

PROBING THE POTENTIAL OF BRANCHED POLYMERS

AS BIOMATERIALS

By

Gracie Love Kerr

A Thesis submitted to the University of Strathclyde, Strathclyde Institute of Pharmaceutical and Biomedical Sciences, in fulfilment of the requirement for degree of Doctor of Philosophy

May 2013

DECLARATION OF AUTHENTICITY AND AUTHOR'S RIGHTS

'This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree.'

'The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.'

Signed:

Date:

This thesis is dedicated to my granny, Mrs Chris Kerr, who asks every day whether I have invented anything yet and is a constant inspiration.

"We Kerr's have never been beat (beaten)."

Robert Love Kerr 1923-1984

ACKNOWLEDGMENTS

I would first like to thank my supervisors, Doctor Andrew Urquhart and Doctor Paul Hoskisson. I would like to say thanks to Andrew for his unique kind of support throughout this process, I have been given the opportunity to learn a wide range of skills over the time I have spent with him and he allowed me to find my own way which has been the most important thing I could have learned from my PhD. Thanks also to Paul who has never failed to make me smile and has been invaluable throughout the biological aspects of my work; I am not a gifted biologist but I have managed to muddle through and discover some of the most interesting elements of my thesis with his support. I could not have finished this without both of you, thanks!

A number of people helped me during this project and I would like to thank them all; Mark Farrell and Doctor Phil Riches of the Bioengineering Unit, University of Strathclyde for aiding me in the compression studies, Doctor Dimitrious Lamprou for his help with the AFM analysis and Joseph Muench for his ever helpful advice whilst carrying out the HSI study. I would also like to thank the technical, workshop and secretarial staff for all their help; they are always calm in a crisis which will never be forgotten! Finally I would like to give my thanks to the EPSRC for funding my project and Alastair Florence for the use of his lab and facilities.

I have made a number of friendships during my PhD which will last me a lifetime; I would like to thank them all for their support, humour, fun and general nonsense without which I would have probably lost it a long time ago... Joe, Lisa, Ruairidh, Jen (Doctor), Shonagh, Gemma, Jen (Wee) and Michelle; you are fabulous, you can brighten up any room and you remind me every day to strive to fulfil my dreams and never ever give up.

To my best friend Nicole and her beautiful baby Cooper; in the time it has taken me to write this you have cooked up a person, way to make me feel useless! I could not make it through without you, you're my other half, the person who can make me laugh till I cry and the one person I know will always be honest; I am lucky to have you in my life. Katy, words cannot apparently describe how much you mean to me (I know, I have been trying!!!) you can make anything better, no matter how serious or how many tears have been shed. Your kindness and generosity are beyond comprehension, you make me a better person for knowing you. To the rest of my girls, Kirsty, Bella, Lexy and Lesley-anne, thank you for helping me just forget – it was more helpful than you can ever know.

Last but not least I would like to thank my family. My parents for getting me here, for supporting me throughout all of my decisions (however much they may not have agreed at the time) and for believing in me unconditionally. I owe you more than I can ever repay and I love you more than I can ever say. Thanks for never letting me give up and reminding me why I am trying so damn hard. To my ickle sister, you are brilliant and you know it. You have become my friend over the years and a source of competition like no other, but more than this you are my sister, we share everything and I couldn't imagine doing any of these things without your support. Finally to my granny, you are just amazing, you never give up however hard things get and this is my greatest inspiration in life.

Each and every one of you helps me every day to be better and for that I thank you all. Now let's crack open the champers!

CONTENTS

CHAPTER 1. INTRODUCTION 1		
	1.1 BIOMATERIALS	1
	1.2 POLYMERS	2
	1.2.1 SYNTHESIS	3
	1.2.2 LINEAR POLYMERS	4
	1.2.3 DENDRITIC POLYMERS	6
	1.2.4. BRANCHED POLYMERS	7
	1.2.5 HYDROGELS	11
	1.3 POLYMERS AS BIOMATERIALS	11
	1.3.1 USES	12
	1.3.2 LIMITATIONS	13
	1.4 BIOFOULING	15
	1.5 SUMMARY AND RESEARCH AIMS	16
CHAPTER 2. MATERIALS AND METHODS		
	2.1 CHEMICALS	19
	CHEMICALS	19
	SOLVENTS	20
	BACTERIA	20
	2.2 POLYMER SYNTHESIS	20
	2.2.1 ACRYLATE SYNTHESIS	20
	2.2.2 THIOL-ENE SYNTHESIS	24
	2.2.3 POLYMER COATING OF COVERSLIPS	26
	2.3 CHEMICAL ANALYSIS	27
	2.3.1 CONTACT ANGLE GONIOMETRY AND SURFACE ENERGY	27
	2.3.2 FOURIER-TRANSFORM INFRARED SPECTROMETRY	30
	2.3.3 RAMAN ANALYSIS	32
	2.3.4 ATOMIC FORCE MICROSCOPY	33
	2.3.5 DIFFERENTIAL SCANNING CALORIMETRY	37
	2.4 PRINCIPLE COMPONENT ANALYSIS	39
	2.5 BACTERIAL TESTING	41
	2.5.1 MEDIA PREPARATION	41

2.5.2 PREPARATION OF CULTURE PLATES	42
2.5.3 CRYSTAL VIOLET STAINING OF BACTERIAL GROWTH	42
2.5.4 GREEN FLUORESCENT PROTEIN BACTERIAL GROWTH	43
2.5.5 PLATE COUNTING	44
2.6. MATERIAL PROPERTIES	49
2.6.1 POLYMER SWELLING	49
2.6.2 TEXTURE ANALYSIS	50
2.6.3 POLYMER COMPRESSION	53
CHAPTER 3. ACRYLATE POLYMER SYNTHESIS AND TESTING	56
3.1 INTRODUCTION	56
3.2 METHODS	56
3.3 RESULTS	57
3.3.1 POLYMER SYNTHESIS	57
3.3.2 CONTACT ANGLE GONIOMETRY AND SURFACE ENERGY	58
3.3.3 FOURIER-TRANSFORM INFRARED SPECTROMETRY	60
3.3.4 RAMAN ANALYSIS	64
3.3.5 ATOMIC FORCE MICROSCOPY	68
3.3.6 DIFFERENTIAL SCANNING CALORIMETRY	70
3.3.7 BACTERIAL TESTING – CRYSTAL VIOLET STAINING	73
3.4 DISCUSSION	79
3.4.1 POLYMER SYNTHESIS	79
3.4.2 CONTACT ANGLE GONIOMETRY AND SURFACE ENERGY	80
3.4.3 FOURIER-TRANSFORM INFRARED SPECTROMETRY	81
3.4.4 RAMAN ANALYSIS	86
3.4.5 ATOMIC FORCE MICROSCOPY	90
3.4.6 DIFFERENTIAL SCANNING CALORIMETRY	91
3.4.7 BACTERIAL TESTING –CV STAINING	96
3.5 CONCLUSIONS	98
CHAPTER 4. THIOL-ENE POLYMER SYNTHESIS AND TESTING	99
4.1 INTRODUCTION	99
4.2 METHODS	100
4.3 RESULTS	100
4.3.1 POLYMER SYNTHESIS	101

	4.3.2 CONTACT ANGLE GONIOMETRY AND SURFACE ENERGY	102
	4.3.3 FOURIER-TRANSFORM INFRARED SPECTROMETRY	104
	4.3.4 RAMAN	110
	4.3.5 DIFFERENTIAL SCANNING CALORIMETRY	113
	4.3.6 BACTERIAL TESTING – CV STAINING	114
	4.3.7 BACTERIAL TESTING – GFP BACTERIA	116
	4.3.8 BACTERIAL TESTING- BACTERIAL PLATE COUNTING	117
	4.3.9 BACTERIAL TESTING - HSI FOR BIOFILM QUANTIFICATION	121
	4.4 DISCUSSION	125
	4.4.1 POLYMER SYNTHESIS	125
	4.4.2 CONTACT ANGLE GONIOMETRY AND SURFACE ENERGY	126
	4.4.3 FOURIER-TRANSFORM INFRARED SPECTROMETRY	127
	4.4.4 RAMAN	133
	4.4.5 DIFFERENTIAL SCANNING CALORIMETRY	137
	4.4.6 BACTERIAL TESTING - CRYSTAL VIOLET STAINING	142
	4.4.7 BACTERIAL TESTING - GFP BACTERIA	144
	4.4.8 BACTERIAL TESTING - BACTERIAL PLATE COUNTING	144
	4.4.9 BACTERIAL TESTING - HSI FOR BIOFILM QUANTIFICATION	145
	4.5 CONCLUSIONS	147
CHAPTER 5. THIOL-ENE SWELLING BEHAVIOUR AND MATERIAL PROPERTIES		
	5.1 INTRODUCTION	149
	5.2 METHODS	150
	5.3 RESULTS	150
	5.3.1 POLYMER SYNTHESIS	150
	5.3.2 SWELLING BEHAVIOUR	151
	5.3.3 TEXTURE PROFILE ANALYSIS	154
	5.3.4 POLYMER COMPRESSION	161
	5.4 DISCUSSION	164
	5.4.1 POLYMER SYNTHESIS	164
	5.4.2 SWELLING BEHAVIOUR	164
	5.4.3 TEXTURE PROFILE ANALYSIS	166
	5.4.4 POLYMER COMPRESSION	173
	5.5 CONCLUSIONS	174

6. SUMMARY AND FURTHER WORK 17	
6.1. SUMMARY	176
6.2 FURTHER WORK	177
REFERENCES	179
APPENDIX 1	187
APPENDIX 2	198
APPENDIX 3	219
TABLES AND FIGURES INDEX	237

ABSTRACT

Biomedical devices are susceptible to biofilm colonisation; these are bacterial communities which adhere to a surface and secrete extracellular polymers and proteins establishing chronic infections. Biofilms are highly resistant to antibiotic chemotherapy and require implant excision followed by an aggressive course of intravenous antibiotics to be effectively eliminated. This is costly and invasive to the patient. The work presented in this thesis investigates the synthesis of novel branched polymers as coatings for biomedical implants.

Branched acrylate and thiol-ene polymers were chosen for this study as the synthesis is a facile and well established within the literature. All polymers were characterised using multiple techniques to determine their chemical properties and biological response. Acrylate and thiol-ene materials were synthesised using methods adapted from those within the literature however, in order to promote novelty monomer species were chosen which had not been cited in any previous literature. Polymerisation, in each instance, was completed efficiently with minimal work up required, demonstrating the potential high throughput capability of these techniques. Post synthesis, all polymers were analysed to determine their chemical composition, surface properties, crystallinity and bacterial control.

Differential Scanning Calorimetry and Textural Analysis clarified elements of the polymers structure including their crystallinity along with changes which are incurred post submersion in liquid. Chemical composition, including the present functional groups, was determined using Infrared and RAMAN spectroscopy. Bacterial testing was carried out using two organisms which are known to be prolific biofilm producers along with being common pathogenic agents in humans, *Staphylococcus aureus* and *Pseudomonas aeruginosa*. Data from the bacterial studies carried out on the acrylate material indicated that the proliferation of biofilms can be controlled upon the addition of further branching species into the reaction mixture. In comparison, the thiol-ene polymers produced appear to retard the growth of bacteria in all instances with respect to polystyrene, a commercially available and commonplace biomaterial, however no trends were observed indicating the preferred reagent combination. A number of materials synthesised also had the ability to take on large volumes of water in a hydrogel like manner, this was investigated using a number of novel compression and texture analysis techniques to clarify the changes in the

polymer matrix upon immersion in water. From this work it can be concluded that both branched acrylate and thiol-ene polymers are efficient to manufacture and can be prepared using a number of possible monomer units. Response to known biofilm producing bacterial strains can be modified via the reagents and is both simple and effective. These plastics, which are facile to make and modify, have been shown to be a possible candidate for bioresistant coatings, for commercially available bioimplants or wound dressings.

ABBREVIATIONS

AFM	Atomic force microscopy
CAG	Contact Angle Goniometry
CV	Crystal Violet
DIM	Diiodomethane
DMPA	2,2–dimethoxy 2-phenyl acetophenone
DMSO	Dimethylsulfoxide
DNA	Deoxyribonucleic acid
DSC	Differential scanning calorimetry
EG	Ethylene glycol
FDA	Food and Drug Administration
FTIR	Fourier Transform Infrared spectroscopy
FW	Filtered water
GFP	Green Fluorescent Protein
HIS	Hyperspectral imaging
hMSC	Human mesenchymal stem cell
LB	Luria Bertani
MRSA	Methicillin-resistant Staphylococcus aureus
NIR	Near infra red
PBS	Phosphate buffered saline
PCA	Principle component analysis
PEG	Poly(ethyleneglycol)
pHEMA	Poly(2-hydroxyethyl methacrylate)
PLA	Polylactic acid
PMA	Polymethacrylate
PMMA	Poly(methyl methacrylate)
PVA	Poly(vinyl alcohol)
SCVP	Self-condensing vinyl polymerisation
SE	Surface energy
SPM	Scanning Probe Microscope
ТА	Texture Analysis
Тс	Crystallisation temperature

tEGDA	Tetra ethylene glycol diacrylate
Тg	Glass transition temperature
TGA	Thermogravimetric analysis
Tm	Melting temperature
ТРА	Texture Profile Analysis
UV	Ultraviolet