kirkcaldy 6,
Kirkintilloch 8 and Kirkintilloch 10 in 2000
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Figure 3.12: Comparison of partial autocorrelation functions for the EM, regression
and MICE imputed datasets for Glasgow Centre, Aberdeen, Edinburgh St. Leonards
and Grangemouth in 2007
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The general time series equation of autoregressive model of order p is

Xt = µ+ α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + ε. (3.28)

If we let log(SO2(x, t)) represent the log-transformed S02 level at station x and

time t, we fit autoregressive model of order 2 as

log(SO2(x, t)) = µt+α1log(SO2(x, t−1))+α2log(SO2(x, t−2))+ε(x, t). (3.29)

We consider datasets in 1996 and 2007 to capture our data range from 1996-

2007 as both year represent the early and last part of our dataset. We only

consider Glasgow 51 and Glasgow 73 in 1996, and Glasgow Centre and Aberdeen

in 2007. The stations are chosen randomly among stations that we have earlier

considered in previous analysis to ensure consistency. The analysis is carried out

on the stations using different imputation techniques, with both ordinary least

squares and maximum likelihood estimation methods to fit the AR(2) model.

The summary of results is shown in Table 3.5.

We observe that the values of the estimated AR coefficients are significantly dif-
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ferent from zero in all the chosen stations, which could imply that the assumed

2nd order autoregressive model is sufficient for the SO2 modelling.

In order to check if the coefficients are significantly different from zero we com-

pare the estimated coefficients with their standard deviations, i.e coefficient ±
twice standard error is approximately a 95% CI for the significant of parameters.

In Glasgow 51 for the EM imputed data and ordinary least squares estimation

method, for instance ±2 ∗ se = 2 ∗ (0.0512) = 0.1024 for α1, (0.4421 ± 0.1024),

therefore α1 belongs to (0.3397, 0.5445) which excludes 0. The two coefficients

are highly significant for this dataset (or rather since the correlogram of the true

residuals which are unknown is normally distributed, αi

se(αi)
≈ N(0, 1). Therefore,

0.4421
0.0512

= 8.6347 > 1.96 the value of test statistic falls outside the critical (rejection

region), so the errors are normally distributed which implies that the coefficient

is highly significant for this dataset). Also, for both the MICE and regression

methods, this is significant for the two coefficients too. Also using MLE for Glas-

gow 51, the two coefficients are still very significant.

By continuing this same procedure for each of the stations in Table 3.5, in sum-

mary, we observe that the coefficients are significantly different from zero for all

these chosen stations. It is observed that different estimation methods (ols or

mle) indeed gives rise to different results. Imputation techniques (MICE, EM,

regression) also produced different results.

Also, we observe that the regression method tends to produce higher variances

than the MICE and EM methods. In a similar vein, the regression method also

produces the least value for both AIC and the autoregressive coefficients than the

other methods. The intercept estimates are similar irrespective of which imputed

dataset is used. The standard errors of the coefficients are similar for both α1 and

α2. The order 1 coefficient is generally higher than the order 2 coefficient. Glas-

gow 73 has higher variance and AIC than the other 3 stations. We observe only a

fitted autoregressive model of order 1 with MICE in both Aberdeen and Glasgow

Centre, which implies that AR(1) is sufficient to model these series. Maximum

likelihood gives higher values of the AR coefficients than least squares method

in Glasgow 51, and the reverse is the case for Glasgow 73. Maximum likelihood

and least squares methods produce similar AR coefficients for both Aberdeen

and Glasgow Centre. Least squares tends to give slightly a higher variance than

the corresponding maximum likelihood method. Finally, the estimate are still

very similar irrespective of the imputation methods, and both ols and mle give

relatively similar results.

We next examine the autocorrelation function for the residuals from this fitted
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model for any evidence of correlation, and the results are shown in Figure 3.13.

There is no correlation in any of the plots except that Glasgow 73 in the 1996

dataset (top-right) still shows a little evidence of autocorrelation at some lags

for all three imputation techniques. We have earlier seen in the PACF Figure

3.11 that AR(3) is a convenient point to start modelling data from this station.

Aberdeen in 2007 (bottom-right) also indicates evidence of autocorrelation for

the MICE imputed dataset only, which is also justified by the PACF in Figure

3.12. We can carry out further analysis on these stations using higher order AR

models or a more complex ARIMA model. Also, Glasgow Centre shows a little

correlation at lags 3, 6 and 7 for MICE method. The next analysis will involve

using ARIMA models for the aggregated data from 1996-2007.
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Table 3.5: Comparison of autoregressive (AR) models of order 2, using both the max-
imum likelihood and least squares estimation methods for the three imputed dataset
for Glasgow 51 and Glasgow 73 in 1996, as well as Glasgow Centre and Aberdeen in
2007. The results show the ar coefficients, the intercept, σ2 and estimated AIC. G51 is
Glasgow 51, G73 is Glasgow 73, Abd is Aberdeen, while Gla Cen stands for Glasgow
Centre

Site Method Imp Intpt(se) (α1,α2) se(α1,α2) σ2 AIC

G 51 ols EM -.0026(.0262) (.4421,.2191) (.0512,.0511) .2506 157

G 51 ols reg -.0026(.0268) (.4406, .2059) (.0513,.0512) .2612 148

G 51 ols MICE -.0026(.0265) (.4194, .2410) (.0509,.0508) .2549 153

G 51 mle EM (.4451,.2190) (.0026,.0026) .2505 156

G 51 mle reg (.4416,.2058 ) (.0027,.0026) .2611 147

G 51 mle MICE (.4225,.2410 ) (.0025,.0024) .2548 152

G 73 ols EM -.0004(.0311) (.4862,.1861) (.0516,.0516) .3516 168

G 73 ols reg -.0004(.0311) (.4851,.1864) (.0516,.0516) .3519 167

G 73 ols MICE -.0004(.0311) (.4859,.1862) (.0516,.0516) .3516 168

G 73 mle EM (.4853,.1853) (.0026,.0026) .3501 169

G 73 mle reg (.4842,.1856) (.0026,.0026) .3503 168

G 73 mle MICE (.4850,.1854) (.0026,.0026) .35 169

Abd ols EM .0008(.0139) .3809 .0483 .0707 55

Abd ols reg .0006(.0162) (.1499,.1188) (.0521,.0520) .09528 10.4

Abd ols MICE .0002(.0106) .271 .0505 .0410 25

Abd mle EM .3809 .0023 .0707 55

Abd mle reg (.1497,.1183) (.0027,.0027) .0948 11.8

Abd mle MICE (.2479,.0878) (.0027,.0027) .0406 26.6

Gla Cen ols EM -.0005(.0156) (.3353,.1126 ) (.0521,0.0521) .0882 55.6

Gla Cen ols reg -.0005(.0149) (.3119,.1164 ) (.0521,.0521) .0808 48.1

Gla Cen ols MICE -.0001(.0087) .3802 .0484 .0278 54.3

Gla Cen mle EM (.3354,.1122 ) (.0027,.0027) .0879 56.9

Gla Cen mle reg (.3119,.1159 ) (.0027,.0027) .0805 49.5

Gla Cen mle MICE (.3456,.0892) (.0027,.0027) .0347 55.7
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Figure 3.13: Comparison of autocorrelation functions for the residuals using different
imputation methods for the AR(2) model for Glasgow 51 and Glasgow 73 in 1996,
as well as Glasgow Centre and Aberdeen in 2007; the top-left panel is Glasgow 51 in
1996, the top-right panel corresponds to Glasgow 73 in 1996, the bottom-left panel is
Glasgow Centre in 2007 while the bottom right panel is Aberdeen in 2007
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We then examine more complex ARIMA models here since the AR model can

only be applied to a time series that is stationary (series with constant mean,

variance, and autocorrelation through time) and the estimated parameters are

also assumed constant throughout the series. Our datasets between 1996-2007

has relatively little variation in mean level (Figure 3.15), however the mean level

drops sharply after 2005. We used the log-tranformation to stabilise the variance.

The SO2 data we consider in this thesis is not stationary thus justify the intoduc-

tion of ARIMA model which could be used for either stationary or non-stationary

dataset. We used aggregated data in this section for us to see the general trend

behaviour and pattern of SO2 data from 1996-2007 and not for individual year.

This will enable us to make a general comment on the over all correlation pattern

and residual summary for the whole data.

We start from fitting a simple ARIMA(2,0,0) model to the chosen stations.

ARIMA(2,0,0) is equivalent to AR(2) used in Table 3.5. Firstly, we computed

averages of the daily mean concentration for all the stations from 1996-2007.

We still consider the three imputed datasets using only the maximum likelihood

method. The results are presented in Table 3.6 for each imputation method.

We observe that the order 1 coefficients are higher than the corresponding order

2 coefficients for all three methods of imputation, and both coefficients are still

highly significantly different from zero for each imputation method, because 0

does not lie within the 95% CI (coefficient ±2∗ standard error). MICE has a

higher estimated value for the first order coefficient (0.6831), intercept (2.8738)

and the variance (0.03007) than the other two methods. The standard errors for

each coefficient are the same for each imputed dataset. The EM method has the

highest log likelihood (1793.78) and the lowest AIC (-3579.55), thus looks better

than the other results. In summary, each imputation method produces similar

results for the coefficients. We further our analysis using the EM method only,

considering ARIMA(3,0,0), ARIMA(1,0,1), ARIMA(2,1,0), ARIMA(3,1,0) and

ARIMA(1,1,1) again using the joint stations dataset.
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Table 3.6: ARIMA (2,0,0) model results for the MICE, EM and regression imputed
datasets using maximum likelihood method, for all the stations

MICE imputed results

----------------------------------------------------------

Coefficients:

ar1 ar2 intercept

0.6831 0.2723 2.8738

s.e. 0.0145 0.0145 0.0583

sigma^2 estimated as 0.03007:

log likelihood = 1458.84, aic = -2909.68

EM imputed dataset result

----------------------------------------------------------

Coefficients:

ar1 ar2 intercept

0.6728 0.2849 2.8149

s.e. 0.0145 0.0145 0.0571

sigma^2 estimated as 0.0258: log likelihood = 1793.78, aic = -3579.55

Regression imputed dataset result

---------------------------------------------------------

Coefficients:

ar1 ar2 intercept

0.6609 0.2927 2.8085

s.e. 0.0144 0.0144 0.0546

sigma^2 estimated as 0.02849: log likelihood = 1576.83, aic = -3145.66

The results for the other models are shown in Table 3.7. We consider ARIMA(3,0,0)

because we have earlier seen that some of the stations show evidence of autocor-

relation at lag 3. For ARIMA(3,0,0), the three AR coefficients are significantly

different from zero. The order 1 coefficient is higher than the other two coeffi-

cients. The estimated variance is also very low (0.01054) and is lower than that

of ARIMA(2,0,0). The log likelihood is 3756.47, which is higher than that of

ARIMA(2,0,0), likewise the AIC (-7502.94) is lower than for the ARIMA(2,0,0)

model. The standard errors of coefficients are similar and are also very low.

We decided to choose another model of lower order since both ARIMA(2,0,0)

and ARIMA(3,0,0) models result indicated higher coefficient value for order 1.

We incorporate an MA term of order 1 in the model to form ARIMA(1,0,1), the

essence of the the MA term is to smoothen out the short fluctuations from the

series. For the ARIMA(1,0,1) model, the AR(1) coefficient is 1, and the MA(1)

is 0.0106, very low compared to the autoregressive coefficient, thus we can easily

assume that the autoregressive parameter dominates the series. The standard
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error of the AR coefficient is not defined which implies that the series is not yet

converged and that of the intercept is extremely very high (166.5452). The esti-

mated variance is 0.01251, lower than that of ARIMA(3,0,0). The log likelihood

and AIC are (3381.630) and (-6755.25) respectively. This model is not too reliable

because of the high standard error of estimation and lack of convergence which

could due to introduction of MA terms.

In order for us to overcome the little problem we observed in ARIMA(1,0,1)

model, we decided to drop and replace the MA term with difference term of

order 1, I(1) to form ARIMA(2,1,0) model. For ARIMA(2,1,0), the two coeffi-

cients now have negative values (-0.3917 and -0.1977) and there is no intercept

parameter. This is because the series has been differenced. The standard errors

of coefficients are still very low and similar for both coefficients (0.0148), and the

estimated variance is now 0.01066, also similar to the model with no differencing

term. The log likelihood is higher than that of ARIMA(2,0,0) and ARIMA(1,0,1)

models (3731.37), but lower than for ARIMA(3,0,0).

Because problem of negative coefficients observed in ARIMA(2,1,0) model, we

consider higher AR term model but still maintaining the differencomng term to

form ARIMA(3,1,0) model. For ARIMA(3,1,0), the three coefficients here also

have negative values (-0.4269, -0.2673, and -0.1776) and there is no intercept pa-

rameter, which is due to the introduction of a differencing term in the model. The

standard errors of coefficients are still very low, and are the same for both order

1 and 3 coefficients (0.0149, 0.0157, 0.0149), and the estimated variance is now

0.01032, also similar to the model with no differencing term. The log likelihood

is higher than for the four previous models (3801.64).

Lastly, we consider a model that gives a uniform order the 3 terms to form

ARIMA(1,1,1). For ARIMA(1,1,1), the AR and MA coefficients are 0.3648 and

-0.8360 respectively. The standard errors are different for each of them, and the

estimated variance is lowest (0.009888) and log likelihood is highest (3895.6) for

all the models we consider.

If we compare the 6 models in Table 3.8, we observe that based on both the min-

imum AIC (-7785.2), and maximum loglik (3895.6) and least estimated variance

(0.00988) criteria, ARIMA(1,1,1) seems better than the other models though it

uses 3 degrees of freedom. Generally, the six ARIMA models are still consis-

tent with the autoregressive results we got earlier. The models with differencing

terms ARIMA(2,1,0), ARIMA(3,1,0) and ARIMA(1,1,1) seem better than those

with no differencing term, which could easily be attributed to the fact that the

series now has more stable parameters after differencing of the series to achieve
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stationarity.

Table 3.7: ARIMA(3,0,0), ARIMA(1,0,1), ARIMA(2,1,0), ARIMA(3,1,0) and
ARIMA(1,1,1) model results using the EM imputed datasets with maximum likelihood
method, for the combined stations

ARIMA (3,0,0) model result

--------------------------------------------------------------------

Coefficients:

ar1 ar2 ar3 intercept

0.5944 0.1850 0.1836 3.1917

s.e. 0.0148 0.0171 0.0149 0.0415

sigma^2 estimated as 0.01054: log likelihood = 3756.47,aic = -7502.94

ARIMA (1,0,1) model result

---------------------------------------------------------------------

Coefficients:

ar1 ma1 intercept

1 0.0106 3.1917

s.e. NaN 0.0186 166.5452

sigma^2 estimated as 0.01251: log likelihood = 3381.63,aic = -6755.25

ARIMA (2,1,0) model result

---------------------------------------------------------------------

Coefficients:

ar1 ar2

-0.3917 -0.1977

s.e. 0.0148 0.0148

sigma^2 estimated as 0.01066: log likelihood = 3731.37,aic = -7456.74

ARIMA (3,1,0) model result

---------------------------------------------------------------------

Coefficients:

ar1 ar2 ar3

-0.4269 -0.2673 -0.1776

s.e. 0.0149 0.0157 0.0149

sigma^2 estimated as 0.01032: log likelihood = 3801.64,aic = -7595.27

ARIMA (1,1,1) model result

---------------------------------------------------------------------

Coefficients:

ar1 ma1

0.3648 -0.8360

s.e. 0.0247 0.0163

sigma^2 estimated as 0.009888: log likelihood = 3895.6,aic = -7785.2
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Table 3.8: Comparison of ARIMA model result for the EM imputed dataset, showing
the degrees of freedom, AIC, logLik and variance, using maximum likelihood method
for all the stations

df AIC loglik Variance

___________________________________________________

ARIMA(2,0,0) 4 -3579.555 1793.7 0.0258

___________________________________________________

ARIMA(3,0,0) 5 -7502.935 3756.47 0.01054

___________________________________________________

ARIMA(1,0,1) 4 -6755.253 3381.63 0.01251

___________________________________________________

ARIMA(2,1,0) 3 -7456.745 3731.37 0.01066

___________________________________________________

ARIMA(3,1,0) 4 -7595.275 3801.64 0.01032

___________________________________________________

ARIMA(1,1,1) 3 -7785.202 3895.6 0.00988

Table 3.9 shows the result of the Ljung-Box test (Box.test) in R for the six

ARIMA models we consider, and Figure 3.14 gives equivalent diagnostic plots

for the standardized residuals, the ACF of the residuals and p values for the

Ljung-Box statistic for the ARIMA models. The p-values (Table 3.9) are very

low compared to 5% significance, which implies that the tests are highly signifi-

cant for each model. The data is assumed to be non-random (correlated) for each

model.

In Figure 3.14, the standardized residual plots indicate that the residuals are

small for days 1-3653, which is equivalent to years 1996-2005, and larger be-

tween days 3654-4382, which correspond to years 2006-2007 data. Within this

later interval where the data are more sparse thus suggest that the model fits

less well. Autocorrelation plots (middle panel in each box) also indicate that

for the first 35 lags all sample autocorrelations are within the 95% confidence

interval for ARIMA(2,0,0), except at lag 1 only. Also for ARIMA(3,0,0), all

sample autocorrelations are within the 95% confidence interval except at lag 3.

For ARIMA(1,0,1), it shows evidence of correlation at lag 1, for ARIMA(2,1,0)

it shows evidence of correlation at lags 2 and 3. ARIMA(3,1,0) show evidence

of correlation at lag 4 only. Lastly, for ARIMA(1,1,1) there is no evidence of

correlation.

Also, the p-values for Ljung-Box statistic are all very small, except for ARIMA(3,1,0)

and ARIMA(1,1,1) that have a value of about 0.36 at lag 1. In summary the resid-

uals appear to be non-random in nature and there is a lot of residual variation

between 2006 and 2007 which could be as a result of fewer obervations in these 2
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years.

Table 3.9: Comparison of Ljung-Box test for the residuals of the six ARIMA models,
type=”Ljung-Box”. The results give the chi-squared, degrees of freedom and p-values

ARIMA(2,0,0)$residuals

X-squared = 310.6135, df = 25, p-value < 2.2e-16

------------------------------------------------

ARIMA(3,0,0)$residuals

X-squared = 237.0911, df = 25, p-value < 2.2e-16

------------------------------------------------

ARIMA(1,0,1)$residuals

X-squared = 585.7212, df = 25, p-value < 2.2e-16

------------------------------------------------

ARIMA(2,1,0)$residuals

X-squared = 284.5121, df = 25, p-value < 2.2e-16

------------------------------------------------

ARIMA(3,1,0)$residuals

X-squared = 194.9454, df = 25, p-value < 2.2e-16

------------------------------------------------

ARIMA(1,1,1)$residuals

X-squared =80.4731, df = 25, p-value = 9.618e-08
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Figure 3.14: Comparison of diagnostic plots for different ARIMA models for daily
SO2 concentrations. The top-left box represents ARIMA(2,0,0), the top-right box
is ARIMA(3,0,0), the middle-left box is ARIMA(1,0,1), the middle-right box is
ARIMA(2,1,0), while the bottom-left and bottom-right boxes are ARIMA(3,1,0) and
ARIMA(1,1,1) respectively. In each box, the top panel is standardized residuals, the
middle is the ACF plot and the bottom is the p-value
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We next decompose the time series data. The results are presented in Figures

3.15 and 3.16. These consists of the non-stationary time series of the logarithm

of the mean daily SO2 concentration and their three time-scale decompositions,

after imputting the missing observations.

Having decomposed the data, we observe that both the long-term trend and

seasonal/cyclical effects contribute significantly to variation in SO2 levels across

the years. The long-term component in Figure 3.15 shows variation in SO2 levels

over the years. The long-term series decreases between 1996 and 1999, before

a gentle rise in 2000. The mean level increases gradually again to 2005 before

finally falling to a very low-level in 2007. We have two prominent spikes between

2003 and 2005, and the approximate mean level here is about 3.7 µg/m3.

For the main trend in Figure 3.16, the actual trend becomes more apparent, but

shows a relatively constant pattern with little fluctuation between 1997-2005. It

shows a declining pattern between 2006-2007 and a little rise thereafter. There

are three prominent peaks in the trend between 2003-2006 which as high as 1.4

µg/m3. The seasonal pattern also shows a high regular periodic fluctuation in

levels between 1996 and 2001 and a low regular periodic variation in levels between

2002 and 2005. There is a higher irregular periodic fluctuations in mean level

between 2005-2007. These are the usual winter and lower summer peak variation

in levels.

The short term residual component is left after the removal of the trend and

seasonal components, and this also shows moderate fluctuation in levels and is

not always random in nature. The residuals are small between 1996-2005, and

larger between 2006-2007 data. There is an high residual variation in levels within

this later interval where the data are more sparse which is similar to what we

earlier observed in ACF plots in Figure 3.14.
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Figure 3.15: Long-term trend of EM imputed log(S02) concentration
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Figure 3.16: Timescale decomposition of log(S02) concentration
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3.6 Conclusion

In this chapter we explore various imputation techniques and apply them on

several time series models. We first explore the ACF to check for any evidence of
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serial correlation in our dataset, and we are able to see that some of the recording

stations in 1996, 2000 and 2007 have correlated data. We later proceeded in

the analysis by examining the PACF plots, to choose a suitable order for the

autoregressive model. Three imputation techniques are also considered, but all

have similar effects. We used the EM imputed dataset for most of the analysis

in this chapter.

In the last part of the chapter, ARIMA models and time series decomposition

are also considered. The ARIMA (1,1,1) model is able to model the SO2 data

very well. We observe that both the long-term trend and seasonal/cyclical effects

contribute significantly to variation in SO2 levels across the years for most of

the stations we considered. We continue our further analysis based on the EM

method, as this is suitable for data that are not MCAR, and results were similar

for all three imputation methods. We next continue the modelling by considering

spatial analysis in Chapter 4, as this will enable us to account for the spatial

variation and autocorrelation in the SO2 data.
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Chapter 4

Spatial analysis of SO2 levels in

Scotland

4.1 Objectives of spatial analysis

Chapter 3 considered the time series modelling of the data. We now turn to

spatial analysis in this chapter, before using aspects of both space and time in

Chapter 5.

Section 4.1 gives the main objectives of this chapter and a general introduction to

spatial analysis as well as outlining a number of topics from the theory of spatial

stochastic analysis, focussing on concepts of autocorrelation.

Section 4.2 deals with the theory of spatial autocorrelation and highlights the

methods involved in spatial analysis. Section 4.3 deals with variograms and krig-

ing theory, the statistical theory surrounding estimation of the variogram, and

fitting of parametric covariance models, as well as detailed description of the

Bayesian approach.

Section 4.4 discusses the methods adopted and presents results of our analysis of

the SO2 data as well as comparing the impact of different parameter estimation

techniques and the use of prior knowledge. Section 4.5 presents conclusions and

suggestions for further work.

4.1.1 Aims of work

The main objective of this analysis is to identify the sources of spatial variation

in SO2 concentration levels and to estimate the pollution level at unmonitored

spatial locations as well as to predict outside the range of the present data. In

our analysis, we assume a separable model for spatial correlation (Hobert et al.,
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1997; Bowman et al., 2009).

The dataset contains log (mean SO2) for forty-one monitoring stations in Scot-

land. We will consider only years 1996, 2000 and 2005 but the kriging model will

focus only on 1996 dataset. The data include the Northing and Easting of each

station. We calculated average annual concentration for each station per year

after imputation. Most of the stations are concentrated in Central Scotland and

the North-Eastern part of Scotland. This limits the performance of our prediction

results because the stations are not randomly distributed widely across Scotland.

Having computed the MCAR test on our dataset in Chapter 3, for better im-

putation of missing observations we adopted the SPSS EM method to impute

the missing observations before log-transforming the completed data, in line with

Smith & Kolenikov (2003) who also chose to use the EM algorithm (in Fortran

and Stata software) to deal with missing PM2.5 observations and direct use of

log-transformation in line with Bowman et al. (2009).

4.2 Spatial analysis and spatial autocorrelation

4.2.1 Spatial autocorrelation

Spatial analysis consists of techniques and models that use spatial referencing re-

lated with each dataset, including observations using topological, geometric and

geographic properties. Spatial analysis techniques have been developed in various

areas. Spatial analysis starts with mapping, surveying and geography, but mod-

ern spatial analysis focuses on computer based techniques because of the large

amounts of data which may be involved, and the use of modern statistical and

geographic information systems (GIS) software in the computational modelling.

Spatial dependence can be described as the co-variation of properties at proxi-

mal locations within geographic space, either positive or negative co-variation.

It is possible that there is a simple spatial correlation relationship involving an

observation at any particular location that also causes similar (or different) ob-

servations in nearby locations. Also, like temporal autocorrelation, spatial au-

tocorrelation estimates the degree of dependence among observations but in a

particular geographical area.

Spatial autocorrelation means that spatially related observations of the same phe-

nomenon are associated, which violates statistical assumption of independence

among observations. It also complicates statistical analysis by altering the vari-

ance of variables. Spatial dependence could be seen as additional information on

a phenomenon rather than being a source of problems in spatial analysis. Het-
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erogeneity of a spatial process means that overall parameters estimated for the

entire system are different at different locations (Cressie, 1993; Chiles & Delfiner,

1999; Wackernagel, 1995; Griffith, 1999).

Positive spatial autocorrelation is an indication that nearby geographical loca-

tions shows clusters of similar observations, while significant negative spatial au-

tocorrelation indicates that neighbouring data are more widely dispersed than

expected by ordinary variation in levels.

The measures of spatial autocorrelation include Moran’s I and Geary’s C (Grif-

fith, 2006). These statistics require constructing a spatial weights matrix that

reflects the strength of the geographic relationship between locations, for instance

the distances between two locations, the length of a shared border, or whether

they fall into a specified directional class. Geary’s C is defined by

C =
(N − 1)

∑
i

∑
j wij(Xi −Xj)

2

2W
∑

i(Xi − X̄)2
, (4.1)

where N is the number of spatial locations, X is the random variable, X̄ is the

mean of X, and wij is a spatial weight relating locations i and j, and W is the

sum of all wij. Geary’s C is inversely related to Moran’s I, but is more sensitive

to local spatial autocorrelation, while Moran’s I is a measure of general spatial

autocorrelation.

Moran’s I is defined as

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2
, (4.2)

where N is the number of spatial locations, X is the random variable, X̄ is the

mean of X, and wij is a spatial weight as above. The two statistics can be

computed using function Moran.I and geary.test in the ape and spdep package

of R.

We calculate Moran’s I by first generating a matrix of inverse distance weights

which is supplied to theMoran.I function. The null hypothesis of the test is that

there is no correlation, based on the assumption of normality. If the observed

value of I is significantly greater than the expected value, this indicates positive

autocorrelation in the data, otherwise if Iobserved < Iexpected this indicates negative

autocorrelation (Gittleman & Kot et al., 1990).
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4.2.2 Methods for spatial analysis

Spatial interpolation estimates or predicts the variables at unobserved locations

in a geographic area based on the values at observed locations. Basic methods

include inverse distance weighting, which reduces the value of the variable with

decreasing proximity from the observed location.

Kriging is a modern method that interpolates across space according to a spa-

tial lag relationship that has both systematic and random components. This can

accommodate a wide range of spatial relationships to describe the hidden values

between observed locations. Kriging provides optimal estimates of the relation-

ship between spatially related variables, and error estimates can also be examined

to determine whether spatial patterns exist. Details are given below and kriging

is applied to the SO2 data.

Spatial regression methods capture spatial association in regression analysis,

avoiding statistical problems such as unstable parameters and unreliable signifi-

cance tests, as well as providing information on spatial relationships among the

variables involved. However, weighted regression is like a spatial regression that

generates parameters separated by spatial units of analysis. This assesses the

heterogeneity of spatial patterns in the estimated relationships between the in-

dependent and dependent variables (Longley & Batty, 1997). Spatial models are

used as part of kriging and are also fitted in Chapter 5.

4.3 Geostatistics, variograms and kriging

4.3.1 Geostatistics

Geostatistics is the study of phenomena that vary spatially or temporally. It is

a collection of numerical methods that deal with the characterization of spatial

attributes, using stochastic models in a manner similar to the way in which time

series analysis characterizes temporal data (Olea, 1999).

The correlogram, the covariance and the semivariogram or variogram are the

three main functions usually used in geostatistics for spatial analysis description

(Cressie, 1993; Ripley, 1991). The variogram is the main function among these

three, as it is used for the correlation model of observed data in spatial analy-

sis. Variogram covariance models are usually estimated by the linear, spherical,

Matern, Gaussian or Exponential functions.

Kriging is an optimal interpolation technique which generates a best linear un-

biased estimate at each location and employs a semivariogram model (Chils &
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Delfiner, 1999; Isaaks & Srivastava, 1989), while co-kriging is an interpolation

technique that gives better estimation of kriging if the distribution of a sec-

ondary variate sampled more intensely than the primary variate is known, that is

it involves multiple variables. This is not available here but potentially we could

use distance to main roads or population density as covariates.

4.3.2 Variogram

A variogram is a function used for describing the degree of spatial dependence of

a spatial random field or stochastic process Z(x). Empirical variograms are used

to explore the spatial structure of the observed spatial data.

The main function for empirical variogram computation is variog in the geoR

package of R. The classical moment estimator is a commonly adopted method

in the computation of the semi-variance. It is computed as (Wackernagel, 2003;

Ribeiro & Diggle, 2000),

2γ(x1, x2) = E
(
|Z(x1)− Z(x2)|2

)
, (4.3)

for spatial positions x1 and x2 in which γ(x1, x2) represents the semivariogram,

and γs(h) = γ(0, 0 + h), is a function of the distance h = |x2 − x1| between
locations only. In general

γ(x1, x2) = γs(|x2 − x1|). (4.4)

As γ(x1, x2) = E(|Z(x1)−Z(x2)|2) = γ(x2, x1), the semivariogram is a symmetric

function. Also γs(h) = γs(−h), is an even function. The semivariogram is non-

negative, γ(x1, x2) ≥ 0. At distance 0, γ(x, x) = γs(0) = E ((Z(x)− Z(x))2) = 0.

Also, the variogram satisfies

N∑
i=1

N∑
j=1

wiγ(xi, xj)wj ≤ 0, (4.5)

for all weights w1, . . . , wN , such that
∑N

i=1wi = 0, and for locations x1, . . . , xN .

The variogram and covariance functions are related by

2γ(x1, x2) = C(x1, x1) + C(x2, x2)− 2C(x1, x2), (4.6)
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where C(x1, x2) = Cov(Z(x1), Z(x2)) (Cressie, 1993; Chiles & Delfiner 1999;

Wackernagel, 2003), so

γ(x1, x2) =
1

2
[V (Z(x1)) + V (Z(x2))− 2Cov(Z(x1), Z(x2))], (4.7)

and for a stationary process we have that γ(h) = C(0) − C(h), writing C(h) =

C(x1, x2) for locations x1, x2 such that |x1 − x2| = h (Schabenberger & Gotway,

2005).

For any observations zi, i = 1, . . . , k, at locations x1, . . . , xk the empirical semi-

variogram γ̂(h) is defined as

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

|zi − zj|2, (4.8)

in which observations i, j are such that distance |zi − zj| = h, and |N(h)| is the
number of pairs in the set. The natural estimator of C(h) is

1

|N(h)|
∑

(i,j)∈N(h)

(Z(x1)− Z̄)(Z(x2)− Z̄). (4.9)

The empirical variogram is used in spatial statistics as an initial estimate of

the variogram needed for spatial interpolation by kriging. Kriging is usually

computed for shorter distances, thus in fitting a model to the sample variogram,

the values of the sample variogram for longer lag distances are not so important.

4.3.3 Parametric covariance function

Several models are used to fit an empirical variogram or corresponding covariance

function. The Matern model for the covariance function C(h) between two points

at distance h apart is defined as

C(h) =
σ2

2v−1Γ(v)
(φh)vβv(φh), (4.10)

for v, φ, h > 0, Γ is the gamma function, and βv is the modified Bessel function

of the second kind of order v. The parameter v > 0 represents a smoothness

parameter, and the Matern model reduces to the Exponential model for v = 1
2

and to the Gaussian model as v → ∞.
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The Gaussian covariance model is given by

C(h) = σ2exp(−φh2) = σ2exp(−3
h2

α2
), (4.11)

the Exponential covariance model is given by

C(h) = σ2exp(−φh) = σ2exp(−3
h

α
), (4.12)

and the spherical covariance model is

C(h) = σ2(1− 3h

2α
+

1

2
(
h

α
)3), h ≤ α, and 0 otherwise (4.13)

(Schabenberger & Gotway, 2005; Chiles & Delfiner, 1999; Cressie, 1993; Handcock

& Stein, 1993).

Distance computation is very important in spatial analysis. Inter-site distance

computations are used in variogram analysis to compute the degree of spatial

relationship, which helps in specifying priors for the range parameter in Bayesian

modelling (Ecker & Gelfand, 1997), and for initial values of the non-linear least

squares algorithms in classical analysis (Cressie, 1993).

In the spherical coordinate system, let P1 = (λ1, θ1) and P2 = (λ2, θ2) be two

locations on the Earth’s surface given by longitudes λ1 and λ2 and latitudes θ1

and θ2. The geodesic distance is the arc length of a circle joining any two points

and is obtained as Rφ, where R (6371 km) is the radius of the earth and φ (in

radians) is the angle between the two points, and is given by

d = Rφ = R arccos(sinθ1sinθ2 + cosθ1cosθ2cos(λ2 − λ1)). (4.14)

If the number of data locations is n then there will be a total of n(n−1)/2 possible

pairs of locations to consider. The field package in R computes geodesic distance

using the function rdist.earth(). The distance summary will enable us to create

reasonable lag intervals for the range parameter in the variogram computation.

4.3.4 Kriging

Kriging is a geostatistical technique for interpolating the value of a unknown

random observation from data Z(x) observed at known locations. Kriging is

usually applied for interpolating environmental measurements (Switzer, 1977 &

1989). For kriging, the data Z(x) = (Z(x1), . . . , Z(xN)) are assumed to arise
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from a random field defined on the spatial area of interest, such that the mean

E(Z(x)) = µ(x) (4.15)

and cov(Z(x)) = Σ. Kriging uses a linear model for interpolation of Z(x0) at a

location x0, taking

Ẑ(x0) =
N∑
i=1

wi(x0)Z(xi), (4.16)

for observed locations x1, . . . , xN , and where the coefficients or weights wi are

estimated to minimize the variance of prediction error,

V (Ẑ(x0)−Z(x0)) =
N∑
i=1

N∑
j=1

wi(x0)wj(x0)C(xi, xj)+V (Z(x0))−2
N∑
i=1

wi(x0)C(xi, x0),

(4.17)

subject to

E(Ẑ(x0)− Z(x0)) =
N∑
i=1

wi(x0)µ(xi)− µ(x0) = 0, (4.18)

where µ(x) is a trend, µ(x) = E(Z(x)) and C(x1, x2) = Cov(Z(x1), Z(x2)) is the

covariance function of the random field Z(x) relating observations at locations

x1 and x2. ”Ẑ(x) is an unbiased estimator”. There are various forms of kriging,

namely simple, universal, ordinary and Bayesian kriging, using different forms

for µ(x), the mean or trend. Simple kriging is based on the assumption that the

trend function is a known constant that can take different values for different

locations, and ordinary kriging uses a trend that is unknown but constant across

locations, while the more general form for universal kriging takes

µ(x) =

p∑
i=1

βjfj(x) = βTf(x), (4.19)

where βT = (β1, . . . , βp) are unknown regression parameters, and f(x)T = (f1(x), . . . , fp(x))

are known covariates depending on spatial location (e.g. Easting and Northing).

For any form of kriging the nature of Σ is specified, through a covariance function

relating Z(x) and Z(y), so that

cov(Z(x), Z(y)) = αKθ(| x− y |), (4.20)

where α > 0 is a scale parameter, and θT = (θ1, . . . , θq) is a vector of real-valued

structural parameters for the covariance function (Handcock and Stein, 1993; De
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Oliveira et al., 1997). The kriging estimate of Z(x0) is then given by

Ẑθ(x0) = kTθ K
−1
θ Z + bTθ β̂(θ), (4.21)

in which kTθ = (Kθ(x0, x1), . . . , Kθ(x0, xN)), Kθ is the N ×N matrix with (i, j)th

element Kθ(xi, xj) which is a function relating the covariance function with the

distance between pair of locations i and j, bθ = f(x0)−F TK−1
θ kθ, F is the N ×p

matrix {fj(xi)} and

β̂θ = (F TK−1
θ F )−1F TK−1

θ Z (4.22)

(Handcock and Stein, 1993). This assumes the covariance function and its pa-

rameters to be known. Commonly a form of variogram model is fitted to the

empirical variogram, or a covariance model is fitted to the empirical covariance

function, and parameter estimates for α and θ are found by maximum likelihood

estimation, weighted least squares estimation or an ad hoc method (e.g. to ob-

tain a best visual match) (Handcock and Stein, 1993). The parameter values are

then treated as if they were known for the purposes of kriging, and the estimate

Ẑ(x0) then uses the estimated parameters. This ignores the uncertainty in the

estimates.

Bayesian kriging takes account of uncertainty about the nature of the covariance

function. Inference is based on the Bayesian predictive distribution p(Z(x0)) |
Z(x)), using the mean (or mode or median) of this as an estimate Ẑ(x0). Hand-

cock and Stein (1993) outline a Bayesian framework for prediction of random

fields which are assumed to be Gaussian. The predictive distribution is derived

from p(Z(x0) | θ, Z) and p(θ | Z) by integrating out their product over the

unknown parameters θ, after specifying suitable probability models. Numerical

integration may be necessary.

It is not always appropriate to assume a Gaussian model for the random field

data. Trans-Gaussian kriging involves finding a transformation of the spatial

data for which the transformed data are approximately normally distributed, us-

ing kriging to find the best linear unbiased predictor for the transformed data

and then transforming back, with a correction for bias in the original scale of

measurement (De Oliveira et al., 1997; Cressie, 1993).

De Oliveira et al. (1997) extend Handcock and Stein (1993) to random fields

which can be transformed to follow a Gaussian distribution, using a particular

class of transformations defined by a single parameter, but avoiding the need to

select any one particular transformation. This parameter becomes part of the

uncertainty in the Bayesian modelling approach. They compared trans-Gaussian
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kriging with their Bayesian approach and found that their method did better in

terms of average prediction error and coverage of 95% prediction intervals.

An approximation to the predictive density can be obtained as

p(Z0|Z) =
1

m

m∑
i=1

p(Z0|Z, θ(i)), (4.23)

where θ(i) is the ith sample i = 1, 2, . . . ,m, from the posterior distribution p(θ|Z).
The Markov Chain Monte Carlo (MCMC) procedure using the Gibbs sampling

method can be used to efficiently simulate from the posterior distribution for the

parameters θ. Gibbs sampling involves sampling from conditional distributions.

It requires an initial value for the vector θ(0) = (θ
(0)
1 , . . . , θ

(0)
q ), and obtains a new

value θ
(1)
1 from the conditional distribution

p
(
Φ1|Φ2 = θ

(0)
2 , . . . ,Φq = θ(0)q

)
. (4.24)

We then obtain a new value θ
(1)
2 , from the conditional distribution

p
(
Φ2|Φ1 = θ

(1)
1 ,Φ3 = θ

(0)
3 , . . . ,Φq = θ(0)q

)
, (4.25)

and generation of θ
(1)
q continues from the conditional distribution

p
(
Φq|Φ1 = θ

(1)
1 , . . . ,Φq−1 = θ

(1)
q−1

)
. (4.26)

This same procedure is repeated for the new vector θ(1), and we then return to

θ1 and θ(2) again until convergence is attained. Futher details about Bayesian

geostatistics are described by Handcock and Stein (1993); Ribeiro and Diggle

(1999) & (2002); Chiles and Delfiner (1999) and Wackernagel (1995).

The function krige.bayes in the geoR package of R performs Bayesian analysis

of geostatistical data, and it incorporates uncertainty in the estimation proce-

dure. It gives the estimate of the posterior distribution for the model parame-

ters. Bayesian inferences for point and interval estimation as well as hypothesis

testing are obtained using the posterior samples. It is possible for different prior

distributions to have different effects on the posterior, thus, in our analysis we

also assessed the implications of using different priors (Handock & Stein, 1993;

Cressie, 1993; De Oliveira et al., 1997; Fuentes, 2007).
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4.4 Analysis of SO2 data

We computed Moran’s I test on the complete dataset to check first for the presence

of spatial correlation. After imputation, we first computed the geodata by taking

the logarithm of the annual mean SO2. A distance matrix was also obtained from

distance weights using the coordinates (longitude and latitude) of the stations.

We then take the inverse of the distance matrix after substituting the diagonal

elements with zero. Each off-diagonal element (i, j) from the resulting inverse

distance matrix is equal to 1/(distance between points i and j).

We consider years 1996, 2000 and 2005 as in the previous analysis in Chapters 1

and 2. The results are presented in Table 4.1, and in this case the output is only

significant for the dataset in 1996. The null hypothesis that there is no spatial

autocorrelation present in the data is rejected at the 0.05 significance level, which

implies that our data are positively correlated though the correlation is very low

(corr= 0.1407265) from the observed value of the Moran’s I test statistic. The

year 2000 and 2005 datasets are not statistically significant in terms of Moran’s

I. We therefore based most of the analysis in this chapter on 1996 as there are

more sites and evidence of spatial correlation.

Table 4.1: Summary of Moran’s I test for the datasets in years 1996, 2000 and 2005.
The table gives both the observed and expected values as well as the standard deviation
and p-values for each year

1996 2000 2005

______________________________________________

observed 0.1407 0.0801 -0.0567

______________________________________________

expected -0.025 -0.0370 -0.0714

______________________________________________

sd 0.0541 0.0826 0.0795

______________________________________________

p.value 0.0022 0.1562 0.8538

4.4.1 Variogram estimation results

The variogram enables us to look at the variance of the differences of logarithms

of annual mean SO2 concentration among pairs of stations at different geodesic

distances. Table 4.2 gives the distance summary for the 1996 dataset. The

maximum separation distance between any pair of stations is about 270 km and

the median distance is approximately 56 km.
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Table 4.2: The geodesic distance summary for our geodata in 1996

distance (km)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.001414 29.8 55.9 82.4 139.8 270.3

We calculate a variogram using the Easting and Northing of the stations to

determine the geodesic distances that will give us reasonable estimates. Based

on the summary of distances in Table 4.2, we consider 13 lag distance intervals

for the empirical variogram and created a break vector covering the range of dis-

tances for the variogram computation. The lag distance of more than 13 results

has an unusual variogram shape in Figures 4.1 and 4.2.

Firstly, we use a visual method to fit the variogram by continously changing the

parameters until we have a reasonable estimate in terms of the shape of the var-

iogram. We consider both constant mean and linear trend on the coordinates in

the computation of parameters for the estimation of the variogram model. The

results are shown in Figures 4.1 and 4.2 for a constant mean and linear trend

respectively.

The results seem similar except that the linear trend in Figure 4.2 has lower semi-

variance (with maximum value of 0.5) as compared to the constant mean trend

(maximum value of 1). The semi-variance increases with increase in lag distance

and decreases again beyond 100 km. The nugget parameters are approximately

0.23 and 0.25 for constant mean and linear trends respectively. Both variograms

have no clearly defined shape. There is no distinct sill parameter.

We later plotted both the theoretical and empirical variograms together to visu-

ally compare them based on the results of initial parameter estimation in Figures

4.1 and 4.2. Having tried various lags distance, we now consider 8 lag distance

in order to get a better shape for the variogram. Figures 4.3 and 4.4 show the

empirical and estimated theoretical variograms using the Exponential (blue line),

Spherical (pink), Matern (green) and Gaussian (red) functions as covariance mod-

els.

The sill is not clearly identified at the distances considered and the semi variances

do not start at zero, so there is a nugget effect (0.17) in both cases. The empirical

variogram possesses a nugget effect (a non-zero limit in the empirical variogram

as the distances between stations becomes very small). None of the covariance

models fits all of the empirical variogram well. The kriging is useful for prediction

at shorter distances within Central Scotland.
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Figure 4.1: Empirical variogram for the logarithm of mean annual SO2 levels using a
constant mean trend in 1996
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Figure 4.2: Empirical variogram for the logarithm of mean annual SO2 levels using a
linear trend in 1996
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Figure 4.3: Empirical and theoretical variogram for the logarithm of mean annual SO2

levels using a constant mean trend in 1996
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Figure 4.4: Empirical and theoretical variogram for the logarithm of mean annual SO2

levels using a linear trend in 1996
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4.4.2 Fitting a model variogram

We try to fit an optimal model to our data by computing different models for the

sample variogram, and produce a model variogram that fits the sample variogram

adequately using the AIC criterion. The variogram model can be used to predict

the covariance between points separated by a certain distance and kriging weight

for kriging analysis.

We estimated the model parameters using the maximum likelihood method. We

used maximum likelihood because it is more computationally feasible than the

least squares method and the procedure depends on the assumption of normality,

as well as providing effective model comparison and selection criteria such as the

likelihood ratio and AIC. Diggle et al. (2003) prefer the likelihood based method,

because it is optimal under the model assumptions.

The kriging algorithm requires initial parameter values, and we obtained approx-

imate values for these parameters from the fitted empirical variograms in Figures

4.3 and 4.4. We considered the Exponential, Matern, Spherical and Gaussian

covariance models as above, but present results for both Exponential and Matern

covariance only because both methods give the minimum AIC and BIC, and the

maximum value for the log-likelihood. Table 4.3 shows the estimated variogram

parameters using different covariance functions.

Table 4.3 enables us to choose the best (optimal) combination of parameters for

the variogram estimation. The model with constant mean trend has the same

values for AIC and BIC (75.11, 81.96) for both Matern and Exponential functions

respectively, but the Exponential function has the higher log likelihood (-33.55).

The linear trend gives the same estimates for both methods and is better than

the model with constant mean trend because it has lower AIC and BIC as well

as higher log likelihood.

The estimated β for the Exponential function (2.774) is slightly higher than for

Matern covariance function (2.757). The σ2 for Matern is also higher than that of

the corresponding Exponential value. Their range parameters φ are the same (50

km) (this is a measure of spatial correlation). For the linear trend both sigmasq

and phi are relatively low and the two methods give the same estimated values.

Figure 4.5 shows explanatory analysis before the main modelling. The top left

panel shows the spatial locations using different colour codes for data in different

quartiles to draw more attention to spatial patterning of the variable logarithm

of mean SO2. Stations in blue have values less than or equal to the 1st quartile,

the green ones have values between the 1st and 2nd quartile, the yellow ones are

between the 2nd and 3rd quantile while the red have values greater than the 3rd
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quantile. The stations are not evenly spatially distributed, but cluster around

Central Scotland. We also observe that stations with higher mean level are lo-

cated within and around Central Scotland as indicated by colour red on the data

map.

The top right and bottom left panels show the data value against Y (Northing)

and X (Easting) coordinates respectively, and the bottom right panel is a his-

togram of the data values overlaid with an estimated density. The smoothed

lines on Easting and Northing suggest that a spatial trend is present in the data

(linear trend in x). The histogram is left-skewed and the majority of the obser-

vations are between 2.5-3.5.

Table 4.3: Estimated model parameters with constant mean and linear trend using
likelihood method for variogram estimation

constant mean trend

function beta tausq sigmasq phi log.L AIC BIC

matern 2.757 .2556 .1128 50000 -33.70 75.11 81.96

exp. 2.774 .2437 .09930 50000 -33.55 75.11 81.96

---------------------------------------------------------------------

linear trend

beta_0 beta_1 beta_2 tausq sigmasq phi log.L AIC BIC

mat. 2.6726 -0.0011 0.0005 0.2363 0.0018 .082995 -28.6 69.2 79.48

exp. 2.6726 -0.0011 0.0005 0.2363 0.0018 .082995 -28.6 69.2 79.48
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Figure 4.5: Plotting data locations and values. Stations in blue colour coding have
values less than or equal to the 1st quartile, the green ones have values between the 1st

and 2nd quartile, the yellow ones are between the 2nd and 3rd quantile while the red
have values greater than the 3rd quantile
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4.4.3 Ordinary and Bayesian kriging

We now use kriging for spatial interpolation. We consider both ordinary and

Bayesian kriging in our analysis. We use likelihood estimation of parameters,

considering both Matern and Exponential covariance models for kriging, and

compare results for both constant mean and linear trends.

For our initial ordinary kriging modelling we choose both Matern and Exponen-

tial functions with constant mean trend, using the likelihood method because it

gives a high log likelihood (-33.55) and lowest AIC (75.11) in Table 4.3. The es-

timated variogram parameters are τ 2 (0.2437) which is a measure of the relative

nugget effect, σ2 (0.09930), a measure of the sill and φ of 50 km which is also a

measure of the range parameter (the distance at which the sill is reached) from

Table 4.3. These values are used in the subsequent kriging estimation.

The ordinary kriging results are shown in Tables 4.4 and 4.5, which give the detail
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of estimated model parameters (β, τ 2, σ2 and φ) and the summary statistics of

the estimated predicted mean and its kriging variance. The graphical results are

shown in Figures 4.6-4.14.

In model 1a (Table 4.4), we utilized default options in the package, that is a

Matern covariance model with constant mean trend, while model 1b in Table 4.5

used the same parameter values but with the Exponential function. In Table 4.4,

the estimated parameters are β of 2.77, which is an estimate of the mean, τ 2 of

0.244 which is an estimate of the nugget effect, σ2 of 0.0993 which estimates the

variance of the model and φ of 50 km which is a measure of the range for the

correlation (which simply implies that any observation within this distance may

be assumed to be spatially correlated). The asymptotic range is about 149786.6

(150 km) which is 3 times the value of estimated φ (any observations beyond

this distance are not correlated). The median and mean predictions are similar

(2.774). The mean and median of kriging variance are also very low.

In model 1b (Table 4.5), the Exponential function was utilized rather than Matern,

but the summary results are identical to the Matern estimation. In Figure 4.6, we

observe that the estimated mean concentration is very high in Central Scotland,

and there is a decreasing trend in mean concentration towards the boundary,

i.e there is reduction in the mean level indicated by gradual darkening of the

estimated surface. We will not pay attention to the unusual high predictions

observed outside the Scotland map as these predictions are not reliable due to

the scarcity of data in the sea area (Figures 4.6, 4.8, 4.10, 4.13, 4.16 and 4.18).

Central Scotland comprises the Glasgow area and Edinburgh, and the high pre-

dictions we observe here may be due to presence of heavy industries and high

population density in this region. The remote stations toward the North-Eastern

region (Aberdeen 3, Peterhead 1, Peterhead 2, Peterhead 3, Longside 2 and Hat-

ton 1) have very low mean concentrations, which may be due to the low population

density in the area. In Figure 4.7 variance generally increases towards the coast

with Central Scotland having the least predicted variance, which could be due to

clustering of stations and availability of data in this region.

In Figure 4.8, we have similar results to the Matern covariance model with Cen-

tral Scotland still having the highest predicted mean, which is also largely due

to presence of more data in the region. The North-Eastern region has the least

predicted concentration. In Figure 4.9, the results are the same as for the Matern

model with variance increases towards the coast, and Central Scotland and North-

Eastern region have very low predicted variance.

In summary, the predictions in the West are higher than in Edinburgh and Ab-
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erdeen (Figures 4.6 and 4.8). This is due to a lack of data thus extrapolating too

far outside the spatial range of the stations.

Table 4.4: Likelihood fit result for the estimated model parameters of the ordinary
kriging using the Matern covariance function with constant mean trend and summary
statistics of the estimated prediction mean and variance

Model 1a

beta tausq sigmasq phi

2.774 0.2437 0.09930 50000

Practical Range with cor=0.05 for asymptotic

range: 149786.6

likfit: maximised log-likelihood = -33.55

--------------------------------------------

> summary(kr1a$predict)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.473 2.760 2.772 2.774 2.782 3.181

------------------------------------------------

> summary(kr1a$krige.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2714 0.3647 0.3756 0.3673 0.3787 0.3802

Table 4.5: Likelihood fit result for the estimated model parameters of the ordinary krig-
ing using the Exponential covariance function and summary statistics of the estimated
prediction mean and variance using constant mean trend

Model 1b

beta tausq sigmasq phi

2.774 .2437 .09930 50000

Practical Range with cor=0.05

for asymptotic range: 149786.6

likfit: maximised log-likelihood = -33.55

------------------------------------------------

summary(kr1b$predict)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.473 2.760 2.772 2.774 2.782 3.181

------------------------------------------------

> summary(kr1b$krige.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2714 0.3647 0.3756 0.3673 0.3787 0.3802
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Figure 4.6: Ordinary kriging predicted mean using maximum likelihood (method=ml,
cov=matern, trend=constant mean trend). The high predictions observed outside the
map region are not reliable
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Figure 4.7: Ordinary kriging predicted variance using maximum likelihood
(method=ml, cov=matern, trend=constant mean trend)
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Figure 4.8: Ordinary kriging predicted mean using maximum likelihood (method=ml,
cov=exponential, trend=constant mean trend). The high predictions observed outside
the map region are not reliable
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Figure 4.9: Ordinary kriging predicted variance using likelihood (method=ml,
cov=exponential, trend=constant mean trend)
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4.4.4 Bayesian results

We also utilized Bayesian kriging to estimate model parameters and obtain pre-

dictions for the logarithm of the mean annual SO2 concentration at unobserved

locations within Scotland for us to see if we could get similar or better results than

in ordinary kriging as a little prior knowledge will be assumed here. Bayesian

inference on the parameters involves setting up priors. The default setting takes

the prior for the mean β to be flat, reciprocal for the parameter σ2 and uniform

for the range parameter φ. Samples of 1000 simulations are taken from the pos-

terior distribution as well as the predictive distribution.

Firstly, we used these default prior specifications with a constant mean trend and

the Matern covariance model. The prediction results and posterior distribution

of the parameters are given in Table 4.6 and Figures 4.10 and 4.11 (Model 2a).

In Table 4.6, the Bayesian predictive mean and median are the same (2.76) and

slightly lower than the ordinary kriging result in Table 4.4. The mean predic-

tive variance is (0.00546) much lower than that of ordinary kriging. In Table 4.7

(model 2b) shows results for the corresponding Exponential covariance model.

We investigate this model in order to assess the sensitivity of the results to the

priors. The range of the predictive mean is also very low with predictive mean of

2.765 which is similar to the Matern model in Table 4.6. The estimated Bayesian

variance is similar to that of corresponding Matern function.

In Figure 4.10, the result is similar to the ordinary kriging. There is a variation in

predictive mean level in different locations on the map, with a higher mean level of

SO2 concentration observed in Central Scotland as indicated by the lightening of

the surface, and the North-Eastern stations still have lower predicted mean levels.

We observe that Bayesian kriging seems to have more impact on the predicted

mean in the North-Eastern region, as Aberdeen now has a higher predicted mean

than the other North-Eastern stations. There is a wider range in the predictive

mean than in the ordinary kriging.

In Figure 4.11, there is an decrease in the estimated variance towards the bound-

ary (higher variance at data points) and the estimated Bayesian variance is lower

than that of ordinary kriging. There is lower variance in the areas away from

the stations and Central Scotland still has high Bayesian variance. Figure 4.12

shows the histograms of the posterior distributions for the Bayesian parameter

estimates. For β, this is symmetric, for σ2 it is right skewed, and for φ it is more

or less a uniform distribution which implies that there is no correlation at higher

distance.

Figures 4.13 and 4.14 are very similar to Figures 4.10 and 4.11. The results are
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not too sensitive to the choice of covariance model because the predictive mean

and variance estimates results are similar in the two models.

Table 4.6: Likelihood fit result for the estimated model parameters of Bayesian kriging
using the Matern covariance function and constant mean trend with a flat distribution
for the mean β, a reciprocal prior for the variance, and a uniform distribution for the
range parameter

Model 2a

> summary(kr2a$predictive$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.624 2.759 2.760 2.760 2.760 3.351

-----------------------------------------------

> summary(kr2a$predictive$variance)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00512 0.00523 0.00529 0.00546 0.00537 0.0328

Table 4.7: Likelihood fit result for the estimated model parameters of Bayesian kriging
using the Exponential covariance function and a constant mean trend with a flat dis-
tribution for the mean β, a reciprocal prior for the variance, and a uniform distribution
for the range parameter

Model 2b

summary(kr2b$predictive$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.625 2.765 2.765 2.765 2.765 3.351

------------------------------------------------

> summary(kr2b$predictive$variance)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00512 0.00523 0.00529 0.00546 0.00537 0.0328
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Figure 4.10: Mapping of Bayesian predictive mean estimate for the Matern function
using the default setting for the priors (mean β = flat, variance σ2 = reciprocal, range
parameter φ = uniform, trend=constant mean trend). The high predictions observed
outside the map region are not reliable
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Figure 4.11: Mapping of Bayesian predictive variance estimate for the Matern function
using the default setting for the priors (mean β = flat, variance σ2 = reciprocal, range
parameter φ = uniform, trend=constant mean trend)
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Figure 4.12: Histograms of the posterior distribution of the Bayesian predictive esti-
mates (β, σ2, φ) using the default setting for the priors (mean β = flat, variance σ2

= reciprocal, range parameter φ = uniform, trend=constant mean trend). The upper
box is for Matern and the lower box is for the Exponential function
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Figure 4.13: Mapping of Bayesian predictive mean estimate for the Exponential func-
tion using the default setting for the priors (mean β = flat, variance σ2= reciprocal,
range parameter φ =uniform, trend=constant mean trend). The high predictions ob-
served outside the map region are not reliable
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Figure 4.14: Mapping of Bayesian predictive variance estimate for the Exponential
function using the default setting for the prior (mean β = flat, variance σ2= reciprocal,
range parameter φ = uniform, trend=constant mean trend)
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Models involve linear trend

In Model 3, we continue our analysis by constructing another set of models simi-

lar to model 1a in Table 4.4 (ordinary kriging) but using a linear trend to account

for the trend to see if there is any effect on estimated parameters as a result of

change in trend specification. The results are shown in Table 4.8.

In Table 4.8, the likelihood based parameters are generally very low. The pa-

rameters β1, β2, σ
2 and φ are all very small (as low as 0) with τ 2 of 0.2363, a

little lower than for model 1a. The better log likelihood in Table 4.8 may be due

to removal of trend from the series which make the general mean level become

very low (the series we modelled here comprises only the seasonal component

and residual variation after removal of trend). The model indicates a higher

mean prediction of 3.130 than the mean observed data 2.882 (from Table 4.8), it

has a wider predicted range (-1.252, 7.512), indicating some negative predictions,

the mean level is also higher than that of constant mean trend, and the kriging

variances are very small (close to 0 at 4 d.p), which suggest that the algorithm

has not converged, thus this result may not be too reliable.

We repeated the same analysis with the same model parameters but using an

Exponential function for the covariance model. The results are not shown here

but show a similar pattern. For the Bayesian model with linear trend using de-

fault prior specification and Matern covariance model, Table 4.9 indicates that

the mean Bayesian prediction is also higher than the average observed data

(3.041 > 2.882). There are also some negative predictions in these results. The

estimated Bayesian variance is very much lower compared to the corresponding

ordinary kriging variance results. The results are not similar to the constant

mean trend model.

It is generally observed in Tables 4.8 and 4.9 that the model result is not yet

converged. We do not present map of predicted mean and variance for the results

in this section as some predictions are negative.
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Table 4.8: Likelihood fit result for the estimated model parameters of the ordinary krig-
ing results using Matern covariance function, and summary statistics for the estimated
predicted mean and variance using linear trend

Model 3

likfit: estimated model parameters:

beta_0 beta1 beta2 tausq sigmasq phi

2.6726 0.0000001 0.0000001 0.2363 0.000000 0.0000

Practical Range with cor=0.05 for asymptotic

range: 0.0001159668

likfit: maximised log-likelihood = -28.6

Observed data

> summary(g8$data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.253 2.669 2.994 2.882 3.201 3.890

-----------------------------------------------------

summary(kr3a$predict)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.252 1.548 3.130 3.130 4.712 7.512

-----------------------------------------------------

> summary(kr3a$krige.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.9: Likelihood fit result for the estimated model parameters of Bayesian kriging
using Exponential covariance function, and summary statistics for the predicted mean
and variance using linear trend
Model 4

likfit: estimated model parameters:

beta0 beta1 beta2 tausq sigmasq phi

2.9700 0.0000 0.0000 0.2361 0.0000 0.0000

Practical Range with cor=0.05 for

asymptotic range: 0.0001159668

likfit: maximised log-likelihood = -28.58

--------------------------------------------------

summary(kr3b$predictive$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.106 1.599 3.045 3.041 4.477 7.186

-------------------------------------------------

> summary(kr3b$predictive$variance)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00013 0.00051 0.00096 0.00151 0.00183 0.03100
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We now consider Central Scotland only by computing a separate model for

the stations in Central Scotland alone without the six remote stations (Aberdeen

3, Peterhead 1, Peterhead 2, Peterhead 3, Longside 2 and Hatton 1). We do this

to check how sensitive our previous models would be if the stations are clustered

together in a region, and to overcome the problem of high predictions in the

Western Coast and over the sea we earlier observed in Figures 4.6 and 4.8. We

now have more correlated data as a result of reduction in distance among pairs

of stations.

Figure 4.15 shows the plots of the data values and locations for the Central

Scotland stations. We observe more clustered data points with relatively low

variation, than for the whole of Scotland. There is not much effect of Northing

while the Easting shows a decreasing straight line trend. The histogram indicates

that most of the data values fall between 2.5-3.5 and is left-skewed (compare Fig-

ure 4.5), as before.

We re-analysed Model 1a (ordinary kriging) with the remaining 35 stations. The

results are presented in Table 4.10. We observe that the β parameter of 2.852 is

now higher than that of the whole of Scotland (2.774) in model 1a (Table 4.4), and

that both τ 2 and σ2 values are also higher than the corresponding results in model

1a, but the φ parameter has now reduced from 50km to 40 km. The asymptotic

range has also reduced to approximately 120 km, with a higher log likelihood

(-30.34). The predictive mean levels are generally higher than for model 1a, and

the corresponding kriging variance value is also higher, which could easily be due

to reduction in data points.

The corresponding Bayesian results are presented in Table 4.11 and we also com-

pare these results with model 2a in Table 4.6. The predictive mean level is still

higher, while the predicted variance increases as compared to a full model where

all the stations are used. The mean predictions are lower than for the observed

data (2.849 < 2.933, from Table 4.10 and 2.817 < 2.933, from Table 4.11).

In Figure 4.16, similarly to Model 1a results, the highest prediction is found in

Glasgow Centre because of concentration of heavy industry, city centre business

and high population density as well as large volume of vehicles, and there is a

low predicted level along the Eastern Coast. In Figure 4.17, the estimated krig-

ing variance decreases towards the coast, with the Central region (the area with

highest concentration of stations) having a very high variance level. Spatial vari-

ation is also relatively small, which may be due to clustering of the stations in

the region.

The Bayesian kriging results for Central Scotland alone are shown in Figures 4.18
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and 4.19, and the results are also consistent with the ordinary kriging, with high-

est predictions in Glasgow Centre and low predictions along the Eastern Coast.

The variances are also higher in areas close to recording stations.

We also considered a separate model for these 6 remote stations by computing

another model for the 6 stations using Bayesian kriging. The results are shown

in Table 4.12 and Figures 4.20 and 4.21. These results under-estimated the ob-

served data, as the mean prediction is lower than the average observed data

(2.612 < 2.88). The estimated Bayesian variance is also very high compared to

the Central Scotland model. Spatial variation is also relatively small, probably

due to proximity of the stations. Also, Aberdeen 3 has higher predictions than

rest of the stations in that region as indicated by white colour in Figure 4.20.

Figure 4.15: Plotting data locations and values for the Central Scotland. Stations in
blue colour coding have values less than or equal to the 1st quartile, the green ones
have values between the 1st and 2nd quartile, the yellow ones are between the 2nd and
3rd quantile while the red have values greater than the 3rd quantile
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Table 4.10: Summary statistics for the estimated model parameters of the ordinary
kriging using the Matern covariance function for Central Scotland only
Model 5a

likfit: estimated model parameters:

beta tausq sigmasq phi

2.852 0 .27 0.1012 40000

Practical Range with cor=0.05

for asymptotic range: 119829.3

likfit: maximised log-likelihood = -30.34

Observed data

> summary(g8b$data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.253 2.809 3.035 2.933 3.296 3.890

------------------------------------------------

> summary(kr7aa$predict)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.502 2.845 2.849 2.849 2.854 3.187

________________________________________________

> summary(kr7aa$krige.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3032 0.4255 0.4351 0.4253 0.4372 0.4379

Table 4.11: Summary statistics for the estimated model parameters of Bayesian kriging
using the Matern covariance function for Central Scotland

Model 5b

likfit: estimated model parameters:

beta tausq sigmasq phi

2.852 0.27 0.1012 40000

Practical Range with cor=0.05

for asymptotic range: 114162.7

likfit: maximised log-likelihood = -30.39

Observed data

> summary(g8b$data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.253 2.809 3.035 2.933 3.296 3.890

__________________________________________________

> summary(kr8b$predictive$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.904 2.817 2.817 2.817 2.817 3.273

__________________________________________________

> summary(kr8b$predictive$variance)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01143 0.01143 0.01143 0.01149 0.01143 0.03041
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Figure 4.16: Ordinary kriging result for the predicted mean for Central Scotland. The
high predictions observed outside the map region are not reliable

1e+05 2e+05 3e+05 4e+05 5e+05

55
00

00
65

00
00

75
00

00

mean

Easting

N
or

th
in

g

2.6

2.7

2.8

2.9

3

3.1

Figure 4.17: Ordinary kriging result for the predicted variance for Central Scotland
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Figure 4.18: Bayesian kriging results for the predicted mean for Central Scotland. The
high predictions observed outside the map region are not reliable
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Figure 4.19: Bayesian kriging results for the predicted variance for Central Scotland
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Table 4.12: Summary statistics for the estimated model parameters of the Bayesian
kriging using the Matern covariance function for the remote stations

Model 6

Observed data

> summary(g8c$data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.156 2.398 2.603 2.881 2.770 2.971

_______________________________________________

summary(kr9$predictive$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.398 2.609 2.612 2.612 2.614 2.795

------------------------------------------------

> summary(kr9$predictive$variance)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.04343 0.04406 0.04529 0.04984 0.04834 0.40950

Figure 4.20: Bayesian kriging results for the predicted mean for remote stations
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Figure 4.21: Bayesian kriging results for the predicted variance for remote stations
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4.4.5 Model validation

In order for us to assess the spatial predictive capability of our models, we con-

struct a validation procedure, to assess how well kriging works for our dataset.

We perform model validation by comparing observed and predicted values using

kriging. The various methods include leave-one-out, in which each data point is

removed one by one from the given observations. The observations at unknown

locations are predicted based on the remaining data at known locations. This

can be done with a subset of the data points or all the data. We can also perform

external validation using validation points other than data points. The function

xvalid in geoR performs model validation within any of the three options.

In our analysis our dataset is divided into 2 different groups, namely test and

training data. The test data is obtained by randomly removing 10 stations from

our dataset, while the other observations are the training dataset. We fitted an

ordinary kriging using the Matern covariance function to the training data, and

then used the results to validate prediction of the 10 test observations. Having

previously fitted a likelihood model for parameter estimation to the logarithm of

annual mean SO2 concentration for all the stations, we used the results obtained

to validate our models. Table 4.13 shows the summary of observed test data and
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summary statistics of error as well as standard errors of prediction.

We observe that the predictions for the test data fall within the range of the

corresponding full dataset, which is an indication that the validation results are

compatible with the observed data. We also compare our results based on stan-

dard error (prediction error divided by the square root of the kriging variance).

The standard error of the mean prediction error (-0.07841) is also very small,

which is another indication of reliability of the models. The model validation

plot in Figure 4.22 suggests that the model is relatively adequate, except for one

point which is not well predicted (prediction=2.8, when data < 1.5, this point

corresponds to Aberdeen 3). There is constancy of variance though the PP plot

is not normal.

Table 4.13: Model validation results which show the summary statistics of the observed
data, its prediction and error of prediction for the test data

summary(xval1$data)

Observed data

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.253 2.977 3.064 2.938 3.215 3.401

------------------------------------------------------------------

> summary(xval1$predicted)

predicted data

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.675 2.818 3.052 2.978 3.125 3.132

-----------------------------------------------------------------

summary(xval1)

prediction error

Min. 1st Qu. Median Mean 3rd Qu. Max. sd

errors -1.509 -0.0066 0.1420 -0.0393 0.2511 0.2961 0.5401

std.errors -2.793 -0.0122 0.2609 -0.0784 0.4546 0.5083 0.9959
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Figure 4.22: Model validation results which show the histograms of observed data,
PP plot and standardized residuals; blue indicates positive values of the error ”data-
predicted” and red indicates negative values
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4.5 Summary and suggestions for further work

4.5.1 Summary

The results of the model validation are presented first since both inference and

predictions are based on the model with the best predictive ability. Generally,

the models with constant mean trend seem better than those with linear trend,

because the predictions are all in the range of the observed data and there are no

negative predictions, and the estimated variances are low. The Exponential co-

variance function tends to drastically reduce the estimated variance from kriging

based on our models.

We also observed that the Bayesian models produce a lower variance than ordi-

nary kriging estimates. In our analysis, Bayesian approach under-estimates the

prediction variances. Bayesian approach outperforms ordinary kriging result as

a reult of smaller kriging variance.

Ordinary kriging does not display the underlying spatial pattern very well when

using all 41 stations, especially for the stations around Aberdeen. There is an

increase in variance with the reduced model after removal of stations that are far
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away from the rest. A low spatial variation is observed in Central Scotland and

this could be due to concentration of the stations in the region. Of course we

expect the data to be highly spatially correlated (dependent).

Most of the formulated models indicated high concentration of SO2 in and around

Central Scotland (Glasgow and Edinburgh), and elevated concentrations are also

seen in parts of Eastern Scotland (which may possibly be attributed to altitude

and wind direction as well as the location of the primary source of SO2 in the

region), while low mean level is observed in North-Eastern locations (remote sta-

tions except Aberdeen) and along the Eastern coast. There is a reduction in the

Bayesian variance as the data points reduce in number.

Also, we can infer from the models that Bayesian estimation shows little sensitiv-

ity to the choice of priors and initial covariance model. The models with constant

mean trend tend to have higher estimated variance than that of linear model for

both ordinary and Bayesian kriging.

Non-availability of data in most of the stations we considered and the large pres-

ence of missing data limits most of our analysis to 1996 and 1997 which have

most recording stations with fewest missing observations. The density of the

monitoring stations in Central Scotland tends to reduce the error related to spa-

tial variation, as is observed in the Bayesian model for Central Scotland only.

The low value of the kriging variance for the Bayesian model in Tables 4.6, 4.7,

4.9, 4.11 and 4.12 can also be attributed to incorporation of uncertainty both in

the trend and covariance parameters.

Lastly, lack of adequate knowledge about the nature of the distribution of SO2

may also be a source of high prediction error in our Bayesian modelling as it is

not clear which are the best values of the parameters and distribution for the

spatial analysis.
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4.5.2 Further considerations

Increasing the dataset to incorporate many more stations is likely to reduce the

kriging variance. Also averaging SO2 levels over more than a year (rather than

for only year 1996) may also reduce the prediction error to give a spatial model

that will allow more effective prediction which is only valid if there is no temporal

change. In Chapter 5 we fit a generalized additive model that addresses this.

Lastly, further improvement may also be gained from taking into account other

covariates that affect SO2 concentration, such as the wind direction and distance

to the major road which we would have included in our analysis but did not

because of non-availability of data on these covariates.
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Chapter 5

Spatio-temporal analysis of SO2

data in Scotland

Chapters 3 and 4 dealt with time series and spatial modelling of the data sep-

arately. We now turn to spatio-temporal analysis which involves simultaneous

analysis of SO2 data both spatially and temporally using the generalized addi-

tive model procedure. Many authors have considered generalized additive models

in modelling of air pollution data (Samet et al., 1999 & 2002; Giannitrapani et

al., 2007; Holland et al., 2000; Bowman et al., 2009; Terzi and Cengizet, 2009;

Wood and Augustin, 2002).

The performance of the various models will be assessed by applying a number of

quantitative approaches and standard criteria such as R2(adj), GCV, AIC and

deviance explained. We shall examine errors of estimation, predict and interpo-

late the SO2 levels across Scotland, as well as visualize the smooth function of

each independent variables for any visible pattern. We shall also justify GAM

as a useful tool for interpolation and prediction of SO2 levels. Lastly, we shall

find significant effects of spatial locations, and a long term-trend effect of year

from 1996-2007. The estimated effects of year and month (seasonal variable) are

clearly non-linear.

The structure of this chapter is as follows. Section 5.1 reviews the background

to the theory of generalized additive models, focussing more on the method of

fitting, modelling with basis functions, criteria for basis selection and dimension,

and basic description of bases considered in this study. Section 5.2 describes the

GAM package in R and measures of model fit. Section 5.3 presents the analysis

results, sensitivity analysis and model validation. Section 5.4 gives the conclu-

sions and further considerations.
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5.1 Introduction

This section describes the use of the GAM procedure for fitting generalized ad-

ditive models (Hastie and Tibshirani, 1990). The GAM method is a robust

data analysis procedure. It involves a combination of non-parametric regres-

sion, smoothing techniques and generalized linear models. Detailed discussion of

the GAM procedure described in this section can be found in Xiang (2001) and

Hastie and Tibshirani (1986).

The GAM approach investigates the structural relationship between a response

and a set of independent variables. The technique can be applied on Gaussian

data as well as data from Binomial, Poisson, and other non-Gaussian distribu-

tions. GAM can be used as a predictive model or as an exploratory method to

suggest possible transformations of the data or in a parametric model such as a

GLM. It is a Generalized Linear Model where the linear predictor depends lin-

early on unknown smooth functions.

Let Y be a dependent variable and X1, . . . , Xp be a set of independent variables.

The linear regression model is usually based on the assumption that E(Y ) is

linear in form, i.e.

E(Y ) = f(X1, . . . , Xp) = β0 + β1X1 + . . .+ βpXp. (5.1)

If sample values for Y and X are given, estimates of β0, β1, . . . , βp can be obtained

by either the least squares or maximum likelihood methods. The additive model

is a generalization of the linear model which models E(Y ) as

E(Y ) = f(X1, . . . , Xp) = S0 + S1(X1) + . . .+ Sp(Xp), (5.2)

where Si(X), i = 1, . . . , p are smooth functions for the explanatory variables, and

a non-parametric procedure can be used to estimate these functions. A smoother

is a non-parametric tool for summarizing the trend of a response measurement Y

as a function of one or more predictor measurements X1, . . . , Xp, but which does

not rely on any assumption about the form of dependence of Y on X1, . . . , Xp

(Hastie and Tibshirani, 1990). The generalized linear model is an extension of

the linear model with the inclusion of a link function between a smooth functions

f(X1, . . . , Xp) and the response variable E(Y ).

Additive models are more flexible than linear models, and expose the true struc-

tural form and shape of the response variable without making any parametric

assumptions. Generalized additive models include a random part and additive
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part as well as a link function relating these two components. The response

E(Y ) is usually from the exponential family of distributions, which includes the

Gaussian, Poisson, Binomial and Gamma distributions. The probability density

function is of the form

fY (y, θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
, (5.3)

where θ is a location parameter and φ represents a scale parameter, and a, b

and c are arbitrary functions from the random part of the model. The additive

component is represented by model of the form

η = S0 +

p∑
i=1

Si(Xi), (5.4)

where S0(.), . . . , Sp(.) are smooth functions, and S0(.) = E(η). Also, the rela-

tionship between the mean µ of the response variable and η can be represented

by a link function g(µ) = η (Hastie and Tibshirani, 1986; Faraway, 2006; Xiang,

2001).

5.1.1 Generalized Additive Model procedures

The two general methods used to fit generalized additive models are backfit-

ting and local scoring. Hastie and Tibshirani (1990) discussed estimation of the

smoothing terms S0, S1(.) . . . Sp(.) in the additive model. The backfitting algo-

rithm is a general algorithm that can fit an additive model using various smooth-

ing functions such as smoother.

To fit an additive model of the form

y = S0 +

p∑
j=1

Sj(Xj), (5.5)

using backfitting, at iteration m = 0, the initial value of the smoothers Sj are

taken as

S0 = ȳ, S0
1 = S0

2 = . . . = S0
p = 0, (5.6)

then for j = 1, . . . p, calculate a vector of partial residuals

rj = y − Ŝ0 −
p∑

k ̸=j

Ŝk, (5.7)
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i.e. the residuals obtained by subtracting from the response all the estimated

terms in the model except the jth smoother, which is then estimated by smooth-

ing rj with respect to Xj. Doing this for j = 1, . . . , p produces a new set of

estimated smoothers Ŝj. Any unknown smoothing parameters are estimated sep-

arately in an additional stage of the algorithm, in a scoring step. The two stages

alternate until the model deviance converges. Any nonparametric smoothing

method can be used to obtain Ŝj from the residuals rj (Wood, 2006).

The GAM procedure in R library mgcv is estimated by penalized likelihood max-

imization where the penalised log likelihood is of the form

l(β)− 1

2

p∑
j=1

λjβ
TSjβ, (5.8)

where Sj is a matrix with entries of zeroes except for the coefficients of β corre-

sponding to the jth smoothing spline, Wood (2006) shows that maximizing this is

equivalent to minimizing the penalised weighted least squares function (5.11) be-

low and this is usually achieved by penalised iteratively re-weighted least squares

(P-IRLS). Let the current linear predictor estimate be η[k] and the corresponding

estimated mean response vector be µ[k]. Then weights are computed as

wi ∝
1

V (µ
[k]
i )(g′(µ

[k]
i )2

, (5.9)

zi = (g′(µ
[k]
i )(yi − (µ

[k]
i ) +Xiβ

[k], (5.10)

in which var(yi) = V (µi)φ, g(.) is the form of link function and Xi is now the

i-th row of the matrix of predictor variables. The next step minimizes

||
√
W (z −Xβ||2 +

p∑
j

λjβ
TSjβ, (5.11)

with respect to β to obtain β[k+1], where z = (z1, . . . , zn), and hence

η[k+1] = Xβ[k+1]. (5.12)

W is a diagonal matrix such that Wii = wi. These two steps are repeated until

convergence. This is a weighted version of the backfitting algorithm. A general-

ized cross validation (GCV) score can then be obtained from the final linear model

in the P-IRLS iterations (Wood, 2006). Each smoother sj involves a smoothing

parameter to be chosen. The GCV principle is applied in several non-parametric
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regressions as the smoothing parameter selection criteria. GCV is a computa-

tionally efficient way to approximate leave-one-out cross-validation to minimise

the average prediction error (average squared residual).

The above procedure assumes that the smoothing parameters λj, j = 1, . . . , p,

are known or fixed. To estimate the λj also, the estimation steps above form one

stage in a two stage procedure. The other stage chooses the λj to minimize the

chosen criterion, e.g. GCV, given the current values of the coefficients β. These

two stages are repeated iteratively until convergence. For multiple smoothing

parameters, an approximation is made to the GCV or UBRE score (see Section

5.2) to enable direct minimization of the score to obtain the next estimate of

the smoothing parameters. Further details about this procedure can be obtained

from (Wood and Augustin, 2002; Wood, 2006; Green and Silverman, 1994; Hastie

and Tibshirani, 1986 & 1990).

5.1.2 Basis dimension and basis selection

GAM modelling involves modelling with basis functions, so we give a little intro-

duction about basis functions. Covariate terms like f(x), f(y) or g(x; y), without

knowing the true forms of the functions, can be included in a model. Let the

best representation of a function containing a smooth function of one covariate

be represented by

yi = f(xi) + εi (5.13)

in which yi is a response variable, xi is a covariate, f is a smooth function and

εi are independent and identically distributed random variables (N(0, σ2). Let

f(x) be represented by a sum

f(x) =
k∑

j=1

bj(x)βj, (5.14)

in which the βj are k unknown parameters and k is a basis dimension. So f(x) is

a linear combination of basis functions bj(x), and we now estimate βj to obtain

f . The model can be estimated by minimising

n∑
i

(f(xi)− yi)
2 =

n∑
i

(
k∑

j=1

bj(xi)βj − yi

)2

(5.15)

(Wood, (2006)). The choice of basis dimension when using penalized regression

smoothers may be expected to have a considerable effect on modelling results.
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Penalized regression smoothers have computational efficiency by using a basis

of relatively small size, k. When formulating the GAM model in R using the s

(isotropic smoothing) or te (tensor product in which a smooth of several covariates

can be constructed, especially when covariate functions are measured on different

scales) (see Section 5.1.5) terms in a model formula, the basis dimension k has

to be chosen. The size of basis dimension sets an upper limit on the flexibility of

a smoother. The three bases we consider in our GAM models are the thin-plate

regression splines, cubic regression splines and P-splines.

5.1.3 Cubic spline basis

A cubic smoothing spline fits a smooth curve to observations using a spline func-

tion. Let (xi, Yi), i = 1, . . . , n be a sequence of observations using the relation

E(Yi) = f(xi). The smoothing spline estimate f̂ of the function f is defined to

be a value which minimizes the twice differentiable function

n∑
i=1

(Yi − f(xi))
2 + λ

∫
f ′′(x)2 dx, (5.16)

where λ ≥ 0 is a smoothing parameter and λ
∫
f ′′(x)2 is a roughness penalty.

When f is rough, the penalty is large, but when f is smooth, the penalty is

small.

The choice of roughness penalty here gives the solution of a particular form, i.e.

f̂ is a cubic spline, which means that f̂ is a piecewise cubic polynomial and has

the property that f̂ , f̂ ′ and f̂ ′′ are continuous. The joins are known as knots.

Other choices of roughness penalties of higher order are also possible.

The estimation is reduced to the parametric problem of estimating the coefficients

of the polynomials which can be efficiently estimated numerically. Cubic splines

are the smoothest interpolators and are more or less ideal smoothers, except for

the substantial problem of having many more free parameters relative to the data

to be smoothed.

Cubic regression splines have a cubic spline basis. The computation is cheap, but

this approach only smooths with respect to one variable at a time and does not

have optimal properties. The basis dimension controls the degree of smoothing

(Hastie and Tibshirani, 1990; Ruppert et al., 2003, Wood, 2006; Faraway, 2006).
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5.1.4 Thin plate regression splines

Thin plate regression splines are low rank isotropic smoothers which can be used

on any number of covariates. Isotropic means that smoothing results are not af-

fected by the rotation of the covariate’s coordinates, while a low rank means there

are fewer coefficients than the observed data. They are a reduced rank version

of thin plate splines and use the thin plate spline roughness penalty. Penalized

thin plate regression splines give the best mean square error performance but are

usually slower to set up than the other basis functions.

In summary, thin plate regression splines can smooth with respect to any number

of covariates, are invariant to rotation of covariate axes, and can also select the

order of penalty function with some optimality properties. But they are com-

putationally costly for large datasets and are not invariant to covariate rescaling

(Wood, 2003 & 2006).

5.1.5 P-splines

These are another way to represent cubic splines. A P-spline is a smoother in

which the number of basis functions is less than the number of observations, but

the basis terms are penalized and so it is usually referred to as a penalized spline

or P-spline. They combine a B-spline basis (spline function that has minimal

support with respect to a given degree and smoothness), with a discrete penalty

on the basis coefficients, and different combinations of penalty and basis order are

possible. They are also low-rank smoothers and perform well in tensor products

(Eilers and Marx, 1996; Wood, 2006; Wahba, 1990).

5.1.6 Tensor product

Tensor product smooths avoid smoothing equally in all directions (isotropic smooth-

ing), which is not always appropriate. Instead a tensor product approach is used

to build up smooths of several variables, based on univariate smooths of each

variable separately (Wood (2006) gives details). For three variables x, z and

v for example, using a tensor product basis, if we have f(x) =
∑I

i=1 αiai(x),

f(z) =
∑L

j=1 ψjdj(z), and f(v) =
∑K

k=1 βkbk(v), where αi, ψj and βk are coeffi-

cients and ai(x), dj(z) and bk(v) are known basis functions, e.g. B-splines, and

these have been fitted to smooth in a given direction only, then

f(x, z, v) =
I∑

i=1

L∑
j=1

K∑
k=1

βijkbk(v)dj(z)ai(x), (5.17)
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where βijk are also coefficients. A measure of smoothness in the multidimensional

case can be obtained from the measures of smoothness achieved in each dimension

separately (Wood, 2006).

5.2 GAM and R software

There are at least three different ways of fitting generalized additive models in

R, namely gam, mgcv and gss packages. The gam package allows more choice

in the smoothers and a backfitting algorithm is used, the mgcv package utilizes

automatic choices in the degree of smoothing as well as wider functionality, and

employs a penalized regression spline approach, while the gss package also makes

use of spline-based methods. For this study we will employ the mgcv package of

Wood (2000), similar to what was also adopted in Bowman et al. (2009).

The smoothing parameters can be selected by GCV (Generalized Cross Vali-

dation) described above, AIC (Aikake’s Information Criterion) or UBRE (Un-

Biased Risk Estimator) or by using regression splines with fixed degrees of free-

dom (Wood, 2000; Wahba and Gu, 1991). Model fit is assessed below by R2-

adjusted, deviance explained, GCV score, AIC, or -log likelihood. In the model

fitting output, e.g. in Table 5.1, edf is the effective degrees of freedom, which

depends on the number of parameters and smoothness constraints. Scale est. is

an estimate of the scale parameter for the response variable (σ2 in the normal

case), and deviance explained is the proportion of the null deviance explained by

the model.

AIC, Deviance explained and UBRE

AIC is found as 2p − 2log(L), in term of maximized likelihood L for the fitted

model and where p is the number of parameters in the model. For a normal

response variable, this can be simplified to AIC = 2p+ n(log(RSS)), where n is

the number of observations and RSS is the residual sum of squares, and there

are also various other equivalent expressions of AIC for model comparison. Low

values indicate a better model.

Deviance explained takes a value similar to RSS. Up to a constant it is equal to

−2log(L), or equal to 2[logL(β̂)− logL(β̂max)] where logL(β̂max) is the maximum

value possible of the log likelihood, found by using one parameter for each data

point, and logL(β̂) is the log likelihood for the current model. UBRE is equivalent

to Mallow’s Cp, from multiple regression analysis, an estimate of expected mean

square error (Wood, 2006).
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5.3 Analysis of SO2 data

We model S02 concentration as a function of several explanatory variables using

non-parametric smoothers. The dataframe consists of SO2 concentration, with

spatial location given by Northing and Easting. We also include monthly and

yearly factors to measure the seasonal effects and long-term trend. Therefore, we

now interpret the effects of both space and time in the analysis of the data. The

log average monthly concentration for each station is computed for the 12 year

range 1996-2007, after imputing the missing observations using the EM imputa-

tion technique, giving 4384 observations in total.

Firstly, we fitted an additive model using an identity function as the link func-

tion and a Gaussian model for the response, and utilized the thin-plate regression

splines of the mgcv package because they are the default smooth for s terms and

are optimal smoothers for any given basis dimension (Wood, 2003). The default

basis dimension of k = 10 is also used. The default method for smoothing param-

eter selection is GCV. We check the sensitivity of the analysis in the later part of

the modelling using different bases for the univariate smooth while maintaining

a default for the 2-dimensional spatial location smooth, using different basis di-

mensions as well as different methods to choose the smoothing parameters (both

GCV and REML (Restricted Maximum Likelihood) are considered).

Lastly, model validation was also investigated by randomly eliminating 10 sta-

tions from our observations and fitting the models to the remaining data before

predicting the left out data.

Let the basic model without the bivariate spatial location be given by

y = µ+ s(Y ear) + s(Month) + ε. (5.18)

where y = log(SO2+0.5), after imputing the missing observations by EM, s(Year),

s(Month) are the terms to represent the univariate smoothings for the year and

month, µ is the estimated mean and ε is the residual term.

The results and diagnostics plots for the preliminary analysis are shown in Table

5.1 and Figure 5.1. The QQ plot is curved, the histogram of residuals is skew to

the left, and the error variance does not appear to be constant. This indicates

that the SO2 data residuals are not ideal but after a more complex model is fitted

may be better.

In Table 5.1, only the smooth factor for year is significant with effective degrees

of freedom of 8.9, although the term for month is not far from significance. The

R2 is 0.23 which is very low, which implies that the explanatory smooth functions
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of month and year only explain about 23% of variation in the data. The GCV

score is very high (0.809) whch is another indication that the model is too simple

to account for the fluctuation in levels of SO2. The parametric coefficient for the

intercept is 2.18009 which is a measure of the mean µ.

Figures 5.2 and 5.3 show the graphical display of the estimate of the smooth factor

for the year and month as long term (year) and seasonal effects. The constant

found beside each covariate in the y-axis label of the plots is the effective de-

grees of freedom estimated by the automatic method (for example, the univariate

smoothing of year utilized 8.91 degrees of freedom in Figure 5.2 (see Table 5.1)).

In Figure 5.2 for instance, there is a general fall in level of log(SO2) as indicated

by the smooth function of year, with 2007 having the lowest concentration for the

years we consider, possibly as a result of various measures taken by Goverment

to reduce the concentration levels across the UK.

The monthly factor is not quite significant in this model, but from the plot in

Figure 5.3 there is a slight peak between May to July (summer peak). There

is a general relatively low variation in levels within year. The summer peak we

observe here is in accordance with our earlier results in Chapters 1 and 3 in

which the time series for most stations show evidence of higher mean level in the

summer months (Figures 1.9-1.11, 1.15-1.17, and 3.1-3.3).
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Table 5.1: Simple additive model without spatial interaction

Model 1

> summary(gam1)

Family: gaussian

Link function: identity

Formula:

log(Mean + 0.5) ~ s(Month) + s(Year)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18009 0.01558 140.0 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Month) 2.219 2.763 2.565 0.0579 .

s(Year) 8.909 8.997 110.170 <2e-16 ***

R-sq.(adj) = 0.23 Deviance explained = 23.3%

GCV score = 0.80949 Scale est. = 0.80654 n = 3324

Figure 5.1: Diagnostic check for residual plots of simple model
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Figure 5.2: Estimate of long trend effect for the year, in the simple model; 8.91 in
the y-axis label is the edf for year from the model fitting. The dotted lines show 95%
confidence intervals
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Figure 5.3: Estimate of the seasonal effect for the month, in the simple model; 2.22 in
the y-axis label is the edf for month from the model fitting. The dotted lines show 95%
confidence intervals
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We now consider a more complex model by incorporating the bivariate smooth

spatial factor s(Easting, Northing) into model 1, log(SO2) = µ + s(Y ear) +

s(Month) + s(Easting,Northing) + ε. The essence of this additional variable

is to investigate if spatial location has any effect on the variation in mean level

of SO2. The result is shown in Table 5.2 and Figures 5.4-5.6. We observe a

substantial change from Model 1. This model performs better than model 1, as

R2 has increased from 0.23 to 0.382 and deviance explained from 23% to 39%.

The smooth factors for the spatial location and year are both significant in this

model with effective degrees of freedom of about 28 and 9 respectively. The

smooth factor for month is not significant in this model.

Figure 5.4 is the bivariate spatial location for the monitoring stations and we see

that most of the stations are concentrated in Central Scotland with a very high

concentration of SO2 in this region. We observe that the bivariate smoothing of

Northing and Easting is significant (that is there is an interaction between the

Northing and the Easting as displayed on the map). The yearly effect displayed

in Figure 5.5 also indicates a general downward trend in SO2 levels with year,

very similar to the pattern for model 1.

Figure 5.6 shows the monthly effect, which is a measure of a seasonal effect. This

now has a different pattern from model 1 in Figure 5.3 and it shows that there is

no monthly seasonal pattern.

Figure 5.7 shows the residual analysis for the more complex model. This looks

slightly better than for the simple model but still not ideal.
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Table 5.2: Additive model with spatial interaction for location

Model 2

> summary(gam2)

Family: gaussian

Link function: identity

Formula:

log(Mean + 0.5)~s(Easting, Northing) + s(Year2) + s(Month)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18009 0.01395 156.3 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Easting,Northing) 28.444 28.968 29.458 <2e-16 ***

s(Year) 8.968 9.000 142.551 <2e-16 ***

s(Month) 3.377 4.186 1.778 0.127

R-sq.(adj) = 0.382 Deviance explained = 39%

GCV score = 0.65531 Scale est. = 0.64707 n = 3324

Figure 5.4: Estimate of the bivariate spatial effect of Easting and Northing
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Figure 5.5: Estimate of year trend effect for the model including location; 8.91 in the
y-axis label is the edf for year from the model fitting. The dotted lines show 95%
confidence intervals
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Figure 5.6: Estimate of the seasonal effect (month) for the model including location;
3.38 in the y-axis label is the edf for month from the model fitting. The dotted lines
show 95% confidence intervals

2 4 6 8 10 12

0.
2

0.
1

0.
0

−
0.

1
−

0.
2

Month

s(
M

on
th

,3
.3

8)

141



Figure 5.7: Diagnostic check for residual plots for model including location
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We next split our dataset into 2 different year groups, namely 1996-2000, and

2001-2005. The aim of this is to investigate any temporal interaction, that is if

the variation in long term pattern of SO2 data has any effect on the models. We

do this as a result of the different pattern in the long-term trend (Figures 5.2 and

5.5), in which there is a relative decrease and increase (gentle fluctuation) in trend

between 1996 and 2000. Theree is also a gentle decrease in level between 2001

and 2005. We decided to divide our data into two equal groups, those between

1996 and 2000, and 2001 and 2005. We excluded years 2006 and 2007 as SO2

levels fall very rapidly beween this period.

We now formulate a similar model to model 2. The results are presented in

Tables 5.3 and 5.4 and Figures 5.8 and 5.9. We select a fixed basis dimension

of k = 6 and 5 rather than 10 respectively for the two groups because of the

fewer observations. Similarly to the two previous models, the smooth factor for

month is not significant for 1996-2000 but it is now significant for the later years.

The 2001-2005 dataset has higher R2 (0.646), better than the previous models,

though this may be because of the fewer observations (n = 1056), and so low

degrees of freedom 27.2. In both cases, the effects of location and year are highly

significant.

In Figure 5.8 the top and bottom panels represent the bivariate spatial location

for 1996-2000 and 2001-2005 respectively, while in Figure 5.9 the two top panel
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are smooth functions for year and month for the 1996-2000 datasets respectively,

while the two bottom panels are the smooth functions for year and month for

2001-2005 datasets respectively. The more tightly packed contours in the bivariate

spatial plot for 1996-2000 indicate levels of SO2 varying more rapidly between

Central Scotland stations than in 2001-2005.

The North-Eastern region also recorded a high mean SO2 level within this period

whereas the 2000-2005 has no recorded observation for this region, as we have

fewer recording stations for SO2 levels in the later years. The smooth function

for year falls more rapidly between 1996-2000 than 2001-2005. We see that the

level decreases between 1996 and 1998 before it rises again in 1999 and then drops

to a very small level in 2000. For years 2001-2005, there is a general fall in level

between 2001 and 2002 and it slightly increases in 2003 before dropping again to

a very low level in 2004. The within year (monthly pattern) variation is similar

for both groups, and summer months still have higher concentration levels as

expected.

We consider a similar model to model 2 for Central Scotland stations only to see

if there would be any effect (improvement) of excluding the remote station. The

result for Central Scotland is shown in Table 5.5 and Figures 5.10 and 5.11. The

two smooth functions for spatial location and year are significant. The deviance

explained by this model is 39.6% and R2 is 0.387 which is similar to model 2. The

parametric coefficient for the intercept is a little lower (2.1029) compared to the

model 2 value of 2.18, possibly due to reduction in mean SO2 levels as a result of

elimination of remote observations. In Figure 5.10, high mean concentration level

is also visible for the SO2 levels in Central Scotland. In Figure 5.11, the smooth

function for year also indicates a general decrease in level, while the smooth

function for month still shows high mean levels in summer months similar to

models 1, 3a and 3b in Figures 5.3 and 5.9 respectively.
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Table 5.3: Simple additive model with spatial interaction for the 1996-2000 dataset

Model 3a

> summary(gam3a)

Family: gaussian

Link function: identity

Formula:

log(Mean[1:2172] + 0.5) ~ s(Easting[1:2172], Northing[1:2172]) +

s(Year2[1:2172], k = 6) + s(Month[1:2172], k = 6),data=mydata)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.4274 0.0166 146.2 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Easting[1:2172],Northing[1:2172]) 28.576 28.980 24.890 <2e-16 ***

s(Year2[1:2172]) 4.986 5.000 28.756 <2e-16 ***

s(Month[1:2172]) 2.377 2.927 1.714 0.163

R-sq.(adj) = 0.273 Deviance explained = 28.5%

GCV score = 0.60913 Scale est. = 0.59877 n = 2172

Table 5.4: Simple additive model with spatial interaction for the 2001-2005 dataset

Model 3b

> summary(gam3b)

Family: gaussian

Link function: identity

Formula:

log(Mean[2173:3228] + 0.5) ~ s(Easting[2173:3228], Northing[2173:3228],

k=20) + s(Year2[2173:3228], k = 5)+s(Month[2173:3228],k =5,data=mydata)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.88633 0.01715 110.0 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(E[2173:3228],N[2173:3228]) 18.960 18.999 97.342 < 2e-16 ***

s(Year2[2173:3228]) 3.948 3.998 43.477 < 2e-16 ***

s(Month[2173:3228]) 2.328 2.824 4.645 0.00381 **

R-sq.(adj) = 0.646 Deviance explained = 65.4%

GCV score = 0.31855 Scale est. = 0.31064 n = 1056
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Figure 5.8: The bivariate spatial plot for simple additive model with spatial interaction
for the separate 1996-2000 and 2001-2005 datasets. The upper panel corresponds to
1996-2000 while the lower panel is 2001-2005
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Figure 5.9: Simple additive model with spatial interaction for the separate 1996-2000
and 2001-2005 datasets. The two top panel are smooth functions for year and month
for the 1996-2000 datasets respectively, while the two bottom panels are the smooth
functions for year and month for 2001-2005 datasets respectively
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Table 5.5: Simple additive model with spatial interaction for the Central Scotland
stations only

Model 3c

summary(gam3c)

log(Mean + 0.5) ~ s(Easting, Northing) + s(Year) +

s(Month), data=mydat11

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.10290 0.01689 124.5 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Easting,Northing) 24.920 26.267 17.348 <2e-16 ***

s(Year) 8.925 8.998 86.421 <2e-16 ***

s(Month) 2.225 2.771 2.676 0.0502 .

R-sq.(adj) = 0.387 Deviance explained = 39.6%

GCV score = 0.65849 Scale est. = 0.64773 n = 2270
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Figure 5.10: The bivariate spatial plot for simple additive model with spatial interaction
for Central Scotland stations
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Figure 5.11: Simple additive model with spatial interaction for Central Scotland sta-
tions. The top and bottom panels represent the smooth functions for the year and the
month respectively
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5.4 Sensitivity analysis

Here, we consider the sensitivity of various models to the choice of basis and

basis dimension as well as the estimation method for the degree of smooth-

ing. We refitted model 2, for all years and stations to accommodate other

bases (cubic regression and p-spline). We now have log(SO2) = s(Month, bs =

”cr”)+ s(Y ear, bs = ”cr”)+ s(Easting,Northing, bs = c(”tp”)) and log(SO2) =

s(Month, bs = ”ps”) + s(Y ear, bs = ”ps”) + s(Easting,Northing, bs = c(”tp”))

for the univariate cases and maintaining the thin plate regression for the bivariate

smoother using the whole Scotland dataset.

We also assign fixed values of basis dimension for the univariate and bivariate

smoothers respectively to check sensitivity to choice of basis dimension, and lastly

a REML method was used on Model 2 again to check for any significant effect

of changing smoothing parameter criterion from GCV to REML. The results are

shown in Tables 5.6-5.11. From Table 5.6, using cubic regression splines for the

univariate smoothing in model 2, has now made all three (bivariate spatial loca-

tion, year and monthly) factors to be significant, though the smooth function for

month is the least significant factor. The model fit is otherwise similar. R2 and

deviance explained are slightly lower than for model 2 in Table 5.2, and are 0.379

and 38.6% respectively.

Table 5.7 is the result obtained by utilizing p-splines for the univariate smooth-

ing terms, and we observe a similar pattern to Table 5.6 with all three vari-

ables still significant and both R2adj and deviance explained are also lower

than for model 2 (0.372 and 37.9% respectively). Generally, the various ba-

sis combinations give similar results, thus the analysis are not too sensitive

to the type of basis used in the model. Also, we refitted Model 2 by set-

ting a fixed value of k = 6 and 12 and k = 12 and 20 for univariate and

bivariate smoothers respectively in which we have log(S02) = s(Month, k =

6)+s(Y ear, k = 6)+s(Easting,Northing, k = 12) and log(S02) = s(Month, k =

12) + s(Y ear, k = 12) + s(Easting,Northing, k = 20).

From Table 5.8, the result indicates a large reduction in both R2adj and deviance

explained from 0.382 and 39% in model 2 to 0.297 and 30% respectively. In Table

5.9, both R2adj and deviance explained are slightly lower than for model 2 with

0.374 and 38% respectively but better than in Table 5.8, which suggests that

basis dimension has a considerable effect on the results. In Table 5.10, in which

the estimation method is now REML rather than GCV, both R2adj and deviance

explained are slightly higher than for model 2, with 0.389 and 39.6% respectively.

Figure 5.12 shows a similar pattern for the smooth function of month with high
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mean level in summer months irrespective of the type of basis or dimension of

basis used in the model and method of estimation for models 4a-4e, which are

quite different from that of model 2 in Figure 5.6. The smooth function for year

has similar patterns for the models with cubic regression, p-spline, basis dimen-

sion k = 12 and REML estimation method terms, and these are similar to model

2 in Figure 5.5, while that of basis dimension k = 6 is smoother in pattern from

the other sensitivity models.

In summary, we see that our model is more dependent on the basis dimension

than the type of basis used and method of estimation. Also, from Table 5.11, com-

paring all the models considered in this chapter, model 4e seems better than the

rest. This is the model with REML estimation, with a minimum AIC (7992.27)

and maximum log likelihood (-3955.167), and degrees of freedom 40.967, but this

was able to explain just 39.6% of the variation in the response variable. Model

3b is much better in terms of R2, deviance explained, and GCV but is only for

the years 2001-2005.

Models gam1, gam2, gam4a, gam4b, gam4c, gam4d and gam4e correspond to

all Scotland; and years 1996-2007, gam3a is all Scotland; and years 1996-2000,

gam3b is all Scotland; and years 2001-2005 and gam3c is Central Scotland; and

years 1996-2007.

Table 5.6: Sensitivity to the choice of basis, for the spatial regression, using cubic
splines instead of thin plate regression for the univariate terms

Model 4a

> summary(gam4a)

Family: gaussian

Link function: identity

Formula:

log(Mean + 0.5) ~ s(Month, bs = "cr") + s(Year, bs = "cr") +

s(Easting, Northing, bs = c("tp"),data=mydata)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18009 0.01399 155.8 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Month) 2.353 2.925 3.155 0.0249 *

s(Year) 8.901 8.996 140.032 <2e-16 ***

s(Easting,Northing) 28.382 28.960 29.260 <2e-16 ***

R-sq.(adj) = 0.379 Deviance explained = 38.6%

GCV score = 0.65859 Scale est. = 0.65054 n = 3324
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Table 5.7: Sensitivity to the choice of basis, using p-splines instead of thin plate splines
for the univariate terms

Model 4b

> summary(gam4b)

Family: gaussian

Link function: identity

Formula:

log(Mean + 0.5) ~ s(Month, bs = "ps", k = 8) + s(Year, bs

="ps",k = 8) + s(Easting, Northing, bs =c("tp"),data=mydata)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18009 0.01406 155 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Month) 2.270 2.745 3.151 0.0278 *

s(Year) 6.988 7.000 172.779 <2e-16 ***

s(Easting,Northing) 28.425 28.965 28.506 <2e-16 ***

R-sq.(adj) = 0.372 Deviance explained = 37.9%

GCV score = 0.66525 Scale est. = 0.65751 n = 3324

Table 5.8: Sensitivity to the choice of basis dimension, using k = 6 and 12 for univariate
and bivariate smoothers respectively

Model 4c

> summary(gam4c)

Family: gaussian

Link function: identity

Formula:

log(Mean + 0.5) ~ s(Month, k = 6) + s(Year, k = 6)

+ s(Easting, Northing, k = 12),data=mydata)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18009 0.01489 146.4 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Month) 2.271 2.798 2.916 0.0365 *

s(Year) 4.978 5.000 236.564 <2e-16 ***

s(Easting,Northing) 10.584 10.964 37.721 <2e-16 ***

R-sq.(adj) = 0.297 Deviance explained = 30%

GCV score = 0.74089 Scale est. = 0.7367 n = 3324
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Table 5.9: Sensitivity to the choice of basis dimension, using k = 12 and 20 for univari-
ate and bivariate smoothers respectively

Model 4d

> summary(gam4d)

Family: gaussian

Link function: identity

Formula:

log(Mean + 0.5) ~ s(Month, k = 12) + s(Year, k = 12)

+ s(Easting, Northing, k = 20),data=mydata)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18009 0.01404 155.2 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Month) 2.353 2.932 2.954 0.0324 *

s(Year) 10.942 10.999 135.803 <2e-16 ***

s(Easting,Northing) 18.814 18.996 36.551 <2e-16 ***

R-sq.(adj) = 0.374 Deviance explained = 38%

GCV score = 0.66229 Scale est. = 0.6557 n = 3324

Table 5.10: Sensitivity to the choice of smoothing parameter estimation method, using
REML instead of GCV
> summary(gam4e)

Model 4e

Family: gaussian

Link function: identity

Formula:

log(Mean+0.5)=s(Month) + s(Year)+s(Easting, Northing),data=mydata)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18009 0.01388 157.1 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Month) 2.653 3.298 3.053 0.0233 *

s(Year) 8.817 8.987 148.802 <2e-16 ***

s(Easting,Northing) 27.499 28.781 29.868 <2e-16 ***

R-sq.(adj) = 0.389 Deviance explained = 39.6%

REML score = 4066.5 Scale est. = 0.64017 n = 3324
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Figure 5.12: Comparison of sensitivity to the choice of basis, basis dimension, and
estimation method for univariate smoothing of month and year, k = 6 and 12 for
univariate and bivariate smoothers respectively; cr=cubic regression and ps=p-spline
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Table 5.11: Comparison of all the models considered based on their AIC, R2, GCV,
and deviance explained criteria; df is the sum of estimated degrees of freedom for each
model; The ”*” corresponds to models based on a subset of the whole data
Model df logLik AIC R-sq Dev. GCV/ REML

______________________________________________________________

gam1 13.1279 -4353.146 8732.54 0.23 23.3% 0.80949

______________________________________________________________

gam2 42.7885 -3972.062 8029.70 0.382 39% 0.65531

--------------------------------------------------------------

gam3a* 36.8883 -2506.236 5086.24 0.273 28.5% 0.60913

--------------------------------------------------------------

gam3b* 27.2397 -868.2249 1790.92 0.646 65.4% 0.31855

--------------------------------------------------------------

gam3c* 38.0702 -2709.399 5494.93 0.387 39.6% 0.65849

--------------------------------------------------------------

gam4a 41.6366 -3981.53 8046.34 0.379 38.6% 0.65859

______________________________________________________________

gam4b 39.6833 -4000.22 8079.81 0.372 37.9% 0.66525

______________________________________________________________

gam4c 19.8326 -4199.23 8438.13 0.297 30% 0.74089

______________________________________________________________

gam4d 34.10861 -3998.45 8065.12 0.374 38% 0.66229

______________________________________________________________

gam4e 40.96925 -3955.16 7992.27 0.389 39.6% 4066.5 REML

______________________________________________________________

gam1 = log(Mean+0.5)~s(Month)+s(Year),data=mydata)

gam2 = log(Mean+0.5)~s(Month)+s(Year)+s(Easting,Northing),

data=mydata)

gam3a =log(Mean[1:2172]+0.5)~s(Month[1:2172])+s(Year[1:2172])

+s(E[1:2172],N[1:2172]),data=mydata)

gam3b =log(Mean[2173:3228]+0.5)~s(Month[2173:3228])+s(Year

[2173:3228])+s(E[2173:3228],N[2173:3228]),data=mydata)

gam3c =log(Mean+0.5)~s(Month)+s(Year)+s(Easting,Northing),

data=mydat11)

gam4a= log(Mean+0.5)~s(Month,bs=cr)+s(Year,bs=cr)+s(Easting,

Northing,bs=tp),data=mydata)

gam4b=log(Mean+0.5)~s(Month,bs=ps)+s(Year,bs=ps)+

s(Easting,Northing,bs=tp),data=mydata)

gam4c=log(Mean+0.5)~s(Month,k=6)+s(Year,k=6)+s(Easting,

Northing,k=12),data=mydata)

gam4d=log(Mean+0.5)~s(Month,k=12)+s(Year,k=12)+s(Easting,

Northing,k=20),data=mydata)

gam4e=log(Mean+0.5)~s(Month)+s(Year)+s(Easting,Northing),

method=REML),data=mydata)
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5.4.1 Model validation

Model validation was used to test the reliability of our models as in Chapter

4. Firstly, we completely removed data from 10 stations at random from our

observations, and fitted a separate model similar to model 2 to the remaining

data to use for predictions for the 10 held-out stations. We test the predictive

ability of our models using the AIC, GCV and R2 criteria. We perform the model

validation using the dataset for all the years.

We based the new analysis on model 2. The model used a thin plate regression

(default) for both univariate and bivariate smoothers. We also used the GCV

estimation method similar to most of the previous models.

The results are presented in Table 5.12. The R2 and deviance explained are

0.395 and 40.4%, which are similar to the results of previous models. Also,

predictions from the fitted models are compared with the true value of SO2.

The predicted values for the held-out observations are mostly within the range of

the observed data. We also compare the levels for those excluded stations using

prediction errors (held-out observations - prediction). The calculated average

square prediction error is 0.004761, which is very small, and which shows that

the model is reliable for SO2 level prediction.

Table 5.12: Model validation results for the reduced model (31 stations)

> summary(gam4f)

log(Mean+0.5)~s(Month) + s(Year) + s(Easting,Northing),data=mydat1)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.07610 0.01571 132.1 <2e-16 ***

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Month) 2.376 2.957 3.532 0.0147 *

s(Year) 8.973 9.000 124.809 <2e-16 ***

s(Easting,Northing) 28.426 28.953 19.359 <2e-16 ***

R-sq.(adj) = 0.395 Deviance explained = 40.4%

GCV score = 0.66041 Scale est. = 0.65018 n = 2634

-----------------------------------------------------

Summary statistics for the held-out observation from 10 stations

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.986 1.821 2.391 2.145 2.777 4.240

_____________________________________________________

> held-out (model) predictions

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.817 1.776 2.124 2.076 2.493 3.480
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5.5 Discussion and further considerations

The main objective is to obtain a statistical model to predict and estimate SO2

concentrations across Scotland spatially and temporally simultaneously. The joint

effect of the predictor variables from the best model explained more than 39.3%

of the variance of the dependent variable, which corresponds to the model with

REML estimation. High predictions for SO2 are observed in Central Scotland, in

accordance with the results of the Bayesian kriging predictions of Chapter 4. We

can infer that spatial location has a considerable effect on SO2 levels in Scotland.

This study adopted local scoring with backfitting using the penalised regression

splines of the mgcv package in R. Each smooth in the GAM is represented by

an appropriate basis set, in which the set of smoothing parameters are generally

chosen by Generalized Cross-Validation (GCV). We considered a bivariate spa-

tial term, and univariate smoothing of year and month. We adopted Akaike’s

Information Criterion (AIC) and R2 as criteria for model comparison (Hastie and

Tibshirani, 1990; Wood, 2006). A best choice for the smoothing parameter is

unknown but further modelling of this data may provide some insights.

The model results rely on the basis dimension and choice of basis, but changing

these did not greatly affect model fit. The higher R2 in the models with the bi-

variate spatial term compared to the one without this term indicates that specific

location generally has a large effect on the SO2 level, as would be expected.

Bivariate spatial location is the most influential factor in predicting sulphur diox-

ide concentrations in our models. The effect of year was always significant in

our models, though month was not always significant. The unexplained variation

in the models we considered may be due to unmodelled covariates (wind direc-

tion, temperature, altitude, distance to the nearest major road etc.) that could

have important effects on the SO2 levels in Scotland. Any form of interactions

between these covariates could also explain more of the variability, and any yet

undiscovered interactions or linear combinations of the chosen covariates (year,

month and spatial locations) could also be used to build a better model.
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Chapter 6

Conclusion and further

consideration

6.0.1 Conclusion

We have been able to analyse the SO2 data both temporally in Chapter 3 and

spatially in Chapter 4, as well as doing joint spatio-temporal modelling in Chap-

ter 5. Chapter 1 gave an insight to the structure and location of the datasets. We

are able to see that there is variation in the levels of SO2 both within year (sea-

sonal variation) and across the years, and that there is non-constancy of variance

and evidence of skewness in the data, and as a result we adopted a logarithmic

transformation of the data. Most of the stations we considered are concentrated

in Central Scotland and are heavily characterized with missing observations.

Chapter 2 examined previous work on air pollution data and the sorts of mod-

els used to describe it. In Chapter 3, we explore various imputation techniques

and apply them differently in several models. We observe that that each of the

imputation techniques produces different results though we use EM as the most

appropriate method in this thesis. The ARIMA (1,1,1) model is able to model

the SO2 data very well. There is evidence of temporal correlation in the data as

suggested by the ACF and PACF. We observe that both the long-term trend and

seasonal/cyclical effects contribute significantly to variation in SO2 levels across

the years for most of the stations we considered.

In Chapter 4, the kriging models with constant mean trend seem better than

those with linear model, and the Exponential function tends to reduce the esti-

mated kriging variance. We also observed that the Bayesian models produce a

lower variance than ordinary kriging estimates. Ordinary kriging does not dis-

play the underlying spatial pattern very well, especially for the stations around
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Aberdeen. Bayesian kriging gives better prediction than ordinary kriging when

we based our analysis on stations in Central Scotland. There is an increase in

variance with the reduced model after removal of stations that are far away from

the rest. A low spatial variation is observed in Central Scotland and this could

be due to concentration of the stations in the region. Of course we would expect

the data to be high spatially correlated (dependent).

Most of the formulated models indicated high concentration of SO2 in and around

Central Scotland (Glasgow and Edinburgh), and elevated concentrations are also

seen in parts of Eastern Scotland, which may be attributed to altitude and wind

direction as well as the location of the primary source of SO2 in the region, while

low mean level is observed in North-Eastern locations (remote stations except

Aberdeen) and along the Eastern coast. We also observe that there Bayesian

variance increases as the data points reduce in number.

In Chapter 5, where generalized additive models are used, a penalised regres-

sion spline was adopted. The model is fitted by penalized least squares in which

the set of smoothing parameters are chosen by GCV. We considered a bivariate

smoothing for the spatial location, and univariate smoothing for both year and

month.

The model results depend on the degree of smoothing used, basis dimension and

choice of basis, and varying these choices did not affect the results very much.

In most cases we allowed automatic smoothing parameter selection through gen-

eralized cross-validation. Location generally has a large effect on distribution of

sulphur dioxide. The GAM technique we adopted reduces some of the problems

of model mis-specification that affect linear models and generalized linear mod-

els.

The joint effect of the predictor variables from the best model explained just

65.4% of the variance of the dependent variable corresponding to the period 2001-

2005. High predictions of SO2 are observed in Central Scotland, as for Bayesian

kriging predictions. The next best model, for all the years only explained 39.6%

of the variation in SO2 which corresponds to the model with REML estimation.

The unexplained variation in most of the models we considered may be due to

unmodelled covariates (wind direction, temperature, altitude, distance to nearest

major road etc.) that could have important effects on SO2 levels in Scotland.

6.0.2 Further considerations

Increasing the dataset to incorporate more stations is likely to further reduce the

kriging variance. Averaging SO2 levels over more than a year may also reduce
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the prediction error. We could also consider other forms of transformation to

normalize our data apart from the logarithm, and explore other imputation tech-

niques.

Further improvement may also be gained from taking into account other covari-

ates that affect SO2 concentration, such as wind direction and distance to a major

road, which we would have included in our analysis but did not include because

of non-availability of data on these covariates.

Lastly, interactions between these covariates could also explain more of the vari-

ability in SO2 distribution, as well as any interactions or linear combinations of

considered covariates (year, month and spatial locations), and these could also

be used to build a better model.
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Appendices

Appendix 1

This section shows the R code for preliminary data description in Chapter 1. We

used maptool and ts library in R.

A.1.1 #R-code for producing the maps of spatial

location in Figures 1.1-1.4#

>f1<-read.csv("E:/combineds.csv",sep=",")

>z=f1

>plot(HBA,col="pink",border="grey",xlim=z.xlim,ylim=z.ylim)

>text(z[,c("e1")],z[,c("n1")],seq(1,6),cex=0.4)

> legend(c("bottomright"),550000+c(0,z.plot.width),z[,"s1"]

,ncol=1,cex=.6, title(main=paste("Map of all recording station"))

>f2<-read.csv("E:/80dat.csv",sep=",")

>z=f2

>plot(HBA,col="pink",border="grey",xlim=z.xlim,ylim=z.ylim)

>title(main=paste("station according > 80% of available data"))

> legend(c("bottomright"),550000+c(0,z.plot.width),z[,"s2"],ncol=1

,cex=.6, title(main=paste("Map showing the 6 stations with greater

than 80% of data available"))

>f3<-read.csv("E:/20dat.csv",sep=",")

>z=f3

>plot(HBA,col="pink",border="grey",xlim=z.xlim,ylim=z.ylim)

>title(main=paste("station < 20% of available data"))

> legend(c("bottomright"),550000+c(0,z.plot.width),z[,"s3"]

,ncol=1,cex=.6, title(main=paste("Map showing the 3 stations

with less than 20% of data available"))
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>f3<-read.csv("E:/comb.csv",sep=",")

>z=f4

>plot(HBA,col="pink",border="grey",xlim=z.xlim,ylim=z.ylim)

>title(main=paste("station < 20\% of available data"))

> legend(c("bottomright"),550000+c(0,z.plot.width),z[,"s4"]

,ncol=1,cex=.6, title(main=paste("Map showing the stations

with less than 20-80\% of data available"))

A.1.2: #R-code for producing preliminary time series

plots of daily S02 and long-term trend for 1996, 2000

and 2005 in Figures 1.5-1.8#

> par(mfrow=c(7,1))

> for (i in 1:7)plot(ts(d1), xlim=c(1,366),main=

("Time series plot of daily mean S02 concentrations

for some stations in 1996"),xlab="day",col="green")

> par(mfrow=c(7,1))

> for (i in 1:7)plot(ts(d5), xlim=c(1,366),main=("

Time series plot of daily mean S02 concentrations

for some stations in 2000"),xlab="day",col="green")

> par(mfrow=c(6,1))

> for (i in 1:6)plot(ts(d10), xlim=c(1,366),main=

("Time series plot of daily mean S02 concentrations

for some stations in 2005"),xlab="day",col="green")

> par(mfrow=c(2,1))

> plot(ts(d11,,start=1996,end=2005),main="Long term

trend of daily S02 concentrations for Glasgow.73 and Glasgow.

95",xlab="year",col="green")

A.1.3: #R-code for producing monthly time plots for 1996,

2000 and 2005 in Figures 1.9-1.11#

> for (i in c(1:4))plot(ts(mth1), xlim=c(1,12),

main="Time series plot of monthly mean S02 for

some stations in 1996",xlab="month",col="green")
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> plot(ts(mth5), xlim=c(1,12),main="monthly concentration

",main="Time series plot of monthly mean S02 for

some stations in 2000",xlab="month",col="green")

> plot(ts(mth10), xlim=c(1,12),main="monthly

concentration",main="Time series plot of monthly

mean S02 for some stations in 2005",xlab="month",col="green")

A.1.4: #R-code for producing histograms for 1996, 2000

and 2005 in Figures 1.12-1.14#

> par(mfrow=c(2,3))

> for(i in 1:6) hist(log(t(d1[i+3])), xlab="

daily log(conc). g/m^3",main=paste("",names(d1[i])))

> for(i in 1:6) hist(t(log(d5[i+3])), xlab="

daily log(conc). g/m^3",main=paste("",names(d1[i])))

> for(i in 1:6) hist(log(t(d10[i+3])), xlab="

daily log(conc). g/m^3",main=paste("",names(d5[i])))

A.1.5: #R-code for producing boxplots of daily S02

concentration for 1996, 2000 and 2005 in Figures 1.15-1.17#

>rownames(mth1)<-c("Jan","Feb","Mar","Apr",

"May","Jun","Jul","Aug","Sep","Oct","Nov","Dec")

>rownames(mth5)<-c("Jan","Feb","Mar","Apr",

"May","Jun","Jul","Aug","Sep","Oct","Nov","Dec")

>rownames(mth10)<-c("Jan","Feb","Mar","Apr",

"May","Jun","Jul","Aug","Sep","Oct","Nov","Dec")

>boxplot(t(mth1),main="monthly concentration in 1996"),

xlab="month")

>boxplot(t(mth5),main="monthly concentration in 2000"),

xlab="month")

>boxplot(t(mth10),main="monthly concentration in 2005"),

xlab="month")

A.1.6: #R-code for variance versus mean of daily S02 concentration

for 1996, 2000, 2002 and 2005 in Figure 1.18#

>plot(mean(d1,na.rm=TRUE),(sd(d1,na.rm=TRUE)^2),

xlab="mean",ylab="variance",col="green",main="1996")
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>plot(mean(d5,na.rm=TRUE),(sd(d5,na.rm=TRUE)^2),

xlab="mean",ylab="variance",col="green",main="2000")

>plot(mean(d7,na.rm=TRUE),(sd(d7,na.rm=TRUE)^2),

xlab="mean",ylab="variance",col="green",main="2002")

>plot(mean(d10,na.rm=TRUE),(sd(d10,na.rm=TRUE)^2),

xlab="mean",ylab="variance",col="green",main="2005")
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Appendix 2

This section shows the R code for the generation of time series plots and boxplots

after imputation, the autocorrelation and partial autocorrelation as well as for

autoregressive AR and ARIMA models in Chapter 3. We used maptool, ts,

tsModel and MICE in R as well as SPSS.

#d96b=EM imputed data in 1996#

#d96c=Regression imputed data in 1996#

#mic1=MICE imputed data in 1996#

#d20b=EM imputed data in 2000#

#d20c=Regression imputed data in 1996#

#mic5=MICE imputed data in 2000#

#d25b=EM imputed data in 2005#

#d25c=Regression imputed data in 2005#

#mic10=MICE imputed data in 2005#

#d27b=EM imputed data in 2007#

#d27c=Regression imputed data in 2007#

#mic12=MICE imputed data in 2007#

#combdata=EM imputed for aggregate data in 1996-2007#

A.2.1: #R-code for producing time series plots comparison of different

imputation methods for the daily mean SO2 concentrations for stations.

The upper panel represents EM (green), the middle panel is regression

(blue), while the bottom panel is MICE (red) imputation for each

station in 1996, 2000 and 2005

Figures 3.1-3.3#

>par(mfrow=c(1,3))

> plot(ts(96b[1:4]), xlim=c(1,365),main="EM imputation",xlab="day",

col="green",cex.lab =.7)

>plot(ts(d96c[1:4]), xlim=c(1,365),main="Regression imputation",xlab=

"day",col="blue",cex.lab =.7)

> plot(ts(mice1[1:4]), xlim=c(1,365),main="MICE",xlab="day",col=

"red",cex.lab =.7)

>par(mfrow=c(1,3))

> plot(ts(20b[1:4]), xlim=c(1,365),main="EM imputation",xlab="day",

163



col="green",cex.lab =.7)

>plot(ts(d20c[1:4]), xlim=c(1,365),main="Regression imputation",xlab=

"day",col="blue",cex.lab =.7)

> plot(ts(mic5[1:4]), xlim=c(1,365),main="MICE",xlab="day",col=

"red",cex.lab =.7)

>par(mfrow=c(1,3))

> plot(ts(25b[1:3), xlim=c(1,365),main="EM imputation",xlab="day",

col="green",cex.lab =.7)

>plot(ts(d25c[1:3]), xlim=c(1,365),main="Regression imputation",xlab=

"day",col="blue",cex.lab =.7)

>plot(ts(mic10[1:3]), xlim=c(1,365),main="MICE",xlab="day",col=

"red",cex.lab =.7)

A.2.2: #R-code for producing corresponding boxplots of comparison of

different imputation methods for the logarithm of daily mean SO2

concentrations. In each row the first panel represents EM, the middle

panel is regression, while the third panel is MICE imputation for each

station in 1996, 2000 and 2005 Figures 3.4-3.6#

>par(mfrow=c(2,2))

>boxplot(log(d96b[1:4]+3),main="EM",cex.lab =.7,xlab="c(Falkirk 8,

Glasgow 20, Glasgow 51, Glasgow69)")

>boxplot(log(d96c[1:4]+3),main="Regression",cex.lab =.7,xlab="c

(Falkirk 8,Glasgow 20, Glasgow 51, Glasgow69)")

>boxplot(log(mic1[1:4]+3),main="MICE",xlab="c(Falkirk, Glasgow 20,

Glasgow 51, Glasgow69)",cex.lab =.7)

>par(mfrow=c(2,2))

>boxplot(log(d20b[1:4]+3),main="EM",cex.lab =.7,xlab="c(Glasgow 69,

Glasgow 73, Glasgow 95, Glasgow 98)")

>boxplot(log(d20c[1:4]+3),main="Regression",cex.lab =.7,xlab="

c(Glasgow 69, Glasgow 73, Glasgow 95, Glasgow 98)")

>boxplot(log(mic2[1:4]+3),main="MICE",xlab="c(Glasgow 69,

Glasgow 73, Glasgow 95, Glasgow 98)",cex.lab =.7)

>par(mfrow=c(2,2))

>boxplot(log(d25b[1:3]+3),main="EM",cex.lab =.7,xlab="c(Glasgow 20,
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Glasgow 51, Glasgow 73)")

>boxplot(log(d25c[1:3]+3),main="Regression",cex.lab =.7,xlab=

"c(Glasgow 20, Glasgow 51, Glasgow 73)")

>boxplot(log(mic3[1:3]+3),main="MICE",xlab="c(Glasgow 20,

Glasgow 51, Glasgow 73)",cex.lab =.7)

A.2.3: #R-code for producing comparison of autocorrelation functions

for the EM, regression and MICE imputed datasets for Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch 8 and

Kirkintilloch 10 in 1996, 2000, 2007 in Figures 3.7-3.9#

>par(mfrow=c(3,3))

>acf(log(d96b[3:8]+3),main="EM",cex.lab =.7,xlab="c( Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch 8, Kirkintilloch 10)")

>acf(log(d96c[3:8]+3),main="Regression",cex.lab =.7, xlab="c( Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch 8, Kirkintilloch 10)")

>acf(log(mic1[3:8]+3),main="MICE",xlab="c( Glasgow 51,Glasgow 73,

Glasgow 95, Kirkcaldy 6,Kirkintilloch 8,Kirkintilloch 10)",cex.lab =.7)

>par(mfrow=c(3,3))

>acf(log(d20b[3:8]+3),main="EM",cex.lab =.7,xlab="c( Glasgow 51,Glasgow 73,

Glasgow 95, Kirkcaldy 6, Kirkintilloch 8, Kirkintilloch 10)")

>acf(log(d20c[3:8]+3),main="Regression",cex.lab =.7,xlab="c( Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch, 8 Kirkintilloch 10)")

>acf(log(mic5[3:8]+3),main="MICE",xlab="c( Glasgow 51,Glasgow 73,

Glasgow 95, Kirkcaldy 6,Kirkintilloch 8,Kirkintilloch 10)",cex.lab =.7)

>par(mfrow=c(2,2))

> acf(log(d27b[1:4]+3),main="EM",sub="c(Glasgow Centre, Aberdeen,

Edinburgh St. Leonards, Grangemouth")

> acf(log(d27b[1:4]+3),main="EM",sub="c(Glasgow Centre, Aberdeen,

Edinburgh St. Leonards, Grangemouth")

> acf(log(d27b[1:4]+3),main="EM",sub="c(Glasgow Centre, Aberdeen,

Edinburgh St. Leonards, Grangemouth")

A.2.4: #R-code for producing comparison of partial autocorrelation

functions for the EM, regression and MICE imputed datasets for

Glasgow 51, Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch 8
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and Kirkintilloch 10 in 1996, 2000, 2007 in Figures 3.10-3.12#

>par(mfrow=c(3,3))

>pacf(log(d96b[3:8]+3),main="EM",cex.lab =.7,xlab="c(Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch 8, Kirkintilloch 10)")

>pacf(log(d96c[3:8]+3),main="Regression",cex.lab =.7

,xlab="c( Glasgow 51, Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch

8 Kirkintilloch 10)")

>pacf(log(mic1[3:8]+3),main="MICE",cex.lab =.7,xlab="c( Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6,Kirkintilloch, 8 Kirkintilloch 10)")

>par(mfrow=c(3,3))

>pacf(log(d20b[3:8]+3),main="EM",cex.lab =.7,xlab="c( Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch 8, Kirkintilloch 10)")

>pacf(log(d20c[3:8]+3),main="Regression",cex.lab =.7,xlab="c( Glasgow 51,

Glasgow 73, Glasgow 95, Kirkcaldy 6, Kirkintilloch, 8 Kirkintilloch 10)")

>pacf(log(mic5[3:8]+3),main="MICE",xlab="c( Glasgow 51, Glasgow 73,

Glasgow 95, Kirkcaldy 6,Kirkintilloch 8,Kirkintilloch 10)",cex.lab =.7)

>par(mfrow=c(2,2))

> pacf(log(d27b[1:4]+3),main="EM",sub="c(Glasgow Centre,Aberdeen,

Edinburgh St. Leonards, Grangemouth")

> pacf(log(d27b[1:4]+3),main="EM",sub="c(Glasgow Centre, Aberdeen,

Edinburgh St. Leonards, Grangemouth")

>pacf(log(d27b[1:4]+3),main="EM",sub="c(Glasgow Centre, Aberdeen,

Edinburgh St. Leonards, Grangemouth")

A.2.5: #R-code for estimating autoregressive model parameters using

both the least squares and maximum likelihood methods in Table 3.5#

>ar(log(d96b+3),method="ols")

>ar(log(d20b+3),method="ols")

>ar(log(d25b+3),method="ols")

>ar(log(d96b+3),method="ML")

>ar(log(d20b+3),method="ML")

>ar(log(d25b+3),method="ML")

A.2.6: #R-code for producing comparison of autocorrelation functions for
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the residuals using different imputation methods for the AR(2) model for

Glasgow 51 and Glasgow 73 in 1996, as well as Glasgow Centre and Aberdeen

in 2007; the top-left panel is Glasgow 51 in 1996, the top-right panel

corresponds to Glasgow 73 in 1996, the bottom-left panel is Glasgow Centre

in 2007 while the bottom-right panel is Aberdeen in 2007 in Figure 3.13#

> par(mfrow=c(2,2))

>acf(log(res1b[3:4]+3),main="EM",cex.lab =.7,xlab="c( Glasgow 51,

Glasgow 73)")

>acf(log(res1c[3:4]+3),main="Regression",cex.lab =.7,xlab="c(Glasgow 51,

Glasgow 73)")

>acf(log(res1d[3:4]+3),main="MICE",cex.lab =.7,xlab="c(Glasgow 51,

Glasgow 73)")

> acf(log(res2b[1:2]+3),main="EM",sub="c(Glasgow Centre, Aberdeen")

> acf(log(res2c[1:2]+3),main="EM",sub="c(Glasgow Centre, Aberdeen")

> acf(log(res2d[1:2]+3),main="EM",sub="c(Glasgow Centre, Aberdeen")

A.2.7: #R-code for producing estimating ARIMA (2,0,0) model result of the

MICE, EM and regression imputed dataset using maximum likelihood method

for all the stations in Table 3.6#

>arima(x = log(rc1 + 3), order = c(2, 0, 0), method = "ML")

>arima(x = log(rc2 + 3), order = c(2, 0, 0), method = "ML")

>arima(x = log(rc3 + 3), order = c(2, 0, 0), method = "ML")

A.2.8: #R-code for estimating ARIMA model parameters using likelihood

method for comparison ARIMA model results using the EM imputed dataset

with maximum likelihood method for the combined station in Table 3.7#

>arima(x = log(rc2 + 3), order = c(3, 0, 0), method = "ML")

>arima(x = log(rc2 + 3), order = c(1, 0, 1), method = "ML")

>arima(x = log(rc2 + 3), order = c(2, 1, 0), method = "ML")

> arima(log(rc2+3), order =c(3,1,0), method = "ML")

> arima(log(rc2+3), order =c(1,1,1), method = "ML")

A.2.9: #R-code for comparison of Ljung-Box test for the residuals of

the six ARIMA models, lag=25, type="Ljung-Box"; the results give the

chi-squared, degree of freedom and p values in Table 3.9#
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> ARIMA(2,0,0)$residuals

> ARIMA(3,0,0)$residuals

> ARIMA(1,0,1)$residuals

> ARIMA(2,1,0)$residuals

> ARIMA(3,1,0)$residuals

> ARIMA(1,1,1)$residuals

A.2.10: #R-code for comparison of Ljung-Box test for the residuals

of the six ARIMA models, lag=25, type="Ljung-Box" in Figure 3.14#

>par(mfrow=c(2,3))

>Box.test(arima(x =log(rc1 + 3),order=c(2, 1, 0),method= "ML")$residual)

>Box.test(arima(x =log(rc2 + 3),order=c(1, 0, 1),method= "ML")$residual)

>Box.test(arima(x =log(rc3 + 3),order=c(3, 0, 0),method= "ML")$residual)

>Box.test(arima(x =log(rc2 + 3),order=c(3, 1, 0),method= "ML")$residual)

>Box.test(arima(x =log(rc2 + 3),order=c(1, 1, 1),method= "ML")$residual)

A.2.11: #R-code for producing long-term trend decomposition of EM

imputed daily log(S02) concentrationfor in Figures 3.15 and 3.16#

>plot(ts(combdata,frequency=365),ylab="log(S02)conc",xlim=c(1996,2007))

>decomp1=tsdecomp(combdata,c(1,10,22,4382))

>xx=seq(as.Date("1996-01-01"),as.Date("2007-12-31"),"day")

>par(mfrow=c(1,3))

>plot(xx,decomp1[,1],type="l",ylab="log(S02)conc",main="Trend")

>plot(xx,decomp1[,2],type="l",ylab="log(S02)conc",main="Seasonal")

>plot(xx,decomp1[,3],type="l",ylab="log(S02)conc",main="Residual")
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Appendix 3

We used the geoR, ape, field and spline packages in R for our spatial analysis in

Chapter 4. The function krige.bayes performs Bayesian analysis of geostatistical

data allowing specifications of different levels of uncertainty in the model param-

eters. It gives results on the posterior distributions for the model parameters and

on the predictive distributions for prediction locations, while krige.conv performs

spatial prediction for ordinary kriging using a fixed covariance parameters.

The data-frame for our geodata object is represented by g8, in which each line

corresponds to one spatial location and consists of the log(SO2), the Easting and

the Northing. The dataframe for the next geodata object is represented by g8b

and g8c which correspond to Central Scotland and remote stations respectively,

and consists of the log(SO2), the Easting and the Northing.

Most of the code here relates to kriging, using a function call similar to the one

below.

#krige.bayes(geodata, coords = geodata$coords, data = geodata$data,

locations = "no", borders, model, prior, output)#

#geodata= a list containing elements coords and data#

#coords= an n by 2 matrix where each row has the 2-dim. coordinates

of the n-data locations#

#data= a vector with n data values#

#locations= an N by 2 matrix or data-frame with the 2-d

coordinates of the N prediction locations#

#output=output.control(n.posterior, n.predictive, moments, n.back.moments,

simulations.predictive, mean.var, quantile, threshold, sim.means, sim.vars,

signal, messages)#

#trend.d= specifies the trend (covariates) values at the data locations#

#trend.l= specifies the trend (covariates) at the prediction locations#

#cov.model= string indicating name of model for the correlation function#

A.3.1: #R-code for producing Moran’s I test for the datasets in 1996,

2000 and 2005, and for geodetic distance summary in Tables 4.1 and 4.2#

>g8=as.geodata(mean96,coords.col=3:4,data.col=2)

>mydist1=as.matrix(dist(cbind(g8$coords[,1], g8$coords[,2])))

>mydist1a=1/mydist1

>diag(mydist1a)<-0
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>Moran.I(g8$data,mydist1a)

> mydist2=as.matrix(dist(cbind(g9$coords[,1], g9$coords[,2])))

> mydist2a=1/mydist2

> diag(mydist2a)<-0

> Moran.I(g9$data,mydist2a)

> mydist3=as.matrix(dist(cbind(g10$coords[,1], g10$coords[,2])))

> mydist3a=1/mydist3

> diag(mydist3a)<-0

> Moran.I(g10$data,mydist3a)

>summary(dist(g8$coords))

A.3.2:#R-code for empirical and theoretical variograms in Figures 4.1-4.2#

> plot(variog(g8,trend = "cte"),xlab="distance (metres)")

> lines(variog(g8,trend = "cte"))

> plot(variog(g8,trend = "linear",),xlab="distance (metres)")

> lines(variog(g8,trend = "linear"))

A.3.3:#R-code for empirical and theoretical variograms in Figures 4.3-4.4#

> plot(variog(g8,trend = "cte"),xlab="distance (metres)")

> lines(variog(g8,trend = "cte"))

> lines.variomodel(variog(g8,trend = "cte"),cov.model

= "spherical",cov.pars=c(4.1,2.1),col="pink",kappa=1)

> lines.variomodel(variog(g8,trend = "cte"),cov.model

= "gaussian",cov.pars=c(4,1.2),col="red",kappa=1)

> lines.variomodel(variog(g8,trend = "cte"),cov.model

= "exponential",cov.pars=c(4.1,1.1),col="blue",kappa=1)

> lines.variomodel(variog(g8,trend = "cte"),cov.model

= "matern,,cov.pars=c(4.1,1.1),col="green",kappa=1)

> plot(variog(g8,trend = "1st"),xlab="distance (metres)")

> lines(variog(g8,trend = "1st"))

> lines.variomodel(variog(g8,trend = "linear"),cov.model

= "spherical",cov.pars=c(4.1,2.1),col="pink",kappa=1)
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> lines.variomodel(variog(g8,trend = "linear"),cov.model

= "gaussian",cov.pars=c(4,1.2),col="red",kappa=1)

> lines.variomodel(variog(g8,trend = "linear"),cov.model

= "exponential",cov.pars=c(4.1,1.1),col="blue",kappa=1)

> lines.variomodel(variog(g8,trend = "linear"),cov.model

= "matern,,cov.pars=c(4.1,1.1),col="green",kappa=1)

A.3.4: #R-code for Plotting data locations in Figures 4.5#

> plot(g8)

A.3.5: #R-code for estimated model parameters with Matern covariance

function for constant mean trend using likelihood method in Tables 4.3,

4.4 and 4.5#

Model 1a

> mgrid3=expand.grid(seq(46343.45,603656.55,,50)

,seq(532000,1018000,,50)

>out1=output.control(n.posterior=1000, n.predictive=1000,

n.back.moments=1000,simulations.predictive=T, mean.var=T)

>mod1a=likfit(geodata = g8, ini.cov.pars = c(0.35, 50000),

kappa = 0.5,cov.model = "matern",trend="cte")

> summary(mod1a)

>kr1a=krige.conv(g8,loc=mgrid3,krige=krige.control

(obj.m=mod1a,trend.d="cte",trend.l="cte"),out=out1)

Model 1b

>mod1b=likfit(geodata = g8, ini.cov.pars = c(0.35, 50000),

kappa = 0.5,cov.model = "exponential", trend="cte")

> summary(mod1b)

>kr1b=krige.conv(g8,loc=mgrid3,krige=krige.control

(obj.m=moda 11,trend.d="cte",trend.l="cte"),out=out1)

A.3.6: #R-code for plotting the likelihood fit result of the ordinary

kriging using Matern and Exponential functions in Figures 4.6-4.9#

>image(kr1a,grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000),

x.leg=c(640000,660000), y.leg=c(532000,1015000),vert=TRUE)

>plot(HBA,border="grey",xlim=c(46300,700000),ylim=c(532000,1018000))

points(g8,add=T)

171



>image(kr1a,val="variance",xlab="Easting",ylab="Northing",main="

variance",grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000),

x.leg=c(650000,670000), y.leg=c(532000,1018000),vert=TRUE)

>image(kr1b,grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000)

, x.leg=c(640000,660000), y.leg=c(532000,1015000),vert=TRUE)

>plot(HBA,border="grey",xlim=c(46300,700000),ylim=c(532000,1018000))

points(g8,add=T)

>image(kr1b,val="variance",xlab="Easting",ylab="Northing",main="variance"

,grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000), x.leg=c

(650000,670000), y.leg=c(532000,1018000),vert=TRUE)

A.3.7: #R-code for likelihood fit result of Bayesian kriging with

constant mean trend using both Matern and Exponential functions in

Tables 4.6 and 4.7#

Model 2a

>kr2a=krige.bayes(g8,loc=mgrid3,model=moda1)

> moda1=model.control(trend.d = "cte", trend.l = "cte",cov.model=

"matern",kappa = 0.5)

>kr2b=krige.bayes(g8,loc=mgrid3,model=moda2)

>moda2=model.control(trend.d = "cte",trend.l = "cte",cov.model=

"exponential",kappa =0.5)

A.3.8: #R-code for likelihood fit result of Bayesian kriging using

both Matern and Exponential functions in Figures 4.10-4.14#

#Figures 4.10 and 4.11#

>plot(HBA,border="grey",xlim=c(46300,700000),ylim=c(532000,1018000))

>image(kr2a,xlab="Easting",ylab="Northing",main="mean of simulation",

grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000),x.leg=c(640000,

660000),y.leg=c(532000,1018000),vert=TRUE)

>points(g8,add=T)

>plot(HBA,border="grey",xlim=c(46300,700000),ylim=c(532000,1018000))

> image(kr2a,val="variance",xlab="Easting",ylab="Northing",main="

variance",grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000),

x.leg=c(640000,660000),y.leg=c(532000,1018000),vert=TRUE)

>points(g8,add=T)
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#histograms of posteriors (beta, sigmasq and phi) in Figure 4.12#

>par(mfrow=c(3,1))

>kr2a$posterior$sample$sigmasq=1/kr2a$posterior$sample$sigmasq

>hist(kr2a$posterior$sample$beta)

>hist(kr2a$posterior$sample$sigmasq)

>hist(kr2a$posterior$sample$phi)

>par(mfrow=c(3,1))

>kr2b$posterior$sample$sigmasq=1/kr2b$posterior$sample$sigmasq

>hist(kr2b$posterior$sample$beta)

>hist(kr2b$posterior$sample$sigmasq)

>hist(kr2b$posterior$sample$phi)

#Figures 4.13 and 4.14#

> kr2b$predictive$variance=1/kr2b$predictive$variance

>plot(HBA,border="grey",xlim=c(46300,700000),ylim=c(532000,1018000))

>image(kr2b,xlab="Easting",ylab="Northing",main="mean of simulation",

grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000),x.leg=c(640000,

660000),y.leg=c(532000,1018000),vert=TRUE)

>points(g8,add=T)

>plot(HBA,border="grey",xlim=c(46300,700000),ylim=c(532000,1018000))

>image(kr2b,val="variance",xlab="Easting",ylab="Northing",main="variance",

grid=mgrid3,xlim=c(46300,700000),ylim=c(532000,1018000),x.leg=c(640000,

660000),y.leg=c(532000,1018000),vert=TRUE)

>points(g8,add=T)

A.3.9: #R-code for producing likelihood fit results of the ordinary

kriging using both Matern and Exponential functions using linear

trend in Tables 4.8 and 4.9#

Model 3

>moda3=likfit(geodata = g8, ini.cov.pars = c(0.35, 50000),kappa = 0.5,

trend="linear",cov.model = "matern")

>moda4=likfit(geodata = g8, ini.cov.pars = c(0.35, 50000), kappa = 0.5,

trend="linear",cov.model = "exponential")

Model 4
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>kr3a=krige.conv(geodata = g8, locations = mgrid3, krige =krige.control

(obj.m =moda3,trend.d = "linear",trend.l = "linear"), output = out1)

>kr3b=krige.conv(geodata = g8, locations =mgrid3, krige =krige.control

(obj.m =moda4,trend.d = "linear",trend.l = "linear"), output = out1)

A.3.10: #R-code for producing likelihood fit result of the ordinary

kriging using the Matern covariance function and constant mean trend

for Central Scotland in Tables 4.10 and 4.11#

Model 5a

mgrid3b=expand.grid(seq(243102,350752,,50),seq(635520,724512,,50)

moda5=likfit(geodata = g8b, ini.cov.pars = c(0.35, 40000),kappa =

0.5,trend="cte",cov.model = "matern")

>moda6=likfit(geodata = g8b, ini.cov.pars = c(0.35, 50000),

kappa = 0.5,cov.model = "matern")

>kr7aa=krige.conv(g8b,loc=mgrid3b,krige=krige.control(obj.m=moda6,

trend.d="cte",trend.l="cte"),out=out1)

>kr8b=krige.bayes(geodata = g8b, locations = mgrid3b,output=out1)

A.3.11: #R-code for producing likelihood fit results of Bayesian

kriging using the Matern function and constant mean trend for

Central Scotland in Figures 4.15-4.19#

> plot(g8b)

>mgrid3b=expand.grid(seq(243102,350752,,50),seq(635520,724512,,50)

>plot(HBA,border="grey",xlim=c(243102,375752 ),ylim=c(635520,724512))

>image(kr7aa,xlab="Easting",ylab="Northing",main="mean",grid=mgrid3,

xlim=c(46300,510000),ylim=c(532000,800000),x.leg=c(465000,480000),

y.leg=c(532000,800000),vert=TRUE)

>points(g8b,add=T)

>plot(HBA,border="grey",xlim=c(243102,375752 ),ylim=c(635520,724512))

>image(kr7aa,val=krige.var,xlab="Easting",ylab="Northing",main="

variance",grid=mgrid3,xlim=c(46300,510000),ylim=c(532000,800000),x.leg

=c(465000,480000),y.leg=c(532000,800000),vert=TRUE)

>points(g8b,add=T)
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>plot(HBA,border="grey",xlim=c(243102,375752 ),ylim=c(635520,724512))

>image(kr8aa,xlab="Easting",ylab="Northing",main="mean",grid=mgrid3,

xlim=c(46300,510000),ylim=c(532000,800000),x.leg=c(465000,480000),y.leg

=c(532000,800000),vert=TRUE)

>points(g8b,add=T)

> kr8aa$predictive$variance=1/kr8aa$predictive$variance

>plot(HBA,border="grey",xlim=c(243102,375752 ),ylim=c(635520,724512))

>image(kr8aa,val="variance",xlab="Easting",ylab="Northing",main="variance",

grid=mgrid3,xlim=c(46300,510000),ylim=c(532000,800000),x.leg=c(465000,

480000),y.leg=c(532000,800000),vert=TRUE)

>points(g8b,add=T)

A.3.12: #R-code for producing likelihood fit result of Bayesian

kriging using Matern covariance function and constant mean trend

for the 6 remote stations in Table 4.12 and Figures 4.20 and 4.21#

Model 6

>kr9=krige.bayes(geodata = g8c, locations = mgrid3,output=out1)

> summary(kr9$predictive$mean)

> summary(kr9$predictive$variance)

> image(kr9,xlab="Easting",ylab="Northing",main="mean",grid=mgrid3,

xlim=c(300000,450000),ylim=c(700000,900000),x.leg=c(530000,540000)

,y.leg=c(700000,900000),vert=TRUE)

> par(new=T)

> plot(HBA,border="grey",xlim=c(300000,560000),ylim=c(700000,900000))

> points(g8c,add=T)

> kr9$predictive$variance=1/kr9$predictive$variance

> image(kr9,val="variance",xlab="Easting",ylab="Northing",main=

"variance",grid=mgrid3,xlim=c(300000,560000),ylim=c(700000,

900000),x.leg=c(530000,540000),y.leg=c(700000,900000),vert=TRUE)

> points(g8c,add=T)

> par(new=T)

> plot(HBA,border="grey",xlim=c(300000,560000),ylim=c(700000,900000))
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A.3.13: #R-code for model validation tests, we randomly removed

10 stations from the 41 recording stations, we fit a model to the

remaining 31 stations, and also used it to predict the held-out

observations in Table 4.13 and Figure 4.22#

#g8wa=dataframe containing 31 remaining stations (training data#

#g8w=dataframe corresponds to 10 held-out stations (test data)#

>moda7= likfit(geodata = g8wa, ini.cov.pars = c(0.35, 50000),

kappa = 0.5, cov.model = "mat")

>xval1=xvalid(g8wa,model=moda7,reest=TRUE,locations.xvalid=

g8w$coords,data.xvalid=g8w$data

>summary(xval1$data)

>summary(xval1$predicted)

>summary(xval1)

> par(mfrow=c(5,2))

>plot(xval1)
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Appendix 4

We used both mgcv and akima for fitting a generalized additive model (GAM).

The dataframe for our gam object for the whole of Scotland is stored in mydata,

which consists of the SO2, and is represented by the ”Mean”, the Easting and

Northing, and the factors for the year and month. We use a Gaussian distribution

and identity link function in all the models with default setting for the basis and

basis dimension (except in sensitivity analysis of the models 4a-4f). The following

code generated the various gam models in Chapter 5.

A.4.1:#R-code for simple additive model without bivariate spatial location#

#mydata= dataframe for whole of Scotland#

#mydat11= dataframe for Central Scotland stations#

#mydat1=dataframe for training data for model validation#

#Mean= SO2#

#R-code for plotting diagnostics check in Figure 5.1#

Model 1

>gam1 =gam(log(Mean+0.5)=s(Year) + s(Month),family="Gaussian",data=mydata)

> gam.check(gam1)

#generate Table 5.1#

>summary(gam1)

#plot yearly and monthly effects in Figure 5.2 and 5.3#

>plot(gam1,select=1,xlab="Year")

>plot(gam1,select=2,xlab="Month")

A.4.2:#R-code for simple additive model with bivariate spatial location#

Model 2

>gam2 = gam(log(Mean + 0.5) ~ s(Easting, Northing) + s(Year) +s(Month),

family="Gaussian", data=mydata)

#generate model summary in Table 5.2#

>summary(gam2)

#plot bivariate spatial location in Figure 5.4#
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>plot(gam2,select=1,xlab="Easting",ylab="Northing")

#plot yearly and monthly effects in Figures 5.5 and 5.6

>plot(gam2,select=2,xlab="Year")

>plot(gam2,select=3,xlab="Month")

#diagnostics check in Figure 5.7

> gam.check(gam2)

A.4.3:#R-code for additive model with spatial interaction for the 1996-2000

and 2001-2005 datasets for Tables 5.3 and 5.4#

Model 3

> gam3a=log(Mean[1:2172] + 0.5) = s(Easting[1:2172], Northing[1:

2172])+ s(Year2[1:2172], k = 6) + s(Month[1:2172],k = 6,data=mydata)

>gam3b=log(Mean[2173:3228]+0.5)=s(Easting[2173:3228],Northing[2173:

3228],k = 20) + s(Year2[2173:3228], k = 5) + s(Month[2173:3228],

k = 5,data=mydata)

>summary(gam3a)

>summary(gam3b)

#plot additive model effects with spatial interaction for the separate

1996-2000 and 2001-2005 dataset in Figures 5.8 and 5.9#

>plot(gam3a,select=1,cex.lab=2.2,cex.axis=3.5,cex.main=2.5)

>plot(gam3b,select=1,cex.lab=2.2,cex.axis=3.5,cex.main=2.5)

>par(mfrow=c(2,2))

>plot(gam3a,select=2,xlab="Year")

>plot(gam3a,select=3,xlab="Month")

>plot(gam3b,select=2,xlab="Year")

>plot(gam3b,select=3,xlab="Month")

A.4.4: # R-code for simple additive model with bivariate spatial

location for Central Scotland stations#
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Model 3c

>gam3c = gam(log(Mean + 0.5) ~ s(Easting, Northing) + s(Year)+

s(Month),family="Gaussian", data=mydat11)

#generate model summary for Central Scotland in Table 5.5#

>summary(gam3c)

#plot bivariate spatial location, yearly and monthly in Figures

5.10 and 5.11#

> plot(gam3c,select=1,cex.lab=1.2,cex.axis=1.5,cex.main=1.2)

> par(mfrow=c(1,2))

> plot(gam3c,select=2,xlab="Year")

> plot(gam3c,select=3,xlab="Month")

R-code for analysing sensitivity to the choice of basis for the cubic regression.

Model 2 was extended to accomondate other bases (cubic regression and p-spline)

for the univariate cases and basis dimension of (k = 6 and 12), and (k = 12 and

20) for univariate and bivariate smoothers respectively and inclusion of REML

estimation method still considering the whole of Scotland data.

A.4.5: #R-code for additive model showing sensitivity to choice of basis

for the cubic-splines in Table 5.6#

Model 4a

>gam4a= gam(log(Mean + 0.5) = s(Month, bs = "cr")+s(Year, bs = "cr")+

s(Easting, Northing, bs = c("tp"),data=mydata)

>summary(gam4a)

#R-code for additive model showing sensitivity

to the choice of basis for the p-splines in Table 5.7#

Model 4b

>gam4b=gam(log(Mean + 0.5)=s(Month, bs = "p",k=8)+s(Year, bs="p",k=8)+

s(Easting, Northing, bs = c("tp"),data=mydata)

>summary(gam4b)
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#R-code for additive model showing sensitivity to choice of basis

dimension with k=6 and 12 for univariate and bivariate smoothers

respectively in Table 5.8#

Model 4c

>gam4c= gam(log(Mean + 0.5) ~ s(Month, k = 6) + s(Year, k = 6)

+ s(Easting, Northing, k = 12),data=mydata)

>summary(gam4c)

#R-code for additive model showing sensitivity to choice of basis

dimension k=12 and 20 for univariate and bivariate smoothers

respectively in Table 5.9#

Model 4d

>gam4d = gam(log(Mean + 0.5) =s(Month, k = 12) + s(Year, k = 12)+

s(Easting, Northing, k = 20),data=mydata)

>summary(gam4d)

#R-code for additive model showing sensitivity to the REML method

for the smoothing parameter estimation in Table 5.10#

Model 4e

>gam4e = gam(log(Mean + 0.5)=s(Month) +s(Year)+s(Easting,Northing),

method="REML",data=mydata)

>summary(gam4e)

A.4.6: # R-code for model summary in Table 5.11 and Figure 5.12#

#R-sq, Dev. exp., and GCV/ REML parameters are obtained from

Tables 5.1, 5.2, and 5.6-5.10#

>logLik(gam1, gam2, gam4a, gam4b, gam4c, gam4d, gam4e)

>AIC(gam1, gam2, gam4a, gam4b, gam4c, gam4d, gam4e)

>par(mfrow=c(3,2))

>plot(gam4a, select=1,main="basis=cr",xlab="Month")

>plot(gam4a, select=2,main="basis=cr",xlab="Year")

>plot(gam4b, select=1,main="basis=p",xlab="Month")
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>plot(gam4b, select=2,main="basis=p",xlab="Year")

>plot(gam4c, select=1,main="k=6",xlab="Month")

>plot(gam4c, select=2,main="k=6",xlab="Year")

>par(mfrow=c(2,2))

>plot(gam4d, select=1,main="k=12",xlab="Month")

>plot(gam4d, select=2,main="k=12",xlab="Year")

>plot(gam4e, select=1,method=REML",xlab="Month")

>plot(gam4e, select=2,main="method=REML",xlab="Year")

A.4.7: #R-code for model validation for reduced model in Table 5.12#

Model 4f

>gam4f=log(Mean+0.5)=s(Month)+s(Year)+ s(Easting, Northing),data=mydat1)

> summary(gam4f)
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