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Abstract

A telepresence system allows to perform remote actions using a telepresence

robot over a distance. The human operator controls the movements of the robot
by sending control command signals over a communication channel and receives
feedback to acknowledge if the telepresence robot has followed the instructions.
Telepresence systems recently gained popularity due to their emerging usage in
many applications including hospital consultations, remote co-working in offices,
security and surveillance, factory inspections or instructor-led education. How-
ever, latency constraint introducesmajor challenges for precise and reliable robotic
control in remote environment. Latency (i.e., time delay) can be caused bymultiple
factors including communication network issues, the physical distance between
the human operator and the telepresence robot, processing data and system er-
rors. Time delay also produces a visual mismatch between received navigation
state feedback and the actual state of the robot in the remote environment, which
negatively impacts the human operator’s performance.

This thesis aims to address issues related to latency by proposing new state
estimation techniques for robust navigation of telepresence robots and develops
an associated framework and a simulation environment. The thesis can broadly
be categorised into three main parts, 1) a telepresence framework consists of an
off-the-shelf commercial (differential-drive) telepresence robot Beamplus, amulti-
camera motion tracking system (VICON) and Robot Operating System (ROS); 2) a
new state estimation algorithm called Augmented State Extended Kalman Filter
(AS-EKF) that compensates time delay; and 3) a simulation environment to repro-
duce the telepresence system with predictive technology using open-source soft-
ware RViz and Gazebo. Time delay scenarios are considered for both certain and
uncertain caseswhere the latterweremodelled using probability density functions
(PDF). The results show significant performance improvements compared to the
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standard Extended Kalman Filter (EKF) that does not consider delays. The simula-
tion framework offers wider adaptability when a physical system is not plausible,
and a controlled experimental environment is desired.
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Pre-Covid-19 research plan

This thesis intended to investigate the issues around time delay in telepresence
systems and to propose techniques that compensate for such delays using new
state estimation methods. The research plan included the following main topics:
1) development of a framework representing a telepresence system using a com-
mercial robot, motion tracking system (for robot navigation) and ROS, 2) propo-
sition of new state estimation technique for delay compensation using filtering
methods, and 3) verification of the new technique on a real like situation where
camera-based visual SLAM was to be used as a tool to measure robot pose.

Details of Covid-19 related disruption

Covid-19 restriction impacted me on two accounts, 1) unavailability of family sup-
port both during the birth of our first child and afterwards childcare for over a year
and 2) restriction to access the lab where I’ve developed an experimental set up
for the visual SLAM (#3) (and conducted initial experiments).

Summary of the decision taken

Given the difficult situation, it was decided to work on a simulation environment
to emulate the telepresence system, thus easing the issues with lab access re-
strictions and working from home. However, this introduced significant additional
work as I needed to learn simulation software such as RViz, and Gazebo and their
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interaction with ROS up to the level of developing a new working framework. The
initial (now abandoned) work on visual SLAM is included in this thesis as part of
future work.
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1 Introduction

Telerobotics is the area of robotics concerned with the control of robots from a
distance. It is a combination of two major sub-fields, teleoperation, and telepres-
ence. While teleoperation is the operation of amachine at a distance, telepresence
refers to a set of technologies that allow a person to feel as if they were present,
to give the appearance that they were present, or to have an effect, at a location
other than their true location. The telepresence system allows a human opera-
tor to control and navigate a mobile robot around the remote environment and
interact with their audiences through video conferencing [1]. For robot communi-
cation, depending on the distance, a wired (when everything is local) or a wireless
(if the robot and the operator are miles away) connection is used.

In general, the telepresence system is composed of a local site (where a human
operator drives a hand-controller device); a remote site (where a mobile robot in-
teractswith the physical world); and a communication channel that links both sites.
the telepresence system provides interactive two-way audio and video communi-
cation and physical manipulation with a remote sender and a receiver for building
a communication system between two people in different places.

These systems, which are primarily used in the context of promoting social
interaction between people, became popular in many emerging applications in-
cluding hospitals and healthcare surgery or consultations, remote co-working in
office spaces, tour guidance, security and surveillance (e.g., remote night watch
person [2], factory inspection, instructor-led educations and many more.
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Telepresence robots suffer significant challenges during navigation in the re-
mote site due to varying communication time delays [3] frequently caused by the
present state of the network. Moreover, the distance between the human oper-
ator and remote sites of the telepresence system introduces time-varying delays
adding distortion in the reference commands, response time, and feedback sig-
nals resulting in instability or poor performance of the system. The time elapsed
between making an action decision and perceiving the consequences of that ac-
tion in the environment introduces uncertain time delay [4,5].

This uncertain time delay produces a visual mismatch between the received
navigation state at the operator’s side and the actual navigation state of the robot
in the remote environmentwhich negatively impacts the human operator’s perfor-
mance [6,7]. Therefore, it is advantageous to compensate for such time delays for
robust navigation and manipulation of a telepresence robot. This thesis focuses
on proposing new techniques to compensate for time delays in the telepresence
system for robust robot navigation.

There are many different approaches used in the literature to overcome the
timedelay in telepresence systems including increasing levels of automation,more
sensors on the robot, and predictive technology. The predictive technology in this
research includes a state estimation algorithm, display, and graphical models to
predict the state of the robot based on the robot’s delayed current state and com-
mands sent by the operator [8].

The state of a robot is a set of position, orientation, and velocity, which is the
robot’s motion over time. This includes the estimation of the state of the robot’s
kinematic system by combining knowledge from a priori information and sensor
measurements. State estimation in dynamical systems is crucial in real-world ap-
plications as the true state is unknown and sensors have limited precision, there-
fore, provide only a sequence of uncertain noisymeasurements. Predictive display
using control command and robot state estimation algorithm immediately display
graphically the robot’s estimated posewithout timedelay on the computer display.
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The estimated pose is usually superposed on the display of delayedmeasurement
from the actual robot measurement.

In this research, we aim to develop a state estimation framework in the real
environment with a state-of-the-art commercially available telepresence robot.
The framework is built with a differential drive robot using position-tracking sen-
sors in the real environment. This framework is used to develop a new delay-
compensated state estimation algorithmcalledAugmented State ExtendedKalman
Filter (AS-EKF).

We also recreate the real experimental framework and the environment us-
ing ROS RViz and Gazebo software. Accurate simulated models of the real exper-
imental robot and the working environment with supporting elements are also
designed in the simulation environment. The Gazebo can able to create a 3D sce-
nario on the computer with robots, obstacles, and other objects, while ROS serves
as the interface for the robot. RViz is also a powerful 3D robot visualization tool for
ROS applications it provides a convenient GUI to visualize sensor data, robot mod-
els, and environment maps, which is useful for developing and debugging robot
controllers [9].

Both, the simulated experimental results and the real experimental robot nav-
igation agreed very well and showed robust robot navigation in a delayed environ-
ment using the proposed AS-EKF algorithm.

1.1 Problem statement

Seamless telepresence experience requires the implementation of human sensory
elements such as vision, sound, and remote manipulation. Functional require-
ment blocks of an ideal telepresence system can be described as follows:

• The system usually includes visual feedback. Ideally, the entire field of view
of the user is filled with a view of the remote location, and the viewpoint
corresponds to the movement and orientation of the user.
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• Sound is the easiest sensation which can be implemented with higher fi-
delity [10].

• The ability tomanipulate at a remote area or environment is an important
aspect for telepresence users and can be implemented in several ways de-
pending on the needs of the user. Typically, movements of the user’s hands
or control commands are sent through the communication channel to the re-
mote location. A telepresence robot in a remote location then follows those
movements or commands as closely as possible.

However, the effectiveness of the telepresence system varies by the degree of
fidelity, there are factors in telepresence which pose major challenges to precise
and reliable robotic control for the human operator in an unknown environment.
The following list identifies a set of research issues that need to be addressed for
robust robot navigation:
1. Time delay: Telepresence is surprisingly difficult and slows to a human op-

erator who, physically and directly performs a complex task far from the re-
mote site. A particular difficulty is the delayed feedback response from the
telepresence robot. Delays can be caused by distance, but other common
causes include network switching delays, communication drop-out, process-
ing delays, and slow dynamics of the slave telepresence robot.

2. Limited field of view: The human operator is unable to perceive the pe-
ripheral surroundings of the telepresence robot and must rely on his mental
map and intuition for the surroundings to navigate the robot. Cameras don’t
provide the operator with the same degree of peripheral vision as the hu-
man eye. The operator’s eye movements relating to attention or fatigue also
deteriorate the performance.

3. Problems with multiple cameras: A problem was found when it comes to
the use of multiple cameras and screens. To operate multiple cameras and
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screens, the operator needs to switch his / her focus between them. Often
these results add confusion instead of helping the operator [11].

4. Depth perception: Depth perception from a single camera is often limited
and is not helpful for the human operator. This makes it harder for the op-
erator to estimate distances. When operators navigate in a certain space
they can rely upon stereo vision to help in judging distances. This is however
not the only means by which we make estimations, we also use the size of
reference objects and are helped by the parallax effect.

5. Frame rate: A low frame rate due to camera hardware or limited bandwidth
can lead to a degraded sense of motion for the operator. This in turn leads
to the operator using a drive then stop strategy for navigating in the remote
environment. This is less accurate and sometimes error-prone.

6. Other problems: The telepresence system includes several sensors and ac-
tuators which pose measurement and hardware system errors.

Time delay produces a mismatch between the received navigation feedback at
the operator’s side (Local site) and the actual navigation state of the robot in the
remote environment (remote site) which negatively impacts the human operator’s
performance. These two different scenarios create a conflict in human perception.
Remote manipulation depends on the human operator’s performance and is lim-
ited by the human’s motor skills. Remote perception is very challenging to cope
with the virtual display different from the physical environment. Teleoperation in
a remote environment with time delay is very difficult and highly stressful for the
human operator which leads to mental fatigue. Therefore there is a clear need to
address such issues.

In this work, we are interested in the total perceived time delay of the telepres-
ence robot manipulation which is the time from when the human operator sent a
command until the visually perceives the reaction on the robot in the feedback in-
formation. An overview of the time delay within a telepresence system is shown in
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Figure 1.1: Potential causes of time delay in a telepresence system that needs tobe addressed for robust robot navigation.
Figure 1.1. Our focus is on how to mitigate the challenges posed by time delays in
robot navigation using new filtering techniques. It is worth noting that the causes
of time delay, visual delay, and sound delay are not within the scope of this work.

1.2 Research contributions

Understanding of the time delay issues in the telepresence system is discussed in
the form of a state-of-the-art report in Chapter 3. This summarises various time
delays including in the communication channels and the impact of time delays
in local and remote sites. Derived research questions are used as input for the
following chapters. In this thesis following contributions are made:

• C1. A real-world experimental framework is proposed in Chapter 4. This
consists of a state-of-the-art commercial telepresence robot, a VICON mo-
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tion tracking multi-camera system, and methodologies for robot control and
navigation using ROS and correction of systematic error using a standard
UMBMark technique.

• C2. A new state estimation technique is proposed in Chapter 5 that consid-
ers time delay in telepresence robot navigation. The new algorithm incorpo-
rates augmented states to compensate for time delays which are modelled
through two probabilistic density functions (PDF) of Gamma and Gaussian
distributions. The new algorithm called Augmented State Extended Kalman
Filter (AS-EKF) exhibits superior performance over standard EKF.

• C3.Wehave designed anddeveloped anew simulation environment in Chap-
ter 6 for telepresence systems that enable robot navigation and pose esti-
mation using predictive technology. This also includes the predictive display
which is necessary for human operators at the local site. Such a simulation
framework allows for conducting controlled experiments instead of a real-
world telepresence system which is expensive and not always practical to
deploy for experimental purposes.

1.3 Publications

To date, the thesis has been produced following two conferences and one journal
publication, along with another journal paper in preparation.

1.3.1 Published

• J1. Das, B. and Dobie, G., “Delay Compensated State Estimation for Telepres-
ence Robot Navigation”, Robotics and Automation Systems, Journal, Elsevier,
December 2021.

• C2. Das, B., Dobie, G. and Pierce, S. G., “A delay aware state estimation tech-
nique for telepresence robot navigation”, In proc. 3rd IEEE International Con-
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ference on Robotic Computing (IRC 2019), IEEE, Mar 2019, Naples, Italy, pp.
624-629.

• C1. Das, B., Dobie, G. and Pierce, S., “State estimation of delays in telep-
resence robot navigation using Bayesian approaches”, In proc. Towards Au-
tonomous Robotic Systems: 19th Annual Conference (TAROS 2018), Bristol,
UK, July 2018, Springer, pp. 476-478. (Nominated for best poster).

1.3.2 In preparation

• J2. Das, B. and Dobie, G., “Robot navigation and pose estimation using pre-
dictive technology”, 2023.

1.4 Thesis outline

The thesis is organised into seven chapters. Chapter 1 provides the introduction
and Chapter 2 presents a general overview of the telepresence systems, their ap-
plication areas and the background that is necessary for this research. Chapter 3
reports the state-of-the-art analysis with a focus on time delay issues within telep-
resence systems.

Chapter 4 describes the real-world experimental framework, which consists of
an off-the-shelf Beam plus telepresence robot and VICONmotion tracking camera
system followed by Chapter 5, which proposes a new approach for state estima-
tion assuming uncertain delayed sensor measurements of a telepresence robot
during navigation.

Chapter 6 presents the design and development of a simulation environment
for robot navigation andpose estimationusing predictive technology. Finally, Chap-
ter 7 concluded the thesis and discussed future work where initial experiments
are conducted by proposing a visual SLAM-based experimental set-up that allows
robot pose estimation in unknown environments.
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2 Overview and Background

In a wider understanding of the thesis, this chapter presents a general overview
of the telepresence system and its application areas and the background informa-
tion that is necessary for the proposed research. The chapter captures the wider
context of teleoperation and its applications in a variety of domains. The selected
examples are carefully chosen where time plays an important role, and therefore,
issues around time delay impact the performance of such systems. This is a key
motivation of this research, and further insight of the challenges are discussed
with necessary details.

2.1 Telerobotics, Teleoperation and Telepresence

Telerobotics makes possible the execution of tasks that cannot be carried out di-
rectly by humans with their physical presence, e.g., inability to reach the working
area due to dangerous environmental conditions. Although robotics research in-
corporates new architectures for a variety of application needs, executing com-
plex tasks are still challenging and robotics intelligence largely relies on the ad-
vances in computers [12]. Due to poor perception systems, robot intelligence is
yet to be advanced enough to produce intelligent behaviour that dealswith tasks in
unstructured environments; presents uncertainties; and requires too much skill.
Telerobotics is a combination of two major sub-fields, (a) teleoperation [13] and
(b) telepresence [1,14,15].
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Virtualor Aug-mentedDisplay
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Environment Operator

Figure 2.1: An overview of teleoperation technologywhich offers human operatorsto control the robot over the remote site using the sensors and actuators.
Teleoperated systemoffers human operators to control amobile robot to com-

plete tasks in remote environments. On the other hand, telepresence systems en-
abled human operators to feel present in a remote environment through the re-
mote robot. The teleoperated system is composed of a local site (where a human
operator drives a hand-controller device); a remote site (where a mobile robot
interacts with the physical world); and a communication channel that links both
sites. An overview of an example system is shown in Figure 2.1.

2.1.1 Teleoperated system

In a teleoperated system, a humanoperator controls themovements of themobile
robot from some distance away. The human operator sends signals to the mobile
robot to control it then the feedback signals come back from the mobile robot,
telling the human operator that the mobile robot has followed the instructions. A
simplified architecture of the teleoperation system is shown in Figure 2.2.

It is also important to define twoother termsof the teleoperated system, namely,
teleoperator and telerobot.

� Tele-Operator: A teleoperator is a machine allowing a human operator to
move about, sense, and mechanically manipulate objects at a distance. It
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Figure 2.2: General architecture of teleoperated system where the human opera-tor controls a mobile robot from some distance [13].
usually has artificial sensors and effectors for manipulation andmobility and
also a means for humans to communicate with both.

� Tele-Robot: A telerobot is a subclass of teleoperators in which the machine
acts as a robot but is monitored by a human supervisor and reprogrammed
from time to time.

The history of modern teleoperation began at the end of the 1940s when the
first master-slave manipulator was developed. After that, adapting video technol-
ogy and force feedback to teleoperation made the development of telepresence
systems rapid. Computer technology brought advanced control loops and virtual
reality into the remote site in the telepresence systems [16].

2.1.2 Application areas of teleoperation

Teleoperated robots were used in a wide range of real-world applications includ-
ing nuclear, space, underwater, military, medical, and other industries. This sec-
tion discussed themost popular and important application areas of teleoperation.
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Some of these applications are further grouped into sub-fields as they are diverse.

Figure 2.3: Example of a teleoperated robot for nuclear power plant application:iRobot Warrior [17].

2.1.2.1 Nuclear industry

Inspection and maintenance are essential in the nuclear industry. It is not easy
to carry out such maintenance tasks since the environments are usually highly
radioactive and unsafe for human workers. iRobot Warrior [18] (Figure 2.3) is suit-
able for indoor and outdoor use maintaining mobility on rough terrain in urban
environments and all weather conditions. Warrior has been performing opera-
tions for 16months in areas of the disabled power plant (Fukushima nuclear plant)
where radiation levels and temperatures are too high and unsafe for people.

2.1.2.2 Space application

The space is a very challenging environment for teleoperation applications. The
physical presence of a human to operate a vehicle in space requires many re-
sources or is impossible. Therefore it ismore efficient to use teleoperated vehicles.
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(a) Lunokhod 2 [19] (b) ETS-VII / Kiku-7 [20]

(c) Canadarm2 [21]
Figure 2.4: Examples of teleoperated robots for space applications.

Spaceexploration Lunokhod2 (moonwalker) [19] (Figure 2.4a)was anunmanned
lunar rover that landed on the Moon as a part of the Lunokhod program. The
mission was to collect images of the lunar surface, examine ambient light levels,
perform laser ranging experiments from Earth, observe solar X-rays, measure lo-
cal magnetic fields, and study the soil mechanics of the lunar surface material.
There was a five-man team of controllers on Earth who sent driving commands
to the rover in real-time. Curiosity [22] is a car-sized robot rover exploring Gale
Crater on Mars as a part of NASA. The rover’s goals include investigation of the
Martian climate and geology; assessment of whether the selected field site inside
Gale Crater has ever offered environmental conditions favourable for microbial
life, including investigation of the role of water; and planetary habitability studies
in preparation for future human exploration.
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Satellite ETS-VII (Engineering Test Satellite VII) / Kiku-7 [20] (Figure 2.4b) is launched
byNASDA Japan, is theworld’s first satellite equippedwith a robotic armwhichwas
used to carry out several experiments related to rendezvous docking and space
robotics.

Space station robotic arm The next generation robot arm, Canadarm2 [21] (Fig-
ure 2.4c), is an advanced robotic arm. This arm is capable of handling large pay-
loads and helped build the entire orbiting complex. It has latches on either end,
allowing it to be moved by both ground controllers and the expedition crews to
various portions of the station. It has even been used to move astronauts around
during spacewalks.

(a) Tavros02 [23] (b) Millennium Plus [24]
Figure 2.5: Example of teleoperated robots for underwater applications.

2.1.2.3 Underwater

Underwater operations were one of the first mobile applications where teleop-
eration technology was adopted. Today, remotely operated underwater vehicles
(ROV) probably represent the largest commercial market for mobile vehicle tele-
operation. ROVs are used in surveying, inspections, oceanography, and different
simple manipulation and work tasks.

Tavros02 [25] (Figure 2.5a) is a Solar-powered Autonomous Underwater Vehi-
cle (SAUV) to tweet water-quality data from its on-board sensors via long-range
radio communications. Its Twitter feed is interspersed with periodic interjections
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by a human operator. Every 20 minutes, Tavros02’s followers get an update on its
exact location and the temperature, saltiness, and pressure of the water around
it. Another underwater teleoperated robot the Millennium Plus [24] (Figure 2.5b)
is easily serviceable, accepts many tooling packages, and has simple survey inte-
gration capabilities. These characteristics accommodate heavier construction and
completion work scopes underwater space.

(a) Atomics MQ-1 Predator [26] (b) Gladiator [27]

(c) AN/SLQ-48 [28]
Figure 2.6: Examples of teleoperated robots for military combat applications.

2.1.2.4 Military applications

Autonomous robotics would save and preserve human life by removing serving
soldiers who might otherwise be killed, while in service, from the battlefield. The
use of autonomous or teleoperated fighters and bombers to destroy enemy tar-
gets is favourable because teleoperated planes are capable of performing ma-
noeuvreswhich is dangerous for human pilots (due to highG-Force), plane designs
do not require a life support system, and a loss of a plane does not mean a loss of
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a pilot. Selected examples of this category are briefly described below.

Combat application The General Atomics’s MQ-1 Predator [26] (Figure 2.6a) is
an unmanned aerial vehicle (UAV) used by the United States Air Force (USAF) and
Central Intelligence Agency (CIA). It is remotely operated by radio signals and satel-
lite links. TheGladiator Tactical UnmannedGroundVehicle(TUGV) [27] (Figure 2.6b)
program was developed to support the United States Marine Corps conduct of
Ship To Object Maneuver (STOM) missions through the use of a medium-sized,
robotic system to minimize risks and eliminate threats to Marines during the con-
flict. The US Navy uses a remotely operated vehicle (ROV) called AN/SLQ-48 mine
neutralisation vehicle (mnv) [28] (Figure 2.6c) system for mine combat. It is a
remote-controlled submersible vehicle to identify underwater objects and, if they
are mines, renders them safe.

(a) Dragon Runner [29] (b) Packbot [30]
Figure 2.7: Examples of teleoperated robots for security, and rescue applications.

2.1.2.5 Security application

Dragon Runner [29] (Figure 2.7a) is designed for areas that are too dangerous for
or inaccessible by human soldiers, particularly urban environments. Dragon Run-
ner’s front-mounted, tilting camera provides a video feed that is relayed back to
its master controller by a wireless modem. It is used by many police department
bomb squads to defuse or detonate explosives. It has also been used for impro-
vised explosive device (IED) procedures on roadways via a remote teleoperated
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control system.

2.1.2.6 Rescue application

PackBot [30] (Figure 2.7b) is a series of military robots by iRobot. More than 2000
were used in Iraq and Afghanistan. PackBots were the first robots to enter the
damaged Fukushimanuclear plant after the 2011 Tohoku earthquake and tsunami.

2.1.2.7 Telesurgery

Robotic surgery requires the use of a surgical robot, whichmay or may not involve
the direct role of a surgeon during the surgical procedure. The robot contains sev-
eral sensors, which provide feedback data on the robot’s current situation and a
system to process this information so that the next action can be determined. One
of the best-known surgical systems is the Da Vinci robot [31] (Figure 2.8) which can
perform a variety of laparoscopic surgeries which involves scaling the surgeon’s
actions over a very small communication delay.

Figure 2.8: The example of a telepresence robot for surgical systems: Da VinciRobot [31]
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2.1.2.8 Industrial work

Industrial applications of teleoperated robots are numerous. They typically involve
work conditions inappropriate for humans. The environmentmaybehazardous or
unpleasant, or the required forces may be greater or smaller than the human can
directly provide. A teleoperated robot tends to overcome weaknesses of human
skills by sharing control as appropriate to the application. Examples of this group
include applications in highway, railway, power line maintenance, aircraft servicing,
andmining.

Highway ROEBL [32] (Figure 2.9a) a remote-operated, electric bucket loader skid
steer solves two of the industry’s major problems. For years, manufacturers have
focused ondriver safety. It reduces operator risk to zero by taking the driver off the
vehicle. Additionally, the electric drive train solves another industry-wide problem
— how to operate in close quarters where pollution can be dangerous.

Railway Mountedon the railway track, the Felix robot [33] (Figure 2.9b) is equipped
with two 3-D profilometers and a GigE camera. Specific diagnostic algorithms have
also been developed to process and analyse acquired data. Reflected laser light is
captured by the camera. Once this information is computed, image and measure-
ment data are then transmitted wireless to an operator for further analysis.

Power linemaintenance Expliner [34] (Figure 2.9c) is a self-propelled robot that
moves along overhead high-voltage transmission lines to perform an inspection of
the lines by checking their external conditions, measuring the diameter and even
detecting internal corrosion.

Aircraft servicing The ROBAIR aircraft inspection robot [35] (Figure 2.10a) is de-
signed to climb on the wings and fuselage of aircraft to inspect rows of rivets and
detect loose rivets and cracks. The robot uses a flexible array of pneumatic suc-
tion cups to adapt to surface curvatures to inspect rows of rivets with ultrasound,
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(a) ROEBL [32] (b) Felix robot [33]

(c) Expliner
Figure 2.9: Teleoperated robots for highway, railway and power line applications.
eddy current, and thermographic Non-Destructive Testing (NDT) techniques.

Mining applications Hitachi EX5600 Hydraulic Excavator [36] (Figure 2.10b) and
a CAT 793D 240-ton haul truck [37] (Figure 2.10c) are used to remove the debris
and repair the mine area. The equipment can rapidly move between manual and
teleoperated control with the flip of a switch.

2.1.3 Telepresence system: two-way communication system

The research carried out in this work considers the application area of two-way
telepresence systems anduses a state-of-the-art off-the-shelve telepresence robot
for both the formulation of the research questions, development of the algorithms
and testing. While further details of the specific system/environment are discussed
in Chapter 4, this section provides necessary background information relating to
this research.
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(a) ROBAIR (b) Hitachi

(c) Haul truck
Figure 2.10: Teleoperated robots for aircraft servicing and mining applications.
Telepresence systems are integrated with monitor, camera, microphone, and

speaker systems [38] that allows real-time two-way collaboration between peo-
ple who are not in the exact location. They can speak as if they are in the same
room and easily share data. A telepresence robot is an integral part of a telep-
resence system and the key component that helps to place a human operator at
a remote location instantly, providing them with a virtual presence, or telepres-
ence. A telepresence robot is a computer, tablet, or smartphone-controlled robot
which includes a video camera, screen, speakers, andmicrophones so that people
interacting with the robot can view and hear its operator and the operator can si-
multaneously view what the robot is looking at and hearing [38]. The units can be
moved around by a user who is not present at the robot site. The system design
and functionality depend directly on their intended use and application. A brief
description of hardware and software specifications of the most common telep-
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resence systems can be found in [14]. A few telepresence robots are available on
the commercial market (Figure 2.11) like Giraff [39], Pebbles [40] and Double [2]
etc.

Figure 2.11: Example of different types of telepresence robots are available on thecommercial market depending on the application areas [41]

A simplified architecture of a telepresence system with a telepresence robot is
shown in Figure 2.12. As perceived, the systemcanbe considered as a combination
of three subsystems, namely, local site, remote site, and communication medi-
um/system. As shown in Figure 2.12, human operators use computers, tablets, or
smartphones to operate mobile telepresence robots at the remote site. The com-
munication medium connects the robot and the host computer, often through a
standard WiFi network using TCP/IP communication protocol.

2.1.4 Application areas of telepresence

Telepresence system in the context of two-way communication means audio and
video communication with a remote sender and a receiver for building a commu-
nication system between two people in different places. These systems, which are
primarily used in the context of promoting social interaction between people, are
becoming increasingly popular within certain application domains such as health
care environments, educational centres, independent living for the elderly, and
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Figure 2.12: General architecture of telepresence systemwhere, human operatorsuse a computer, tablet, or smartphone to operate mobile telepresence robots atthe remote site.
office environments [15]. The systems are characterized by an LCD screen, a web
camera, a microphone, and speakers allowing communication between two par-
ties.

2.1.4.1 Office environment

The number of tasks where many different collaborative teams are cooperating
from a distance in the same work is increasing. One can simply log in to their
control device and instantly virtually present in their remote location. A set of
commercial telepresence robots has been offered in this environment to reduce
the distance between different teams from different places, which decreases the
travelling time and travel cost for the employees and also allows immediate ac-
cess to the other site if needed. The telepresence system allows remote cowork-
ers to visit their local coworkers and attend formal as well as informal meetings.
Telepresence systems became very useful to the work-life balance and increase
productivity.

22



Figure 2.13: The telepresence system allows remote coworkers to visit their localcoworkers [42] [1].

2.1.4.2 Healthcare system

Telepresence systems seemingly revolutionised (or at the least significantly im-
proved) the healthcare system where doctors, nurses, and other healthcare pro-
fessionals work. Patients can communicate easily with their doctors via telerounds
every day in the absence of their physical presence, which greatly reduces the
location-centric (usually large cities) dependency and provide greater care to re-
mote care facilities.

Post surgery: Telepresence systemshave tremendously helped in patientmon-
itoring, integration services, and private healthcare after patients are discharged
from hospitals. This also keeps sick people out of waiting rooms.

Advice: Medical specialists can communicate and administer drug prescrip-
tions to patients through telepresence systems. Doctors also administer treat-
ment to remote patients through telepresence systems with the presence of a
nurse at the patient’s location. Medical professionals can expand their network of
services through telepresence systems to far unreached locations with patients in
need of quality medical care.

Care in home: Telepresence systems can be used tomonitor patients at home.
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Figure 2.14: Doctors administer treatment to remote patients through telepres-ence systems [43].
Instead of taking children to the hospitals for regular checkups, they can be mon-
itored via video consultations by physicians. Telepresence systems can facilitate
long-term health monitoring of the elderly in private homes.

2.1.4.3 Elderly care

Telepresence systems for elderly care serve various functions simultaneously, such
as health surveillance, social interaction, and safeguarding. Some users rely on
their telepresence robots as their remote eyes and ears for elderly family mem-
bers. People can use a telepresence system for regular chats with seniors instead
of using the phone or video conferencing. It could work as an emergency alert
system if a person falls in an emergency situation.

2.1.4.4 Education

There are lots of applications for telepresence robots in education systems. It
helps in primary education, higher education, home-bound instruction for ill and
hospitalized students, and more. In many circumstances, the telepresence sys-
tem in the education system increases students’ engagement and connection to
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Figure 2.15: Telepresence system for regular chats with seniors [44].
the course content. It can be used in regular classrooms and experience no disrup-
tion to normal classroom activities. For home-bound students, extended school
absences can leave students feeling lonely and isolated. The telepresence systems
help ill or hospitalized children stay connected to their school community.

2.1.4.5 General use

Telepresence systems are becoming more sophisticated in recent days. It is no
wonder that telepresence systems are becoming a popular option for researchers
to make it more robust by reducing its complexities for the human operator and
useful for social interactions. With the COVID-19 pandemic, teaching and learning
online (e.g., Skype or Zoom) became the new norm. By integrating telepresence
systems in our societies and improving the understanding of how human opera-
tors use robots, it is possible to improve the design of the systemsmore advanced
that will attract people to use their day-by-day activities.
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Figure 2.16: Telepresence system in education system increases students’ engage-ment [45].

2.2 Research background

The research background consists of threemain sections, namely 1) the robot nav-
igation challenges, 2) a proposed approach with an experimental framework that
will address the navigation challenges and 3) a robot simulator which will validate
the proposed approach.

2.2.1 Navigation challenges

Remote operation, in particular, navigation of the telepresence robots, depends
on the human operator’s performance and is limited by the human’s motor skills.
It largely relies on the perception of the remote environment. However, remote
perception is widely considered challenging to cope with, especially with the vir-
tual display, which does not offer the same interaction opportunity as the physical
environment.

A particular difficulty is the delayed response from the robot. While delays can
be caused by distance, other common factors include network switching delays,
communication drop-out, processing delays (both in the robot and local host com-
puter), and slow dynamics of the telepresence robot.

This research is interested in investigating and developing techniques that can
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address the navigation challenges caused by the aforementioned time delays in a
telepresence system. As time delays can be complex and difficult tomeasure sepa-
rately and accurately, we rely on estimations of such collective delays through sta-
tistical distributions and propose generic solutions such as the augmented state
Kalman filter. However, reproducing the real-life scenarios, we make use of a real
telepresence robot for the experiments. In providing additional flexibility, this re-
search also considers the development of simulation environments in the form of
predictive displays.

2.2.2 Proposed approach

There are many different approaches used in the literature to overcome the time
delay in telepresence systems. We aimed to use predictive technology to estimate
the robot’s state from the delayed measurement and compensate for the time
delay using a state estimation algorithm. Thepredictive technology in this research
includes a state estimation algorithm, display, and graphical models to predict the
state of the robot based on the robot’s delayed current state and commands sent
by the operator.

In order to achieve that, we have divided the work into three distinct parts,
namely, the preparation of a framework, the development of state estimation al-
gorithms, and the development of a simulated environment for predictive display.
The overall structure is shown in Figure 2.17, which also indicates various key com-
ponents and their interactions. Brief background of these parts and their compo-
nents are described below.

2.2.2.1 Proposed experimental framework

As a starting point of this work, we developed a new real-environment experimen-
tal framework that comprises of RobotOperating System (ROS), an industrial telep-
resence robot (Beam plus [17]), preparation of software that provides a control
for operation and interaction between ROS and Beam plus, a motion tracking sys-
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Figure 2.17: Background structure of the proposed research. They are groupedinto three main areas: a) framework, b) state estimation and c) predictive display.
tems for data measurement/collection, and related preparation to address issues
related to robot kinematics. We briefly described the backgrounds of the key com-
ponents in this section with a detailed description of the framework in Chapter 4.

Telepresence robot The industrial telepresence robot Beam plus is used for de-
signing and validating our hypothesis through controlled navigation, collection of
real-time sensor measurement data in the remote environment, and estimating
the robot’s true state. The Beamplus is the latest telepresence robot offering from
Suitable Technologies. Designed as a smaller home use which allows operators to
visit with one another no matter where in the world they may be located. It can
be operated using a computer, tablet, or smartphone after being connected to a
WiFi source and downloading the Beam app. More details can be found in the Sec-
tion 4.3.1.
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ROS framework The framework was built using the Robot Operating System
(ROS) [46], an open-source framework that helps researchers anddevelopers build
and reuse code between robotics applications. In this research, ROS plays a key
role in the navigation and control of both the telepresence robot and the predictive
display in the simulation environment. We have used ROS Kinetic Kame distribu-
tion [47] with Ubuntu 16.04 LTS operating system.

ROS driver (beambridge) While ROS is widely used for robot navigation and con-
trol, one of the key difficulties in this work is to interact with the commercial Beam
plus robot used in this work. Although Beam plus was built using ROS at its core,
it was not as accessible as some other robots built for research purposes. Our
choice of the robot was motivated by the fact that it would resemble the real sce-
narios (e.g., remote industrial robots in office/educational institute/hospital or care
home environments where delays are common due to network connectivity, phys-
ical distances etc.), which however proved to be a significant challenge to use for
controlled experiments.

In order to overcome this, a ROS driver was in need which is essentially a
ROS node that makes a piece of hardware accessible from ROS. In this work, we
adopted an existing ROS driver (rosbeam [48]). Changes are made to accommo-
date our model of Beam plus, which is different from the models used in the
rosbeam. Due to the unavailability of relevant technical details, as with any com-
mercial products, we performed an empirical study of its navigation and related
hardware parameters and went through a series of trials in developing the de-
sired customised ROS driver (named as beambridge in this work). beambridge is an
essential component of this framework that helps to communicate with the telep-
resence robot from the host computer through standard WiFi communication.

Motion tracking system Motion tracking assists in tracking the movement of
robots and transferring the sensed data to an application for further processing.
In this research, we used VICONmotion capture systems which use passive optical
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motion capture technology. This technique uses retro-reflective markers on the
robot body that are tracked by infrared cameras [49].

In our experiments, the retro-reflectivemarkers attached to the robot reflected
light generated from near the VICON camera lenses. Once reflected, the light was
used to calculate the position of themarkers within a three-dimensional space and
transferred to the host computer for further processing. The position information
(of the robot) is used as the measurement data in the remote environment.

State estimation algorithm In addressing the time delay issues in telepresence
systems, this research relies on prototypical Extended Kalman Filter (EKF) [50], and
a new algorithm called Augmented State EKF (AS-EKF). The core idea is to consider
the time delays as a collection of small delays at which the robot states are esti-
mated in the form of augmented states which, in effect helps to estimate the true
position of the telepresence robot.

One of the key activities within the state estimation is delay modelling as delay
may be caused by a number of factors as indicated earlier (Section 2.2.1). While
some delays are consistent, our assumption is not all the delays are precise and
hence uncertain. Therefore, it is important to model both certain and uncertain
delays to obtain a consistent state estimator. The uncertain delays are modelled
here by probabilistic density functions (PDF), such as Gamma distribution [51–53]
and Gaussian distribution [54,55].

This research proposes a new approach for state estimation assuming both
certain and uncertain delayed sensor measurements of the telepresence robot
during navigation. Further details of the key theories and the proposed algorithm
can be found in Chapter 5.

It is worth noting that the state estimation algorithm was developed in MAT-
LAB, while the Beam plus robot navigation was done using C++ programming lan-
guage within the ROS environment. In the context of the overall system, it can
be assumed that MATLAB is installed in the host computer for state estimation
purposes and connected with both real telepresence robots through ROS control.
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2.2.3 Robot simulator

Robotics simulation plays an important role in the design, development, verifi-
cation, and validation of robotic systems [56]. Recent studies have shown that
simulation may be used as a cheaper, safer, and more reliable alternative to the
manual and widely used process of field testing. Robotic simulators are invaluable
tools that allowdevelopers to rapidly and inexpensively design, prototype, and test
robots in a controlled environment without the need for physical hardware.

In the case of the telepresence system, it is even more prevalent as controlled
experimental arrangements are complex, impractical in many cases, expensive,
and not always necessary. For example, setting up a framework similar to ours
(described in Section 2.2.2.1 and Chapter 4) requires larger experimental facilities
along with an expensive telepresence robot and motion tracking system. Even
then, experimentation with various delays is not plausible. Therefore, a simulator
is necessary and beneficial for the research community as well as practitioners. In
this work, we developed a simulator for such purposes, and the core components
are briefly described below with further details in Chapter 6.

In this research, we used the Gazebo simulator and RViz to develop the sim-
ulation version of the real framework. As indicated earlier, we aim to develop a
predictive display of robot pose, which helps to model delays and evaluate algo-
rithmic performance in the simulation environment.

2.2.3.1 Gazebo

Gazebo [57] is one of the most frequently used simulators used along with the
ROS framework. Although they are separate projects, the ROS official repository
maintains a library ros-indigo-gazebo-ros that helps to communicate with Gazebo.
It contains plugins that interface ROS with Gazebo. These plugins can be attached
to objects in the simulator scene and provide easy ROS communication methods,
such as topics - both published and subscribed by Gazebo and services. Packaging
Gazebo as a ROS node also allows for it to be easily integrated into ROS default
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method for running large and complex systems, called a launchfile [58].

2.2.3.2 RViz

RViz [59] is the de facto 3D visualization tool for ROS applications. It provides a
view of robot models, captures information/measurements from robot sensors,
and replays the captured data. It can display data from cameras, lasers, from 3D
and 2D devices, including pictures and point clouds.

The difference between the two can be summed up in the following excerpt
fromMorgan Quigley (one of the original developers of ROS) in his book Program-
ming Robots with ROS: “RViz shows you what the robot thinks is happening, while
Gazebo shows you what is really happening”.

The final necessary component of our simulation system is the display screens.
It is anticipated there will be two display screens in front of the human operator.
The first screen is for audio and video communication, while the second one is for
robot navigation.

2.3 Chapter summary

This chapter provides an overview of teleoperated and telepresence systems, their
usage scenarios, and brief background of our proposed research. Teleoperations
are not a new concept and are widely used in many application areas including in
nuclear industry, space applications, underwater,military applications, telesurgery,
andmanyother industrial works. Our focus in thiswork is on telepresence systems
which are often used for remote presence with two-way communication and a
subject of emerging interest in social communication, office, hospital, care homes,
schools, and other environments.

The issues relating the communication and other delays can severely affect
telerobot navigation, and in this work, we proposed techniques that can address
such issues. Therefore, it is important to have the necessary background, which
was described in Section 2.2 followed by a state-of-the-art analysis in Chapter 3.
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3 State-of-the-art analysis

3.1 Introduction

According to the levels of its autonomy, robots havebeen classified into autonomous
robots and teleoperated robots. Equally, robots can be distinguished depending
on the levels of human interference required to control robots. An autonomous
robot has a high autonomy level and low human involvement level whereas a tele-
operated robot has a low autonomy level and high human involvement level.

While a teleoperated robot is developed for manipulating operations at a dis-
tance, a telepresence robot is developed for social communication at a distance.
Generally, a teleoperated robot helps extend a person’smechanical action beyond
his reach. On the other hand, a telepresence robot provides interactive two-way
audio and video communication with a remote sender and a receiver for promot-
ing social communication between the two people.

In telepresence systems, the person being in the remote site is able to engage
with local participants as if they are physically located at the point of the device.
Since the point-of-view of both parties join on the same device, better engagement
results. And since the device can move around, the remote people are able to
move themselves to better locations or situations, creating a much better engage-
ment with other locals outside the teleconference space. In the simplest terms,
the fact that you can look or even move around the room increases the feeling of
"being there”.
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Depending on the requirement, a telepresence robot should have the following
capabilities,
1. Can be controlled remotely by the human operator.
2. Can be navigating smoothly in the environment.
3. Can transmit video and image files within the minimum time span.
4. Video conferencing.
To manoeuvre a telepresence robot efficiently fulfilling all the capabilities, we

need to address all the challenges produces during remote telemanipulation. We
have divided all the basic parts/requirements of a telepresence system into three
categories (as shown in Figure 3.1), namely, 1) remote site, 2) communication channel
and 3) local site; and described the associated challenges in each category. This
is followed by the methods or algorithms researchers proposed to address such
challenges.

3.2 Robot navigation at local site

Based on the available literature, we grouped the robot navigation at the local
site into four categories, 1) virtual world, 2) computational infrastructure, 3) control
system design and 4) actuators. A computation infrastructure enables the virtual
world display and to operate the virtual world we need a control system including
actuators to handle by the human operator.

3.2.0.1 Virtual world

In a telepresence system, the human operator uses real images and videos which
are transmitted from themobile robot and sends commands to the robot through
the network for smooth robot navigation. However, the operator cannot execute a
smooth operation in this cycle, because there are large time delays and the delays
which depend on the state of the network are not constant.
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Figure 3.1: State-of-the-art dissection of telepresence system, largely categorisedin a) remote site, b) communication channel and c) local site.
In their research Kawabata et al. [60, 61] have discussed the time delay prob-

lems in telepresence systems. They proposed a framework of human interface
systems for the teleoperation of a mobile robot. The prototype of the telepres-
ence system was constructed utilizing the virtual world as an operator interface.
A telepresence system represents the use of virtual reality to virtually move the
user to another location. It has the ability to interact with a real and remote envi-
ronment from the user’s perspective. The commands from the human operator
could directly communicate with the virtual robot in the virtual world. Then the
virtual images could be also communicated to the operator with little time delay.
Therefore, the operator does not have to feel the delay in communicating the in-
formation and operates the robot easily.

Moreover, by using the image taken from the virtual robotmoving in the virtual
world, the intervals between the image data from the real world can be filled in by
those virtual images. These images give the operator a realistic and clear visual
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display for comfortable navigation of the mobile robots. Also, by using the virtual
world the human operator can watch the object from various points of view. A
human operator could simultaneously operate a robot in the real world as well as
in the virtual world which could compensate for the incomplete data transfer to
the real robot [62,63].

Similarly, Sanguino et al. [64,65] presented a mixed-reality interface approach
to assist people in navigation tasks with teleoperated robots. The system com-
bines visual stimuli generated from real and virtual sources to provide a fused
interface. They developed Mixed-perspective Exocentric Display (ME3D) system
(using augmented display) from a user standpoint for better orientation, more ac-
curate manoeuvres and less workload.

A virtual impedance method (a virtual force) that enables real-time planning
to follow the generated trajectory, while avoiding obstacles in the teleoperation,
is proposed by Jin et al. [66, 67] in order to overcome the issues of limited com-
munication bandwidth and narrow view angle cameras. In the virtual impedance
method, the virtual force is generated according to both the distance between the
obstacle and the robot and the approaching velocity of the obstacle. This virtual
force is reflected in the operator who is holding the master which converts the
force data transferred over the internet to a physical action.

3.2.0.2 Computational infrastructure

Multiple researchers [68–70] induce the use of Cloud Computing for computation
offloading the navigation assistance of a service mobile robot. The information is
processed in a private cloud platform.

Colledanchise et al. [71] and Santos et al. [72] have shown how to use event-
based sampling to reduce the number of measurements done, thereby saving
time, computational resources and power, without jeopardizing critical system
properties such as safety and goal convergence. The results are particularly useful
for real-time systems such as high-speed vehicles or teleoperated robots, where
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the cost of taking measurements are higher, when considering the number of
measurements for stops or transmission times.

3.2.0.3 Control system design

In various application environments, the use of telepresence robots can help to
fulfil important tasks in distant areas that human operators are unable to present
physically. In the remote site, the mobile robot, operated by a human operator
from the local site can have a better view of its direct environment and a higher
chance of detecting possible actions. If the human operator wants to control the
robot, let it try to protect itself against collisions and rollover. Several control al-
gorithms [73,74] have been developed to address these control problems.

According to Siciliano and Khatib [75, 76], the robot usually has a layered ar-
chitecture. Layers in the top level of the hierarchy can contain processes that, for
example, perform cognitive tasks similar to humans. In the middle layers, tasks
also involve complex processes like path planning, object handling, speech recog-
nition, etc. Finally, in the lowest levels, reactive and real-time control operations
are performed (e.g., obstacle avoidance, guidance, beacon detection, signal com-
munications processing, etc.). The amount of computation is not necessarily pro-
portional to the level. Operators can use different teleoperation modes to control
a telepresence robot, which can be pure or assisted teleoperation or with full au-
tonomy.

Armbrust et al. [77,78] described a concept of integration of different control
modes with different levels of operator influence within one robot control system.
It described how an operator can easily choose the control mode (e.g., pure tele-
operation, assisted teleoperation, and fully autonomous navigation) fitting best to
the current situation. Using behaviour fusion, the control system allows an oper-
ator to continuously increase or decrease his influence on the robot’s motion.
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3.2.0.4 Actuators

Telepresence is a technology that allows a person to observe and interact with a
remote environment. A computer is used to display a live video stream from a
remote location, allowing a user to examine the surroundings. The telepresence
system requires new ways to sense the various motions of the mobile robot and
the operator’s commands. This means new motors, new sensors and new actua-
tors. Commercial telepresence solutions lack a physical actuator, which decreases
the usefulness of the robot to general consumers.

Both Park et al. [79] and Wildenbeest et al. [80] proposed navigation methods
for a teleoperated mobile robot moving in an unstructured environment utilizing
a force feedback joystick to manipulate the unpredictability. Similarly, J. Du et al.

[81] and Hunag [82] have developed teleoperated robotic 3-D mapping (TeRoM)
systems consisting of a pan-tilt unit for the RGB-D camera and a joystick for con-
trolling. David et al. [83] and Sanders et al. [84] investigated the improvements
of the interactions using new algorithms for mixing data from ultrasonic sensor
systems with joysticks controlling telepresence mobile robots.

3.3 Role of the communication channel

The major challenges often faced by teleoperated robots include latency of the
system, the lag in the response to movements, i.e., the mechanical and computer
processing of the movement and response; lag in the visual representation and
inadequate resolution of video data for seamless real-time communication.

3.3.0.1 Time delay in telepresence systems

Amismatch betweenusermotion and robotmovement or inadequate system con-
trol for small movements attribute to the previously mentioned challenges in Sec-
tion 1.1. Distance between the human operator and remote sites of a telepresence
system generally introduces time-varying delays adding distortion in the reference
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commands and feedback signals resulting in instability or poor performance of the
system. On contrary, the time elapsed between making an action decision and
perceiving the consequences of that action in the environment introduces control
delay.

An important feature of internet-based teleoperation is the possibility of data
packet drop-outs. When congestion occurs in the network and some packets are
lost, itmay be advantageous to forget the old packet and transmit a newonewhich
contains recent information. However, such incidents cause a time delay and im-
pact robot navigation. If a significant amount of data is dropped, it may result in
discontinuity of the reference trajectories and the forces transmitted between the
master and the slave.

In a telepresence system, an operator’s view is limited to images provided by
one ormore camerasmounted on the remote vehicle. Due to such arrangements,
teleoperation generally requires a real-time stream of images transmitted from
the remote operator to the control station. For this, the transmission link between
the vehicle and operator must be very high bandwidth and very low latency.

3.3.0.2 Robot navigation in time-delayed environments

Mora et al. [85] presented a novel method to deal with the time delay and narrow
bandwidth limitations inherent to rescue and search teleoperated mobile robotic
systems. This method combines the visualization of two models of the teleoper-
ated robot inside a 3D virtual environment. One model represents the position
and orientation provided by real-time GPS located on the teleoperated robot and
another model is based on inputs given by the human operator through the in-
formation gathered by the laser range finder sensor. The assisted teleoperated
navigation system helps the human operator understand the localization of the
teleoperated robot smoothly between every new sensory information data that
reaches the human operator side.

In another approach, Hu et al. [86] introduced a 3Dmodel-based predictive dis-
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play systemwhere the operator sees the predicted image instead of delayed video
to control a robot remotely. A scene model was constructed online, representing
the remote robot’s working environment, which is not only used to generate a
predicted image but can also supply a global or arbitrary rendering view. Track-
ing and constructing 3D geometry model are both running on-board to save data
transmission bandwidth and allows for on-board autonomous tasks such as local
path planning and obstacle avoidance.

As discussed in Section 3.2.0.1 Jin et al. [66] proposed a virtual impedancemethod
that enables real-timeplanning to follow the generated trajectory in a limitedband-
width communication network, which is also relevant to this section.

3.4 Robot navigation at remote site

In remote environments the mobile robot is equipped with different types of sen-
sors and an onboard processing unit, roaming around to accomplish the prede-
fined task. The remote environment can be mapped using different types of Si-
multaneous Localization And Mapping (SLAM) algorithms, before navigating the
robot in an unknown environment.

3.4.0.1 Mobile robot navigation

Telepresence robots requiremoving in an unstructured environment that includes
unknown obstacles and uneven terrain. Thus, the ability to navigate without col-
lision with obstacles and rollover in uneven terrain is a crucial issue for telepres-
ence robots. Although the robot is manoeuvred by an operator at a remote site,
it should control itself autonomously for avoiding collision with obstacles and for
preventing rollover when it detects possible collision or rollover.

Multiple researchers [79, 87, 88] introduced navigation methods for teleoper-
ated mobile robots moving in unstructured environments based on guided navi-
gation algorithms and roll-over prevention algorithms. It reacts autonomously for
avoiding collision with obstacles and for rollover when it detects possible collision
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or rollover. Time taken to complete a teleoperated task with a mobile robot partly
depends on how a human operator interacts with the mobile robot.

Kim et al. [89] suggested a hybrid autonomous/teleoperated strategy for reli-
able navigation with a framework of extended Kalman filter to localize the mobile
robot. When the robot faces unexpected obstacles or a situation where a collision
is expected, it sends a warning message and changes the teleoperation mode to
autonomous mode to avoid obstacles. After avoiding the obstacles, it returns to
teleoperation mode and the teleoperator has control again.

While currently available commercial telepresence robots lack autonomy, Alers
et al. [90] believe that integrating more autonomy with recent AI research in a sin-
gle framework can greatly increase the usability of these robots. They introduced
three use cases: a) a robot that is remotely controlled by the client with GUI as-
sisted by both visual augmentation and the robot itself; b) a scheduled meeting
and c) a whiteboard meeting with multiple actors and points of interest. The au-
thors implemented low-level autonomy on the robot in the form of assisted tele-
operation.

Kuderer et al. [91] have presented an approach that allows a mobile robot to
learn how to navigate in the presence of humans while it is being teleoperated in
its designated environment [92,93]. The method applies feature-based maximum
entropy learning to derive a navigation policy from interactions with humans. The
resulting policy maintains a probability distribution over the trajectories of all the
agents that allow the robot to cooperatively avoid collisions with humans. In par-
ticular, this method reasons about multiple homotopic classes of the agent’s tra-
jectories, i.e., on which sides the agents pass each other. They implemented the
approach on a real mobile robot and demonstrate that it is able to successfully
navigate in an office environment in the presence of humans relying only on on-
board sensors.
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3.4.0.2 Environment mapping

Teleoperation is a difficult task, especially when controlling robots from a remote
operator station. This is particularly the case when the target area is unknown to a
humanoperator, demanding control of the robots froma remote place. In general,
the operator has to solve the problems of mission planning, target identification,
robot navigation, and robot control, at the same time in an unknown environment.
For untrained operators, control and target identification are already challenging
on their own.

It can be difficult for a robot to recognize obstacles and other hazards in an
unknownenvironment. Ollis et al. [94] described an approach to calculating terrain
costs from Bayesian estimates using features vectors measured during a short
teleoperated training run in similar terrain and conditions. The robot can learn to
estimate the probability that any feature vector corresponds to traversable terrain.

Kleiner and Dornhege [95] presented a novel scan matching technique that
re-evaluates data memories during the search, allowing robust pose estimation
under varying roll and pitch angles of the robot enabling mapping on rough ter-
rains. Experiments within different environments showed that the system pro-
duces comparably accurate maps in real time.

In their research Kubota et al. [96] discussed the monitoring system of a tele-
operated robot and human interface based on visual information and distance in-
formation from the teleoperated mobile robot built by the SLAM. They developed
navigation systems using map information. They used three different methods
of (1) simple gesture navigation, (2) trajectory gesture navigation and (3) pointing
navigation.

Borenstein et al. [97] introduced the TelOpTrak algorithmwith heuristics-enhanced
dead-reckoning for precision indoor tracking of teleoperated robots. TelOpTrak
does not rely on GPS or external references; it uses odometry, a low-cost MEMS-
based gyroscope, and heuristic assumptions about the structured nature of most
indoor environments. TelOpTrak significantly reduces position errors, as accumu-
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lated heading errors are almost always the the primary source of position errors
in a dead-reckoning system.

J. Du et al. [81] have developed a teleoperated robotic 3-D mapping (TeRoM)
system which enables efficient human-guided mapping of remote environments
for realistic rendering and visualization. The system consists of a pan-tilt unit for
the RGB-D camera and a joystick for control. It can generate 3-D maps of indoor
environments through point cloud-based mapping, triangulation and mesh opti-
mization.

Hu et al. [86] focused on a 3D model-based predictive display system where
the operator sees the predicted image instead of delayed video to control a robot
remotely. A scenemodel was constructed online, representing the remote robot’s
working environment, which is not only used to generate a predicted image but
can also supply a global or arbitrary rendering view.

3.4.0.3 On-board processing unit

Sun et al. [98] introduced a detecting robot which was been designed based on the
advanced ‘System Of Programmable Chip’ embedded technology [99–101]. One
of the Field Programmable Gate Array (FPGA) based processing boards (by Altera,
now Intel) was used as the robot’s controller.

The information about the robot site was transmitted to the local site by a wire-
less transmission module. The operator can remotely control the robot and the
manipulator on the PC interface. This system can realize the coordinated design
of hardware and software. The multiprocessor cooperation can greatly enhance
the integration of the system and increase the system’s controlling and processing
capacity.

3.4.0.4 Sensors

Themobile robot platform should containmultiple sensors to enhance users’ situ-
ational awareness. These includedigital temperature sensors, three-axis accelerom-

43



eters, speed encoders, gyroscopes, digital compasses, elevation detectors, GPS lo-
calizers, wind sensors, and so on. The data from these sensors provide the user
with additional information about the remote environment and help create amore
complete telepresence experience.

David et al. [83] investigated the improvements of the interactions using new al-
gorithms for mixing data from ultrasonic sensor systems with joysticks controlling
telepresence mobile robots. Chung et al. [102] have proposed a method to realize
a more natural assisted navigation for telepresence robots during teleoperation.
The proposed method utilized an omnidirectional chassis which is realized by a
three-wheel drive mechanism and a new sensing method using ultrasonic sen-
sors.

Sun et al. [98] have introduced a mobile robot that can realize navigating and
positioning by use of GPS and EC; and can detect the site information by the ultra-
sonic and wireless camera.

T. Kot et al. [62] have tried to take control of the robot and navigation in un-
known terrain easier for the operator by providing stereoscopic images and using
virtual reality. They have used a new head-mounted display device which displays
different images for each eye and designed a new graphical user interface.

Salmeron-Garcia et al. [68] used vision-based navigation assistance of a service
mobile robot. The information extracted from onboard stereo cameras is pro-
cessed for shared control of the robot teleoperation, that is, the smooth filtering
of the teleoperated commands with the detected obstacles to prevent collisions.

Sato et al. [103] introduced a new teleconference system (Telegnosis) in which
omnidirectional camera and PTZ (Pan/Tilt/Zoom) are combined. While the Omni-
directional camera captures 360 degrees of surrounding images, the PTZ camera
capturesmoredetailed images specifiedby theusers in omnidirectional panorama
images by pan, tilt and zoom operations.

J. Du et al. [81] have developed a teleoperated robotic 3-D mapping (TeRoM)
systemwhich consists of a pan-tilt unit for the RGB-D camera for robot navigation.
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3.5 Time delay modelling in the telepresence system

Within a telepresence system, we are interested in addressing issues related to
time delay and their impact on robot navigation; and proposing new techniques
to compensate for such delays.

Although severalmethods and algorithmswere proposed to address such time
delay problems in the telepresence (also Tele-operated) systems it is still an open
issue that needs to be addressed. The presence of time delay causes instability in
the system and poor performance of the robot navigation. In this subsection, we
described a few efforts of the time delay compensation methods in the telepres-
ence systems.

Kawabata et al. [60] have proposed a framework of human interface systems
for teleoperation to achieve smooth operation of a mobile robot through a com-
munication link, considering time delays in data transfer. The prototype of the
telepresence system was constructed utilizing the virtual world as an operator in-
terface.

Colledanchise et al. [71] has also shown how to use event-based sampling to re-
duce the number of measurements done, thereby saving time, computational re-
sources and power, without jeopardizing critical system properties such as safety
and goal convergence.

Anderson and Vittorias et al. [104, 105] have introduced a new control law for
controlling a teleoperator with time delay, which achieved stability for the tele-
operator independent of time delay in the system. The model is based on the
scattering theory, which allows the transmission and encoding of haptic data in
time-delayed telepresence systems.

Funda et al. [106, 107] in his research proposed a new control methodology,
called teleprogramming, which allows for efficient control of a robotic system in
the presence of significant feedback delays without substantial degradation in the
overall system performance. A teleprogramming system allows the operator to
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kinesthetically as well as visually interact with a graphical simulation of the re-
mote environment and to interactively, online teleprogram the remote manipu-
lator through a sequence of elementary symbolic instructions.

An important feature telepresence system is a possible transmission delay and
data packet drop-outs over the Internet. If a significant amount of time elapsed
or data is dropped due to network congestion, it may result in discontinuity of
the reference trajectories and the forces transmitted between the master and the
slave. Brady et al. [108] developed a new robot-controlling model where commu-
nication propagation delays exist over the internet. This model is flexible enough
to embrace the wide variety of possible communication mediums for remote tele-
operation.

In this context, it is worth noting that the time delay may occur due to the
medium of communications, i.e.,wired or wireless. While there is a limited chance
for the time delay in wired connection, in most application scenarios, wired con-
nections for telepresence systems are not possible as the robots are remotely con-
nected with the operator which is physically distanced. While there are different
wireless mediums that can be used such as Bluetooth, WiFi etc., the wireless op-
tions are often prone to issues relating to time delays due to the nature of commu-
nication medium [109,110]. Even though Internet protocols such as TCP/IP has a
sufficient mechanism for error correction or re-transmission of the missing pack-
ets, it all leads to time delay which is the key issue which is being addressed in this
work.

Mora et al. [85] presented a novel method combining the visualization of two
models of the mobile robot inside a 3D virtual environment. One model repre-
sents the position and orientation provided by real-time GPS located on the robot
and another model is based on inputs given by the human operator through the
information gathered by the laser range finder sensor to deal with the time delay
and narrow bandwidth limitations.

While Hu et al. [86] introduced a 3D model-based predictive display system
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where the operator sees the predicted image instead of delayed video to control a
robot remotely. Natori et al. [111] have presented an effective time delay compen-
sation method based on the concept of network disturbance and communication
disturbance observer for bilateral telepresence systems under time-varying delay.
They validated the timedelay compensationmethod for both the cases of constant
delay and time-varying delay with the Smith predictor.

Bejczy et al. [112] and Kikuchi et al. [113] proposed the development of pre-
dictive display systems based on high-fidelity real-time graphics overlay for use
in time-delayed telemanipulation. Human-assisted camera calibration techniques
were also developed for an exact alignment of the graphics image with the actual
camera view.

Slawinski et al. [114,] have proposed a predicted control scheme applied to the
teleoperation of a mobile robot with force feedback and time-varying delay. While
the user receives delayed force and generates delayed commands permanently,
the scheme predicts the user’s intention and fuses such commands with a stable
controller to achieve a collision-free trajectory for the mobile robot.

3.6 Research goals

In this work, we are solely interested in overall time delay or latencywhich refers to
the time gap between the operator’s input action and the received measurement
response of the robot. Along with the development of new algorithms that intend
to compensate for time delays, we also intend to develop a predictive display-
based systemat the local site and the proposed system aimed to support real-time
robot position tracking and immediate control of the robot at the remote site.

As the mobile robot is controlled by a human operator through a communica-
tion network, the human operator should know the robot’s current pose to con-
trol the robot smoothly. If the time delays were not compensated to estimate the
robot pose correctly in the remote site, the humanoperatormay cause an accident
crashing any obstacles because of the robot pose which the operator inaccurately
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recognised. While time delay is a challenging issue, apparently the above has little
coverage in the literature (as described in Section 3.5).

It is worth noting that the causes of time delay or visual and sound delay are not
within the scope of this work. We are only interested in the total perceived time
delay, which is the time lapse from when the human operator sent a command to
the robot in the remote environment until visually perceives the reaction on the
robot and receives the robot’s pose feedback information.

3.7 Chapter summary

This chapter provides a state-of-the-art analysis of relevant parts of telepresence
systems that are relevant to this research, i.e., robust robot navigation in time-
delayed environments. Overall telepresence systems are dissected into three cat-
egories, namely, 1) remote site, 2) communication channel and 3) local site and
issues related to time delays were discussed. It was concluded that while time
delay is an important issue, the available literature in this domain is rather lim-
ited and therefore demands further research. This sets up the context for our
research. Following chapters discuss further details including the development of
a framework, the proposition of new delay compensation techniques, and predic-
tive displays.
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4 Experimental framework

4.1 Introduction

The main proposition of this thesis relies on the development of new algorithms
for time delay compensation in robust navigation of telepresence systems. This
chapter proposes a framework configuration to support such development.

The research is about the true state estimation of differential-drive telepres-
ence robots that allow remote presence or activities in challenging environments
that are not easy to handle or/and too expensive. Modern technology offered a
set of technologies which allow human operators to feel as if they are present, to
give the appearance of being present, or to have an effect, using a remote mobile
robot, at a place other than their true location. Designing a telepresence system
suffers a number of challenges which limit robust robot control in a remote envi-
ronment. To deal with the challenges we need to develop algorithms to estimate
the robot’s true state compensating for the issues (e.g.,noisy sensormeasurement,
communication delay etc.) generated during the navigation.

We performed all the experiments within the robotics laboratory of the Cen-
tre for Ultrasonic Engineering, Department of Electronic and Electrical Engineer-
ing, University of Strathclyde, UK. However, recreating scenarios for telepresence
robots is challenging and often impractical in a resource-limited lab environment.
In this work we built a new experimental framework which enables modelling of
the remote scenarios andhence supports the development of newalgorithms, e.g.,
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Figure 4.1: A brief architecture of the telepresence system with introducing uncer-tain time-varying communication delay.
compensating uncertain noisy sensormeasurements during remote robot naviga-
tion.

4.2 Preliminaries

We aim to address issues related to the time delays affecting robot state estima-
tion in the remote environment. The state estimation included the estimation of
the state of the robot’s kinematic system by combining knowledge from a priori
information and sensor measurements. There is an amount of time gap between
sending a control command to navigate the telepresence robot and receiving feed-
back from the robot about accomplishing the work. While this is a challenging
issue, apparently the current literature has little coverage on this. Therefore, to
address such issues, we have designed an experimental framework (as shown in
Figure 4.1) by which we canmanually customise the robot control commands, col-
lect the real-time noisy sensor data, process the measurement data using non-
linear state estimation computational model and estimate the robot’s true state
by incorporating a new virtual state-based approach.

This work proposes a new experimental framework to address time delay by
providing controlled means to emulate scenarios in a lab environment within an
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enclosed space. Our ambition is to develop algorithms that help in estimating the
robot’s true state by modelling and compensating for communication time delays
using uncertain delayed sensor measurements in telepresence robot navigation.
State estimation in dynamical systems is crucial in real-world applications as the
true state is unknown and sensors have limited precision, therefore, provide only
a sequence of uncertain noisy measurements. We use the proposed framework
for error modelling and algorithmic development purposes.

Referring Figure 4.1, in the local site the human operator uses haptic devices
to transmit a control command to navigate the mobile robot around the remote
environment. The mobile robot includes sensors to provide visual and positional
feedback to the host computer at the local site. The host computer with a state
estimation algorithm receives raw sensor data from the remote site and estimates
the robot’s true position which displays on a predictive display. In this system, the
human operator uses real-time images and videos transmitted from the mobile
robot captured by the sensors to estimate the robot’s true state.

However, the operator cannot execute a smooth operation in this cycle, be-
cause there is 1) measurement noise due to sensor precision and environmental
impact, and 2) more importantly time delays which largely depend on the state of
the communication network which is often inconsistent and not necessarily con-
tinuous. Therefore, it is important to develop algorithms that can estimate the
robot’s true state by modelling positional and time delay-related errors in such
scenarios. However, the recreation of real scenarios for telepresence robots for
controlled experiments is not only complicated due to limited University lab space
and physical location constraints but also impractical, expensive and not always
necessary.

The proposed framework explains the procedure to collect the raw sensor
data, model the time delay and estimate the true pose of a commercially avail-
able differential drive telepresence robot. The uncertainty of the delayed sensor
measurement was modelled using a state estimation algorithm controlled by the
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human operator. This process is particularly challenging especially for a differ-
ential drive robot where additional system errors occur due to the kinematics of
individual wheels. Our framework enabled us to model and compensate for such
errors in real laboratory environments where the robot navigation is captured in
real-time using a multi-camera VICON motion capture system [49].

4.2.1 Chapter contributions

Major contributions of this chapter are:
• Development of RobotOperating System (ROS [46]) based experimental frame-
work, designed to manoeuvre the robot and collect real-time sensor mea-
surement data from the remote environment to the local site to estimate
the robot’s true state.

• Development of framework features that enabled the use of commercially
available state-of-the-art differential-drive telepresence robot for research
purposes.

• Experimentation with a non-linear filter-based state estimation technique
that has been used to analyse and model the uncertain noisy sensor mea-
surement.

• Methods to verify experimental claims using a set of VICONmotion cameras
emulating a real-environment scenario.

An overall experimental framework is shown in Figure 4.2 and details of the
framework along with selected experimental results are described in the following
sections.

4.3 Experimental framework

The proposed framework was built based on our experimental requirements, e.g.,
state estimation of a telepresence robot in an environment with erroneous sensor

52



Figure 4.2: Experimental framework with a state-of-the-art off-the-shelve telep-resence robot, controlled by customised ROS driver and VICON motion capturecamera setup.
measurement due to systemnoise anduncertain delays (communication, process-
ing etc.). We captured these requirements in the following section and described
our framework which helps us to design, simulate and experiment in a controlled
lab environment. The overall system architecture of our framework is depicted
in Figure 4.2.

4.3.1 Requirements and framework components

In order to simulate various usage scenarios in our research there were some cri-
teria that needed to be fulfilled in selecting a telepresence robot and setting up
the software-hardware environment. These criteria are, the robot should be
1. a mobile robot,
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2. remotely operable in a controlled manner
3. has teleconferencing capabilities, and
4. a means to track the robot’s real position.
In fulfilling these requirements we make use of various components which are

part of the framework: 1) telepresence robot, 2) control and simulation software,
i.e., ROS, 3) robot navigation and path planning and 4) tracking hardware. These
components are described in the following subsections.
4.3.1.1 Telepresence robot

In order to have greater control over the robot, it is sensible to choose adifferential-
drive robot that has control of individual wheels. We have used Beam plus [116]
which is a state-of-the-art market-leading differential drive telepresence robot in
our experiments which has telepresence capability and control throughWiFi com-
munication. Beam plus has two built-in high dynamic range cameras, an LCD dis-
play and four microphone arrays with powerful audio amplifiers to provide a real,
physical sense of presence in the remote environment. Beam plus is a smaller in
size, less costly, Linux-powered mobile telepresence robot. The remotely-piloted
Beam plus bot, which can be controlled via WiFi, run low-latency Skype-like video
conferencing software on top of a Ubuntu-based embedded Linux OS as shown
in the Figure 4.3. The Beam plus contains an embedded computer platform con-
sisting of an Intel processor running a customized Ubuntu 12.04-based Linux OS,
along with extensive Suitable Technologies application software.
SummaryofBeamplus specifications Suitable Technologies currently lists these
specs for the Beam Plus device:
1. Battery life: 2 hours of call time and 4 hours to charge
2. Display: 10-inch LCD flat-panel
3. Built-in cameras: two 640×480 HDR cameras; 30 fps video
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Figure 4.3: The mobile telepresence robot Beam plus with the charging station.
4. Audio: 4-microphone array; powerful audio amplifier
5. Connectivity: dual-band 2.4GHz/5GHz WiFi

4.3.1.2 Control and simulation software

There are two parts of the software component in our framework: a) robot control
using ROS and b) state estimation algorithmic development in MATLAB.

ROS and ROS driver The proposed framework used ROS to navigate and control
the robot. While there are provisions to execute ROS commands throughMATLAB,
within the scope of this work we have used ROS andMATLAB separately. Although
ROS is widely used in robotics, it is challenging to control any commercial robots
with a closed ecosystem using ROS. A ROS driver (a ROS node to access the hard-
ware) was used for experimental purposes. An existing open-access robot driver
(rosbeam [48]) wasmodified, customized and installed in our Beam+ robot to com-
municate through an Internet (TCP/IP) enabled WiFi access point (2.4 GHz in our
experiment) with a Linux-based (Ubuntu) host computer.
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The robot and the host computer were connected through a WiFi network and
communicated via TCP/IP. Several ROS packages that solve basic robotics prob-
lems including pose estimation, localisation in a map and mobile navigation were
used in this work which includes several commands for launching nodes, intro-
specting topics and publishing control actions as a host to the telepresence robot.
Using ROS commands we developed algorithms to instruct the robot to navigate
following the pre-defined trajectory, monitor its progress, stop or redirect it along
the way, and be told when it has succeeded (or failed). Also, we captured the
robot’s positional information during the navigation.

Robot navigation and path planning Controlled navigation of themobile robot
was carried out by implementing algorithms in ROS in a Linux-based host com-
puter. The host computer connects the telepresence robot using the ROS driver
and sends ROS control command to the robot to form a raster-scan navigation
path and receives 3D positional data of the navigation captured by the VICONmo-
tion cameras through standard WiFi. The motion capture data was used for two
purposes: a) to verify the system path and b) to simulate other scenarios by intro-
ducing noise and delay which helped to develop the experimental setup for robust
navigation.

4.3.1.3 Tracking hardware

We captured the robot’s navigation data using VICONmotion capture system [49].
Twelve motion-captured cameras were installed and calibrated in the University
lab which are capable of tracking the robot’s true state during the experiment.
We have attached some retro-reflective markers on the robot to represent it as
a rigid body. VICON cameras along with their software were used to record the
movement of the robot. They operate in three dimensions and tend to have high
resolution, high accuracy and low variance [117,118].
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4.3.2 Kinematic model of the telepresence robot

Themobile robot was used in this research a four-wheeled differential drive telep-
resence robot. Two front wheels are drive wheels and the rear two wheels are
castor wheels for stability. The drive wheels were controlled independently using
Robot Operating Systems (ROS [46]) commands sent by the human operator from
a host computer.

Figure 4.4: Kinematic model of the four-wheeled differential-drive telepresencerobot where two front wheels are drive wheels and rear two wheels are castorwheels for stability.
The kinematic model [119] of the differential drive robot is defined as follows:

xk = xk−1 + ∆Vk−1 ∗ cos θk, (4.1)
yk = yk−1 + ∆Vk−1 ∗ sin θk, (4.2)

zk = zk−1, (4.3)
θk = θk−1 + ∆θk−1, (4.4)

∆Vk−1 = 1
2 ∗ (vl,k + vr,k) ∗ dt, (4.5)

∆θk−1 = rw

b
∗ (ωl,k − ωr,k) ∗ dt, (4.6)
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where, xk, yk and zk are the Cartesian coordinates of the robot, ∆Vk−1 is the
travelled distance at time step k− 1 to k, θk is the angle between robot and x axis,
∆θk−1 is the rotation angle at time step k− 1 to k, vl,k and vr,k are linear velocity of
left wheel and right wheel, ωl,k and ωr,k are angular velocity of left wheel and right
wheel, rw is the radius of the two drive wheels and dt is the sampling time.

4.3.3 Addressing systematic errors

In a differential drivemobile robot, incremental odometry errors are usually caused
by the kinematic imperfections of the robot. The two most significant errors are
generated from unequal wheel diameters and the uncertainty about the effective
wheelbase [120]. As the Beam plus telepresence robot is a differential drive robot
as described in Figure 4.4, it produces a significant amount of dead-reckoning er-
rors during navigation. Using the UMBMark [120] method we have measured the
dead-reckoning accuracy of the robot to find out the variance during the robot
navigation and modelled it in the state estimation algorithm. The error Ed for the
unequal wheel diameters is defined as,

Ed = DR/DL,

where,DR andDL are the actual wheel diameters. The errorEb for the uncertainty
about the wheelbase is defined as,

Eb = bactual/bnominal,

where b is the wheelbase of the mobile robot. If the average of two actual
wheel diameters differs from the nominal wheel diameter, then the robot will ex-
perience an additional dead-reckoning error, called scaling error (Es). Es affects
both the straight line and the turning motion and is easy to measure with just an
ordinary tape. We have used UMBmark method [120] for measuring, comparing,
and correcting dead-reckoning errors in our telepresence robot. A square path
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experiment is performed ten times in both clockwise (cw) and counter-clockwise
(ccw) direction as shown in Figure 4.5 and Figure 4.6.

Figure 4.5: Square path formation by the telepresence robot in the clockwise di-rection.
Themethod classifies wheelbase errors as Type A and unequal wheel diameter

errors as Type B and therefore it produces different errors when rotates in clock-
wise and counter-clockwise directions. If the robot had only Type A errors then
it would travel in perfectly straight lines but at the corners, it would turn some
amount more or less than 90◦ depending on the size of the error. We defined this
difference in angle as α.

On the other hand, if the robot had only Type B errors it would make perfect
90◦ turns but move in an arc rather than a straight line. At the end of each leg of
the square, the robot will have drifted off course and changed its heading by some
amount, depending on the Type B error. This change in the heading is defined as
angle β. The effect of Type A and Type B errors have shown in Figure 4.7.

However, unlike Type A errors, Type B errors are not symmetrical. It is possible
that Type A and B errors cancel each other out and give the impression that there
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Figure 4.6: Square path formation by the telepresence robot in the counterclock-wise direction.
is no error. This is partially why the UMBMark procedure uses both clockwise and
counterclockwise measurements to calculate α and β accurately. The reason for
performing the tests 10 times in both directions is to minimize the effect of non-
systematic errors. Averaging the measurements give us centre of gravity (COG) for
the systematic errors as shown in the Figure 4.8.

The COG values for x and y in both cw and ccw directions were used in the
following formulas to calculate Eb and Ed. Using x or y values we can calculate α
and β (in degrees) in the following two equations, respectively:

αx = xcw + xccw
−4L

180◦

π
,

βx = xcw − xccw
−4L

180◦

π
,

αy = ycw − yccw
−4L

180◦

π
,

βy = ycw + yccw
−4L

180◦

π
.
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Figure 4.7: The effect of two systematic dead-reckoning errors, Eb for the uncer-tainty about the wheelbase and Ed for the unequal wheel diameters.
With β and α we can calculate Ed and Eb, respectively:

Ed = DR

DL
= R+ b/2
R− b/2

where, R = L/2
sin(β/2) ,

Eb = 90◦

90◦ − α
.

Using these values we calculated two correction factors to implement in the
state estimation algorithm to correct the robot navigation.
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Figure 4.8: Results from running the UMBMark method in the clockwise and coun-terclockwise direction with an uncalibrated robot.

cL = 2
Ed + 1 ,

cR = 2
1
Ed

+ 1
.

The correctionswere adoptedduring the algorithmic development and the out-
put shows that the estimated robot path coincides with the VICON captured data
path as shown in Figure 4.9. The result demonstrates that the proposed data col-
lection framework effectively estimates the robot’s true pose and can be used for
robust robot navigation.

4.3.4 Robot operating system (ROS)

ROS is one of the software frameworks used in most universities for robotics re-
search. Other than academic research, ROS is also used in robotics companies to
prototype their software. Hobbyists used ROS to create different robot applica-
tions.
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Figure 4.9: Systematic error correction using UMBmark method and validation us-ing the proposed framework.
ROS is an open-source meta operating system or a middleware used in pro-

gramming Robots. It is developed as part of the STAIR project [121] as well as the
Personal Robotics Program [122] at Stanford University in cooperation with the
robotic manufacturer Willow Garage. It consists of packages, software, building
tools for distributed computing, and architecture for distributed communication
between machines and applications. It also provides tools and libraries for ob-
taining, building, writing, and running code across multiple computers. It can be
programmed using python, c++, and lisp.

ROS is not a full-fledged operating system, it is a “meta operating system”. It
is built on top of a full operating system like Ubuntu. It is called an OS because
it also provides the services you would expect from an operating system, includ-
ing hardware abstraction, low-level device control, implementation of commonly-
used functionality, message-passing between processes, and package manage-
ment.
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ROS distributions are named alphabetically. ROS can be officially built on Linux
distributions but it also supports other operating systems. In this research, we
have used the ROS version Kinetic Kame on the officially supported Ubuntu 16.04

LTS Linux distribution.
ROS package contains libraries, executables, scripts, and other artefacts for

a specific ROS program. Packages are used for structuring specific programs.
gazebo_ros_pkgs is a meta-package which provides packages for integrating ROS
with the Gazebo simulator.

A ROS system is comprised of a number of independent nodes, each of which
communicates with the other nodes using a publish/subscribe messaging model.
ROS starts with the ROS Master. Publishers and Subscribers register to the mas-
ter, then ROS Master tracks ROS topics being published by the publisher and ROS
Topics being subscribed to by the subscribers as shown in the Figure 4.10.

Figure 4.10: Overview of the Robot Operating System comprised with a number ofnodes, topics, subscribers and publishers [123].
ROS Topics are the buses used by ROS nodes to exchange messages. Topic

transport message between a publisher node and a subscriber node. Nodes com-
municate by sending ROSmessages to each other using ROS Topic. Amessage can
be of primitive type integer, floating-point, Boolean, etc. ROS service is one-to-one
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two-way transport, it is suitable for request/reply interactions. A ROS node(server)
offers a service, while another ROSnode(client) requests for the service. The server
sends a response back to the client.

Rviz is a 3D visualization environment that lets one combines sensor data, robot
model, and other 3D data into a combined view. rqt_plot lets you visualize scalar
data published to ROS topics. rqt_graph displays a visual graph of the processes
running in ROS and their connections. ROS launch is used for starting and stopping
multiple ROS nodes. Published topics are saved as .bag files, rosbag command line
tool is used to work with bag files.

We aimed to build a ROS control command program for the telepresence robot
to form different navigation paths. It allows us to remotely control and monitor
the robot, connected to the host computer via WiFi connection. The robot was
controlled by using a Keyboard on our computer. The main languages for writing
ROS code are C++ and Python. The telepresence robot was connected to the host
computer through beambridge driver.

4.3.5 Motion capture system (VICON)

In this research, motion capture is a vital component of developing the experi-
mental framework. The telepresence robot must be able to follow the command
of the human operator in order to navigate and interact in a remote environment.
The motion capture system helped us to validate the experimental scenarios de-
signed for the telepresence robot. The motion capture system was used to record
the precise position and orientation of the robot at high frequency.

The motion capture system used in this research was the VICON motion cap-
ture systemwhich involves multiple high-definition cameras. The VICON system is
composed of multiple cameras set up around the perimeter of the measurement
workspace at varying heights to obtain a full 360-degree view of the field, as seen
in the experimental setup in Figure 4.11. Some retro-reflective markers were at-
tached to the telepresence robot. Light from the VICON cameras is emitted and
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reflected back frommarkers in the field of view. This yields the 3D position of each
marker. Raw data sets were collected from varying different experimental param-
eters used in the experiments. The raw data sets were entered into the state es-
timation algorithm for further processing. The VICON system was connected with
the host computer through vicon_bridge driver.

Figure 4.11: VICON motion capture System showing the robot as a target trackingobject.

4.3.6 Framework set-up and data collection

The human operator connected the host computer and the telepresence robot
using the ROS driver and sent the ROS control command to the robot to form a
raster-scan navigation path and received 3D positional data of the robot naviga-
tion captured by the VICON motion cameras through the WiFi network.

The experiment was to create a raster-scan path where themobile robot travel
distance was horizontal 2000 mm and vertically 500 mm and the orientation was
90◦. We performed several runs to capturemeasurement data with a combination
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of various linear velocities (100 − 500 mm/sec) and angular velocities (100 − 500

mm/sec). For all the experiments the mobile robot’s starting pose was the same.
The data is collected at a rate of 100 Hz.

The ROS control commands were sent from the host computer over theWiFi to
manoeuvre the robot creating the predefined path. Position and orientation data
were recorded and used as measurement data in the proposed algorithm. The
robot wheel diameters and wheelbase were modified using the correction factor
calculated by dead-reckoning.

On the other side, the captured robot navigation data using VICON cameras
have a low variance (3.58 mm2) as reported in [117, 124] which was also used to
estimate the robot’s true position. It is to be noted that the VICON captured posi-
tional data was used to simulate the noisy measurement by introducing random
white noise.

Experimental parameters such as initial robot position, linear and angular ve-
locity, correction factors for wheelbase and wheel diameter, robot variance and
measurement time steps etc. are provided in Table 4.1.

Experimental parameters Value

Initial position (x, y, z, θ) (0,0,0,0)
Wheel radius (rw) 75 mm
Wheelbase (b) 263 mm
Velocity (vl, vr, ωl, ωr) 100 mm/sec
Wheelbase correction factor (Eb) 0.9691
Wheel diameter correction factor (cl, cr) 0.9969, 1.0031
Robot variance (σ2

∆θ = σ2
V ) 2.13

VICON measurement time steps 0.01 sec

Table 4.1: Parameters used in the real environment experiments using the pro-posed framework [125].
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4.4 Measurement data

The VICON cameras captured various datasets of the robot’s positional informa-
tion during the navigation. The output of the VICON recorded data reports the
translational x, y and z coordinates of the robot and rotational information as Eu-
ler angles. We assumed that the datasets were not ideal and could be delayed.

4.4.1 Time variant and noisy measurement data

The total time delay of the telepresence system is a combination of a number of
reasons, such as network switching delays, bandwidth limitation, communication
drop-out, hardware processing delays and slow dynamics of the mobile robot.
Time delays can be caused by physical limitations such as distance or obstacles
between the operator and the robot too. Total time delay can be both certain and
uncertain.

Figure 4.12: The figure shows an ideal casewhen sensormeasurement data entersinto the filtering algorithm without any time delay (Figure adapted from [126]).

In an ideal case considering no time delay in the system, in a single time oc-
currence, when sensor measurement data arrives at the computer, it coincides
with the measurement data at the same time step available in a Filter as shown
in Figure 4.12. In such cases filtering methods like EKF algorithm [127] [50] can be
applied.

However, in reality, the system is assumed to be delayed. Considering time
delay as certain in nature both time steps do not coincide with each other, which
produces an amount of time delay during navigation as shown in Figure 4.13. In
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such cases, the measurement equation should be redefined as [128]

zk = h(xk−τk
, vk−τk

),

where τk is the number of delayed time steps.

Figure 4.13: If themeasurement data is corrupted by a certain time delay, themea-surement data arrival time in the computer does not coincide with the momentwhen the data enters into the filtering algorithm (figure adapted from [126]).
In our case, we assumed that the time delays τk are not precise or uncer-

tain due to various delays, namely, feedback delay and transmission delay and
data packet drop-outs over the Internet due to network congestion and hence
the arrival in different filter measurement time duration ∆t are random as shown
in Figure 4.14.

Figure 4.14: If the time delay is uncertain in nature and the arrival at different timesteps in the filtering algorithm is random (Figure adapted from [126]).
Therefore, it is important tomodel uncertain delays to obtain a consistent state

estimator. Such uncertain delays are modelled here by probabilistic density func-
tions (PDF). When the measurement data arrived at the filter, the probability that
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the measurement at a given time step was calculated by integrating the PDF over
the time interval as shown in Figure 4.15.

Figure 4.15: If the measurement data arrival is uncertain, the time delay is consid-ered as a probabilistic density function (e.g., Gaussian or Gamma). The probabil-ity of the time step in example measurement data is shown in this figure (Figureadapted from [126]).
It is worth noting that one may use timestamps instead of PDFs. For example,

one can use online or offline clock synchronisation [129], which can be achieved
through Network Time Protocol (NTP) or Global Positioning System (GPS) and IEEE
1588. However, online delay calculations are generally not used in practice for
operations of transport protocols [129]. More importantly, time stamp alone is
unlikely to provide an efficient solution to the state estimation problem as varying
time delay (potentially calculated from the time stamps) will increase the compu-
tational overhead of the delay compensation algorithm. Therefore, it is not always
necessary to compute precise delay which can be modelled (as described in Sec-
tion 4.4.2) using known distributions, e.g., Gaussian and Gamma and hence used
here in the proposed algorithm.

The probability of the measurement data in kth time step can be expressed as,

δk = P

(
(tk − ∆t

2 ) ≤ t < (tk + ∆t
2 )
)
,

=
∫ tk− ∆t

2

tk+ ∆t
2

p(t)dt,
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where, P (.) denotes probability and p(.) denotes the PDF.

4.4.2 Delay distributions in the measurement data

The Kalman filter is a state predictor for linear systems with Gaussian noise, but
the Extended Kalman filter extended its validity to nonlinear systems with non-
Gaussian noise. For Internet-based real-time teleoperation systems, uncertain
and variable time delays can cause instability and jeopardize the performance of
the system.

The delay distributions have been studied in the literature, and in this work,
we have focused on two most commonly reported PDFs, i.e., (1) Gaussian and (2)
Gamma distributions. The former one represents general delay modelling when
delay distributions are not known [54,55] and the latter one constitutes Internet-
based delay models when the Gaussian model fails in characterising the distribu-
tion property or the distribution of the input traffic rates is non-Gaussian [51–53].
These PDFs are defined as follows:
Gaussian distribution: The probability density function of the Normal distribu-
tion or Gaussian distribution is:

f(x) = 1
σ
√

2π
exp− 1

2 (x− µ
σ

)2,

where the parameter µ is the mean or expectation and σ is the standard devi-
ation of the distribution.
Gamma distribution: It is a two-parameter continuous probability distribution.
The probability density function in the shape-rate parametrization is

f(x) =
β−αxα−1 exp(−x

β )
Γ(α) for x > 0 and α, β > 0

where Γ(α) is the Gamma function and α and β are shape and rate parameter.
The shape parameter for the Gamma distribution specifies the number of events
that are being modelled and the scale parameter represents the mean time be-
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tween events. These parameters are related to themean and variance of the delay
where

µ = α/β,

σ = β2/α,

and Γ(α) is the gamma function for all positive integers, Γ(α) = (α− 1)!.
While the most commonly used delay distributions are Gaussian and Gamma

distributions, other probability distributions such as uniform distribution could be
used tomodel the uncertain timedelay, which is outside the scope of this research.
In order to compensate for the time delay, we considered using Gamma distribu-
tion in our algorithm assuming the probability of the nature of the time delay as
non-Gaussian.

GammaDistribution is a Continuous Probability Distribution that is widely used
to model continuous variables that are always positive and have skewed distribu-
tions. The Gamma distribution canmodel the elapsed time between various num-
bers of events. The details of the Gaussian and Gamma distribution parameters
and other experimental parameters used in this research work are provided in
the Table 4.2. It is worth noting that we considered IP latency between cities as a
starting point, e.g., two cities 100 miles apart may have a 10-15ms delay [5]. For
example, round trip IP latency between London and New York (Trans Atlantic) is
around 90ms or Trans-Pacific is 100ms [130]. However, multiple other factors such
as system delay and local network delay would add further latency. For these rea-
sons, we used 100 ms or 0.1s as starting delay in our research and then increased
it in regular intervals for further investigation. For simplicity, considering 100miles
as a representative unit, we represent 1 time step is equivalent to 10ms (0.01s) and
used here for the experiments.
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Experimental parameters Value

Certain delay parameters
Known or certain delay in time steps (τ ) [10, 15, 20, 25]
Known or certain delay in sec [0.1, 0.15, 0.2, 0.25] sec

Uncertain delay parameters
Gaussian parameters for uncertain delay µ = [10, 15, 20, 25] and σ = τ/4

Gamma parameters for uncertain delay α = β =
√
τ

Table 4.2: Delay distribution parameters used in the experiments to minimise theeffect of time delay during telepresence robot navigation.

4.5 Chapter summary

This chapter proposes a new framework for the development of delay compen-
sation algorithms in telepresence robots and provides the necessary platform for
controlled experiments. Development of such a framework is generally complex
and requires the integration of multiple hardware and software tool sets, the de-
velopment of control algorithms for navigation and managing a robot trajectory
monitoring system. In this work, we used a commercial differential drive telep-
resence robot Beam+, a robot operating system for control and navigation, and
a VICON motion capture system to capture measurement data. This chapter also
provides detailed information on the experimental parameters and details of sys-
tematic error correction using the UMBMarc method. The framework is further
used in the following chapter (Chapter 5) when developing the delay compensa-
tion algorithm with augmented states and Extended Kalman Filter.
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5 State estimation using non-linear
filter algorithm (AS-EKF)

This chapter proposes a new approach for state estimation assuming uncertain
delayed sensor measurements of a telepresence robot during navigation. A new
real-world experimental model, based on Augmented State Extended Kalman Fil-
ter (AS-EKF), is proposed to estimate the true position of the telepresence robot.
The uncertainty of the delayed sensor measurements has been modelled using
probabilistic density functions (PDF) [51–55].

The proposed model was successfully verified in our proposed experimen-
tal framework which consists of a state-of-the-art differential-drive telepresence
robot (Beam plus here) and amotion-trackingmulti-camera system (VICON) as de-
scribed in Chapter 4. The results show significant improvements compared to the
traditional EKF that does not consider uncertain delays in sensor measurements.
The proposed model will be beneficial to build a real-time predictive display by re-
ducing the effect of visual delay to navigate the robot under the operator’s control
command, without waiting for delayed sensor measurements.

5.1 Introduction

A telepresence system provides interactive two-way audio and video communi-
cation with a remote sender and a receiver for building a communication system
between two people in different places. The telepresence system introduces time-
varying delays in the reference commands and feedback signals resulting in insta-
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bility or poor performance of the system. In this research, a new approach of state
estimation is presented that can model and compensate for time delays present
in the robot sensor measurements which are uncertain in time during robot navi-
gation.

We hypothesizedmultiple augmented states in the proposed approach to esti-
mate the true position of a commercially available differential drive telepresence
robot. The uncertainty of the delayed sensor measurement was modelled using
probabilistic density functions (PDF). This is particularly challenging, especially for
a differential drive robot where additional system errors occur due to the kinemat-
ics of individual wheels. While there have been several attempts to address the
delay problem in mobile robots and teleoperated systems, to the best knowledge
of the authors this is the first time such a hypothesis is applied to a commercially
available differential drive telepresence robot in a real environment experimental
framework.

The time elapsed between making an action decision by the human operator
and perceiving the consequences of that action in the environment introduces a
time delay. Total time delay can be both certain and uncertain. If the time delay is
known or certain, the past state can be predicted by applying backward prediction
of the current state. Bar-Shalom [131] proposed an optimal and sub-optimal al-
gorithm for one-step delayed measurement. The extended version for multi-step
delayed measurements is also proposed in [132]. In the case of a non-linear sys-
tem, it needs modifications for state estimation. Larsen et al. [133] introduced a
method based on extrapolation of a delayed measurement to the present time
using past and present estimates of the Kalman Filter. An extension algorithm
of [133] is proposed in [128] that interpolating a delayed measurement minimizes
the computational time even for significant time delays.

State augmentation has also been used in the time-delayed measurement.
Delayed measurement directly corrects the past state and a new prediction of
the current state is then obtained from the corrected past state. Challa et al.
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[134] presented a Bayesian solution to the out-of-sequencemeasurement (OOSM)
problem and provided approximate, implementable algorithms for both cluttered
and non-cluttered scenarios involving single and multiple time-delayed measure-
ments. Van Der Merwe et al. [135] applied the sigma point Kalman Filter instead
of EKF to the augmented technique to fuse latency-lagged observations for non-
linear estimation and multiple sensors fusion.

If there is uncertainty in measurement delay, it is hard to predict because the
measured time delay may have noise. Julier and Uhlmann [136] suggested a co-
variance union algorithm for accommodating time step uncertainty directly into
the observation co-variance so that filter consistency is always maintained. Jun et
al. [137] proposed event-based filtering for time-varying non-linear systems that
use probabilities to address uncertainmissingmeasurements. A recursive filtering
algorithm is proposed by Zou et al. [138] targeting a class of linear time-varying
systems of networked sensors for robust signal transmission.

Within the scope, this paper only focuses on estimating overall time delays (un-
certain in nature) for robot navigation. The underlying assumption in such cases
is that if the time delay is able to be modelled as a form of a distribution, the un-
certainty of delay can be modelled. Challa et al. [134] proposed a probabilistic
data association filter to deal with data association issues arising from the pres-
ence of clutter in the OOSMproblem. Choi et al. [126] proposed a state estimation
algorithm incorporating uncertainty of measurement delay. Modelling uncertain
delay as a probabilistic density function is accounted for by the proposed estima-
tor, combined with the augmented state Kalman Filter. However, the majority of
these algorithms reported simulation-only results that neither considered a real
environment nor the techniques were applied to a real robot.

5.1.1 Chapter contributions

While state estimation with augmentation methods have been proposed in the lit-
erature, they were not applied in telepresence navigation. The only exception is
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Choi et al. [126] where the authors simulated their algorithmswith the intention to
apply to telepresence robot navigation. However, a real-life scenario poses many
other additional challenges including system errors, and mechanical errors relat-
ing to robot kinematics. In addition to this, a differential drive robot (our chosen
industrial telepresence robot Beam plus) imposes additional complexities mainly
due to individual wheel controls impacting the robot’s kinematics.

To address this we propose an experimental model for state estimation for
the navigation of telepresence robots with uncertain and delayed sensor mea-
surements in a non-linear system. We hypothesised and developed the approach
by introducing augmented states into the computational model for differential
drive telepresence robot navigation. This is verified using a real-world telepres-
ence robot navigation in the laboratory environment using a new experimental
framework. The contributions of this work are:

• A delay compensated non-linear state estimation approach considering con-
tinuous or uncertain time delay in measurement data. Multiple augmented
states, considering delay as a model of Probability Density Function (PDF) in
the form of Gaussian or Gamma distribution, is applied within the filtering
method to estimate the true robot position from delayed measurements.

• A new real-environment experimental framework is used for telepresence
robot navigation to evaluate the performance of the proposed non-linear
filter-based state estimator.

• To prove the success of our approach, the proposed model was experimen-
tally verified on a state-of-the-art differential-drive telepresence robot in the
real environment using the proposed framework.

The idea and results were reported in the form of conference [139, 140] and
journal [141] publications. This chapter provides a detailed mathematical formu-
lation of the proposition, details of the algorithmic development, and a description
of experimental results and discussions. To the best of our knowledge, the pro-
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posed approach is the first of its kind in compensating for delays in differential-
drive telepresence robot navigation.

5.2 State estimation algorithms

Although several methods and algorithms were proposed to address the time de-
lay problem in the telepresence (also Tele-operated, see Section 2.1 for details of
sub-fields) systems, it is still an open issue that needs to be addressed. The pres-
ence of time delay causes instability in the system and poor performance of the
robot navigation. As the mobile robot is controlled by a human operator through
a communication network in a remote site, the human operator should know the
robot’s state to control the robot smoothly. If the time delays are not compensated
to estimate the robot’s position correctly in the remote site, the human operator
may cause an accident by crashing obstacles because of the robot’s position which
the operator inaccurately recognised. Therefore, we designed a non-linear state
estimation computational model to estimate the robot’s true state by incorporat-
ing a new approach for delay compensation.

The state of a robot is a set of position, orientation and velocity, which is the
robot’s motion over time. This includes the estimation of the state of the robot’s
kinematic system by combining knowledge from a priori information and sensor
measurements. State estimation in dynamical systems is crucial in real-world ap-
plications as the true state is unknown and sensors have limited precision, there-
fore, provide only a sequence of uncertain noisy measurements. It is to be noted
that the measurement in the real world comes from various sensors, e.g., ultra-
sonic, beacon, camera etc. which can be noisy depending on the environment
and robot movement.

Commonly used state estimationmethods in robot navigation to stabilize non-
linear delayed systems include filtering methods [127,142] e.g., Extended Kalman
Filter, UnscentedKalman Filter, Particle filter or Sigma-Point Kalman Filter etc. Among
them, the Extended Kalman Filter (EKF) is the most widely used algorithm to ac-
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quire an estimate of the true robot state from noisy sensor measurements [143].
However, when a filtering processor is connected to a sensor through a net-

work, there is a fundamental communication time. Moreover, if raw sensor data
require post-processing, in order to update the state of the dynamical system,
additional post-processing time is needed, resulting in a delay between the acqui-
sition of a measurement and its availability to the filter.

5.2.1 Kalman filter

Before we describe the EKF, it might be worth revisiting the Kalman filter in the
context of state estimation. Kalman filter at its core is a set of mathematical equa-
tions that provides an efficient computational (recursive) means to estimate the
state of a process, in a way that minimizes the mean of the squared error. The
filter is very powerful in estimations of past, present, and even future states, and
it can do so even when the precise nature of the modelled system is unknown.
The Kalman filter (KF) is a method based on recursive Bayesian filtering where the
noise in your system is assumed Gaussian. The Kalman Filter estimates the state
x ∈ Rn of a discrete-time controlled process that is governed by a linear stochastic
difference equation.

The Extended Kalman Filter (EKF) is an extension of the classic Kalman Filter for
non-linear systems where non-linearity is approximated using the first or second-
order derivative. As an example, if the states in a system are characterized by
multimodal distribution one should use EKF instead of KF.

5.2.2 Extended Kalman Filter

The Extended Kalman Filter is a set of mathematical equations that provides an
efficient computational means to estimate the state of a non-linear process. It
also supports estimations of past, present, and even future states as the Kalman
filter, and it can do so even when the precise nature of the modelled system is
unknown. The advantage of the EKF over other non-linear filtering methods is its
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relative simplicity compared to its performance.
The process is governed by the non-linear stochastic difference equation as-

suming the process has a state vector x ∈ Rn

xk = f(xk−1, uk−1, wk−1), (5.1)
The measurement equation with z ∈ Rm

zk = h(xk, vk), (5.2)
Here the non-linear function f(·) in the difference Equation (5.1) relates the

state at the previous time step k − 1 to the state at the current time step k. The
non-linear function h(·) in the measurement Equation (5.2) relates the state xk to
the measurement zk.

xk represents the current state vector including the previous state xk−1, an con-
trol input uk−1 and the process noise wk−1.

zk represents the measurement state vector including the state xk and the
measurement noise vk.

The randomvariableswk and vk represent the process andmeasurement noise
respectively. They are assumed to be independent of each other, white, with zero
mean Gaussian distributions, being Q and R the process and measurement noise
co-variance, respectively:

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R)

The state and measurement vector without any type of noise variable at each
time step,

x̃k = f(x̂k−1, uk−1, 0) (5.3)
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and

z̃k = h(x̃k, 0), (5.4)
Where x̂k is a posteriori estimate of the state at step k.

5.2.2.1 The computational Origins of the Filter

To estimate a process with a non-linear difference and measurement relation-
ships, new governing equations that linearise an estimate about Equation (5.3)
and Equation (5.4),

xk ≈ x̃k +A(xk−1 − x̂k−1) +Wwk−1, (5.5)
zk ≈ z̃k +H(xk − x̃k) + V vk, (5.6)

where,
• x̃k and z̃k represents approximate state and measurement vectors,
• A is the Jacobian matrix of partial derivatives of f(·) with respect to x:

A[i,j] =
df[i]
dx[j]

(x̂k−1, uk−1, 0) ,

• W is the Jacobian matrix of partial derivatives of f(·) with respect to w:

W[i,j] =
df[i]
dw[j]

(x̂k−1, uk−1, 0) ,

• H is the Jacobian matrix of partial derivatives of h(·) with respect to x:

H[i,j] =
dh[i]
dx[j]

(x̃k, 0) ,
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• V is the Jacobian matrix of partial derivatives of h(·) with respect to v:

V[i,j] =
dh[i]
dv[j]

(x̃k, 0) .

Now the notation for the predicted error and the measurement residuals are
shown in Equation (5.7) and Equation (5.8), respectively.

ẽxk
= xk − x̃k, (5.7)

ẽzk
= zk − z̃k. (5.8)

In practice we have no access to xk in Equation (5.7), as it is the actual state
vector, i.e. the quantity is trying to estimate. On the other hand, we have access
to zk in Equation (5.8), as it is the actual measurement that is used to estimate xk.

Using Equation (5.7) and Equation (5.8) we can write governing equations for
an error process as

ẽxk
≈ A(xk − x̂k) + εk, (5.9)
ẽzk
≈ Hẽxk

+ ηk, (5.10)
where εk and ηk represent new independent random variables having zero mean
and covariance matricesWQW T and V RV T with Q and R.

From Equation (5.8)and Equation (5.9) we can estimate,

x̂k = x̃k + êk. (5.11)

êk will help to obtain the posterior state estimates for the original non-linear
process.

The randomvariables of Equation (5.9) and Equation (5.10) have approximately
the following probability distributions:
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p(ẽxk
) ∼ N(0, E[ẽxk

ẽTxk
])

p(εk) ∼ N(0,WQkW
T )

p(ηk) ∼ N(0, V RkV T ).

Given these approximation and letting the predicted value of êk be zero, the
Kalman Filter equation used to estimate êk is

êk = Kkẽzk
. (5.12)

By substituting Equation (5.12) back into Equation (5.11) and making use of
Equation (5.8) we get,

x̂k = x̃k +Kkẽzk

= x̃k +Kk(zk − z̃k)
(5.13)

A complete set of ExtendedKalman Filter estimation equations canbe expressed
in two parts A. Time Prediction update equations and B. Measurement update
equations as described below.

A. Time Prediction update equations

x̂−
k = f(x̂k−1, uk−1, 0) (5.14)

P−
k = AkPk−1A

T
k +WkQk−1W

T
k (5.15)

As with the basic discrete Kalman filter, the time prediction update equations
represent the state and co-variance estimates from the time step k to the time
step k + 1. The Equation (5.14) comes from Equation (5.3), Ak and Wk are the
process Jacobians at step k, and Qk is the process noise co-variance at step k.
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B. Measurement update equations

Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRkV

T
k )−1 (5.16)

x̂k = x̂−
k +Kk(zk − h(x̂−

k , 0)) (5.17)
Pk = (I −KkHk)P−

k (5.18)

As with the basic discrete Kalman filter, the measurement update equations
correct the state and covariance estimates with the measurement. The Equa-
tion (5.17) comes from Equation (5.4), Hk and Vk are the measurement Jacobians
at step k, and Rkis the measurement noise co-variance at step k [50].

An important feature of the EKF is that the Jacobian Hk in the equation for the
Kalman gainKk serves to correctly propagate only the relevant component of the
measurement information.

5.2.3 Implementation on differential drive telepresence robot

Now we take the filter equations for differential drive (telepresence) robots and
described them below.

5.2.3.1 The Prediction Model

In the prediction model, the current state (robot pose) is estimated from the pre-
vious state. The state vector of the robot pose with respect to a global coordinate
frame is

x(k) = [x(k), y(k), z(k), θ(k)]T

Each state vector x(k) includes a co-variance matrix P (k). Control input u(k)

is computed using the velocities of the left and right wheels. The state transition
function at the next time step is

x(k|k − 1) = f(x(x− 1|x− 1), u(k − 1), w(k − 1))
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where w(k) represents unpredictable noise. The noise is assumed to be Gaussian
with zero mean, (v(k) = 0), and co-varianceQ(k− 1). From Equation (4.1) to Equa-
tion (4.4) the state transition function becomes,

f(x(k− 1), u(k− 1), 0) =



x(k − 1) + ∆V (k − 1) ∗ cos(θ(k − 1) + ∆θ(k − 1))

y(k − 1) + ∆V (k − 1) ∗ sin(θ(k − 1) + ∆θ(k − 1))

z(k − 1)

θ(k − 1) + ∆θ(k − 1)


(5.19)

The source of uncertainty is the uncertainty in the angular and linear veloci-
ties. We calculate the uncertainty by partial differentiation of Equation (5.19) with
respect to ∆θ(k − 1) and ∆V (k − 1), which gives the following Jacobian,

W =



−∆V (k − 1) ∗ sin(θ(k − 1) + ∆θ(k − 1)) cos(θ(k − 1) + ∆θ(k − 1))

∆V (k − 1) ∗ cos(θ(k − 1) + ∆θ(k − 1)) sin(θ(k − 1) + ∆θ(k − 1))

0 0

1 0


(5.20)

Another source of uncertainty is the uncertainty in position and orientation.
To compute it we make an another partial differentiation of Equation (5.19) with
respect to x(k−1), y(k−1), z(k−1) and θ(k−1), which gives the following Jacobian.

A =



1 0 0 −∆V (k − 1) ∗ sin(θ(k − 1) + ∆θ(k − 1))

0 1 0 ∆V (k − 1) ∗ cos(θ(k − 1) + ∆θ(k − 1))

0 0 1 0

0 0 0 1


(5.21)

The process noise covariance matrix Q(k − 1) depends on two independent
sources of error called angular and linear.
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Q =

σ2
∆θ 0

0 σ2
V

 (5.22)

The complete pre-co-variance matrix becomes:

P (k|k − 1) = A(k)P (k − 1|k − 1)A(k)T +W (k)Q(k − 1)W (k)T (5.23)

5.2.3.2 The Measurement Model

The motion sensor data readings are used to improve the mobile robot pose es-
timation. The distance between an obstacle and the robot measured by the ith
sensor is computed by the following measurement function

hi(k|k − 1) =
√

(xi − x(k|k − 1))2 + (yi − y(k|k − 1))2. (5.24)
If the distance between the obstacle and the robot is not known, the measure-

ment function can be computed as follows,

h(k|k − 1) =



xi + v(x)

yi + v(y)

zi + v(z)

θi + v(θ)


(5.25)

The sensor measurement vector zk is a stack of zi, k measurements.

zi(k) = hi(x(k|k − 1)) + wi(k), (5.26)
where wi represents the measurement noise assuming Gaussian with zero

mean and variance.
The Jacobian is computed by partial differentiation of Equation (5.24) with re-

spect to x(k), y(k), z(k) and θ(k),
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H = 1√
(xi − x(k|k − 1))2 + (yi − y(k|k − 1))2


x(k|k − 1)− xi

y(k|k − 1)− yi

0


T

(5.27)

Partial differentiation of Equation (5.25) will be as follows:

H =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(5.28)

Another Jacobian is an identity matrix with size N,

V = I(N) (5.29)
The measurement co-variance matrixR is a diagonal matrix with the measure-

ment noise variance value on the diagonal.

R =



σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
z 0

0 0 0 σ2
θ


(5.30)

K(k) is the optimal Kalman gain computed as follows:

K(k) = P (k|k − 1)H(k)T (H(k)P (k|k − 1)H(k)T + V (k)R(k)V (k)T )−1 (5.31)

The state estimation and its co-variance in time step k are computed as follows:

x(k) = x(k|k − 1) +K(k)(z(k)− h(k)) (5.32)
P (k) = (I −K(k)H(k))P (k|k − 1) (5.33)
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5.3 The algorithm

When sensor measurements are delayed, the current state could not be directly
corrected using the current measurement, since a delayed sensor measurement
was actually carrying information about a past measurement state. Here, x(k)

could not be corrected directly because the measurement values depend on the
past measurement state x(k − τ). Therefore, the past measurement state corre-
sponding to a delayed measurement needed to be determined before using the
delayed measurement during the state estimation. The current state also needed
to be corrected after correcting the appropriate past state.

5.3.1 Augmented State Extended Kalman Filter (AS-EKF)

In this research, we have used augmentation of states with EKF filter [126] for
delay-compensated state estimation of telepresence robots with considering un-
certain delayed sensor measurements as depicted in Figure 5.1. We augmented
the present and past states into several augmented state vectors to estimate the
robot’s true position. The current measurement state which contains information
on the past measurement states directly corrects the augmented state vectors. In
this way, in a delayed system, we determined the corresponding past state in the
augmented state vector. After that, the past state was updated using the delayed
measurement data and the current state was simultaneously corrected in the aug-
mented state vector. It is to be noted that firstly the algorithm considers a certain
time delay which is then extended to compensate for uncertain delays using PDFs.

For a one-time step delay, the prediction equation was modified as
xk+1

xk

 =

f(xk, uk, wk)

xk



where, [xTk+1 xTk

]T was the augmented state vector. The measurement equation
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Figure 5.1: Flow diagram of the proposed algorithm. The diagram shows the se-quence of steps involved in the AS-EKF model used in this work.
was

zk = h

[0 I

] xk+1

xk

 , vk


where, I was the identity matrix, the current measurement zk was used to update[
xTk+1 xTk

]T .
For multi-step delays, the prediction equation defined as

X(k+1) =



f(xk, uk)
I 0 0 0

0 . . . 0
...

0 0 I 0

Xk


+



wk

0...
0


(5.34)

≡ f(Xk,Uk,Wk)

where,X(k) was the augmented state vector defined by [xTk xTk−1 · · · xTk−n

]T
and n was the maximum number of delayed time steps. The measurement equa-
tion was rewritten as
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Zk = h





0...
I...
0



T 

xk...
xk−τk...
xk−n




+



0...
vk−τk...

0


(5.35)

≡ h(Xk,Vk)

where, τk represented the time delay, which was less than n, and I was placed
at the corresponding time step k − τk. If the time delay τk is known or certain, the
augmented state vector can be estimated recursively via the EKF algorithm.

The EKF algorithm consists of prediction and measurement update stages. In
the prediction stage, state prediction was carried out by the prediction (Equa-
tion (5.1)). The error covariance was propagated by the Jacobian of the prediction
model and the process noise co-variance(Q). The measurement update stage or
measurement model was based on the predictionmodel and the error covariance
(Equation (5.2)). The Jacobian of the measurement model and the measurement
noise(R) were needed to obtain the Kalman gain (K). The proposed method was
implemented in the augmented state vector using the prediction and measure-
ment update stages of the EKF algorithm.

5.3.1.1 Dealing uncertain delays

So far, our model considers certain delays and compensates for the prediction
through augmented states. However, in practice, often, delays are unknown (as
discussed in Section 4.4), and therefore we extend the AS-EKF to handle uncertain
delays. Our hypothesis is that while the delay for each measurement is different,
the average delay is measurable by modelling the probability of factors that in-
troduce such delay, e.g., feedback or Internet communication. In this work, the
modelling of uncertain delays was done using the PDF in terms of two different
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Figure 5.2: Histogram of delay probability density functions for average delay τ =
10 with Gaussian distribution.
delay distributions, i.e., Gaussian and Gamma (as discussed in Section 4.4.2) to get
a consistent state estimator. Examples of such delays, i.e., Gaussian and Gamma
are shown in Figure 5.2 and Figure 5.3 (average delay τ = 10).

In extending the proposed algorithm for uncertain delays, we consider such
average delay (modelled by PDFs, the peaks in the example figure) as continuous
input to the system. This allows us to directly apply the proposed AS-EKF for state
estimation in uncertain scenarios. We verify this hypothesis in Section 5.5.2 by
simulating various average delays for uncertain time-delay scenarios. The results
are promising and assert the fact that the proposed algorithm offers a better and
consistent delay-compensated state estimation in both the certain and uncertain
delayed system environment.
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Figure 5.3: Histogram of delay probability density functions for average delay τ =
10 with Gamma distribution.

5.4 Experimental setup

We have evaluated the proposed approach considering delayed robot navigation
measurements. Using the proposed framework, a raster scan robot navigation
path (design path) was created to simulate and study our approach. In thiswork, we
considered various scenarios where the robot might encounter navigation chal-
lenges. For example, navigational error in different directional paths (both vertical
and horizontal) and, most importantly, during sharp turns in either direction. A
raster scan [42] based navigation in fact covers these scenarios and therefore was
chosen in this work. The algorithm was written in C++, encapsulating ROS to con-
trol the telepresence robot remotely. The real navigation path wasmonitored and
tracked through the VICON motion tracking system. As mentioned previously, VI-
CON has an extremely small error variance, and hence, the VICON output data has
been considered as the actual robot path in all our experiments.
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We envisage two scenarios, 1) robot navigation in a known or certain delayed
environment; and 2) robot navigation in an unknown or uncertain delayed envi-
ronment. In addition to that, we also considered the measurement for positional
data to be noisy. Ideally, to create such scenarios in real life, one would need to
arrange a set-up where the local site and remote sites are physically distanced at
least in order or hundreds ofmiles/kilometres so that the physical communication
delays are noticeable. In the absence of such a large geographical distance in the
lab environment, we simulated the data.

Firstly, the robot velocity was assumed to have white Gaussian noise, and the
measurement data was accordingly also delayed by the sensor noise. For this
purpose, we have added random position noise to the VICON output data. The
noisy positional data is then arranged to insert certain and uncertain delays to
simulate various scenarios in this work.

In a real environment scenario, we cannot assume the time delay between
sending a control command to the robot and the moment when the received sen-
sor measurement data is entered in the state estimator. We assumed that the
measurement time delay was uncertain. In this paper, we applied a state estima-
tion algorithm to obtain the robot’s true position calculating and modelling the
uncertain time delay as discussed in Section 4.4.2.

5.5 Results and discussions

In order to verify our proposed approach, we initially experimented with an over-
all simulation followed by the experiments as described in Section 5.4. A raster
scan robot path was simulated using MATLAB simulations. Delay was introduced
on themeasurement values as a unit of time steps. Regular EKF and the proposed
delay-compensated approach (AS-EKF) were applied to show the effectiveness of
the delay-compensated approach. The results of such simulation are shown in
Figure 5.4, where the figure on the top shows the complete path. True Path refers
to Vicon’s observed robot path. The bottom figure is a zoomed version of the se-
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Figure 5.4: Comparison of EKF with AS-EKF estimated robot path with simulatedtime-delayed measurement data. (Row 1) overall robot navigation path; (Row 2)zoomed version of the selected path that shows the effectiveness of AS-EKF overregular EKF. True Path refers to Vicon’s observed robot path.
lected area, which clearly shows regular EKF was unable to handle delay when
the robot changed its direction. On the contrary, as expected, the AS-EKF com-
pensated for the delay and closely followed the true robot path. On verification
of our approach to the simulations, we performed detailed experiments on the
Beam plus telepresence robot using the experiential framework (described in the
following subsections).
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Figure 5.5: Comparison of EKFwith AS-EKF estimated robot pathwith time-delayedmeasurement data. (Row 1) Overall comparison; (Row 2) Comparison between EKFand AS-EKF.

5.5.1 Scenario I: Certain time delay

Considering certain time delays in the sensor measurement, we applied both EKF
and delay-compensated AS-EKF algorithms as discussed in Section 5.3. To gain
an in-depth insight, we have introduced a number of delay in time steps (τ =

[10, 15, 20, 25]) corresponding to delay in the equivalent of [0.1, 0.15, 0.2, 0.25] sec-
onds, respectively. The delay parameters are shown in Table 4.1. Results for the
corrected navigation path (for τ = 30) are shown in Figure 5.5. The results show
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that the AS-EKF algorithm is reducing the linearisation error and compensating
for the time delay more precisely. Instead of EKF estimated path, the AS-EKF esti-
mated path is more close to the robot control path.

In order to capture performance for delay compensation, we calculated the
error in termsof rootmean square error (RMSE) between the VICONmeasurement
(absolute robot path) and estimated path by EKF and AS-EKF, respectively, with
respect to measurement time steps. The results for complete paths are shown
in Figure 5.6, and Figure 5.7 and average RMSE errors for entire paths are reported
in Table 5.1.

Time RMSE Improvement
delay EKF AS-EKF (%)
0.10s 17.60 11.88 32.50
0.15s 20.57 12.01 41.63
0.20s 23.38 11.94 48.92
0.25s 26.17 11.96 54.28

Table 5.1: RMSE error comparison for the certain time delay.

The results show that with the increase of the number of delayed steps in
the measurement data, the performance of the EKF algorithm proportionally de-
creases as the time delay in the measurement data degrades the state estimation
accuracy of the algorithm. AS-EKF significantly reduces the error and ismaintained
at the same level by compensating for the error introduced by the delay. In our
experiments, we have achieved improvements of 33% to 54% when considering
the delay compensated AS-EKF as opposed to regular EKF.
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(a) τ = 10.

(b) τ = 15.
Figure 5.6: RMSE error comparison for certain time delay τ = 10 and τ = 15 re-spectively. The red line and blue line represent the RMSE error of EKF and AS-EKFestimation.
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(c) τ = 20.

(d) τ = 25.
Figure 5.7: RMSE error comparison for certain time delay τ = 20 and τ = 25 re-spectively. The red line and blue line represent the RMSE error of EKF and AS-EKFestimation.
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(a)

(b)
Figure 5.8: Positional error due to uncertain delay with average delay τ = 10: (a)and (b) represent delay modelled using Gaussian and Gamma distributions, re-spectively.
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5.5.2 Scenario II: Uncertain time delay

As mentioned in earlier sections, certain time delays are rare in real-life environ-
ments. Therefore, we consider scenarios with uncertain time delays. As the pre-
vious study shows uncertain delays can be modelled using the probability den-
sity functions (PDF), such as Gaussian and Gamma distributions, we considered
both distributions in simulating delays within measurement values. Random de-
lays with averages similar to the certain time delays are introduced in respective
distributions and the distribution parameters were calculated accordingly. The
distribution parameters are reported in Table 4.1 and example plots of positional
error due to uncertain delay with respect to time steps for both Gaussian and
Gamma distributions are shown in Figure 5.8 (average time delay τ = 10). As
described in Section 5.3.1 (Dealing uncertain delays), we considered the average
delays as input to the system and estimated states using the proposed AS-EKF al-
gorithm. Similar to certain delays the results of AS-EKF for uncertain delays were
compared against state estimation using EKF only that does not consider delay
compensation.

Time RMSE Improvement
delay EKF AS-EKF (%)
0.10s 19.11 13.22 30.79
0.15s 31.54 13.08 39.29
0.20s 23.62 12.81 45.77
0.25s 26.67 13.07 50.99

Table 5.2: RMSE error comparison for uncertain time delays with Gaussian distri-bution.
The results for the delay with Gaussian and Gamma distributions are shown

in Figure 5.9, Figure 5.10 Figure 5.11 and Figure 5.12, respectively. Similar to the
certain delay, we calculated the error between the estimated path and VICONmea-
surements (absolute robot path) and compared for EKF without considering delay
compensation and AS-EKF that compensated the delay by assuming the average
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Average delay RMSE Improvement
in time steps EKF AS-EKF (%)

0.10s 18.53 12.85 30.67
0.15s 21.16 12.78 39.61
0.20s 24.09 12.71 47.24
0.25s 26.60 12.65 52.46

Table 5.3: RMSE error comparison for uncertain time delay with Gamma distribu-tion.
delay in these scenarios. The RMSE error for Gaussian and Gamma distributed
delays are shown in Table 5.2 and Table 5.3, respectively. In both cases, we have
observed more than 50% improvements.

Finally, we have compared the estimation error for various scenarios, e.g., cer-
tain delays and uncertain delays with Gaussian and Gamma distributions. The
results are shown in Figure 5.13 for τ = [10, 20]. We have also compared the RMSE
errors and reported them in Figure 5.14.
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(a) Average τ = 10.

(b) Average τ = 15.
Figure 5.9: RMSE error comparison for uncertain time delay with Gaussian distri-bution. The red line and blue line represent the RMSE error of EKF and AS-EKFestimation, respectively.
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(c) Average τ = 20.

(d) Average τ = 25.
Figure 5.10: RMSE error comparison for uncertain time-delay with Gaussian dis-tribution. The red line and blue line represent the RMSE error of EKF and AS-EKFestimation, respectively.
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(a) Average τ = 10.

(b) Average τ = 15.
Figure 5.11: RMSE error comparison for uncertain time-delay with Gamma distri-bution. The red line and blue line represent the RMSE error of EKF and AS-EKFestimation, respectively.
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(c) Average τ = 20.

(d) Average τ = 25.
Figure 5.12: RMSE error comparison for uncertain time-delay with Gamma distri-bution. The red line and blue line represent the RMSE error of EKF and AS-EKFestimation, respectively. 105



(a)

(b)
Figure 5.13: RMSE error comparison of EKF and AS-EKF estimation. (a) The red,cyan and black lines represent the RMSE error of EKF estimation for the certaindelay and uncertain delay with Gaussian distribution and Gamma distribution, re-spectively. (b) The blue, green and magenta lines represent the RMSE error of AS-EKF estimation for the certain delay, uncertain delay with Gaussian distributionand Gamma distribution, respectively. 106



Figure 5.14: RMSE error comparison of EKF and AS-EKF for the certain delay anduncertain time-delay with Gaussian and Gamma distribution respectively. Thecomparison is made for different delayed time steps. The red, magenta and blueline represent the RMSE error of EKF estimation and the dotted line represent AS-EKF estimation, respectively.
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5.6 Chapter summary

In this chapter, a delay-compensated state estimation approach for a telepresence
systemwith uncertain delayed navigationmeasurement was presented. EKF com-
bined with an augmented state model was successfully executed, estimating the
actual robot position andmodelling certain and uncertain time delays in the robot
navigation. The uncertainty of the time delays was modelled by considering PDF
in terms of Gaussian and Gamma distributions. The robot paths estimated by the
delay-compensated AS-EKF algorithm and EKF algorithm that does not consider
any delay are compared to evaluate the improvement in navigation performance.

The proposed model was experimentally implemented in simulation and ver-
ified in the real environment experimental framework with a commercial telep-
resence robot Beam plus. As the continuation of this work, we build a predictive
display (as described in Chapter 6) to address the challenges ofmismatch between
the predicted state and actual navigation state of the robot. The predictive display
is envisaged to show the immediate estimated robot path while the robot is navi-
gating under a delayed network.
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6 Robot navigation and pose estimation
using predictive technology

This chapter proposes the design and development of a predictive display for
telepresence robot navigation used in this research. In earlier chapters, we pro-
posed techniques that address the challenges posed by time delay. The complete
telepresence system also requires displays at the local site which provide robot
poses to the operator. Due to time delays, there might be a mismatch between
the real robot position and the measured position where predictive displays are
used to reduce the visual disparity. In addition, predictive displays also provide
the required infrastructure for controlled experiments. Real-life telepresence in-
frastructures are often expensive and not practical and therefore limit research ef-
forts. As an alternative, we believe a simulation would mitigate such issues which
can also offer capabilities of predictive displays in a real system. This chapter de-
scribes the need for predictive displays in the context of telepresence robot navi-
gation and provides details of the design and development of such a system and
how this can be used in our work by simulating similar experiments.

6.1 Introduction

As a general fact telepresence robots suffer significant challenges during naviga-
tion in the remote site due to varying communication time delays [3] which are
frequently caused by the present state of the network. Moreover, the distance
between the human operator and remote sites of the telepresence system intro-
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duces time-varying delays adding distortion in the reference commands, response
time and feedback signals resulting in instability or poor performance of the sys-
tem. The time elapsed betweenmaking an action decision and perceiving the con-
sequences of that action in the environment introduces an uncertain time delay.

This uncertain time delay produces a visual mismatch between the received
navigation state of the robot from the remote site and the current navigation state
of the robot at the operator’s side which negatively impacts the human operator’s
performance. Therefore, it is advantageous to compensate for such time delays
for robust navigation and manipulation of the telepresence robot.

There are various approaches used in the literature to overcome the time delay
in telepresence systems including increasing levels of automation, more sensor
on the robot and predictive technology. This chapter focuses on the predictive
technology and within the context of this research it includes a state estimation
algorithm, display and graphical models to predict the state of the robot based on
the robot’s delayed current state and commands sent by the operator [8].

The state of a robot is a set of position, orientation and velocity, which is the
robot’s motion over time. This includes the estimation of the state of the robot’s
kinematic system by combining knowledge from a priori information and sensor
measurements. State estimation in dynamical systems is crucial in real-world ap-
plications as the true state is unknown and sensors have limited precision, there-
fore, provide only a sequence of uncertain noisy measurements.

The aim of this research is to estimate the true state of the robot compensat-
ing for any uncertain time delay present in the measurement data and show it on
a predictive display at the local site. This chapter focuses on the latter part, i.e.,
the predictive display that shows the estimated robot pose in real-time in front of
the operator while the actual measurement data was delayed which was compen-
sated by a state estimation algorithm. The predictive display helped to increase
the operator’s performance by addressing the challenges of visual time delay dur-
ing real-time robot manoeuvring in an unknown environment.
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6.1.1 Chapter contributions

While the idea of predictive display is matured for robot navigation only a handful
of works are available in the literature [144] that consider delay compensation in
the system and hence is an area to be much explored. In this work, we propose
the design and develop a predictive display system that has the potential to com-
pensate for the visual time delay by replacing the operator’s desired viewpoint. It
uses a delay-compensated model which forward predicts robot pose in time and
provides the operator with the feeling of being situated at the remote site and
directly performing the manipulations.

It is to be noted that the predictive display, developed in this work is based
on a simulation where the delay compensation models are incorporated using
separate MATLAB programs. We have focused on the development of a proof of
the concept which, of course, can be adapted to a real system. There are two
primary reasons for simulation-based predictive displays: 1) COVID-19 restriction
that limits lab-based work and access to the hardware and 2) the creation of a
simulation environment which could be beneficial in replicating an expensive real-
life system.

In elaborating on the latter point, it is a well-known truth that real-life telepres-
ence systems are expensive and extremely challenging to establish. This is due
to the fact that local and remote sites are generally far apart, often separated
by cities, countries, continents or even planets. Therefore any controlled exper-
iments require a simulation environment. Development of our predictive display
is, in fact, mitigates this challenge, not only for this thesis but also for the wider
research community.

The main contributions of this chapter are,
1. Development of a new predictive display, where we superpose information

coming from the real system and information coming from the simulation
environment in order to compensate or anticipate the time delays. The sys-
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tem also shows real and predicted information on the same display.
2. Validation of the predictive display through a series of experiments using a

state-of-the-art differential-drive telepresence robot in the simulation envi-
ronment using real navigation data.

3. Configurable and modular design of the simulation system to allow manipu-
lation and simulation of different types of differential-drive robots by chang-
ing the robot’s physical and experimental parameters for future usage.

6.2 Related Work

While itmay sound repetitive, we briefly discuss the issues of a telepresence robot,
especially the time delay again in this chapter as this is necessary to set out the
context and backgroundnecessary for the predictive display. This section presents
relevant related works in this field.

Within any telepresence system, a human operator controls a robot to interact
in a remote environment through a communication channel for teleoperations.
Literally speaking, a telepresence system is a set of technology which allow a per-
son to feel as if they are present to give the appearance of being present or to
have an effect at a place other than their true location. Seamless telepresence ex-
perience requires the implementation of human sensory elements such as vision,
sound, and remote manipulation. However, the effectiveness of the telepresence
system varies by the degree of fidelity, there are factors in telepresence which
pose major challenges to precise and reliable robotic control for the human oper-
ator in an unknown environment. Themain factors which influence navigation are
limited field of view, operating multiple cameras and screens, depth perception,
low frame rate, video quality and time delay.

Within the scope of this research, we focus only on the time delay or latency
which refers to the time gap between the operator’s input action and the received
measurement response of the robot. The total time delay of the telepresence sys-
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tem occurs due to a combination of a number of reasons, such as network switch-
ing delays, bandwidth limitation, communication drop-out, hardware processing
delays and slow dynamics of themobile robot. Time delays can be caused by phys-
ical limitations such as distance or obstacles between the operator and the robot
too. Total time delay can be both certain and uncertain.

Time delay produces a visual mismatch between sending control commands
and receiving robot position measurement data. Two different display creates a
conflict in human perception. The human operator manoeuvring the robot in an
unknown environment includes remote perception and remote manipulation [6].
Remote manipulation depends on the human operator’s performance and is lim-
ited by the human’s motor skills which involve distance estimation, obstacle de-
tection, environment awareness and command generating. Remote perception
is also very challenging to cope with the virtual display different from the phys-
ical environment. Teleoperation in an unknown environment with time delay is
very difficult and highly stressful for the human operator which leads to mental
fatigue [6,145].

A potential solution for time delay is the predictive display. Predictive display
using control command and robot state estimation algorithm, immediately dis-
play graphically the robot’s estimated pose without time delay in the simulation
environment. The estimated pose is usually superposed on the display of delayed
measurement from the actual robot measurement. Predictive display refers to
rendering a visualization of the robot site directly in response to the human oper-
ator’s control commands, without waiting for the delayed video. Evidently human
performance increases (about 20%) with the aid of predictive display in robot nav-
igation [8].

Literature on predictive display for robot navigation can be dissected into the
following five categories:

• With and without a priori model of the remote environment,
• SLAM-based predictive displays,
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• Multi-sensor input predictive display,
• Computational hardware and
• Human operator performance measurement.

With and without a priori model of the remote environment

Traditionally, predictive displays were realised in highly pre-calibrated settings by
superimposing hand-modelled wireframes and solid-model overlays of the robot
manipulator and scene objects on top of the delayed video [112]. This approach
was developed based on a known environment and a non-moving (fixed) external
camera.

More recent work aims at producing photo-realistic predictive displays in less
calibrated scenarioswhere apriori 3Dmodel of the environment is not required [146].
Jin et al. [144] presented a vision-based semi-autonomous teleoperation system
which is optimized for long-range teleoperation tasks under time delay network
conditions. Similar to the previous one, it also does not require prior knowledge
of the remote scene. The system initializes with a self-exploration behaviour that
senses the remote surroundings through a webcam.

Burkert et al. [147] describe an online depth-fusion technique for predictive
display that acquires a dense 3Dgeometrymodel using a stereo camera. CObzas et
al. [148,149] presented an image-based method for predictive display where the
scene geometry and appearance are captured, compressed and transmitted to
generate immediate feedback in response to the operator’s movements.

SLAM-based predictive displays

Hu et al. [86] proposed a solution based on sparse 3D points provided by simulta-
neous localization and mapping (SLAM) and physically generates the correct sur-
face for these point sets. Rachmielowski et al. [146] has reconstructed a coarse
3D geometry model using online SLAM. The predictive display was generated by
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using the textures from key-frame images and rendering from the current oper-
ator viewpoint. This method also does not need a priori 3D model and can be
applicable to a variety of unknown environments.

Lovi et al. [150] proposed amethodusing Parallel Tracking andMapping (PTAM) [151]
and free-space carving technique [152] with a telepresence interface and predic-
tive display to generate rendered intermediate image for human control guidance.
However, previous images are needed for a projective texture rendering which
requires high network consumption and fully human-supervised control which
causes difficulties in real-life applications.

Multi-sensor input predictive display

In recent years, algorithmswere developed usingmulti-sensor (e.g., optical images
and Light Detection and Ranging (LIDAR)) data fusion techniques for predictive dis-
plays. One such system is proposed by Kelly et al. [153]. The authors constructed
the real-time photo-realistic system by combining LIDAR data with images to re-
construct a 3D model.

Computational hardware

Due to the heavy computations involved in the predictive display systems, at-
tempts were made for hardware optimisations. Schmid et al. [154] proposed
dense mapping from a UAV using an FPGA (Field Programmable Gate Array) im-
plementation of frame-by-frame dense stereo. On the contrary Hu et al. [86] pro-
posed a solution which runs using only a standard low-power CPU. A system is
implemented that reduces bandwidth by transmitting geometry and texture in-
formation instead of video. The performance is quantitatively characterized by
time delays and qualitatively using NASA TLX analysis [155].
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Human operator performance measurement

Asmentioned earlier, predictive displays aim to help the humanoperator. A recent
study byDybvik et al. [8] shows evenwith the use of a simple predictive display, the
performance can significantly be improved for teleoperated remote vehicle oper-
ation (20% ↑) or gaming (30% ↑). The study considered three distinct conditions for
the experiments for 57 subjects: 1) Latency, 2) Latency with predictive display and
3) Baseline (no added latency).

In another study Orlosky et al. [156] evaluated the effect of panoramic view
reconstruction (as opposed to simple screen) to reduce perceived latency in a hu-
manoid robot. The central idea was to provide flexible head control tasks through
the perspective of the robot.

Although various literature describes the development of predictive displays,
these are not always easy to replicate due to the constrain of real-life measure-
ments. On the contrary, our research focuses on the creation of the entire pipeline
of predictive technology, which includes simulators for the telepresence robots,
their control and navigation, provisions for controlled experiments by introducing
certain and uncertain delays, state-estimation algorithms and predictive displays.
Such a development is easy to replicate and can be used as a simulation frame-
work for any similar telepresence systems. The following sections describe the
design process in detail and the frameworks (i.e., RViz and Gazebo) that were used
to build this. It is worth noting that the entire development was purposefully built
on the simulation mode rather than interacting with a real-life system. This would
allow flexibility for wider adaptations.

6.3 Design and development of the proposed predictive

technology

In designing the proposed predictive technology, we make use of three major
open source software frameworks, namely, 1) Robot Operating System (ROS), 2)
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RViz [59] which is a 3D visualisation tool for ROS and 3) a 3D robotics simulator,
Gazebo [57]. The design of the proposed work is firmly based on our existing ex-
perimental framework, described in Section 4.3 as we see this is a natural exten-
sion of the same but in the simulation environment. The new updated version of
the experimental framework with the predictive display is shown in the Figure 6.1,
where there are two display screens, the first one for two-way communication and
the second one for simulation of the predicted robot pose.

Figure 6.1: The experimental framework included the camera display for two-wayhuman communication and the simulation display with predicted robot positionfor navigation.
Similar to the real environment, in this work, ROS is also used for path for-

mation and control of the telepresence robot in the simulation environment. In
modelling the time delay we simulate it by adding various time delays and apply
our AS-EKF-based state estimation algorithm (see Section 5.3) to verify the out-
come. As previously stated one of the major advantages of such a simulation en-
vironment is to visualise the outcome and the same is used to visualise the issues
related to time delay and its mitigation using the AS-EKF. A real-like fictitious en-
vironment was created in this case using Gazebo and real-like observations were
done by inserting a live camera along with the robot model.
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The rest of this section comprises somenecessary details of the software frame-
works, RViv and Gazebo and various design, and development stages followed by
some experimental results that were produced using the predictive technology.

6.3.1 RViz

ROS visualisation tool, abbreviated as RViz, is considered to be a powerful 3D vi-
sualization tool for ROS and is used in this work. In summary, it provides a conve-
nient Graphical User Interface (GUI) to visualise the robot model, display and log
information from the robot’s sensors, and also allow replay of the (logged) sensor
information. This is useful in building a simulator and aids the user by visualizing
what the robot is seeing or doing. Therefore it enables the user to debug a robot
application from sensor inputs against the planned (or unplanned) actions.

Figure 6.2: Example of the experimental environment in RViz built in this work tovisualise the robot model, robot path and the camera display information.
As a generic description of RViz, it is capable of displaying 3D sensor data from

stereo cameras, lasers, Kinects, and other 3D devices in the form of point clouds
or depth images. 2D sensor data from webcams, RGB cameras, and 2D laser
rangefinders are viewed in RViz as image data. It is to be noted that we only make
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use of the 2D optical camera as a sensor to monitor the environment.
When RViz is integrated with an actual robot, if an actual robot communicates

with a workstation running RViz, RViz will display the robot’s current configuration
on the virtual robot model. For example, if we fix a camera in the robot model
in the Gazebo (as a simulator robot environment which is also used in our work),
the camera information will be visualised in RViz. From the camera data, one can
build a navigation path and it can also be used for auto navigation. In addition, in
RViz one can access and graphically represent the values using a camera image.
This information is useful to build point clouds and depth images. As a general
functionality of RViz, one can select many displays to be viewed in RViz with data
from different sensors [157].

In this work, we used RViz in conjunction with Gazebo to visualise the robot
navigation path, view the environment by accessing the robot’s camera and log
navigation path information all of which are necessary to build the predictive dis-
play.

6.3.2 Gazebo

Similar to RViz, we briefly describe Gazebo in parts that are necessary to describe
our work. In general, the Gazebo framework, an open-source solution, is used to
create 3D scenarios on the computer with simulated robots, obstacles and other
objects. The gazebo is also the default simulator used in the ROS framework. Al-
though two separate projects, they are connected using gazebo_ros_pkgs. Details
of this package can be found in its tutorial [57] which was heavily used in develop-
ing the proposed framework. It contains plugins that interface ROS and Gazebo.
Gazebo accepts plugins developed in C++ alongside its external API (also in C++).
These plugins are then attached to the simulated robot and provide easy ROS com-
munication, such as both publish and subscribe control commands. The gazebo
is a 3D simulator, while ROS serves as the interface for the robot. Combining both
results in a powerful simulation system [58].
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In our work, we built a Beam plus robot differential drive plugin (with the same
configuration as the real robot thatwas used in this thesis) whichwas used to apply
appropriate commands to the robot’s motors. An example of our experimental
environment is shown in Figure 6.3. At this juncture, it is probably worth noting
that all the experiments were performed on Ubuntu 16.04 operating system, with
ROS Kinetic, Gazebo 7 version.

Figure 6.3: Example of the experimental environment in Gazebo simulator built inthis work to visualize the real-time 3D scenario of the telepresence robot naviga-tion on the computer controlled by the human operator.

6.3.2.1 Gazebo architecture and relevant libraries

Gazebo uses a distributed architecture with separate libraries for physics simula-
tion, rendering, user interface, communication, and sensor generation. Addition-
ally, the gazebo provides two executable programs for running simulations: 1) a
server referred to as gzserver for simulating the physics, rendering, and sensors
and 2) a client called gzclient that provides a graphical interface to visualize and
interact with the simulation. The client and server communicate using the gazebo
communication library.
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In the Gazebo system, GazeboMaster is essentially a topic name server. It pro-
vides name lookup and topic management. A single master can handle multiple
physics simulations, sensor generators, and GUIs. Almost all subsequent libraries
use the communication library. It acts as the communication and transport mech-
anism for Gazebo. It currently supports only publishing/subscribing, but it is pos-
sible to use RPC with minimal effort.

The physics library provides a simple and generic interface to fundamental sim-
ulation components, including rigid bodies, collision shapes, and joints for rep-
resenting articulation constraints. This interface has been integrated with four
open-source physics engines: Open Dynamics Engine (ODE) [158], Bullet [159],
Simbody [160] and Dynamic Animation and Robotics Toolkit (DART) [161]. Amodel
described in the Simulation Description Format (SDF) using XML can be loaded by
each of these physics engines. This provides access to different algorithm imple-
mentations and simulation features.

The rendering library uses Object-Oriented Graphics Rendering Engine (OGRE)
[162] to provide a simple interface for rendering 3D scenes to both the GUI and
sensor libraries. It includes lighting, textures, and sky simulation. It is possible to
write plugins for the rendering engine.

The sensor generation library implements all the various types of sensors, lis-
tens to world state updates from a physics simulator and produces output speci-
fiedby the instantiated sensors. TheGUI library usesQt to create graphical widgets
for users to interact with the simulation. The user may control the flow of time by
pausing or changing the time step size via GUI widgets. The user may also modify
the scene by adding, modifying, or removing models. Additionally, there are some
tools for visualizing and logging simulated sensor data.

The physics, sensor, and rendering libraries support plugins. These plugins
provide users with access to the respective libraries without using the communi-
cation system. Deploying ROS Plugin for Gazebo helps to implement a direct com-
munication interface to ROS, thus controlling the simulated and the real robots
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using the same software. This provides an effective simulation tool for testing and
development of real robotic systems [163].

Figure 6.4: Flow diagram of the proposed experimental environment includingthree simulation displays for robot’s true position, delayed sensor measurementand predicted robot pose.

6.3.3 Framework components

The proposed framework containsmultiple components. Although they are driven
by the necessity of this research, we aim to develop it in such a way that it is mod-
ular and could be adopted easily for any other type of telepresence navigation
system. The requirements of the proposed framework include

• Creation of a simulation environment/world which also incorporates real-
world equivalent items such as obstacles,

• Creation of a differential drive telepresence robot resembling the similar look
and configuration of the Beam plus real robot that was used so far in this
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work,
• Robot control and navigation through either ROS commands or through pro-
grams (for controlled experiments),

• Tracking and logging of navigation paths and
• Visualisation of the remote environment through camera sensor, and
• Inclusion of external navigation data (i.e., VICON data from real Beam plus)
in the simulation environment,

An overviewflowdiagramof the proposed framework is shown in Figure 6.4. In our
work, we have modelled the delay by incorporating various types of delays (both
certain and uncertain) which are then compensated with previously proposed AS-
EKF algorithm (see Chapter 5). Finally, the navigation paths are shown in the simu-
lation environment for various scenarios, i.e., true robot pose, delayed robot pose
and delay compensated predicted robot pose with an expectation that predicted
and true poses are close to each other.

As a workflow at first in the simulator, the robot receives commands of the
goal pose and the predefined trajectory via ROS control. The commands steer the
simulated robot in the Gazebo environment. Gazebo then sends the robot pose
information to the RViz to visualise the robot’s trajectory. We have introduced
a small time delay in the logged robot position data (both from the simulation
and real-life VICON-captured robot data) and used it as the delayedmeasurement
data. The delayedmeasurement data is processed by the AS-EKF-based state esti-
mation algorithm to minimize the time delay. The algorithm generated predicted
robot pose displays on the RViz.

Within the scope of this work, we intend to make a proof of the concept and
therefore the development was done using both the ROS-RViz-Gazebo environ-
ment for simulation and visualisation whereas the delay modelling and AS-EKF
were done in MATLAB. Integration of both and the creation of a single environ-
ment is considered to be future work.
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6.3.4 Building the simulation environment

A robot simulation system is used to verify the output results, creating a virtual
experimental environment for the physical robot depending on the actual robot
specifications. In this research, we presented a simulation environment same to
the real environment experimental framework based on ROS andGazebo. We cre-
ated the robot models precisely under Gazebo, the code developed for the sim-
ulation process and the state estimation predictive display directly implemented
in the real robot without modifications. The simulation system includes five sub-
models,

• Building the robot model,
• Building the world model,
• Control plugins,
• ROS communication with Gazebo, and
• Visualization in Gazebo and RViz

6.3.4.1 Building the robot model

We have developed the simulated robot model which is a differential drive robot
using the real physical specifications of the Beam plus robot. We built a Unified
Robot Description Format (URDF) file for the robot that will describe themain com-
ponents of our robot and enable it to be visualized and controlled by ROS tools,
e.g., RViz and Gazebo. Within the RViz visualization tool, we can view our URDF file
as we built it in increments. When the visual model has completed, we can modify
the URDF file to use in the Gazebo environment. In Gazebo, we can view the effects
of physics on our model as we move the model around the 3D environment.

The overall description of the UDRF model (developed in this work) is shown in
Figure 6.5. The components of the URDF model and the order of adding features
during the development are described below.
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Figure 6.5: URDF description of the experimental robot, i.e., Beam plus model withlinks and joints in the simulation environment.
Add a link A link contains the physical properties of one body of the model. This
can be a wheel or a link in a joint chain. Each link may contain many collision and
visual elements. The Beam plus model consists of nine links including footprint,
chassis, four wheels, display stand, screen and camera. The steps for adding vari-
ous links are given:
1. Set the collision element: A collision element encapsulates a geometry that

is used for collision checking. This can be a simple shape or a triangle mesh.
2. Set the visual element: A visual element is used to visualize parts of a link.

A link may contain 0 or more visual elements.
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3. Set the inertial properties: The inertial element describes the dynamic prop-
erties of the link, such as mass and rotational inertia matrix.

4. Add sensors: A sensor collects data from the world for use in plugins. A link
may contain 0 or more sensors.

5. Add light elements: A light element describes a light source attached to a
link. A link may contain 0 or more lights.

Add a joint A joint connects two links. A parent and child relationship is estab-
lished along with other parameters such as the axis of rotation, and joint limits.
The beam plus model has eight joints few were fixed and few were continuous in
nature.
Add plugins A plugin is a shared library created by a third party to control a
model. The robot model is a differential drive robot so we have used a differential
drive plugin to control the drive wheels and a camera plugin to capture the live
camera data. In our case, we developed a customised model plugin to navigate
the robot using both a computer keyboard and coding in C++ for a different type
of path formation. Such a plugin is useful for any controlled experiments.
URDFmodel development The codedefines the robotmodel namedbeam. The
model contains nine links. These are nominally named link A, link B and link C,
which connect via two joints, named joint A and joint B. The <parent> and <child>

elements of the joints identify how the links connect to each other: link A connects
to link B and link B connects to link C. link A has no parent link—that is, it appears
in <joint> elements as a child element only—and is, therefore, the root link.

The <inertial> element of link A defines the mass and moments of inertia
(ixx, iyy, izz) of the link. The products of inertia (ixy, ixz, and iyz) are unspeci-
fied and have the URDF default value of zero. The visual element of link A defines
the geometry type and material colour for use in the model visualization. The ge-
ometry in this case is a box with a width and thickness of 0.5 m and height of 0.1
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m. The <origin> elements of the link <inertial> and <visual> specify the trans-
forms from the link reference frame to the inertial and visual reference frames.
Similar elements apply to link B and link C.

The type attribute of the <joint> elements defines the joints as continuous—a
type of revolute joint without motion limits. The <origin> element specifies the
location of the joint relative to the reference frame of the parent link element. For
example, the <origin> element of joint A offsets the joint 0.05m along the -Z axis
relative to the origin of the link A reference frame. The axis element nested inside
each joint element defines the rotational axis of the joint as the Cartesian vector
[0, 1, 0], or +Y.

The figure (Figure 6.5) shows the components of the model, i.e., the links and
joints and the various frames they contain. R denotes a link reference frame, I a
link inertial frame, and V a link visual frame. J denotes a joint reference frame—by
definition held coincident with the reference frame of the child link. The inertial
and visual frames are offset to the centres of the links and the joint frames to their
lower edges.

The code was developed in a standard Gazebo environment where UDRF and
other descriptions are often encoded within XML (Extensible Markup Language)
formats. For completeness, an example code snippet is shown in Figure 6.6.

6.3.4.2 Building the world model

The term world used to describe a collection of robots and objects such as build-
ings, tables, lights and global parameters including the sky, ambient light, and
physics properties. The world included both static and dynamic objects. Static ob-
jects only have collision geometry. All objects which are not meant to move have
been marked as static, which was for performance enhancement. Dynamic ob-
jects have both inertia and collision geometry. We used Gazebo’s model database
which is a repository of all types of models including robots, tables, buildings, ob-
stacles, persons etc.
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Figure 6.6: Example code snippets of robot model developed for the simulation.

6.3.4.3 Control plugins

A plugin is a chunk of code that was compiled as a shared library and inserted
into the simulation. The plugin has direct access to all the functionality of Gazebo
through the standard C++ classes. Plugins are useful because they let developers
control almost any aspect of Gazebo, are self-contained routines that are easily
shared and can be inserted and removed from a running system.

Plugins were useful to programmatically alter the simulation such as moving
models, responding to events, insert new models given a set of preconditions. It
makes a fast interface to the Gazebo, without the overhead of the transport layer
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(no serialization and deserialisation of messages). There were currently six types
of plugins such as, World, Model, Sensor, System, Visual and GUI. Each plugin type
is managed by a different component of Gazebo. For example, a Model plugin is
attached to and controls a specific model in Gazebo. Similarly, a World plugin is
attached to a world and a Sensor plugin to a specific sensor. The System plugin is
specified on the command line and loads first during a Gazebo startup. This plugin
gives the user control over the startup process.

6.3.4.4 ROS communication with Gazebo

To achieve ROS integration with the stand-alone Gazebo, a set of ROS packages
named gazebo_ros_pkgs provideswrappers around the stand-aloneGazebo. They
provide the necessary interfaces to simulate a robot in Gazebo using ROS mes-
sages and services. The ROS APIs allow users to modify and get information about
various aspects of the simulated world.

6.3.4.5 Visualize in Gazebo and RViz

As previouslymentioned RViz (ROS visualization) is a 3D visualization software tool
for robots, sensors, and algorithms. It enables seeing the robot’s perception of
its world (real or simulated). The gazebo is a 3D robot simulator. Its objective is
to simulate a robot, giving a close substitute for how a robot would behave in a
real-world physical environment. The main difference between the two is Gazebo
enables the user to see what is happening along with the environment (as if in the
real environment) whereas RViz provides key information about the robot includ-
ing its navigation path or sensor measures, i.e., camera images [164].

In our case, we used both as 1) Gazebo is necessary to simulate a real-like en-
vironment and 2) RViz provides the necessary tools to log the robot positions and
view the world from the robot’s perspective. Together they form the Predictive
Display as intended in this work.

With the development of this framework, we now conduct a series of experi-
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ments that resembles experiments that were done in earlier chapters. The exper-
imental setups and the results are shown in the following sections.

6.4 Experimental results and discussions

We performed a series of controlled experiments using the proposed predictive
technology framework. While the primary aim of this chapter is the design and
development of the framework, this section verifies the usefulness of the same
where we conduct a set of experiments, similar to the ones that were reported in
the previous chapter (with real Beam plus).

6.4.1 Experimental flow and parameters

In all experiments a common workflow / experimental flow was maintained which
includes the following steps:
1. Robot navigation using ROS,
2. Logging of robot pose captured through the navigation,
3. Delay modelling by adding certain or uncertain delays,
4. Delay compensation using the previously proposed AS-EKF algorithm,
5. Visualisation of the robot navigation in the simulated environment through

the Gazebo, and
6. Visualisation of robot path and robot viewof the environment using a camera

in RViz.
As previously mentioned, this work focuses on the proof of the concept rather
than a complete integrated system. Therefore, some steps, step 3 and step 4 in
the above list are performed using MATLAB. The output of step 2, i.e., robot pose
was exported to a CSV file using a suitable rostopic command, which is then used
in MATLAB. The output of step 4, i.e., predicted robot pose after AS-EKF, are again
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exported through a CSV file which is then taken as the input to Gazebo and RViz
through a custom-built plugin.

In creating the robot model in Gazebo, we used robot parameters the same as
Beam plus. A similar raster scan navigation path was created pragmatically using
another custom-built C++ plugin in Gazebo. Two sets of results are obtained in
various delayed scenarios:

• Time series average error between the original robot path and delayed as
well as corrected robot path, and

• How robot sees its surrounding environments in the case of the original path
delayed path and corrected path.

For the first set of results, it is expected the overall mean square error would be re-
duced significantly and this should be reflected in the visualisation. For the latter
part, we fixed the robot after a certain step where one could see the surround-
ing items in a manner that there is a visible difference between the original and
delayed path whereas after AS-EKF correction it is closer to the original path.

The following subsection reported such results for both certain and uncertain
delays. As with the previous chapter (Chapter 5), we consider two types of un-
certain delays, 1) Gamma and 2) Gaussian, respectively. For a reasonable visual-
isation, we introduced an average of 50 time step delays in all cases which would
translate to a 0.1s delay in reality. However, as an experimental parameter, this
can be varied to simulate various other scenarios.

6.4.2 Scenario I: Certain time delay

In the case of a certain time delay, we have introduced a fixed number of time
steps delay (τ = 50) for each robot pose and measured the moving mean errors
between the original and delayed, EKF and AS-EKF prediction of the robot pose.
All other parameters are kept as in the previous experiment. Figure 6.7 provides
the top view visuals of the robot position in the Gazebo simulation environment
for all four scenarios.
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In order to visualize the environment from the robot camera, we used RViz and
the results are shown in Figure 6.8. It is evident that there is a difference between
the original robot pose and the delayed robot pose on what the robot can see
at that point in time. As expected EKF can not improve the prediction. However,
AS-EKF performed well and compensated for the delay and offer a near-original
robot pose. Finally, we also measure and compare the RMSE error between EKF
and AS-EKF in Figure 6.9, which shows expected significant improvements in the
case AS-EKF.

(a) Simulator (b) Delayed

(d) AS-EKF (c) EKF
Figure 6.7: Simulation environment in Gazebo for the certain time delay (τ = 50steps). (a), (b), (c) and (d) represent robot positions within the simulation envi-ronment without delay, with delay, and compensation with EKF and AS-EKF, re-spectively. The visualisation and results indicate that it can emulate the real ex-perimental set-up and introduce a delay for controlled experiments along withapplying EKF/AS-EKF for time delay compensation.
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(a) Simulator

(b) Delayed

(c) EKF

(d) AS-EKF
Figure 6.8: Display in RViz for the certain time delay (τ = 50 steps) along with therobot view of the environment. Figures in the left column show the robot positionsin the simulation environment for (a), (b), (c) and (d) representing without delay,with delay, compensation with EKF and AS-EKF, respectively. The right columnshows the robot’s view of the environment which indicates the original withoutdelay and AS-EKF has a very close environmental view proving the effectiveness ofthe proposed algorithm and the use of this simulator.133



Figure 6.9: RMSE error comparison of EKF and AS-EKF estimation with a certaindelay. Legend red and blue represent results for EKF and As-EKF, respectively withAS-EKF showing significant improvements with less error.
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6.4.3 Scenario II: Uncertain time delay

For uncertain delay, we have modelled the delay using Gamma and Gaussian dis-
tributions with an average delay of τ = 50 steps. Similar to Scenario I, we have
captured the visualisation in Gazebo and RViz and compared the error or differ-
ences in the visualisation for the original path, delayed path, and EKF and AS-EKF
predictions.

Gazebo visualisations are shown in Figure 6.10 and Figure 6.13 for Gamma
and Gaussian distributions, respectively. Similarly, RViz visualisations are shown
in Figure 6.11 and Figure 6.14. Finally, the comparison between the EKF and AS-EKF
performances is shown in Figure 6.12 and Figure 6.15, for Gamma and Gaussian
distributions, respectively. Finally, Table 6.1 shows the RMSE error comparison for
all three scenarios.

Evidently, as expected in all cases, AS-EKF consistently performed well and also
show better pose predictions which are close to the original robot path. The re-
sults also show the capabilities of the proposed predictive technology framework
when real visualisation and controlled experiments are plausible in the simulation
environment.

Delay type EKF AS-EKF Improvement
Certain 114.82 30.84 73.15%

Uncertain (Gamma) 111.73 30.62 72.60%
Uncertain (Gaussian) 112.15 31.79 71.65%

Table 6.1: RMSE error comparison for certain and uncertain time delays (average
τ = 50). AS-EKF shows major improvement over EKF which does not consider thedelay in its filtering steps.
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(a) Simulator (b) Delayed

(d) AS-EKF (c) EKF
Figure 6.10: Simulation environment in Gazebo for uncertain time delay withGamma distribution (average τ = 50 steps). (a), (b), (c) and (d) represent robotpositions within the simulation environment without delay, with delay, and com-pensation with EKF and AS-EKF, respectively.
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(a) Simulator

(b) Delayed

(c) EKF

(d) AS-EKF
Figure 6.11: Display in RViz for uncertain time delay with Gamma distribution (av-erage τ = 50 steps) along with the robot view of the environment. Figures in theleft column show the robot positions in the simulation environment for (a), (b), (c)and (d) representingwithout delay, with delay, compensationwith EKF and AS-EKF,respectively. The right column shows the robot’s viewof the environmentwhich in-dicates the original without delay and AS-EKF has a very close environmental viewproving the effectiveness of the proposed algorithm and the use of this simulator.137



Figure 6.12: RMSE error comparison of EKF and AS-EKF estimation with uncertaindelay (Gamma distribution). Legend red and blue represent results for EKF and As-EKF, respectively with AS-EKF showing significant improvements with less error.
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(a) Simulator (b) Delayed

(c) AS-EKF (d) EKF
Figure 6.13: Simulation environment inGazebo for uncertain timedelaywithGaus-sian distribution (average τ = 50 steps). (a), (b), (c) and (d) represent robot posi-tions within the simulation environment without delay, with delay, and compen-sation with EKF and AS-EKF, respectively.
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(a) Simulator

(b) Delayed

(d) EKF

(c) AS-EKF
Figure 6.14: Display in RViz for uncertain time delay with Gaussian distribution(average τ = 50 steps) along with the robot view of the environment. Figures inthe left column show the robot positions in the simulation environment for (a),(b), (c) and (d) representing without delay, with delay, compensation with EKF andAS-EKF, respectively. The right column shows the robot’s view of the environmentwhich indicates the original without delay and AS-EKF has a very close environ-mental view proving the effectiveness of the proposed algorithm and the use ofthis simulator. 140



Figure 6.15: RMSE error comparison of EKF and AS-EKF estimation with uncertaindelay (Gaussian distribution). Legend red and blue represent results for EKF andAs-EKF, respectively with AS-EKF showing significant improvements with less error.
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6.5 Chapter summary

This chapter proposes the design development of the predictive technology for
differential drive telepresence systems. The overall system has three major com-
ponents, namely, 1) ROS, 2) RViz and 3) Gazebo. RViz and Gazebo are used for
visualisation whereas ROS is used to control the robot.

A differential drive telepresence robot that resembles the Beam plus looks and
configurationwas developed inGazebo and controlled through ROSusing custom-
built plugins. Raster scan-based robot navigation was done using a C++-based plu-
gin and the robot pose was captured. This original robot pose was then used for
delaymodellingwith certain anduncertain delays (with bothGammaandGaussian
distributions). The delays are then compensated using standards EKF and previ-
ously proposed AS-EKF algorithms. Finally, the outputs are visualised in Gazebo as
well as in RViz to replicate the real-life telepresence systemwith predictive display.

Results for various scenarios show the capability of the proposed predictive
technology simulation framework and the superiority of the AS-EKF algorithm.
Such a framework is beneficial for two purposes, 1) predictive display and 2) con-
ducting controlled experiments in the simulation environment. Especially the lat-
ter is beneficial to the wider research community as a real-world telepresence sys-
tem is expensive and often unrealistic to realise in research environments.
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7 Conclusions and future work

In concluding the work carried out in this thesis, this chapter discusses the out-
come of the chapters along with the overall concluding remarks. As expected the
conclusions lead to further research directions that are noted in Section 7.2 on the
future work. The future work also includes details of initial experiments on robot
navigation with Visual Simultaneous Localization and Mapping (VSLAM).

7.1 Conclusions

This thesis conducted research on the robust navigation of telepresence robots.
Telepresence systems are necessary for multiple applications areas where human
physical presence is either not possible, dangerous or unnecessary. Such applica-
tions include space applications, military applications, telesurgery, industrial work
or more recently telepresence in an office environment, hospitals or individual
homes. We are largely interested in the latter application and focused on their
robot navigation issues, especially time delay.

Time delays could be caused by a number of factors such as delays due to
communication, system hardware, computational overheads or even latency due
to physical distances. Modelling such delays and a compensation mechanism is
of our interest, and this thesis proposed strategies to mitigate them. However, in
order to design, develop and verify new algorithms, requires a reasonable telep-
resence framework to conduct experiments. Thus we built them by two means,
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1) a real-like scenario where we used an off the shelve state-of-the-art differen-
tial drive telepresence robot Beam+ along with a VICON multi-camera system for
tracking and 2) an end-to-end simulation environment using open-sourced soft-
ware such as Gazebo and RViz. In both cases, the robot operating system, ROS,
played a fundamental role to control and navigate the robot and measuring and
log necessary sensor outputs.

The core of this work focuses on an algorithm that compensated for the time
delay. This was achieved by proposing the algorithm called Augmented State Ex-
tended Kalman Filter (AS-EKF). In this process, we used EKF as the baseline and
incorporated augmented state models in order to estimate and compensate for
the errors caused due to the delay. The proposed algorithm successfully executed
estimating actual robot positionmodelling certain and uncertain time delays in the
robot navigation. The uncertainty of the time delays was modelled by considering
PDF in terms of Gaussian and Gamma distributions. The results show major im-
provement over baseline EKF which does not consider time delays.

The thesis consists of seven chapters which include the problem statement,
experimental frameworks, a new algorithmic proposal and future research direc-
tions.

• Chapter 1 provided necessary introduction and outline of the thesis.
• Chapter 2 presented a general overview of the telepresence systems, their
application areas and the background that is necessary for this research.

• Chapter 3 presented the state-of-the-art analysis with a focus on robot nav-
igation in local and remote sites, the role of communications and challenges
and mitigation strategies around time delay issues.

• Chapter 4 described the real-world experimental framework that consists
of an off shelve Beam plus telepresence robot, VICON motion tracking cam-
era system, and methodologies for robot control and navigation using ROS,
correction of systematic error using UMBMark method and other measure-
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ments.
• Chapter 5 proposed a new approach for state estimation assuming uncer-
tain delayed sensor measurements of a telepresence robot during naviga-
tion. A technique based on Augmented State Extended Kalman Filter (AS-
EKF), is proposed to estimate the true position of the telepresence robot. The
uncertainty of the delayed sensor measurements has been modelled using
probabilistic density functions (PDF) of Gamma and Gaussian distributions.

• Chapter 6 presented the design and development of a simulation environ-
ment for robot navigation and pose estimation using predictive technology.
This development incorporates the predictive display which is necessary for
human operators at the local site. Additionally, the simulation environment
allows conducting controlled experiments as a real-world telepresence sys-
tem is expensive and often not so plausible to develop.

• Finally, Chapter 7 concluded the thesis and discussed future work. In this
context, initial experiments were conducted by proposing a visual SLAM-
based experimental set-up which would allow robot pose estimation in un-
known environments. Further research directions were discussed especially
when such measurements (i.e., pose from visual SLAM) are noisy and poten-
tially erroneous.

7.1.1 Key conclusions

While telepresence systems exist for decades for various applications, adaptation
to consumer life is fairly recent with the introduction of telepresence robots in
offices or care homes. This has been evenmore relevant in today’s world when the
COVID-19 pandemic restricts travel and physical human interactions. However,
there are a few problems that remain regarding the robust navigation of robots in
the remote environment. Time delay is one of the key challenges and this thesis
proposed solutions to address that.
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Traditional EKF often fails to consider the issues with a time delay as it largely
concerns in addressing positional errors in a noisy environment. However, we
showed that the issues could be addressed by incorporating augmented states by
extending traditional EKF that compensate for the time delay. We developed a new
algorithm (AS-EKF) that demonstrates the improvement up to 54% for a certain
time delay (for a time delay of 25 steps).

Now considering a real environment where certain time delays are not ex-
pected, we considered uncertain time delays. Uncertain time delays are modelled
using two PDF distributions representing various time delays in such systems and
discussed in detail in Section 4.4.2). The proposed AS-EKF considered those un-
certain delays and reports major improvements over standard EKF, over 50% for
both Gaussian and Gamma distributions (for 25 steps time delay, same as certain).
This in fact demonstrates the robustness of the proposed algorithm for wider ap-
plication scenarios.

The othermain proposition of this work is the creation of predictive technology
in a simulation environment. It is well understood that the realisation of a telepres-
ence system is often implausible for various reasons including cost and infrastruc-
ture requirements. Even with such a system, conducting controlled experiments
are hard to achieve. We not only overcome these challenges through the design
and development of a frameworkwith the use of RViz andGazebo but also provide
a framework to the research community for wider adaption. We demonstrated
that one can reproduce similar results in the simulation environment which also
provides a platform for predictive display in a telepresence system.

146



7.2 Future work

This thesis conducted research in improving telepresence robot navigation in time-
delayed conditions. In order to compensate for certain and uncertain delays we
proposed (in Chapter 5) an Augmented State Extended Kalman Filter (AS-EKF) that
shows significant improvement over traditional EKF. The development and verifi-
cation of the algorithm were achieved in two parts,

• With the use of an off-the-shelve telepresence robot Beam plus (controlled
using ROS) along with its experimental framework that includes a state-of-
the-art VICON motion tracking system and

• A custom-built simulation environment that uses open-source visualisation
and modelling software RViz and Gazebo, respectively.

The algorithm development relies on various delays that were artificially incor-
porated based on the delay models in a similar situation as available in the litera-
ture. Therefore as a natural way forward would be to use a real-world system that
by nature incorporates unknown delays and positional errors.

In addition, so far our experimental setups used either external measuring
equipment,i.e., VICON or tools available in the simulator to measure the robot
pose. In practice, neither of them is available for a real system deployment. That
indicates the need for an in-situ measurement sensor(s) that can provide robot
pose information.

We understand that controlled experiments in a real-world experimental set-
up are challenging (if not impossible). However, considering the above scenarios,
one could think of future work in a direction that can realise such an experimental
framework and try to verify the proposed delay compensations technique.

In thiswork, such an attemptwasmadeusing a new set-upwhere a camerawas
installed on top of the Beam plus telepresence robot and visual SLAM was applied
to measure the robot’s pose. Admittedly it encountered a set of challenges includ-
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ing the COVID-19 lockdown over the past years when lab access was restricted and
therefore the plan did not go forward as expected. As an alternative, this thesis
develops the simulation environment and continued the work.

However, we believe it is important to report such an effort as this will help
future researchers starting from information regarding the set-up and initial mea-
surement observations. The section below provides a brief background of visual
SLAM, the new experimental set-up and observation of initial robot posemeasure-
ment data.

7.2.1 Telepresence robots with visual SLAM

The work aimed at navigating Beam plus telepresence robot using ROS along with
a camera attached to it which can provide a robot pose in an unknown environ-
ment. For this purpose, we rely on existing ORB-SLAM2 and capture robot pose
which is essentially a delayed and noisy measurement of the camera sensor. The
original intention was to apply the AS-EKF algorithm on such noisy camera mea-
surements.

7.2.1.1 Visual Simultaneous Localization and Mapping

State estimation in an unknown environment is very challenging without knowl-
edge about the environment and the current pose of the robot. Visual SLAM be-
came a very practical approach to solving this problem. A complete visual SLAM
framework consists of four parts: (1) tracking front end, (2) optimization back end,
(3) loop closure detection and (4)map construction. The implementation method
of Visual Odometry is divided into (A) feature-basedmethod and (B) directmethod.

Davison et al. [165] first proposed a filter-basedmonocular visual SLAM (Mono
SLAM) system that estimates sparse feature points and camera pose. The non-
linear error model and large computations restricted its application. Strasdat et al.
[166] demonstrated that key frame bundle adjustment-based techniques which
are more accurate per computational time than filtering. Klein and Murray [151]
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proposed Parallel tracking and mapping (PTAM) system which is a feature-based
SLAM algorithm based on nonlinear optimization back end. Mur-Artal et al. [167]
improved PTAM and proposed the ORB feature-based slam system, called ORB-
SLAM. The system is fast for real-time accurate tracking and mapping. Engel et
al. [168] proposed a large-scale direct monocular SLAM (LSD-SLAM). Compared
to other existing direct methods, it reconstructs large-scale semi-dense maps and
highly accurate three-dimensional maps in real time.

Newcombe et al. [169] integrate all the depth data and image information from
Kinect into a dense volumetric model to reconstruct the 3D model of the global
map. Henry et al. [170] use a joint optimization algorithm to apply RGB-D cameras
to the robot field in indoor environments. Kerl et al. [171] proposed a visual SLAM
method based on a direct dense RGB-D camera. This method combines dense
tracking with keyframe selection and poses graph optimization that minimizes the
photometric and depth error. Compared to the feature-based method, the direct
method is faster and directly recover the camera pose. It has high robustness to
the photo-metric error of the image without feature extraction. However, in the
case of geometric noise, the algorithm performance decreases quickly.

In this work, we used a recent ORB-SLAM method proposed by Mur-Artal et
al. [172] due to its comprehensive SLAM framework which is capable of real-time
parallel tracking,mapping, loop closing and re-localization. Therefore, thismethod
is efficient formapping and localizing a wide range of environments and is suitable
for our telepresence robot navigation in an unknown environment.

7.2.1.2 Methodology

In this work, we use a cameramounted on top of our telepresence robot and apply
the video feed to a visual SLAM algorithm to measure the robot’s position. As this
measurement is often noisy and time-lagged or delayed, this does not provide
the true state of the robot. In order to improve the state estimation one could
apply the proposed AS-EKF algorithm on the measured states and compare the
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performance with real robot position captured using amulti-camera VICON setup.
In this context, it is sensible that firstly we summarize the ORB-SLAM2 algorithm.

ORB-SLAM2: ORB-SLAM2 [172] which uses monocular, stereo and RGB-D cam-
eras contain three threads which work in parallel, tracking, local mapping and loop
closing. The tracking thread is used to localize the camera with the extracted fea-
tures for every frame and to the local map and minimize the re-projection error
by applying motion-only bundle adjustment. The second thread local mapping is
used tomanage and optimise the local map through local bundle adjustment. The
last thread is loop closing which performs pose-graph optimization to correct the
drift and detect large loops. After loop closing a fourth thread was introduced to
perform full bundle adjustment of the entire map to compute the optimal struc-
ture and motion solution.

ORB-SLAM2 embedded a place recognition module for re-localization, if the
system has lost track of where it is or for re-initializes if there is already a mapped
scene. Another important aspect of ORB-SLAM2 is the co-visibility graph, which
is used to link any two key-frames that have similar observations of points. The
graph structure is used to retrieve local windows of key-frames which enables the
tracking and local mapping to operate locally. For tracking, mapping and visual
place recognition the ORB-SLAM2 uses ORB features, which are robust to capture
environmental changes and fast to extract andmatch allowing for real-time opera-
tion. We capture the output from key-framemapping to extract the robot position
including x,y,z and θ which then can be used as the input to the AS-EKF framework
for further processing. An example output from ORB-SLAM2, captured during our
experiment in the lab environment is shown in Figure 7.1.

Through the ORB-SLAM2 we predicted the camera pose and hence the robot
pose which is used as measurement data in the AS-EKF algorithm. With the em-
pirical evidence, we assume that there is an amount of time difference between
sending a control command and themoment when themeasurement data enters
the filter.
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Figure 7.1: Example output fromORB-SLAM2 captured in the lab environment dur-ing the experiment. The left-hand column shows the robot motion history, row 1of column 2 is the reference points detected by SLAM and row 2 is the point cloudview.

7.2.1.3 Experimental framework

In this work, we have used a Beam plus differential drive mobile robot. As de-
scribed in earlier chapters the Beam plus robot produced an enormous amount
of dead-reckoning errors during experimental navigation which are corrected with
the UMBMark method. ROS is used to navigate and control the robot.

This setup is now extended to enable visual SLAM-based robot pose measure-
ment by incorporating a 3D camera sensor. We captured camera data using ASUS
Xtion2 3D sensor [173]mounted on top of our Beamplus. The experimental set-up
for Beam plus and the camera is shown in Figure 7.2. The camera was connected
through the ROS packages with the host computer. The camera was used to map
the environment and extract the robot’s pose. We captured the robot’s absolute
navigation data using the VICON motion capture system. We have attached some
retro-reflective markers on the robot to represent it as a rigid body. VICON cam-
eras were used to record the motion movement of the robot.

The proposed algorithmwas implemented in a Linux-based computer as a host
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Figure 7.2: Telepresence robot Beam plus with ASUS Xtion-2 camera mounted forvisual SLAM measurement in our experiment.
computer. The host computer is connected to the telepresence robot using the
ROSdriverwhich created a ROSbridge between them. Through the ROSbridge, we
send velocity commands to navigate the robot. The control command directed the
robot to form a one-by-half-meter raster-scan navigation path. In order to localize
the robot’s position, the Xtion2 camera was used. The camera was attached to the
robot head and using the ORB-SLAM2 method the lab environment was mapped
and the robot’s location was tracked through the camera position. The VICON
camera which captured absolute navigation data (assuming negligible variance)
of the robot was used to confirm the accessibility of the proposed algorithm. All
the experimental works were carried out in a real laboratory environment. The
overall experimental framework is depicted in Figure 7.3.
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Figure 7.3: Visual SLAM experimental framework with a state-of-the-art off-the-shelve telepresence robot Beam plus.

7.2.2 Discussions and future work

With the initial set up we acquired experimental SLAM and corresponding VICON
data. An example of data is shown in Figure 7.4. The observation indicates erro-
neous measurements of robot pose using the visual SLAM. We did not apply any
corrective algorithm which is considered to be future work. Based on the initial
observation following research directions are advised:

• Measurement data point using visual SLAM is extremely limited (<100) com-
pared to the number of VICON data points (>10,000). Thus one can consider
data augmentation through various interpolation techniques. This would po-
tentially improve the quality of the input measurement data to any filtering
algorithm.

• Due to uncertain and challenging environments sometimes SLAM fails to
generate any measurement points or even produces extremely noisy and
erroneous measurements. It is particularly observable when there is a net in
the surroundings and therefore SLAM can not estimate a robust reference
point. One potential solution to make up for the missing data is to improve
the SLAM algorithm [174] or change the lighting conditions which also im-
pact considerably. However, major improvements could be achieved using a
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a) SLAM trajectory output b) VICON output
Figure 7.4: Robot trajectory using SLAM output and real position using VICON.SLAM output shows a limited number of poses calculated using ORB-SLAM2 whileVICON has dense measurement.

better filtering approach or even emerging deep learning [175].
• Due to major computation complexity and other factors such as communi-
cation delay there could be a time delay. Modelling such a time delay would
be very interesting and challenging. Once modelled it could be incorporated
within the AS-EKF algorithm in order to offer a potential solution towards
robust robot pose prediction.

• Although we have focused on the time delay issue in the telepresence sys-
tem, many other factors that contribute to positional error require to be fac-
tored in any proposed algorithm. Therefore, it would make better sense to
propose a joint delay compensation and positional error correction filtering
algorithm by modelling the contributing factors.

• Finally, it is worth investigating other sensors (including ultrasound sensors
or GPS) which can provide robot pose information. However, this will depend
on the application-specific scenarios, e.g., , at present GPS based systems are
not effective in indoor scenarios.
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