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Abstract

Injecting drug use is a growing risk factor for the transmission of the human im-

munodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS)in

the majority of countries, and the high prevalence of HIV among many popula-

tions of persons who inject drugs (PWIDs) presents a huge global health issue

(Mathers et al. 2008). Approximately 11.3% of the world’s population uses injec-

tion medicines in relation to drugs and crime on Drugs and Crime (2020). The risk

of drug overdose and blood-borne infection, especially HIV and Hepatitis B and

C, which are transmitted through the sharing of contaminated needles and sy-

ringes and risky sexual behaviours of individuals who have been infected, makes

injection drug use a major public health problem and a leading cause of morbidity

and mortality on Drugs and Crime (2020).

The spread of HIV has seen the widespread application of mathematical mod-

elling approaches. In most nations around the world, the injection of drugs is

a significant contributor to the spread of HIV/AIDS. The media plays a signifi-

cant role in raising health consciousness and influencing behaviour change. The

existing literature illustrates how differential equation models can be used to de-

scribe the effects of media awareness initiatives on the spread and containment

of disease (Greenhalgh et al. 2015). In this thesis, we consider the effect of

an awareness program on the dynamic behaviour of the spread of HIV/AIDS

amongst PWIDs. The HIV/AIDS model can be modelled using the SIS and SIR

models with time-varying parameter values. We develop the mathematical differ-

ential equation model that extends the research by Greenhalgh and Hay (1997),
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Liang et al. (2016) andLewis and Greenhalgh (2001) to illustrate the impact of

disease awareness campaigns on the rate of HIV transmission among PWIDs.

The new assumption of the model is that PWIDs clean their needles before use.

For each of these different epidemic models, we have developed a mathemat-

ical model to represent the new, more effective model that curbs the spread of

the diseases by decreasing the prevalence of needle and syringe sharing among

PWIDs. We have primarily discussed two approaches for examining how aware-

ness of infection levels affects epidemic modelling. First, we perform an analysis

of stability and provide both local and global results. The fundamental reproduc-

tion number R0, an essential factor in our work, has a formula that we determine.

If R0 is greater than one, there are two steady states: one without disease and

one with it. Additionally, we demonstrated that the disease-free equilibrium point

is locally asymptotically stable when R0 is less than one and neutrally stable when

R0 = 1, and unstable when R0 > 1.

These analytical results are confirmed and investigated numerically by simu-

lating the equations with the SOLVER computer simulation software. The realistic

parameters for these simulations were derived from data and the infectious dis-

ease literature. To conclude the thesis, a brief discussion and summary section

are provided.
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Chapter 1

Introduction and Literature Review

1.1 Motivation

In the early 1980s, human immunodeficiency virus (HIV) was found. It is an

immunodeficiency virus that weakens the immune system, increases susceptibil-

ity to infection, and causes acquired immunodeficiency syndrome (AIDS) in the

long run. HIV is transferred through a variety of routes, including homosexual and

heterosexual sex. However, the injection of drugs is one of the most significant

ways HIV is transmitted; persons who inject drugs (PWIDs) are often uninformed

of their infection and this contributes to the spread of HIV. The coexistence of ad-

ditional opportunistic infections and diseases with HIV among people who inject

drugs (PWIDs) is associated with high morbidity and mortality rates and signifi-

cant healthcare costs. To prevent and limit the transmission of the disease, the

early identification of HIV in PWIDs is crucial.

According to the National Health Service (NHS 2022), the vast majority of in-

fected people develop a mild illness that is comparable to flu and lasts for around

two weeks. After that, the person may not have any symptoms for a consider-

able amount of time. Individuals who are not treated progress from being acutely

infected to being asymptomatic, experiencing signs of pre-AIDS, and finally de-
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veloping full-blown AIDS. Some tests can determine whether or not someone has

HIV. Since HIV/AIDS is still a significant issue, it is of the utmost importance to

create mathematical models that can assist us in this endeavour.

Since infectious diseases pose a serious threat to humankind and result in

death, disfigurement, as well as social and economic costs as governments and

health organizations take action to stop the spread of infection. The logical course

of action is to immediately inform the public about the disease and its preventive

measures through the media in the absence of effective vaccines and therapies.

The media, which serves as the primary information source, has the power not

only to affect how people behave but also to boost their engagement in healthcare

provided by the government and healthcare providers, which helps to prevent the

spread of disease. People are made aware of the illnesses through the media, as

well as the needed precautions to help prevent transmission, such as immuniza-

tion, social isolation, and wearing protective masks.

In recent years, there has been an increase in the number of papers that

use mathematical models to estimate the impact of media awareness campaigns

on the spread of infectious diseases. Additionally, there are several authors who

have studied mathematical models in epidemiology and have a better understand-

ing of the predictions that these models can make. These authors use mathemat-

ical models to comprehend disease dynamics and the transmission of infections

and to determine the potential effectiveness of influence approaches in limiting

HIV/AIDS infections amongst PWIDs.

Thus, this thesis will aim to create mathematical models which explore the im-

pact of the awareness programs on the HIV/AIDS model transmission amongst

PWIDs, an area where no study has been done to make the models more realis-

tic. This thesis aims to close that gap. To do so, we primarily use a more basic

form of disease awareness program applied to a modified version of the models

by (Greenhalgh and Hay 1997), (Liang et al. 2016) and(Lewis and Greenhalgh
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2001). This can be accomplished by assuming the assumption that PWIDs clean

their needles prior to use, which would result in this change and the validity of this

research contribution. The next section provides a brief overview of the research

presented in this thesis.

1.2 Overview and Outline of the Thesis

In this thesis, we create a mathematical model to explain the improved model

that prevents the transmission of HIV/AIDS diseases through the impact of aware-

ness programs of disease on sharing needles and syringes amongst the PWID

population. The model assumes that PWIDs clean their needles prior to usage

rather than after. There are two different approaches to modelling this. The first

and easiest method, which we will apply in this study, is to reduce the disease

transmission term by a factor φ (0 ≤ φ < 1) to account for the behavioural changes

people make as a result of knowing the prevalence of the disease in their envi-

ronment. In the second, individuals (typically the susceptible class) are divided

into aware and unaware individuals, and where the level of media awareness is

modelled as a separate variable(Misra et al. (2011), Greenhalgh et al. (2015)).

In Chapter Two, we present a deterministic mathematical model of the spread

of HIV/AIDS amongst people who inject drugs (PWIDs) with an awareness pro-

gram that is based on the mathematical work of (Greenhalgh and Hay 1997) and

the work of (Liang et al. 2016). We then examine the One-dimensional Model for

the Spread of HIV/AIDS amongst PWIDs with awareness programs and demon-

strate that there is also a unique non-negative solution. Next, we investigate the

existence of equilibrium points. We perform stability and equilibrium analyses,

showing that the fundamental reproductive number R0 controls the behaviour of

the model. To support our analytical findings for HIV/AIDS models with disease

awareness campaigns, numerical simulations are also generated. These simula-
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tions use both theoretical and realistic parameter values. Then, we use our model

to address the HCV transmission among PWIDs and run additional simulations

to confirm their analytical findings.

In Chapter Three, based on the model constructed in Chapter Two, we dis-

cuss the impact of awareness programs in the two-dimensional model of HIV

transmission amongst PWIDs. We investigate the existence of a unique positive

solution to the differential equations. The existence of a solution at equilibrium

is then investigated. Next, we assess the stability of equilibrium at the local and

global stability. Then, additional simulations are conducted to verify the analytical

results.

In Chapter Four, we modified a three-stage infectivity model for the transmis-

sion of HIV/AIDS among intravenous PWIDs by (Lewis and Greenhalgh 2001)

to make it more realistic by applying for awareness programs as described in

Chapter Two. This model allows PWIDs to pass through three stages of infec-

tion before the development of AIDS. We analyse the equation model system

to gain insights into its dynamical characteristics, which will help us better un-

derstand how the awareness program impacts the three-stage infection model

for the transmission of HIV/AIDS amongst PWIDs. Additionally, we compute an

expression for R0. We consider and analyse the system’s likely endemic equi-

librium, as well as the disease-free equilibrium, are taken into consideration and

analysed. We also examine the stability of these equilibria locally and globally, as

well as the persistence of the disease. Simulation and a numerical analysis are

also provided.

In Chapter Five, motivated by the work that has been done in the previous

chapter, we extend and develop the mathematical model of the effect of aware-

ness programs on the HIV/AIDS models with successful antiviral treatment in

Chapter Two. We extended the model to include two groups within our PWID pop-

ulation: those PWIDs who are infected but unaware that they are infected, and
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those PWIDs who are on successful highly active antiretroviral therapy (HAART).

Driven by the fact that the model includes two groups of PWID population, those

PWIDs who are infected but unaware that they are infected and those PWIDs

who are on successful HAART. we extend our model to consider this more re-

alistic assumption that allows PWIDs to move through the phases of HIV/AIDS

infection. The model is then theoretically analysed, a formula for the fundamental

reproductive number R0 is derived, and simulations based on parameter values

for our model are run to confirm our theoretical results.

The final chapter, Chapter Six, provides a summary of the work presented

in this thesis and discusses some proposals for future research. Our summary

of the work presented in this thesis is now complete.The rest of this chapter will

continue with give a literature survey and present an introduction to the HIV/AIDS

virus, its discovery and its transmission routes. We then provide a review of

awareness programs in the epidemic model as well as the use of mathematical

models in epidemiology is provided. Finally, we shall present a review of some

previous mathematical modelling of HIV/AIDS amongst PWIDs.

1.3 Background on HIV/AIDS Virus Infection

Since the first case of HIV infection was identified from a 1959 sample col-

lected from a man in the Belgian Congo, scientists have studied the virus long

enough to know it is an immune deficiency virus that not only weakens the cells

but also attacks the immune system and makes the cells deficient in fighting other

infections. In other words, the virus weakens the immune system and its ability

to defend the body from other infections that could attack it. The transmission

of the HIV virus through body fluids means that its methods of transmission are

as diverse as the people it attacks. Some known ways HIV can be transmitted

include semen, a blood transfusion, breast milk, vaginal fluids, and rectal fluids.
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Since the discovery of HIV about 40 years ago, it has become a serious pub-

lic health issue, and many screening centres have been established to ease the

counselling and testing of people for the virus (Opeodu and Ogunrinde 2015). The

global community has witnessed momentous innovations that have significantly

changed the landscape of HIV care. In particular, advancements in antiretrovi-

ral therapy (ART) over the last twenty years have transformed HIV/AIDS from a

rapidly progressing ailment to what most consider a chronic disease (Ivy et al.,

2017). HIV is an infective organism that usually targets the immune system of the

victims, making them more susceptible to a wide range of infections and certain

types of cancers (Ndibuagu et al. 2017). The disease was given various names

in the past, including gay-related immune deficiency (GRID), but in the year 1982,

the Centers for Disease Control named it Acquired Immune Deficiency Syndrome

(AIDS). which it is still being called this present day (Ndibuagu et al. 2017).

The first two cases of AIDS in Nigeria were diagnosed in Lagos in the year

1985 and reported at the International AIDS Conference in 1986 (Ndibuagu et al.

2017). HIV attacks immune cells called CD4 cells. These T cells (white blood

cells) circulate, detecting infections throughout the body, along with faults and

anomalies in other cells. HIV targets and infiltrates the CD4 cells, using them to

create more of the virus. This act consumes the cells and reduces the body’s

ability to combat other infections and diseases. It increases the risk and influence

of opportunistic infections and some forms of cancer. It is worth noting that some

people have HIV for long periods without experiencing any symptoms. It is a life-

long condition, but treatments and specific techniques can prevent the virus from

transmitting and the infection from further infiltrating. Medical personnel identify

AIDS as having a CD4 count of fewer than 200 cells per cubic millimetre. Also,

they may diagnose AIDS if a person has attributes of opportunistic infections that

are associated with any form of cancer or both. When a person with HIV does

not receive treatment, AIDS likely develops as the immune system procedurally
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wears down. However, advances in antiretroviral treatments have made this pro-

gression to AIDS increasingly less common (Felman (2020)).

HIV has become a pandemic and a significant cause of global mortality. An

estimated 33.2 million adults and children are living with HIV. And in 2007 alone,

around 2.7 million people were newly infected, out of which 2.0 million died.

Global adult (age 15–49 years) prevalence in 2007 was estimated at 0.8%. And

that same year, 67% of all people and 90% of the estimated 2.0 million children liv-

ing with HIV lived in sub-Saharan Africa (SSA). Adult prevalence in sub-Saharan

Africa was estimated to be 5%. Acquired Immune Deficiency Syndrome (AIDS),

and its causative agent, HIV, are now known globally and no longer some strange

to the universe (Hoskins 2014).

The HIV/AIDS epidemic is one of the world’s mysterious public health and

social problems. Promoting knowledge and a positive attitude towards HIV/AIDS

are central to controlling the prevalence of this epidemic(Yaya et al. 2019). The

virus is the cause of one of the most destructive diseases in human history, having

killed over 25 million people in less than 30 years. Globally, an estimated 33

million people were living with the virus at the end of 2008. This might have

risen sporadically. The greatest burden of the virus is experienced in developing

nations, specifically in sub-Saharan Africa (SSA), which is home to more than

two-thirds of the infected persons worldwide. As HIV treatment becomes more

accessible and patient life expectancy increases, the number of patients requiring

long-term management in care and treatment programs increases meaningfully

(Hoskins 2014).

In 2016, an estimated 36.7 million people were living with HIV, and 1.8 million

new HIV infections were documented. Women aged 15–24 years are particu-

larly at risk of HIV infection, and they accounted for 26% of new HIV infections

among adults globally. A closer look at regional data reveals that the vast major-

ity of people living with HIV are located in low- and middle-income countries. In
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the Sub-Saharan Africa (SSA) region, where 71% of new infections occur, West

African women aged between 15 and 24 years accounted for 22% of new HIV

infections (Awofala and Ogundele 2018, Yaya et al. 2019).

The eastern and southern parts of Africa have the highest number of cases of

HIV in the world. These parts of Africa are home to the majority of the recorded

cases of the HIV virus. Even when the HIV virus is generalized, young women,

homosexuals, transgender people, sex workers, and people who inject drugs into

their bodies are most prone to contracting the HIV virus. Statistics drawn from

avert.org show that East and Southern Africa are the worst hit by the HIV virus.

These parts of Africa are only home to 6.2% of the world’s population, but they

sheltered 54% of the > 20 million infected people in the world in 2018. In re-

search conducted in 2018, South Africa had more than one-quarter (240, 000)

of Southern Africa’s infections. Moreover, Mozambique, Tanzania, Uganda, Zam-

bia, Kenya, Malawi, and Zimbabwe accounted for more than 50% (445, 000) of

the new infections in 2018.

Presently, around 38 million people are currently living with HIV, and tens of

millions of people have died of AIDS-related causes since the beginning of the

epidemic. Globally, around 76 million people have become infected with HIV

since its inception. Overall, African continent accounts for 67.5% (25,720,000)

of the total population of infected persons globally. Asia has 17%, Europe 8%,

North America 3% and South America 6% (Avert, 2019; Kaiser Family Founda-

tion, 2021). Meanwhile, more than 2 million people are infected in the European

nations, particularly in the region’s eastern part. Nearly 137,000 people were

diagnosed with HIV in European countries in 2019 alone (European Centre for

Disease Prevention and Control, 2020).

HIV is the virus that orchestrated AIDS, one of the universe’s most deadly pub-

lic health challenges. But there is a global commitment to stopping the spread of

the virus and ensuring that everyone with it has access to HIV treatment. There
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were approximately 37.6 million people across the world with HIV in 2020. Of

these, 35.9 million were adults, and 1.7 million were children. In 2020, 1.5 mil-

lion individuals worldwide acquired the virus, marking a 30% decline in new HIV

infections since 2010 (Global Health, 2020).

In the absence of treatment, life expectancy with HIV is severely reduced. Un-

treated, it is estimated that the median survival time after HIV infection for adults

in developing nations is 11 years. For untreated infants in developing countries,

disease progression is rapid, the risk of dying in the first two to six months of life is

essentially high, and one-third of HIV-infected infants are estimated to die before

their first birthday, with 30%–50% dying before the age of two. Vertical, horizon-

tal and community-acquired transmission are some of the ways in which children

can be infected with the virus. HIV-related immune suppression increases the

opportunity for microbes and pathogens in the environment to find a host, re-

sulting in so-called ’opportunistic infections’ (OIs) and malignancies developing in

HIV-positive individuals (Hoskins 2014).

The virus and its affiliated agent continue to be a major public health issue

with a rise in campaigns to improve public general knowledge of the virus and

its transmission. Despite interventions and breakthroughs in our scientific under-

standing of HIV and its prevention, many people continue to be infected by the

virus (Awofala and Ogundele 2018,Yaya et al. 2019)

1.3.1 Transmission Routes

HIV infections have been mainly restricted to intravenous drug users, the core

transmission route of the virus being sharing contaminated needles. Most of the

adults who became infected were men who were injecting drugs. However, the

types of people being infected by the virus and the main transmission routes are

quickly changing. Young people account for most of the new infections. The pro-

portion of women (who are less likely to be intravenous drug users) infected with
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the virus suggests that the number of virus infections spread by sexual contact

is increasing. The increased infection rates of HIV among new units are fuelled

by the growth of drug injections, increased sexual activity among young people,

and the growing number of public sex workers. The virus is likely to reach a wider

population from these subgroups.

In its report, UNICEF warns that the HIV virus is the greatest threat to hu-

man health, as it spreads virtually unchecked into the midst of initially uninfected

countries. According to the Joint United Nations Program on HIV and AIDS (UN-

AIDS), despite the significant progress in the prevention of HIV, about 36.9 million

people are still living with the virus. A significant portion of these people are un-

aware of their infection status, even when it develops into advanced HIV disease

(AHD), due to prolonged asymptomatic phases after HIV infection. In some coun-

tries, the infected persons are being stigmatized in their various communities.

Such stigmatization prevents them from seeking medical advice, which results

in a higher risk of developing (Chen et al. 2019). Approximately 84% of people

with the virus globally knew their status in 2020. The remaining 16% (around

6.0 million people) still need access to HIV testing services, as this will inform

them about whether they have been infected or not. Testing is essential to HIV

prevention, treatment, care and support services.

According to (Yaya et al. 2019), inadequate knowledge of HIV and its trans-

mission has been identified as a major factor contributing to the spread of the

epidemic among Nigerian youths. When the academic levels of the respondents

in their study were compared with their knowledge of the possible routes of trans-

mission of HIV, it was discovered that the higher the level of their academic quali-

fications, the higher the percentage that agreed that the use of non-sterile dental

instruments is a possible means of transmitting HIV. This was a statistically sig-

nificant result (p < .002) (Opeodu and Ogunrinde 2015).

Specifically, the most common transmission routes of HIV are the following:
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1.3.2 Mother to Child.

In 2020, 84% of pregnant women with HIV received ART to prevent the trans-

mission of HIV to their babies during pregnancy and childbirth and to protect

their health (GlobalHealth (2020)). This is the mother-child route. This can be

further delineated into three periods: during pregnancy, delivery and breastfeed-

ing. Vertical transmission is the predominant route for the acquisition of HIV

infection by children, either in utero, intrapartum or postnatally through breast-

feeding. Less frequently, children may acquire HIV by horizontal transmission.

Community-acquired HIV transmission to children may occur following surrogate

breastfeeding, pre-mastication of food, and sexual abuse. In most instances of

horizontal HIV acquisition in children, the exact transmission route is difficult to

determine due to the time elapsed between the HIV-exposure event/s and confir-

mation of HIV in the child (Myburgh et al. 2020).

1.3.3 Sexual Intercourse without a Condom.

Some researchers have identified the organism that causes AIDS and named

it variously, but the International Committee on the Taxonomy of Viruses officially

named it the Human Immunodeficiency Virus (HIV) in 1986. HIV is found in

the following bodily fluids of infected persons; blood, vaginal fluids, rectal fluids,

breast milk, semen and pre-seminal fluid (Ndibuagu et al. 2017). Correct and con-

sistent use of latex condoms during sexual intercourse (vaginal, anal, and oral)

can greatly reduce the chances of acquiring or transmitting HIV and other sexu-

ally transmitted infections (STIs). Natural-membrane condoms, often made from

sheep gut, are not recommended because they have tiny pores through which

HIV can pass.

The probability that a person has acquired an STI is generally proportional

to the number of sexual partners that person has had in recent years. However,

in areas where the prevalence of HIV is high, people may become infected who
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have had only one partner. Sexual intercourse refers to the penetration of the

penis into an orifice: vagina, rectum, or mouth. Sexual behaviour is any act of

sexual gratification between two or more individuals or by oneself. Sexual inter-

course is a risk behaviour for acquiring HIV and other STIs, but not all sexual

behaviours promote risk (Ferris et al. 2010) Shared Intravenous Fluids/Equip-

ment: Rarely children born to women uninfected by HIV acquire HIV by hori-

zontal transmission. This may occur through healthcare-associated transmission

by infusion of HIV-contaminated blood or blood products, the re-use of contami-

nated needles/syringes or other medical equipment, and the ingestion of HIV in

expressed breast milk in neonatal units (Myburgh et al. 2020).

AIDS was first noticed among women who had sex with infected men in 1983,

suggesting that the disease could also be transmitted through the heterosexual

route. Heterosexual intercourse with an infected person is now the main route of

HIV transmission, accounting for about 80% of cases (Ndibuagu et al. 2017).

1.3.4 Blood Transfusion.

Previous studies have reported the presence of some misconceptions con-

cerning the possible transmission of HIV among different study populations.

Bassey et al. reported that about 15% of the antenatal women studied believed

that a mosquito bite could transmit HIV/AIDS and 13.7% stated that HIV/AIDS

could be transmitted by sharing a meal with an infected person. There was the

misconception that once somebody was infected with HIV, he or she already had

AIDS. Another study among army personnel reported that 9.1% of the partici-

pants believed that HIV could be contracted through a mosquito bite, and 2.1%

stated that it could be contracted through body contact such as huggings (Opeodu

and Ogunrinde 2015). Others were shared intravenous material, men-men sexual

relationships, and drug paraphernalia Gilroy (2020).
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It is essential to be familiar with the correlation that exists between AHD and

HIV transmission routes in other to prioritize prevention techniques. As part of

efforts to prevent the pandemic, it has been suggested that the criminalization

of commercial sex workers, compulsory drug treatment and the prohibition of

homosexuality should be adopted.

1.3.5 Prevalence of HIV/AIDS Virus Among People Who Inject

Drugs (PWIDs)

It is estimated that 15.6 million people inject drugs globally, and 30% of this

population are women. A national consensus size estimate from 2014 indicated

that the total number of people who injected drugs in the Eastern African Nation

(Tanzania) was 30,000. Generally, it is opined that injecting drugs poses health

challenges (Likindikoki et al. 2020). This is the primary area of this study

PWIDs are at increased risk of acquiring and transmitting HIV and Hepatitis

C (HCV) as they share injection paraphernalia and have unprotected sex. In the

recruited sample of mostly current injectors with a long duration of injecting drugs,

seroprevalence for HIV and HCV varied greatly between the city samples. HCV

was endemic among the participants in all the city samples. The authors’ results

demonstrate the necessity of intensifying prevention approaches for blood-borne

infections among PWIDs in Germany. To tackle the risk of blood-borne and sex-

ually transmitted infections among PWIDs, it is essential to combine behavioural,

socio-demographic and serological data to inform the planning and implementa-

tion of effective prevention and intervention techniques (Wenz et al. 2016).

Lack of correct information about possible modes of HIV transmission may

hinder people’s willingness to receive voluntary counselling and testing. It also in-

creases the likelihood of the stigmatization and isolation of people living with HIV,

among other adverse psychosocial influences (Opeodu and Ogunrinde 2015).

This has led to the widespread of the virus among drug injectors.
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In 1981, there were 100,000 injectors infected with HIV. In recent years, a re-

duction in newly diagnosed cases of HIV among PWIDs has been observed. In

2010, 110,000 new cases were reported; in 2013, only 98,000 were reported. It

is estimated that the injection of drugs exists in 148 nations, and HIV infection

exists among PWIDs in 61 countries. There are wide ranges in the estimates of

PWIDs and the number of PWIDs who are HIV-infected globally. More recent re-

ports estimate 8.9-22.4 million PWIDs in nations of the world, and approximately

0.9 to 4.8 million PWIDs are HIV positive. The same factors that have led to the

globalization of trade in illicit goods (improved communications, improved trans-

portation, reduced restrictions on the flow of capital) have led to the worldwide

diffusion of drug injecting, with HIV infection frequently following drug distribution

routes (Des Jarlais et al. 2016). HIV is thus prevalent among women, men, boys

and girls who inject drugs across the globe – it has been recorded in 91% of in-

dependent nations. The Mashriq (eastern) part of the region is more affected by

this public health challenge than the Mghrib (western) part (Mumtaz et al. 2014).

The high levels of injecting drugs in the Mashriq (eastern) part appear to be re-

lated to the increased availability and purity of heroin at lower prices. This is not

surprising since 83% of the global supply of heroin is produced in Afghanistan

(Mumtaz et al. 2021). Among PWIDs, the prevalence of HIV is 5–15%, and at

least half of all countries have such epidemics among men who have sex with

men (HIV prevalence 3–10%). Some of these epidemics have the potential for

further growth, a potential that is facilitated by the high levels of injected drug use

and risky sexual behaviours and by the overlap of high-risk behaviour between

PWIDs, men who have sex with men, and female sex workers. This high-risk

environment is exacerbated by overall high levels of stigma towards key popu-

lations, which increases the vulnerability for further spread. With the exception

of two countries that experienced large epidemics among commercial heterosex-

ual sex networks involving female sex workers and their clients, HIV prevalence
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among female sex workers continues to be overall well below 5%, and even at

vanishing levels, in most countries. Yet, the contribution of commercial hetero-

sexual sex networks to HIV transmission in this region remains sizeable due to

the relatively large size of these networks, compared with PWIDs and networks

of men who have sex with men (Mumtaz et al. 2021).

The prevalence of drug injection is up to 0.46% in Iran and 0.5% in Pakistan,

while it is reported to be 0.14% in Lebanon, 0.10% in Morocco, and 0.07% in

Syria (Mumtaz et al. 2014). However, overall regional prevalence is comparable

with global figures, ranging from 0.09% in South Asia to 1.30% in Eastern Europe

(Degenhardt et al. 2017).

In Tanzania, the prevalence of HIV infection among PWIDs has been filed

as more than the entire population of drug users. In 2020, it was reported that

there had been a decline in the prevalence of HIV infections among PWID: 8.7%

compared to a previous empirical study where it was 15.5%. Despite this, HIV

prevalence is still high among PWIDs (Likindikoki et al. 2020).

1.4 Review of Mathematical Models

1.4.1 Epidemic Models

In human history, communicable diseases have played an integral part. It is

well known that epidemics have infected populations since the dawn of recorded

history, resulting in many deaths before disappearing, possibly recurring. As pop-

ulations develop immunity, the severity may decrease. For example, the 1918-19

"Spanish" flu pandemic killed over 50,000,000 people globally, and annual in-

fluenza seasonal epidemics kill up to 35,000 people worldwide.

Between 1346 and 1350, the Black Death (possibly bubonic plague) moved

over Europe in multiple waves, originating in Asia. It is believed that one-third

of Europe’s population died. For more than 300 years, the disease recurred in
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various regions of Europe, most memorably as the Great Plague of London in

1665-1666. It then gradually pulled out of Europe.

Other illnesses have become endemic (constantly prevalent) in some com-

munities and are responsible for a large number of fatalities. This is especially

prevalent in impoverished nations with underdeveloped healthcare systems. Ev-

ery year, millions of people die from illnesses like measles, lung infections, diar-

rhoea, and other ailments that are easily treatable and not considered deadly in

the West. Malaria, typhus, cholera, schistosomiasis, and sleeping sickness are

all prevalent in various places of the globe. The economic consequences of high

illness mortality on mean life duration, disease debilitation, and mortality in af-

fected nations are significant. According to the World Health Organization, there

were 1,400,000 tuberculosis deaths in 2011 and 1,200,000 HIV/AIDS death in.

The purpose of epidemiologists is first to understand the origins of a disease,

then anticipate its development, and ultimately devise methods for controlling it,

which includes comparing alternative techniques.

In order to predict the behaviour of diseases and help control particular epi-

demics, mathematical models have been constructed. Compartmental models of

epidemics, such as the SIS and SIR models, can be used to understand how an

epidemic spreads by assigning each person to a subgroup representing a spe-

cific disease stage (Kermack and McKendrick 1927) developed the Susceptible-

Infected-Removed SIR model in 1927. The Susceptible-Infected-SusceptibleSIS

epidemic model is another sort of epidemic model that provides a scenario differ-

ent from the SIR model. In the following, we’ll describe the three types of epidemic

models used throughout this thesis. Let S(t) stand for the number of susceptible

at time t, I(t) for the number of infected people, and R(t) for the number of people

who have recovered from their infection at time t.
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1.4.1.1 SIS Epidemic Model

Some infections do not produce immunity. Such infections do not recover, and

individuals become susceptible again following infection as in many infectious dis-

eases transmitted by bacterial agents (e.g., tuberculosis) or sexually transmitted

diseases (e.g., gonorrhoea) can be researched using SIS epidemiology.

The Susceptible–Infective Susceptible SIS type can be used to model this type

of disease. The overall population is divided into two distinct divisions based on

epidemiological state; people are classed as either susceptible or infected. The

sizes of these groupings are denoted by S(t) and I(t), respectively. Because one

usual path goes through susceptible, then infected, and then back to susceptible,

the SIS model is used. The differential equations that describe the transmission

of the disease are as follows:

dS
dt

= µN − βS((t) + γI(t) − µS((t),

dI
dt

= βS(t)I(t) − (µ + γ)I(t),

given proper initial values S(t) = S(0) and I(t) = I(0) with S(0) + I(0) = N.

In these equations µ represents the death rate per capita for a single individ-

ual.

γ represents the per capita recovery rate of an individual. Consequently, as-

suming the infectious time follows an exponential distribution, the mean infectious

period is 1/γ. The transmission rate, denoted by β, is the frequency with which an

infected person comes into touch with and infects a susceptible person. There-

fore, β = λ/N, where λ is a single infected person’s per capita disease contact

rate.

The fundamental reproduction number R0 is a central topic in mathematical

epidemiology. This is the expected number of secondary cases created by a

single newly infected individual entering a disease-free community at equilibrium

It is defined as the expected number of secondary cases produced by a single
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newly infected individual (Brauer et al. 2008). The findings show that

R0 =
βN
µ + γ

.

A single newly infected person will die at a rate of µ, become susceptible at a

rate of γ, and hence remain in this state for a period of time equal to 1/(µ + γ)

if they enter a disease-free population. During this period, he or she interacts

with the susceptible people who are there at rates of β each, and if N is large,

there are roughly N of them. Therefore, the average number of infections cre-

ated throughout the infectious time is βN/(µ + γ), which equals R0 as previously

mentioned.

1.4.1.2 SIR Epidemic Model

SIR model was initially proposed by(Kermack and McKendrick 1927) and is

considered one of the most prominent mathematical models of epidemics. It also

holds a significant amount of historical significance. A SIR model is comparable

to a SIS model, with the exception that in a SIR model, once an individual has

completed their infectious phase, they are placed in the permanently removed

class.

The primary premise of such a model is that the population in which a pathogenic

agent is active is divided into three distinct subgroups. These subgroups are as

follows: the healthy individuals who are susceptible( S) to infection; the already

infected individuals (I) who are able to spread the disease to the healthy individu-

als; and the individuals removed (R) who are no longer part of the infection cycle,

either through immunisation and recovery or through natural attrition. The model

is appropriate for describing a well-localized epidemic outburst since it only looks

at the temporal dynamics of the infection cycle. Kermack and McKendrick initially
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proposed the SIR model as a differential system.

dS
dt

= −βI(t)S(t),

dI
dt

= βI(t)S(t) − γI(t),

dR
dt

= γI(t).

Given that the right-hand sides of these equations add up to zero, the sum

of S, I, and R is a constant that is equal to the total number of individuals in a

population S + I + R = N. β is the rate at which a disease spreads, and γ is the

rate at which a person with an infection is cured and transfers to the recovery

group. For the SIR model, the most critical parameter is the ratio by βN/γ, also

known as the Basic Reproduction Number R0.

1.4.2 Awareness Programs in Epidemic Models

The modelling, investigation, and data analysis of infectious disease propaga-

tion are extremely valuable in assessing measures for controlling such illnesses

in communities. Classic models of infectious disease transmission depend pri-

marily on interactions between susceptibles and infectives. Other factors, such

as media attention, immunisation, population movement etc., have an impact on

the spread of the disease

The media significantly impacts people’s attitudes regarding illnesses and gov-

ernment health-care actions aimed at preventing disease transmission. It is a

media-driven public awareness campaign that educates people about the disease

and encourages them to adopt measures such as social isolation and wearing

protective masks.

Greenhalgh et al. (2015) presents a review of a study on the effects of media

awareness campaigns on infectious disease epidemics in their article. These

studies are divided into two categories. The influence of media coverage on the

spread and control of infectious illness is investigated using mathematical models
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in the first class. In the next section, we would like to introduce some of the

epidemic models with the awareness program that we work with in this thesis.

1.4.2.1 SEI Model with Media Impact

Cui et al. (2008) created and tested an SEI model that took into account the

media effect on the transmission of an infectious illness in a specific area. They

came to the conclusion that if the basic reproduction number is more than one

and the media impact is significant, the model would display various endemic

equilibria, posing a danger to disease control.

Consider the transmission of certain infectious diseases (such as SARS) in a

given region/area. We classify the population into the following categories:

• S(t) , the number of susceptible individuals;

• E(t), the number of individuals exposed to the infected but not infectious;

• I(t) , the infected who are infectious.

We assume that infectious individuals receive medical treatment in hospital

settings as soon as they are identified from the category of exposed. Once they

are recovered, they no longer impose risk on the susceptible individuals. In most

of the studies, the compartmental models were built by either assuming the total

population to be a constant or satisfy exponential growth (Brauer et al. (2012),

Busenberg and Cooke (1993), Diekmann and Heesterbeek (2000) and Hethcote

(2000)). It is more reasonable to assume that the population of a given region

obey the Logistic growth. Then we have the model

dS
dt

= bS
(
1 −

S
K

)
− βe−mISI,

dE
dt

= βe−mISI − (c + d)E,

dI
dt

= cE − γI,

where all the parameters are positive, and
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• b, the intrinsic growth rate of the human population, k is the carrying capacity

for the human population of a given region/area.

• βe−mI is the contact and transmission term (β) together with the disease

awareness function e−mI. It measures the spread of the virus from the infected

individuals to the susceptible individuals. If m = 0 then the transmission rate is

constant. In Cui et al.’s paper, this was µe−mI but we have changed the µ to β so

as to unify the interpretation of parameters in this section.

• c is the rate per unit time (day) that infected exposed become infectious.

• d is the natural death rate for the exposed population .

• γ is the removal rate from the infected compartment, which includes the

recovery rate of the hospitalized infectious individuals and natural death. Hence

we have γ > d.

1.4.2.2 Model Emphasizing the Psychological Impact

Liu et al. (2007b) constructed an EIH compartmental model to investigate the

role of the media and its psychological impact on multiple disease outbreaks.

Their model analysis reveals that this impact leads to differences in the transmis-

sion pattern here, we simply assume that this impact is described by an exponen-

tial decreasing factor, resulting in the transmission coefficient as β0 = βe−a1E−a2I−a3H.

Here β is the basic transmission rate if the impact of the reported numbers of ex-

posed, infectious and hospitalized were ignored, and a1, a2, a3 are non-negative

parameters to measure the effect of the psychological impact of media reported

numbers of exposed, infectious and hospitalized individuals. The modified model

then becomes
dE
dt

= βe−a1E−a2I−a3HIS − cE

dI
dt

= cE − dI − hI

dH
dt

= hI − γH

(1.1)
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where E = E(t) is the number of individuals who are exposed to the infected but

not yet infectious, I = I(t) is the number of infectious individuals, and H = H(t) is the

number of infectious individuals who are receiving medical treatment in hospital

settings.

We also assume that the hospitalized individuals no longer impose risk on

the susceptible individuals. In model (1.1), the parameters involved, which are

positive, are

β: We assume that the exposed population is increased following infection via

contact between a susceptible and an infectious individual with a transmission

coefficient β. This parameter measures the effect of both the infectiousness of

the disease and the transmission rates;

S: as mentioned above, we assume that the total number of susceptible indi-

viduals remains unchanged, and thus S will be regarded as a parameter;

c: the transmission rate per unit of time (day, in case of SARS) that exposed

individuals become infectious;

d: the disease-induced death rate of infectious individuals before entering the

health care settings;

h: the rate at which infectious individuals enter the health care settings seeking

treatment;

γ: the combined per capita disease recovery rate and death rate of hospi-

talised individuals. In the paper of Liu et al. (2007b) this was represented as two

separate terms but we have chosen to represent them as a combined term to

achieve a unified parameter notation between this model and the previous one.

In general, the first available information is the reported number of hospitalized

patients when the infectious disease is at the emerging stage. Hence we will focus

more on the impact of the number of reported hospitalized cases.
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1.4.3 Modelling Disease Awareness Programs in HIV/AIDS

Models

So we have established that the spread of HIV and AIDS amongst PWIDs

is an important problem that needs attention. However, recently, there has also

been increased interest in the effect of disease awareness programs. Infected

individuals may adjust their behaviour to reduce potential contacts in the presence

of high levels of disease. There are two ways to model this. The first and simplest

way, and the one which we shall adopt in this thesis, is to reduce the disease

transmission term by a factor φ (0 ≤ φ < 1) to take account of the behavioural

modifications individuals make because of their knowledge of current disease

levels. In the second, the amount of media awareness is modelled as a separate

variable, and the individuals (usually the susceptible class) are split into aware

and unaware individuals (Misra et al. (2011), Greenhalgh et al. (2015)).

1.4.3.1 Disease Awareness Programs Using a Multiplicative Factor

We shall first look at disease awareness models that reduce the disease

awareness function by a factor φ(I) between 0 and 1. Xiao and Ruan (2007)

study a SIR model where the disease transmission function in the absence of

an awareness program is βSI, where S is the number of uninfected individuals, I

is the infected individuals, and β is a constant. This is multiplied by a disease-

awareness function

φ(I) =
1

1 + αI2 .

Here α is a positive constant. We see clearly that φ(I) is a strictly positive

monotone decreasing function between zero and one. This is illustrated in Figure

1.1 with α = 0.00002.

Li et al. (2008b) look at an SIS epidemic model with constant and impulsive

vaccination and where there is media awareness and the disease transmission
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Figure 1.1: Awareness Program function φ(I) = 1
1+αI2 .
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term, again fundamentally βSI, is reduced by a factor

1 −
aI

b + I
.

Here a and b are positive constants and a ≤ 1. Again, φ(I) is a monotone

decreasing function of I. This approach and the same form of media awareness

function is also used by Tuenche et al. (2011) in a mathematical model of the

spread of influenza. Liu (2013) investigates the spread of disease in a SIRS

model using a similar awareness function, although stochasticity is introduced.

Salman (2021) uses the same disease awareness function in his model. The key

thing to note for our purposes is that the disease transmission term is reduced

by the same disease awareness program factor as in Li et al. (2008b) because

of awareness of infected individuals. The same function will be used to model

the reduction in disease transmission in some of our numerical examples. This is

illustrated in Figure 1.2 with a a = 0.9 and b = 10.

Cui, Sun and Zhao(Cui et al. (2008)) consider an SEI model where the dis-

ease transmission function (again effectively βSI with no disease awareness) is

reduced by a multiplicative factor

φ(I) = e−mI

due to the effect of disease awareness. Again we will use a similar function in

our numerical examples. A graph of this function is illustrated in Figure 1.3 with

m = 0.005. Liu et al. (2007a) consider a model for an EIH (exposed-infectious-

hospitalized) epidemic. The fundamental disease transmission term is again βSI,

which is reduced by a factor e−a1E−a2I−a3H, where a1, a2 and a3 are constants and

E and H are the number of exposed and hospitalized people. Strictly speaking,

this is not the same type of disease awareness function we have been discussing

as it depends on both the exposed and hospitalised individuals in addition to

infections, but it is based on the same idea.
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Figure 1.3: Awareness Program function φ(I) = e−mI.

In a different paper Cui, Tao and Xu (Cui et al. (2008)) look at an SIS model in

which the basic disease transmission function with no awareness is

βSI
S + I

.

With behavioural modification due to knowledge of disease levels, this is de-

creased by a multiplicative term φ(I) = 1 − k f (I) where k < 1. Here f (I) is a

positive monotone increasing function with f (0) = 0 and limI→∞ f (I) = 1. This dis-

ease awareness program function is a generalisation of the one used by Li et al.

(2008b). Sun et al. (2011) study the effect of media-induced social distancing on

how disease spreads in a setting with two patches using a similar modification of

the disease awareness function.

We shall compare four types of multiplicative awareness functions, first an

exponentially decreasing factor,

φ1(I) = e−mI,
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as used by Cui, Sun and Zhao(Cui et al. (2008)), Secondly

φ2(I) = 1 −
aI

b + I
,

as discussed by Li et al. (2008a).

φ3(I) =
1

1 + αI2 ,

as discussed by Xiao and Ruan (2007), and

φ4(I) = 1 − k f (I),

as discussed by Cui, Tao and Xu (Cui et al. (2008)).

For all of these awareness functions φ(I), 1 − φ(I) represents the proportion

by which susceptible individuals reduce their potentially infectious contacts when

there are I infected individuals in the population. All of these functions start off at 1

when I = 0 (the baseline level) and decrease as I increases and the susceptibles

make less contacts. We can see that if I is very large φ1 and φ3 both tend to

zero, φ2 tends to 1 − a, and φ4 tends to 1 − k. So if there are a large number

of infectious individuals, with φ1 and φ3 the susceptibles completely cut off their

potentially infectious contacts, whereas with φ2 and φ4, even in the presence of a

large number of infectious individuals, the susceptibles still make a basic level of

infectious contacts. Moreover as for I very large,

e−mI <
1

(1 + αI2)

. So if I is very large the relative ordering of these functions is

φ1 < φ3 < min(φ2, φ4),

and the relative sizes of φ2 and φ4 are determined by the relative sizes of a and k.

We can also look at the behaviour of the four functions φ1, φ2, φ3 and φ4 near

I = 0, with a small number of infectious individuals, by looking at φ′(0).

φ
′

1(0) = −m, φ
′

2(0) = −
a
b
, φ

′

3(0) = 0 and φ
′

4(0) = −k f
′

(0).

So φ3 is initially a very flat function and φ1, φ2 and φ4 all initially decrease

faster with the initial rates of decrease determined by the relative sizes of m, a
b and

27



k f ′(0).

1.4.3.2 Disease Awareness Programs Modelling Unaware and Aware Indi-

viduals

Now we turn to models which use the other approach, that is they divide the

population into aware and unaware individuals and model the amount of disease

awareness as a separate variable in some way. These models are necessarily

more complex as they have more classes but nowadays are used more often

to model disease awareness programs. Many models use this type of disease

awareness function, and we can give only a small selection here.

Misra et al. (2011) consider a simple SIS model with aware and unaware indi-

viduals. X denotes the unaware susceptible classes, Xm the aware susceptibles,

Y the number of infected individuals, and M the cumulative density of media pro-

grams. Unaware uninfected individuals catch the disease at rate βXY and aware

susceptibles at rate λXM, where β and λ are constants. The cumulative density

of media awareness is modelled as

dM
dt

= µY − µ0M,

where µ and µ0 are constants. At the end of their infectious period infected

individuals return to the aware susceptible class.

Samanta et al. (2013) consider a more complex SIS model. It is built on the

model of Misra et al. (2011) but allows unaware susceptibles to become infected

and also, at the end of their infectious period, infected individuals may become

either unaware susceptibles a fraction 1 − p of the time or aware susceptibles, a

fraction p of the time. Moreover, individuals can move out of the aware uninfected

group to the aware infected group. Greenhalgh et al. (2015) further build on

the model of Samanta et al. (2013). Instead of the unaware susceptibles X−

becoming aware at rate λX−M, they become aware at rate
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λX−M
k + M

,

where k is a constant. Similarly aware susceptibles X+(t) become infected at

rate

β

1 + β1M
X+Y,

where β1 is a constant.

Disease awareness programs can have applications in other areas too. For

example, Ma et al. (2015) modelled alcoholism using a mathematical model with

a time delay and awareness, using two types of individuals, aware and unaware

and modelling the media awareness as a separate variable. Lastly, the advent of

COVID-19 has focused our attention on how people modify their behaviour when

there is a threat from infectious disease Musa et al. (2021) suggest an epidemic

model using disease awareness programs which split the population into aware

and unaware individuals for COVID-19 transmission in Nigeria. They fit the model

to Nigerian COVID-19 data and assess the impact of disease awareness pro-

grams on disease transmission. They explain the effect of awareness programs

with regard to the basic reproduction number.

Most modern papers tend to use the more sophisticated approach of dividing

the population into aware and unaware individuals. However, the more straight-

forward approach is historically significant and is still a crude way to model media

awareness.
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1.5 Mathematical Modelling of HIV/AIDS Amongst

PWIDs.

Mathematical models have been effectively employed to analyse and predict

the dynamic behaviour of biological systems in recent years. Kaplan and O’Keefe

(1993) devised the first mathematical model for the transmission of HIV and AIDS

among PWIDs in shooting galleries, where a shooting gallery is a venue where

PWIDs buy and inject narcotics. In order to better understand how HIV is spread

within this sort of group, Kaplan integrated numerous aspects into his model,

such as the rate of injection equipment sharing and the effect of cleaning injection

equipment.

1.5.1 The Needle Sharing Model

One of the earliest mathematical models explicitly created to explain how

sharing needles and syringes in shooting galleries might transmit HIV and AIDS

among IDUs was given by Kaplan (1989). This research offered helpful insights

into how HIV spreads in shooting ranges and made suggestions for the types of

data that would help researchers better understand how HIV spreads (like rates

of sharing needles and syringes, the likelihood that needles and syringes are

cleaned, and the average length of risky behaviour involving sharing needles and

syringes). The author adopted the following assumptions in order to simulate the

percentage of the populace who was HIV-positive at time t, represented in the

model by the symbol (t):

1. Injecting drug usage exclusively takes place in the m shooting galleries

(places where PWIDs hire the same needles and syringes). A user of illicit drugs

injects once each time they attend a shooting range.

2. Independent of what the other PWIDs do, each PWID randomly chooses to

attend shooting galleries at rate λ. This assumption suggests that, for all PWIDs,
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is the per capita needle and syringe sharing rate λ since PWIDs only inject once

every shooting gallery visit.

3. After being used by an infected PWID, all injecting equipment will become

infectious. Additionally, a needle and syringe used by a PWID who is not conta-

gious may be flushed (with probability θ), which will make it contagious-free. (That

is, throughout the injection operation, the infected contents of the needle and sy-

ringe are entirely re-located). According to this presumption, although uninfected

PWIDs who use infectious needles and syringes run the risk of contracting HIV,

they may also reduce the risk for the PWIDs who use the needle and syringe the

following time.

4. The likelihood of HIV transmission through the use of shared needles and

syringes is per injection α. Additionally, the only way for PWIDs to get HIV is

via sharing needles and syringes. This presumption suggests that HIV infection

is always contagious and that other known transmission mechanisms, such as

sexual contact, have no bearing on the prevalence of the illness in this community.

5. The size of the PWID population is n, where n is a significant and stable

number. As a result, any PWIDs who depart the population (for example, ow-

ing to death, admission to treatment programmes, or jail) are quickly replaced by

PWIDs who are vulnerable. The per capita rate at which IDUs depart or enter

the population is represented by µ. Kaplan constructed the following differential

equations that control the spread of the illness by taking into account the popu-

lation’s PWID prevalence at time t+t and the quantity of contaminated needles at

time t + ∆, where ∆t is a brief interval of time.

dπ(t)
dt

= [1 − π(t)]λβ(t)α − π(t)µ,

dβ(t)
dt

= λγπ(t) − λγβ(t)[1 − [1 − π(t)](1 − θ)].

The percentage of contaminated needles and syringes at time t is indicated

by the symbol β(t), while the gallery ratio, or the number of PWIDs per shooting

gallery, is shown by the symbol γ. Along with these equations, the author also
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deduced an expression for the fundamental reproductive number, R0, which is

represented by the ratio λα/µθ, and demonstrated that this expression must be

greater than one in order for an endemic equilibrium solution to be possible.

Kaplan looked at the impact that various gallery ratios have on the transmis-

sion of HIV in this group in his first set of numerical simulation findings. The

findings demonstrated that whereas low values of γ lead to a significantly slower

initial disease spread, big values of γ cause the transmission of HIV among this

PWIDs group to achieve equilibrium extremely fast.

The model is then modified one more to support the cleaning of syringes and

needles. The author assumes that every PWID, whether or not they are infected,

cleans their needle and syringe after use with a probability of ξ and that this

cleaning successfully removes the viral load from the needle and syringe. The

simulation findings shown that, even if the cleaning procedure is imperfect or if

PWIDs don’t always clean their needles and syringes, washing can still have an

influence on and even abolish HIV prevalence in the community.

1.5.2 Greenhalgh and Hay Model

In order to include more plausible hypotheses about the spread of HIV among

IDUs, Greenhalgh and Hay (1997) modified the Kaplan (1989) model. These sup-

positions included:

(i) adjustments to enable IDUs with and without HIV to access shooting ranges at

various rates (previously assumed the same),

(ii) Assuming different transmission probabilities for flushed and unflushed nee-

dles (In the Greenhalgh and Hay model, it is possible for an infectious needle

used once by a susceptible IDU to be flushed or cleaned of infectious blood dur-

ing the injection procedure and therefore become uninfectious,)

(iii) adjustments to account for the risk that IDUs who are HIV-positive would not

always leave a dirty needle uncleaned. The authors discovered the model be-
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haviour by R0 after thorough mathematical and numerical study of their work.

When R0 < 1, they were able to demonstrate that their system would arrive at

the DFE. They demonstrated the existence of a specific, locally stable positive

endemic equilibrium if R0 > 1.

1.5.3 Lewis and Greenhalgh Model

The Kaplan and O’Keefe (1993) model was expanded by Lewis and Green-

halgh (2001) to incorporate three stages of changing infectivity prior to the onset

of AIDS. Contrary to the findings the research of Lewis and Greenhalgh (2001),

the authors assumed that the most infectious IDU who most recently used the

needle and syringe determined the infectivity of a needle and syringe.

This indicates that as they progress toward the peak infectivity stage, nee-

dles and syringes become progressively more infectious. The model’s predictions

were negative as a result of this assumption, and they established upper limits for

the prevalence of HIV among IDUs and needle users.

The authors’ mathematical research discovered similar findings to those of

Lewis and Greenhalgh (2001). This model’s HIV prevalence was compared to

the model developed by Kaplan and O’Keefe (1993) using numerical simulations.

Both of the models in these simulations, according to the results, attained an en-

demic equilibrium solution. However, the three-stage infectivity model did so ear-

lier than theKaplan and O’Keefe (1993) model. Additionally, compared to Kaplan

and O’Keefe (1993), the three-stage infectivity model predicted a higher long-term

HIV prevalence.

1.6 Conclusion

This chapter presents the findings of a literature study that focused on the

epidemiology and modelling of HIV/AIDs. A more fundamental description of the
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ideas utilised when modelling infectious diseases has also been included. To

begin, it is patently apparent that HIV infection is a significant issue all over the

world.

Public health officials continue to face a major problem due to the high rates of

HIV/AIDS infection, especially in underdeveloped regions of the world (Campbell

et al. (2017), Paraskevis et al. (2011), Bonovas and Nikolopoulos (2012)). In

2017, there were roughly 36,900,000 persons living with HIV, 940,000 deaths

attributable to AIDS, and 1,800,000 new infections globally, as reported by the

Joint United Nations Programme on AIDS (UNAIDS) (UNAIDS, 2018). AIDS is a

major threat to global public health since it is a chronic disease. And the mortality

caused by AIDS is much higher than another sexually transmitted disease (STD)

Li et al. (2014).

In fact, we investigate the risk of injecting drugs and the prevalence of HIV

among those who inject drugs. Outbreaks of HIV among PWID occurred in south-

eastern Saskatchewan, Canada; Athens, Greece; Dublin, Ireland; Tel Aviv, Israel;

Luxembourg; Bucharest, Romania; Glasgow, Scotland; and the United States

(Scott County, Indiana) between 2011 and 2016. Community economic issues,

homelessness, and alterations in drug injecting behaviours were common to a

number of these outbreaks. The outbreaks were different in size (from less than

100 to more than 1,000 new HIV cases reported among PWID) and varied in level

of prevention before, during, and after the outbreaks Des Jarlais et al. (2020).

The mathematical epidemic models established in this thesis can be used to

evaluate the efficacy of intervention strategies and bring attention to the needs

that must be met in order to eradicate infectious diseases such as HIV, which are

complex in nature and developing at an alarming rate. Additionally, these models

are used to comprehend the spread of illnesses and assess the possible effec-

tiveness of control initiatives in lowering morbidity and death. Here we discuss

some of the more prevalent model structures, such as deterministic, SIS, and
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SIR models, but there are many others. In order to demonstrate the use of these

models, examples of their application were provided.

Also, in this chapter, we have provided a review of the impact of media out-

reach programs on the epidemiological model that will be examined in this thesis

and described some of the previous work on these models.

Previously, we have covered a number of articles that deal with the trans-

mission modelling of HIV/AIDS amongst PWID through the sharing of infected

injection equipment or when this is a component of the model. Several significant

heterogeneities are involved in the modelling of HIV transmission by needle shar-

ing. For instance, there is a wide variety of needle-sharing rates among addicts,

and the efficacy of needle cleansing is highly variable. This is a characteristic that

has been covered in numerous publications earlier.

In the next chapter, we shall develop accurate models of shall develop HIV/AIDS

models with awareness programs and also develop the model of Greenhalgh and

Hay (1997)to suppose more realistically that PWIDs clean their needles before,

not after use. It will examine the model governing system of differential equations

that reflect the impact of HIV/AIDS awareness programmes on preventing the

progression of the disease’s spread.
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Chapter 2

Incorporation of Awareness

Programs into a One-dimensional

Model of the spread of HIV/AIDS

Amongst People who Inject Drugs

2.1 Introduction

In this chapter, we shall study and set up a deterministic mathematical model

of the spread of HIV/AIDS amongst People who Inject Drugs(PWIDs). This chap-

ter is organised as follows. In the next section, we shall develop an HIV/AIDS

model with awareness programs and also develop the model of Greenhalgh and

Hay (1997) to suppose more realistically that PWIDs clean their needles before

not after use. Section 2.3 is divided into five subsections. Firstly we show the

existence of unique non-negative solution, then we shall explore the existence of

equilibrium points and analyse their stability both locally and globally. At the end

of the subsection, we perform some simulations with realistic parameter values

to verify the analytical results for HIV/AIDS models with disease awareness pro-
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grams. In section 2.4 we shall adopt our model to deal with the spread of HCV

amongst PWIDs and perform further simulations to verify the analytical results.

The chapter concludes with a brief summary and discussion.

There are a huge number of deaths recorded each year around the world

due to infectious diseases such as Pneumonia, Tuberculosis (TB), Diarrhoeal dis-

eases, Cholera, Malaria and HIV/AIDS. The outbreaks of diseases are a strong

cause for researchers to find a solution that reduces spread of these diseases.

The media plays an important role in spreading health awareness by changing

mixing behaviour. The published studies show some of the mathematical models

which have been used to explore the effect of media awareness programs on the

spread and control of infectious disease (Greenhalgh et al. 2015). In my current

research, I incorporate awareness programs in a model of the spread of HIV/AIDS

amongst people who inject drugs (PWIDs) in a population Greenhalgh and Hay

(1997). One of our aims is to incorporate the effect of awareness of disease on

sharing needles and syringes amongst the PWID population. We also modify the

model of Greenhalgh and Hay (1997) to include more realistic cleaning of needles

before use rather than after when visiting shooting galleries. There are two ways

to include the effect of awareness programs into disease transmission models.

We have chosen to focus on the first and simplest which is to reduce the disease

transmission by a factor φ(π) between zero and one. The more complicated al-

ternative is to model the amount of awareness as a separate differential equation.

We developed a mathematical model of spread of HIV amongst PWIDs with an

awareness program.

Our basic mathematical model for spread of HIV amongst PWIDs was studied

by Greenhalgh and Hay (1997) and Liang et al. (2016), based on a previously de-

scribed original model by Kaplan (Kaplan 1989). Our model analyses the spread

of HIV/AIDS amongst a population of PWIDs. We introduced a function φ(π)

which defines the fraction by which PWIDs reduce their needle sharing because
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they are aware of the level of HIV infection in PWIDs. This is a positive mono-

tone decreasing function of π, the fraction of PWIDs infected by HIV/AIDS. The

model has also been applied to the spread of HCV amongst PWIDs. Now, we are

going to derive the model equations for the spread of HIV/AIDS amongst PWIDs

including awareness programs.

The majority of the research discussed in Chapter 2 can be found in a paper

that was published in Alsharari and Greenhalgh (2023).

2.2 Formulation of HIV/AIDS Models with Aware-

ness Programs

We modify the differential equation model for the spread of HIV has been

described by Liang et al. (2016), multiplying the disease transmission term by

the factor φ(π) to represent the reduction in the spread of HIV due to awareness

programs. The biological parameters of the model are as described in Table 1

adapted from Greenhalgh and Hay (1997).

Note that P1,P2,P3 and P4 ≥ 0 are positive and P1 + P2 + P3 + P4 = 1. Define

σ =
[
λ1(1 − p) + λ2p

]
γ(1 − ξ)(1 − φ1),

τ =
[
λ1(1 − p) + λ2p

]
γ
[
1 − φ1(1 − ξ) + θ1(1 − ξ)

]
,

ρ = λ1γ [1 − (1 − ξ)(1 − P1 − P2)] ,

ν = λ1(P1 + P3).

(2.1)

Let π(t) be the fraction of HIV-infected PWIDs at time t and let β(t) be the

fraction of needles infected at time t. So we introduce the model as follows:

dπ
dt

= φ(π)(1 − π)νβ − µπ, (2.2)

dβ
dt

= φ(π)π(σ − τβ) − φ(π)(1 − π)ρβ. (2.3)

In general, we shall assume that φ is a positive monotone decreasing function

with φ(0) = 1.we reduced the dimensions of the model in (2.2) and (2.3), by
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Table 2.1: Description of Parameters

Parameter Definition

λ1 How fast PWIDs who are susceptible and PWIDs who have dis-
ease but are not aware of this fact visit locations where PWIDs
share needles.

λ2 How fast infected PWIDs who are aware that they have the dis-
ease visit places where PWIDs share needles.

P1 Chance that the PWID catches disease but the syringe remains
uninfected when an initially susceptible PWID injects with an ini-
tially uninfected needle.

P2 Chance that the PWID does not catch the disease and the nee-
dle becomes uninfected when an initially susceptible PWID injects
with an initially infected needle.

P3 Chance that the PWID catches the disease and the needle re-
mains infected when an initially susceptible PWID injects with an
initially infected needle.

P4 The chance that the PWID does not catch the disease and the
needle stays infected when an initially susceptible PWID injects
with an initially infected needle.

φ1 Chance that an infected PWID leaves uninfected an initially unin-
fected syringe.

θ1 Chance that a PWID with disease leaves uninfected a needle that
contained the virus before injection.

ξ Proportion of PWIDs who that clean syringes after using them.

γ Gallery ratio, where γ = n
m , and n is the total number of PWIDs and

m is the total number of shared needles.

p The chance that PWIDs with disease are aware of being infected.

µ Rate per PWID at which PWIDS either stop sharing needles or
develop full-blown AIDS.

supposing that the equation (2.3) is at steady state as a similar technique is used

in models for HIV amongst PWIDs as discussed by Liang et al. (2016). So we do

that and then give the basic analytical results and simulations. We got that

dπ(t)
dt

=
φ(π(t))(1 − π(t))νσπ(t)
π(t)τ + ρ − π(t)ρ

− µπ(t). (2.4)
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Next, we are going to make the model more realistic by modifying Greenhalgh

and Hay’s model.

2.2.1 Development of Greenhalgh and Hay’s model

Greenhalgh and Hay’s model was based on Kaplan’s basic model which as-

sumed that PWIDs cleaned their needles after use. In practice, PWIDs are more

likely to disinfect their syringes before injecting. So we modify the model of Green-

halgh and Hay to make it more realistic so PWIDs clean their needles before use

and we also introduce a disease awareness function Let I(t) denote the number

of infected PWIDs at time t and i(t) the number of infected needles at time t. For

a small time interval [t, t + ∆t]:

I(t + ∆t) = number of infected PWIDs at time t

+ number of new PWIDs infected in [t, t + ∆t)

− number of PWIDs who stop sharing needles or

develop full-blown AIDS [t, t + ∆t).

I(t + ∆t) = I(t) + (n − I)λ1φ(π)(P1 + P3)(1 − ξ)β∆t − µI∆t + o(∆t).

We use the notation that if f (x) and g(x) are two functions, then f (x) = o(g(x))

means that
f (x)
g(x)

→ 0 as x → 0. The term (n − I)λ1φ(π)(P1 + P3)(1 − ξ)β∆t is

because there are n − I uninfected PWIDs each of whom injects at rate λ1φ(π),

chooses an infected needle with probability β, does not clean the needle before

use with probability 1 − ξ and is infected at each injection with probability P1 + P3.

Rearranging

I(t + ∆t) − I(t)
∆t

= (n − I)λ1φ(π)(P1 + P3)(1 − ξ)β − µI + o(1). (2.5)
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Letting ∆t→ 0

dI
dt

= (n − I)λ1φ(π)(P1 + P3)(1 − ξ)β − µI. (2.6)

Dividing by n, the number of PWIDs,

dπ(t)
dt

= (1 − π)λ1φ(π)β(P1 + P3)(1 − ξ) − µπ. (2.7)

Now we turn to the needle equations. We are going to construct and examine

the differential equations for π(t) the proportion of PWIDs with disease and β(t),

the proportion of needles with the disease. We construct and examine the differ-

ential equations for these quantities. Consider the number of infected needles at

time t + ∆t.

i(t + ∆t) = number of syringes infectious at time t + ∆t,

= number of syringes infectious at time t and not visited by PWIDs in

[t, t + ∆t)

+ number of syringes left infectious at time t + ∆t after being visited

PWIDs in by infected [t, t + ∆t)

+ number of syringes left infectious at time t + ∆t after being visited

PWIDs in by susceptible [t, t + ∆t).

(i) n(1 − pπ) PWIDs arrive at shooting galleries at rate λ1φ(π). Also npπ PWIDs

visit at a rate λ2φ(π). Each PWID chooses one of the m shooting galleries ran-

domly. So at one given shooting gallery PWIDs arrive at rate
[
λ1(1 − pπ) + λ2pπ

]
γφ(π).

Here γ = n/m is the number of PWIDs divided by the number of needles. So{
1 −

[
λ1(1 − pπ) + λ2pπ

]
γφ(π)∆t

}
i + o(∆t) (2.8)

syringes are infectious at time t and no PWIDs use them in [t, t + ∆t).

(ii) For a given shooting gallery infected PWIDs enter it at rate
[
λ1(1 − p) + λ2p

]
γφ(π).

If a PWID who is infected uses a syringe, this syringe will be infectious after being

used and cleaned with probability (1 − β + βξ)(1 − φ1) + β(1 − ξ)(1 − θ1) and in a
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small interval [t, t + ∆t]

m
[
λ1(1 − p) + λ2p

]
πγφ(π)

[
(1 − β + βξ)(1 − φ1) + β(1 − ξ)(1 − θ1)

]
∆t + o(∆t),

(2.9)

units of injection equipment will be left infectious subsequent to use by a PWID

with the disease.

(iii) If we take a given syringe uninfected PWIDs come to it at a rate λ1γφ(π)(1−π).

If a susceptible PWID uses an infectious syringe, afterwards, the equipment will

be capable of transmitting infection with probability (1 − P1 − P2)(1 − ξ). So the

number of syringes infectious after use by an uninfected PWID in [t, t + ∆t] is

λ1γφ(π)(1 − π)i(1 − P1 − P2)(1 − ξ)∆t + o(∆t). (2.10)

Hence

i(t + ∆t) = i
{
1 −

[
λ1(1 − pπ) + λ2pπ

]
γφ(π)∆t

}
+ m

[
λ1(1 − p) + λ2p

]
φ(π)πγ

[
(1 − β + βξ)(1 − φ1) + β(1 − ξ)(1 − θ1)

]
∆t

+ λ1γ(1 − π)i(1 − P1 − P2)(1 − ξ)φ(π)∆t + o(∆t).

(2.11)

Subtracting i(t) from both sides and dividing by ∆t
i(t + ∆t) − i(t)

∆t
= −

[
λ1(1 − pπ) + λ2pπ

]
γφ(π)i

+ m
[
λ1(1 − p) + λ2p

]
φ(π)πγ

[
(1 − β + βξ)(1 − φ1) + β(1 − ξ)(1 − θ1)

]
+ λ1γ(1 − π)i(1 − P1 − P2)(1 − ξ)φ(π) + o(1).

(2.12)

Letting ∆t→ 0
di
dt

= −
[
λ1(1 − pπ) + λ2pπ

]
γφ(π)i

+ m
[
λ1(1 − p) + λ2p

]
φ(π)πγ

[
(1 − β + βξ)(1 − φ1) + β(1 − ξ)(1 − θ1)

]
+ λ1γ(1 − π)i(1 − P1 − P2)(1 − ξ)φ(π).

(2.13)
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Dividing by m
dβ
dt

= −
[
λ1(1 − pπ) + λ2pπ

]
γφ(π)β

+
[
λ1(1 − p) + λ2p

]
φ(π)πγ

[
(1 − β + βξ)(1 − φ1) + β(1 − ξ)(1 − θ1)

]
+ λ1γ(1 − π)β(1 − P1 − P2)(1 − ξ)φ(π).

Hence we deduce that equations (2.2) and (2.3) hold where σ, τ, ρ and ν are

redefined as

σ =
[
λ1(1 − p) + λ2p

]
γ(1 − φ1),

τ =
[
λ1(1 − p) + λ2p

]
γ
[
1 − (1 − ξ)(1 − θ1) + (1 − ξ)(1 − φ1)

]
,

ρ = λ1γ [1 − (1 − ξ)(1 − P1 − P2)] ,

ν = λ1(P1 + P3)(1 − ξ).

(2.14)

Note also that using numbers not fractions of needles and PWIDs with disease

equations (2.2) and (2.3) become

dI
dt

= φ(π)(n − I)ν
i

m
− µI, (2.15)

di
dt

= φ(π)
Iσ
n

(m − i) − φ(π)
(n − I)

n
ρi − φ(π)

I
n

(τ − σ)i. (2.16)

Note that τ > σ. These equations are explained by the flow diagram in Figure

2.1. In equation (2.15)

φ(π)(n − I)
νi
m
,

is the rate at which susceptible PWIDs arrive at infected needles and become

infectious. On the other hand, µI is how fast infected PWIDs stop sharing needles

and are replaced by uninfected PWIDs.

Equation (2.16) is more complicated. The term

φ(π)
Iσ
n

(m − i),
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is the rate at which infected PWIDs arrive at uninfected needles, do not clean

the needle before use and infect the needle, i.e. the rate at which new infected

needles occur. Of the two terms on the right hand side

φ(π)
(n − I)

n
ρi,

is the rate at which uninfected PWIDs visit infected needles and either clean the

needle before use or flush the needle, in other words the rate at which uninfected

PWIDs visit infected needles and leave the needle uninfected. The other term on

the right hand side is

φ(π)
Ii
n

(τ − σ), (2.17)

and note τ − σ = [λ1(1 − p) + λ2p]γ[ξφ1 + θ1(1 − ξ)] so (2.17) is the rate at which

infected PWIDs visit infected needles and leave the needles uninfected. This

completes our interpretation of equations (2.15) and (2.16).

Now we move on to compute the basic reproductive number of equation model

(2.4).

2.2.2 The Basic Reproductive Number R0

R0 is important in epidemic models. Usually, the disease becomes extinct if

R0 < 1 and takes off if R0 > 1, so to derive R0, we consider a new infected PWID

coming into a steady state population with no disease. The basic reproduction

number is the average number of PWIDs who catch the disease via only one

infectious syringe. The definition of R0 used here is similar to the definition used

in Macdonald (1952) , Massad et al. (2001), Sanches and Massad (2016) and

Van den Driessche (2017). It takes the basic infectious unit to be an infectious

human. This method and the corresponding definition of R0 are different than

the Next Generation Matrix approach as discussed by Diekmann et al. (1990b),
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Figure 2.1: Flow diagram of equations (2.15) and (2.16).

Van den Driessche (2017), Van den Driessche and Watmough (2002, 2008) and

Roberts and Heesterbeek (2003). The Next Generation Matrix Method treats

PWIDs and syringes as separate infectious entities. Consequently, the value of

R0 derived by this method is the square root of the one we obtained. However, as

each passes through one at the same time they give equivalent qualitative results

if used as a threshold value.

R0 is given as

R0 =
νσ
ρµ
. (2.18)

This expression for R0 can be derived by considering a single PWID who is in-

fected with HIV in a completely disease-free environment when no other PWIDs
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have HIV, and all needles are clean. From equations (2.2) and (2.3) we have
dI
dt

= nφ(π)(1 − π)νβ − µI,

= γνφ(π)(1 − π)i − µI,

di
dt

=
m
n
φ(π)I(σ − τβ) − φ(π)(1 − π)ρi,

=
(σ − τβ

γ

)
φ(π)I − φ(π)(1 − π)ρi.

(2.19)

As we are near the disease-free equilibrium (DFE) we neglect second order terms

in small quantities to obtain
dI
dt

= γνi − µI,

di
dt

=
σ
γ

I − ρi.
(2.20)

A newly infected PWID remains in the sharing injecting population for time
1
µ

. During that time he or she contaminates the number of needles denoted by

σ
µγ

. Each needle remains infectious for time
1
ρ

and during that time it infects
γν

ρ

PWIDs. So each PWID causes
σ
µγ
·
γν

ρ
=
νσ
ρµ

secondary infections in PWIDs, so

R0 =
νσ
ρµ

. R0 can also be derived by considering the expected number of syringes

infected via only one infected PWID caused by a single syringe which has just

been infected and entering a steady-state population with no disease. This sy-

ringe causes
γν

ρ
infectious PWIDs who each in turn infect

σ
µγ

infectious needles.

So again R0 =
(γν
ρ

)
·

(
σ
µγ

)
=
νσ
ρµ

. We will see that R0 is a critical parameter which

will determine if the disease can sustain itself.

This concludes our analysis of the basic reproduction number. In the next

section, we shall analytically study the one-dimensional model equation (2.4).

2.3 Analysis of the One Dimensional Model

We are going to determine the dynamical behaviour of the model in (2.4)

depending on the basic reproductive number we shall start off by showing the

existence and uniqueness of a non-negative solutions to (2.4) then discuss the
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existence of equilibrium solutions. Next we discuss the local and global stability of

these solutions. Finally our analytical results will be illustrated by using simulation

with realistic parameter values.

2.3.1 Existence of Unique Non-negative Solution

To show that there is one and only one non-negative model solution of the

model (2.4), we require to apply the concept of a Lipschitz continuous functions

and the Picard-Lindelöf theorem.

(i) Lipschitz continuous functions: (Wikipedia (2022), Searcóid (2006))

Definition: Let (X, dX) and (Y, dY) be two metric spaces as described in

Choudhary (2011) where dX denotes the metric on the set X and dY is

the metric on set Y, a function f : X → Y is called a Lipschitz continuous

function if there exists a real constant K ≥ 0 such that for all x1 and x2 ∈ X.∣∣∣ f (x1) − f (x2) |< K| x1 − x2

∣∣∣ .
K is called a Lipschitz constant for the function f . In particular, for a real-

valued function define Y as the set of real numbers of R with the metric

dY(y1, y2) = |y1 − y2|, and X might be a subset of R with the same metric.

(ii) The Picard-Lindelöf Theorem: the Picard-Lindelöf existence theorem is an

important theorem in the study of differential equations, which indicates ex-

istence and uniqueness of solutions to first-order equations with given initial

conditions. Consider the initial value problem

dy
dt

= f (t, y(t)), y(t0) = y0.

Suppose that f : R×R→ R is uniformly continuous in y. This means that the

Lipschitz constant K is independent of t. Then for some ξ >0 there exists a

unique solution for y(t) to the initial value problem in the interval [t0-ξ , t0+ξ].
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Theorem 2.3.1. Suppose that φ is a Lipschitz continuous function of π for any

particular starting value π(0) = π0 ∈ [0, 1] there is one and only one non negative

solution for the PWID equation model (2.4).

Proof: Define f (π) to be the right-hand side of equation (2.4) where σ, τ, ρ and

ν are defined by equations (2.14). First we going to show that the function f is

Lipschitz continuous. So for all π1, π2 ∈ [0,1].∣∣∣ f (π1) − f (π2)
∣∣∣ =

∣∣∣∣∣∣
(
φ(π1(1 − π1)νσπ1

π1τ + ρ − π1ρ
− µπ1

)
−

(
φ(π2(1 − π2)νσπ2

π2τ + ρ − π2ρ
− µπ2

) ∣∣∣∣∣∣.
(2.21)

So now we going to split it by using the triangle inequality.∣∣∣ f (π1) − f (π2)
∣∣∣ ≤ ∣∣∣∣∣∣

(
φ(π1(1 − π1)νσπ1

π1τ + ρ − π1ρ

)
−

(
φ(π2)(1 − π2)νσπ2

π2τ + ρ − π2ρ

)∣∣∣∣∣∣
+ µ |π1 − π2| ,

≤

∣∣∣∣∣∣
(
φ(π1)(1 − π1)νσπ1

π1τ + ρ − π1ρ

)
−

(
φ(π2)(1 − π1)νσπ1

π1τ + ρ − π1ρ

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
(
φ(π2)(1 − π1)νσπ1

π1τ + ρ − π1ρ

)
−

(
φ(π2)(1 − π2)νσπ2(t)

π2τ + ρ − π2ρ

)∣∣∣∣∣∣
+ µ |π1 − π2| ,

≤

∣∣∣φ(π1) − φ(π2)
∣∣∣ (1 − π1)νσπ1

π1τ + ρ − π1ρ

+
∣∣∣φ(π2)

∣∣∣ ∣∣∣∣∣ (1 − π1)νσπ1

π1τ + ρ − π1(t)ρ
−

(1 − π2)νσπ2

π2τ + ρ − π2ρ

∣∣∣∣∣
+ µ |π1 − π2| ,

≤ K
(π1 − π2)νσ

min(ρ, τ)
+ K1 |π1 − π2| + µ |π1 − π2|.

(2.22)

Here K is the Lipschitz constant for φ and for the first term we are using the fact
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that φ is Lipschitz continuous. For the second term we use the fact that

g(π) =
νσ(1 − π)π
πτ + ρ − πρ

.

is continuously differentiable for π ∈ [0, 1] with derivative bounded above by a

constant K1. Then by the Intermediate Value Theorem

|g(π1) − g(π2)| ≤ K1|π1 − π2|.

From inequality (2.22) we deduce that f is Lipschitz continuous for π ∈ [0, 1].

We now continue with the proof of Theorem 2.3.1. We shall split the rest of

the proof into three different cases. The first one is π(0) ∈ (0, 1), the second one

is π(0) = 1 and the third one is π(0) = 0.

First, suppose that π(0) ∈ (0, 1). By applying the Picard́–Lindelöf Theorem there

exists a unique local solution.

Let us define [0, τe) to be the maximum interval where a solution exists and

π ∈ (0, 1) for all ξ in [0, τe). We shall show that τe = ∞ by using an argument by

contradiction.

(i) We suppose that τe < ∞. By using the Picard́-Lindelöf Theorem, ∃ ∆t > 0

such that the solution exists in [0,∆t]. As π(0) ∈ (0, 1) we must have π(s) ∈

(0, 1) for s ∈ [0,∆t], if ∆t is small enough. Hence we have shown that τe > 0.

Now by integrating the expression given in equation (2.4)

1
π

dπ(t)
dt

=
φ(π(t))(1 − π(t))νσ
π(t)τ + ρ − π(t)ρ

− µ, (2.23)

for t < τe,

π(t) = π(0) exp
(∫ t

0

(
φ(π(t))(1 − π(t))
π(t)τ + ρ − π(t)ρ

− µ

)
dt

)
. (2.24)

Letting t→ τe

lim
t→τe

π(t) = π(τe) = π(0) exp
(∫ τe

0

(
φ(π(t))(1 − π(t))
π(t)τ + ρ − π(t)ρ

− µ

)
dt

)
> 0. (2.25)

Let f (π) denote the right hand side of the equation (2.23) as π → 1, then

f (π) → −µ. So there exists α < 1, as such that for π ≥ α, f (π) < 0. π(t)

can never exceed α as if it does it must increase from α to its new value

49



contradicting
dπ(t)

dt
< 0, for π ≥ α. By using the Picard́-Lindelöf Theorem

there exists a unique local solution to the equation in [τe−η, τe +η] for some

η > 0. As the unique solution is continuous at τe,

lim
t→τe

π(t) ≤ α < 1.

So π(τe) ∈ (0, 1), moreover a similar argument shows that π(t) ∈ (0, 1) for

t ∈ [0, τe + ε], where ε is small and positive. This is a contradiction to the

definition of τe, so τe = ∞. So this completes the proof of Theorem 2.3.1 in

this case.

(ii) Suppose that π(0) = 1. Then by using the Picard́-Lindelöf Theorem, there

exists ∆t > 0 such that the solution exists in [0,∆t]. If ∆t is small enough

π(η) > 0 for η ∈ [0,∆t) as,

π(η) = π(0) + f (0)η + o(η),

= 1 − µη + o(η).

If ∆t is small enough then π(η) < 1 on (0,∆t], so 0 < π(∆t) < 1. The result of

Theorem 2.3.1 follows by Case 1.

(iii) Suppose that π(0) = 0. By using the Picard́-Lindelöf Theorem, there exists

∆t > 0 such that the equation has a unique local solution in [0,∆t]. We

can see that π(t) = 0 is the solution for all time. Let τe be the maximum

interval where a unique solution exists with π(t) = 0 for ξ in [0, τe). By the

same argument as in Case 1 we have that τe > 0. Suppose that τe < ∞

and π(t) = 0 for all t < τe, again by using the Picard́-Lindelöf Theorem there

exists a unique local solution in (τe − η, τe + η) for some η > 0, and π(t) = 0

in [0, τe + η), this is a contradiction. So again we deduce that τe = ∞. This

completes the proof of Theorem 2.3.1 in Case 3 and the proof of Theorem

2.3.1 at together. To briefly summaries from the proof of Theorem 2.3.1 we

have that
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• If π(0) ∈ (0, 1), then π(t) ∈ (0, 1)∀t ≥ 0 ,

• If π(0) = 1, then π(t) ∈ (0, 1)∀t > 0,

• If π(0) = 0, then π(t) = 0∀t ≥ 0.

We have now finished the proof of Theorem 2.3.1. Next, we shall look at the

existence of equilibria for the above model (2.4).

2.3.2 Existence of Equilibria

We shall show that if R0 is less than one then there is only the steady state

with no disease whereas if R0 exceeds one, there is one and only one steady

state with disease present.

if R0 ≤ 1 then there is only the disease-free equilibrium whereas if R0 > 1 then

there is a unique endemic equilibrium as well as the DFE. We shall first look at

the case where φ is strictly decreases with π, and then the case where it is just

(possibly not strictly) monotone decreasing.

Theorem 2.3.2. Suppose that φ is strictly monotone decreasing and R0 ≤ 1 then

the equation (2.4) will have one and only one steady-state solution where eventu-

ally there is no disease present where the disease dies out in PWIDs, π∗ = 0. This

is the only equilibrium. If R0 > 1 there exists exactly one non-zero steady-state

solution π∗ > 0 in (0,1] as well as the DFE.

Proof: The trivial equilibrium is π∗ = 0, and any other equilibrium must satisfy

the equation
φ(π)(1 − π)νσ
πτ + ρ − πρ

− µ = 0. (2.26)

Re-arranging (2.26) we deduce that

1
π

=
1

νσ
µτ
φ(π) −

ρ

τ

+ 1. (2.27)
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Define

g1(π) =
1
π
, and g2(π) =

1
νσ
µτ
φ(π) −

ρ

τ

+ 1.

There are several situations to consider.

(i) Suppose that R0 =
νσ
ρµ

< 1. In this case we have that

νσ
µτ
φ(π) −

ρ

τ
≤
νσ
µτ
−
ρ

τ
< 0, ∀π(t).

Hence g2(π) < 1 and g1(π) ≥ 1 in the equation (2.27), for π ∈ (0, 1]. There-

fore, there is no non-zero solution in this case.

(ii) If R0 =
νσ
ρµ

= 1, then we have the same thing that

νσ
µτ
φ(π) −

ρ

τ
≤
νσ
µτ
−
ρ

τ
= 0, ∀π > 0.

So again g2(π) < 1 and g1(π) ≥ 1 in (0, 1]. Thus again there is no strictly

positive solution.

(iii) If R0 =
νσ
ρµ

> 1, we know that φ(π) is strictly monotone decreasing so we

consider the equation given by

φ(π) =
ρµ

νσ
< 1. (2.28)

We consider three cases.

(a) If φ(1) >
ρµ

νσ
, there are no roots of the equation (2.28) in [0, 1]. In this

case as π→ 0, then g1(π)→∞ and

g2(π)→ 1 +
1

νσ
µτ
−
ρ

τ

< ∞, because
νσ
µρ

> 1.

At π = 1, g1(π) = 1 and

g2(π) = 1 +
1

νσ
µτ
φ(1) −

ρ

τ

> 1, as
νσ
µτ
φ(1) >

ρ

τ
.

So the equation (2.27) has a non-zero root π∗ in (0, 1). Moreover g1(π)

is strictly monotone decreasing in π and g2(π) is strictly monotone in-

creasing in π, so this root is unique in (0, 1].
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(b) If φ(1)=
ρµ

νσ
, then the equation (2.28) has a unique root at π = 1. Again

as π→ 0 then g1(π)→∞ and limπ→0 g2(π) < ∞.

For π < 1, g1(π) > 1 and g2(π) < ∞ arguing as above.

For π = 1, g1(π) = 1 and g2(π) = ∞. We have

lim
π→0

g1(π) > lim
π→0

g2(π),

lim
π→1

g1(π) = 1 < lim
π→1

g2(π) = ∞.

So the equation (2.28) has a root in (0, 1) and similarly to case (a) this

root is unique in [0, 1].

(c) If φ(1) <
ρµ

νσ
, then we know that (1) φ(0) = 1 >

ρµ

νσ
and (2) φ(1) <

ρµ

νσ
, so

equation (2.28) has a unique root π∗∗ in [0, 1]. This case is illustrated by

Figure (2.2). As π→ 0 then g1(π)→∞ and g2(π)→ 1+
1

νσ
µτ
−
ρ

τ

< ∞.

As π → π∗∗ then g1(π) →
1
π∗∗

< ∞ and g2(π) → ∞ so the equation

(2.27) has a unique root in (0, π∗∗), uniqueness follows as previously.

At π = π∗∗, g1(π∗∗) < 1 and g2(π∗∗) = ∞. For π ∈ (π∗∗, 1], g1 ≥ 1 and

φ(π) <
ρµ

νσ
so g2(π) < 1. So there are no roots of the equation (2.27)

in [π∗∗, 1]. So equation (2.27) has a unique root in [0, 1]. The proof of

Theorem 2.3.2 is thus finished.

Corollary 2.3.1. Suppose that φ is monotone decreasing. Then the conclusion

of Theorem 2.3.2 regarding the existence and uniqueness of equilibria for R0 ≤ 1

and R0 > 1 still holds.

Proof: Any non- trivial solution must satisfy the equation (2.27). Again there

are three situations to consider, the first is R0 < 1, the second R0 = 1 and the third

R0 > 1.

(i) R0=
νσ
ρµ

< 1. The proof given in Theorem (2.3.2) is still valid in this case.
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Figure 2.2: Illustration of Theorem 2.3.2 Case 3(c).

(ii) If R0 =
νσ
ρµ

= 1,then we have the same thing that

νσ
µτ
φ(π) −

ρ

τ
≤
νσ
µτ
−
ρ

τ
= 0.

forπ > 0.

So we have g1(π) ≥ 1 and either g2(π) < 1

if φ(π) < 1 or g2(π)=∞ if φ(π) = 1 in (0,1]. Thus again there is no strictly

positive solution.

(iii) If R0=
νσ
ρµ

> 1, we know φ(π) is monotone decreasing so we consider the

equation given by

φ(π) =
ρµ

νσ
< 1. (2.29)

We consider three cases.
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(a) If φ(1) >
ρµ

νσ
, there are no roots of the equation (2.29). In this case as

π→ 0, then g1(π)→∞ and

g2(π)→ 1 +
1

νσ
µτ
−
ρ

τ

< ∞, because
νσ
µρ

> 1.

At π = 1, g1(π) = 1 and

g2(π) = 1 +
1

νσ
µτ
φ(1) −

ρ

τ

> 1, as
νσ
µτ
φ(1) >

ρ

τ
.

So the equation (2.27) has a non-zero root π∗ in (0, 1]. Moreover g1(π)

is strictly monotone decreasing in π and g2(π) is monotone increasing

in π, so this root is unique in (0,1].

(b) If φ(1) =
ρµ

νσ
, then the equation (2.29) has as root any value in the

closed interval [π+, 1], given by φ(π) = φ(1) with right limit 1.

For π ∈ [0, π+), φ(π) > φ(1). As π→ 0 then g1(π)→∞ and

g2(π)→ 1 +
1

νσ
µτ
−
ρ

τ

< ∞.

As π → π+ then g1(π) →
1
π+

and g2(π) → ∞, hence there is a root in

(0, π+) and arguing as in case (a) it is unique. For [π+, 1], g1(π) < ∞

and g2(π) = ∞ so there are no roots in this region. So the equation

(2.27) has a root in [0, π+) and similarly to case (a) this root is unique

in [0, π+), hence unique in [0, 1] as there are no roots in [π+, 1].

(c) If φ(1) <
ρµ

νσ
, then we know that φ(0) = 1 >

ρµ

νσ
, so equation (2.29) has

roots in a closed interval [π∗∗1 , π
∗∗

2 ] ⊂ [0, 1]. As π → 0 then g1(π) → ∞

and

g2(π)→ 1 +
1

νσ
µτ
−
ρ

τ

< ∞.

As π → π∗∗1 then g1(π) →
1
π∗∗1

< ∞ and g2(π) → ∞. So the equation

(2.27) has a unique root in (0, π∗∗1 ). Uniqueness follows as previously.
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For π ∈ [π∗∗1 , π
∗∗

2 ], φ(π) = φ(π∗∗1 ), g1(π) < ∞ and g2(π) = g2(π∗∗) = ∞.

On the other hand for π ∈ (π∗∗2 , 1], g1 ≥ 1 and φ(π) <
ρµ

νσ
, so g2(π) < 1.

So there are no roots of the equation (2.27) in [π∗∗1 , 1]. Hence equation

(2.27) has a unique root in [0,1]. This completes the proof of Corollary

(2.3.1).

We have shown that if R0 is less than or equal to one then there is only the steady

state with no disease present whereas if R0 exceeds one then there is the DFE

and a unique steady state with disease present (denoted the endemic equilibrium

(EE)). We shall now explore the local stability of the equilibrium.

2.3.3 Local Stability of Equilibrium

To study the local stability of the equilibrium we consider whether if π is slightly

displaced from the equilibrium pointπ∗it will return to it or move away. We can write

dπ(t)
dt

=
φ(π(t))(1 − π(t))νσπ(t)
π(t)τ + ρ − π(t)ρ

− µπ(t) = f (π). (2.30)

Theorem 2.3.3. Assume that φ is a differentiable function of π. We have shown

that

(i) If R0 < 1 then the solution with no disease to equation (2.4) is locally asymp-

totically stable.

(ii) If R0 = 1 then the solution with no disease is neutrally stable.

(iii) If R0 > 1 then the solution with no disease is unstable and the unique EE is

locally asymptotically stable.

Proof: We can write

f (π) = π

[
φ(π(t))(1 − π(t))νσ
π(t)τ + ρ − π(t)ρ

− µ

]
. (2.31)

d f
dπ

=
φ(π)(1 − π)νσ
πτ + ρ − πρ

− µ

+ π

[
φ
′(π)(1 − π)νσ
πτ + ρ − πρ

−
φ(π)νσ

πτ + ρ − πρ
−
φ(π)(1 − π)νσ(τ − ρ)

(πτ + ρ − πρ)2

]
.

(2.32)

56



When π = 0 we have
d f
dπ

∣∣∣∣∣
π=0

=
νσ
ρ
− µ,

= µ(R0 − 1).
(2.33)

Hence if R0 < 1 the DFE is locally asymptotically stable. If R0 = 1 then the DFE is

neutrally stable. if R0 > 1 then the DFE is unstable.

If R0 > 1 and π = π∗ then
d f
dπ

∣∣∣∣∣
π=π∗

=
φ
′(π∗)(1 − π∗)νσπ∗

π∗τ + ρ − π∗ρ
−

φ(π∗)νσπ∗

π∗τ + ρ − π∗ρ
−
φ(π∗)νσ(τ − ρ)(1 − π∗)π∗

(π∗τ + ρ − π∗ρ)2 ,

=

[
φ
′(π∗)(1 − π∗)νσπ∗

π∗τ + ρ − π∗ρ
−

φ(π∗)νστπ∗

(π∗τ + ρ − π∗ρ)2

]
.

(2.34)

As both terms are negative.
d f
dπ

∣∣∣∣∣
π∗
< 0 and the unique EE is locally asymptotically

stable when it exists. This completes the proof of Theorem 2.3.3. We shall now

proceed to look at the global behaviour of the system.

2.3.4 Global Stability of Equilibria

We have shown that there is always a DFE possible which is locally asymp-

totically stable if R0 < 1 and unstable if R0 > 1. In the latter case there is a unique

the EE which is locally asymptotically stable.

Theorem 2.3.4. Suppose that φ(π) is monotone decreasing in π. If π(0) = 0 then

π(t) = 0 for all time. If R0 ≤ 1 then the disease will always die out whatever the

initial fraction of PWIDs infected, so we have global stability of the DFE. If R0 > 1

and disease is initially present then over a long time the solution to equation (2.4)

approaches the unique endemic equilibrium.

Proof: It is clear that π(0) = 0 implies that π(t) = 0 for all time.

(i) Suppose first that R0 <1 and π(0) > 0. We will show that π(t)→ 0 as t→∞.

By using the equation (2.25) π(0) > 0 implies that π(t) > 0 ∀ t. Rewrite the
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equation (2.23) as

1
π

dπ(t)
dt

=
φ(π(t))(1 − π(t))νσ
π(t)τ + ρ − π(t)ρ

− µ =
φ(π)νσ
τπ

1 − π
+ ρ
− µ. (2.35)

In the last fraction the numerator is φ(π)νσ which is decreasing in π and the

denominator is monotone increasing in π for π ≥ 0. So writing

g3(π) =
φ(π)νσ
τπ

1−π + ρ
− µ.

g3(π) ≤ g3(0) =
νσ
ρ
− µ = −ε < 0.

(2.36)

where ε > 0. Hence from equation (2.35)∫ t

0

1
π

dπ
dt

dt ≤
∫ t

0
(−ε)dt,[

logπ
]t

0
≤ −εt,

log
(π(t)
π(0)

)
≤ −εt.

(2.37)

Hence 0 ≤ π(t) ≤ π(0)e−εt. Now as t → ∞ then π(0)e−εt → 0, so π → 0.

Hence the DFE is globally stable for R0 <1.

(ii) Now we shall consider the case where R0 = 1. Without loss of generality

suppose that π(0) > 0. With the same notation as above note that g3(π) ≤

g3(0) = 0. If φ is monotone decreasing in π then we assert that π(t)→ 0 as

t→∞. If ρ < τ pick ε > 0 such that ε ≤ min
(
1,

ρ

τ − ρ

)
. If τ<ρ pick ε < 1. For
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π ≥ ε, we have

g3(π) ≤ g3(ε) ≤
νσ

τε
1 − ε

+ ρ
− µ,

=
νσ(1 − ε)

τε + ρ(1 − ε)
− µ,

=
νσ(1 − ε)
ρ + (τ − ρ)ε

−
νσ
ρ
,

=
νσ
ρ

[ρ(1 − ε) − [ρ + (τ − ρ)ε]]
(ρ + (τ − ρ)ε)

,

= −
νστε

ρ(ρ + (τ − ρ)ε)
,

≤ −
νστε
2ρ2 ,

= −aε.

(2.38)

Here a =
νσ2

2ρ2 , as 2ρ ≥ ρ + (τ − ρ)ε. Hence for π ≥ ε,
1
π

dπ
dt
≤ −aε.

So π is monotone decreases and 0 ≤ π ≤ π(0)e−aεt. Eventually π decreasing

below 2ε, at time t0 , and as it is monotone decreases for π ∈ [ε, 1] it cannot

rise above 2ε again so 0 ≤ π(t) ≤ 2ε for t ≥ t0. But ε can be made arbitrarily

small so π(t)→ 0 as t→∞.

(iii) Suppose that R0 > 1 and 1 ≥ π(0) > 0. We shall consider three cases (a)

π(0) = π∗, (b) π(0) < π∗ and (c) π(0) > π∗.

Now we are going to prove Theorem 2.3.4 in these cases, the first one is

(I) π(0) = π∗ then it is clear that π(t)→ π∗ as t →∞.

(II) π(0) < π∗ then by the proof of Corollary 2.3.1 case (iii) (all sub-cases) for

0 < π < π∗

1 +
1

νσ
µτ
φ(π) −

ρ

τ

<
1
π
.
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Re-arranging (
νσ
µτ
φ(π) −

ρ

τ

)
(π − 1) < − π,

(νσφ(π) − µρ)(1 − π) > µτπ,

νσφ(π)(1 − π) > µ[τπ + ρ(1 − π)],

νσφ(π)(1 − π)
τπ + ρ(1 − π)

> µ.

(2.39)

Hence

dπ
dt

=
νσφ(π)π(1 − π)
τπ + ρ(1 − π)

− µπ > 0.

Therefore π(t) is monotone increasing in t.

If π(t0) = π∗ for some t0 then π(t) = π∗ for all t ≥ t0 and the result follows.

If π(t) < π∗ ∀ t, then π(t) is monotone increasing and bounded above, so

tends to a limit πl > π(0) > 0. If πl = π∗ then we are done.

Suppose that πl<π∗. Arguing as above

ε =
νσ(1 − πl)φ(πl)
πlτ + ρ(1 − πl)

− µ > 0. (2.40)

Recall from earlier that

g3(π) =
νσφ(πl)
τπ

1 − π
+ ρ
− µ.

is monotone decreasing in π. Hence for π < πl, g3(π) ≥ g3(πl) = ε > 0, so

1
π

dπ
dt
≥ ε > 0.

Hence integrating

1
π

dloge(π)
dt

≥ ε > 0.

So π(t) ≥ π(0) eεt
→ ∞ as t → ∞. But that is a contradiction and we are

done.

(III) The other case is π(0) > π∗. We shall first deal with the case where φ
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is strictly monotone decreasing (Theorem 2.3.2) and then the case where

φ is only monotone decreasing (Corollary 2.3.1). For the first case where φ

is strictly monotone decreasing recall the proof of Theorem 2.3.2 that π∗∗ is

the unique root of

φ(π) =
ρµ

νσ
in [0, 1].

Either (a) π∗ < π < π∗∗ , (b) π = π∗∗ or (c) π > π∗∗. By the proof of Theorem

2.3.2 case (3) (all three cases).

If (a) or (b) is true, then by rearranging and arguing as above we have

1 +
1

νσ
µτ
φ(π) −

ρ

τ

>
1
π
.

dπ
dt

=
νσφ(π))π(1 − π)
πτ + ρ(1 − π)

− µπ < 0.

(2.41)

In Case (c) we have

1
π
> 1 +

1
νσ
µτ
φ(π) −

ρ

τ

. (2.42)

Arguing as above

−
1

νσ
µτ
φ(π) −

ρ

τ

> 0 > 1 −
1
π

=
π − 1
π

.

(
νσ
µτ
φ(π) −

ρ

τ

)
(π − 1) > 0 > −π.

(νσφ(π) − µρ)(1 − π) < µτπ.

(2.43)

So again, arguing as above

dπ
dt

=
νσφ(π)π(1 − π)
πτ + ρ(1 − π)

− µπ < 0. (2.44)

Hence π(t) is monotone decreasing in t.

If π(t) = π∗ for some t0 then π(t) = π∗ for all t ≥ t0 so we are done.

If π(t) < π∗(t) ∀ t, then π(t) is monotone decreasing and bounded below so

tends to a limit πl where π∗ ≤ πl < π(0) ≤ 1. If πl = π∗ then we are done.
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Suppose that πl > π∗ then arguing as above

ε =
νσ(1 − πl)φ(πl)
πlτ + ρ(1 − πl)

− µ < 0. (2.45)

So for π ≥ πl, g3(π) ≤ g3(πl) < 0. Then for π > πl, we have

1
π

dπ
dt
≤ ε < 0.

So 0 ≤ π(t) ≤ π(0)eεt, hence π(t) → 0 as t → ∞, but that is a contradiction

as πl ≥ π∗ > 0. Hence πl = π∗ and we are done.

We now return to Case (III) π(0) > π∗ of the Theorem 2.3.4 where φ is

just monotone decreasing. In this case from the proof of Corollary 2.3.1,

the equation (2.29) has roots in an interval [π∗∗1 , π
∗∗

2 ] ⊂ [0, 1]. Either (a)

π∗ < π < π∗∗1 , (b) π ∈ [π∗∗1 , π
∗∗

2 ] or (c) π > π∗∗2 If (a) or (b) is true, then again

we have

1 +
1

νσ
µτ
φ(π) −

ρ

τ

>
1
π
, (2.46)

and the proof proceeds as in case (a) and (b) above. If (c) is true then again

1
π
> 1 +

1
νσ
µτ
φ(π) −

ρ

τ

, (2.47)

and the proof proceeds as in cases (c) above, so Theorem 2.3.4 is still true if

φ is just monotone decreasing. This completes the proof of Theorem 2.3.4.

Hence we have shown that if R0 is less than or equal to one disease will become

extinct whatever the starting value. If there is no disease initially then there will

never be any disease. If there is initially disease and R0 > 1, then the solutions

will tend to the unique steady state with disease present for a large time. So in

particular, limit cycle solutions cannot exist.

Next, we are going to show some numerical simulations and confirm our the-

oretical analysis results.
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2.3.5 Simulations

We support our analytical results given in Theorems 2.3.1 - 2.3.4 and Corollary

2.3.1 by numerical simulations. Our simulations were performed using MATLAB

and the numerical ordinary differential equation solver (ode45). Our computer

program was tested using comprehensive output from a large number of runs.

Throughout various simulations, we have used realistic parameter values for HIV

and HCV amongst PWIDs but our main objective is to verify the analytic results

which estimate the spread of HIV amongst PWIDs for model (2.4) with two dis-

ease awareness programs. We showed that if R0 ≤ 1 then the disease will die

out, and if the disease is initially present and R0 > 1 then the disease will tend to

the unique endemic equilibrium.

Motivated by the literature (Greenhalgh et al. (2015), Misra et al. (2011),

Samanta et al. (2013)) , we take two functional forms for φ(π). The first one

is φ(π) =
(
1 −

aπ
b + π

)
where a and b are positive constants with 0 ≤ a ≤ 1, and the

second is φ(π) = e−m0nπ where m0 is constant and n represents the number of the

PWIDs population. An alternative form is

φ(π) = e−M(t),where M(t) = max
[
0, cπ + d

dπ
dt

]
, (2.48)

where c and d are strictly positive constants Misra et al. (2011), but we have

not used this. We shall make similar assumptions as in Liang et al. (2016). We

shall take p = 0 and assume that λ1 = λ2 so that all PWIDs visit shooting galleries

at the same rate whether or not they are infected. Also, we take φ1, the probability

that after a single injection an initially infected PWID leaves uninfected a syringe

that was initially infected, and θ1, the probability that after a single injection an

initially infected PWID leaves uninfected a syringe that was initially infected, to

be zero as these probabilities are very small and in simple models of the spread

of HIV amongst PWIDs these probabilities are normally taken as zero. We

choose realistic values for µ, the per capital rate at which addicts leave the sharing

injecting population of µ= 0.258/year = 7.0637 ×10−4/day, P1 = 0.0, P2 = 0.25,
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Figure 2.3: The plots of simulations for the solution of model (2.4) with awareness program function φ(π)=1 −
aπ

b + π
and

so ξ = 0.0 when R0 > 1 and so ξ = 0.7 when R0 < 1.
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Figure 2.4: The plots of simulations for the solution of model (2.4) with awareness program function φ(π)= e−m0nπ, where
n = 1000 and when ξ = 0.0 so R0 > 1 and so ξ = 0.7 then R0 < 1.
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P3 = 0.01, P4 = 0.74, λ1 = λ2= 0.143/day and γ = 1 (based on Liang et al. (2016))

and varying values of the needle cleaning probability ξ with 0 ≤ ξ ≤ 1.

We studied the behaviour of the model of equation (2.4) through altering R0 by

choosing different values of ξ. In all cases, the starting value was initially π(0) =

1. Figure 2.3 shows plots of six simulations with disease awareness program

φ(π)=1−
aπ

b + π
(taken from Li et al. (2008a)), with different values of the constants

a and b constant are shown in Figure 2.3. In the sub-figures 2.3a , 2.3c and 2.3e

of Figure 2.3 where R0 > 1 we choose ξ = 0.0, then from equations (2.14) and

(2.18) we have σ= 0.143/day, τ= 0.143/day, ρ = 0.0358/day and ν= 0.0014/day

giving R0 = 8.0977 . For the other sub-figures 2.3b, 2.3d and 2.3f of Figure 2.3

where R0 < 1 we choose ξ= 0.7 then from equations (2.14) we have σ =0.143/day,

τ= 0.143/day, ρ= 0.1108/day and ν = 0.000429/day giving R0 =0.7838 . Figure 2.4

shows plots of six simulations with the disease awareness program φ(π)= e−m0nπ

(taken from Cui et al. (2008)), with different values of m0. Similarly to the results

of Figure 2.3 we have that R0 > 1 for sub-figures 2.4a, 2.4c and 2.4e of Figure 2.4

and R0 < 1 for sub-figures 2.4b 2.4d and 2.4f of Figure 2.4.

In Figure 2.5 by using both the disease awareness program functions with the

same parameters in the sub-figures 2.3a, 2.3b, 2.4a and 2.4b of Figures 2.3 and

2.4, we considered five different initial values π(0) ∈[0,1] of the infected PWID

population who do not clean their needles before use. The cases with ξ = 0.0

are given in the sub-figure in 2.5a and 2.5c with the same results as previously,

we observed that if the PWID population do not clean their needles before use

(ξ = 0.0) then R0 > 1 and this means that over a long time the fraction of PWID

population which was HIV infected tended to the unique endemic equilibrium. For

the other two cases (given in the sub-figures 2.5b and 2.5d) with ξ = 0.7, the

PWIDs often cleaned their needles successfully before use, so R0 < 1, then the

HIV virus died out after a long period of time in both PWIDs and needles.

We did other simulations with a variety of other starting values and a variety of
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Figure 2.5: The plots of simulations for the solution of model (2.4) with disease awareness program function φ(π)=1−
aπ

b + π
for sub-figures (a) and (b), for sub-figures (c) and (d) with several different starting values of π(0) the disease awareness
program function φ(π)= e−m0nπ, where n = 1000.

other model parameters. In each case, the results of Theorems 2.3.1-2.3.4 and

Corollary 2.3.1 were verified. For R0 ≤ 1 the disease always dies out whatever

the starting values, whereas for R0 > 1 and disease initially presents the disease

tends to a unique endemic equilibrium.

We have performed an equilibrium and stability analysis for this model. Our

discussion has been focused on two ways of studying the effect of awareness pro-

grams in disease transmission models. The key biological parameter of our model

is the primary reproductive number R0. We find that there is a critical threshold

parameter R0 = 1, which determines the behaviour of the model. We have shown

that the system has a unique equilibrium solution. We have shown that if R0 ≤ 1,
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then the disease-free equilibrium is globally asymptotically stable, so whatever

the initial fraction of infected individuals, the disease will die out as time becomes

large. If no disease is initially present, there will never be any disease. If R0 > 1,

there is the disease-free equilibrium and, additionally, a unique endemic equilib-

rium. If there is disease initially present and R0 > 1, then the system tends to the

unique endemic equilibrium. We also showed that the disease-free equilibrium

is locally asymptotically stable if R0 < 1, neutrally stable if R0 = 1 and unstable

if R0 > 1. In the case that R0 > 1 we showed that the endemic equilibrium was

locally asymptotically stable too. Our analytical results are confirmed by using

simulation with realistic parameter values.

2.4 Adapting Our Model to Deal with HCV Amongst

PWIDs

2.4.1 Description of the Model Dealing with HCV

Another disease spread by sharing infected needles is the Hepatitis C virus

(HCV) amongst PWIDs. The model is almost the same as for HIV except that

for HCV there is now treatment so infected individuals can recover from HCV. If

δ denotes the per capita rate at which an HCV-infected individual is treated and

recovers, then using the same notation as for HIV, let π(t) denote the fraction of

PWIDs infected with HCV and β(t) denote the fraction of needles infected with

HCV. Then equations (2.2) and (2.3) become

dπ
dt

= φ(π)(1 − π)νβ − (µ + δ)π, (2.49)

dβ
dt

= φ(π)π(σ − τβ) − φ(π)(1 − π)ρβ, (2.50)

and the corresponding version of equation (2.4)

dπ(t)
dt

=
φ(π(t))(1 − π(t))νσπ(t)
π(t)τ + ρ − π(t)ρ

− (µ + δ)π(t). (2.51)
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So the model is the same as equation (2.4) with µ replaced by (µ + δ). So the

basic reproduction number is

R0 =
νσ

ρ(µ + δ)
. (2.52)

and with this value of R0 Theorems 2.3.1 - 2.3.4 and Corollary 2.3.1 (all of the

theorems) shill hold. This is a very simplified approximate model of HCV as it

assumes that infected individuals do not spontaneously recover and become sus-

ceptible again apart from treatment and also ignores the short, highly infectious

acute phase Corson et al. (2012) but nonetheless, it can still be regarded as a

very simple approximation of the spread of HCV amongst PWIDs.

2.4.2 Numerical Simulations

We have also performed simulations for the model (2.50) for the spread of

HCV amongst PWIDs. We used parameter values taken from Corson et al.

(2012). Recall that P1 + P2, the probability that when an initially susceptible PWID

injects with an initially infected needle, the needle is flushed (i.e. flushed of infec-

tious blood and left uninfectious after use). In Corson et al. (2012), the probability

that a needle is flushed in this situation is taken as one similarly in the model of

Corson et al. (2012) P1 + P3 = α, the probability that when an initially suscepti-

ble PWID injects with an initially infected needle, then α, the average probability

that the PWID becomes infected is α = P1 + P3 = 0.0165. α is calculated as

a weighted average of the corresponding probabilities for acutely infected and

chronically infected PWIDs αh and αy in Corson et al. (2012) by weighting each

of these probabilities by the average time that a newly infected PWID spends in

each of these states at the endemic equilibrium.

These probabilities are are αh = 0.0432, αy=0.016. Also as P1 +P2 +P3 +P4 = 1

and P1+P2 = 1, we must have P3 = P4 = 0 and then as P1+P3 = 0.0165, P1 = 0.0165

and P2 = 0.9835. And also λ1 =λ2=103/year, µ = 0.17/year and δ=0.1/year. As in
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(a) With values of awareness program function parameters
a = 0.9, b = 1.
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(b) With values of awareness program function parameters
a = 0.9, b = 1.
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(c) With values of awareness program function parameters
a = 0.1, b = 10.
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(d) With values of awareness program function parameters
a = 0.1, b = 10.
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(e) With values of awareness program function parameters
a = 0.5, b = 5.
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(f) With values of awareness program function parameters
a = 0.5, b = 5.

Figure 2.6: The plots of simulations for the solution of model (2.50) with awareness program function φ(π)=1 − aπ
b+π and

when ξ = 0.0 so R0 > 1 and when ξ = 0.9 so R0 < 1.

70



0 5 10 15 20 25 30

t  (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 F
ra

c
ti
o
n
 o

f 
 P

W
ID

  
p
o
p
u
la

ti
o
n
 i
n
fe

c
te

d
  

HCV with cleaning of needles before use where =0.0.

 without awareness program

 with awareness program

(a) With values of awareness program function parameters
m0 = 10.0/n.
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(b) With values of awareness program function parameters
m0 = 10.0/n.
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(c) With values of awareness program function parameters
m0 = 2.0/n.
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(d) With values of awareness program function parameters
m0 = 2.0/n.
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(e) With values of awareness program function parameters
m0 = 5.0/n.
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(f) With values of awareness program function parameters
m0 = 5.0/n.

Figure 2.7: The plots of simulations for the solution of model (2.50) with awareness program function φ(π)= e−m0nπ and
when ξ = 0.0 so R0 > 1 and when ξ = 0.9 so R0 < 1.
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Figure 2.8: The plots of simulations for the solution of model (2.50) with values of awareness program function parameters
a = 0.9, b = 1. φ(π)=1 − aπ

b+π and when ξ = 0.0 then R0 > 1 and when ξ = 0.9 then R0 < 1.
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Figure 2.9: The plots of simulations for the solution of model (2.50) with values of awareness program function parameters
m0 = 10.0/n. φ(π)= e−m0nπ where n = 1000 and when ξ = 0.0 so R0 > 1 and when ξ = 0.9 then R0 < 1.
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the HIV transmission model, we take φ1 = θ1 = 0 for our simulation and again we

take γ = 1. Again we altered the values of R0 by choosing different values of ξ.

Again in the displayed simulation, the starting value was again π(0) = 1.

Figure 2.6 shows plots of six simulations with disease awareness program

φ(π)=1 −
aπ

b + π
with different values of parameters a and b. For sub-figures 2.6a

,2.6c and 2.6e of Figure 2.6 we choose ξ = 0.0 then we have σ =103/year, τ

=103/year, ρ =103/year and ν=1.6995/year giving R0 =6.2944. For the other

sub-figures 2.6b, 2.6d and 2.6f we choose ξ = 0.9 Then we have σ =103/year,

τ=103/year, ρ =103/year and ν =0.16995/year giving R0 =0.6294. Figure 2.7

shows plots of six simulations with the disease awareness program φ(π)= e−m0nπ

with three different values of m0 where n = 1000 . Similar results were obtained

as are shown in Figure 2.6 where R0 > 1 for sub-figures 2.7a, 2.7c and 2.7e of

Figure 2.7 and R0 < 1 for sub-figures 2.7b,2.7d and 2.7f of Figure 2.7.

In Figures 2.8 and 2.9 we repeated the simulations in Figures 2.6 and 2.7,

respectively, with different values of δ and with the same values of the constants

of the awareness program functions, for all sub-figures. In the Figure 2.8 we

use the values a = 0.9 and b = 1 with disease awareness program φ(π)=1 −
aπ

b + π
. we choose ξ = 0.0 for sub-figures 2.8a ,2.8c and 2.8e of Figure 2.8 then

we have σ =103/year, τ =103/year, ρ =103/year and ν =1.6995/year. We have

different values of R0 in each time that δ is changed. So we had R0 = 6.2944 when

δ=0.1/year in the sub-figure 2.8a, R0 = 4.5932 when δ=0.2/year in 2.8c and for the

sub-figure 2.8e we have R0 =7.7249 when δ=0.05/year. For the rest of the sub-

figures 2.8b, 2.8d and 2.8f in Figure 2.8 we we choose ξ = 0.9 Then we have σ

=103/year, τ =103/year, ρ =103/year and ν =0.1699/year. Then we obtain values

of R0 as in the sub-figure 2.8b R0 =0.6294 when δ=0.1000/year, in the sub-figure

2.8d, R0 =0.4593 when δ=0.2/year and for the sub-figure 2.8f we have R0 =0.7725

when δ=0.05/year.

In Figure 2.9 shows the plots of six simulations with the disease awareness
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program φ(π)= e−m0nπ with the fixed values of m0 = 10.0/n. Again here we obtained

the same values of the parameters σ,τ,ρ and ν were discussed in Figure 2.8 for

all the sub-figures in Figure 2.9. In both figures R0 > 1 for sub-figures 2.8a, 2.8c

and 2.8e (2.9a,2.9c and 2.9e) and R0 < 1 for sub-figures 2.8b,2.8d and 2.8f (2.9b,

2.9d and 2.9f).

Again the simulations show that the disease died out if R0 ≤ 1 and that the

disease tended to the unique endemic equilibrium if R0 > 1 and disease is initially

present. This supports the analytical results.

2.5 Conclusion

In this chapter, we have developed a mathematical model of the effect of dis-

ease awareness programs on the prevalence of HIV amongst PWIDs, building

on the models developed by Greenhalgh and Hay (1997) and Liang et al. (2016).

A system of differential equations has been deduced to describe the improved

model that reduces the spread of the diseases through the effect of awareness of

the disease on sharing needles and syringes amongst the PWID population.

The model differs from the original model that it is based on as it is a one-

dimensional model that includes the factor of the awareness program that has

the effect of reducing the spread of HIV amongst the population. A system of

differential equations has been deduced to describe the improved model that re-

duces the spread of the diseases through the effect of awareness of the disease

on sharing needles and syringes amongst the PWID population, as a result, we

obtained a new definition for the parameter of the basic reproduction number R0

that gives us new results for the analytical and numerical solutions.

We performed numerical simulation on the equation (2.4), describing the ef-

fect of awareness programs on reducing the spread of HIV amongst PWIDs. We

started off with realistic parameters taken from a literature review, and we as-
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sumed that the visiting rate of the shooting gallery is the same (λ1 = λ2) for both

susceptible PWIDs and the PWIDs infected PWIDs whether or not they know that

they are infected. The simulations were divided to simulate two disease aware-

ness programs by changing the constants in these awareness programs for each

one. Also, we calculated the result of the basic reproductive number we simulated

the total proportion of the PWID population infected over time. The was calculated

for different values of the basic reproduction number R0, which was changed by al-

tering (ξ), the fraction of PWIDs (susceptible or not) who successfully clean their

needles before use. We repeated this simulation for both awareness program

equations with different initial values of the fraction of PWIDs.

At the end of this chapter, we modified our model to deal with the spread of

HCV amongst PWIDs where an HCV-infected individual is treated and recovered.

The resulting model was described in differential equation (2.51). This model

was used to describe the spread of HCV amongst PWIDs. We kept the same

parameter values used in the previous simulation with fixed values of the per

capita treatment and recovery rate (δ) for both awareness program functions. We

also repeated the simulation with different values of (δ). The basic reproduction

number R0 decreased as the per capita HCV treatment, and recovery rate (δ)

increased. Again the simulations confirmed our analytical results if R0 ≤ 1 HCV

will eventually die out in both PWIDs and needles and if R0 > 1 and disease is

initially present. The system will tend to the unique endemic equilibrium.

This concludes our analysis of the one-dimensional system given by (2.4).

However, recall that equation (2.4) was obtained as an approximation of a more

realistic two-dimensional model (2.2) and (2.3) by realistically assuming that the

timescale on which PWIDs inject is short compared with the timescale for epi-

demiological changes. In the next section, we shall analyse the behaviour of the

more realistic two- dimensional model (2.2) and (2.3) ( with σ, τ, ρ and ν) given by

( 2.14).
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Chapter 3

Incorporation of Awareness

Programs into a Two-dimensional

model of the spread of HIV/AIDS

amongst People who Inject Drugs

3.1 Analysis of the Two-Dimensional Model

3.1.1 Introduction

Inspired by the model constructed in the previous chapter, in this chapter, we

will study the effect of awareness programs in the full two-dimensional model of

the spread of HIV amongst PWIDs (2.2) and (2.3) discussed in the last chapter.

The results we will obtain and the techniques used to follow the structure of the

previous chapter. First of all, we study the existence of a unique non-negative

solution to differential equations. Then we look at the existence of an equilib-

rium solution. After that, we examine the local and global stability of equilibrium.

Finally, we do some simulations to confirm the analytical results.
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3.1.2 Existence of Unique Non-negative Solution

Recall equations (2.2) and (2.3). β(t) represents the fraction of needles in-

fected with HIV at time t and π(t) represents the fraction of PWIDs infected with

HIV at time t . The biologically feasible region of solutions to this system is

D =
{
(π, β) ∈ [0, 1] × [0, 1]

}
in R2. Equations (2.2) and (2.3) are

dπ
dt

= φ(π)(1 − π)νβ − µπ, (3.1)

dβ
dt

= φ(π)π(σ − τβ) − φ(π)(1 − π)ρβ. (3.2)

We apply similar techniques as have been used to show the existence of a unique

non-negative solution in Subsection (2.3.1) in Chapter 2. We show firstly that the

right-hand sides of equations (3.1) and (3.2) are Lipschitz continuous and then

use the Picard́–Lindelöf Theorem to show the existence of a unique continuous

solution.

Theorem 3.1.1. Suppose that φ is Lipschitz continuous in π for 0 ≤ π ≤ 1. For any

given initial value (π(0), β(0)) = (π0, β0) ∈ [0, 1] ×[0, 1] the two-dimensional model

for the spread of HIV amongst PWIDs given by (3.1) and (3.2) has a unique non-

negative solution (π(t), β(t) ) ∈ [0, 1] × [0, 1] moreover.

(i) If (π0, β0) = (0,0) then (π(t), β(t)) = (0,0) for all t ≥ 0.

(ii) If either π0 > 0 or β0 > 0 then (π(t), β(t) ) ∈ (0, 1) ×(0, 1) for all t ≥ 0 .

Proof: We have already stated the definition of Lipschitz continuity and the

Picard́–Lindelöf Theorem in Subsection (2.3.1) of the previous chapter, Write x=

(π1,β1) We write equations (3.1) and (3.2) as

dπ
dt

= f1(x)

dβ
dt

= f2(x)
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Write

f ( x) =


f1( x)

f2( x)

 . (3.3)

The first stage is to show Lipschitz continuity of the right-hand side of equations

(3.1) and (3.2). We need to show that for any x = (πx, βx) ∈ D, y = (πy,βy) ∈ D∥∥∥∥ f (x) − f (y)
∥∥∥∥ ≤ L

∥∥∥∥x − y
∥∥∥∥. (3.4)

For some constant L where ‖.‖ denotes the Euclidean norm in R2. We split the

proof into two parts, firstly

1.
∣∣∣∣ f1(x) − f1(y)

∣∣∣∣ ≤ L1

∣∣∣∣x − y
∣∣∣∣,

2.
∣∣∣∣ f2(x) − f2(y)

∣∣∣∣ ≤ L2

∣∣∣∣x − y
∣∣∣∣.

where L1 and L2 are Lipschitz constants for f1 and f2 respectively. Note that as φ

is Lipschitz continuous on [0, 1].∣∣∣∣φ(πx) − φ(πy)
∣∣∣∣ ≤ K1

∣∣∣∣πx − πy

∣∣∣∣.
For some constant K1 ≥ 0 for any πx ∈ [0, 1],πy ∈ [0, 1]. We start off with the first

part∣∣∣∣ f1(πx, βx) − f1(πy, βy)
∣∣∣∣ =

∣∣∣∣[φ(πx)(1 − πx)νβx − µπx] − [φ(πy)(1 − πy)νβy − µπy]
∣∣∣∣.

≤

∣∣∣∣φ(πx)(1 − πx)νβx − φ(πy)(1 − πy)νβy

∣∣∣∣ + µ
∣∣∣∣πx − πy

∣∣∣∣.
(3.5)

By using the triangle inequality

≤ |φ(πx)(1 − πx)νβx − φ(πy)(1 − πx)νβx

+ φ(πy)(1 − πx)νβx − φ(πy)(1 − πy)νβx

+ φ(πy)(1 − πy)νβx − φ(πy)(1 − πy)νβy| + µ|πx − πy|.

≤ |φ(πx)(1 − πx)νβx − φ(πy)(1 − πx)νβx|

+ |φ(πy)(1 − πx)νβx − φ(πy)(1 − πy)νβx|

+ |φ(πy)(1 − πy)νβx − φ(πy)(1 − πy)νβy| + µ|πx − πy|.

(3.6)
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By using the triangle inequality again

≤ |φ(πx) − φ(πy)|ν(1 − πx)βx + φ(πy)|πx − πy|νβx

+ |φ(πy)|(1 − πy)ν|βx − βy| + µ|πx − πy|.
(3.7)

this implies that

≤K1ν|πx − πy| + ν|πx − πy| + ν|βx − βy| + µ|πx − πy|. (3.8)

as φ is Lipschitz continuous function, then

≤ L1

∥∥∥x1 − y1

∥∥∥.
Here L1 = (K1 + 2)ν + µ. This completes the proof of the first part.

Similarly, we prove the second part using the definition (3.4). We have∣∣∣∣ f2(πx, βx) − f2(πy, βy)
∣∣∣∣
=

∣∣∣∣[φ(πx)(σ − τβx) − φ(πx)(1 − πx)ρβx]

− [φ(πy)(σ − τβy) − φ(πy)(1 − πy)ρβy

]∣∣∣∣.
≤

∣∣∣∣φ(πx)(σ − τβx) − φ(πy)(σ − τβy)
∣∣∣∣

+ ρ
∣∣∣∣φ(πx)(1 − πx)βx − φ(πy)(1 − πy)βy

∣∣∣∣.
(3.9)

After applying the triangle inequality, we got

≤ σ
∣∣∣∣φ(πx) − φ(πy)

∣∣∣∣ + τ
∣∣∣∣φ(πx)βx − φ(πy)βy

∣∣∣∣
+ ρ

∣∣∣∣φ(πx)(1 − πx)βx − φ(πy)(1 − πx)βx

+ φ(πy)(1 − πx)βx − φ(πy)(1 − πy)βx

+ φ(πy)(1 − πy)βx − φ(πy)(1 − πy)βy

∣∣∣∣
≤ σK1

∣∣∣∣πx − πy

∣∣∣∣
+ τ

∣∣∣∣φ(πx)βx − φ(πy)βx + φ(πy)βx − φ(πy)βy

∣∣∣∣
+ ρ

∣∣∣∣φ(πx) − φ(πy)
∣∣∣∣(1 − πx)βx

+ ρφ(πy)βx

∣∣∣∣πx − πy

∣∣∣∣ + ρφ(πy)(1 − πy)
∣∣∣∣βx − βy

∣∣∣∣

(3.10)
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Using the triangle inequality and Lipschitz continuity of φ

≤ σK1

∣∣∣∣πx − πy

∣∣∣∣ + τβx

∣∣∣∣φ(πx) − φ(πy)
∣∣∣∣ + τφ(πy)

∣∣∣∣βx − βy

∣∣∣∣
+ ρK1

∣∣∣∣πx − πy

∣∣∣∣ + ρ
∣∣∣∣πx − πy

∣∣∣∣ + ρ
∣∣∣∣βx − βy

∣∣∣∣ (3.11)

Similarity

≤

(
(σ + ρ + τ)k1 + 2ρ

)∥∥∥∥x − y
∥∥∥∥ + τ

∣∣∣∣βx − βy

∣∣∣∣.
≤ L2

∥∥∥∥x − y
∥∥∥∥. (3.12)

Here L2 = (σ + ρ + τ)k1 + 2ρ + τ.

This completes the proof of the Lipschitz continuity of the right-hand sides

of the system (3.1) and (3.2). We now complete the existence and uniqueness

proof.

Case One: π(0) = β(0) = 0.

In this case, we can see that π(t) = β(t) = 0 is a solution for all time. By using

the Picard́–Lindelöf Theorem, there exists ∆t > 0 such that the equation has a

unique local solution in [0,∆t]. Let [0, τe) be the maximum interval where a unique

solution exists with π(ξ) = β(ξ) = 0 for all ξ in [0, τe). We must have τe ≥ ∆t > 0.

Suppose that τe < ∞. Then π(t) = β(t) = 0 for all t < τe. Again by using the

Picard́–Lindelöf Theorem, there exists a unique local solution in [τe − η, τe + η]

for some η > 0. Hence a solution exists with π(ξ) = β(ξ) = 0 in [0, τe + η].

This contradicts the definition of τe. So τe = ∞ and there is a unique solution

π(t) = β(t) = 0 for all t ≤ 0. This completes the proof of the first part of Theorem

(3.1.1).

Case Two: π(0) > 0 or β(0) > 0.

We shall divide the proof into three cases. First of all, we assume that φ > 0,

∀ π ∈ [0, 1] and σ > 0. We can write ψ = 1 − π and χ = 1 − β. Then the equations

(3.1) and (3.2) become as

dψ
dt

= µ(1 − ψ) − φ(π)ψνβ, (3.13)

dχ
dt

= φ(π)ψρβ + φ(π)π(τ − σ) − πφ(π)τχ. (3.14)
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Define (0, τe) to be the maximum interval where a unique (π(t), β(t)) to the

system equations(3.1) and (3.2) exists for t ∈ [0, τe) with (π(t), β(t)) ∈ (0, 1) × (0, 1)

for t ∈ (0, τe).

Lemma 3.1.1. There exists k1 > 0, k2 > 0 and ∆t > 0 such that for s ∈ [0,∆t].

min(π(s), β(s), ψ(s), χ(s)) ≥ k1sk2 (3.15)

Proof. By using the Picard́–Lindelöf Theorem the equations (3.1) and (3.2) have

a unique continuous solution in [0,∆t) for some ∆t > 0.

If 1 > π(0) > 0 and 1 > β(0) > 0, then the Lemma (3.1.1) follows by continuity

of (π(t), β(t)) ∈ [0,∆t).

(i) First, If π(0) = 0 but 1 > β(0) > 0, then for ∆t small and strictly positive, then

the equation (3.1) becomes

π(∆t) = νβ(0)∆t + o(∆t)

For ∆t small enough

π(∆t) ≥
1
2
νβ(0)∆t.

π(s) ≥
1
2
νβ(0)s.

So for s ∈ [0,∆t] if ∆t is small enough. So the Lemma (3.1.1) follows.

• If π(0) = 1 but 1 > β(0) > 0, then for ∆t small and strictly positive, then

from equation (3.13)

ψ(∆t) = µ∆t + o(∆t). (3.16)

ψ(s) ≥
1
2
µs. (3.17)

So for s ∈ [0,∆t], if ∆t is small enough. So the Lemma (3.1.1) follows.

(ii) Second, suppose that β(0) = 0 and 1 > π(0) > 0. Then

β(∆t) = σφ(π(0))π(0)∆t + o(∆t).

β(s) ≥
1
2
σφ(π(0))π(0)s.
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for s ∈ [0,∆t], if ∆t is small enough,so the Lemma (3.1.1) is then true.

• If β(0) = 0 and π(0) = 1, then by the argument for β(0) = 0 and 1 >

π(0) > 0 for β(s) and the argument for π(0) = 1 and 1 > β(0) > 0 for ψ(s),

we have

min(β(s), ψ(s)) ≥ k1sk2 , (3.18)

for s ∈ [0,∆t] , for some k1, k2 and ∆t > 0. As a result, the Lemma

(3.1.1) is true.

• If β(0) = 1 and 1 > π(0) > 0, in this case from the equation (3.14)

χ(∆t) = φ(π(0))
[
ψ(0)ρ + (τ − σ)π(0)

]
∆t + 0(∆t).

and

τ − σ =
[
λ1(1 − p) + λ2p

]
γ
[
1 − (1 − ξ) + θ1(1 − ξ)

]
.

=
[
λ1(1 − p) + λ2p

]
γ
[
1 − (1 − ξ)(1 − θ1)

]
≥ 0.

Hence χ(s) ≥ k1, sk2, for s ∈ [0,∆t] for some k1 > 0, k2 > 0 and ∆t > 0.

The result of the Lemma (3.1.1) follows.

• If β(0) = 1 and π(0) = 0, then using the argument for β(0) = 1 and

1 > π(0) > 0 for χ(s) and the argument for π(0) = 0 and 1 > β(0) > 0 for

π(s) we have

min(π(s), χ(s)) ≥ k1sk2 ,

for some k1 > 0, k2 > 0 and ∆t > 0, then the Lemma (3.1.1) is true.

(iii) Finally, if β(0) = 1 and π(0) = 1, then by using the argument for π(0) = 1 and

1 > β(0) > 0 for ψ(s) we have

ψ(s) ≥ k1sk2 for s ∈ [0,∆t].

for some k1 > 0, k2 > 0 and ∆t > 0.

If φ1 , 0 or θ1 , 0 then τ > σ and the argument for β(0) = 1 and 1 > π(0) > 0

shows the same result for χ(s).
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If φ1 = θ1 = 0,then τ = σ and

dχ
dt

∣∣∣
t=0

= 0.

However assuming that φ is differentiable with respect to t

d2χ
dt2

∣∣∣
t=0

= φ(π(0))
dψ
dt

∣∣∣
t=0
ρβ(0),

= φ(π(0))µρ > 0.

So again χ(s) ≥ k1sk2 for s ∈ [0,∆t] for some k1 > 0, k2 > 0 and ∆t > 0. Then the

Lemma (3.1.1) holds.

Hence the Lemma (3.1.1) holds for all β(0) and π(0). So τe > ∆t > 0 for some

∆t > 0.

Now suppose that τe < ∆t. Then for t ∈ (∆t, τe) , then the equations 3.1, 3.2,

3.13 and 3.14 imply that

dπ
dt
≥ −µπ,

dβ
dt
≥ −φ(π)πτβ − φ(π)(1 − π)ρβ,

≥ −(τ + ρ)β,

dψ
dt
≥ −φ(π)νβψ,

≥ −νψ,

dχ
dt
≥ −φ(π)πτχ,

≥ −τχ.

Note that σ > 0 implies that φ1 < 1 and λ1(1−p)+λ2p > 0 which implies that τ > 0.

Hence in (∆t, τe), π(t) > 0 and

1
π

dπ
dt
≥ −µ,

So π(t) ≥ π(∆t)e−µ(t−∆t).

By the Picard́–Lindelöf Theorem, there is a unique continuous solution of the
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equations 3.1 and 3.2 in (τe − η, τe + η) for some η > 0, moreover

π(τe) = lim
t→τe

π(t),

≥ π(∆t)e−µ(τe−∆t) > 0.

Similarly

β(τe) ≥ β(∆t)e−(τ+ρ)(τe−∆t) > 0,

ψ(τe) ≥ ψ(∆t)e−ν(τe−∆t) > 0,

χ(τe) ≥ χ(∆t)e−τ(τe−∆t) > 0.

Hence by continuity the unique continuous solution to the equations 3.1 and

3.2 is in (0, 1)× (0, 1) for t ∈ (0, τe +η) for some η > 0. This contradicts the definition

of τe. Hence τe = ∞.

This completes the proof of Case Two under the assumptions that φ(π) > 0 ∀

π ∈ [0, 1] and σ > 0.

Now we shall look at the proof of Theorem 3.1.1 under the assumptions that

σ > 0 and ∃ π∗ with 1 ≥ π∗ > 0 such that φ(π) = 0 for π ≥ π∗ and φ(π) > 0 for

π < π∗.

Lemma 3.1.2. Assume that σ > 0 ,but there ∃ π∗ with 1 ≥ π∗ > 0 such that

φ(π) = 0 for π ≥ π∗ and φ(π) > 0 for π < π∗

Proof. We shall consider the following three cases

(i) If π(0) < π∗, then by the argument as above ∃∆t > 0 with τe ≥ ∆t > 0. Now

as π→ π∗−

dπ
dt
→ −µπ∗.

So ∃ π+ < π∗ such that for π ∈ [π+, π∗] π is strictly monotone decreasing, so

if π starts strictly beneath π∗ it can never reach it and π ≤max (π(0), π+) < π∗.

Hence the proof proceeds as in the previous case.
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(ii) If π(0) = π∗, then for ∆t small and strictly positive

π(∆t) = π∗ − µπ∗∆t + o(∆t).

So if ∆t is sufficiently small and strictly positive

π(s) ≤ π∗ −
1
2
µπ∗s for s ∈ (0,∆t].

We assume that there is some strictly positive integer k ≥ 1 with

(−1)k dkφ(π)
dπk

∣∣∣∣
π∗−

> 0,

and

(−1)l d
lφ(π)
dπl

∣∣∣∣
π∗−

= 0 for 1 ≤ l < k.

Let us define (0, τe) to be the maximal interval where a solution exists and

1 > β(s) > 0 and 1 ≥ π∗ > π(s) for s ∈ (0, τe).

The argument proceeds as in the case where φ(π) > 0 ∀π ∈ [0, 1] and σ > 0

until we reach the case β(0) = 0 and 1 > π∗ = π(0) > 0. Then

dlβ

dtl

∣∣∣
t=0+ = 0, f or l = 1, 2, . . . k − 1.

and
dkβ

dtk

∣∣∣∣
t=0+

=
dkφ(π)

dtk

∣∣∣∣
t=0+

σπ∗

= (−1)k(µπ∗)kσπ∗
dkφ(π)

dπk

∣∣∣∣
π∗−
> 0.

So if ∆t is small enough

π(s) ≤ π∗ − k1s, and

β(s) > k2sk3s, for s ∈ [0,∆t].

for some k1, k2, k3 > 0. So again the Lemma (3.1.1) holds. and π(∆t) < π∗ for

∆t small and sufficiently positive.
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If suppose that β(0) = 1 and 1 > π(0) > 0. Then

dχ
dt

= φ(π)ψρβ + φ(π)π(τ − σ)π − πφ(π)τχ.

dlχ

dtl

∣∣∣
t=0+ = 0, for 1 ≤ l < k.

dkχ

dtk
|t=0+ =

dkφ(π)
dtk

∣∣∣∣
t=0+

((1 − π∗)ρ + (τ − σ)π∗),

= (−1)k(µπ∗)k dkφ(π)
dπk

∣∣∣∣
π∗=π∗−

[(1 − π∗)ρ + (τ − σ)π∗],

> 0.

So again the Lemma (3.1.1) holds.

If β(0) = 1 and π(0) = 1, then the previous argument for π(0) = 1 and

1 > β(0) > 0 shill still holds for ψ(s).

• For χ(s) first consider the case φ1 , 0 or θ1 , 0. Then

dlχ

dtl

∣∣∣
t=0+ = 0, for 1 ≤ l < k.

dkχ

dtk

∣∣∣∣
t=0+

=
dkφ(π)

dtk

∣∣∣∣
t=0+

(τ − σ),

= (−1)k(µπ∗)k dkφ(π)
dπk

∣∣∣∣
π∗−

(τ − σ),

> 0.

So the Lemma (3.1.1) holds.

• For ψ(s) and φ1 = θ1 = 0, then τ = σ and

dlχ

dtl

∣∣∣
t=0+ = 0, for 1 ≤ l ≤ k.

dk+1χ

dtk+1

∣∣∣∣
t=0+

=
dkφ(π)

dtk

∣∣∣∣
t=0+

dψ
dt

∣∣∣∣
t=0+

ρ

= (−1)k(µπ∗)kµρ
dkφ(π)

dπk

∣∣∣∣
π∗−

> 0.

So the Lemma (3.1.1) holds.

Hence again the Lemma (3.1.1) holds for all β(0) and π(0) unless β(0) =

π(0) = π∗ > 0.
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The proof proceeds again as in the case where φ(π) > 0 all π ∈ [0, 1] and

σ > 0.

(iii) If π(0) > π∗.

For π(0) > π∗ then for ∆t small and strictly positive

π(∆t) = π(0) − µπ(0)∆t + o(∆t)

So provided that π(0) ≥ π ≥ φ∗

dπ
dt

= −µπ.

dβ
dt

= 0.

So

π = π(0)e−µt.

and

β = β(0).

This is the unique solution provided that

π ≥ π∗.

l.e. π(0)e−µt
≥ π.∗

t ≤ t1 =
−1
µ

loge
( π∗
π(0)

)
.

Define (0, τ′e) to be the maximal interval where a solution exists and

1 > β(s) ≥ 0 and π(s) ≥ π∗ > 0.

Hence τ′e = t1.

lim
t→t−1

β and lim
t→t−1

π exist and satisfy,

1 ≥ lim
t→t−1

β ≥ 0 and 1 > lim
t→t−1

π > 0,

moreover, both limits cannot be zero. For t ≥ t1, the result follows by the

case where π(0) = π∗ discussed earlier.
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For σ = 0, the equations are

dπ
dt

= φ(π)(1 − π)νβ − µπ.

dβ
dt

= −φ(π)(τπ + ρ(1 − π))β.

• If β(0) = 0 and 1 ≥ π(0) ≥ 0,then the unique solution is

β(t) = 0 π(t) = π(0)e−µt for all time.

• If β(0) > 0, then the equations for ψ and χ are

dψ
dt

= µ(1 − ψ) − φ(π)ψβ.

dχ
dt

= φ(π)
(
τπ + ρ(1 − π)

)
β.

We proceed as in the case where σ > 0 and ∃ π∗ such that 1 ≥ π∗ > 0 such that

φ(π) = 0 for π ≥ π∗ and φ(π) > 0 for π < π∗.

A. For π(0) < π∗ again

π ≤ max(π(0), π+) for all time.

Define (0, τe) to be the maximal interval where a solution exists and

1 > β(s) > 0 and 1 > π(s) > 0, in (0, τe).

The proof follows by the same argument as used in the case where σ > 0 and

either φ(π) > 0 ∀ π ∈ [0, 1], or ∃ π∗ with φ(π) = 0 for 1 ≥ π ≥ π∗ > 0

For β(0) > 0 and either

B. π(0) = π∗ or

C. π(0) > π∗, the argument proceeds as in the case where σ > 0.

3.1.2.1 Summary of Results of Existence and Uniqueness Theorem

Here we summarised the results of Theorem 3.1.1 in points:

If β(0) = π(0) = 0, then β(t) = π(t) = 0 ∀t > 0.
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(i) If σ > 0 and φ(π) > 0 ∀ π and β(0) > 0 or π(0) > 0 then 1 > β(t) > 0,

1 > π(t) > 0 for all t > 0.

(ii) If σ > 0 and ∃ π∗ with φ(π) = 0 for 1 ≥ π ≥ π∗ > 0.

(a). π(0) ≤ π∗ then 1 > β(t) > 0, π∗ > π(t) > 0 for all t > 0.

(b). π(0) > π∗ .For

t ≤ t1 =
−1
µ

log e
(
π∗

π(0)

)
, β(t) = β(0).

π(t) = π(0)e−µt (
so β (t1) = β(0), π (t1) = π∗

)
.

for t > t1 1 > β(t) > 0, π∗ > π(t) > 0 for all t > 0.

(iii) If σ = 0 and ∃ π∗ with φ(π) = 0 for 1 ≥ π ≥ π∗ > 0.

If β(0) = 0, then β(t) = 0, π(t) = π(0)e−µt for all t.

If β(0) > 0 then the solutions have the same properties as in case (i) or (ii)

appropriate.

This completes the proof of Theorem 3.1.1. Next, we look at the existence of

equilibrium values in the system.

3.1.3 Existence of Equilibrium

Consider the differential equations (3.1)and (3.2) which describe the effect of

the spread of the disease with an awareness program. We show that if R0 ≤ 1

then there is only the disease-free equilibrium, whereas if R0 > 1 then there is a

unique endemic equilibrium as well as the disease-free equilibrium.

Theorem 3.1.2. Suppose that φ is monotone decreasing and R0 ≤ 1 then the

equations (3.1)and (3.2)have a unique equilibrium solution where the disease

dies out in PWIDs and needles, (π∗, β∗)=(0, 0). This is the only equilibrium. For

R0 > 1 there is a unique nonzero equilibrium (π∗,β∗) > 0 in (0,1]×(0,1] as well as

the disease-free equilibrium.
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Proof: See the proof of Theorem 2.3.2 is mentioned in the previous chapter.

The model 2.4 as discussed in Chapter 2 I was obtained from the model 2.2 and

2.3 (equivalently 3.1and 3.2 by setting equation (1.3) to any equilibrium. Hence

Next, we going to study the stability analysis of the equilibrium of the system.

3.1.4 Local Stability Analysis of Equilibrium

We determine the local asymptotic stability of the DFE and EE values by the

same techniques as were used by Greenhalgh and Hay (1997) and Agaba et al.

(2017). This was to using the Routh-Hurwitz criterion (May (2001),DeJesus and

Kaufman (1987)). We look at the eigenvalues of variational matrix of the lin-

earized system about the DFE and EE to see if a small perturbation from these

equilibria stays near the equilibrium or moves away.

Theorem 3.1.3. One can verify that the basic reproduction number is the same

as the reproduction number R0 =
νσ
ρµ

in one-dimensional model in the previous

chapter. Assume that φ is a differentiable function of π in [0,1], we have shown

that if R0 < 1 then DFE of equations (2.2) and (2.3) is locally asymptotically stable,

and if R0 = 1 then the disease-free solution is neutrally stable. If R0 > 1 then the

DFE is unstable, whereas the unique EE is locally asymptotically stable.

Proof: As the derivation of the basic reproduction number is the same as the

reproduction number R0 in the previous chapter used two-dimensional version of

model it is straightforward to show that R0 is the same for both models.

By using the variational matrix method around the equilibrium points, we recall

the equations (2.2) and (2.3) as follows

dπ
dt

= φ(π)(1 − π)νβ − µπ = f (π, β). (3.19)

dβ
dt

= φ(π)π(σ − τβ) − φ(π)(1 − π)ρβ = g(π, β). (3.20)
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Then the Jacobian matrix of the above model at (π∗, β∗) is an equilbrium

J =


∂ f
∂π

∂ f
∂β

∂g
∂π

∂g
∂β

 .

=


φ
′(π)(1 − π)νβ − φ(π)νβ − µ φ(π)(1 − π)ν

φ(π)(σ − τβ) + φ(π)ρβ + φ
′(π)[π(σ − τβ) − (1 − π)ρβ] −τφ(π)π − φ(π)(1 − π)ρ

 .
First, we examined the local stability about the DFE point E0 = (π0, β0) = (0, 0),

then the Jacobian matrix J1 of E0 is obtained as

J1|(π0,β0) =


−µ ν

σ −ρ

 .
Then the eigenvalues λ of the the Jacobian matrix J1 are the roots of the charac-

teristic equation

λ2 + (µ + ρ)λ + (ρµ − νσ) = 0.

This can written as

λ2 + a0λ + b0 = 0, (3.21)

where a0 = (µ + ρ) and b0 = (ρµ − νσ).

According to the Routh-Hurwitz conditions (May (2001), DeJesus and Kaufman

(1987)), which tell us that the equations have two roots with strictly negative real

parts if and only if a > 0 and b > 0. We have a = (µ + ρ) > 0 and b = ρµ − νσ.

Then, we see that according to the value of the reproduction number R0, at DFE

we have three different situations of stability depending on the satisfying of the

Routh-Hurwitz conditions.

(1) If R0 =
νσ
ρµ

< 1 it is straightforward that νσ < ρµ that is b0 > 0, thus the DFE

is locally stable because the Routh-Hurwitz conditions here are satisfied. (2) If
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R0 =
νσ
ρµ

> 1,then b0 > 0 and thus the FDE is unstable.

(3) If R0 = 1, then it is straightforward to show b = 0 and the eigenvalues of (3.21)

are λ = 0 and λ = −(µ + ρ). Hence the (DFE) is neutrally locally stable.

Similarly, for the endemic equilibrium point E1 = (π∗, β∗) of the above system

then the Jacobian matrix J2 of system corresponding to E1 is obtained as

J2|(π∗,β∗) =


φ
′(π∗)(1 − π∗)νβ∗ − φ(π∗)νβ∗ − µ φ(π∗)(1 − π∗)ν

φ(π∗)(σ − τβ∗) + φ(π∗)ρβ∗ −τφ(π∗)π∗ − φ(π∗)(1 − π∗)ρ

 .
Then, the characteristic equation is

λ2 + a1λ + b1 = 0.

Hence

a1 = τφ(π∗)π∗ + φ(π∗)(1 − π∗)ρ + µ + φ(π∗)νβ∗ − φ
′

(π∗)(1 − π∗)νβ∗ > 0.

Note that φ′(π∗) ≤ 0, since φ(π) is monotone decreasing. Also

b1 = [τφ(π∗)π∗ + φ(π∗)(1 − π∗)ρ][µ + φ(π∗)νβ∗ − φ
′

(π∗)(1 − π∗)νβ∗]

− φ(π∗)2(1 − π∗)ν[ρβ∗ + (σ − τβ∗)].

b1 ≥ [τφ(π∗)π∗ + φ(π∗)(1 − π∗)ρ][µ + φ(π∗)νβ∗] − φ(π∗)2(1 − π∗)ν[ρβ∗ + (σ − τβ∗)],

Using the fact that φ′(π∗) ≤ 0. Note that from the equilibrium of e we must have

φ(π∗) > 0 at the endemic equilibrium. From the equilibrium version of we using it

to simplify b1:

µ + φ(π∗)νβ∗ =
φ(π∗)νβ∗

π∗
.

ρβ∗(1 − π∗) = (σ − τβ∗)π∗.
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Thus

b1 ≥ [τφ(π∗)π∗ + φ(π∗)(1 − π∗)ρ]
φ(π)νβ
π

− φ(π∗)2(1 − π∗)ν
[
ρβ∗ + ρβ

(1 − π∗)
π∗

]
.

= φ(π∗)2

[[
τπ∗ + ρ(1 − π∗)

]νβ∗
π∗
− (1 − π∗)ν

[
ρβ∗ + ρβ(1 −

ρβ

π∗

]]
.

= τφ(π∗)2νβ∗ > 0.

Thus the EE is locally asymptotically stable if R0 > 1, since the Routh-Hurwitz

conditions a1 > 0 and b1 > 0 are satisfied. The proof is completed.

In the next section, we will continue to study the stability analysis of DFE and

EE by investigating the global stability of these equilibria.

3.1.5 Global Stability of Equilibrium

We investigate global stability of equilibrium by using the construction of Du-

lacś criterion and the Poincaré-Bendixson Theorem (Strogatz (2018), May (2001),

DeJesus and Kaufman (1987)).

• Dulacś criterion

Let D be a simply connected region of the plane. If there exists a continu-

ously differentiable function Φ(x, y) such that

∂
∂x

[
Φ(x, y) f (x, y)

]
+
∂
∂y

[
Φ(x, y)g(x, y)

]
.

is of constant sign in D then the dynamical system

ẋ = f (x, y).

ẏ = g(x, y).

has no closed orbits wholly contained in D.

• Poincaré-Bendixson Theorem

a differentiable real dynamical system defined on an open subset of the

plane then every non-empty compact ω-limit set of an orbit which contains

only finitely many fixed points is either
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– a fixed point,

– a periodic orbit, or

– a connected set consisting of a finite number of fixed points together

with homoclinic and heteroclinic orbits connecting them.

Lemma 3.1.3. Suppose that π(0) > 0 or β(0) > 0, we assert that there exists α > 0

and t1 > 0 such that φ(π) ≥ α > 0 for t ≥ t1

Proof: As φ is a monotone decreasing function with φ(π) → 1 as π → 0 and π2

is a strictly monotone increasing function for π ∈ [0, 1] as the Figure 3.1 shows

there exists ε0 ∈ (0, 1], such that if φ(π) ≤ ε2
0, then π ≥ ε0. So if ε < ε0 then for

φ(π) ≤ ε2

dπ
dt

= φ(π)(1 − π)νβ − µπ,

≤ ε2ν − µπ.

≤ επν − µπ.

As π(0) > 0 or β(0) > 0, from the results of Theorem 3.1.1 we must have π(t) > 0

for all t. Choose ε = 1
2 min (ε0,

µ

ν
), then

dπ
dt
≤ −

1
2
µπ < 0.

So π is decreasing and φ(π) is increasing , so φ(π) cannot go beneath
1
8

[
min(ε0,

µ

ν
)
]2

=

α. So if φ(π) starts below α it must rise until it reaches to 2α. If φ(π) ever rises

above 2α it can never fall beneath it. So there exists t1 such that φ(π) ≥ α for

t ≥ t1 ≥ 0.

Theorem 3.1.4. We have shown that

(i) The disease-free equilibrium (DFE) E0 of equations (3.1) and (3.2) is globally

stable when R0 ≤ 1, where the disease dies out and both π(t) and β(t) will tend to

zero, whatever the initial conditions

(ii) If R0 > 1 then the system has a unique endemic equilibrium (EE) E1 which is

globally stable, whenever the disease is present and either π(0) > 0 or β(0) > 0.
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Figure 3.1: Illustration of Lemma 3.1.3.

So if σ>0 either and π(0) > 0 or β(0) > 0 the system tends to the unique endemic

equilibrium E1.

Proof: If π(0) = β(0) = 0 then π(t) = β(t) = 0 for all t and the results of Theorem

3.1.4 are obvious. Hence we shall assume that either π(0) > 0 or β(0) > 0. By

following the mathematical techniques which are used in (Greenhalgh and Hay

1997), we are now going to prove global stability of the DFE first.

For R0 < 1, we define u = β + kπ, for k ≥ 0 to show that π → 0 and β → 0 as

t→∞. Then from (3.1) and (3.2)
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du
dt

= (σφ(π) − µk)π + φ(π)(νk − ρ)β − φ(π)πβ(kν − ρ + τ). (3.22)

We choose k =
ρ

ν
− ε, where ε <

ρ

ν
is small and positive. Recall that R0 =

σν
ρµ

.

Then we can express the equation (3.22) as

du
dt

=
(
σφ(π) −

σ
R0

+ εµ
)
π − ενφ(π)β − φ(π)πβ(τ − εν). (3.23)

Choose ε > 0 sufficiently small so that k > 0, τ − εν > 0, and

σ
(
φ(π) −

1
R0

)
− εµ ≤ σ

(
1 −

1
R0

)
− εµ = −η < 0.

Then

du
dt
≤ −ηπ − ενφ(π)β.

For t ≥ t1.

du
dt
≤ −ηπ − αενβ,

=≤ −ψβ − ψkπ,

= ψu,

where

ψ = min
(
ανε,

η

k

)
> 0.

As ψk ≤ η and ψ ≤ ανε. Hence 0 ≤ u ≤ u(t1)e−ψ(t−t1) and u→ 0 as t→∞. So both

π(t) and β(t) tend to zero as t→∞. This complete the proof of the global stability

of the DFE in case R0 < 1 or π(0) = β(0) = 0. We shall deal with case R0 = 1 and

π(0) > 0 or β(0) > 0 later.

Next, we shall prove the global stability of the EE for R0 > 1 and π(0) > 0 or

β(0) > 0. By Theorem 3.1.1 the solution to the differential equation system (3.19)

and (3.20) remains with the simple connected region

D0 =
{
(π, β) ∈ [0, 1] × [0, 1]

}
.

To apply Dulacś criterion we need to find a continuously differentiable function
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Φ(π, β) such that

∂
∂π

[Φ(π, β) f (π, β)] +
∂
∂β

[Φ(π, β)g(π, β)]. (3.24)

does not change sign in D0. We take φ ≡ 1, by applying the equation (3.24) for

the equations (3.19) and (3.20) then we get

∂
∂π

[φ(π)(1 − π)νβ − µπ] +
∂
∂β

[φ(π)π(σ − τβ) − φ(π)(1 − π)ρβ] = φ
′

(π)(1 − π)νβ

−φ(π)νβ − µ − τφ(π)π − φ(π)(1 − π)ρ < 0.

So the set of equations (3.19) and (3.20) have no closed orbits wholly con-

tained in D. In the Figure 3.2 shows the πβ-plane which define A = (0, 1),B = (1, 1)

Figure 3.2: Illustration of Theorem 3.1.4 .
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and C = (1, 0). Let the points of intersection of the line aπ + β + ξ with the π and

β axes be respectively. D = (ξ/a, 0) and E = (0, ξ). In the case where there exists

π∗ > 0 such that φ(π) = 0 for π ≥ π∗,we assume that ξ is small enough so that

ξ/a < π∗.

We shall next prove that the closed polygon ABCDEis a closed attracting re-

gion for (3.19) and (3.20). Note that as R0 > 1, σ > 0. We have already shown in

Theorem 3.1.1 that if we start on the boundaries AB, BC,CD of EA we will move

into The interior of ABCDE in a finite time. This competes the proof of Theorem

3.1.4 in the case R0 > 1.

The line DE the normal to DE is (a, 1), then we have

(a, 1).
(dπ

dt
,

dβ
dt

)
= a[φ(π)(1 − π)νβ − µπ] + [φ(π)π(σ − τβ) − φ(π)(1 − π)ρβ],

= a(φ(0)νβ − µπ) + φ(0)(σπ − ρβ) + o(ε),

as φ is continuous at π = 0.

So

(a, 1).
(dπ

dt
,

dβ
dt

)
= a(νβ − µπ) + σπ − ρβ + f (ε).

Hence f (ε) is 0(ε), in other words
| f (ε)|
ε
→ 0 as ε→ 0. Then

(a, 1).
(dπ

dt
,

dβ
dt

)
= (σ − aµ)π + (aν − ρ)β + f (ε),

=
(σ − aµ)

a
aπ + (aν − ρ)β + f (ε),

≥ min(
(σ − aµ)

a
, aν − ρ)(aπ + β) + f (ε),

= min
( (σ − aµ)

a
, aν − ρ

)
ε + f (ε).

So choose ε small enough so that

| f |
ε
≤

1
2

min
( (σ − aµ)

a
, aν − ρ

)
.

99



Then on the line DE (a, 1).
(dπ

dt
,

dβ
dt

)
> 0, so if θ is the angle between these two

vectors

cosθ > 0⇒ this implies that −
−π
2
< θ <

π
2

.

So ABCDE is a closed invariant region for (3.19) and (3.20) containing no limit

cycles and only one equilibrium point. Given a starting point (π(0), β(0)) with either

π(0) > 0 or β(0) > 0 by choosing ε small enough we can ensure that the starting

point is in ABCDE. As the unique endemic equilibrium is locally asymptotically

stable there is a small neighbourhood of it such that any trajectory starting in this

neighbourhood tends to it. So there cannot be any homoclinic loops , also there

cannot be any homoclinic loops because they are closed orbits.

By the Poincaré-Bendixson Theorem the trajectory either tends to the unique

fixed point in ABCDE or a limit cycle. But we have already shown that there are

no limit cycles in ABCDE. Hence the trajectory must tends to the unique EE.

In case where R0 = 1 and π(0) > 0 or β(0) > 0 consider the closed square

OABC we must have α > 0 as R0 = 1. We have already shown in Theorem 3.1.1

that if we start on the boundaries OA, AB,BC or CO we must move into the interior

of OABC in at most finite time OABC is a closed attracting region for (3.19) and

(3.20) containing only one fixed point E0 and no closed orbits. Thus there cannot

be any homoclinic loops as they are closed orbits. So the trajectory approaches

the unique fixed point which is the DFE E0. This completes the proof of Theorem

3.1.4.

3.1.6 Simulations

In this section we shall demonstrate numerically the analytical results on exis-

tence of a unique non-negative solution to the equations (3.1) and (3.2) and their

stability. We have used similar parameter values to those which were used in the

numerical simulations which we performed in the previous Chapter . The simula-

tions were performed using the computer package MATLAB and our simulations
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were integrated using the numerical integration package SOLVER which was the

numerical ordinary differential equation (ode45). Our computer program was ver-

ified using comprehensive output from a large number of runs.We have aimed to

use realistic parameter values for the spread of HIV amongst PWIDs but our main

objective is to prove the analytic results obtained in Theorems 3.1.1 - 3.1.4 which

estimate the spread of HIV amongst PWIDs for model (3.1) and (3.2) with two

disease awareness programs. In these Theorems we showed that if R0 ≤ 1 then

the disease will die out and that if the disease is initially present and R0 > 1 then

the disease will tend to the unique endemic equilibrium.

The realistic value we chose previously for µ, the per capital rate at which

PWIDs leave the sharing injecting population was µ = 0.258/year =7.0637 ×

10−4/day, P1 = 0.0, P2 = 0.25, P3 = 0.01, P4 = 0.74, λ1 = λ2 = 0.143/day and

γ = 1 (based on Liang et al. (2016)) and varying values of the needle cleaning

probability ξ with 0 ≤ ξ ≤ 1.

We studied the behaviour of the model of the equations (3.1) and (3.2) through

altering R0 by choosing different values of ξ. In Figures (3.3) and (3.4) starting

value was initially π(0) = 1, β(0) = 1 in all cases. The plots of six simulations in

Figure (3.3) shows the disease with awareness program φ(π)=1−
aπ

b + π
with var-

ious values of the constants a and b are shown in Figure 3.3. In the sub-Figures

a, c and e of Figure 3.3 where R0 > 1 we choose ξ = 0.0, then from equations

(2.14) and (2.18) we have σ = 0.143/day, τ = 0.143/day, ρ = 0.0357/day and

ν = 0.0014/day giving R0 = 8.0978. For the other sub-Figures b, d and f of Figure

3.3 where R0 < 1 we choose ξ = 0.7 then from equations (2.14) and (2.18) we

have σ = 0.143/ day, τ = 0.143/day, ρ = 0.1108/day and ν = 0.000429/day giving

R0 = 0.7837. Similarly, Figure 3.4 shows plots of six simulations with the disease

awareness program φ(π)= e−m0nπ (taken from Cui et al. (2008)), with different val-

ues of m0. Similarly to the results of figure 3.3 we have that R0 > 1 for sub-Figures

a, c and e of Figure 3.4 and R0 < 1 for sub-Figures b, d and f of Figure 3.4. In all
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(a) With values of awareness program function parameters
a = 0.9, b = 1.
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(b) With values of awareness program function parameters
a = 0.9, b = 1.
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(c) With values of awareness program function parameters
a = 0.1, b = 10.
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(d) With values of awareness program function parameters
a = 0.1, b = 10.
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(e) With values of awareness program function parameters
a = 0.5, b = 5.
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(f) With values of awareness program function parameters
a = 0.5, b = 5.

Figure 3.3: The plots of simulations for the solution of model (3.1) and (3.2) with awareness program function φ(π)=1− aπ
b+π

and when ξ = 0.0 when R0 > 1 and when ξ = 0.7 when R0 < 1.
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(a) With values of awareness program function parameters
m0 = 10.0/n.
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(b) With values of awareness program function parameters
m0 = 10.0/n.
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(c) With values of awareness program function parameters
m0 = 2.0/n.
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(d) With values of awareness program function parameters
m0 = 2.0/n.
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(e) With values of awareness program function parameters
m0 = 5.0/n.
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(f) With values of awareness program function parameters
m0 = 5.0/n.

Figure 3.4: The plots of simulations for the solution of model (3.1) and (3.2) with awareness program function φ(π)=
e−m0nπ, where n = 1000 and when ξ = 0.0 when R0 > 1 and when ξ = 0.7 then R0 < 1.
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cases the disease died out if R0 ≤ 1 and took off if R0 > 1 and disease was initially

present, confirming our analytical results. Again the simulations were repeated

with other parameter values and other initial values for π and β and in each case

the disease died out if R0 ≤ 1 and took off if R0 > 1 and disease was initially

present again confirming our analytical results.

3.2 Conclusion

We began this chapter by expanding the model under study to be a two-

dimensional model. We derived a system of differential equations for the spread

of HIV amongst PWIDs, incorporating a disease awareness program. The ex-

pression for the biological parameter R0 was the same as in the previous chapter.

The model under study in this chapter improves the model in the previous chapter

as the two-dimensional model with PWIDs and needles is more accurate. It again

improves previous work in the literature as it adds a disease awareness program

into the model. Because the model is two-dimensional different techniques have

to be used to prove the results.

We showed the equilibrium solutions analytically if φ is strictly monotone de-

creasing or monotone decreasing. Then we have shown that if R0 ≤ 1 is the only

condition for the disease to die out in all PWIDs and needles. Whereas if the dis-

ease is initially present and R0 > 1 the disease will present among the population

of PWIDs for all time. Furthermore, we proved that the free disease equilibrium of

the model (3.1) and (3.2) is locally and globally stable if R0 < 1, whereas it is un-

stable if R0 > 1. Also, we showed that if R0 > 1 the system has a unique endemic

solution which is locally and globally stable, wherever the disease is present and

either π(0) > 0 or β(0) > 0. So if either π(0) > 0 or β(0) > 0 and R0 > 1the system

tends to the unique endemic equilibrium.
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Finally, we illustrated the dynamic behaviour of this model graphically using

numerical simulations. The analytic results which we obtained by simulations

confirmed our analytical results in Theorems (3.1.1) - (3.1.4) which allowed us

to estimate the spread of HIV amongst PWIDs for model (3.1) and (3.2)with two

disease awareness programs. We have used similar parameter values which

were used in the numerical simulations which have been done in the previous

chapter.
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Chapter 4

The Impact of Awareness Programs

in a Three-Stage Infectivity Model of

HIV/AIDS

4.1 Introduction

Motivated by the work that has been done in the previous chapters, in this

chapter we shall study the impact of awareness programs in a Three-Stage Infec-

tivity Model of HIV/AIDS to assume more realistically by applying for awareness

programs as described in previous chapters, under the assumption that a pop-

ulation of intravenous drug users cleans their needles before not after use. As

a result, the chapter is structured as follows: We initially describe the standard

assumptions of the three-stage HIV/AIDS infection model by Lewis (2000) we are

going to show the existence of a unique non-negative solution and explore the ex-

istence of equilibrium points. Then we move on to investigate the stability analysis

procedure to study the behaviour of our model over time, in particular, we shall

pay attention to the conditions necessary for HIV/AIDS to die out or persist in

the IDU population. Then, we perform some simulations with realistic parameter
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values to verify the analytical results for our models. Eventually, a brief summary

and discussion conclude.

4.1.1 Three-Stage Infectivity Model of HIV/AIDS

This deterministic model for the transmission of HIV among intravenous PWIDs,

known as the "Simple model," is investigated byLewis and Greenhalgh (2001)

model, It allows PWIDs to pass through three stages of infectivity before the

development of AIDS. In this part, we revise Lewis and Greenhalgh’s model to

incorporate more realistic cleaning of needles prior to usage as opposed to after

visiting shooting ranges.

Therefore in this section, we will briefly explain the definition of the modelling

assumptions that Lewis and Greenhalgh (2001) model presented in detail. These

assumptions were first proposed by Kaplan Kaplan (1989), and it was further

discussed by Greenhalgh and Hay (1997). The following is assumed in the model

for a size n susceptible population of PWIDs, where n is a massive number:
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Table 4.1: Description of Parameters

Parameter Definition

m is defined to be a location where PWIDs share injecting equip-
ment, PWIDs choose at random among various shooting ranges
and inject once each visit (Equivalently, this can be thought of as
m drug injection equipment ‘kits’ being in circulation).

λ is the rate at which each PWID, who visits shooting ranges inde-
pendently of other PWIDs, according to a Poisson process.

θ is the probability of the needle is the flushed rate by replacing the
infectious blood by non-infectious blood When an uninfected PWID
uses the infected injecting equipment.

α is the probability of the infectivity of HIV through shared injecting
equipment if a PWID is exposed to HIV. Where the PWIDs can be-
come infected with HIV only through shared injecting equipment.

δ1 is the initial infection rate. PWID is defined as highly infectious and
enters an asymptomatic stage according to the Poisson process.

δ2 Asymptomatic PWIDs rate enter the Pre-AIDS stage according to
a Poisson process .

δ3 Pre-AIDS PWIDs rate enter the full-blown AIDS stage according
to a Poisson process, and at this point PWIDs leave the sharing,
injecting population.

µ is the rate number of Infectious PWIDs who leave the population
for other reasons (for example death, treatment or relocation) and
are replaced by susceptible PWIDs.

ξ Proportion of PWIDs (susceptible or not) who successfully bleach
their injection equipment after use.

τ It is the exchange rate of each needle for an uninfected needle
according to the Poisson process.

4.2 Formulation of Three-Stage Infectivity Model of

HIV/AIDS with Awareness Programs

In this section, we will develop the differential equations that determine the

three-stage infectivity model of HIV/AIDS amongst PWIDs, as discussed by Lewis

and Greenhalgh (2001) model by reflecting the reduction in the spread of HIV/AIDS
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amongst PWIDs due to the awareness programs, multiply the term transmission

by a factor φ(π). So we modify the model of Lewis and Greenhalgh (2001) to

make it more realistic so PWIDs clean their needles before use, this modify will

apply just into the first stage of infected PWIDs equation π1(t) and β(t) the infected

needles equation to include the awareness program function φ(π) with keeping

the same form of the rest of the differential equations of the model as Lewis and

Greenhalgh (2001) paper described.

The four equations are as follows: one for each stage of infectious PWIDs

π1(t), π2(t), π3(t), and the one for infected needles β(t).

First- stage equation π1(t):

The number of first-stage infected PWIDs at the time t + ∆t

nπ1(t + ∆t)= number of first- stage of PWIDs at time t .

+ number of uninfected PWIDs each of whom injects at a rate λφ(π) at time t.

×

(
the proportion of addicts who inject in [t, t + ∆t) with an infectious needle that

has not been cleansed before usage and where HIV is transmitted in a single

injection
)
.

- the number of first-stage infected PWIDs who develop to second-stage infectivity

or depart the shooting galleries the population in [t, t + ∆t).

This equation can be written as follows:

nπ1(t + ∆t) =nπ1(t) + n (1 − π1(t) − π2(t) − π3(t))λφ(π)∆tβ(t)α(1 − ξ)

− nπ1(t)∆t
(
µ + δ1

)
+ o(∆t).

Next, we subtract nπ(t) from both sides. we deduce that

nπ1(t + ∆t) − nπ1(t) = + n (1 − π1(t) − π2(t) − π3(t))λφ(π)∆tβ(t)α(1 − ξ)

− nπ1(t)∆t
(
µ + δ1

)
+ o(∆t).

Then we divide by n∆t and let ∆t→ 0, gives the following

dπ1

dt
=

1 −
3∑

i=1

πi

λφ(π)βα(1 − ξ) −
(
µ + δ1

)
π1.

Second -Stage equation π2(t):
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In this equation, we keep the same method have been used in Lewis and

Greenhalgh Lewis (2000) paper to derive the second-stage equation φ2(t) it is

shown as

dπ2

dt
= δ1π1 −

(
µ + δ2

)
π2.

Third -Stage equationπ3(t):

Similarly, from Lewis and Greenhalgh Lewis (2000) paper we have that

dπ3

dt
= δ2π2 −

(
µ + δ3

)
π3.

Infected needles equation β(t):

We use the same argument above to calculate the number of infected needles at

time t + ∆t.

=
{
number of infected needles at time [t, t + ∆t)

}
+

{
number of uninfected needles at time t

}
×

{
fraction of needles used by infected PWIDs who inject at rate λφ(π) in [t, t + ∆t)

}
−

{
number of infected needles at time t

}
×

{
fraction of infected needles used by uninfectious PWIDs who inject at rate

λφ(π) in [t, t + ∆t) and left in an uninfected state
}
.

We adopt a similar procedure to compute the rate of change in the number of

infected needles at timet to get at the following findings.

mβ(t + ∆t) =mβ(t) + m(1 − β(t))λφ(π)∆tγ (π1(t) + π2(t) + π3(t))

−mβ(t)λφ(π)∆tγ (1 − π1(t) − π2(t) − π3(t)) (1 − (1 − ξ)(1 − θ))

−mβ(t)τ∆t + o(∆t).

We can conclude that by subtracting mβ(t) from both sides, dividing by m∆t and

letting ∆t→ 0 ,we get

dβ
dt

= (1 − β)λφ(π)γ

 3∑
i=1

πi

 − βλφ(π)γ

1 −
3∑

i=1

πi

 (1 − (1 − θ)(1 − ξ)) − βτ.

As a result, the system of differential equations that characterises the preva-
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lence of HIV/AIDS amongst PWIDs with awareness programs is:

dπ1

dt
=

1 −
3∑

i=1

πi

λβαφ(π)(1 − ξ) − (µ + δ1)π1, (4.1)

dπ2

dt
= δ1π1 − (µ + δ2)π2, (4.2)

dπ3

dt
= δ2π2 − (µ + δ3)π3, (4.3)

dβ
dt

= (1 − β)λγφ(π)

 3∑
i=1

πi

 − βλγφ(π)

 3∑
i=1

πi

 (1 − (1 − θ)(1 − ξ)) − βτ. (4.4)

Let πi(t) denote the number of three-stage infected PWIDs at time [t, t + ∆t] and

β(t) the number of infected needles at time [t, t + ∆t]. The model’s biological

parameters are as given in the previous section, with proper initial conditions:

(1) 0 ≤ πi(0), β(0), where i = 1, 2, 3 and

(2) π1(0) + π2(0) + π3(0), β(0) ≤ 1.

We can rewrite the equations

dπ1

dt
= (1 − π)λβαφ(π)(1 − ξ) − (µ + δ1)π1, (4.5)

dπ2

dt
= δ1π1 − (µ + δ2)π2, (4.6)

dπ3

dt
= δ2π2 − (µ + δ3)π3, (4.7)

dβ
dt

= (1 − β)λγφ(π)π − βλγφ(π)(1 − π)(1 − (1 − θ)(1 − ξ)) − βτ. (4.8)

where π=π1 + π2 + π3.

Next, we move on to calculate the fundamental reproduction numberR0 for the

model.

4.2.1 The Basic Reproductive Number R0

The expected number of secondary infections caused by a single newly in-

fected person (or needle) entering a completely disease-free population at equi-

librium Diekmann et al. (1990a) is known as the basic reproductive number R0.

Secondary infection occurs when a person becomes infected after using an in-

fectious needle and syringe that has been contaminated by the original infected
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PWIDs. In epidemiological models, R0 is a significant parameter as it determines

the overall behaviour of our model over time, where the disease generally dies

out when R0 ≤ 1 and an epidemic usually arises when R0 > 1.

In this section, we going to use a similar a framework similar to that found

in Chapter 2 of Lewis (2000) to derive an expression for R0 for model equations

(4.5)-(4.8).

In our case, the number of secondary infection cases is described in a disease-

free equilibrium, where a PWID enters one newly infected into a group containing

only susceptible PWIDs and non-infectious needles. The scenario for finding the

structure infection process can be as follows:

• The virus passes from a single infected PWID to a non-infectious needle.

• The virus passes from a newly infected needle(at any stage of infectivity) to

a susceptible PWID.

As a result, to calculate reproduction numberR0, we want to know the expected

number of infectious needles produced by a single infectious PWID during the

period of their infectious lifetime, as well as the number of PWIDs that each of

these needles is likely to infect. By assuming that all rates are constant the de-

velopment of PWIDs can be described in three infectious stages as follows: We

recall that F is the rate of new infections, so we have

F1 =(1 − π)λβαφ(π)(1 − ξ),

F2 =δ1π1,

F3 =δ2π2,

F4 =λγφ(π)π + βλγφ(π)(1 − (1 − θ)(1 − ξ).
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We have also V is the net rate of transfer of disease into other classes.

V1 =(µ + δ1)π1,

V2 =(µ + δ2)π2,

V3 =(µ + δ3)π3,

V4 =βλγφ(π) + βλγφ(π)(1 − (1 − θ)(1 − ξ)) + βτ.

Here θ̂ = (1 − (1 − θ)(1 − ξ)) and τ̂ =
τ
λγ

, around the disease-free equilibrium

(DFE), F defined by ∂ F/∂x and V = ∂V/∂x are given by

F =



0 0 0 λα(1 − ξ)

δ1 0 0 0

0 δ2 0 0

λγ λγ λγ 0


.

And

V =



(µ + δ1) 0 0 0

0 (µ + δ2) 0 0

0 0 (µ + δ3) 0

0 0 0 λγ(θ̂ + τ̂)


.
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we have that

V−1 =



1
(µ + δ1)

0 0 0

0
1

(µ + δ2)
0 0

0 0
1

(µ + δ3)
0

0 0 0
1

λγ(θ̂ + τ̂)



.

Then we get

G = FV−1 =



0 0 0
λα(1 − ξ)

λγ(θ̂ + τ̂)

δ1

(µ + δ1)
0 0 0

0
δ2

(µ + δ2)
0 0

λγ

(µ + δ1)
λγ

(µ + δ2)
λγ

(µ + δ3)
0



.

R0 is the spectral radius of matrix given by det(FV−1
− ωI) = 0, so

=



0 − ω 0 0
λα(1 − ξ)

λγ(θ̂ + τ̂)

δ1

(µ + δ1)
0 − ω 0 0

0
δ2

(µ + δ2)
0 − ω 0

λγ

(µ + δ1)
λγ

(µ + δ2)
λγ

(µ + δ3)
0 − ω



= 0.
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f (ω) =ω4
−
λα(1 − ξ)

λγ(θ̂ + τ̂)

[
δ1

(µ + δ1)

[( δ2

(µ + δ2)

)( λγ

(µ + δ3)

)
+

λγω

(µ + δ2)

]
+

λγω2

(µ + δ1)

]
= 0

f (ω) =ω4
−
λα(1 − ξ)

(θ̂ + τ̂)

[
δ1δ2

(µ + δ1)(µ + δ2)(µ + δ3)
+

δ1ω
(µ + δ1)(µ + δ2)

]
+

ω2

(µ + δ1)

]
= 0

So we define

R0 =
Lλα(1 − ξ)(
µ + δ1

)
(τ̂ + θ̂)

. (4.9)

L = 1 +
δ1

(µ + δ2)
+

δ1δ2(
µ + δ2

) (
µ + δ3

) .
This is the value of R0 obtained by Lewis and Greenhalgh (2001) using their def-

inition of R0. We shall show that it has the same threshold value as R∗0 the value

defined by the next generation matrix method.

We argue as in Greenhalgh and Al-Rashidi (2022). As f (0) is negative and

f (ω) becomes large and positive as ω becomes large, the equation f (ω) = 0 has

either one or three roots on the positive axis. As there is only one change of

sign in the coefficients Descartes’ rule of signs says that there is just one positive

real root. Additionally, because the Next Generation matrix (NGM) is positive

and irreducible its largest absolute eigenvalue is R∗0, the NGM basic reproduction

number. Additionally f (1) = 1 − R0. So R0 exceeds one exactly when R∗0 does.

Hence R0and R∗0 pass through one together as the parameters vary.

4.3 Analysis of Three-Stage Infectivity Model

4.3.1 Existence of Unique Non-negative Solution

To study the existence of a unique non-negative solution of the model (4.5)-

(4.8), we require to apply the concept of a Lipschitz continuous functions and the
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Picard́–Lindelöf theorem.

Theorem 4.3.1. Assume that φ is Lipschitz continuous and differentiable in
∑3

i=1

πi for 0 ≤ πi ≤ 1. For any given initial value condition in in the region D=[0, 1]4 in

R4,the system of the model has a unique non-negative solution that remains in D

for all time, moreover.

(A) The first case is that we assume that ξ < 1 and φ(π) > 0, for 1 ≥ π ≥ 0.

(B) The second case is that we assume that ξ < 1 and ∃ π∗ with 1 ≥ π∗ ≥ 0 such

that φ(π∗) = 0.

(C) The third case is that we assume that ξ = 1.

1. β(0) = 0, π(0) > 0.

2. β(0) > 0 , π(0) = 0.

3. β(0) > 0 , π(0) > 0 , 1 − π(0) > 0.

4.β(0) > 0, π(0) > 0, 1 − π(0) = 0.

Proof: According to the definition of Lipschitz continuous functions and The

Picard Lindelof Theorem, we defined

dπ1

dt
= f1(xx,y)

dπ2

dt
= f2(x,y) (4.10)

dπ3

dt
= f3(x,y)

dπ4

dt
= f4(x,y) (4.11)

So if π = π1 +π2 +π3, we can write x = (πx
1, π

x
2, π

x
3, β

x) and y = (πy
1 , π

y
2, π

y
3 , β

y). So

we have

||f(x) − f(y)|| ≤ L||x − y||. (4.12)

Then we now split the definition to four parts to prove that the function f is Lips-
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chitz continuous

|f1(x) − f1(y)| ≤ L1 |x − y| ,

|f2(x) − f2(y)| ≤ L2 |x − y| ,

|f3(x) − f3(y)| ≤ L3 |x − y| ,

|f4(x) − f4(y)| ≤ L4 |x − y| ,

(4.13)

where L1 + L2 + L3 + L4 = L ∈ L ≥ 0 for L, here L1,L2,L3 and L4 represent

Lipschitz constant for the function f1, f2, f3 and f4 respectively. To obtain these

inequalities we have assumed that the function f is Lipschitz continuous. We start

with the first part

|f1(x) − f1(y)| ≤ L1 |x − y| . (4.14)

Consider the first term on the right hand side of the equation (4.14)∣∣∣[(1 − πx)λαβxφ(πx)(1 − ξ) − (µ + δ1)πx
1] − [(1 − πy)λαβyφ(πy)(1 − ξ) − (µ + δ1)πy

1]
∣∣∣,

by using the triangle inequality

≤

∣∣∣[(1 − πx)λαβxφ(πx)(1 − ξ) − (1 − πy)λαβyφ(πy)(1 − ξ)]
∣∣∣

+ (µ + δ1)
∣∣∣πx

1 − π
y
1

∣∣∣,
≤

∣∣∣[(1 − πx)λαβxφ(πx)(1 − ξ) − (1 − πy)λαβxφ(πx)(1 − ξ)

+ (1 − πy)λαβxφ(πx)(1 − ξ) − (1 − πy)λαβyφ(πx)(1 − ξ)

+ (1 − πy)λαβyφ(πx)(1 − ξ) − (1 − πy)λαβyφ(πy)(1 − ξ)]
∣∣∣

+ (µ + δ1)
∣∣∣πx

1 − π
y
1

∣∣∣,
≤

∣∣∣(1 − πx)λαβxφ(πx)(1 − ξ) − (1 − πy)λαβxφ(πx)(1 − ξ)
∣∣∣

+
∣∣∣(1 − πy)λαβxφ(πx)(1 − ξ) − (1 − πy)λαβyφ(πx)(1 − ξ)

∣∣∣∣∣
+

∣∣∣(1 − πy)λαβyφ(πx)(1 − ξ) − (1 − πy)λαβyφ(πy)(1 − ξ)
∣∣∣

+ (µ + δ1)
∣∣∣πx

1 − π
y
1

∣∣∣,
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≤

∣∣∣(πx
− πy)

∣∣∣∣∣∣λαβxφ(πx)(1 − ξ)
∣∣∣

+
∣∣∣(βx
− βy)

∣∣∣∣∣∣(1 − πy)λαφ(πx)(1 − ξ)
∣∣∣

+
∣∣∣φ(πx) − φ(πy)

∣∣∣∣∣∣ − (1 − πy)λαβyφ(πy)(1 − ξ)
∣∣∣

+ (µ + δ1)
∣∣∣πx

1 − π
y
1

∣∣∣.
That implies that

≤ K1

∣∣∣(πx
− πy)

∣∣∣ + K2

∣∣∣(βx
− βy)

∣∣∣ + K3

∣∣∣φ(πx) − φ(πy)
∣∣∣ + K4

∣∣∣πx
1 − π

y
1

∣∣∣.
≤ K

∣∣∣x − y
∣∣∣.

Where K = K1 + K2 + K3 + K4.

Next, we going to prove the second part∣∣∣ f2(x) − f2(y)
∣∣∣ ≤ L2 |x − y| .∣∣∣[(δ1π

x
1 − (µ + δ2)πx

2] − [δ1π
y
1 − (µ + δ2)πy

2]
∣∣∣. (4.15)

By using the triangle inequality, we get

≤

∣∣∣πx
1 − π

y
1

∣∣∣δ1 +
∣∣∣πx

2 − π
y
2

∣∣∣(µ + δ2).

≤ K5

∣∣∣x − y
∣∣∣.

Similarly, for the third part∣∣∣ f3(x) − f3(y)
∣∣∣ ≤ L3

∣∣∣x − y
∣∣∣.∣∣∣[δ2π

x
2 − (µ + δ3)πx

3] − [δ2π
y
2 − (µ + δ3)πy

3]
∣∣∣. (4.16)

Then we have

≤

∣∣∣πx
2 − π

y
2

∣∣∣δ2 +
∣∣∣πx

3 − π
y
3

∣∣∣(µ + δ3).

≤ K6

∣∣∣x − y
∣∣∣.

Similarly for the fourth part∣∣∣ f4(x) − f4(y)| ≤ L4|x − y
∣∣∣. (4.17)
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To see this consider the right-hand side of the equation (4.17)∣∣∣[(1 − βx)λγφ(πx)(πx) − βxλγφ(πx)(1 − πx)(1 − (1 − θ)(1 − ξ)) − βxτ]

−[(1 − βy)λγφ(πy)(πy) − βyλγφ(πy)(1 − πy)(1 − (1 − θ)(1 − ξ)) − βyτ]
∣∣∣,

=
∣∣∣[(1 − βx)λγφ(πx)(πx) − (1 − βy)λγφ(πy)(πy) + βxλγφ(πx)(1 − πx)(1 − (1 − θ)(1 − ξ))

−βyλγφ(πy)(1 − πy)(1 − (1 − θ)(1 − ξ)) + βxτ − βyτ]
∣∣∣.

After applying the triangle inequality, we have that this quantity is bounded

above by

≤

∣∣∣(1 − βx)λγφ(πx)(πx) − (1 − βy)λγφ(πx)(πx)
∣∣∣

+
∣∣∣(1 − βy)λγφ(πx)(πx) − (1 − βy)λγφ(πy)(πx)

∣∣∣
+
∣∣∣(1 − βy)λγφ(πy)(πx) − (1 − βy)λγφ(πy)(πy)

∣∣∣
+
∣∣∣βxλγφ(πx)(1 − πx)(1 − (1 − θ)(1 − ξ)) − βyαγφ(πx)(1 − πx)(1 − (1 − θ)(1 − ξ))

∣∣∣
+
∣∣∣βyλγφ(πx)(1 − πy)(1 − (1 − θ)(1 − ξ)) − βyαγφ(πy)(1 − πx)(1 − (1 − θ)(1 − ξ))

∣∣∣
+
∣∣∣βyλγφ(πy)(1 − πx)(1 − (1 − θ)(1 − ξ)) − βyαγφ(πy)(1 − πy)(1 − (1 − θ)(1 − ξ))

∣∣∣
+
∣∣∣βx
− βy

∣∣∣τ
≤

∣∣∣βx
− βy

∣∣∣λγφ(πx)πx

+
∣∣∣φ(πx) − φ(πy)

∣∣∣(1 − βy)λγπx

+
∣∣∣πx
− πy

∣∣∣(1 − βy)λγφ(πy)

+
∣∣∣βx
− βy

∣∣∣λγφ(πx)(1 − πx)(1 − (1 − θ)(1 − ξ)

+
∣∣∣φ(πx) − φ(πy)

∣∣∣βyλγ(1 − πy)(1 − (1 − θ)(1 − ξ))

+
∣∣∣πx
− πy

∣∣∣βyγφ(πy)(1 − (1 − θ)(1 − ξ)

+
∣∣∣βx
− βy

∣∣∣τ
≤ K7

∣∣∣x − y
∣∣∣,

For some constant K7. This finishes the proof of Lipschitz continuity.

Now, we will apply the definition of the Picard–Lindelöf Theorem to prove the

cases below, using the same technique we used in earlier chapters to finish the
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proof.

We define ψ = 1 − π , and χ = 1 − β. We will divide the proof into three cases.

(A) The first case is that we assume that ξ < 1 and φ(π) > 0, for 1 ≥ π ≥ 0.

(B) The second case is that we assume that ξ < 1 and ∃ π∗ with 1 ≥ π∗ ≥ 0 such

that φ(π∗) = 0.

(C) The third case is that we assume that ξ = 1.

Now we will consider four initial conditions.

1. β(0) = 0, π(0) > 0.

2. β(0) > 0 , π(0) = 0.

3. β(0) > 0 , π(0) > 0 , 1 − π(0) > 0.

4.β(0) > 0, π(0) > 0, 1 − π(0) = 0.

Case A: ξ < 1 and φ(π) > 0, for 1 ≥ π ≥ 0 .

Case A One: β(0) = 0, π(0) > 0.

First suppose that β(0) = 0 and 1 ≥ π(0) > 0. Let us define (0, τe) to be the

maximal interval where a solution exists and

1 > β(s) > 0, π1(s) > 0, π2(s) > 0, π3(s) > 0, and 1 > π(s) for s ∈ (0, τe).

We suppose first that τe < ∞. By using the Picard–Lindelöf Theorem ∃ ∆t > 0

such that the solution exists in [0,∆t].

By using Taylor series expansions about t = 0 and the appropriate model

equations gives

π(∆t) =π(0) − µπ(0)∆t − δ3π3(0)∆t + o(∆t).

β(∆t) =π(0)λγφ(π(0))∆t + o(∆t).

If ∆t is small enough then π(∆t) ≥ k1∆t and β(∆t) ≥ k2∆t, for some constants k1

and k2 with min(k1, k2) > 0.
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If ψ(0) > 0, then clearly ψ(∆t) ≥ k3∆t for some k3 > 0, for ∆t small and strictly

positive. If ψ(0) = 0 then as

dψ
dt

= −λ(1 − ξ)ψαβφ(π) + µπ + δ3π3.

We have ψ(∆t) ≥ µ∆t + o(∆t) and the same result is true.

If π1(0) = 0 then
dπ1

dt

∣∣∣∣
t=0

= 0. As φ is twice differentiable with respect to π

d2π1

dt2

∣∣∣∣
t=0

= (1 − π)λα
dβ
dt
φ(π)(1 − ξ)

∣∣∣∣
t=0
.

So if ψ(0) > 0 then
d2π1

dt2

∣∣∣∣
t=0
> 0 and

π1(t) ≥ k4∆t2 + o(∆t2) for some k4 > 0.

If ψ(0) = 0 then d2π1
dt2

∣∣∣
t=0

= 0, but as φ is three times differentiable with respect

to π

d3π1

dt3 =
dψ
dt
λα

dβ
dt
φ(π)(1 − ξ)

∣∣∣
t=0
> 0.

So in this case, we have

π1(t) ≥ k4∆t3 for some k4 > 0,

(ψ(0) > 0 or ψ(0) = 0), so in either case if ∆t is sufficiently small π1(t) ≥ k4 ∆t3 for

some K4 > 0. A similar argument shows that if ∆t is small enough.

π2(t) ≥ k5∆t4 for some k5 > 0.

and π3(t) ≥ k6∆t2 for some k6 > 0.

Note that π(0) > 0, implies that π1(0) > 0, π2(0) > 0 or π3(0) > 0. Hence if ∆t is

sufficiently small and strictly positive, 1 > β(s) > 0, π1(s) > 0, π2(s) > 0, π3(s) > 0

and 1 > π(s) for s ∈ (0,∆t] so τe ≥ ∆t > 0.

Now for ∆t small and strictly positive π1(∆t) > 0 and

dπ1

dt
≥ −(µ + δ1)π1 ∈ [∆t, τe).

Hence, for t ∈ [∆t, τe)

π1(t) ≥ π1(∆t)e−(µ+δ1)(t−∆t).
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Similarly for t ∈ [∆t, τe), we have

π2(t) ≥ π2(∆t)e−(µ+δ2)(t−∆t),

π3(t) ≥ π3(∆t)e−(µ+δ3)(t−∆t),

β(t) ≥ β(∆t)e−(λγ+τ)(t−∆t),

ψ(t) ≥ ψ(∆t)e−
∫ t
∆t λαβφ(π(s))(1−ξ)ds,

≥ ψ(∆t)e−λα(t−∆t)(1−ξ),

χ(t) ≥ ψ(∆t)e−
∫ t
∆t π(s)λγφ(π(s))ds,

≥ χ(t)(∆t)e−λγ(t−∆t).

Now by the Picard–Lindelöf Theorem there exists a unique local solution to the

equation in [τe − ξ, τe + ξ] for some ξ > 0. As the unique solution is continuous at

τe.

π1(τe) ≥ lim
t→τe

π1(t),

= π1(∆t)e−(µ+δt)(τe−∆t) > 0.

Similarly π2(τe), π3(τe), β(τe), ψ(τe), and χ(τe) are all strictly positive. So by con-

tinuity the solution can be extended past τe with 1 > β(t) > 0, π1(t) > 0, π2(t) >

0, π3(t) > 0 and 1 > π(t) for t ∈ (0, τe + ξ) some ξ > 0.

This contradicts the definition of τe so τe = ∞. This completes the proof of

Case (A) one.

Case A Two: β(0) > 0, π(0) = 0.

Arguing as in Case A one as π1(0) = 0.

π1(∆t) = λαβ(0)(1 − ξ)∆t + o(∆t).

So π1 (∆t) ≥ k1 ∆t where k1 > 0 for all ∆t sufficiently small. Arguing as previously.

π2(∆t) ≥ k2 ∆t2 where k2 > 0, and π3(∆t) ≥ k3∆t3 where k3 > 0 for all ∆t sufficiently

small.

β(∆t) = β(0)
[
1 −

{
τ + λγ(1 − (1 − θ)(1 − ξ))

}]
∆t + o(∆t),

ψ(∆t) = 1 − λαβ(0)(1 − ξ)∆t > 0.
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So β(∆t) ≥ k4∆t and ψ(∆t) ≥ k5∆t, for some k4, k5 > 0 and ∆t sufficiently small.

If χ(0) = 0, then χ(∆t) ≥ τ∆t + o(∆t) , so if ∆t > 0 is sufficiently small. χ(s) ≥ k6s

for s ∈ (0,∆t] for some k6 > 0. This inequality is clearly true if χ(0) > 0 so is true

whatever the value of χ.

Hence arguing as in Case (A) one if ∆t is sufficiently small and positive τe ≥ ∆t.

The proof proceeds as in Case (A) one.

Case A Three: β(0) > 0, π(0) > 0, 1 − π(0) > 0.

Suppose that β(0) > 0, π(0) > 0 and ψ(0) > 0. It is straightforward to show that the

result holds in this case, using the previous argument

Case A Four: β(0) > 0, π(0) > 0, 1 − π(0) = 0.

Suppose that β(0) > 0, π(0) > 0 and ψ(0) = 0 so π(0) = 1. The proof proceeds

as above using arguments from Case (A) one and Case (A) two.This completes

the proof of Theorem (4.3.1) in Case (A) where ξ < 1 and φ(π) > 0, for 1 ≥ π ≥ 0.

We now move on to Case (B) where there is ξ < 1 and ∃ π∗ with 1 ≥ π∗ ≥ 0 such

that φ(π∗) = 0.

Case B: ξ < 1 and ∃ π∗ with 1 ≥ π∗ ≥ 0 such that φ(π∗) = 0.

We shall consider three Cases for this case, the first one (I) is π(0) < π∗ and

the second one (II) is π(0) = π∗ and the third one (III) is π(0) > π∗.

Case B(I) : If π(0) < π∗, then arguing as above ∃∆t > 0 with τe ≥ ∆t > 0.

Now as π→ π∗−

dπ
dt
→ −µπ∗ − δ3π3 ≤ −µπ

∗.

So ∃ π+ < π∗ such that for π ∈ [π+, π∗] π is strictly monotone decreasing.

So if π starts beneath π∗ it can never reach it and π ≤ max(π(0), π+) < π∗ ∀t.

Hence the proof proceeds as in the previous case.

Case B(II) : If π(0) = π∗, then for ∆t small and strictly positive

π(∆t) = π∗ − (µπ∗ + δ3π3(0))∆t + o(∆t).
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So if ∆t is sufficiently small and strictly positive, then we have

π(s) ≤ π∗ −
1
2
µπ∗s for s ∈ (0,∆t].

Since we know that the φ is differentiable, we assume that there is some

strictly positive integer k ≥ 1 with

(−1)k dkφ
′

dπk

∣∣∣∣∣
π∗−
> 0. and

(−1)l d
lφ
′

dπl

∣∣∣∣∣
π∗−

= 0 for 0 ≤ l < k.

Case B(II) One: First suppose that β(0) = 0 and π(0) = π∗ > 0. Let us define

(0, τe) to be the maximal interval where a solution exists and

1 > β(s) > 0, π1(s) > 0, π2(s) > 0, π3(s) > 0 and π∗ > π(s) for s ∈ (0, τe).

We first suppose that τe < ∞. By using the Picard–Lindelöf Theorem ∃

∆t > 0 such that the solution exists in [0,∆t).

dβ+

dt

∣∣∣∣∣
t=0+

= 0.

d2β+

dt2

∣∣∣∣∣
t=0+

= π∗λγ
dφ(π)

dt

∣∣∣∣∣
t=0+

As dβ+

dt

∣∣∣∣∣
t=0

= 0 is the right hand side derivative,now

dφ(π)
dt

∣∣∣∣∣
t=0+

= lim
∆t→0+

φ(π(∆t)) − φ(π(0))
∆t

,

= lim
∆t→0+,∆π→0

φ(π∗ + ∆π) − φ(π∗)
∆π

∆π
∆t
,

=
dφ
dπ

∣∣∣∣∣
π=π∗−

dπ
dt

∣∣∣∣∣
t=0+

,

= − (µπ∗ + δ3π3(0))
dφ
dπ

∣∣∣∣∣
π=π∗−

> 0.

So if k = 1 then
d2β

dt2

∣∣∣∣∣
t=0+

> 0. On the other hand if
dφ
dπ

∣∣∣∣∣
π=π∗−

= 0, but

d2φ(π)
dπ2

∣∣∣∣∣
π=π∗−

> 0.

then

d2β+

dt2

∣∣∣∣∣
t=0+

= 0.
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Now note that

dφ
dt

=
dφ
dπ

dπ
dt
.

Then

d2φ

dt2 =
d2φ

dπ2

(dπ
dt

)2

+ terms involving
dφ
dπ
,

=
d2φ

dπ2

(dπ
dt

)2

at t = 0.

d3β+

dt3

∣∣∣∣∣
t=0

=π∗λγ
d2φ(π)

dt2

∣∣∣∣∣
t=0+

,

=π∗λγ
d2φ(π)

dt2

∣∣∣∣∣
π=π∗−

(dπ
dt

∣∣∣∣∣
t=0+

)2

,

=π∗λγ
(
µπ∗ + δ3π(0)

)2 d2φ(π)
dπ2

∣∣∣∣∣
π=π∗−

> 0.

Similarly in general

dlβ

dtl

∣∣∣∣∣
t=0+

= 0 for l = 0, 1, ..., k and
dk+1β

dtk+1

∣∣∣∣∣
t=0+

> 0.

So if ∆t is small enough, then π(s) ≤ π∗ − k1s and β(s) ≥ k2sk+1 for s ∈ (0,∆t]

for some k1, k2 > 0. Arguing as in the previous case

ψ(∆t) ≥ k3∆t + o(∆t) for some k3 > 0.

A similar argument to above shows that if π1(0) = 0 and ψ(0) > 0 then for

0 ≤ m ≤ 2k + 1 then

dmπ1

dtm

∣∣∣∣∣
t=0+

= 0,

and

d2k+2π1

dt2k+2

∣∣∣∣∣
t=0+

=(1 − π∗)λα(1 − ξ)
dk+1

dtk+1
β

∣∣∣∣∣
t=0+

dkφ

dπk

∣∣∣∣∣
t=0+

,

=(1 − π∗)λα(1 − ξ)
dk+1

dtk+1
β

∣∣∣∣∣
t=0+

dkφ

dπk

∣∣∣∣∣
π=π∗−

(dπ
dt

∣∣∣∣∣
t=0+

)k

> 0.

On the other hand if ψ(0) = 0 then for 0 ≤ m ≤ 2k + 2 .

dmπ1

dtm

∣∣∣∣∣
t=0+

=0.

and

d2k+3π1

dt2k+3

∣∣∣∣∣
t=0+

=λα(1 − ξ)
dψ
dt

∣∣∣∣∣
t=0+

dk+1

dtk+1
β

∣∣∣∣∣
t=0+

dk+1

dtk+1
β

∣∣∣∣∣
t=0+

dkφ

dπk

∣∣∣∣∣
π=π∗−

(dπ
dt

∣∣∣∣∣
t=0+

)k

> 0.
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So in all cases π1(s) ≥ k4s2k+3 for s ∈ (0,∆t] if ∆t is small enough for some

constant k4 > 0 also obviously true if π1(0) > 0.

If π2(0) > 0 then π2(s) ≥ k5 s for s ∈ (0,∆t] for ∆t sufficiently small for some

k5 > 0. On the other hand, if π2(0) = 0, but π1(0) > 0 then π2(s) ≥ k5s for

s ∈ (0,∆t] for ∆t sufficiently small for some k5 > 0 . If π1(0) = π2(0) = 0

then a similar argument to above shows that π2(s) ≥ k5s2k+4 for s ∈ (0,∆t] for

some k5 > 0. So in all cases π2(s) ≥ k5 s2k+4 for s ∈ (0,∆t] for some k5 > 0.

If π3(0) > 0 then, π3(0) ≥ K6s for s ∈ (0,∆t] for ∆t sufficiently small for some

k6 > 0. If π3(0) = 0, but π2(0) > 0 then π3(s) ≥ k6s for s ∈ (0,∆t] for ∆t

sufficiently small for some k6 > 0 . If π2(0) = π3(0) = 0, then π1(0) > 0 and

π3(s) ≥ k6s2 for s ∈ (0,∆t] for ∆t sufficiently small for some k6 > 0. So in all

cases π3(s) ≥ k6s2 for s ∈ (0,∆t] for some k6 > 0. Hence for ∆t sufficiently

small and strictly positive

1 >β(s) > 0, π1(s) > 0, π2(s) > 0, π3(s) > 0 and

1 ≥π∗ > π(s) for s ∈ (0,∆t] so τe ≥ ∆t > 0.

By the argument for π(0) < π∗ we see that

π(t) < max(π(∆t), π+) < π∗ in [∆t, τe).

Arguing as in the Case(A) where φ(π) > 0∀π and ξ < 1 we deduce that

τe = ∞.

Case B(II) Tow: β(0), π(0) = 0 is not applicable here as π(0) = π∗ > 0.

Case B(II) Three: β(0) > 0, π(0) = π∗ > 0 and ψ(0) > 0 it is straight forward

to show that the result holds in this case.

Case B(II) Four: β(0) > 0, π(0) = π∗ > 0 and ψ(0) = 0 it is straight forward

to show that the result holds in this case too. Hence the result of Theorem

(4.3.1) holds in Case B(II)

Case B(III) : If π(0) > π∗, then for ∆t small and strictly positive

π(∆t) = π(0) − (µπ(0) + δ3π(0))∆t + o(∆t).
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So provided that π(0) ≥ π ≥ π∗

dπ1

dt
= − (µ + δ1)π1,

dπ2

dt
=δ1π1 − (µ + δ2)π2,

dπ3

dt
=δ2π2 − (µ + δ3)π3,

dβ
dt

= − βτ.

Define (0, τe′ ) to be the maximal interval where a solution exists and

1 > β(s) ≥ 0, π1(s) ≥ 0, π2(s) ≥ 0, π3(s) ≥ 0 and π ≥ π∗ > 0.

It is straightforward to show that if ∆t is sufficiently small and positive τe′ ≥

∆t > 0, moreover for t ∈ (0, τe′ ),

dπ
dt

= −µπ − δ3π3 ≤ −µπ.

Hence

π∗ ≤ π ≤ π(0)e−µt
≤ e−µt.

So

τe′ ≤ −
1
µ

logπ∗ < ∞.

The proof shows that limt→τe′
β, π1, π2 and π3 exist and satisfy

1 > lim
t→τe′

β, lim
t→τe′

π1, lim
t→τe′

π2, lim
t→τe′

π3 ≥ 0.

If π(τe′ ) > π∗ then the solution can be continued past τe′ using the Picard́-

Lindelöf Theorem which is a contradiction. Hence π(τe′ ) = π∗. For t ≥ τe′

the result follows by the case where π(0) = π∗ discussed previously. This

completes the proof of Theorem (4.3.1) in Case B(III) and hence in Case

B. We now move on to the proof of the Theorem in Case C where ξ = 1.
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Case C: For ξ = 1 the equations are

dπ1

dt
= − (µ + δ1)π1.

dπ2

dt
=δ1π1 − (µ + δ2)π2.

dπ3

dt
=δ2π2 − (µ + δ3)π3.

dβ
dt

=π(1 − β)λγφ(π) − βλγφ(π)(1 − π) − βτ.

As in Case B, we need to discuss three conditions, the first (I) is π(0) <

π∗, the second (II) is π(0) = π∗ and the third (III) is 1 > π(0) > π∗.

Case C(I) : π(0) < π∗.

Again π ≤ max(π(0), π+) for all time.

Case C(I) One: β(0) = 0 , 1 ≥ π(0) > 0.

Define (0, τe) to be the maximal interval where a solution exists and

If π1(0) = π2(0) = 0, then

1 > β(s) > 0, π1(s) = π2(s) = 0, π3(s) > 0 and 1 > π(s) in (0, τe).

If π1(0) = 0, π2(0) > 0, then

1 > β(s) > 0, π1(s) = 0, π2(s) > 0, π3(s) > 0 and 1 > π(s) in (0, τe).

If π1(0) > 0, then

1 > β(s) > 0, π1(s) > 0, π2(s) > 0, π3(s) > 0 and 1 > π(s) in (0, τe).

The proof proceeds as in the Case A where ξ < 1 and φ(π) > 0 for 1 ≥ π ≥ 0.

Case C(I)Two: β(0) > 0, π(0) = 0.

Define (0, τe) as in Case C (I) One to be the maximal interval where a solu-

tion exists and

1 > β(s) > 0, π1(s) = π2(s) = π3(s) = 0 ∈ (0, τe).

The unique solution is π1(t) = π2(t) + π3(t) = 0 and β(t) = β(0)e−(λγ+τ)t. So

clearly τe = ∞ and the Theorem (4.3.1) holds in this case.

Case C(I) Three: β(0) > 0 π(0) > 0 and ψ(0) > 0.

Define (0, τe) as in Case C (I) One.
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As in Case A where ξ < 1 and φ(π) > 0for 1 ≥ π ≥ 0, the proof of this case

follows from the proof of Case C (I) One.

Case C(I) Four: Suppose that β(0) > 0, π(0) > 0 and ψ(0) = 0.

Define τe as in Case C (I) One.

As in Case A where ξ < 1 and φ(π) > 0 for 1 ≥ π ≥ 0, the proof of this case

follows from the proof of Case C (I) One and Case C (I) Two. This completes

the proof of Case C (I).

Case C(II) : π(0) = π∗.

Case C(II) One: β(0) = 0, π(0) = π∗ > 0.

Define τe as in Case C (I) One with ξ = 1 and π(0) < π∗. The proof is

straightforward using the ideas discussed previously.

Case C(II) Two: is not possible here as π(0) > 0.

Case C(II)Three: β(0) > 0, π(0) > 0 and ψ(0) > 0.

Define τe as in Case C (I) One with ξ = 1 and π(0) < π∗. The proof is

straightforward using the ideas discussed above.

Case C(II) Four: β(0) > 0, π(0) > 0 and ψ(0) = 0 .

Define τe as in Case C (I) One. The proof is straightforward using the ideas

discussed above.

Case C(III) : 1 ≥ π(0) > π∗.

Notethat for 1 ≥ π ≥ π∗ the differential equations are exactly the same as in

Case B(III). The result then follows by the arguments in Case B(III) and the

argument in Case C(II) above.

This completes the proof of Theorem (4.3.1) in Case C(III) hence in Case

C, hence the overall proof of Theorem (4.3.1). Next we are going to find the

existence of equilibrium solution for our model.
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4.3.2 Existence of equilibrium

Theorem 4.3.2. If φ is strictly monotonic decreasing and R0 ≤ 1, the sys-

tem of equations (4.5)-(4.8) has a unique equilibrium solution (DFE) where

the HIV/AIDS virus has died out in both PWIDs and needles. For R0 > 1

there exists a unique positive endemic equilibrium solution (EE) as well as a

disease-free equilibrium solution (DFE).

Proof. Let π∗i , β
∗ represent the equilibrium values of PWIDs and needles

respectively, where i = 1, 2, 3 and π = π1 + π2 + π3.From the equilibrium

versions of equations (4.6) and (4.7),we have the following

π∗2 =
δ1π∗1
µ + δ2

. (4.18)

π∗3 =
δ2π∗2(
µ + δ3

) . (4.19)

We have

π∗ = π∗1 + π∗2 + π∗3 = π∗1L,

where

L = 1 +
δ1(

µ + δ2
) +

δ1δ2(
µ + δ2

) (
µ + δ3

) .
The equation (4.5) gives

β∗ =

(
µ + δ1

)
π∗

L (1 − π∗)λαφ (π∗) (1 − ξ)
. (4.20)

by using π∗ = π∗1L. The equation (4.8) becomes

β∗ =
π∗φ (π∗)

π∗φ(π∗) + (1 − π∗)φ (π∗) θ̂ + τ̂
. (4.21)

Recall τ̂ =
τ
λγ

and θ̂ = 1− (1−ξ)(1−θ). Assume that π∗ , 0 and is increasing

,as φ (π∗) is monotone decreasing function on π∗.

Dividing the equations(4.20) and (4.21) by π∗ we deduce

µ + δ1

L (1 − π∗)λαφ(π∗) (1 − ξ)
=

1

θ̂ + π∗
(
1 − θ̂

)
+ (

τ̂
φ(π∗)

)
. (4.22)
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The trivial equilibrium is E0 = (π0, β0) = (0, 0), and any other non- zero equi-

librium solution E1 = (π∗, β∗) must satisfy the equation (4.22).

Next,we define the left-hand side of the equation (4.22) to be f1(π) and the

right-hand to be f2(π).

Recall that φ (π) is strictly monotone decreasing function in π, moreover at

π∗ = 0 and φ(0) = 1,so we have

f1(0) =
µ + δ1

Lλα (1 − ξ)
, and (4.23)

f2(0) =
1

θ̂ + τ̂
. (4.24)

The expression of the basic reproductive number is given by the equation

(4.9) can be rearrange by substituting the value of L, as follows

R0 =
Lλα(1 − ξ)(
µ + δ1

)
(τ̂ + θ̂)

. (4.25)

There are three cases to consider.

(a)(b)(c)(a) Suppose that R0 < 1

Lλα(1 − ξ)(
µ + δ1

)
(τ̂ + θ̂)

< 1.

In this case we have that

Lλα(1 − ξ) <
(
µ + δ1

)
(τ̂ + θ̂).

We get

f1(0) =
µ + δ1

Lλα (1 − ξ)
>

1

θ̂ + τ̂
= f2(0). (4.26)

Moreover, we know that f1(π) is a strictly monotone increasing function

of π and and f2(π) a strictly decreasing function of π. Thus f1(π) > f2(π)

∀π ∈ (0, 1] using the inequality (4.26).

Therefore, there is no non-zero solution in this case for R0 < 1.
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(b) If R0 = 1, then we have the same thing that

Lλα(1 − ξ) =
(
µ + δ1

)
+ (τ̂ + θ̂).

We get

1
Lλα (1 − ξ)

=
1

(θ̂ + τ̂)(µ + δ1)
. (4.27)

Hence by the equation (4.27), we have f1(π) > f2(π) ∀π > 0. Hence if

R0 = 1, the equation (4.22) has non-zero solution.

(c) If R0 > 1, then we have

Lλα(1 − ξ) >
(
µ + δ1

)
(τ̂ + θ̂).

So by the equation (4.26), we have

1
Lλα (1 − ξ)

<
1

(θ̂ + τ̂)(µ + δ1)
.

Therefore, using the monotonicity of f1(π) and f2(π) we deduce that

equation (4.22) has a unique non-zero solution in (0, 1], and we define

the non-zero solution to be the endemic equilibrium of the system. This

concludes the proof of the Theorem.

Now, we move on to study the local Stability Analysis of Equilibrium

points of our model.

4.3.3 The Local Stability Analysis of Equilibrium

It is important to identify the behaviour of our model’s local stability

equilibrium from a mathematical and biological aspect.

We used the same techniques as Greenhalgh and Hay (1997) and

Agaba et al. (2017) to determine the local asymptotic stability of the

equilibrium value, which was by using the Routh-Hurwitz criterion (May

(2001),DeJesus and Kaufman (1987), which was sufficient to look

to the eigenvalues of the variational matrix of the system about the

disease-free (DFE) and endemic (EE) equilibrium points.
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Theorem 4.3.3. Consider that φ(π) is a differentiable function. The sys-

tem of equations (4.5)-(4.8) has a locally stable solution for the disease-

free equilibrium DFE as well as for endemic equilibrium EE in the three

following cases.

i. The disease-free solution to the system is locally asymptotically

stable if R0 < 1.

ii. The disease-free solution is neutrally stable if R0 = 1 .

iii. The disease-free solution is unstable if R0 > 1, but the unique EE

is locally asymptotically stable.

Proof. To determine the local stability by linearising the system of

equations (4.5)-(4.8) around the equilibrium point. This system can

be represented in matrix form as
dy
dt

= Jy , where yT = (π1, π2, π3, β).

J =



∂ f1

∂π1

∂ f1

∂π2

∂ f1

∂π3

∂ f1

∂β

∂ f2

∂π1

∂ f2

∂π2

∂ f2

∂π3

∂ f2

∂β

∂ f3

∂π1

∂ f3

∂π2

∂ f 3
∂π3

∂ f3

∂β

∂ f4

∂π1

∂ f4

∂π2

∂ f4

∂π3

∂ f4

∂β



.

Here

θ̂ = (1 − (1 − θ)(1 − ξ)), and τ̂ =
τ
λγ

.
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So, the Jacobian matrix for our system is

J =



A − (µ + δ1) A A B

δ1 −(µ + δ2) 0 0

0 δ2 −(µ + δ3) 0

C C C −D


.

Here

A = φ
′

(π∗)(1 − π∗)λαβ∗(1 − ξ) − λαβ∗φ(π∗)(1 − ξ),

B = (1 − π∗)λαφ(π∗)(1 − ξ),

C = [(1 − β∗(1 − θ̂))φ(π∗) + (1 − β∗)φ
′

(π∗)π∗ − β∗θ̂(1 − π∗)φ
′

(π∗)]λγ,

and D = −((θ̂ + (1 − θ̂)π∗)φ(π∗) + τ̂)λγ.

(4.28)

4.3.3.1 The Disease-Free Equilibrium.

The Jacobian matrix for our system evaluated at DFE (π∗1, π
∗

2, π
∗

3, β
∗) =

(0, 0, 0, 0) is

J =



−(µ + δ1) 0 0 λα(1 − ξ)

δ1 −(µ + δ2) 0 0

0 δ2 −(µ + δ3) 0

λγ λγ λγ −λγ(θ̂ + τ̂)


.

In the disease-free equilibrium (DFE), the characteristic equation of the

Jacobian of our model, by calculating its determinant

det(J − ωI ) = 0.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ + δ1 + ω) 0 0 λα(1 − ξ)

δ1 −(µ + δ2 + ω) 0 0

0 δ2 −(µ + δ3 + ω) 0

λγ λγ λγ −(λγ(θ̂ + τ̂) + ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Expanding along the top row this equation is

(µ + δ1 + ω)(µ + δ2 + ω)(µ + δ3 + ω)(λγθ̂ + τ̂ + ω)

−λα(1 − ξ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ1 −(µ + δ2 + ω) 0

0 δ2 −(µ + δ3 + ω)

λγ λγ λγ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

We would like to demonstrate that at least one of the eigenvalues of J

has a strictly positive real part. So the eigenvalues of this 4 × 4 matrix

will now be investigated. The equation can be rewritten.

(µ + δ1 + ω)(µ + δ2 + ω)(µ + δ3 + ω)(λγ(θ̂ + τ̂)) + ω − λ2αγ(1 − ξ)[δ1δ2+

(µ + δ2 + ω)(µ + δ3 + ω) + δ1(µ + δ3 + ω)] = 0.

To make the notation simple we write

x1 = µ + δ1, x2 = µ + δ2, x3 = µ + δ3and x4 = λγ(θ̂ + τ̂).

As a result, the characteristic equation of the Jacobiani is written as

ω4 +a1ω3 +a2ω2 +a3ω+a4 = 0. So by applying the Routh-Hurwitz criteria

it is sufficient for local stability to show that ai > 0 for i = 1, 2, 3, 4 and

a1a2 > a3 and (a1a2 − a3)a3 > a2
1a4.
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Then, we have

a1 = x1 + x2 + x3 + x4 > 0,

a2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − λ
2αγ(1 − ξ),

a3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 − λ
2αγ(1 − ξ)[δ1 + (µ + δ2) + (µ + δ3)],

and

a4 = x1x2x3x4 − λ
2αγ(1 − ξ)[δ1δ2 + (µ + δ2)(µ + δ3) + δ1(µ + δ3)],

= x1x2x3x4(1 − R0) > 0.

Note that R0 < 1 if and only if a4 > 0, R0 = 1 if and only if a4 = 0

and R0 > 1 if and only if a4 < 0. Hence for R0 > 1, the disease-free

equilibrium is unstable.

Hence the statements follow. Now

1 > R0 =
λα(1 − ξ)

(µ + δ1)(τ̂ + θ̂)

[
1 +

δ1

µ + δ2
+

δ1δ2

(µ + δ2)(µ + δ3)

]
.

Next, we will show the Routh-Hurwitz conditions, Thus

x1x4 = λγ(µ + δ1)(θ̂ + τ̂)

> λ2α(1 − ξ)γ
[
1 +

δ1

µ + δ2
+

δ1δ2

(µ + δ2)(µ + δ3)

]
.

So

a2 = x1x2 + x1x3 + x2x3 + x2x4 + x3x4 + (x1x4 − λ
2α(1 − ξ)γ) > 0.

Now note that

x1x2x4 = λγ(µ + δ1)(µ + δ2)(θ̂ + τ̂)

> λ2αγ(1 − ξ)(µ + δ2)
[
1 +

δ1

µ + δ2
+

δ1δ2

(µ + δ2)(µ + δ3)

]
,

> λ2αγ(1 − ξ)(µ + δ1 + δ2).
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moreover

x1x3x4 = λγ(µ + δ1)(µ + δ3)(θ̂ + τ̂)

> λ2αγ(1 − ξ)(µ + δ3)
[
1 +

δ1

µ + δ2
+

δ1δ2

(µ + δ2)(µ + δ3)

]
,

> λ2αγ(1 − ξ)(µ + δ3).

So

a3 = x1x2x3 + x2x3x4 +
(
x1x3x4 + x1x2x4 − λ

2αγ(1 − ξ)
[
δ1 + (µ + δ2) + (µ + δ3)

])
,

> x1x2x3 + x2x3x4,

> 0.

So, a3 > x1x2x3 + x2x3x4. Hence

a1a2 = (x1 + x2 + x3 + x4) ×
[
x1x2 + x1x3 + x2x3 + x2x4 + x3x4 +

(
x1x4 − λ

2αγ(1 − ξ)
)]
.

> x1(x2x3) + x1(x2x4) + x1(x3x4) + x3(x2x4)

+ x1

(
x1x2 + x1x3 + (x1x4 − λ

2αγ(1 − ξ))
)

+x2(x1x2 + x1x3 + x2x3 + x2x4 + x3x4)

+ x3(x1x2 + x1x3 + x2x4 + x3x4)

+ x4

(
x1x2 + x1x3 + x2x3 + x2x4 + x3x4) + (x1x4 − λ

2αγ(1 − ξ))
)
,

> x1(x2x3) + x1(x2x4) + x1(x3x4) + x3(x2x4)

= a3 + λ2αγ(1 − ξ)
[
δ1 + (µ + δ2) + (µ + δ3)

]
.

a1a2 > a3.
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So a1a2 > a3. In fact, the proof shows that

a1a2 > a3 + x1(x1x2 + x1x3 + x1x4 − λ
2αγ(1 − ξ))

+ x2(x1x2 + x1x3 + x2x3 + x2x4 + x3x4)

+ x3(x1x2 + x1x3 + x2x4 + x3x4)

+ x4(x1x2 + x1x3 + x2x3 + x2x4 + x3x4) + (x1x4 − λ
2αγ(1 − ξ)))

+ λ2αγ(1 − ξ)[δ1 + (µ + δ2) + (µ + δ3)]

> a3 + x1(x1x2 + x1x3 + x1x4) + x2(x1x2 + x1x3 + x2x3 + x2x4 + x3x4)

+ x3(x1x2 + x1x3 + x2x4 + x3x4)

+ x4(x1x2 + x1x3 + x2x3 + x2x4 + x3x4) + (x1x4 − λ
2αγ(1 − ξ)))

Hence

(a1a2 − a3)a3 >
[
x1(x1x2 + x1x3 + x1x4) + x2(x1x2 + x1x3 + x2x3 + x2x4 + x3x4)

+ x3(x1x2 + x1x3 + x2x4 + x3x4) + x4(x1x2 + x1x3 + x2x3 + x2x4

+ x3x4 + (x1x4 − λ
2αγ(1 − ξ)))

]
(x1x2x3 + x2x3x4)

=
[
x2

1x2 + x2
1x3 + x2

1x4 + x1x2
2 + x1x2x3 + x2

2x3 + x2
2x4 + x2x3x4 + x1x2x3

+ x1x2
3 + x2x3x4 + x2

3x4 + x1x2x4 + x1x3x4 + x2x3x4 + x2x2
4 + x3x2

4

+ (x1x4 − λ
2αγ(1 − ξ))x4

]
(x1x2x3 + x2x3x4)

> x2
1x2(x2x3x4) + x2

1x3(x2x3x4) + x1x2
2(x2x3x4) + x2

1x4(x1x2x3)

+ x2
1x4(x2x3x4) + x1x2x3(x2x3x4) + x2x3x4(x1x2x3) + x1x2

3(x2x3x4)

+ x1x2x4(x1x2x3 + x2x3x4) + x1x3x4(x1x2x3 + x2x3x4)

+ x2x2
4(x1x2x3) + x3x2

4(x1x2x3)
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+ x1x2
4(x1x2x3 + x2x3x4) + x1x2

4(x1x2x3 + x2x3x4)

− λ2αγ(1 − ξ)x4(x1x2x3 + x2x3x4)

> x2
1x2

2x3x4 + x2
1x2x2

3x4 + x1x3
2x3x4 + x3

1x2x3x4 + x2
1x2x2

3x2
4 + x1x2x3

3x4

+ x1x2
2x2

3x4 + x1x2x2
3x4 + x2

1x2
2x3x4 + x1x2

2x3x2
4 + x2

1x2x2
3x4 + x1x2x2

3x2
4

+ x1x2
2x3x2

4 + x1x2x2
3x2

4 + x3
1x2x3x4 + x2

1x2x3x2
4

− λ2αγ(1 − ξ)(x1x2x3x4 + x2x3x2
4)

= (x2
1 + x2

2 + x2
3 + x2

4 + 2x1x2 + 2x1x3 + 2x1x4 + 2x2x3 + 2x2x4 + 2x3x4)x1x2x3x4

− λ2αγ(1 − ξ)(x1x2x3x4 + x2x3x2
4)

= (x1 + x2 + x3 + x4)2x1x2x3x4 − λ
2αγ(1 − ξ)(x1x2x3x4 + x2x3x2

4)

= (x1 + x2 + x3 + x4)2(a4 + λ2αγ(1 − ξ)[δ1δ2 + (µ + δ2)(µ + δ3) + δ1(µ + δ3)]

− λ2αγ(1 − ξ)(x1x4 + x2
4)x2x3

> a2
1a4

as required.

Now for R0 = 1, we know that 0 is an eigenvalue and for R0 < 1 all

eigenvalues have strictly negative real parts. Choose a sequence of

parameters so that R0 → 1− then as the eigenvalues are continuous

functions of the parameters (Harris and Martin (1987)) we see that for

R0 = 1, no eigenvalue can have a strictly positive real part so therefore

the disease-free equilibrium is neutrally stable.

4.3.3.2 The Endemic equilibrium.

Similarly, we explore local stability at the endemic equilibrium point us-

ing the same argument we used to investigate free disease equilibrium.
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The Jacobian matrix for our system evaluated at EE (π∗i , β
∗) = (π∗i , β

∗)

J =



A − x1 A A B)

δ1 −x2 0 0

0 δ2 −x3 0

C C C D


.

Then the characteristic equation is ω4 + a1ω3 + a2ω2 + a3ω + a4 = 0, we

must prove that a1 > 0, a2 > 0, a3 > 0 a4 > 0 and (a1a2 − a3)a3 > a2
1a4

using the Routh-Hurwitz requirements for a quartic polynomial.

In the same way, we use the same technical method to collect the con-

stant term of det(J − ωI) = 0.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A − (µ + δ1 + ω) A A B

δ1 −(µ + δ2 + ω) 0 0

0 δ2 −(µ + δ3 + ω) 0

C C C D − ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

To easily compute the terms in ω, ω2,ω3 and ω4 by using the equation

definition of (4.28) with x1 = µ+δ1, x2 = µ+δ2, x3 = µ+δ3, x4 = λγ(θ̂+ τ̂).

The term in ω3 gives

a1 = −A −D + x1 + x2 + x3.

= (µ + δ1) + λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)

+ λγ[τ̂ + (θ̂ + (1 − θ̂)π∗)φ(π∗)] + (µ + δ2) + (µ + δ3).

= µ + δ1 + µ + δ2 + µ + δ3 + λγ
π∗φ(π∗)
β∗

+ (λαβ∗φ(π∗)(1 − ξ))

− φ′(π∗)(1 − π∗)λαβ∗(1 − ξ) > 0.

(4.29)

Here we have used the equation (4.21), to replace β∗(τ̂ + (θ̂ + (1 −
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θ̂)π∗)φ(π∗)) with π∗φ(π∗), and also used the fact that φ is monotone

decreasing in π. For ω2, we have

a2 = −BC + AD −Dx1 −Dx2 −Dx3 − δ1A − x2A − x3A + x1x2 + x1x3 + x2x3,

= [λαβ∗φ(π∗)(1 − ξ) − φ
′

(π∗)(1 − π∗)λαβ∗](1 − ξ)[δ1 + µ + δ2 + (µ + δ3]

+ λγ[τ̂ + (θ̂ + (1 − θ̂)π∗)φ(π∗)][µ + δ1 + µ + δ2 + µ + δ3]

+ (µ + δ1)(µ + δ2) + (µ + δ2)(µ + δ3) + (µ + δ3)(µ + δ1)

+ [λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)][τ̂ + (θ̂ + (1 − θ̂)π∗)φ(π∗)]λγ

− (1 − π∗)λαφ(π∗)(1 − ξ)[(1 − β∗(1 − θ̂))φ(π∗) + (1 − β∗)φ′(π∗)π∗

− β∗θ̂(1 − π∗)φ′(π∗)]λγ.

(4.30)

Again from equation (4.21) we can replace (τ̂+ (θ̂+ (1− θ̂)π∗)φ(π∗)) with

π∗φ(π∗)/β∗ in the same way that we replace φ(π∗)(1 − π∗)(1 − β∗(1 − θ̂))

with φ(π∗)(1 − β) − βτ̂.

By using the equation (4.21) and equation (4.20)together, we replace

(µ + δ1)(τ̂ + θ̂ + (1 − θ̂)π∗) with L (1 − π∗)φ(π∗)2λα(1 − ξ).

We find that by substituting and simplifying these different terms, we

get that

a2 = [λαβ∗φ(π∗)(1 − ξ) − φ
′

(π∗)(1 − π∗)λαβ∗(1 − ξ)][δ1 + µ + δ2 + µ + δ3]

(4.31)

+ λγ
π∗φ(π∗)
β∗

[µ + δ2 + µ + δ3] (4.32)

+ λγλα(1 − ξ)[β∗(φ(π∗) + τ̂)φ(π∗) − (1 − π∗)φ(π∗)(1 − β∗)φ′(π∗)π∗

+ (1 − π∗)2φ(π∗)β∗θ̂φ′(π∗) − π∗(1 − π∗)φ′(π∗)φ(π∗)]

(4.33)

+ (µ + δ1)(µ + δ2) + (µ + δ2)(µ + δ3) + (µ + δ3)(µ + δ1) (4.34)

+

[
δ1

µ + δ2
+

δ1δ2

(µ + δ2)(µ + δ3)

]
(1 − π∗)φ2(π∗)λα(1 − ξ)λγ. (4.35)
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Note that, from equation (4.21) we have that

(1 − β∗)π∗ − β∗θ̂(1 − π∗) =
π∗[φ(π∗)(1 − π∗)θ̂ + τ̂]

π∗φ(π∗ + φ(π∗)(1 − π∗)θ̂ + τ̂

−
π∗φ(π∗)θ̂(1 − π∗)

π∗φ(π∗ + φ(π∗)(1 − π∗)θ̂ + τ̂

=
τπ∗

π∗φ(π∗ + φ(π∗)(1 − π∗)θ̂ + τ̂

> 0.

(4.36)

So clearly a2 > 0.

Similarly, we collect the terms in ω

a3 = −BC(δ1 + x2 + x3) − (δ1δ2 + δ1x3 + x2x3)A

+ x1x2x3 − x2x3D + δ1AD −D[x1 − A][x2 + x3].

= −[([(1 − β∗(1 − θ̂)φ(π∗) + (1 − β∗)φ′(π∗)π∗ − β∗θ̂(1 − π∗)φ′(π∗)]λγ)

λα(1 − π∗)φ(π∗)(1 − ξ)][δ1 + µ + δ2 + µ + δ3]

− [δ1δ2 + δ1(µ + δ3) + (µ + δ2)(µ + δ3)][λαβ∗(1 − ξ)(φ′(π)(1 − π∗) − φ(π∗))]

+ (µ + δ1)(µ + δ2)(µ + δ3) + (µ + δ2)(µ + δ3)[((θ̂ + (1 − θ̂)π∗)φ(π∗) + τ̂)λγ)]

+ δ1λαβ
∗φ(π∗)(1 − ξ)[((θ̂ + (1 − θ̂)π∗)φ(π∗) + τ̂)λγ]

− δ1φ
′(π∗)(1 − π∗)λαβ∗(1 − ξ)[((θ̂ + (1 − θ̂)π∗)φ(π∗) + τ̂)λγ] + [µ + δ1

+ λαβ∗(1 − ξ)(φ(π∗) − φ′(π∗)(1 − π∗))][λγ((θ̂ + (1 − θ̂)π∗) + τ̂][(µ + δ2 + µ + δ3)].

(4.37)
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In a similar fashion to the term a2 above, we have a3 as follows

a3 =
[
λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)

]
L(µ + δ2)(µ + δ3)

+ (µ + δ1)(µ + δ2)(µ + δ3) + (µ + δ2)(µ + δ3)λγ
π∗φ(π∗)
β∗

+ λγλα(1 − ξ)[β∗(φ(π∗) + τ̂)φ(π∗) − (1 − π∗)φ(π∗)(1 − β∗)φ′(π∗)π∗

+ (1 − π∗)2φ(π∗)β∗θ̂φ′(π∗) − π∗(1 − π∗)φ′(π∗)φ(π∗)][δ1 + µ + δ2 + µ + δ3]

− λγλαφ′(π∗)(1 − π∗)φ(π∗)π∗(1 − ξ)[δ1 + µ + δ2 + µ + δ3]

+ λγλα(1 − π∗)φ2(π∗)(1 − ξ)
[
δ1δ2

µ + δ3
+

δ1δ2

(µ + δ2)
+
δ1(µ + δ3)
(µ + δ2)

]
a3 > 0.

(4.38)

Now collecting the constant term a4

a4 = −BCδ1δ2 − x3BCδ1 − x2x3BC + Aδ1δ2D + x3δ1AD − x1x2x3D + x2x3AD.

= −
[
(1 − β∗(1 − θ̂))φ(π∗) + (1 − β∗)φ′(π∗)π∗ − β∗θ̂(1 − π∗)φ′(π∗)

]
λγ

(1 − π∗)λαφ(π∗)(1 − ξ)
[
(µ + δ2)(µ + δ3)

] [
1 +

δ1

(µ + δ2)
+

δ1δ2

(µ + δ2)(µ + δ3)

]
+ [λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)]

λγ[(θ̂ + (1 − θ̂)π∗)φ(π∗) + τ̂][(µ + δ2)(µ + δ3)]L

+ [(µ + δ1)(µ + δ2)(µ + δ3)][(θ̂ + (1 − θ̂)π∗)φ(π∗) + τ̂]λγ.

(4.39)

Here

L =

[
1 +

δ1

(µ + δ2)
+

δ1δ2

(µ + δ2)(µ + δ3)

]
.

By using the same replacement as the previous one used for the terms

a2, a3 we get that

a4 = λγλα(1 − ξ)[β∗(φ(π∗) + τ̂)φ(π∗) − (1 − π∗)φ(π∗)(1 − β∗)φ′(π∗)π∗

+ (1 − π∗)2φ(π∗)β∗θ̂φ′(π∗) − π∗(1 − π∗)φ′(π∗)φ(π∗)]
[
(µ + δ2)(µ + δ3)

]
L.

(4.40)

By using the fact expression on the equation(4.36), we deduce that
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a4 > 0 if R0 > 1. We know that φ′(π∗) is a monotone decreasing function

so φ′(π∗) > 0, therefore, it is clear that for all terms of ai to be strictly

positive it is sufficient that the equilibrium points (π∗i , β
∗) is strictly posi-

tive where R0 > 1.

Now we require to show that a1a2−a3 > 0. We see that a1 can be written

as a sum of three positive terms a1
1=µ+δ1 +µ+δ2 +µ+δ3, a2

1=
λγπ∗φ(π∗)

β∗

and a3
1=λαβ

∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ), and these terms

are involved in the expansion of a3 given in equation 4.48, we write the

positive components summing to a2 as a1
2 (4.31), a2

2 (4.32) ,a3
2 (4.33),a4

2

(4.34) and a5
2 (4.35). So

a1a2 − a3 = [a1
1 + a2

1 + a3
1][a1

2 + a2
2 + a3

2 + a4
2 + a5

2]

Then considering each one of a1
1, a

2
1 and a3

1 separately and cancelling

similar terms. We deduce that

a1a2 − a3 =[λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)]

[a1
2 + a2

2 + a3
2 + a5

2 + µ(µ + δ3) + µ(µ + δ1 + δ2)]

+ (µ + δ1 + µ + δ2 + µ + δ3)
[
a1

2 + a2
2

+ (µ + δ1)(µ + δ2) + (µ + δ1)(µ + δ3)]

+ µa3
2 + (µ + δ2)(µ + δ3)(µ + δ2 + µ + δ3)

+ [(µ + δ1)
[
δ1

µ + δ2
+

δ1δ2

(µ + δ2)(µ + δ3)
] + δ1]

(1 − π∗)φ(π∗)2λ2αγ(1 − ξ))

λγπ∗φ(π∗)
β∗

[a1
2 + a2

2 + a3
2 + a5

2 + (µ + δ1)(µ + δ2) + (µ + δ1)(µ + δ3)]

(4.41)

Thus a1a2 − a3 > 0.

Next, we going to show that (a1a2 − a3)a3 > a2
1a4. Since

ψ = [β∗(φ(π∗) + τ̂)φ(π∗) − (1 − π∗)φ(π∗)(1 − β∗)φ′(π∗)π∗

+ (1 − π∗)2φ(π∗)β∗θ̂φ′(π∗) − π∗(1 − π∗)φ′(π∗)φ(π∗)]
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is a factor of a2
1a4 we shall base our argument around showing that

(a1a2 − a3)a3 has sufficient terms containing ψ and extra terms such that

(a1a2 − a3)a3 > a2
1a4.

It is sufficient to show that{[
δ1(1 − π∗)φ(π∗)2λα(1 − ξ)λγ +

λγπ∗φ(π∗)
β∗

(Eq.(4.31)) + (µ + δ1)

(µ + δ2 + µ + δ3)λγ
π∗φ(π∗)
β∗

]
×(µ + δ1)(µ + δ2)(µ + δ3)

}
+

{
λγ
π∗φ(π∗)
β∗

(µ + δ1)(µ + δ2 + µ + δ3)

×

[
λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)

]
L(µ + δ2)(µ + δ3)

}
+

{[
λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ) + µ + λγπ∗

φ(π∗)
β∗

]
ψλαλγ(1 − ξ)

×

(
a3 − λγλα(1 − ξ)ψ[δ1 + µ + δ2 + µ + δ3]

)}
+ (a1a2 − a3)(δ1 + µ + δ2 + µ + δ3)ψλαλγ(1 − ξ).

> a2
1

[
(µ + δ2)(µ + δ3) + δ1(µ + δ3) + δ1δ2

]
ψλαλγ(1 − ξ).

(4.42)

Consider the term in the first square bracket in the inequality (4.42)
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above

δ1(1 − π∗)λα(1 − ξ)λγφ(π∗)2 + λγλα(1 − ξ)φ(π∗)2(δ1 + µ + δ2 + µ + δ3)π∗

− φ′(π∗)(1 − π∗)(δ1 + µ + δ2 + µ + δ3)π∗λαλγφ(π∗)(1 − ξ)

+ (µ + δ1)(µ + δ2 + µ + δ3)λγ
π∗φ(π∗)
β∗

,

= λα(1 − ξ)λγφ(π∗)
[
δ1(1 − π∗)φ(π∗) + (δ1 + µ + δ2 + µ + δ3)π∗φ(π∗)

− φ′(π∗)(1 − π∗)(δ1 + µ + δ2 + µ + δ3)π∗ + (µ + δ2 + µ + δ3)L(1 − π∗)φ(π∗)
]

> λα(1 − ξ)λγφ(π∗)(δ1 + µ + δ2 + µ + δ3)(φ(π∗) − φ′(π∗)π∗(1 − π∗)).

> λα(1 − ξ)λγφ(π∗)(δ1 + µ + δ2 + µ + δ3)(β∗(φ(π∗) + τ̂) − φ′(π∗)π∗(1 − π∗)).

This is because

φ(π∗) − β∗(φ(π∗) + τ̂) = φ(π∗)(1 − π∗)(1 − β∗(1 − θ̂)) > 0.

So φ(π∗) > β∗(φ(π∗) + τ̂).

Now consider the second term on the right-hand side in the inequality

(4.42)

λγπ∗φ(π∗)
β∗

(µ + δ1)(µ + δ2 + µ + δ3)[λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)]

L(µ + δ2)(µ + δ3)

> −λα(1 − ξ)λγφ(π∗)φ′(π∗)π∗(1 − π∗)(µ + δ1)(µ + δ2)(µ + δ3)(δ1 + µ + δ2 + µ + δ3)

> −λα(1 − ξ)λγφ(π∗)φ′(π∗)(1 − π∗)[π∗(1 − β∗) − (1 − π∗)β∗θ̂](µ + δ1)(µ + δ2)(µ + δ3)

(δ1 + µ + δ2 + µ + δ3).

Hence the sum of the first two terms in the inequality (4.42) exceeds

λαλγ(1 − ξ)(δ1 + µ + δ2 + µ + δ3)ψ.
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i.e.[
δ1(1 − π∗)φ(π∗)2λα(1 − ξ)λγ +

λγπ∗φ(π∗)
β∗

a
′

2 + (µ + δ1)(µ + δ2 + µ + δ3)
λγπ∗φ(π∗)

β∗

]
× (µ + δ1)(µ + δ2)(µ + δ3),

+
λγπ∗φ(π∗)

β∗
(µ + δ1)(µ + δ2 + µ + δ3)

×

[
λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)

]
L(µ + δ2)(µ + δ3),

> λαλγ(1 − ξ)(δ1 + µ + δ2 + µ + δ3)(µ + δ1)(µ + δ2)(µ + δ3)ψ.

(4.43)

Hence using inequality (4.43) it is sufficient to show that

(δ1 + µ + δ2 + µ + δ3)(µ + δ1)(µ + δ2)(µ + δ3) +
(
λαβ∗(1 − ξ)φ(π∗)

− φ′(π∗)(1 − π∗)λαβ∗(1 − ξ) + µ +
λγπ∗φ(π∗)

β∗

)(
a3 − λαλγ(1 − ξ)

ψ
[
δ1 + µ + δ2 + µ + δ3

])
+ (a1a2 − a3)(δ1 + µ + δ2 + µ + δ3)

(4.44)

>
[
(µ + δ2)(µ + δ3) + δ1(µ + δ3) + δ1δ2

]
×

[(
µ + δ1 + µ + δ2 + µ + δ3

)2
] (4.45)

+
(λγπ∗φ(π∗)

β∗

)2

(4.46)

+
[
λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)

]2

(4.47)

+ 2
(
µ + δ1 + µ + δ2 + µ + δ3

)λγπ∗φ(π∗)
β∗

(4.48)

+ 2
(
µ + δ1 + µ + δ2 + µ + δ3

)
×

[
λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)(1 − π∗)λαβ∗(1 − ξ)

] (4.49)

+ 2λγπ∗φ(π∗)λα(1 − ξ)
[
φ(π∗) − (1 − π∗)φ′(π∗)

]
. (4.50)
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It is straightforward to show that

(δ1 + µ + δ2 + µ + δ3)(µ + δ1)(µ + δ2)(µ + δ3) + µ(µ + δ1)(µ + δ2)(µ + δ3)

+ (µ + δ1 + µ + δ2 + µ + δ3)(µ + δ1)(µ + δ2 + µ + δ3) × (δ1 + µ + δ2 + µ + δ3)

+ (µ + δ2)(µ + δ3)(µ + δ2 + µ + δ3)(δ1 + µ + δ2 + µ + δ3)

>
(
µ + δ1 + µ + δ2 + µ + δ3

)2[
(µ + δ2)(µ + δ3) + δ1(µ + δ3) + δ1δ2

]
.

Hence the term in (4.45) can be cancelled by the terms in (4.44) con-

taining only µ, δ1, δ2 and δ3 and similarly

(µ + δ2)(µ + δ3) + (µ + δ2 + µ + δ3)(δ1 + µ + δ2 + µ + δ3).

>
[
(µ + δ2)(µ + δ3) + δ1(µ + δ3) + δ1δ2

]
.

and (4.46) can be cancelled by the terms in (4.44) containing
(
λγπ∗φ(π∗)

β∗

)2

.

The term (4.47)can be found explicitly in (4.44), moreover (4.48) can

be cancelled by the terms in (4.44) containing λγ
π∗φ(π∗)
β∗

as

(µ + δ1)(µ + δ2)(µ + δ3) + µ(µ + δ2)(µ + δ3)

+ (δ1 + µ + δ2 + µ + δ3)(µ + δ1 + µ + δ2 + µ + δ3)

(µ + δ2 + µ + δ3) + (δ1 + µ + δ2 + µ + δ3)(µ + δ1)(µ + δ2 + µ + δ3)

> 2(µ + δ1 + µ + δ2 + µ + δ3)
[
(µ + δ2)(µ + δ3) + δ1(µ + δ2 + δ3)

]
In a similar fashion, we have

(µ + δ1 + µ + δ2 + µ + δ3)(δ1 + µ + δ2 + µ + δ3)2

> 2(µ + δ1 + µ + δ2 + µ + δ3)
[
(µ + δ2)(µ + δ3) + δ1(µ + δ2 + δ3)

]
.

Hence (4.49) can be cancelled by the terms in (4.44) containing

[λαβ∗φ(π∗)(1 − ξ) − φ′(π∗)λαβ∗(1 − ξ)].

Finally the terms in (4.44) containing

λγπ∗φ(π∗)λα(1 − ξ)[φ(π∗) − (1 − π∗)φ′(π∗)]

148



will cancel (4.50) as

(µ + δ2)(µ + δ3)L + (µ + δ2 + µ + δ3)(δ1 + µ + δ2 + µ + δ3) + (δ1 + µ + δ2 + µ + δ3)2

> 2
[
(µ + δ2)(µ + δ3) + δ1(µ + δ3) + δ1δ2

]
.

Hence a1a2a3 > a2
3 + a2

1a4 and all the Routh-Hurwitz conditions are satis-

fied for R0 > 1. This completes the proof of Theorem 4.3.3

In this following section, we shall show that if R0 ≤ 1 the disease-free

equilibrium is globally stable.

4.3.4 Global Stability of Equilibrium

In this section, we concentrate on the global stability of disease-free

equilibrium DFE. The next theorem is proved using a method similar to

Lewis (2000).

4.3.4.1 The Disease-Free Equilibrium (DFE).

Theorem 4.3.4. The disease-free solution for the system (4.5) -(4.8) is

globally stable if R0 ≤ 1, and HIV/AIDS will eventually be eradicated

from all PWIDs, as well as needles and syringes.

Proof: Suppose that φ(π) is monotones decreasing in π. If π(0) = 0

then π(t) = 0 for all time. Our proof requires several arguments to

demonstrate that limt→∞ π1(t) = 0. as well as from this directly that the

limsup of π2(t), π3(t) and β(t) must ultimately reach to zero

Let π̃1(t) = supξ≥t π1(ξ), this is monotone decreasing in t.

Thus, for given ε > 0 there exists t1(ε) such that π1(t) ≤ π∞1 + ε for all

t ≥ t1(ε) where π∞1 = lim supt→∞ π1(t) = limt→∞ π̄1(t).

We have the following lemma
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Lemma 4.3.1. If π∞2 = lim supt→∞ π2(t), then

π∞2 ≤
δ1π∞1
µ + δ2

.

Proof: From equation (4.6) we have

dπ2

dt
+

(
µ1 + δ2

)
π2

= δ1π1 × exp(µ+δ2)t,

dπ2

dt

[
exp(µ+δ2)t

]
+ exp(µ+δ2)t (̇µ + δ2)π2

= δ1π1 exp(µ+δ2)t,

d
dt

[
π2 exp(µ+δ2)t

]
= δ1π1 exp(µ+δ2)t

∀t ≥ t1 and

π 6 π∞1 + ε > 0, for any ε > 0.

d
dt

[
π2 exp(µ+δ2)t

]
≤ δ1

(
π∞1 + ε

)
exp(µ+δ2)t .

similar to Lewis and Greenhalgh (2001) work, integrating over [t1(ε), t]

provides

π2 exp(µ+δ2)t
−π2 (t1(ε)) exp(µ+δ2)t1(ε)

≤
δ1(π∞1 + ε)
µ + δ2.

[
exp(µ+δ2)t

− exp(µ+δ2)t1(ε)
]
.

π2 exp(µ+δ2)t
≤ π2 (t1(ε)) exp(µ+δ2)t1(ε) +

δ1

(
π∞1 + ε

)
µ + δ2

[
exp(µ+δ2)t

− exp(µ+δ2)t1(ε)
]
.

By dividing both sides by exp(µ+δ2)t, we get

π2 ≤ π2 (t1(ε)) exp(µ+δ2)(t−t1(ε)) +
δ1

(
π∞1 + ε

)
µ + δ2

[
1 − exp−(µ+δ2)(t−t1(ε))

]
.

By choosing t2(ε) > t1(ε) ∀t ≥ t2(ε) large enough, so that we have

e(µ+δ2)(t−t1(ε))
≤ ε. Thus

π̄2(t) ≤ π2 (t1(ε)) · ε +
δ1

(
π∞1 + ε

)
µ + δ2

.

π̄2(t) ≤ ε +
δ1

(
π∞1 + ε

)
µ + δ2

, ∀t ≥ t2(ε).
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Taking π̄2(t) = supξ≥t π1(ξ), and letting t→∞ then

π∞2 ≤ ε +
δ1π∞1 + ε

µ + δ2
.

π∞2 ≤
δ1π∞1
µ + δ2

+ ε1.

where ε1 = ε

(
1 +

δ1

µ + δ2

)
. But ε is arbitrarily small. So the result follows.

Corollary 4.3.1. If π∞3 = lim supt→∞ π3(t) then

π∞3 ≤
δ1δ2π∞1(

µ + δ2
) (
µ + δ3

) .
Proof: Using equation (4.7) and following the technique of Lemma

4.3.1. We determine that

π∞3 ≤
δ2π∞2
µ + δ3

.

The result follows.

Lemma 4.3.2. If β∞ = lim supt→∞ β(t) then

β∞ ≤
π∞1 + π∞2 + π∞3

θ̂ + τ̂
.

Proof: From the equation (4.8)

dβ
dt
≤ λγφ (π1 + π2 + π3) − β

(
λγθ̂ + τ

)
φ,

multiplying by the integrating factor e
∫ t

0 (λγθ̂+τ)φdξ

d
dt

[
βe

∫ t
0 (λγθ̂+τ)φdξ

]
≤ λγφ (π1 + π2 + π3) e

∫ t
0 (λγθ̂+τ)φdξ,

β(t)e
∫ t

0 (λγθ̂+τ)φdξ
− β (t0) e

∫ t0
0 (λγθ̂+τ)φdξ

≤
λγ

λγθ̂ + τ

(
π∞1 + π∞2 + π∞3 + ξ

) [
e
∫ t

0 (λγθ̂+τ)φdξ
]t

t0

β(t) ≤ β(t0)e−
∫ t

t0
(λγθ̂+τ)φdξ

+
λγ

λγθ̂ + τ

(
π∞1 + π∞2 + π∞3 + ξ

) [
1 − e−

∫ t
t0
(λγθ̂+τ)φdξ

]
.

Given ξ > 0 there exists to such that for t0 π1+π2+π3 ≤ π∞1 +π∞2 +π∞3 +ξ

If φ(π) ≥ ε and we use the same idea as in Lemma 4.3.1, then there

are two cases
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(i) If
∫ t

t0
φ(ξ)dξ→∞ , as t→∞ ,then the result follows.

(ii) If
∫ t

t0
φ(ξ)dξ dose not approach infinity ,as t → ∞ then we have∫

∞

0
φ(ξ)dξ ≤M for some M < ∞.

In this case given ξ > 0 ∃ t0 such that
∫
∞

t0
φ(ξ)dξ ≤ ξ for all t ≥ t0. From

the equation (4.8) we find that

dβ
dt
6 (1 − β)λγφπ − βτ 6 λγφ − βτ.

Moving βτ over the other side, multiplying by an integrating factor and

integrating.

d
dt

(
βeτt

)
6 λγφeτt.

Then integrating between t and t0

0 ≤ β(t) ≤ β (t0) e−τ(t−t0) +

∫ t

t0

λγφe−τ(u−t)du,

≤ e−τ(t−t0) +

∫
∞

t0

λγφdu

= e−τ(t−t0) + λγε.

If t is large enough then

0 ≤ β(t) ≤ ε + λγε.

0 6 β∞ 6 (λγ + 1)ε.

Hence we deuce that β∞ = 0, as ε is arbitrary in other words β(t) → 0

as t→∞. Thus the result of Lemma (4.3.2) follows.

Next, we assume that π∞1 > 0. We note that by equation (4.5)

dπ1

dt
≤ (1 − π1)λβαφ(π)(1 − ξ) −

(
µ + δ1

)
π1,

By Lemma 4.3.2 there exists to such that for t ≥ t0

dπ1

dt
≤ (1 − π1)λα(1 − ξ)

(
π∞1 + π∞2 + π∞3

θ̂ + τ̂
+ ε

)
−

(
µ + δ1

)
π1.

Now using the definition of the basic reproductive number (4.9) and
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Lemma 4.3.1 and Corollary 4.3.1 we get that

dπ1

dt
≤ (1 − π1)λα(1 − ξ)

(
µ + δ1

)
(R0 + ε1)π∞1 −

(
µ + δ1

)
π1,

where ε1 =
λα(1 − ξ)ε

(θ̂ + τ̂)
(
µ + δ1

)
π∞1

,

≤
(
µ + δ1

) [
(R0 + ε1)π∞1 − π1

(
1 + R0π

∞

1

)]
.

Hence we have

d
dt

[
π1(t) exp

[ (
µ + δ1

) (
1 + R0π

∞

1

)
t
]]

≤
(
µ + δ1

)
(R0 + ε1)π∞1 exp

[(
µ + δ1

) (
1 + R0π

∞

1

)
t
]
.

Using the same procedure as in Lemma 4.3.1, we obtain that

π1(t)e(µ+δ1)(1+R0π∞1 )t
− π1(t0)e(µ+δ1)(1+R0π∞1 )t0

≤
(R0 + ε1)
1 + R0π∞1

π∞1
[
e((µ+δ1)(1+R0π∞1 )t

− e((µ+δ1)(1+R0π∞1 )t0
]
,

and hence that there exists t1 ≥ t0 such that for t1 ≥ t1

π1 ≤
R0π∞1

1 + R0π∞1
+ ε1

(
1 +

π∞1
1 + R0π∞1

)
,

and thus as ε1 is arbitrarily small

π∞1 ≤
R0π∞1

1 + R0π∞1
.

Therefore as π∞1 > 0,1 ≤
R0

1 + R0π∞1
. Hence 1 ≥ R0 ≥ 1 + R0π∞1 .

So this is a contradiction and hence π∞1 = 0. So Lemma 4.3.1,Corollary

4.3.1 and Lemma 4.3.2 then imply π∞1 = π∞2 = π∞3 = β∞ = 0 and hence

π1, π2, π3 and β all approach zero as t → ∞ completing the proof of

Theorem (4.3.4).

Next ,applying condition of the second case of 4.3.2 , that β∞ = 0, if

β(t)→ 0 as t→∞. the equation (4.5) becomes

Suppose the definition of lim inft→∞ πi(t) = πi,∞ and note that π∞i ≥

πi,∞ ≥ 0 and β∞ ≥ β∞ ≥ 0. This implies that π∞i = πi,∞ = 0 and

β∞ = β∞ = 0, and hence limt→∞ π1(t) = 0.It is straightforward to show
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that

lim
t→∞

π2(t) = lim
t→∞

π3(t) = lim
t→∞

β(t) = 0.

This completes the proof of the global stability of DFE when 1 ≥ R0 ≥ 0.

Following that, we will look into the persistence of the disease in the

system.

4.3.5 Persistence of the Disease When R0 > 1

In this section, we will demonstrate that if R0 > 1 and HIV/AIDS are

present in the community at the outset, whether in addicts groups or

shooting galleries, the disease will remain in both PWIDs and needles.

Note that the analytical results for our model show exactly the results

of Theorem 2.4 of Lewis (2000) for equations 4.6 and 4.7 and differ-

ent argument results, thus including awareness program function for

equations 4.5 and 4.8

Theorem 4.3.5. Suppose that R0 > 1 and either πi(0) > 0 for some

i = 1, 2, 3 or β(0) > 0. Then there exists a fixed ε > 0, which depends

only on the model parameters, not the initial conditions, such that for

some η > 0 and i = 1, 2, 3

πi ≥ επ
∗

i and β ≥ εβ∗, ∀t ≥ η. (4.51)

Proof: We prove this by following a similar argument used to prove

Theorem 2.4 ofLewis (2000). We need to follow several steps to prove

this result. The common sense argument is π1 is the dominant compo-

nent of
(
π1, π2, π3, β

)
If π1 is small, then all of the other components will

be small as well. From the local stability of the equilibria of the system,

we know that the disease-free (DFE) equilibrium is unstable if R0 > 1.

We are going to show that π1 cannot become arbitrarily close to zero.
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Let π̄I(t) = infξ≥t π1(ξ), this is monotone increasing in t. For given ε > 0,

there exists t5(ε) such that π1(t) ≥ π1,∞ − ε for all t ≥ t5(ε) where π1,∞ =

lim inft→∞ π1(t).

Lemma 4.3.3. Let π2,∞ = lim inft→∞ π2(t), then

π2,∞ ≥
δ1π1,∞

µ + δ2
.

Proof. From equation (4.6), and the result was proved in the (Lewis

and Greenhalgh 2001) paper, that was

π2(t) ≥
δ1π1,∞(
µ + δ2

) − ε1.

Lemma 4.3.4. There exists a time T > 0 and a small quantity η > 0

such that φ(π) ≥ η > 0 for t ≥ T.

Proof. If φ(π) > 0 in [0, 1] this is straightforward. Otherwise, ∃ π∗ in

[0, 1] with φ(π∗) = 0 and the arguments used in the existence unique-

ness proof show that this result is true.

Corollary 4.3.2. Let π3,∞ = lim inft→∞ π3(t), then

π3,∞ ≥
δ1δ2π1,∞(

µ + δ2
) (
µ + δ3

) .
Proof. By using equation(4.7) and the result was proved in the (Lewis

and Greenhalgh 2001) paper, that was

π3,∞ ≥
δ2π2,∞

µ + δ3
.

Corollary 4.3.3. Let β∞ = lim inft→∞ β(t), then

β∞ ≥
(π1,∞ + π2,∞ + π3,∞)η

(1 + θ̂ + τ̂)
.
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Proof. Equation (4.8) can be written in the form

dβ
dt

= λγπiφ − βλγ
(
(1 + θ̂)φ + τ̂

)
,

≥ λγπiφ − βλγ
(
1 + θ̂ + τ̂

)
,

So given ε > 0, there exists t7 (ε) such that

dβ
dt
≥ λγ(π1,∞ + π2,∞ + π3,∞ − ε)η − βλγ

(
(1 + θ̂) + τ̂

)
,

for t ≤ t7(ε). A similar argument to Lemma (4.3.3) then shows that

Corollary (4.3.3) holds. We use a similar argument as in the previous

equations to obtain the following

d
dt
βe[λγ(1+θ̂)+τ̂]dξ]

≥ λγ(π1,∞ + π2,∞ + π3,∞ − ε)ηe
∫ t

0 [λγ(1+θ̂)+τ̂]dξ.

β ≥
λγ

λγ(1 + θ̂) + τ̂
(π1,∞ + π2,∞ + π3,∞ − ε)η[1 − e−

∫ t
0 [λγ(1+θ̂)+τ̂]du]

If
∫ t

0
φ(ξ)dξ = ∞, then we have that

β∞ ≥
(π1,∞ + π2,∞ + π3,∞)η

(1 + θ̂ + τ̂)
.

Note that either π1,∞ ≥
1
2
επ∗1, or π1,∞ <

1
2
επ∗1.

First, we assume that π1,∞ ≥
1
2
επ∗1. So there ∃ T1 such that for t ≥

T1, π1 ≥
1
4
επ∗1. By using the result of Lemma 4.3.3, we get that

π2,∞ ≥
δ1π1,∞

µ + δ2
,

So π2,∞ ≥
1
2
εδ1

µ + δ2
π∗1 =

1
2
ε2π

∗

2.

Here ε2 =
1
2

εδ1π∗1
(µ + δ2)π∗2

.

Assuming in the same way as before, there ∃ T2 such that for t ≥ T2, π2 ≥
1
4
επ∗2. In

a similar way, by using the Corollary 4.3.2 there exists T3 such that for t ≥ T3, π3 ≥
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1
4
επ∗3. Similarly, using the result of Corollary 4.3.3, we have that

β∞ ≥
π1,∞η

1 + θ̂ + τ̂
.

β∞ ≥

1
2
επ∗1η

1 + θ̂ + τ̂
=

1
2
ε4β

∗.

where ε1 =
ε

1 + θ̂ + τ̂

π∗1η

β∗
. So there exists T4 such that for t ≥ T4, β ≥

1
4
ε1β∗.

Hence if T = max {T1T2,T3,T4} and ε̄=min
{

1
4ε,

1
4
ε1

}
the results of (4.51) hold with

ε replaced by ε̄.

Next, assume that π1,∞ <
1
2
επ∗1, so here we want know in which case there exists

κ ≥ ∆t, where π1(κ) < 1
2επ

∗

1.

Now, letting

t0 = inf
{
κ ≥ ∆t, π1(κ) <

1
2
επ∗1

}
, and

t1 = inf
{
κ ≥ t0, π1(κ) >

1
2
επ∗1

}
.

Here ε is a constant value that is both positive and fixed. According to the defini-

tion of t0 we have that π1 (t0 + ν) < 1
2 ∈ π

∗

1.If ν is small and positive, then t1 > t0.

By continuity π1 (t0) = π1 (t1) = 1
2επ

∗

1, and therefore π1 is less than 1
2επ

∗

1in (t0, t1)

and greater than 1
2επ

∗

1 just after t1. We now show that if π1. becomes small then

π3, π3 and β must become small also.

Lemma 4.3.5. Suppose that ∆ is small. Then there exists a time T̄1 > 0 dependent

only on the model parameters, ∆ and ε. With 0 < π2 <
(

1
2 + ∆

)
for t between t0 + T̄1

and t1,

Proof. We have that π1 ≤ (1/2) ε π∗1 ∈ [t0, t1]. Thus we write the equation (4.6) as

dπ2

dt
≤

1
2
επ∗1δ1 −

(
µ + δ2

)
π2,

d
dt

[
π2e(µ+δ2)t

]
≤

1
2
επ∗1δ1e(µ+δ2)t.
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By integrating over [t0, t] this gives

π2e(µ+δ2)t
− π2(t0)e(µ+δ2)t0 ≤

1
2
επ∗1δ1

µ + δ2

(
e(µ+δ2)t

− e(µ+δ2)t0
)
,

π2 ≤
(
e−(µ+δ2)(t−t0)

)
+

1
2
επ∗2.

So the result here was proved in the (Lewis and Greenhalgh 2001) and paper.

We have proved that if π1 is small, it causes π2 to become small as well, Next, we

will prove similar results for π3 and β.

Corollary 4.3.4. Suppose that ∆ > 0. Then there exists T̄2 > 0 depending only

on the model parameters, ∆ and ε such that for t ∈
[
t0 + T̄1 + T̄2, t1

]
π3 is at most(1

2
+ 2∆

)
π∗3ε, assuming that t0 + T̄1 + T̄2 < t1

Proof.

To prove that we follow the similar proof of Lemma 4.3.5, so from the equation

(4.7) has the form as

dπ3

dt
≤

(1
2

+ ∆
)
επ∗2δ2 −

(
µ + δ3

)
π3.

And then integrating the equation over
[
t0 + T̄1, t

]
, then the result follows.

Corollary 4.3.5. Suppose that ∆ is small. Then there exists T̄3 > 0 depending

only on the model parameters, ∆ and ε such that for t ∈
[
t0 + T̄1 + T̄2 + T̄3, t1

]
β is

at most
(1
2

+ 3∆
)
β∗ε1, where

ε1 = max
(
1,
π∗φ(π∗) + (1 − π∗)φ(π∗)θ̂ + τ̂

θ̂ + τ̂

)
ε.

We supposing that t0 + T̄1 + T̄2 + T̄3 < t1

Proof. We use a similar argument with equation (4.8), to obtain the following

dβ
dt

= λγφ(π)π − βλγ(θ̂φ(π) + τ̂).

So for t ≥ T̄1 + T̄2,

dβ
dt
≤ λγ(

1
2

+ 2∆)φ(π) − βλγ(θ̂ + τ)φ(π).
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By integrating over [t0 + T̄1 + T̄2, t], we get that

d
dt

[
βe

∫ t
t0+T̄1+T̄2

[
λγ(θ̂+τ̂)φ(π)

]
dξ
]
≤ λγ

(1
2

+ 2∆
)
επ∗φ(π)

exp
[∫ t

t0+T̄1+T̄2

λγ
(
θ̂ + τ̂

)
φ(π)dξ

]
.

β ≤ β(t0 + T̄1 + T̄2) e−
∫ t

t0+T̄1+T̄2
λγ(θ̂+τ̂)φ(π)dξ

+

(
1
2 + 2∆

)
θ̂ + τ̂

επ∗
[
1 − e−

∫ t
t0+T̄1+T̄2

λγ(θ̂+τ̂)φ(π)dξ
]

By Lemma 4.3.5 there exists a time T > 0 and a small quantity η > 0 such that

φ(π) ≥ η > 0 for t ≥ T. So t ≥ max (T, t0 + T̄1 + T̄2) is sufficiently large, then

t ≥ t0 + T̄1 + T̄2 + T̄3. So there we have that

β ≤
1
2 + 3∆

θ̂ + τ̂
επ∗.

Note that it is not always obvious that β(t) ≤
(

1
2 + 3∆

)
εβ∗ since we have

β∗ =
π∗φ(π∗)

π∗φ(π∗) + (1 − π∗)φ(π∗)θ̂ + τ̂
≤

π∗

θ̂ + τ̂
,

and it may be that

β∗ ≤
π∗

θ̂ + τ̂
.

However if we define

ε1 = max
(
1,

[
π∗φ(π∗) + (1 − π∗)φ(π∗)θ̂ + τ̂

]
θ̂ + τ̂

)
ε,

(note that ε1 > ε), then the result of Corollary 4.3.5 follows.

We have proved that if π1 approaches zero, then all components must approach

zero as well. Next, we going to show that π1 cannot become arbitrarily small. This

is obtained by showing that t1 may be bounded above by a fixed finite value that is

only affected by the model parameters ε and ∆. Thus π1 does not go below 1
2επ

∗

1

for a long enough time to approach zero arbitrarily. Then there are two possible

cases. The first one is

i. π1 is remains beneath 1
2επ

∗

1 ,long enough for other components to

become small.
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ii. π1 increases above 1
2επ

∗

1, before other components become small.

As a result, we have that either

A. t1 ≥ t0 + max
[
T̄1, T̄1 + T̄2, T̄1 + T̄2 + T̄3

]
, or

B. t1 < t0 + max
[
T̄1, T̄1 + T̄2, T̄1 + T̄2 + T̄3

]
.

Therefore , we will demonstrate that t1 < T where T is a fixed finite value that is

only affected by the model parameters, ε and ∆. Then the result is completed, if

case (2) is true then π1 increases above 1
2επ

∗

1, before other components become

small. Now, we are dealing with the first case where t1 occurs at a time greater

than or equal to the time that other components become small. we are going to

prove that π1 cannot stay small constantly, by using the result of the disease-free

equilibrium is unstable when R0 > 1 .

Corollary 4.3.6. Suppose that G(ω, ε) be a polynomial of degree nth in ω and ε.

Indicate the roots (can be complex)G(ω, ε) = 0 by ωi(ε) for j = 1, 2, ....,n. Then in

a neighbourhood of ε = 0, each ωi(ε) is defined and continuous in ε.

Proof. Although G(ω, ε) is a polynomial, it is analytic in the (0, 0) neighbour-

hood,Corollary 6.6 in Chow and Hale (1982) yields the result.

Our following Lemma is an important part of the argument to show π1 cannot stay

small constantly.

Lemma 4.3.6. If π1(t) decreases below 1
2επ

∗

1 at time T0, then π1(t) returns to 1
2επ

∗

1

by of least time t+
1 = t0 +max

[
T̄1, T̄1 + T̄2, T̄1 + T̄2 + T3, t2 + T̄4

]
where t+

1 − t0 is finite

are depends only on the parameters model ∆, ε.

Proof. We are going to follow a similar technique to the one used in Lemma 2.5 in

Lewis (2000). Assume that ε2 is real and positive and 1 ≥ ε2 ≥ 0, then we define

the matrix J(ε2) as
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J(ε2) =



−(µ + δ1) 0 0 λα(1 − ξ)φ(ε2)(1 − ε2)

δ1 −(µ + δ2) 0 0

0 δ2 −(µ + δ3) 0

λγφ(ε2) λγφ(ε2) λγφ(ε2) −(λγ(ε2 + θ̂) + τ)


.

We evaluated the system at the the disease-free equilibrium points as in the proof

of Theorem 4.3.3, when ε2 = 0,J(0) = J, Then we denote the eigenvalues of J (ε2)

by ωi for i = 1, ..4. Since J(ε2)+MI is a non-negative irreducible matrix where M is

big and positive, then the characteristic equation of JJ (ε2) + MI has a simple root

equal to its spectral radius, according to Lemma 2.5 in Lewis (2000) and Lemma

2.1 from Nold (1980).

Then the eigenvalues of J(ε2) + MI are

J(ε2) + MI = M + ω1(ε2),M + ω2(ε2),M + ω3(ε2) and M + ω4(ε2).

If the root M + ω1(ε2) is real, then all other eigenvalues of J(ε2) + MI have strictly

smaller real parts. As a result, the other eigenvalues of J(ε2) have strictly smaller

real parts if ω1(ε2) is real too. This is especially true for ε2 = 0. Furthermore,

according to the definition of Corollary4.3.6

Thus, as ε2 → 0 ω1(ε2)→ ω1(0) and we know that ω1(0) > 0 if R0 > 1 as Theorem

4.3.3 shown that about the disease-free equilibrium points. As a result, we may

verify that ω1(ε2) > 0, by picking ε2 small enough.

We can assume that 1 > ε2 > 0 without any loss of generality. We can choose ε2

that is small enough that

1
2
επ∗1 +

(1
2

+ ∆
)
επ∗2 +

(1
2

+ 2∆
)
επ∗3 < ε2.

By using the definition of Lemma 4.3.5 and Corollary 4.3.4, we find that π1 +π2 +

π3 < ε2 for t1 > t ≥ t0 + T̄1 + T̄2. Define t2 = inf {ζ : for t1 > t ≥ t0 + ζ, π(t) < ε2,
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Thus we have two cases either t2 = 0 or π (t0 + t2) = ε2 where t0 + t2 is the last

time before t1 that π(t) ≥ ε2. Note that t2 ≤ T̄1 + T2. If t1 < t0 + T̄1 + T̄2 then we go

the result we want to prove. Now, we consider the case where t1 ≥ t ≥ t0 + T̄t + T̄2.

The system of the equations (4.5)-(4.8) can be written as following for t1 ≥ t ≥

t0 + T̄1 + T̄2

dπ1

dt
≥ (1 − ε2)λβφ(ε2)(1 − ξ) −

(
µ + δ1

)
π1,

dπ2

dt
= δ1π1 −

(
µ + δ2

)
π2,

dπ3

dt
= δ2π2 −

(
µ + δ3

)
π3,

dβ
dt
≥ λγπiφ(ε2) −

(
λγ

(
ε2 + θ̂

)
+ τ̂

)
β.

We have that

dx
dt
≥ J (ε2) x.

where x =
(
π1, π2, π3, β

)T. We know that the left eigenvector of J(ε2) is strictly pos-

itive e = (e1, e2, e3, e4) which corresponds to the spectral radius ω1(ε2), as Lemma

2.1 in Nold (1980). Thus

e
dx
dt
≥ eJ (ε2) x = ω1 (ε2) e · x.

Integrating over [t0 + t2, t]

e · x(t) ≥ e · x (t0 + t2) exp [ω1 (ε2) (t − t0 − t2)] ,

≥ (e1π1 (t0 + t2) + e2π2 (t0 + t2) + e3π3 (t0 + t2)) exp [ω1 (ε2) (t − t0 − t2)] ,

≥ π (t0 + t2) m in (e1, e2, e3) exp [ω1 (ε2) (t − t0 − t2)] ,

So we have the following conditions. If t2 > 02, then

e · x(t) = ε2 min (e1, e2, ε3) exp [ω1 (ε2) (t − t0 − t2)] .

On the other hand if t2 = 0, then

e · x(t) ≥
1
2
επ∗1 min (e1, e2, e3) exp [ω1 (ε2) (t − t0 − t2)] .
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As we provide that t1 ≥ t0+t2+T̄4 where T̄4 depends only on the model parameters

ε1, ε and ∆, then after a time t0 + t2 + T̄4 we have that

e · x(t) > e ·
(1
2
επ∗1,

(1
2

+ ∆
)
επ∗2,

(1
2

+ 2∆
)
επ?3

(1
2

+ 3∆
)
ε1β

∗

)
, (4.52)

Also, proven that if t0 ≤ t ≤ t1 then after a time t0 + max
[
T̄1T̄1 + T̄2, T̄1 + T̄2 + T̄3

]
we know that

π1(t) ≤
1
2
επ∗1,

π2(t) ≤
(1
2

+ ∆
)
επ∗2,

π3(t) ≤
(1
2

+ 2∆
)
επ∗3,

β(t) ≤
(1
2

+ 3∆
)
ε1β

∗.

Hence

e · x(t) ≤ e ·
(1
2
επ∗1,

(1
2

+ ∆
)
επ∗2,

(1
2

+ 2∆
)
επ∗3,

(1
2

+ 3∆
)
ε1β

∗

)
. (4.53)

From equation (4.52), we have a contradiction if

t1 ≥ t0 + max
[
T̄1, T̄1 + T̄2, T̄1 + T̄2 + T̄3, t2 + T̄4

]
.

Therefore

t1 < t0 + max
[
T1, T̄1 + T̄2, T̄1 + T̄2 + T̄3, t2 + T̄4

]
.

The proof of Lemma 4.3.6 is now complete.

As a result, we have proven that π1 decreases below 1
2επ

∗

1, then at least one π1(t)

returns to this level after T = max
[
T̄1, T̄1 + T̄2, T̄1 + T̄2 + T̄3, t2 + T̄4

]
. This argument

may be extended to any moment when π1(t) falls below 1
2επ

∗

1. As a result, if π1(t)

falls below this level at time t̃0 then for t ∈
[
t̃0, t̃0 + T

]
dπ1

dt
≥ −

(
µ + δ1

)
π1.

Using integration over
[
t̃0, t̃0 + T

]
, we can derive that

dπ1

dt
≥

1
2
επ∗1 exp

[
−

(
µ + δ1

)
T
]
,

where T is a fixed duration dependent only on ε, ε2,∆ and the model parameters.

163



we got that π1,∞ > 0, if the last term of dπ1
dt is strictly positive. As a result, the

argument given at the start of Theorem 4.3.5 indicates that the result of Theorem

4.3.5 is true. So, by reducing ε there exists a fixed lower bound ε > 0 and η > 0

such that for all t ≥ η, π1(t) ≥ ε, π2(t) ≥ ε, π3(t) ≥ ε and β(t) ≥ ε. The proof of

Theorem 4.3.5 is finished.

In the next section, we going to show some numerical simulations for our analyti-

cal results for the models.

4.4 Simulations

Mathematical experiments were carried out using MATLAB to observe the dynam-

ical system. Consequently, we attempt to numerically describe some of these

theoretical results that showed the behaviour of HIV/AIDS with awareness pro-

grams indicating population death or epidemic, one of the important findings that

we previously demonstrated if R0 ≤ 1 or R0 > 1.

To create estimates of disease prevalence over a long time, we now employ the

SOLVER(ode45) numerical ordinary differential equation package. As part of var-

ious simulations, we employed realistic parameter settings for the model (4.5)-

(4.8) with two disease awareness programs function φ(π) ( Misra et al. (2011),

Samanta et al. (2013) and Greenhalgh et al. (2015)). In this simulation, we test

two functional forms of awareness programs φ(π) that have been used in the

previous chapters. The two functions are as follows

i. φ(π) =
(
1−

aπ
b + π

)
where a and b are positive constants with 0 ≤ a ≤

1.

ii. φ(π) = e−m0nπ where m0 is constant and n represents the number of

the PWIDs population.

Early in this chapter, we discussed the various values of the parameters and

some of them are estimated by Lewis (2000). However, we do not use all these
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original estimates. So we set up the following parameter values as the Table 4.2

shows

Table 4.2: Estimates of parameter values for the model.

Parameters Estimate Values Parameters Estimate Values

λ 246.22 /year δ3 0.1920/year

α 0.00601 per shared equipment γ 0.90797

θ 0.0 µ 0.1333/year

τ 15.531/year τ̂ =τ/λγ 0.0695/year

δ1 4.6154/year δ2 0.2281/year

In our simulation, we use the realistic parameter that is shown in the Table 4.2

with varying values of the needle cleaning before using probability ξ according

to 0 ≤ ξ ≤ 1. As a result, we examined the dynamics of the model equations

(4.5)- (4.8) by altering R0 by selecting different values of ξ, so we picked ξ = 0.5

and ξ = 0.9. As initial starting values π∗1(0), π∗2(0), π∗3(0) and β∗(0) were equal to

0.0, 0.0, 0.0 and (0.1) in all cases. Now we are going to show three examples of

the simulations

• Example 1: The simulation without using the disease aware-

ness program functions.

Figure 4.1 shows the plot of two simulations without using the

disease awareness program function over 40 years. we use the

current set of parameter values shown in Table 4.2. So the sub-

Figures 4.1a show the fraction of infected PWIDs and infected nee-

dles where the disease is present in both addicts and needles if

R0 > 1 when choosing ξ = 0.5. Then the equations model (4.5)-

(4.8) have θ̂ = 0.5000/day giving R0 = 6.2179.

On the other hand, the sub-Figures 4.1b show the fraction of in-

fected PWIDs and infected needles where the disease dies out
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in both addicts and needles if R0 < 1 when choosing ξ = 0.9.

Then the equations model (4.5)- (4.8) have θ̂ = 0.9000/day giving

R0 = 0.7305.
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(a) ξ = 0.5, then R0 > 1.

0 5 10 15 20 25 30 35 40

t  (year)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 F
ra

c
ti
o
n
 o

f 
 P

W
ID

  
p
o
p
u
la

ti
o
n
 i
n
fe

c
te

d
  

HIV with cleaning of needles before use ,  = 0.9.

  1

  2

  3

 

(b) ξ = 0.9, then R0 < 1.

Figure 4.1: The plots of simulations for the solution of model (4.5)- (4.8) without values of awareness program function
where n = 1000.

• Example 2: The simulation with using the disease awareness

program function φ(π) = e−m0nπ.

The Figure 4.2 shows plots of six simulations with the disease

awareness program over 40 years, and we use the function φ(π)=

e−m0nπ (provided from Cui et al. (2008)) with choosing different val-

ues of m0 where is constant and n represents the number of the

PWIDs population. We picked m0 = 2.0/n, 5.0/n and 10.0/n, and

keep using the same current set of parameter values shown in ta-

ble 4.2.

The sub-Figures 4.2a, 4.2c and 4.2e with the choice m0 = 2.0, 5.0

and 10 respectively, illustrate the fraction of infected PWIDs pop-

ulation who do not clean their needles before use with choosing

ξ = 0.5 so that R0 > 1, moreover the model equations (4.5)- (4.8)

which have θ̂ = 0.5000/day giving R0 = 6.2179.

However, the sub-Figures 4.2b, 4.2d and 4.2f with the choice m0 =

2.0, 5.0 and 10 respectively, illustrate the fraction of the infected
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PWIDs population where the PWIDs often cleaned their needles

successfully before use ( modelled by choosing ξ = 0.9) then

R0 < 1, moreover the model equations (4.5)- (4.8) which have

θ̂ = 0.9000/day giving R0 = 0.7305.

0 5 10 15 20 25 30 35 40

t  (year)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 F
ra

c
ti
o
n
 o

f 
 P

W
ID

  
p
o
p
u
la

ti
o
n
 i
n
fe

c
te

d
  

HIV with cleaning of needles before use ,  = 0.5

  1

  2

  3

 

(a) With values of awareness program function parameters
m0 = 2.0/n.
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(b) With values of awareness program function parameters
m0 = 2.0/n.
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(c) With values of awareness program function parameters
m0 = 5.0/n.
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(d) With values of awareness program function parameters
m0 = 5.0/n.
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(e) With values of awareness program function parameters
m0 = 10.0/n.
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(f) With values of awareness program function parameters
m0 = 10.0/n.

Figure 4.2: The plots of simulations for the solution of model (4.5)- (4.8) with awareness program function φ(π)= e−m0nπ,
where n = 1000 and when ξ = 0.5 so R0 > 1 and so ξ = 0.9 then R0 < 1.

167



• Example 3:The simulation with using the disease awareness

program function φ(π) = (1 −
aπ

b + π
).

The Figure 4.3 shows plots of six simulations with the disease

awareness program over 40 years, and we use the function φ(π)

=
(
1 −

aπ
b + π

)
where a and b are positive constants with 0 ≤ a ≤ 1

(provided from Dubey et al. (2016)), with different values of the con-

stants a and b as shown in Figure 4.3 and using the same current

set of parameters values shown in table 4.2.

The sub-Figures 4.3a, 4.3c and 4.3e with the same results as pre-

viously with ξ = 0.5 then R0 > 1. Similarly, for the sub-figures 4.3b,

4.3d and 4.3f ξ = 0.9 then R0 < 1.
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(a) With values of awareness program function parameters
a = 0.9, b = 1.
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(b) With values of awareness program function parameters
a = 0.9, b = 1.
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(c) With values of awareness program function parameters
a = 0.1, b = 10.
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(d) With values of awareness program function parameters
a = 0.1, b = 10.
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(e) With values of awareness program function parameters
a = 0.5, b = 5.
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(f) With values of awareness program function parameters
a = 0.5, b = 5.

Figure 4.3: The plots of simulations for the solution of model (4.5)- (4.8) with awareness program function φ(π)=1−
aπ

b + π
and so ξ = 0.5 when R0 > 1 and so ξ = 0.9 when R0 < 1.

In our simulation, we can summarise two results by using the disease awareness

program functions as shown in Figures 4.2and 4.3.

First, if the PWID population do not clean their needles before use with (ξ = 0.5),
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and the disease is initially present R0 > 1 after a long time the fraction of the

infected PWID population will tend to the unique endemic equilibrium.

The second result is that if the PWIDs often cleaned their needles successfully

before use with ξ = 0.9, then R0 < 1 and the disease will die out after a long time

in both PWIDs and needles and the fraction of the PWID population which is in-

fected will approach to the disease-free equilibrium. We also observed the long-

term endemic equilibrium level of disease prevalence for the system described

by the model (4.5)- (4.8) is reduced when compared to the system with no dis-

ease awareness program functions in 4.2 and 4.3 as compared to the disease

behaviour 4.1.

4.5 Conclusion

In this chapter, we have considered the effect of awareness programs in a three-

stage infectivity model of HIV/AIDS. We developed the three-stage HIV/AIDS

infection model studied by Lewis (2000) by applying awareness program func-

tions. Then we derived the system of differential equations for the spread of HIV

amongst PWIDs with disease awareness programs.

The model studied in this chapter is more realistic than the models studied in

Chapters 2 and 3 because it takes account of the fact that the infectivity of HIV

differs throughout the course of the infection. This substantially alters the analy-

sis. It differs from the work of Lewis (2000)as an awareness program has been

introduced. The value of R0 is the same as Lewis (2000) and the results are

qualitatively similar but the analysis is more complex.

We calculated an expression for the basic reproduction number R0 that allowed

us to figure out the analysis of the model, we have shown that for any given

initial value condition in the region D=[0, 1]4 in R4, the system of the model has a

unique non-negative solution that remains in D for all time, and also the conditions
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required for persistence for the infected fractions of PWIDs and needles π1, π2, π3

and β. In general, the disease is persistent when R0 > 1 as shown in Theorem

4.3.5. Analytically, we determined the equilibrium solution where the disease dies

out or persists in both PWIDs and needles for our model and evaluated its local

and global stability.

We showed that if R0 < 1 there is only the disease-free equilibrium where if R0 ≤ 1

disease free DFE equilibrium is locally asymptotically stable, as well as globally

stable. Otherwise, the disease-free solution DFE is unstable if R0 > 1. Also there

is endemic equilibrium solution EE which is locally asymptotically stable if R0 < 1.

Finally, we performed some numerical simulations that showed the dynamic be-

haviour of this model graphically. The numerical simulations confirmed the ana-

lytical results for the models.This concludes the analysis of this model. We will

develop a mathematical model for HIV/AIDS awareness programs with success-

ful antiretroviral treatments and study the analytical behavior of the model in the

next chapter.
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Chapter 5

The Effect of Awareness Programs

on the HIV/AIDS Models with

Successful Antiretroviral Treatment

5.1 Introduction

Human immunodeficiency virus type 1 (HIV-1) can be managed and treated with

highly active antiretroviral therapy (HAART). A treatment plan containing three

or more antiretroviral medications is known as highly active antiretroviral therapy

(HAART). Antiretroviral therapy (ART) or combined antiretroviral therapy (CART)

are other terms for HAART. HAART aims to curb the development of HIV into

other diseases such as AIDS-related and non-AIDS related cause deaths (such

as reducing morbidity and mortality) and aims to prevent transmission to others

such as sex partners, needle-sharing partners, mothers to infants, etc (Eggleton

and Nagalli 2020).

In recent years, HIV/AIDS has no longer been viewed as a fatal condition due to

the development of antiretroviral drugs, and antiretroviral therapy ART has dra-

matically reduced HIV/AIDS-related mortality and morbidity as shown by (Mocroft
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et al. 2003). (Li and Wang 2014) and (Granich et al. 2009) used a mathematical

model that shows how antiretroviral treatments (ART) such as HAART control or

reduce the transmission of the HIV/AIDS virus.

In this chapter, we extend and develop the mathematical model of the spread of

HIV amongst PWIDs with an awareness program that was analysed in Chapter 2.

This was based on a model originally described by Kaplan (1989). We extended

the model to include two groups within our PWID population: those PWIDs who

are infected but unaware that they are infected and those PWIDs who are on

successful HAART. First, we will describe the model and the assumptions that

allow IDUs to move through the phases of HIV/AIDS infection. The set of gov-

erning equations is deduced using these assumptions. Then, before analysing

the model mathematically, we develop a formula for the fundamental reproduc-

tive number R0,and then perform simulations based on parameter values for our

model to verify our theoretical results.

5.2 HIV/AIDS Models with Successful HAART

In this part, we modify the differential equation model introduced in Chapter 2

equations ((2.2) and (2.3)) where we analyse the effectiveness of the awareness

program φ(π). We do this by considering two cases: one where the infected

PWID has had successful HAART, and one where the PWID is unaware of their

infection. We divide the infected PWIDs π(t) with HIV/AIDS into two groups: πI(t)

is the PWIDs who are infected but unaware of it and the second group πv(t) it is

aware infected PWIDs who are on successful HAART.

We use the same biological parameters as described in Table 4.1 in Chapter 2

with the following changes to the definition of parameters λ1, λ2, µ1, µ2, δ, shown

in Table 5.1
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Table 5.1: Description of Parameters

Parameter Definition

λ1 Shooting gallery visiting rate for susceptible PWIDs and the
PWIDs who are infected but unaware that they are infected.

λ2 Shooting gallery visiting rate for aware infected PWIDs who are on
successful HAART so that they are do not transmit HIV virus.

µ1 Per capita rate at which PWIDs on successful HAART leave the
sharing injecting population.

µ2 Per capita rate at which infected but unaware PWIDs leave the
sharing, injecting population (due to either ceasing sharing injec-
tion equipment, treatment for HIV/AIDS or death).

δ Per capita rate at which PWIDs infected but unaware transfer to
successful HAART.

Unaware infected PWIDs visit shooting galleries at rate λ1 and aware infected

PWIDs on HAART visit shooting galleries at rate λ2, those PWIDs who are aware

that they are infected inject at a lower rate. We assume that aware individuals

reduce their shooting gallery visiting rate so that λ1 > λ2. As being on HAART will

reduce the death rate we assume that µ2 > µ1.

5.2.1 Formulation of the Effect of Awareness Programs on

HIV/AIDS Models with Successful HAART

We now show how we restructure the differential equation model for the spread

of HIV/AIDS amongst PWIDs with an awareness program φ(π) that has been

analysed in Chapter 2 (equations (2.2) and (2.3)). Let πI(t) denote the fraction of

the susceptible PWIDs and the PWIDs infected but unaware of it at time t, πv(t)

denote the fraction of the aware infected PWIDs and on successful HAART time

t and β(t) denote the fraction of needles infected at time t.

Assume that i is the number of infectious needles at time t + ∆t, so we have

β =
i
m

, πI =
I
n

and πV =
V
n

where n is the number of the PWIDs population and m
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represents the number of shared needles. We know that γ =
n
m

is the gallery ratio

that represents the number of PWIDs per shared needles in the population, as

given in Table 4.1. So we use a similar technique that has been used in Chapter 2

to derive a three-equation model. Two of these equations represent the infection

of PWIDs, and the other one represents the infectious needle. The model can be

described by the following differential equations:

The πI(t) equation:

The number of unaware and infected PWIDs at time t + ∆t

= number of unaware and infected PWIDs at time t

+ number of new PWIDs who are infected in time [t, t + ∆t) .

− the number of the unaware infected class who progress on to successful infected

HAART treatment or leave the sharing, injecting population [t, t + ∆t).

Note that the number of new PWIDs who are infected in the time interval [t, t +

∆t) is the number of susceptible PWIDs who inject in [t, t + ∆t)
(
λ1φ(πV(t))∆t +

o(∆t)
)

multiplied by the probability (P1 + P3)(1 − ξ) β(t) that they inject with an

infectious needle that has not been cleaned before use (1−ξ)β(t) and the infection

is transmitted (P1 + P3). Hence

nπI(t + ∆t) = nπI(t) +
(
n − nπI(t) − nπV(t)

)
λ1φ(πV(t))(P1 + P3)(1 − ξ)β(t)∆t

− (µ1 + δ)πI(t)∆t + o(∆t).

Next, subtracting both sides by nπI, and then dividing by n∆t and letting ∆t → 0

gives the following:

dπI

dt
= (1 − πI − πV)λ1φ(πV)(P1 + P3)(1 − ξ)β − (µ1 + δ)πI. (5.1)

The πV(t) equation:

Similarly, the number of πV(t)- infected PWIDs who are on successful HAART at
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time t + ∆t

= the number of infected PWIDs on successful HAART at time t

+ the number of PWIDs who are infected but unaware and transfer

to successful HAART in [t, t + ∆t)

− the number of infected PWIDs on successful HAART who leave

the sharing injecting population in [t, t + ∆t).

Thus

dπV

dt
= δπI − µ2πV. (5.2)

The β(t) equation :

Similarly, for the infectious needles β(t), we assume that aware PWIDs on HAART

interact with needles in the same way as susceptible PWIDs.

The number of infectious needles at time t + ∆t.

= the number of infectious needles at time t not shared by PWIDs in [t, t + ∆t)

+ the number of needles left infectious at time t + ∆t after being shared by unaware

infected PWIDs in [t, t + ∆t)

+ the number of needles left infectious at time t + ∆t after being shared by susceptible

PWIDs in [t, t + ∆t)

+ the number of needles left infectious at time t + ∆t after being shared by aware PWIDs

on successful HAART in [t, t + ∆t).

Thus

i(t + ∆t) = i
[
1 − [λ1 (1 − πV) + λ2πV]γφ(πV)∆t

]
+ mλ1πIφ(πV)γ∆t

[
(1 − β + βξ)(1 − φ1) + β(1 − ξ) (1 − θ1)

]
+ λ1γ (1 − πI − πV) i (1 − P1 − P2) (1 − ξ)φ(πV)∆t.

+ λ2γπVi (1 − P1 − P2) (1 − ξ)φ(πV)∆t + o(∆t).

Subtracting i(t) from both sides, dividing by m and letting ∆t go to zero we deduce
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that
dβ
dt

= − [λ1 (1 − πV) + λ2πV]γφ(πV)β

+ λ1πIφ(πV)γ
[(

1 − β + βξ
)
(1 − φ1) + β(1 − ξ) (1 − θ1)

]
+ λ1γ (1 − πI − πV) β (1 − P1 − P2) (1 − ξ)φ(πV)

+ λ2γπVφ(πV)β (1 − P1 − P2) (1 − ξ).

(5.3)

Hence the system of differential equations which describe the model can be given

as follows

dπI

dt
= (1 − πI − πV)λ1φ(πV)νβ − (µ1 + δ)πI. (5.4)

dπV

dt
= δπI − µ2πV. (5.5)

dβ
dt

= φ(πV)πI(σ̄ − τ̄β) − φ(πV)λ̄2γπVβ − φ(πV) (1 − πI − πV) ρ̄β. (5.6)

We define the new composite parameters as the follows

ν = λ1(P1 + P3)(1 − ξ),

σ̄ = λ1γ(1 − φ1),

τ̄ = λ1γ
[
1 − (1 − ξ)(1 − θ1) + (1 − ξ)(1 − φ1)

]
,

ρ̄ = λ1γ [1 − (1 − ξ)(1 − P1 − P2)] ,

λ̄2 = λ2 [1 − (1 − ξ)(1 − P1 − P2)] .

(5.7)

We suppose that φ(πV) is a monotonically decreasing function with φ(0) = 1. We

previously minimized the model’s dimensions in (5.4) and (5.6) by assuming that

the needle equation (5.6) is at equilibrium. A similar method is employed in the

analytical part of Chapter 2 that is based on models for HIV/AIDs among PWIDs,

as explained by Liang et al. (2016) in models for HIV among PWIDs. Hence the

system can be written as

dπI

dt
=

φ(πV)νπIσ̄(1 − πI − πV)
πIτ̄ + λ̄2γπV + ρ̄ (1 − πI − πV)

− (µ1 + δ)πI, (5.8)

dπV

dt
= δπI − µ2πV. (5.9)

Each of these parameters ν, σ̄, τ̄, ρ̄ and λ̄2 are positive.
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The differential equations in (5.4)- (5.6) and (5.8) -(5.9) describe the effect of

Awareness Programs on HIV/AIDS models with successful HAART. Now the

model has been formulated. In the next section, we shall look at the existence of

the unique non-negative solution.

5.3 Existence of Unique Non-Negative Solution

In this section, we perform an analysis of the existence and uniqueness of a non-

negative solution and then analyze whether any equilibrium solutions exist.

Liang et al. (2016) used the Picard–Lindelöf theory and the concept of Lipschitz

continuous functions Choudhary (2011) to prove the existence of a unique non-

negative solution, as discussed in earlier chapters (2,3 and 4) in this thesis. In this

part, we are going to analyze the existence of the unique non-negative solution

using the Picard–Lindelöf theory. The following theorem proves the existence of

the unique non-negative solution.

Theorem 5.3.1. For any given initial value πI(t), πV(t)) = (πI(0), πV(0)) ∈ [0, 1] × [0, 1]

in the R2 region, we assume that the function φ is Lipschitz continuous in πV for

0 ≤ πV ≤ 1. Then the model equations (5.8) and (5.9) have a unique non nega-

tive solution ∈ [0, 1] × [0, 1], moreover they are determined by the following three

cases

i. πI(0) = 0, πV(0) = 0. In this case πI(t) = πV(t) = 0 for all time.

ii. πI(0) > 0, πV(0) ≥ 0 and 1 ≥ πI(0) + πV(0). In this case πI(t) > 0,

πV(t) > 0 and 1 > πI(t) + πV(t) for all time t > 0.

iii. πI(0) = 0, πV(0) > 0 and 1 ≥ πI(0) + πV(0). In this case πI(0) = 0,

πV(t) > 0 and 1 > πV(t) for all time.

Proof: To establish this theorem, we need to show first the right-hand sides of

the equations (5.8) and (5.9) are Lipschitz continuous, and then we apply the
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Picard–Lindelöf theory. We also must verify that for any x = (Ix,Vx) ∈ D, y =

(Iy,Vy) ∈ D

‖ f ( x) − f ( y)‖ ≤ L‖ x − y‖,

for some constant L.

Writing I = πI and V = πV, the equations (5.8) and (5.9) can be written in the form

dπI

dt
= f1(I,V),

dπV

dt
= f2(I,V).

We divide the proof into two parts. Write x(Ix,Vx) and y(Iy,Vy). We shall show

that ∣∣∣ f1(Ix,Vx) − f1(Iy,Vy)
∣∣∣ ≤ L1‖x − y‖. (5.10)∣∣∣ f2(Ix,Vx) − f2(Iy,Vy)
∣∣∣ ≤ L2‖x − y‖. (5.11)

In the other words the Lipschitz constants for f1 and f2 are L1 and L2 respectively.

First, let us look at part one∣∣∣ f1(Ix,Vx) − f1(Iy,Vy)
∣∣∣ ≤ L1‖x − y‖.

for some constant L1 ≥ 0, and for any Ix ∈ [0, 1],Iy ∈ [0, 1]. Consider∣∣∣ f1(Ix,Vx) − f1(Iy,Vy)
∣∣∣ =

∣∣∣∣∣∣
(

φ(Vx)νIxσ̄(1 − Ix − Vx)
Ixτ̄ + λ̄2γVx + ρ̄ (1 − Ix − Vx)

− (µ1 + δ)Ix

)

−

 φ(Vy)νIyσ̄(1 − Iy − Vy)

Iyτ̄ + λ̄2γVy + ρ̄
(
1 − Iy − Vy

) − (µ1 + δ)Iy


∣∣∣∣∣∣.

≤

∣∣∣∣∣∣∣
(

φ(Vx)νIxσ̄(1 − Ix − Vx)
Ixτ̄ + λ̄2γVx + ρ̄ (1 − Ix − Vx)

)
−

 φ(Vy)νIyσ̄(1 − Iy − Vy)

Iyτ̄ + λ̄2γVy + ρ̄
(
1 − Iy − Vy

)
∣∣∣∣∣∣∣

+ (µ1 + δ)
∣∣∣Ix − Iy

∣∣∣ .
(5.12)
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By the triangle inequality, we have that∣∣∣ f1(Ix,Vx) − f1(Iy,Vy)
∣∣∣ ≤ ∣∣∣∣∣∣

(
φ(Vx)νIxσ̄(1 − Ix − Vx)

Ixτ̄ + λ̄2γVx + ρ̄ (1 − Ix − Vx)

)
−

(
φ(Vy)νIxσ̄(1 − Ix − Vx)

Ixτ̄ + λ̄2γVx + ρ̄ (1 − Ix − Vx)

)∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
(

φ(Vy)νIxσ̄(1 − Ix − Vx)

Ixτ̄ + λ̄2γVx + ρ̄ (1 − Ix − Vx)

)
−

 φ(Vy)νIyσ̄(1 − Iy − Vx)

Iyτ̄ + λ̄2γVx + ρ̄
(
1 − Iy − Vx

)
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
 φ(Vy)νIyσ̄(1 − Iy − Vx)

Iyτ̄ + λ̄2γVx + ρ̄
(
1 − Iy − Vx

) −
 φ(Vy)νIyσ̄(1 − Iy − Vy)

Iyτ̄ + λ̄2γVy + ρ̄
(
1 − Iy − Vy

)
∣∣∣∣∣∣∣

+ (µ1 + δ)
∣∣∣Ix − Iy

∣∣∣ .
(5.13)

Once again, by the triangle inequality∣∣∣∣∣∣ f1(Ix,Vx) − f1(Iy,Vy)

∣∣∣∣∣∣ ≤ ∣∣∣∣φ(Vx) − φ(Vy)
∣∣∣∣∣∣∣∣∣∣ νσ̄Ix(1 − Ix − Vx)

Ixτ̄ + λ̄2γVx + ρ̄ (1 − Ix − Vx)

∣∣∣∣∣∣
+ νσ̄φ(Vy)

∣∣∣∣∣∣ Ix(1 − Ix − Vx)
Ixτ̄ + λ̄2γVx + ρ̄ (1 − Ix − Vx)

−
Iy(1 − Iy − Vx)

Iyτ̄ + λ̄2γVx + ρ̄(1 − Iy − Vx)

∣∣∣∣∣∣
+ φ(Vy)νσ̄Iy

∣∣∣∣∣∣ (1 − Iy − Vx)

Iyτ̄ + λ̄2γVx + ρ̄(1 − Iy − Vx)

−
(1 − Iy − Vy)

Iyτ̄ + λ̄2γVy + ρ̄(1 − Iy − Vy)

∣∣∣∣∣∣
+ (µ1 + δ)

∣∣∣Ix − Iy

∣∣∣.

(5.14)

Since φ is Lipschitz continuous on [0, 1] we have∣∣∣φ(Vx) − φ(Vy)
∣∣∣ ≤ L1a

∣∣∣Vx − Vy

∣∣∣
for some Lipschitz constant L1a and it is straightforward to show that∣∣∣ f1(Ix,Vx) − f1(Iy,Vy)

∣∣∣ ≤ L1a

∣∣∣Vx − Vy

∣∣∣ + νσ̄L1b

∣∣∣Ix − Iy

∣∣∣ + νσ̄L1c

∣∣∣Vx − Vy

∣∣∣
+ (µ1 + δ)

∣∣∣Ix − Iy

∣∣∣ .
where L1 = L1a + L1b + L1c.

This completes the proof of inequality (5.10).
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Using similar arguments, we prove the second part as well∣∣∣ f2(Ix,Vx) − f2(Iy,Vy)
∣∣∣ ≤ L2

∣∣∣x − y
∣∣∣ .∣∣∣ f2(Ix,Vx) − f2(Iy,Vy)

∣∣∣ =
∣∣∣∣(δIx − µ2Vx

)
−

(
δIy − µ2Vy

)∣∣∣∣ .
≤

∣∣∣∣(δIx − µ2Vx
)
−

(
δIy − µ2Vx

)∣∣∣∣
+

∣∣∣∣(δIy − µ2Vx

)
−

(
δIy − µ2Vy

)∣∣∣∣ .
(5.15)

It follows that ∣∣∣ f2(Ix,Vx) − f2(Iy,Vy)
∣∣∣ ≤ δ ∣∣∣Ix − Iy

∣∣∣ + µ2

∣∣∣Vx − Vy

∣∣∣ . (5.16)

This completes the proof of inequality (5.11)

To finish the proof, we look at the following conditions, We first suppose that

πV(0) > 0 for all πV ∈ [0, 1]. So there exists ε > 0 with φ(πV) > ε for all πV ∈ [0, 1].

We consider three sets of initial conditions

i. πI(0) = 0, πV(0) = 0. In this case πI(t) = πV(t) = 0 for all time.

ii. πI(0) > 0, πV(0) ≥ 0 and 1 ≥ πI(0) + πV(0). In this case πI(t) > 0,

πV(t) > 0 and 1 > πI(t) + πV(t) for all time t > 0.

iii. πI(0) = 0, πV(0) > 0 and 1 ≥ πI(0) + πV(0). In this case πI(0) = 0,

πV(t) > 0 and 1 > πV(t) for all time t > 0.

We set ψ = (1 − πI − πV) , so we can rewrite (5.8) and (5.9) in the form

dψ
dt

= −

(
dπI

dt
+

dπV

dt

)
= −

(
(1 − πI − πV)φ(πV)νπIσ̄

πIτ̄ + λ̄2γπV + ρ̄(1 − πI − πV)

)
+ µ1πI + µ2πV.

(5.17)

We start with the first condition

i. πI(0) = 0, πV(0) = 0

Using the Picard́–Lindelöf Theorem, we can see that πI = πV = 0

is a solution for all time. As long as ∆t is greater than 0, the system

has an unique local solution in [0,∆t]. For all ξ in [0, τe), let [0, τe) be

the maximum interval where a solution exists with πI(ξ) = πV(ξ) =

0. It is necessary to have τe ≥ ∆t > 0, so we assume that τe < ∞
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and πI(0) = πV(0) = 0 for all t < τe. By using the Picard́–Lindelöf

Theorem the solution exists with πI(ξ) = πV(ξ) = 0 in [0, τe+ξ]. This

contradicts the definition of τe. Therefore, there is unique solution

on πI(ξ) = πV(ξ) = 0 for all time t ≥ 0.

ii. πI(0) > 0, πV(0) ≥ 0 and 1 ≥ πI(0) + πV(0).

Suppose that (0, τe) is the maximum interval where a solution exists

and for{
For ξ ∈ (0, τe) : πI(ξ) > 0, πV(ξ) > 0 and 1 > πI(ξ) + πV(ξ)

}
.

By the Picard–Lindelöf Theorem there exists ∆t > 0 so that the

equations (5.8) and (5.9) have a unique solution in ξ ∈ [0,∆t]. It

is straightforward to show that if ∆t is small enough πI(∆t) > 0,

πV(∆t) > 0 and ψ(∆t) > 0.

We assume that τe < ∞, and by integrating equation (5.8) we have

that

dπI

dt
≥ −(µ1 + δ)πI,

so

πI(ξ) ≥ πI(0)exp[−(µ1 + δ)ξ].

Hence by letting ξ→ τe

lim
ξ→τe

πI(ξ) ≥ πI(0)exp[−(µ1 + δ)τe].

> 0

for ξ ∈ (0, τe].
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Similarity, for equation (5.9) and (5.17) we have

dπV

dt
≥ −µ2πV.

So πV ≥ πV(∆t)exp[−µ2(t − ∆t)].

πV(τe) ≥ πV(∆t)exp[−µ2(τe − ∆t)].

> 0.

dψ
dt
≥

−ψφ(πV)νπIσ̄

πIτ̄ + λ̄2γπV + ρ̄(1 − πI + πV)
.

≥
−εψνπI, [∆t, τe]σ̄

min[τ̄, λ̄2γ, ρ̄]
,

= −k1ψ.

where πI, [∆t, τe] denotes the strictly positive lower bound of πI in

[∆t, τe] and k1 > 0. Hence

ψ(t) ≥ ψ(∆t)exp[−k1(t − ∆t)].

Letting t→ τe

ψ(τe) > ψ(∆t)exp[−k1(τe − ∆t)] > 0.

So we can extend the solution a little beyond τe. This contradicts

the definition of τe so τe = ∞.

iii. πI(0) = 0, πV(0) > 0 and 1 ≥ πI(0)+πV(0). In this case it is clear that

πI(t) = 0 for all t, πV(t) = πV(0) e−µ2t is a solution to equations (5.8)

and (5.9) so by the Picard–Lindelöf Theorem it is unique solution

there. This completes the proof of the theorem 5.3.1 in the case

where φ(πV ) > 0 for all πV ∈ [0, 1].

Now suppose that there exists π∗V >
δ

(µ2 + δ)
with φ(πV) = 0 for

πV > π∗V. Then the above proof and theorem is not valid but the

results and proof can be modified as follows:

The case (i) and (iii) are the same. For case (ii) we have two pos-

sibilities
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a πV(0) ≤ π∗V. Then it is straightforward to show

πI(t) ≥ 0, π∗V ≥ πV(t) ≥ 0 and 1 ≥ πI(t) + πV(t) for all t ≥ 0 and

πI(t) > 0, π∗V > πV(t) > 0 and 1 > πI(t) + πV(t) for all t > 0.

b πV(0) > π∗V. Then it is straightforward to show that πV must

decrease to π∗V in a finite time T∗ and during this time π∗I is also

exponentially decreasing. After this finite time for t ≥ T∗

πI(t) > 0, π∗V > πV(t) > 0 and 1 > πI(t) + πV(t).

By this augment we have completed the proof of the existence of a unique non-

negative solution. Next, we will calculate the basic reproduction number, which is

an important factor in our model.

5.4 The Basic Reproductive Number R0

The basic reproductive number R0 plays an important role when studying the

behavior of analytical mathematical models of disease. For our model we use

a similar definition of the basic reproductive number R0 that has been used in

Chapter 2. The basic reproductive number R0 is calculated by considering a single

newly PWID who is infected with HIV virus entering a disease-free population,

when all needles are clean. The infection can occur in two ways during a visit to

the shooting gallery

• The infected PWIDs who are unaware and have not had successful

HAART passes HIV virus to an uninfected needle.

• The newly infected needle passes the virus to a susceptible PWID

.

If we write Ī = nπI to be the total number of unaware infectious PWIDs, V̄ = nπV to

be the total number of aware infectious PWIDs, and i = mβ to be the total number
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of infectious needles at time t then from equations (5.4) and (5.6), we have

dĪ
dt

= (n − Ī − V̄)φ(πV)ν
i

m
− (µ1 + δ)Ī,

dV̄
dt

= δĪ − µ2V̄,

and

di
dt

=
m
n
φ(πV)Ī(σ̄ − τ̄β) − λ̄2V̄φ(πV)i − φ(πV)

(
n − Ī − V̄

n

)
ρ̄i.

Linearising about the disease-free equilibrium we have

dĪ
dt

= nν
i

m
− (µ1 + δ)Ī,

dV̄
dt

= δĪ − µ2V̄,

and

di
dt

=
m
n
σ̄Ī − ρ̄i.

To calculate R0 we proceed as follows: Each unaware newly infected PWIDs

remains in the sharing, injecting population for an average time
1

µ1 + δ
time units.

During that time he or she visits the shooting galleries at rate λ1 and they infect
σ̄

γ(µ1 + δ)
new needles during the time that they are infected. Once the needle

is infected with HIV/AIDs it remains infected for time
1
ρ̄

, and during that time it

infects PWIDs at an average rate
nν
m

, so altogether it infects
nν
mρ̄

. Aware infected

PWIDs (who are on HAART) do not infect any needles. So the basic reproduction

number can be written as

R0 =
σ̄

γ(µ1 + δ)
·

nν
mρ̄

=
σ̄ν

(µ1 + δ)ρ̄
. (5.18)

This concludes our analysis of the basic reproduction number R0. In the next

section, we are going to show the behaviour of our model analytically.
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5.5 Analysis of The Model

We study the behaviour of our transmission model in this section, concentrating

on the key of biological parameter R0 since that will show whether the HIV/AIDS

disease persists or whether it disappears. In order to determine the nature of any

equilibrium solution, We shall prove that there are two types of equilibrium solu-

tions: a zero solution (disease-free equilibrium) and unique non-zero (endemic

equilibrium). Then we will perform stability analysis, and furthermore, we will also

do numerical simulations of our analytical comes system to verify the implemen-

tation of disease awareness programs is indeed effective. Next we are going to

perform a detailed analysis to investigate the existence of equilibrium.

5.5.1 Existence of equilibrium

In this section, we are going to explore the possibility of the existence of an equi-

librium for our model. We shall show the model has two non-negative equilibria,

the first one being the disease-free equilibrium DFE E0 = (πI0, πV0) = (0, 0) and

the second one being the endemic equilibrium EE E1 = (π∗I , π
∗

V) > 0 in (0, 1]×(0, 1].

This is shown in the following:

Theorem 5.5.1. The system (5.8) and (5.9) has a unique disease-free equilibrium

solution where the disease dies out in bothPWIDs and needles if R0 ≤ 1, whereas

if R0 > 1 then there is a unique endemic equilibrium where the disease is present.

Proof: Suppose that φ is strictly monotone decreasing in πV. From the equilib-

rium solution of (5.8) and (5.9) one solution is clearly π∗I = π∗V = 0.

For a non-zero solution
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π∗I =
µ2

δ
π∗V, (5.19)

and
1
π∗V

= 1 +
µ2

δ
+

(µ1 + δ)
[µ2

δ
τ̄ + λ̄2γ

]
νσ̄φ(π∗V) − (µ1 + δ)ρ̄

. (5.20)

Re-arranging (5.20) we deduce that

1
π∗V

= 1 +
µ2

δ
+

1
νσ̄

(µ1 + δ)τ∗
φ(π∗V) −

ρ̄

τ∗

, (5.21)

where τ∗ =
µ2

δ
τ̄ + λ̄2γ.

Define

g1(π∗V) =
1
π∗V
, and (5.22)

g2(π∗V) = 1 +
µ2

δ
+

1
νσ̄

(µ1 + δ)τ∗
φ(π∗V) −

ρ̄

τ∗

. (5.23)

By using the reproduction number equation

R0 =
σ̄ν

(µ1 + δ)ρ̄
,

we take into account several situations.

(I) Suppose that R0 =
σ̄ν

(µ1 + δ)ρ̄
< 1. In this case, we have that from

the equilibrium equation π∗I =
µ2

δ
π∗V,

π∗I + π∗V < 1,

π∗V
(
1 +

µ2

δ

)
< 1,

π∗V <
1

1 +
µ2

δ

.

Thus g1(π∗V) =
1
π∗V

> 1 +
µ2

δ
. We know that φ(π∗V) is strictly mono-

tone decreasing in π∗V. Therefore, the the denominator of the

equation g2(π∗V) in (5.23) gives

νσ̄
(µ1 + δ)τ∗

φ(π∗V) −
ρ̄

τ∗
≤

νσ̄
(µ1 + δ)τ∗

−
ρ̄

τ∗
< 0, ∀πV,

so we have g2(π∗V) < 1 +
µ2

δ
.
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Hence g2(π∗V) < 1 +
µ2

δ
and g1(π∗V) > 1 +

µ2

δ
for π∗V ∈

(
0, δ/(δ+ µ2)

)
.

Therefore, there is no feasible solution with R0 < 1.

(II) If R0 =
σ̄ν

(µ1 + δ)ρ̄
= 1, this is similar to we had at the first case

νσ̄
(µ1 + δ)τ∗

φ(π∗V) −
ρ̄

τ∗
≤

νσ̄
(µ1 + δ)τ∗

−
ρ̄

τ∗
= 0, ∀π∗V.

Hence g2(π∗V) < 1 +
µ2

δ
or g2(π∗V) = ∞ and g1(π∗V) > 1 +

µ2

δ
for

π∗V ∈
(
0, δ/(δ + µ2)

)
. In this case also, there is no feasible solution

with R0 = 1.

(III) If R0 =
σ̄ν

(µ1 + δ)ρ̄
> 1, since φ(π∗V) is strictly monotonically de-

creasing, we consider the equation given by

φ(π∗V) =
ρ̄(µ1 + δ)
νσ̄

< 1. (5.24)

Our considerations are based on three cases.

(a) If φ
(

δ
δ + µ2

)
>
ρ̄(µ1 + δ)
νσ̄

, the equation (5.24) has no roots in(
0,

δ
δ + µ2

)
. In this case as πV → 0, then g1(πV)→∞ and

g2(π∗V)→ 1 +
µ2

δ
+

1
νσ̄

(µ1 + δ)τ∗
−
ρ̄

τ∗

> 1 +
µ2

δ
.

At π∗V =
δ

δ + µ2
, then we have g1(π∗V) = 1 +

µ2

δ
. Therefore

g2(π∗V) = 1 +
µ2

δ
+

1

νσ̄
(µ1 + δ)τ∗

φ

(
δ

δ + µ2

)
−
ρ̄

τ∗

> 1 +
µ2

δ
,

since

νσ̄
(µ1 + δ)τ∗

φ

(
δ

δ + µ2

)
>
ρ̄

τ∗
.

As a result, the equation (5.21) has a non-zero root π∗V in(
0,

δ
δ + µ2

)
. In addition, because g1(π∗V) is strictly monotone

decreasing in π∗V and g2(π∗V) is strictly monotone increasing in

π∗V, this root is unique in
(
0,

δ
δ + µ2

)
.
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(b) If φ
(

δ
δ + µ2

)
=
ρ̄(µ1 + δ)
νσ̄

, the equation (5.24) has a unique

root π∗V =
δ

δ + µ2
. Again, we use the same argument as in

Case (a), so in the same way as π∗V → 0, then we have that

g1(π∗V)→∞ and

g2(π∗V) = 1 +
µ2

δ
+

1
νσ̄

(µ1 + δ)τ∗
−
ρ̄

τ∗

< ∞.

because R0 =
σ̄ν

(µ1 + δ)ρ̄
> 1, and

dg(πV)
dπV

=

−φ
′(πV)

νσ̄
(µ1 + δ)τ∗(

νσ̄
(µ1 + δ)τ∗

φ(πV) −
ρ̄

τ∗

)2 > 0.

So the right hand side of (5.21) is increasing.

Again at π∗V =
1

1 +
µ2

δ

, then we have that g1(π∗V) = 1 +
µ2

δ
. In a

similar way,

g2

(
δ

δ + µ2

)
= 1 +

µ2

δ
+

1
νσ̄

(µ1 + δ)τ∗
φ
(

δ
δ + µ2

)
−
ρ̄

τ∗

,

and therefore because

νσ̄
(µ1 + δ)τ∗

φ
(

δ
δ + µ2

)
=
ρ̄

τ∗
,

g2

(
δ

δ + µ2

)
= 1 +

µ2

δ
+

1
ρ̄

τ∗
−
ρ̄

τ∗

= ∞,

so g1(π∗V) < g2(π∗V). It follows then the equation (5.21) has

a unique root π∗V in
(
0,

δ
δ + µ2

)
, and similarly to case (a), this

root is unique in
[
0,

δ
δ + µ2

]
.

(c) If φ
(

δ
δ + µ2

)
<
ρ̄(µ1 + δ)
νσ̄

, then we know that

(i) φ(0) = 1 >
ρ̄(µ1 + δ)
νσ̄

and,

(ii) φ
(

δ
δ + µ2

)
<
ρ̄(µ1 + δ)
νσ̄

.
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As result, the equation (5.24) has a unique root π∗∗V in
(
0,

δ
δ + µ2

)
. Similarly, in this case as πV → 0, we have g1(πV)→∞ and

g2(πV)→ 1 +
µ2

δ
+

1
νσ̄

(µ1 + δ)τ∗
−
ρ̄

τ∗

< ∞.

As πV → π∗∗V then g1(π∗∗V) →
1
π∗∗V

< ∞ and g2(π∗∗V) → ∞. As a

result, the equation (5.21) has a root in (0, π∗∗V), and unique-

ness follows as before.

At πV = π∗∗V, g1(π∗∗V) < ∞ and g2(π∗∗V) = ∞. For πV ∈

(
π∗∗V ,

δ
δ + µ2

)
we have that g1(πV) > 1 +

µ2

δ
and g2(πV) < 1 +

µ2

δ
. So there

are no roots of the equation (5.21) in
[
π∗∗V ,

δ
δ + µ2

]
. Therefore

the equation (5.21) has a unique root in
(
0,

δ
δ + µ2

)
.

The proof of Theorem (5.5.1) is now completed. In the next

section, we are going to show the local stability analysis of

the equilibria.

5.5.2 Local Stability Analysis of Equilibrium

To do the local stability analysis we use the Routh–Hurwitz criterion (May (2001)

and DeJesus and Kaufman (1987)). We examine the stability of the system using

the coefficients of polynomial in the characteristic equation. It is the technique

used to investigate the local stability of the equilibrium, as done in previous chap-

ters. We are going to look first at the disease-free equilibrium DFE and then the

endemic equilibrium points EE.

Theorem 5.5.2. The disease-free equilibrium of the system of equations (5.8) and

(5.9) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. If R0 = 1 the

disease-free equilibrium is neutrally stable. If R0 > 1 there is a unique endemic

equilibrium which is locally asymptotically stable.
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Proof. We assume that φ(π) is a differentiable function. By linearizing the system

of equations (5.8) and (5.9), and using the variational matrix method around the

equilibrium point we can identify the local stability.

We write equations (5.8) and (5.9) as

f1(πI, πV) =
φ(πV)νπIσ̄(1 − πI − πV)

πIτ̄ + λ̄2γπV + ρ̄ (1 − πI − πv)
− (µ1 + δ)πI = 0. (5.25)

f2(πI, πV) = δπI − µ2πV = 0. (5.26)

We define the matrix representation of this system as follows This system can be

represented in matrix form as
dy
dt

= J, where yT = (πI, πV). Our Jacobian matrix

is

J |(π∗I , π
∗

V) =


∂ f1

∂πI

∂ f1

∂πV

∂ f2

∂πI

∂ f2

∂πV

 =


A − (µ1 + δ) B

δ −µ2

 . (5.27)

Here

A =

(
1 − 2π∗I − π

∗

V

)
φ(π∗V)νσ̄

[
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
]

(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
)2

−

(
τ̄ − ρ̄

)[
(1 − π∗I − π

∗

V)φ(π∗V)νπ∗Iσ̄
]

(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
)2 ,

and

B =
φ(π∗V)π∗Iνσ̄

[
−

(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
)
− (λ̄2γ − ρ̄)(1 − π∗I − π

∗

V)
]

(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
)2

+

(1 − π∗I − π
∗

V)φ′(π∗V)πIνσ̄

(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V

))
(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
)2 .

(5.28)
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5.5.2.1 The Disease-Free Equilibrium.

At the disease-free equilibrium DFE E1 = (π∗I , π
∗

V) = (0, 0).

det(J1 − ωI) = 0,

In other words

detJ1 =


νσ̄ρ̄

ρ̄2 − (µ1 + δ) − ω 0

δ −µ2 − ω

 = 0. (5.29)

We define the eigenvalues ω of the Jacobian matrix J1 as the roots of the char-

acteristic equation (
ω + µ1 + δ −

νσ̄
ρ̄

)(
ω + µ2

)
= 0

with roots ω1 = −(µ1 + δ) +
νσ̄
ρ̄

and ω2 = −µ2. ω2 is clearly always negative. ω1 is

positive if R0 > 1, zero if R0 = 1 and negative if R0 < 1.

As a result, the local asymptotic stability of the DFE equilibrium point depends on

the value of the basic reproduction number R0 =
σ̄ν

(µ1 + δ)ρ̄
. Hence there are three

possible stability scenarios.

• If R0 =
σ̄ν

(µ1 + δ)ρ̄
< 1, then the DFE is locally asymptotically stable.

• If R0 =
σ̄ν

(µ1 + δ)ρ̄
= 1, then the DFE is neutrally stable.

• If R0 =
σ̄ν

(µ1 + δ)ρ̄
> 1, then the DFE is unstable.

5.5.2.2 The Endemic equilibrium.

Similarly, we use a similar argument to examine local stability at the endemic

equilibrium point as we used to investigate the disease-free equilibrium.

Recall the Jacobian matrix around the endemic equilibrium point EE. E2 = (π∗I , π
∗

V)

of the above system then the Jacobian matrix J2(π∗I , π
∗

V) of system corresponding

to E2 is obtained as
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J2|(π∗I ,π
∗

V) =


A −

(
µ1 + δ

)
− ω B

δ −µ2 − ω

 (5.30)

For J2 the characteristic equation is

ω2 + aω + b = 0, and

where a = µ1 + µ2 + δ − A and b = µ2(µ1 + δ) − Aµ2 − δB.

Using the equilibrium equations, we now have

A − (µ1 + δ) =
−φ(π∗V)π∗Iνσ̄(

πIτ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π
∗

V)
)2 −

(
τ̄ − ρ̄

)
(1 − π∗I − π

∗

V)φ(π∗V)νπ∗Iσ̄(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
)2 .

=
−φ(π∗V)π∗Iνσ̄

[
π∗I τ̄ + λ̄2γπ∗V + τ̄(1 − π∗I − π

∗

V)
]

(
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V)
)2 < 0.

Note that φ′(π∗V) ≤ 0 since φ(πV) is monotone decreasing. So

B ≤ −φ(π∗V)π∗Iνσ̄

[
π∗I τ̄ + λ̄2γ(1 − π∗I)

]
[
π∗I τ̄ + λ̄2γπ∗V + ρ̄(1 − π∗I − π

∗

V

]2 < 0.

So we have

a = µ1 + µ2 + δ − A > 0, and

b = µ2

(
(µ1 + δ) − A

)
− δB > 0.

Since a > 0 and b > 0 satisfy the Routh-Hurwitz conditions, the endemic equilib-

rium EE is locally asymptotically stable if R0 > 1. This completes the proof of the

Theorem 5.5.2.

5.5.3 Global Stability of Equilibrium

In this section we are going to show the global stability of disease free equilibrium

DFE and discuss the global stability of the endemic equilibrium.
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5.5.3.1 The Disease-Free Equilibrium .

Theorem 5.5.3. If R0 ≤ 1, then the disease-free solution for the system (5.8) and

(5.9) is globally stable, and HIV/AIDS will be eliminated from all PWIDs, as well

as needles and syringes.

Proof: To prove this theorem we use a mathematical technique. First, we pick

the equation (5.8)

dπI

dt
=

φ(πV)νσ̄(1 − πI − πV)πI

πIτ̄ + λ̄2γπV + ρ̄ (1 − πI − πV)
− (µ1 + δ)πI,

We are going to show that πI(t) → 0 as t → ∞. We have that πI(0) = 0 implies

that πI(t) = 0 for all time. So we can suppose that πI(0) > 0 and by the results

of the existence and uniqueness theorem πI(0) > 0 for all t. We can rewrite the

equation (5.8) as

1
πI

dπI

dt
= g(πI), (5.31)

where

g1(πI) =
φ(πV)νσ̄

πIτ̄
(1 − πI − πV)

+
λ̄2γπV

(1 − πI − πV)
+ ρ̄

− (µ1 + δ),

≤
νσ̄
ρ̄
− (µ1 + δ).

(5.32)

as φ(πV) is monotone decreasing in πV. Hence g1(πI) ≤ −(µ1 + δ)(1 − R0) = −ε

where ε > 0, so from equation (5.31) we have∫ t

0

1
πI

dπI

dt
dt ≤

∫ t

0
(−ε)dt,[

logπI

]t

0
≤ −εt,

log
(πI(t)
πI(0)

)
≤ −εt.

(5.33)

Hence 0 ≤ πI(t) ≤ πI(0)e−εt. Now as t → ∞ then πI(0)e−εt
→ 0, so πI(t) → 0 as

t→∞.

It is then straightforward to show that πV(t) → 0 as t → ∞. Given ε > 0 there
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exists to such that πI ≤ ε for t ≥ t0. Hence for t ≥ t0

d
dt

(πVeµ2t) ≤ δπIeµ2t.

≤ δεeµ2t,

πVeµ2t
− πV(0) ≤ δεeµ2t,

0 ≤ πV(t) ≤ πV(0)e−µ2t +
δε
µ2

(1 − e−µ2t).

so

limsupπV(t) ≤
δε
µ2
.

As ε can be made arbitrarily small it is straightforward to show that πV → 0.

This completes the proof of Theorem (5.5.3). So the DFE is globally stable for

R0 <1.

However, to investigate the global stability of the endemic equilibrium (EE) we

attempted several mathematical methods such as the construction of Dulacś cri-

terion and the Poincaré-Bendixson Theorem (Strogatz (2018), May (2001) and

DeJesus and Kaufman (1987)) to analyse the global stability of endemic equilib-

rium EE. Unfortunately, this proved difficult, and no results were obtained.

As we move forward in the following section, we will present some numerical

simulations of our analytical results for the models.

5.5.4 Simulations

We employ numerical simulations to verify our theoretical results, which showed

the behaviour of our HIV/AIDS model with a disease awareness program showing

that the disease will die out if R0 ≤ 1 or become endemic if R0 > 1. Similarly to

previous chapters, in section simulations,we used MATLAB and a numerical ODE

solver (ode45) to estimate the behaviour of HIV/AIDS disease prevalence over

time. We used realistic parameter settings for the model (5.8) and (5.9) with

two disease awareness programs function φ(π) ((Greenhalgh et al. 2015), (Misra
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et al. 2011) and (Samanta et al. 2013)). In this simulation, we test two functional

forms of awareness programs φ(π) that have been used in the previous chapters.

The two functions are as follows

(i) φ(π) =
(
1−

aπ
b + π

)
where a and b are positive constants with 0 ≤ a ≤

1.

(ii) φ(π) = e−m0nπ where m0 is constant and n represents the number

of the PWIDs population.

We shall make similar assumptions as in Chapter 2. We assume that λ1 > λ2

so that susceptible and infected but unaware PWIDs visit shooting galleries at a

higher rate λ1 than aware infected PWIDs who are on HAART treatment.

We kept the same values for the probabilities parameters as shown in Chapter

2 namely p = 0, φ1 and θ1 are zero as these probabilities are very small. We

assume that the realistic values for µ2 > µ1, which are the per capita rates at which

infected PWIDs leave the sharing injecting population, and we have γ = n/m = 1

(based on Liang et al. (2016)). We assume the value of δ=1/six months ,which

is the per capita rate at which infected but unaware PWIDs transfer to successful

HAART. These values are as fallows:

µ1 = 7.0637×10−4/ day, µ2 = 7.9398 ×10−4/ day, P1 = 0.74,

P2 = 0.25, P3 = 0.01, P4 = 0.0,

λ1 = 0.190/day, λ2 = 0.143/day, δ = 1/180 = 0.0056 /day.

We choose to vary the needle cleaning probability ξ with 0 ≤ ξ ≤ 1,

We examined the behaviour of the model equations (5.8) and (5.9) by altering R0

by choosing two different values of ξ. In the following examples, we chose two

values of ξ one where the disease is die out when R0 ≤ 1 and one where the

disease is endemic when R0 > 1. The starting value was initially π(0) = 1 β(0) = 1

in all cases.
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• Example 5.1:

Figure 5.1 shows the plot of two simulations without using disease

awareness program function over time. We use the the current set

of parameter values shown above .So the sub-Figures 5.1a show

πI and πV the fraction of PWIDs who are unaware infected and

aware infected respectively, where the disease is present in both

PWIDs and needles if R0 > 1 when choosing ξ = 0.0. Then from

the equations model (5.8) - (5.9) and the composite parameters

in equation (5.7), we have ν = 0.1425/day, σ̄ = 0.1900/day, τ̄ =

0.1900/day and ρ̄ = 0.0475/day,2 = 0.1416/day, giving R0 = 22.9865.

On the other hand, the sub-Figures 5.1b show πI and πV the frac-

tion of PWIDs who are unaware infected and aware infected re-

spectively, where the disease is die out in both PWIDs and nee-

dles if R0 < 1 when choosing ξ = 1.0, then from the model equa-

tions (5.8) - (5.9) and the composite parameters in equations (5.7),

we have ν = 0.0/day, σ̄ = 0.1900/day, τ̄ = 0.1900/day and ρ̄ =

0.1900/day, 2 = 0.1430/day, giving R0 = 0.0.

0 1 2 3 4 5 6 7 8 9 10

t  (days) 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 F
ra

c
ti
o
n
 o

f 
 P

W
ID

  
p
o
p
u
la

ti
o
n
 i
n
fe

c
te

d
  

HIV with cleaning of needles before use =0.0 

 
I
 

 V

(a) ξ = 0.0, then R0 > 1.
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(b) ξ = 1.0, then R0 < 1.

Figure 5.1: The plots of simulations for the solution of model (5.8) and (5.9) without values of awareness program function
where n = 1000.

• Example 5.2: φ(π) = e−m0nπ.
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We now simulate our model (5.8) and (5.9) using the first disease

awareness program function, the function we use is φ(π)= e−m0nπ

(taken from Cui et al. (2008)) with choosing different values of m0

where is constant and n represents the number of the PWIDs pop-

ulation. In the Figure 5.2 shows plots of six simulations with the

disease awareness program over time, we picked m0 = 2.0/n, 3.7/n

and 10.0/n, and use the same set of parameters values shown

above.

Again what seems to be illustrated in sub-Figures 5.2a, 5.2c and

5.2e is the fraction of PWIDs who are unaware infected an aware

infected respectively. These PWIDs do not clean their needles be-

fore use As previous an example if ξ = 0.0 then R0 = 22.9865. This

indicates that over a considerable period of time, the proportion of

the PWID population that was HIV-positive tended to the particular

endemic equilibrium.

One other case, the sub-Figures 5.2b, 5.2d and 5.2f choosing m0 =

2.0/n, 3.7/n and 10.0/n show the fraction of PWIDs who are un-

aware infected an aware infected respectively. These PWIDs often

cleaned their needles successfully before use. if ξ = 1.0 then we

have R0 = 0.0 as case R0 < 1 in example 5.1, then After a long

period of time thee HIV virus eliminated from both PWIDs and nee-

dles.

• Example 5.3: φ(π)=1 −
aπ

b + π
We now simulate our model (5.8)

and (5.9) using the second disease awareness program function

φ(π) = 1 −
aπ

b + π
(taken from Li et al. (2008a)), with different values

of the constants a and b constant are shown in the Figure 5.3. Apply

the same values to the parameters as were previously shown.

The plots of six simulations in Figure 5.3 are shown the fraction of
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PWIDs who are unaware infected an aware infected respectively.

So aging we have a similarly results to the previous Figures 5.2

and 5.1. If ξ = 0.0, so we have that R0 > 1 for the sub-figures 5.3a,

5.3c and 5.3e of Figure 5.3 when both PWIDs and needles are

infected with the virus. The composite parameters in equation (5.7),

and the equations model (5.8) - (5.9), thus give us ν = 0.1425/day,

σ̄ = 0.1900/day, τ̄ = 0.1900/day and ρ̄ = 0.0475/day,2 = 0.1416/day,

giving R0 = 22.9865.

On other hand, if ξ = 1.0 then we have R0 < 1 for sub-figures

5.3b 5.3d and 5.3f of Figure 5.3. So in this case We can ob-

serve that the proportion of infected PWIDs and needles will even-

tually reach zero. So from the equations model (5.8) - (5.9)and the

composite parameters in equation (5.7) we have that ν = 0.0/day,

σ̄ = 0.1900/day, τ̄ = 0.1900/day and ρ̄ = 0.1900/day, 2 = 0.1430/day,

giving R0 = 0.0.
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(a) With values of awareness program function parameters
m0 = 2.0/n.
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(b) With values of awareness program function parameters
m0 = 2.0/n.
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(c) With values of awareness program function parameters
m0 = 3.7/n.
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(d) With values of awareness program function parameters
m0 = 3.7/n.
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(e) With values of awareness program function parameters
m0 = 10.0/n.
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(f) With values of awareness program function parameters
m0 = 10.0/n.

Figure 5.2: The plots of simulations for the solution of model (5.8) and (5.9) with awareness program function φ(π)=
e−m0nπ, where n = 1000 and when ξ = 0.0 so R0 > 1 and so ξ = 1.0 then R0 < 1.
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(a) With values of awareness program function parameters
a = 0.9, b = 1.
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(b) With values of awareness program function parameters
a = 0.9, b = 1.
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(c) With values of awareness program function parameters
a = 0.5, b = 5.
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(d) With values of awareness program function parameters
a = 0.5, b = 5
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(e) With values of awareness program function parameters
a = 0.1, b = 10.
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(f) With values of awareness program function parameters
a = 0.1, b = 10.

Figure 5.3: The plots of simulations for the solution of model (5.8) and (5.9) with awareness program function φ(π)=1 −
aπ

b + π
and so ξ = 0.0 when R0 > 1 and so ξ = 1.0 when R0 < 1.
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5.6 Conclusion

In this chapter, we have discussed the effects of awareness programs on the

transmission dynamics of HIV among PWIDS on successful HAART. We have

developed and investigated a deterministic model that focussed on the impact of

awareness programs on the behaviour of HIV/AIDS transmission in two groups

of infected PWIDS where the first group is unaware and the second group is

successfully treated with HAART. This model is an original model although its

derivation is based on the models discussed in Chapters 2 and 3. As far as we

are aware this is the first model in the literature that takes account of the effect of

HAART on the spread of HIV amongst PWIDs.

The model studied in this chapter differs from the models discussed in the pre-

vious chapters in that the susceptibles are split into successfully treated (with

HAART) and unaware susceptibles.

A formula for the basic reproduction number R0 was derived that allowed us to

perform the analysis of the model. Our analysis indicates that this is a critical

threshold parameter R0 = 1. Based on our analytical results, the system has

two equilibria: the disease-free equilibrium solution and the endemic equilibrium

solution. Our analysis is assuming that φ is monotone decreasing shows that the

disease-free equilibrium is locally asymptotically stable if R0 < 1, neutrally stable

if R0 = 1 and unstable if R0 > 1. In the case when R0 > 1, we demonstrated that

the endemic equilibrium existed and is also locally asymptotically stable. Also,

we showed that the disease-free equilibrium solution was globally asymptotically

stable when If R0 ≤ 1. Lastly, we carried out numerical simulations to illustrate the

dynamic behaviour of this model.
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Chapter 6

Conclusions and Further Work

The spread of HIV and AIDS among communities that use intravenous drugs

poses a significant threat to their health. Sharing needles and other injectable

supplies makes it possible for this virus to spread more quickly and efficiently

within these populations than it would within the general population. The trans-

mission of HIV through the sharing of needles is influenced by a diverse set of fac-

tors, each of which has been demonstrated to be significant in its own right. Social

networks that facilitate the sharing of injections amongst addicts have also been

identified as potentially key parts of the problem. Greenhalgh and Hay (1997)is

one author who has proven the significance of variation in needle-sharing rates

and needle-cleaning efficacy.

In Chapter 2, we have developed a mathematical model of the effect of disease

awareness programs on the prevalence of HIV amongst PWIDs, building on the

models developed by Greenhalgh and Hay (1997) and Liang et al. (2016). A sys-

tem of differential equations has been deduced to describe the improved model

that reduces the spread of the diseases through the effect of awareness of the

disease on sharing needles and syringes amongst the PWID population.

Our discussion has been focused on two ways of studying the effect of awareness

programs into disease transmission models. The key biological parameter of our
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model is the basic reproductive number R0. We have shown that the system has

a unique equilibrium solution. If φ is monotone decreasing, then we have shown

that if R0 ≤ 1 then the DFE is globally asymptotically stable, so whatever the initial

fraction of infected individuals, the disease will die out as time becomes large. If

there is no disease initially present, then there will never be any disease. If there

is disease initially present and R0 > 1 then the system tends to the unique EE.

We also showed that the DFE is locally asymptotically stable if R0 < 1, neutrally

stable if R0 = 1 and unstable if R0 > 1. In the case if R0 > 1, we showed that the

EE was locally asymptotically stable too.

Chapter 3, We began chapter 3 by expanding our study model to be a two-

dimensional model. We derived a system of differential equations of HIV amongst

PWIDs with the disease awareness programs which kept the expression of the

biological parameter for R0 as same as in the previous chapter. We showed the

equilibrium solutions analytically if φ is strictly monotone decreasing or mono-

tone decreasing. Then we have shown that if R0 ≤ 1 is the only condition for the

disease to die out in all PWIDs and needles. Whereas if the disease is initially

present and R0 > 1 the disease will present among the population of PWIDs for all

time. Furthermore, we proved that the free disease equilibrium of the model (3.1)

and (3.2) is locally and globally stable if R0 < 1, whereas it is unstable if R0 > 1.

Also, we showed that if R0 > 1 the system has a unique endemic solution which

is locally and globally stable, wherever the disease is present and either π(0) > 0

or β(0) > 0. So if either π(0) > 0 or β(0) > 0 and R0 > 1the system tends to the

unique endemic equilibrium.

In Chapter 4 we have considered the effect of awareness programs in a three-

stage infectivity model of HIV/AIDS. We developed the three-stage HIV/AIDS in-

fection model studied by Lewis (2000) by applying awareness programs func-

tions. And then we derived the system of differential equations for the spread of

HIV amongst PWIDs with disease awareness programs. We calculated an ex-
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pression for the basic reproduction number R0 that allowed us to figure out the

analysis of the model, we have shown that for any given initial value condition

in the region D=[0, 1]4 in R4, the system of the model has a unique non-negative

solution that remains in D for all time, and also the conditions required for persis-

tence for the infected fractions of PWIDs and needles π1, π2, π3 and β. In general,

the disease is persistent when R0 > 1 as shown in Theorem 4.3.5. Analytically,

we determined the equilibrium solution where the disease dies out or persists in

both PWIDs and needles for our model and evaluated its local and global stability.

We showed that if R0 < 1 there is only the disease-free equilibrium where if R0 ≤ 1

disease free DFE equilibrium is locally asymptotically stable, as well as globally

stable. Otherwise, the disease-free solution DFE is unstable if R0 > 1. Also, there

is endemic equilibrium solution EE which is locally asymptotically stable if R0 < 1.

In the last chapter, we have discussed the effects of awareness programs on

the transmission dynamics of HIV among people who inject drugs (PWIDs) on

successful HAART. We have developed and investigated a deterministic model,

that focused on the impact of awareness programs on the behaviour of HIV/AIDS

transmission in two groups of infected PWIDs where the first group is unaware

and the second group is successfully treated with HAART.

A formula for the basic reproduction number R0 was derived that allowed us to

perform the analysis of the model. Our analysis indicates that this is a critical

threshold parameter R0 = 1. Based on our analytical results, the system has

two equilibria: the disease-free equilibrium solution and the endemic equilibrium

solution. Our analysis assumes that φ is monotone decreasing shows that the

disease-free equilibrium is locally asymptotically stable if R0 < 1, neutrally stable

if R0 = 1 and unstable if R0 > 1. In the case when R0 > 1, we demonstrated that

the endemic equilibrium existed and is also locally asymptotically stable. Also,

we showed that the disease-free equilibrium solution was globally asymptotically

stable when If R0 ≤ 1. Lastly, we carried out numerical simulations to illustrate the
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dynamic behaviour of this model.

To the greatest extent of our knowledge, the study we are doing presently fills

a research gap as it is the first time disease awareness programs have been

applied to a mathematical model of HIV among PWIDs.

For further study, we believe that the awareness programs technique employed in

this thesis can be applied to additional diseases such as COVID and measles, To

reduce the global spread of epidemic diseases.
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