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Abstract 

 

Marked temporal and spatial variations in reflectance measured at red wavelengths 

are frequently observed in the Irish Sea. The obvious existence of seasonal variability 

suggests that the reflectance in this region may be spatially correlated with physical 

processes. This study investigates the feasibility of obtaining information on 

hydrological as opposed to biogeochemical processes from remote sensing 

reflectance spectra measured over tidally stirred shelf seas. As a first step, the 

correlation between remote sensing reflectance at 667 nm (Rrs667) and the 

concentration of mineral suspended solids (MSS) as investigated, and its sensitivity 

to the presence of other optically significant materials (OSM) quantified by a 

combination of radiative transfer modelling and water sample analysis. Modelled 

reflectance spectra were generated using inherent optical properties representative of 

a coastal environment. The uncertainty in the MSS retrieval varied with OSM values 

and was best indicated by explicitly stating the range of MSS concentrations that 

would be associated with a given Rrs signal. Results indicate that the correlation is 

sufficiently robust in these waters to allow reflectance to be used as an indicator of 

MSS concentrations and, by implication, of spatial variability in the hydrological 

processes on which they depend. Relationships between Rrs667 and stratification 

parameter delta sigma, ∆σ, or maximum bed shear stress, τmax, were investigated 

using MODIS ocean colour data and model derived hydrology (POLCOMS). For the 

majority of the test site, the relationship between Rrs667 and ∆σ exists as a simple 

power law. Furthermore, in shallow coastal regions, variability in Rrs667 can be 

attributed to seasonal changes in τmax. Results are twofold; they demonstrate the 

potential of exploiting satellite images to provide information on shelf sea dynamics. 

They also indicate that a greater understanding of the links between biogeochemical 

processes and physical hydrology is necessary to accurately represent the shelf sea 

ecosystem. 
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Chapter 1 

 

Introduction
 

 

1.1 Modelling the shelf sea ecosystem 

Shelf seas are amongst the most productive and dynamic of marine environments. 

Their value lies in the proximity to land, providing access for fishing, transport and 

recreational purposes. As a consequence, they are also highly endangered and are 

particularly sensitive to changes brought on by pollution and over-use. It is clear that 

sustained use and protection of shelf seas must be accompanied by regular 

monitoring and efficient management (Borja, 2005 and Robinson, 2008). This relies 

on the ability to describe and predict present and future states of the marine 

environment through the establishment of ecosystem models. The shelf sea 

ecosystem is complex and convoluted, where biogeochemical dynamics are strongly 

influenced by the physical processes in which they are embedded. Therefore, 

accurate representation requires a multidisciplinary approach with thorough 

knowledge of both biogeochemical and physical processes. The model must also 

satisfy a number of criteria; adequate spatial and temporal scales to effectively 

describe short and long term processes, coupling between biological parameters and 

physical forces influencing variability in coastal regions and assimilation of 

observational data for validation and calibration. For this purpose, satellite remote 

sensing plays a crucial role, offering unprecedented access to measurements of 

oceanic parameters, such as sea surface height, surface winds and ocean colour, 

acquired at synoptic frequency and mesoscale resolution. Since an orbiting sensor 

can view every square kilometre of cloud-free ocean every 48 hours, satellite-

acquired ocean colour data constitute a valuable tool for determining the abundance 

of ocean biological products and can be used to assess physical changes over 

prolonged periods. Whilst some physical parameters are produced at a satisfactory 

level of accuracy, biogeochemical products derived from ocean colour lack sufficient 

accuracy for operational assimilation. Improving the quality of products retrieved 
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from optical measurements of shelf seas is therefore a fundamental objective of the 

ocean colour community.  

 

1.2 Overview of ocean colour remote sensing in shelf seas 

Ocean colour is the spectral distribution of solar radiation emitted from the surface of 

the ocean in the visible and near-infrared regimes. It is determined by the 

concentration of optically significant constituents suspended or dissolved in the 

surface layer of the water column. Light entering the ocean is subject to a series of 

absorption, elastic and inelastic scattering interactions (with water and constituent 

components) and re-emerges with a modified spectral composition. Measured 

remotely by radiometric sensors mounted on earth observation satellites, reflectance 

signals detected at the top of the atmosphere are converted to water-leaving radiance 

by application of a series of correction routines (Gordon, 1997, Ruddick, et al., 2000 

and Vermote et al., 2002). Radiance spectra are utilised for the derivation of in-water 

constituents using empirical relationships or model based algorithms (Schiller & 

Doerffer, 1999, Sathyendranath et al., 2001 and Binding et al., 2003). These provide 

useful information on the state of our oceans, for example, quantitative estimates of 

chlorophyll concentration are used to investigate phytoplankton biomass (Gohin et 

al., 2002). Conversion techniques perform at varied, and often insufficiently 

characterised, levels of accuracy, particularly in optically complex shelf seas. In 

these regions at least three independently varying substances, chlorophyll (CHL) 

(taken as a proxy for phytoplankton biomass), mineral suspended solids (MSS) and 

coloured dissolved organic matter (CDOM), are contributing to the optical properties 

of the water column, and rendering simple recovery procedures challenging. It is 

well understood that an alternative approach is necessary to interpret reflectance 

signals taken from shelf seas (IOCCG, 2000). This is reflected in the literature, 

where new techniques and retrieval methods are presented focussing on these 

optically complex regions. Recent approaches based on neural networks or spectral 

matching offer substantially improved performance, but they rely heavily on the 

quality of the spectral libraries which are employed. The difficult nature of the 

problem calls for a greater understanding of the mechanisms driving reflectance 

variability (Robinson, 2008).  
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This study investigates the extent to which relationships exist between the physical 

dynamics of the water column and the optical signal measured at the sea surface. 

This is a move towards a more complete understanding of the shelf sea ecosystem. 

By considering an intermediate step in the inversion process, i.e. the physics, not the 

biogeochemistry influencing the reflectance signal, additional information may be 

extracted from the ocean colour signal if it can be demonstrated that the surface 

signals are driven by processes deeper in the water column. The existence of a 

potential link can be explored using patterns of suspended particulate matter as a 

tracer of the hydrodynamics. Quantitative estimates derived from ocean colour 

imagery will provide insight into spatial and temporal fate of sediments in shelf seas. 

Detailed clarification of correlations between remote sensing reflectance and water 

column hydrology are potentially useful for model calibration and validation. This 

will assist with assimilation of satellite data into ecosystem models. Relationships are 

also providing conditions for the choice of locally tuned algorithms for improved 

interpretation of shelf sea satellite images (Dobrynin et al., 2010). 

 

1.2.1 Basic principles 

Radiative transfer theory is concerned with the change in direction and intensity of 

radiation in the atmosphere and ocean, due to absorption, scattering, fluorescence, 

inelastic scattering and air-sea interface effects (Zaneveld et al., 2005). Interpretation 

of ocean colour relies on a complete knowledge of radiative transfer processes. The 

modulated spectral distribution of radiation received at the top of the atmosphere is a 

function of the geometric structure of light and the properties of the ocean and 

atmosphere. Radiometry defines the fundamental quantities necessary to conduct 

radiative transfer studies. Properties directly derived from the light field, known as 

apparent optical properties (AOP), are characteristic of both the medium and the 

geometric (directional) structure of the radiance distribution. These are influenced by 

inherent optical properties (IOP), which depend only upon the medium through 

which light is propagating.  
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i) Radiometry 

Light can be envisioned as consisting of packets of electromagnetic energy, called 

photons, which travel through vacuum at speed c = 2.998x10
8 

m s
-1

.  The energy of a 

photon, q, is related to its frequency, v, and consequently its wavelength, λ; 

 

λ

hc
hvq ==          (1.1) 

 

where h is Planck’s constant (h = 6.626x10
-34 

J s). The linear and angular momentum 

transported to the oceans by incident sunlight is negligible when compared to the 

momentum transferred by wind and waves (Mobley, 1994). Thus the physical 

importance of sunlight incident on the sea surface lies in its energy transport. The 

amount of energy per unit time, or radiant power, Φ, that arrives at a particular area, 

A, from a given solid angle, Ω, is described by the radiance; 

 

λddAd

d
λφθL

Ω

Φ
=

2

),,(         (1.2) 

 

where nadir, θ, and azimuthal, φ, angles define the direction of light. This is the 

fundamental parameter in ocean optics from which all other radiometric quantities 

can be derived. When projected onto a planar surface, the contribution of each 

photon is weighted by the cosine of the incident angle, θ, to account for the 

geometric change in surface area; 

 

λddθdA

d

θ

λφθL

Ω

Φ
=

coscos

),,( 2

       (1.3) 

 

Radiance has units of watts per unit area per solid angle per wavelength interval (W 

m
-2

 sr
-1

 nm
-1

). Measurements of radiance restrict incoming light to a specific 

direction defined by the solid angle. By considering photons travelling in a full 

hemisphere of directions, the upward, Eu, and downward, Ed, plane irradiance is 

obtained in relation to L; 
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∫ Ω=
0

2
cos),(

π
d dθφθLE        (1.4) 

 

∫− Ω=
0

2
cos),(

π
u dθφθLE        (1.5) 

 

Measured in (W m
-2

 nm
-1

), this is the integrated flow of light through a horizontal 

surface. The intensity, I, can also be defined in terms of radiance, L; 

 

∫∆=
Ω

Φ
=

A
dAφθL

d

d
I ),(        (1.6) 

 

ii) Apparent optical properties 

At a given wavelength λ, the reflectance, R, just below the sea surface (depicted by 

0
–
 or 0

+
 for above surface measurement in air) is determined by the ratio of 

upwelling to downwelling irradiance, Eu, and Ed, respectively (Mobley, 1999); 

 

),0(

),0(
),0(

λE

λE
λR

d

u

−

−
− =         (1.7) 

   

Remote sensing reflectance, Rrs, a radiometric parameter commonly referred to in 

ocean colour remote sensing, exploits the upward facing component of radiance, Lu, 

propagated through the air-water interface to give water-leaving radiance, Lw.  Rrs is 

defined as;  

 

),0(

),,(
),,(

λE

λφθL
λφθR

d

w

rs +
=        (1.8) 

 

Water-leaving radiance Lw, measured just above the sea surface, is the radiance 

backscattered out of the water into direction (θ, ϕ). To obtain Rrs from field 

observations, subsurface radiance and irradiance are often converted to above surface 

values; 
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( )
( )( ) ( )λφθL

n

θθr
λφθL u

F

w ,',',0
',1

,,
2

−








 −
=      (1.9) 

 

where rF(θ,θ’) is the Fresnel reflectance as seen from the water side. For Lw, 

transmission through the surface must account for different refractive indices, n, of 

air and seawater (air having a refractive index of ~1).  Notations θ’ and ϕ’ indicate 

deviation from the original direction of light which can be related by Snell’s Law. 

 

( ) ( ) ( )









−

−
= −+

u

s

dd
RR

R
λEλE

1

1
,0,0       (1.10) 

 

Here, Rs and Ru are irradiance reflectances of the surface from the air and water side 

respectively.  From in-situ measurements of Lu and Ed, Rrs can be obtained; 

 

( )
( )( )[ ]
( )

( )
( )

( )
( )λφθQ

λR
T

λE

λφθL

RRn

Rθθr
λφθR

d

u

u

sF

rs
,','

,0

,0

,',',0

1

1',1
,,

2

−

−

−

=×








−

−−
=   (1.11) 

 

where T is the coefficient in curly brackets, R(0
-
,λ) is defined in equation (1.7) and 

Q(θ’,ϕ’,λ) = Eu(0
-
,λ)/Lu(0

-
,θ’,ϕ’,λ). The terms Rs and Ru are small and are commonly 

omitted from the Rrs expression. 

 

Other AOP parameters of use include diffuse attenuation coefficients. These describe 

the depth dependency of radiance and irradiance, which decrease in magnitude 

approximately exponentially with water column depth, z. Spectral diffuse attenuation 

coefficients (m
-1

) for downward irradiance, Kd(z,λ), upward irradiance, Ku(z,λ), and 

radiance, K(z,θ,ϕ,λ) are given by the following expression; 

 

( )
( )

( )
( )

dz

λzdE

λzEdz

λzEd
λzK d

d

d

d

,

,

1,ln
, −=−=     (1.12) 

 

Diffuse attenuation coefficients have several useful applications, including 

estimations of the depth viewable by satellite sensors (1/Kd). 
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iii) Inherent optical properties 

As light passes through a volume of water ∆V, a portion of the incident radiant 

power, Φi, is transmitted through the volume, Φt , whilst the remainder is scattered 

out of the beam, Φs or absorbed by the medium Φa. If scattering processes are elastic, 

by conservation of energy; 

 

( ) ( ) ( ) ( )λλλλ asti Φ+Φ+Φ=Φ       (1.13) 

 

The spectral absorptance, A(λ), scatterance, B(λ) and transmittance, T(λ), are 

determined by the fraction of incident power utilised by each process (A(λ) + B(λ) + 

T(λ) = 1). Coefficients of spectral absorption, a(λ), and scattering, b(λ),  are obtained 

by considering the absorptance and scatterance per unit length of medium, ∆r, (m
-1

); 

 

( ) ( )
r

λA
λa r

∆
= →∆ 0lim         (1.14) 

 

( ) ( )
r

λB
λb r

∆
= →∆ 0lim         (1.15) 

 

The spectral beam attenuation coefficient is defined as; 

   

( ) ( ) ( )λbλaλc +=         (1.16) 

 

By considering only photon energy scattered in a particular direction, ψ(θ,φ), centred 

on a given solid angle ∆Ω, the spectral volume scattering function (VSF) can be 

obtained; 

    

( ) ( ) ( )
( ) ∆Ω∆Φ

Φ
=

∆Ω∆
= →∆Ω→∆→∆Ω→∆

rλ

λψ

r

λB
λψβ

i

s

rr

,
limlim, 0000    (1.17) 

 

Since Ei = Φi / ∆A, and Φs(ψ,λ) = Is ∆Ω; 
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( )
( )

( )
( )
( ) VλE

λψI

rAλE

λψI
λψβ

i

s

V

i

s

A
∆

=
∆∆

= →∆→∆Ω→∆

,
lim

,
lim, 000    (1.18) 

 

This describes the angular distribution of scattered light in the water (m
-1

sr
-1

). 

Integrating over all angles produces the scattering coefficient, b(λ), whilst 

backscattering, bb(λ), is obtained by  restricting integration to angles greater than 90
o
; 

  

( ) ( )∫=
π

π
b ψdψλψβπλb

2
sin,2        (1.19) 

 

The ratio of the volume scattering function and the scattering coefficient produces a 

parameter which describes the distribution of scattering per solid angle, known as the 

spectral scattering phase function (sr
-1

); 

   

( ) ( )
( )λb

λψβ
λψβ

,
,

~

=         (1.20) 

 

Finally, the spectral single scattering albedo, ω0, determines the proportion of 

attenuation due to scattering; 

  

( ) ( )
( )λc

λb
λω =0          (1.21) 

 

The volume scattering function and absorption coefficient are the two basic IOPs 

from which all others can be derived.   

 

For the purpose of radiance transfer, it is the total IOPs of the water column which 

are of interest. These are determined by the combination of dissolved or suspended 

optically significant constituents found in shelf seas. In addition to water molecules, 

optically significant constituents influencing the light leaving the surface of a shelf 

sea are CHL, MSS and CDOM. Suspended particles can be of biological or physical 

nature, and contain variable absorption and scattering properties. Phytoplankton, 

which falls into the organic category, is a strong absorber of light. Due to the 
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chlorophyll a pigment, phytoplankton absorption is enhanced in the blue and red 

regions of the visible spectrum. Inorganic suspended particles, which are strong 

scatterers of light and absorb mainly at short wavelengths, are highly optically 

significant in shelf seas. Similarly, dissolved matter, which predominantly originates 

from decaying vegetation, is common to coastal regions. CDOM absorbs greatly in 

the blue region of the visible spectrum, becoming exponentially less significant at 

longer wavelengths. It does not contribute to the scattering properties of the water 

column. Each of these components contributes individually to the total IOP, altering 

the bulk absorption, a, and scattering, b, or backscattering, bb, coefficients of the 

medium. Total IOP budgets are established by the summing the various contributions 

of constituents and seawater; 

 

( ) ( ) ( ) ( ) ( )λcλaλaλaλa CDOMMSSCHLw +++=      (1.22) 

  

( ) ( ) ( ) ( )λbλbλbλb
MSSbCHLbWbb ++=       (1.23) 

 

To determine individual contributions, IOPs can be expressed as a product of the 

constituent specific IOPs and concentrations of the constituents, assuming the 

dimension and shape of constituent particles are consistent. For example, suspended 

sediment absorption, aMSS, is given by ( MSSaMSS

* ), where the specific IOP is denoted 

by superscript asterisk, the subscript MSS denotes the relevant constituent and MSS 

is the constituent concentration. The bulk absorption a and backscattering bb can be 

expressed as the sum of the individual components (λ, dropped for brevity); 

 

CDOMcMSSaCHLaaa
CDOMMSSCHLw

*** +++=     (1.24) 

 

MSSbCHLbbb
MSSbCHLbWbb

** ++=       (1.25) 

 

where subscript w indicates the contribution by sea water. 
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iv) Relationships between inherent and apparent optical properties 

Light leaving the water column and corresponding constituent concentrations can be 

connected through relationships between AOPs and IOPs. In these examples, 

notations, θ, ϕ, θ’, ϕ’ and λ have been dropped for brevity. Irradiance reflectance just 

below the surface is obtained by the ratio of backscattering to absorption coefficient; 

 

a

b
fR b×=          (1.26) 

 

Therefore, from equation (1.11) the remote sensing reflectance is given by; 

 

a

b

Q

f
TR b

rs =          (1.27) 

 

where T and Q are defined previously. The factor f, is a geometric parameter which 

relates the backscattering and absorption properties of the water to reflectance. It is 

predominantly dependent on the distribution of the ambient light field and the 

viewing angle of the sun and satellite (Barnard et al., 1999, Ladner et al., 2002 and 

Lee et al., 2004). However it also changes in response to varying VSF, which in turn 

depends on particle characteristics. This is also true for Q, the ratio of upwelling 

radiance to irradiance. Minimum values of f / Q are obtained when the sun is at 

zenith and increase with increasing zenith angle. In shelf seas, values of f / Q fall 

within the range 0.05 to 0.2 (Morel & Gentili, 1993, Morel et al., 2002) 

 

Combining equations (1.24) and (1.25), equation (1.27) can be expanded to include 

all possible optically significant constituents found in shelf seas; 

  















+++

++
=

CDOMaCHLaMSSaa

CHLbMSSbb
FR

CDOMCHLMSSw

CHLbMSSbwb

rs ***

**

   (1.28) 

 

Here, F, denotes Rrs is a function of the terms in brackets. From equation (1.28), 

there are five parameters that could potentially alter the remote sensing signal, the 
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backscattering, bb, and absorption, a, coefficients derived from specific IOPs for 

MSS and CHL, and derived absorption due to CDOM.  

 

1.2.2 Radiance transfer equation (RTE) 

The radiance transfer equation, required to effectively model the underwater light 

field, describes all processes affecting the change in radiance along a given path. 

Consider a beam of light entering a volume of medium, ∆V, from direction ζ(θ,φ). 

Along path length ∆r, the incident radiant power will experience gains and losses due 

to absorption and scattering processes within the path. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1.1 Change in radiance along a given directional path. Losses occur due to 

absorption and scattering out of the path ∆r, whilst gains in radiance can be 

attributed to scattering into the path. 

 

On a molecular and atomic scale, when molecules absorb visible light, the incoming 

energy excites electrons to a higher internal (electronic, vibrational or rotational) 

energy state. If the photon energy exactly matches the molecular transition it may be 

completely absorbed and converted to non-radiant energy. This is the process of true 

absorption. Elastic scattering occurs when the molecule instantaneously returns to its 

original state by emission of a photon with the same energy. If the photon 

experiences a photon change, as occurs in Raman scattering or fluorescence, 

Scatter 

out of 

path 

Scatter 

into path 

Absorption 

∆r 

L(θ,φ) 

entering 

L’(θ,φ) 

exiting 

Vertical 

distance z 



 

   

12 

scattering is described as inelastic. True emission is possible where non-radiant 

energy is converted into light, for example, bioluminescence. Formulation of the 

radiance transfer equation must account for each process. Losses from the radiance 

path may be attributed to photon annihilation due to absorption of radiant energy or 

the scattering of photons from the beam (elastic or inelastic). In the absence of 

external sources, photon gain in a given direction is solely the result of scattering into 

the beam. However, the creation of radiant energy through true emission processes 

such as bioluminescence may also contribute to photon gain. Processes required for 

the equation of transfer are shown schematically in Figure 1.2. 

 

 

    

            =    +    

           

      

 

Figure 1.2 Schematic description of the processes involved in defining the radiance 

transfer equation. 

 

i) Radiance transfer gains 

Photons scattered into a light beam in direction, ξ, produce an observed spectral 

radiance, L∆r(ξ,λ) which per unit distance provides the path function for elastic 

scattering, EL* ; 

 

( )
r

λξL
L rE

∆
= ∆ ,

*          (1.29) 

 

Assuming the generated radiance per unit length is proportional to the incident 

spectral irradiance, Ei, from direction ξ’, falling on ∆V, the proportionality constant is 

given by; 
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=→ ∆        (1.30) 

 

Spectral irradiance, written in terms of radiance gives; 

 

( ) ( ) ( )',',' ξλξLλξEi ∆Ω=        (1.31) 

 

Therefore, combining equations (1.30) and (1.31) and integrating over all ξ’ in the 

domain, Ξ, provides the path function in relation to the incident radiance and VSF 

(Mobley, 1994); 

 

( ) ( ) ( )',','
'

* ξdλξξβλξLL
ξ

E Ω→= ∫ Ξ∈
      (1.32) 

 

A similar expression describes gain due to inelastic scattering in the medium, IL* ; 

   

( ) ( ) ( )∫ ∫Ξ Λ
Ω→→= ''',','* ξdλdλλξξβλξLL

I      (1.33) 

 

Here the double integral accounts for changes in wavelength owing to inelastic 

scattering into direction ξ and wavelength λ, by photons of all other wavelengths, λ’, 

in the electromagnetic spectrum, Λ. Radiant energy gain is a function of the angular 

distribution of scattering. 

 

Gain by true emission depends on the particular emission process and is described by 

the source path function, . Commonly, , and  are combined to generate the 

effective source function, S, (which is frequently considered known in natural 

waters). 

 

SI LLS ** +=          (1.34) 
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ii) Radiance transfer losses 

As described previously, true absorption occurs in a medium when incident photons 

are absorbed and their corresponding energy is converted to non-radiant energy. The 

true absorption coefficient is denoted with superscript e, ( )'λa e . Alternatively, 

radiant power can be lost through inelastic absorption where emitted photons contain 

a fraction of the incident energy. The inelastic absorption coefficient a
I
, is related to 

the inelastic scattering coefficient, b
I
, through the expression; 

 

( ) ( )∫Λ →= λdλλbλa
II ''        (1.35) 

 

The integral of b
I
 describes how strongly light is transferred from wavelength, λ’ to 

all other wavelengths. The total absorption coefficient is the additive combination of 

both absorption processes; 

 

( ) ( ) ( )''' λaλaλa Ie +=         (1.36) 

 

Finally, photons scattered from a collimated beam of light also enhance loss of 

radiant power, . Decrease in radiance through a medium is proportional to the 

radiance and the distance; 

  

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )λξLλcλξLλbλaλa
r

λξL Ie ,,
,

−=++−=
∆

∆
   (1.37) 

 

All possible losses of radiant power from a collimated beam of photons are 

accounted for by the beam attenuation coefficient, c(λ). 

 

 

 

 

 

 



 

   

15 

iii) Standard form of RTE 

In terms of geometric depth and VSF, the standard form of the radiance transfer 

equation is given by; 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫Ξ +Ω→+−== λξzSξdλξξzβλξzLλξzLλzc
dz

λξzdL
µ

dr

λξzdL
,,',',,',,,,

,,,,

          (1.38) 

 

Here, dr = dz / µ = dz / cosθ. This describes the radiant power gains and losses 

necessary to predict the underwater light field (source parameter S is not considered 

further in this study). It also shows that accurate representation relies on the 

proficient measurement of four parameters, a, b, β
~

and z. 

 

1.2.3 State of the art 

Ocean colour remote sensing began in 1978 with the successful launch of NASA’s 

Coastal Zone Color Scanner (CZCS) on NIMBUS-7. This was an experimental 

mission devoted to the measurement of ocean colour. With six spectral bands, the 

primary objective of the CZCS mission was to determine if satellite remote sensing 

of colour could be used to identify and quantify material suspended or dissolved in 

ocean waters. The success of the mission, which lasted almost a decade, provided 

justification for the development and application of future missions. However, there 

followed a significant gap of 10 years before the launch of the next operational ocean 

colour sensor. In 1996, India launched IRS-P3, which housed the German Modular 

Optical Scanner (MOS), quickly followed by Japan with ADEOS-1 (OCTS), which 

lasted only 10 months, and the US with SeaStar (SeaWiFS). This instigated a series 

of earth observation missions, with scientific contributions to satellite ocean colour 

measurements provided from space agencies worldwide, including China, Korea and 

Europe.  

 

At the time of writing, 12 historical sensors have ceased to function, whilst 9 remain 

operational. The majority of past and present ocean colour sensors are mounted on 

polar orbiting satellite platforms, providing near global coverage every 1-2 days. The 

spatial resolution of images recorded by current instrumentation ranges from 250 to 
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6000 m with swath widths between 200 and 2800 km. Ocean colour measurements 

are most commonly made at multiband spectral resolution, with MODIS Aqua and 

Terra containing the maximum number of spectral wavebands (36 bands). The first 

hyperspectral instrument (> 100 bands) was released in 2009, onboard the 

International Space Station (ISS). This instrument combines high spectral resolution 

(124 bands between 380 – 1000 nm) with high spatial resolution (100 m), however it 

is limited to 50 km swaths orbiting between ± 51.6º latitude. 2010 also saw a new 

development in ocean colour remote sensing with the introduction of the first 

geostationary satellite dedicated to ocean colour measurement. The South Korean 

COMS satellite centred on the Korean peninsula generates hourly temporal coverage 

of a 2500 km
2
 region. With a spatial resolution of 500 m, this instrument provides the 

capability of monitoring physical and biological processes at tidal and diurnal scales. 

 

The continuous global time series of ocean colour measurements currently provided 

by the SeaWiFS, MODIS and MERIS group of sensors is of increasing importance 

for monitoring long term changes in ocean conditions and associated climatic 

variability. This time series is expected to be extended with the launch of an 

additional 8 sensors proposed by 2015.  

 

1.2.4 Capabilities and limitations 

Through its sensitivity to materials suspended and dissolved in the water column, 

ocean colour remote sensing provides a unique window into biogeochemical 

processes occurring in surface layers of the ocean. The primary parameter monitored 

through ocean colour remote sensing is the concentration of chlorophyll, an index of 

phytoplankton biomass. Phytoplankton are microscopic single or multi-celled plants 

found floating in the oceans. They contribute up to 25% of the total vegetation in the 

sea and are a major source of food for many marine animals (Falkowski & Raven, 

1997). Phytoplankton use photosynthesis to convert light energy into chemical 

energy, in the process removing carbon dioxide from the atmosphere and supplying 

oxygen as a by product. Because of these two main features, phytoplankton are 

extremely important and their activities integrated over time are significant enough to 

influence global environmental change. Ocean colour remote sensing plays a crucial 



 

   

17 

role in monitoring chlorophyll concentration on a global scale. However its 

exploitation offers many societal benefits in addition to the retrieval of chlorophyll. 

The following section contains a summary of potential applications as defined the 

IOCCG in their 2008 report (IOCCG, 2008). 

 

1.2.4a Applications of ocean colour remote sensing 

i) Ecosystem modelling 

As discussed previously in this chapter, oceanic parameters retrieved remotely by 

satellite instrumentation are essential for initialisation and validation of ocean 

numerical models. The application of ocean colour data is required for two functions; 

to improve the understanding of processes influencing constituent variability and to 

allow prediction of future and current state for operational purposes. Coupling 

between satellite measurements and modelling enhances the quality and quantity of 

information obtained by each individually. 

 

ii) Ocean physics 

The distribution of constituents in shelf seas is intimately linked to hydrodynamic 

processes. For example phytoplankton growth relies on the supply of nutrients to the 

surface mixed layer, which in turn is determined by physical processes such as 

advection and mixing. Coincident analysis with biogeochemical dynamics can be 

used to identify the underlying physical mechanisms responsible for observed 

biological features. Ocean colour remote sensing therefore provides insight into the 

physical forces driving variability in shelf seas. 

 

iii) Biogeochemical cycles 

Remote observations of ocean colour from space are directly related to various 

components of biogeochemical cycles, including the exchange of CO2 with the 

atmosphere through the sea surface, conversion of CO2 into organic carbon by 

phytoplankton photosynthesis, and loss of carbon by settling of particulate matter or 

by diffusive transport. Ocean colour radiometry allows investigation of carbon fluxes 

in the ocean and serves as an essential tool for quantifying aspects of biogeochemical 

cycles.  



 

   

18 

iv) Fisheries 

Satellite data can be used to characterize the habitat and ecosystem properties that 

influence marine resources. There are two primary functions of ocean-colour in 

fisheries management; to monitor the environment providing a better understanding 

of ecosystem processes, and to locate populations of fish, increasing fishing 

efficiency. Additionally, ocean-colour data can be used to monitor a number of 

issues that impact fisheries, such as harmful algal blooms and coastal pollution. 

 

v) Water quality 

Management of water quality is the fundamental objective of several European 

initiatives (Robinson, 2008), developed to protect and maintain the marine 

environment. Products derived from satellite measurements of radiance can be used 

directly as water quality indicators; for example spectral light attenuation can be 

related to water clarity. Combining ocean colour data with numerical or statistical 

models generates an effective monitoring tool for operational management of the 

ocean. 

 

vi) Hazards 

Shelf seas are subject to a variety of oceanic hazards which occur from natural or 

man-made origin. These can have a significant impact on the marine ecosystem. 

Satellite measurements of ocean colour assist with the detection and monitoring of 

natural hazards such as harmful algal blooms. They can also be utilised to investigate 

the impact of extreme weather events such as hurricanes and storms. Man-made 

hazards such as oil spills may also be tracked using ocean colour data. 
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1.2.4b  Limitations of ocean colour remote sensing 

i) Cloud cover 

One of the major limitations in the use of ocean colour remote sensing is its 

dependency on lack of cloud cover. Clouds reflect shortwave radiation back to space, 

preventing penetration of light within the visible domain. Therefore radiometry relies 

on a cloud free path between the ocean surface and orbiting satellite. Shelf seas 

surrounding the UK are commonly covered by cloud, meaning an average of 20-30 

partially cloud free images are available for this region each year. As expected, cloud 

coverage is highly seasonal, with an increase found in winter months. During this 

period it is extremely difficult to obtain an approximately cloud free image of the 

Irish Sea. This is problematic for real time ocean management and also generates 

breaks in archived time series. This highlights the potential usefulness of assimilating 

remote sensing data into ecosystem models, where model outputs could effectively 

bridge data gaps. Generation of composite images can also compensate for lack of 

cloud free data. Composites are created by merging satellite images obtained over 

duration, producing a temporally and spatially averaged image. Some transient 

features may be lost during this process. Nevertheless composite images allow 

investigation of persistent biogeochemical patterns and trends. 

 

ii) Atmospheric correction and adjacency effects 

Only a small percentage of radiance detected at the top of atmosphere is emitted 

from the ocean, where approximately 90% originates from scattering by the 

atmosphere. Atmospheric correction procedures for ocean-colour data are required to 

evaluate what the ocean-colour signal would have been in the absence of an 

intervening atmosphere. Atmospheric effects must be removed from the reflectance 

signal by a series of correction procedures, which commonly rely on the assumption 

that there is no reflectance from the ocean in the near-infrared (NIR) regime. This 

assumption is not true in turbid, coastal regions, where backscattering is sufficiently 

high to generate reflectance at near-infrared wavelengths. Discrepancies due to non-

zero NIR reflectance can be significant in highly turbid areas and as a consequence, 

reduce the quality of the radiometric measurement and subsequent ocean colour 

products. New methods are continuously being developed in an attempt to improve 
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atmospheric correction in shelf seas (Chami, 2007, Zhang et al., 2010 and Sanwlani 

et al., 2010). 

 

Radiance from the ocean is significantly smaller in magnitude than radiance from the 

land. As a consequence, radiometric measurements obtained in coastal regions may 

be enhanced by stray light atmospherically scattered from the brighter adjacent land 

target. This process is known as the adjacency effect, and its occurrence prohibits the 

use of image pixels located adjacent to the coast (Liu, 2007). The system is further 

complicated by adjacency effects generated by clouds or by stray light within the 

optical sensor, as well as the sensor response time. This effect must be accounted for 

in accordance with atmospheric correction over coastal waters (Thome et al., 1998 

and Santer et al., 2000). 

 

iii) Algorithm performance in shelf seas 

In a scheme proposed by Morel and Prieur (1977), oceanic waters can be separated 

into two categories depending on their optical properties, denoted as case 1 and case 

2 types. Case 1 waters are waters in which the concentration of phytoplankton is high 

compared to non-biogenic particles. Here, optical properties of the water column are 

influenced predominantly by phytoplankton and its covarying biological material. 

The presence of additional substances such as CDOM and suspended minerals, 

forces classification into case 2, which is defined as everything else. These waters are 

optically more complex and IOPs are a consequence of independently varying 

constituents. Coastal shelf seas are commonly classified as case 2. Ratio algorithms 

developed for the retrieval of chlorophyll in case 1 regions often break down in those 

classified as case 2 due to the presence of other optically significant constituents 

(Gohin et al., 2002, Wang et al., 2003 and McKee et al., 2007a). For example, 

chlorophyll concentrations are overestimated in regions containing relatively high 

volumes of particulate matter. At these locations algorithms need to deconvolve the 

reflectance signal to generate independent estimates of each constituent. However 

varying combinations of substances may influence the optical signal in a similar 

manner, making it difficult to distinguish between materials. The problem may 

become simpler if the objective is to recover suspended mineral concentrations 



 

   

21 

without requiring accurate estimates of the other optically significant constituents. 

Accuracy of quantitative constituent retrievals can also be improved by incorporating 

field data to determine algorithm coefficients. 

 

1.3 Choice of the Irish Sea as a test site 

A potential link between ocean colour and water column hydrology was explored 

using the Irish Sea as a test site. This is a semi-enclosed shelf sea bordered by Britain 

and Ireland which covers approximately 58000 km
2
, Figure 1.3. The maximum depth 

is 275m which corresponds to a deep water channel running through the centre from 

the Malin Sea in the north to the Celtic Sea in the south. Relatively shallow regions 

(< 50 m) are located east of the deep channel in the Eastern Irish Sea and Cardigan 

Bay. For the purpose of this study, the region of interest is extended south to include 

the Bristol Channel and the northerly territory of the Celtic Sea. Water circulates 

around the Irish Sea creating turbulence along coastal regions, with the main residual 

flow running south to north and an anti-clockwise circular flow dominating the 

eastern regions (Figure 1.4 c)). The primary forces responsible for movement of 

water in the region, and by implication the transport of suspended sediment, are 

tides, weather and density differences. The Irish Sea is a region of high tidal energy 

(Simpson and Hunter, 1974), with two entrances in the north and south allowing 

propagation of tides from the Atlantic Ocean. The amplitude of tidal velocity has 

significant spatial variability which determines many of the hydrodynamic features 

found in the region of interest. Maximum tidal currents (> 1.2 m s
-1

) can be found at 

Anglesey, Wicklow Head and the Bristol Channel, whilst minimum values are 

located south west of the Isle of Man and in the eastern Irish Sea. There are two 

notable sea fronts, one to the north-west separating mixed waters of the Irish Sea 

with stratified regions in the north, and one in the south-west, separating the Irish Sea 

from warmer surface waters of the Celtic sea (Figure 1.4 b)). A permanent salinity 

front is also present in the eastern Irish Sea due to freshwater input from rivers 

located along the English coast. This area contains consistently lower values of 

salinity when compared to the remainder of the region of interest. The surface 

temperature in the Irish Sea ranges from 6ºC in the winter to 16ºC in the summer. 
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The Irish Sea is largely classified as a case 2 water type, meaning its optical 

properties are determined by at least three optically significant constituents in 

addition to seawater. Here you can find CHL, MSS and CDOM, with concentrations 

varying significantly over temporal and spatial frames. A measurement campaign 

consisting of several Irish Sea research cruises has provided statistical information on 

seawater composition in the region (see section 2.2). The average CHL (taken as a 

proxy for phytoplankton biomass) concentration measured in-situ was 1.08 mg m
-3

 

with a standard deviation of 0.76 mg m
-3

. CHL concentrations are generally lowest in 

the Irish Sea during winter months. Increased light in spring promotes phytoplankton 

reproduction generating raised levels of chlorophyll. This period displays maximum 

concentrations due to optimised conditions. The inverse pattern exists for MSS 

concentrations, where maximum and minimum values are observed in winter and 

summer months respectively. Three locations contain consistently high values of 

MSS, located in the Bristol Channel, Anglesey and Wicklow Head. These 

correspond to positions of maximum tidal energy. Mean values obtained for MSS 

and coloured dissolved organic matter (CDOM) were 5.16 g m
-3

 and 0.13 m
-1

 

respectively with standard deviations of 5.74 g m
-3

 and 0.06 m
-1

.  
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Figure 1.3 True colour image of the Irish Sea and north Celtic Sea showing locations 

of interest (image generated from MERIS reflectance data). 
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Figure 1.4 Physical characteristics of the Irish Sea a) map of Great Britain and 

Ireland showing boundaries of Irish Sea b) bathymetry of Irish Sea and front system 

indicated by red lines c) residual circulation of Irish Sea (Lees and Mackinson, 2007) 

 

Significant research into the optical properties of this area have already been 

conducted, lead primarily by the School of Ocean Sciences at Bangor University, 

Wales and the Environmental Optics Group at the University of Strathclyde. There 

exist several locally tuned algorithms for the retrieval of constituent concentrations 

from the Irish Sea. Binding et al., (2003 and 2005), demonstrated the usefulness of 

reflectance measured as red wavelengths as a quantitative indicator of suspended 

sediment concentrations. It was shown that a single band algorithm, rather than 

variations in ocean colour ratios, was most effective for obtaining MSS in the Irish 

Sea. In the 2005 paper, it was hypothesised that errors in the retrieval were 

associated with changes of the mass-specific scattering coefficient for MSS. 

Deviations from a single value were used to explain variability in the in-situ data set. 

Potential origins of error in the MSS retrieval shall be discussed in detail in chapter 

4. The effectiveness of reflectance measured at red wavelengths was also apparent in 

a paper published by McKee et al (2007a). In this example normalised water leaving 

radiance at 665 nm was used as a threshold for segregating optical water types into 

two classes before application of a chlorophyll retrieval algorithm. The performance 

of the standard OC4v4 chlorophyll algorithm could be greatly improved by 

considering individually, water types exhibiting low or high reflectance at 665 nm. 

Furthermore, optical water type classification is a useful way of understanding 

ambiguity in general algorithms. An alternative classification scheme will be 

discussed later in this study. Optical complexity is the primary limiting factor in 

(m) 
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obtaining accurate estimates of biogeochemical products in shelf seas. For this 

reason, great effort has been applied to understanding the causes of uncertainty. 

Bowers et al. (1996) highlighted the effect of MSS on the recovery of chlorophyll 

from the Irish Sea. The presence of MSS decreased the sensitivity of the blue-green 

ratio to changes in chlorophyll, a result which was also determined previously by 

Brown and Simpson (1990). The use of sun induced chlorophyll fluorescence (SICF) 

for the derivation is also restricted by the presence of MSS. Using radiance transfer 

simulations, McKee et al (2007b), determined the degree to which MSS (and 

CDOM) reduced the SICF signal, suggesting caution should be applied when 

interpreting SICF from coastal seas.  

 

It is clear that MSS contributes significantly to errors in the retrieval of optical 

products from shelf seas and a greater understanding of sediment dynamics may 

facilitate the inversion problem. This is the primary objective of this thesis. Previous 

work on sediment dynamics in the Irish Sea has been conducted by the Bangor 

School of Ocean Science. A link between tidal stirring, particularly during spring 

tides, and beam attenuation (which was used as an indicator of sediment 

concentration) was presented by Weeks et al. (1993). A seasonal signal was observed 

in the data with a reduction in beam attenuation from late May to September, 

however it was suggested this was not related to wind stirring. The study was 

continued by Bowers et al. (1998) over a longer time frame, with MSS 

concentrations estimated from satellite measurements of reflectance. Again, a 

seasonal cycle of reflectance was presented with maximum values occurring during 

winter months. Using a simple energy based model, it was shown that for regions of 

water depth between 40 and 80 m, an approximately linear relationship existed 

between tidal stirring and surface MSS concentrations. The hypothesis was extended 

to consider the available turbulent kinetic energy calculated from tides and wind 

(Bowers, 2003). The spatial distribution and seasonal variations of surface sediments 

could be explained generally in terms of available energy. However, lack of 

sufficient wind data generated discrepancies between model predictions and in-situ 

observations. Nonetheless, this is an interesting result and warrants further 

investigation. Locations of turbidity maxima found at Anglesey and Wicklow Head 
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are particularly difficult to replicate using numerical models. Patterns of sediment 

have been explained in terms of flocculation and disaggregation in high velocity 

zones (Ellis et al., 2004, Bowers et al., 2005, Ellis et al., 2008). Inward diffusion of 

larger flocculated particles from surrounding waters could continually maintain a 

turbidity maximum in the absence of a sediment source. However, validation of this 

hypothesis with in-situ field data is problematic due to increased tidal velocities at 

the relevant locations. 

 

In more recent years, emphasis has been placed on understanding the effect of 

particle size on the radiometric signal. Satellite measurements of reflectance have 

been used to derive geographical distributions of suspended particle size in the Irish 

Sea (Bowers et al., 2007). Although, several assumptions were made in the 

derivation of the particle size theory, results were interestingly linked to the physical 

dynamics of the water column through use of the Kolmogorov length scale. This 

study was later extended by van der Lee et al. (2009). Bowers et al. (2009) 

demonstrated that variability in specific scattering by particles depends on changes in 

the apparent density of sediment (dry weight/‘wet’ volume) and mean size of the 

particles. This has implications in regions containing large percentages of flocculated 

particles where concentrations of MSS may be underestimated. Further investigation 

implied both particle absorption and scattering coefficients depend strongly on the 

particle cross sectional area (Bowers et al., 2011). It was suggested that reflectance in 

the red part of the spectrum is proportional to the cross sectional area of particles in 

suspension whilst reflectance measured at green/blue wavelengths depend also on 

diameter as particle absorption becomes more important. This result has major 

implications for satellite remote sensing in shelf seas and merits further investigation. 
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1.4 Thesis structure 

It is clear that ocean colour remote sensing is a useful and essential part of modern 

oceanography, providing supplementary information to complement traditional 

measuring methods. However, significant work is required to develop ocean colour 

methods to operational standards. In light of the above, the following questions arise;  

 

1. Can methods of quantitatively interpreting satellite images in optically 

complex waters be developed? This is the first stage of this study which 

focuses on the retrieval of MSS concentrations from optically complex seas. 

The relationships between reflectance measured remotely by satellite and 

concentration of MSS will be investigated using a combination of radiance 

transfer simulations and water sample analysis. Algorithms will be applied to 

satellite data to track spatial and temporal patterns of MSS in the region of 

interest. 

 

2. Given the existence of a significant archive of ocean colour images, is it 

possible to reconstruct temporal events from time series, even in areas such 

as the UK where there is high cloud cover? To answer this question, a large 

database of Irish Sea satellite imagery is required. This will be constructed 

from available reflectance data measured by the MODIS Aqua (NASA) 

radiometer. Analysis of time series will provide information on temporal 

patterns of reflectance. 

 

3. Is it possible to use ocean colour radiometry to gain useful insights into 

physical processes in shelf seas beyond patterns of primary productivity? 

Assigning MSS as a hydrodynamic tracer will provide useful insight into the 

mechanisms driving reflectance variability in the region. This will be 

investigated using a combination of individual reflectance images and 

established time series. 

 

4. Can it be demonstrated that surface reflectance signals are driven by 

processes deeper in the water column? To understand the processes affecting 
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surface MSS concentrations, remote sensing data will be analysed in 

conjunction with physical dynamics derived from the POLCOMS 

hydrodynamic model. Physical parameters such as stratification and mixing, 

or bed shear stress, will be considered as drivers of reflectance variability. 

Derivation of relationships between surface reflectance and physical 

dynamics will provide information on the processes deeper in the water 

column affecting surface sediment patterns. Analysis of potential 

relationships will include detailed classification of geographical regions in 

which parameters are statistically linked. 

 

5. Furthermore, is it possible to infer directly from ocean colour, physical 

properties of the water column through development of simple algorithms? 

As a final step, relationships between physical parameters and surface 

reflectance shall be investigated in detail to determine whether physical 

properties can be obtained directly from ocean colour. This will include a 

statistical classification of errors and potential uncertainties. 

 

This thesis attempts to answers these important questions. The thesis has been 

written so that each results chapter is self-contained, containing the relevant 

methodology and theory specific to the study. Chapter 2 deals with standard 

methodology, which includes information on the relevant processing and 

manipulation of satellite images, as well as a detailed description of radiance transfer 

simulations and field observations used for algorithm development and validation. 

Chapter 3 focuses on the use of the POLCOMS hydrodynamic model and includes 

general methodology, a simple validation of model parameters and a theoretical 

description of secondary outputs used in this study. Chapters 4 to 7 contain the 

primary results of this study. Chapter 4 focuses on the derivation of a MSS retrieval 

algorithm, developed specifically for use in shelf seas. This forms the basis of 

chapter 5, which relies on the result that MSS can be monitored by interpretation of 

satellite imagery. Using reflectance as an indicator of surface sediment 

concentrations, time series of satellite data are utilised to investigate temporal and 

spatial patterns of reflectance in the Irish Sea. Statistical analysis of individual time 
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series allows classification of the region of interest into two dynamical areas 

containing low and high reflectance variance respectively. The low variance regime 

is then analysed in conjunction with POLCOMS stratification parameters (chapter 6), 

whilst high variance regimes are investigated in terms of available bed shear stress 

(chapter 7). The thesis concludes with a general conclusion, summarising the results 

from each chapter and proposing future work. Figure 1.5 shows a schematic diagram 

of the thesis structure. 
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Figure 1.5 Schematic description of thesis structure. 

Chapter 4: Functional relationships between 

suspended mineral concentrations and red-

waveband reflectances in optically complex 

shelf seas 

Chapter 5: Temporal and spatial patterns of 

reflectance variability in the Irish Sea 

Chapters 1-3: Introduction and methodology 

Having established reflectance measured at 667 nm as an indicator of surface 

MSS concentration, analysis of reflectance provides information on the 

sediment dynamics 

Analysis of MSS patterns provides insight into variability in the Irish Sea. 

Time series statistics generates objective classification scheme into high and 

low reflectance variance regimes  

Chapter 6: Relationships between 
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Chapter 2  

 

General methodology 

 

Summary 

This chapter is concerned with the methods involved in collecting and processing 

data used in the course of this work. The first section focuses on the use of satellite 

remote sensing data and includes information on processing and analysis techniques. 

There follows a description of in-situ field observations relevant to this study. These 

were utilised primarily for the derivation and validation of an ocean colour 

algorithm. The final section describes the implementation of radiance transfer 

calculations used to effectively model shelf sea radiance distributions.  

 

2.1 Satellite remote sensing 

Satellite remote sensing relies on the interpretation of visible and near-infrared 

radiation emitted from the surface of the ocean. For over three decades, satellites 

have played a crucial role in the monitoring and assessment of our seas. Various 

oceanic parameters can be measured, ranging from chlorophyll concentrations 

derived from radiometric observations, to estimates of sea surface height by active 

radar altimeters. The process of transmission of electromagnetic radiation through 

the atmosphere only allows several regions or “windows” in the visible, infrared and 

microwave wavelength bands to view the oceans (Sabins, 1978), as shown in Figure 

2.1. 
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Figure 2.1 Atmospheric transmission as a function of wavelength within the 

electromagnetic spectrum employed for satellite oceanography (Sabins, 1978). 

 

Radiation detected in visible wavelengths is used to monitor changes in the ocean 

colour. These wavelengths require cloud-free paths to propagate and can only be 

detected in daytime. Observations made in the infrared determine the blackbody 

radiation emitted from the ocean and are used to measure the sea surface temperature 

(Kilpatrick et al., 2001). These too require cloud-free paths to propagate but can be 

detected at night. Finally, microwaves can determine sea surface and atmospheric 

properties such as sea surface height, waves, wind vectors and amounts of water 

vapour (Nghiem et al., 1995). Microwaves have the added advantage that cloud 

cover appears transparent in this frequency domain, thus information can be retrieved 

during day or night. 

 

This study concentrates primarily on the measurement of ocean colour, and more 

specifically, data collected by the MODIS and SeaWiFS radiometers (NASA). These 

instruments are mounted on polar-orbiting satellites, so named due to their 

approximate passing of the poles on each consecutive orbit. As the Earth rotates 

below them, the satellites capture a different part of the Earth’s surface allowing near 

global coverage in 1 day.  The sun-synchronous orbit path ensures time consistency 

of measurements, as the satellite passes the equator at the same time each day. The 

Moderate Resolution Imaging Spectroradiometer (MODIS), mounted on the Aqua 

(EOS-PM1) satellite platform, began operation in May 2002. At an orbiting altitude 
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of 705 km, MODIS uses a double-sided, continuously rotating scanning mirror which 

scans cross-track at ±55 degrees to produce 2330 km swaths with a spatial resolution 

of approximately 1000 m (increased resolution is available for 7 of the 

atmospheric/land bands). Radiance is reflected off either side of the scan mirror onto 

another mirror, which in turn reflects the beam to a fixed telescope that transmits the 

radiances to an optics bench where the spectrum is analysed. The instrument records 

12 bit data and uses the received signal to create a 2-D image. Collected data spans 

36 wavebands ranging from 405-14385 nm, meaning MODIS has the technical 

capability to measure temperature as well as colour. Wavebands are divided into job 

specific groups, shown in Table 2.1, of which 9 are reserved for ocean colour 

analysis (bands 8 – 16). In contrast, the Sea-viewing Wide-Field-of-view Sensor 

(SeaWiFS) mounted on Orb-View 2, has 8 wavebands (405-855 nm) designed 

specifically to investigate ocean colour. Orbiting at a similar altitude to MODIS, 

SeaWiFS generates data at 2 levels of resolution, 1.1 km Merged Local Area 

Coverage, MLAC, or 4.5 km Global Area Coverage, GAC (coverage limitations are 

explained later in this section). SeaWiFS was launched in 1997 and was the 

replacement for retired US sensor CZCS. 

 

Table 2.1 MODIS band information 

Band group Bandwidth (nm) Primary Use 

1 – 2 620 - 876 Land/Cloud/Aerosols Boundaries 

3 – 7 459 - 2155 Land/Cloud/Aerosols Properties 

8 – 16 405 - 877 Ocean Colour/ Phytoplankton/ 

Biogeochemistry 

17 – 19 890 - 965 Atmospheric Water Vapour 

20 – 23 3660 - 4080 Surface/Cloud Temperature 

24 – 25 4433 – 4599 Atmospheric Temperature 

26 – 28 1360 – 7475 Cirrus Clouds Water Vapour 

29 8400 – 8700 Cloud Properties 

30 9580 – 9880 Ozone 

31 – 32 10780 – 12270 Surface/Cloud Temperature 

33 – 36 13185 – 14385 Cloud Top Altitude 
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2.1.1 Data processing 

MODIS and SeaWiFS satellite data are distributed by NASA 

(http://oceancolor.gsfc.nasa.gov/) via the Goddard Space Flight Centre Ocean 

Biology Processing Group (OBPG). Data is free and easily accessible by means of an 

interactive web-based portal operated by Ocean Color Web (user registration is 

required for SeaWiFS access). There are three sampling formats, Local Area 

Coverage, LAC, Global Area Coverage, GAC, and Merged Local Area Coverage, 

MLAC. GAC data are subsampled and recorded onboard the spacecraft and 

subsequently downloaded twice a day at NASA/Goddard. These data have effective 

resolutions of approximately 4.5 km along the centre of the swath. LAC data are 

recorded at 1.1 km resolution and broadcast to High Resolution Picture Transmission 

(HRPT) sites operating as ground-receiving stations, as well as downloaded at 

Goddard. MLAC data contain all available HRPT and LAC files consolidated for a 

given orbit. In case of HRPT overlap, quality tests are applied to ensure only the best 

quality scans are stored. SeaWiFS generates data in MLAC and GAC sampling 

format, although contract restrictions limit the time period of available MLAC to 

December 2004. MODIS data is available for LAC from the date of first operation 

until present.  

 

OBPG have developed the SeaWiFS Data Analysis System (SeaDAS), a software 

package that, used in conjunction with the NASA funded Ocean Color project, 

allows users to download, process and analyse their own remote sensing data. The 

software is available free of charge (downloadable from Ocean Color Web), and is 

fully supported by the group. It consists of a series of FORTRAN and IDL program 

codes which can be used to process the acquired satellite data through the relevant 

processing stages. It offers an extensive range of tools and features to assist the user 

with data analysis and visualisation. Data can be extracted and output from SeaDAS 

in several formats, including png, ASCII and binary files. (As MODIS and SeaWiFS 

data processing follows similar procedural steps, this report shall focus on the 

processing of MODIS data only to avoid repetition). 
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The lowest level of data, Level 0, is that which is recorded onboard the spacecraft. 

These are the raw radiance counts collected by the radiometer. The first processing 

stage simply incorporates navigation and calibration data with the raw radiance 

values, giving Level 1A data. Next, a geolocation file is created with corresponding 

attitude and ephemeris data. The combination of geolocation and Level 1A files are 

required to generate Level 1B data, where the pixels are now geolocated. Quality 

flags and error estimates are also available at this stage. Atmospheric corrections are 

applied to produce the Level 2 file. Empirical algorithms are then applied to the raw 

radiance counts to calculate geophysical properties. The Level 2 product corresponds 

exactly in geographical coverage (scan-line and pixel extent) to that of its parent 

Level 1A product and is stored in one physical HDF file. Ancillary Meteorological 

(MET) and Optimum Interpolation Sea Surface Temperature (OISST) data can be 

manually acquired to ensure accurate processing during atmospheric correction 

stages. A schematic of the processing steps for MODIS data and corresponding 

SeaDAS program code is shown in Figure 2.2. 
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Figure 2.2 Schematic of MODIS processing stages. The figure contains the names of 

the SeaDAS program implemented code at each step and a description of how the 

data is affected. 

 

L2: geophysical values for each pixel, derived from the Level-1A 

raw radiance counts by applying the sensor calibration, 

atmospheric corrections, and bio-optical algorithms. 

L1A: raw radiance counts from all bands as well as spacecraft and 

instrument telemetry. Calibration and navigation data are also 

included. 

GEO: definitive attitude and ephemeris files are used to create the 

final GEO version 

L1B: calibrated and geolocated at-aperture radiances generated 

from Level 1A sensor counts. Quality flags, error estimates, and 

calibration data are also included. 

Level 0: 

Near real 

time feed 

Geolocate 

Aqua_l2agn 

MSL12 

MODIS_l1agn 
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2.1.2 Atmospheric correction 

The radiance signal detected by the satellite consists of an oceanic and atmospheric 

component. Whilst the ocean element contributes approximately 10% of the total 

signal, atmospheric and surface scattering effects are removed by application of an 

atmospheric correction (Bailey et al., 2010). The total wavelength dependent 

reflectance, ρt, measured at the top of the atmosphere is given by; 

 

( )
wgwcraart ρtρtρtρρρρ +++++=      (2.1) 

 

The purpose of atmospheric correction is to retrieve the water leaving reflectance, ρw 

from the above equation. The terms, ρg and ρwc, account for the addition of 

reflectance due to ocean surface effects. Sunglint, ρg, is the photons reflected from 

the rough ocean surface and ρwc is included where white caps are present. Both terms 

are estimated from wind vectors and removed from the top-of-atmosphere 

measurements. Diffuse transmittance, t, is a function of Rayleigh and ozone optical 

thickness. The remaining components of ρt are the result of atmospheric scattering. 

Reflectance introduced by molecular scattering (Rayleigh scattering), ρr, can be 

accurately modelled and subtracted from the total reflectance value. The final two 

terms, ρa and ρra are defined as reflectance due to aerosol and molecular-aerosol 

interactions. To resolve the aerosol contributions, the concentrations and optical 

properties of the aerosol are required throughout the image. These are estimated in 

the NIR and extrapolated to visible wavelengths using an aerosol model. 

Assumptions made at this stage of the atmospheric correction process introduce 

errors when deriving reflectance in coastal regions. 

 

2.1.3 Level 2 products 

The standard Ocean Colour product contains 12 geophysical values derived for each 

pixel: six water-leaving radiances for bands 1 to 6, the chlorophyll a concentration, 

the diffuse attenuation coefficient at band 3, the epsilon value for the aerosol 

correction of bands 7 and 8, the angstrom coefficient for bands 4 and 8, and the 

aerosol optical thickness at band 8. Additionally, the standard Sea Surface 

Temperature (SST) product contains 11-micron and 4-micron (night time only) SST 
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for each pixel. There is also a flag product which contains 32 flags developed to 

report any failures or warnings that may be associated with a specific pixel. In the 

region of interest, consistent flags include the turbid water and coccolithophore flags. 

In addition to the standard ocean colour and SST products, a series of non-standard 

parameters are available. 

 

Products available to view and analyse include; 

• Rrs_nnn – Remote sensing reflectance at 412 nm, 443 nm, 488 nm, 531 nm, 

551 nm, 667 nm, 678 nm, 748 nm, 869 nm (mW cm
-2

 µm
-1

 sr
-1

). Sea surface 

reflectance defined as the ratio of water-leaving radiance to surface 

irradiance. 

• AOT – Aerosol optical thickness (dimensionless). This is a by product of the 

atmospheric correction. As aerosols absorb and scatter, they directly affect 

the radiation reflected to space, and the aerosol optical thickness is a measure 

of the aerosols and how the transmitted light is affected by them. 

• Cdom_index – CDOM index determines the proportion of Chlorophyll-

chromophoric dissolved organic matter (CDOM) by considering 

simultaneously the relationship between chlorophyll and CDOM dependent 

reflectance ratios (Morel & Gentili, 2009). 

• Kd_490 – Downwelling diffuse attenuation coefficient at 490 nm (m
-1

). This 

describes the turbidity of the water column. It is directly connected to the 

scattering and absorption coefficients of a medium and describes how 

blue/green wavelength radiation penetrates the water. The algorithm employs 

the ratio of normalised water leaving radiance measured at 443 and 551 nm to 

determine Kd_490. 

• L2_flags – Flags stored for processing warnings. 

• PAR – Photosynthetically available radiation from 400 – 700 nm. This is the 

spectral range of solar radiation that photosynthetic organisms are able to use 

in the process of photosynthesis. 

• PIC/POC – Particulate inorganic concentration and particulate organic 

concentration respectively. 

• Angstrom_exponent – Angstrom exponent for aerosol model. 
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• Chlor_a – Chlorophyll a concentration (mg m
-3

). This provides the 

concentration of chlorophyll a which is used to assess phytoplankton 

concentration. 

• SST – Sea surface temperature (degrees C). Provides information on the 

temperature of the surface. Values determined by algorithm utilising 11µm 

and 12µm channels.  

• SST4 – As above using 3 and 4 micron channels. SST4 is often used to 

determine night time SST as the short-wave infrared bands near 4µm are 

affected by bright reflective sources such as sun glint.  

 

2.1.4 Standard algorithms 

i) Chlorophyll a concentration 

Chlorophyll a is the photosynthetic pigment, found in all phytoplankton species, 

which is a measure of concentrations of phytoplankton in the ocean. Phytoplankton 

mostly absorbs light in the blue and red wavelength regions and scatters light 

predominantly of green wavelengths, giving it a green appearance.  Because of this, 

standard algorithms used to estimate chlorophyll a concentrations rely on ratios 

between the radiance of blue and green light reflected by the sea. The OC3 

algorithm, employed by MODIS-A, uses the greatest (>) of the Rrs(443)/Rrs(551), 

and Rrs(488)/Rrs(551) ratios (O’Reilly et al., 1998); 

 






 −++−

=
4
3

403.13
3

965.02
3

457.13753.22830.0

0.10
M

R
M

R
M

RMR

ac     (2.2) 

 

where ( )490

550

443

550103 log RRR M >= , and A

BR  is Rrs(A)/Rrs(B).   (2.3) 

 

Studies into the accuracy of chlorophyll a algorithms have shown that in case 1 

waters, they produce good results (O’Reilly et al., 1998). However in case 2 waters, 

which are more optically complex, the standard algorithms perform poorly, 

overestimating concentrations of chlorophyll a (Gohin et al., 2002 and McKee et al., 

2007). 
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ii) Sea Surface Temperature (SST) 

In satellite radiometry, Sea Surface Temperature (SST) refers to the temperature of a 

thin layer on the surface of the ocean (~10µm) known as the skin. The SST algorithm 

utilises MODIS bands 31 and 32 at 11 and 12 µm respectively. Brightness 

temperatures are derived from the observed radiances by inversion (in linear space) 

of the radiance versus blackbody temperature relationship. The nonlinear SST 

algorithm (Kilpatrick et al., 2001) is tuned for two different regimes based on 

brightness temperature difference. The algorithm for computing SST from observed 

brightness temperatures BT11 and BT12 (brightness temperature in deg-C at 11 µm and 

12 µm respectively) is shown below, where dBT = BT11 - BT12. 

 

For dBT <= 0.5 

 

( ) ( ) ( )[ ]( )110302110100 −××+××+×+= µdBTabdBTaBTaasst sst   (2.4) 

 

For dBT >= 0.9 

 

( ) ( ) ( )[ ]( )111312111110 −××+××+×+= µdBTabdBTaBTaasst sst   (2.5) 

 

For 0.5 < dBT < 0.9 

 

( ) ( ) ( )[ ]( )110302110100 −××+××+×+= µdBTabdBTaBTaasstlo sst  (2.6) 

 

( ) ( ) ( )[ ]( )111312111110 −××+××+×+= µdBTabdBTaBTaassthi sst  (2.7) 

 

( ) ( )sstlossthi
dBT

sstlosst −+
−

−
+=

5.09.0

5.0
     (2.8) 
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where bsst is the baseline SST taken from OISST and µ is the cosine of sensor zenith 

angle. Coefficients a00 to a13 are temporally variable and are obtained from look up 

tables. Validation of the SST product suggests a measurement accuracy of better than 

1 K (Marcello et al., 2004, Minnett et al., 2002). 

 

2.1.5 Validation of Rrs measurements 

The accuracy of the retrieved standard ocean colour product is of variable quality. In 

particular, estimates generated in shelf seas often fall short of the ± 35 % pre-launch 

error objective (McClain et al., 1992). Fundamentally, the performance of any ocean 

colour algorithm relies on the accuracy of the reflectance measurement. Rrs values 

are validated using coincidentally measured in situ observations. Well defined 

match-up criteria are in place to encourage validation with suitable in situ data. 

These criteria restrict comparisons to field observations measured within 3 hours of 

the satellite pass. In situ stations must be separated by 12 km and duplicate casts are 

confined to the spectra containing the greatest value of nLw490. For the satellite 

image, the number of non-land pixels must be greater than 50% of the total. Field 

measurements can be obtained from various databases, developed to assist users with 

satellite validation (i.e. NASA SeaBASS (http://seabass.gsfc.nasa.gov/), ESA 

Mermaid, (http://calvalportal.ceos.org/cvp/web/guest/mvt)). Even with these 

facilities, suitable match ups are difficult to obtain in the Irish Sea due to the high 

volume of cloud cover. A time series of cloud cover fraction, Figure 2.3, calculated 

for over 1000 images of the Irish Sea demonstrates the restriction of potential data 

due to cloud cover. One tenth of the images contain less than 50% cloud cover, 

whilst 70% have lost all useful pixel information due to cloud masking. Similarly, 

Figure 2.4 displays the number of cloud free pixels available in the Irish Sea in 2007 

on a pixel by pixel basis. The lack of suitable satellite imagery makes in situ based 

validation challenging. Of 158 measurement stations in the Irish Sea and Bristol 

Channel obtained during research cruises conducted by Strathclyde University (see 

section 2.2), 5 are consistent with the match-up protocol. Validation of MODIS Rrs 

measurements obtained from these locations is shown in Figure 2.5. Satellite data has 

been averaged over a 5x5 pixel area centred on the station latitude / longitude 

coordinate. The solid line depicts the 1:1 line and dashed lines depict the 5% pre-
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launch error objective for radiance values. Good agreement between satellite and 

field radiometric measurements can be seen at stations 5, 6 and 9. Results for station 

10, which contains the greatest residual difference and lowest corresponding time 

discrepancy, suggests in some part, anomalies are independent of time.  Therefore, a 

relaxed version of the match-up protocol may yield more valid comparisons. 

 

 

 

Figure 2.3 Cloud cover fraction for Irish Sea images, taken 01 January 2007 to 01 

January 2010. Only a small fraction of images contain sufficient pixel information to 

effectively validate satellite measurements. Data courtesy of GES DISC via Giovanni 

web portal (http://disc.sci.gsfc.nasa.gov/giovanni). 
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Figure 2.4 Number of cloud free pixels available in the MODIS Aqua dataset for the 

year 2007. 

 

 

Figure 2.5 Validation of MODIS Rrs 667 using field observations. The solid 1:1 

represents an exact match between radiometric instrumentation measurements. 

Dashed lines depict the pre-launch objective error of 5% for radiance measurements. 

The residual difference is independent of time. 
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Satellite data were processed using SeaDAS version 6.1. All images were map 

projected onto a 2-dimensional Mercator grid to ensure geographical consistency of 

pixels. Analysis was conducted using Matlab software, in particular the image 

processing toolbox and University of Columbia Earth Observation Sciences M_Map 

freeware mapping toolbox for Matlab (http://www.eos.ubc.ca/~rich/map.html). A list 

of scripts and functions written specifically for this project can be found in Table 2.2 

(relevant scripts may be available on request). 

 

Table 2.2 Matlab scripts relevant to satellite remote sensing. 

Name Description 

allatonce Imports and cleans satellite reflectance data. 

blotch_data Allows sub-selection of satellite image. 

create_composite Generates composites of satellite images. 

descriptors Classifies reflectance data by relevant descriptor. 

imagesat Creates satellite image 

mss_calc Calculates upper and lower limits of MSS algorithm 

plot_ts_grid Plots time series data 

POLsat Projects POL data and satellite data onto consistent 

corrdinates 

select_points_scat Allows selection of data from scatterplot and displays 

geographical location of pixels on map 

time_series_grid/selection Generates time series from gridded satellite data 

time_series_class Determines classification group for time series data 

transectplots Allows selection and generates of  transects 
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2.2 Field observations 

A common practice in the field of environmental optics is the participation in 

research cruises. This involves going to sea and measuring various oceanic 

parameters in situ. Data collected in this manner are often considered to be “truth” 

values, to which modelled and remotely acquired data are compared. Field 

observations used in this study were collected on 6 research cruises in the Irish Sea 

and Bristol Channel, spanning the period August 2001 to August 2006. 

Measurements were conducted at the stations illustrated in Figure 2.6.  

 

 

 

Figure 2.6 Station locations from 6 Irish Sea and Bristol Channel cruises. 

 

The purpose of an optics research cruise is to obtain information on the inherent and 

apparent optical properties of the water. To do this, marine instrumentation is 

deployed to monitor how light interacts with the water column. This coincides with 

the collection of corresponding in-water constituent concentrations. There are three 

main categories of instrument which differ in practical use. Stand alone radiometers 

(e.g., RAMSES), which are placed statically on a ship or floatation device, collect 

upwelling and downwelling distributions of light. Profilers (e.g., SeaWiFS Profiling 

Multichannel Radiometer, SPMR) measure small scale changes in the underwater 
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light field as a function of depth. More modern instrumentation can be based on 

Autonomous Underwater Vehicles, which independently gather information across 

large areas. This study focuses on data gathered by 3 profiling instruments, a 

Satlantic freefalling SPMR, WETLabs ac-9 Absorption and Attenuation Meter and 

HOBI Labs HydroScat-2 Backscattering Sensor. The Satlantic SPMR is discussed in 

greater detail than the other instruments as it provides the data required for validation 

purposes. 

 

2.2.1 Satlantic SeaWiFS Profiling Multichannel Radiometer  

The Satlantic (Satlantic Inc., Nova Scotia, Canada) SeaWiFS Profiling Multichannel 

Radiometer (SPMR) is a multispectral instrument designed specifically for the 

purposes of SeaWiFS validation. It generates measurements of upwelling radiance, 

Lu, and downwelling irradiance, Ed, across the visible spectrum (412, 443, 489, 510, 

554, 665 and 700 nm), with associated bandwidths of 10 nm. Designed as a 

freefalling profiler, the SPMR instrument decouples the measurements from ship 

motion and minimises light interference, such as ship shadowing. 

 

Data collected by the SPMR are processed using the Satlantic ProSoft version 7.7 

data analysis package (ProSoft 7.7 User Manual, 2009). Essentially, the program 

converts raw signals detected by the instrument into higher level products such as 

water leaving radiance and reflectance profiles.  At the first level (1a/1b/2), 

calibration and reference data are subtracted from the collected signal. Any measured 

points greater than 10 times the cast standard deviation are removed, as well as 

points where the tilt of the instrument was greater than a defined value (10 degrees). 

Processing to level 2s involves defining a pressure coordinate system. The Ed and Lu 

sensors, located at the top and bottom of the instrument respectively, are separated on 

the SPMR by a distance of 1.4 m. The measurements per depth are corrected to a 

common depth defined by the Ed sensor. To progress to level 3, the data is 

wavelength interpolated and sorted into depth-averaged bins of 0.5 m. Optical sensor 

data (Lu etc.) are natural log transformed to “straighten” the data prior to averaging. 

The final stage incorporates radiometric equations to calculate level 4 products. A 

linear polynomial fit is applied to the initial 5 points of depth profiles lnLu and lnEd. 
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The exponential of the polynomial coefficients are used to derive K and sub-surface 

values, Lu(0
-
,λ) and Ed(0

-
,λ), K being obtained from the gradient and sub-surface 

values estimated from the intercept. Accounting for air-sea interface effects, Lu and 

Ed are extrapolated through the surface to give Lw(0
+
,λ) and Ed(0

+
,λ); 

 

( ) ( ) ( )
( )λη

θλρ
λLλL

w

uW 2

,1
,0,0

−
= −+                  (2.9) 

 

( ) ( ) αλEλE dd −= −+ 1,0,0                                  (2.10) 

 

where ( )θλρ ,  is the Fresnel reflectance index for water (0.021 for seawater), 

)(ληw is the Fresnel refractive index of seawater (1.345) and α is the Fresnel 

reflection albedo for irradiance from sun and sky (0.043). The above-surface values 

of radiance and radiance then provide inputs for calculating radiometric quantities, 

for example remote sensing reflectance; 

 

( ) ( )
( )λE

λL
λR

d

W
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+
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+ =                            (2.11) 

 

During the course of ProSoft data processing (version 7.7.11), an error was 

uncovered with the procedure responsible for extrapolating optical values to the 

surface. The first two quantities of Lu profiles derived at level 3 were marginally 

lower than those presented in the level 2s data. An example of this is shown in Figure 

2.7. The error was found to be consistent across all wavelengths and was only 

present for the Lu sensor. 
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Figure 2.7 Errors in first two points of level 3 depth-averaged Lu values. 

 

The binning algorithm used by ProSoft was determined as the cause of the error, 

whereby the program was unable to effectively deal with NaN values. Spatial 

differences between the SPMR Lu and Ed sensors prevent Lu measurements in the top 

several metres of the profile. These “blank” data points were subsequently being 

replaced by NaNs which were included in the depth-average binning. A correction 

routine was developed to address this issue, which ignored the first two data points 

when performing extrapolations on Lu. Figure 2.8 details the statistical difference 

between corrected and uncorrected surface Rrs values as a function of wavelength. 

The box plot has lines at the lower quartile, median, and upper quartile values. 

Whiskers extend from each end of the box to the most extreme values within 1.5 

times the inner quartile range. Outliers, displayed as blue dots, are data with values 

beyond the ends of the whiskers. The results suggest uncorrected SPMR data were 

underestimating surface Rrs. In some cases, the percentage difference between 

corrected and uncorrected data was greater than 150%. Rrs665 had the greatest 

anomaly with a 39% median difference. Minor differences in Lu translate into 

significant errors in the recovered Rrs spectrum, as shown in Figure 2.8. 
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Figure 2.8 Statistics of percentage difference between corrected and uncorrected 

SPMR data. The variable median values range from 20% to 39%, however maximum 

differences of greater than 150% were recorded. This highlights the effect of a small 

underestimation of Lu. 

 

2.2.2 ac-9 Absorption and Attenuation Meter  

The dual-path ac-9 Absorption and Attenuation Meter (WETLabs ac-9 plus User’s 

Guide, 2008), measures in situ inherent optical properties of particulate and dissolved 

material at nine wavelengths across the visible and NIR spectrum (412, 440, 488, 

510, 532, 555, 650, 676 and 715 nm). The instrument contains two incandescent light 

sources, which are transmitted through separate enclosed volumes of sample water. 

The internal wall of the flow tube used for attenuation measurements is black to 

encourage absorption of photons scattered out of the transmitted beam. This excludes 

the detection of scattered light by the housed lens. For absorption measurements, a 

reflective flow tube reflects forward scattered photons back into the transmitted 

beam, ensuring an optimal contribution to the intensity measurement. Software 

provided by WETLabs converts the transmitted irradiance into attenuation, c(λ), and 
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absorption, a(λ), coefficients. The non-water scattering coefficient, b(λ), is obtained 

using the expression ( ) ( ) ( )n n nb c aλ λ λ= − . 

 

2.2.3 HydroScat-2 Backscattering Sensor  

The HydroScat-2 Backscattering Sensor (hs-2) is an optical instrument developed to 

generate measurements of total backscattering bb(λ) at 2 wavelengths, 470 nm and 

676 nm, as well as simultaneous measurements of chlorophyll fluorescence at 676 

nm (HOBI Labs User’s Manual, 2008). It consists of 2 independent channels, each 

containing frequency modulated LED light sources and an optical receiver. Light 

emitted by the wavelength specific LED penetrates the water sample at 20
o 

from the 

normal. A prism contained within the optical receiver bends the detection field-of-

view towards the source beam. Unwanted light is excluded by means of a band-pass 

interference filter and the remaining photons are focused on a silicon detector. The 

volume scattering function at 140° is estimated from the irradiance detected by the 

hs-2, and the backscattering coefficient is subsequently estimated using the method 

of Maffione & Dana (1997). The configuration of the two channels provides the 

secondary capability of measuring chlorophyll fluorescence by excitation from the 

shorter wavelength source. 

 

2.2.4 Specific inherent optical properties (SIOP) 

The absorption coefficients and spectral slope for CDOM were determined by 

filtering seawater samples through a 0.2 µm membrane filter and measuring the 

optical density of the filtrate in a 10 cm pathlength cuvette. Absorption coefficients 

for suspended particles were determined by filtering 500 ml of seawater through 

25mm diameter Whatman GF/F filters and measuring the optical density of these 

filters before and after extraction of pigments with acetone. Subtraction of the two 

optical density spectra allowed the contributions of phytoplankton pigments and non-

algal particulates to be determined.  Filter pad optical densities were converted to 

absorption coefficients for phytoplankton (ap) and non-algal particulates (anap) using 

a pathlength amplification factor of 1.7: this was established empirically by 

comparing total absorption coefficients estimated from the sum of the particulate and 

dissolved components with those measured in situ using the ac-9. Since suspended 
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mineral particles in the Irish Sea are strongly coloured, it was assumed that anap was 

effectively amss. Specific absorption coefficients were then derived by linear 

regression of absorption coefficients on the relevant variable concentrations to give 

a*CHL, a*MSS and a*CDOM (Brown, 2010). Scattering and backscattering coefficients 

were partitioned between algal and non-algal particles using multiple linear 

regression (Stavn & Richter 2008). Reconstructions of total inherent optical 

properties for waters dominated by minerals and chlorophyll using specific inherent 

optical derived by the procedures described above generated reasonably 

representative values (McKee & Cunningham 2006). SIOP values are shown in 

Table 2.3. All Matlab scripts relevant to this section are found in Table 2.4 (scripts 

available on request). 

 

Table 2.3 Specific inherent optical properties used in radiance transfer modelling. 

Wavelengths correspond to specific MODIS channels.  

Waveband a*CHL a*MSS a*CDOM b*CHL b*MSS bb*CHL bb*MSS 

412 0.029 0.071 1.562 0.052 0.475 0.001 0.015 

443 0.029 0.056 0.970 0.047 0.479 0.001 0.014 

488 0.021 0.039 0.517 0.055 0.488 0.001 0.013 

531 0.014 0.022 0.313 0.066 0.493 0.001 0.012 

551 0.012 0.005 0.251 0.065 0.494 0.001 0.011 

667 0.018 0.003 0.054 0.061 0.494 0.001 0.009 

 

 

Table 2.4 Matlab scripts relevant to field observations. 

Name Description 

SPMRcorrection Corrects SPMR data 
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2.3 Hydrolight – Ecolight radiative transfer numerical model 

Radiance is the fundamental radiometric quantity that describes the depth (z), 

directional (θ,ϕ), and wavelength (λ) behaviour of light (Mobley, 1994) and can be 

simulated using radiative transfer modelling (chapter 1). This study uses reflectance 

values calculated from the Hydrolight radiative transfer model. Hydrolight (version 

5, HE5) is a numerical radiative transfer model distributed by Sequoia Scientific Inc 

(Mobley & Sundman, 2008).  It solves the time-independent, one-dimensional, 

unpolarized radiative transfer equation (RTE) to compute radiance distributions and 

derived quantities, for example remote sensing reflectance, within or leaving a body 

of water. A subset of the Hydrolight package is Ecolight, which solves the 

azimuthally-averaged version of the RTE. By supplying absorption, scattering and 

backscattering coefficients, Hydrolight is able to effectively simulate an underwater 

water climate representative of coastal seas. Inherent optical properties (IOP) can be 

supplied in the form of ac-9 and hs-2 measurements. Other physical parameters 

known to alter light leaving the surface of the water can also be included, such as 

bottom reflectance boundary types and ambient wind speeds. Table 2.5 presents the 

Hydrolight settings used for successful radiance modelling of the Irish Sea.  

 

For the purposes of this study, total IOPs were reconstructed for waters dominated by 

minerals and chlorophyll using specific inherent optical properties (Table 2.3). 

Appropriate ranges of constituent concentrations were derived from field 

observations in the Irish Sea and Bristol Channel: these were 0 to 1.0 m
-1

 absorption 

at 440 nm for CDOM, 0 to 10 mg m
-3

 for CHL and 0 to 20 g m
-3

 for MSS.  Values 

for the total inherent optical properties of a given volume of seawater were then 

calculated by summing the contributions of the individual constituents. Within these 

ranges, concentrations were specified for each constituent at logarithmic intervals 

and all possible combinations of concentrations considered, so that a total of 20328 

model runs were completed. Hydrolight performs calculations at specified 

wavebands and by default interpolates IOP data to the relevant wavelength. 

Interpolating spectral IOPs to MODIS wavebands before supplying coefficients to 

the model avoids the necessity for interpolation by Hydrolight. A comparison of 

backscattering spectra interpolated before and during model simulation is shown in 
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Figure 2.9. Clear spectral differences are present in data generated by two separate 

interpolation methods. The spectral location of the final constant value can be 

extended to longer wavelengths by applying the pre-interpolation method. This effect 

is most prominent for backscattering coefficients as data is only available in two 

wavebands.  

 

Model simulations generated for this study were performed using Ecolight due to the 

reduced computational run time and data storage requirements. For the combinations 

of optically significant constituents measured in-situ, reflectance spectra were 

generated by supplying IOPs derived from measured constituent concentrations and 

SIOPs to the radiance transfer model. A comparison between modelled and measured 

reflectance demonstrates the performance of the radiance transfer modelling routine, 

shown in Figure 2.10. The model generates reasonable estimates of remote sensing 

reflectance with an increasing trend of the R
2
 value with wavelength indicating the 

radiance transfer calculations are more accurately representing reflectance at longer 

wavelengths. Results show Rrs667 is adequately replicated by the radiance transfer 

modelling technique. Analysis of Ecolight outputs were conducted using the Matlab 

software package. Relevant script headings can be found in Table 2.6 (scripts 

available on request). 

 

 

 

Figure 2.9 Comparison of backscattering coefficients interpolated before and during 

Hydrolight simulations. Differences are present due to the Hydrolight default 

interpolation scheme. 
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a) 

 

b)

 

c)

 

d)

 

 

Figure 2.10 Comparison of SPMR reflectances and reflectances generated by the 

Ecolight radiance transfer modelling package, at a) 443 nm, b) 490 nm, c) 551 nm 

and d) 667 nm. Rrs667 is sufficiently modelled by radiance transfer modelling. 

 

 

Table 2.5 Control inputs provided to Hydrolight for representative radiance 

modelling 

Variable Description Value 

PARmin 
Lowest wavelength included in 

PAR calculations 
400 nm 

PARmax 
Highest wavelength included in 

PAR calculations 
700 nm 

PhiChl 
Chlorophyll fluorescence 

efficiency 
0.02 
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Raman0 Raman reference wavelength 488 nm 

RamanXS 
Raman scattering coefficient at 

the reference wavelength 
0.00026 

iIOPmodel IOP model selection IOP data model (user supplied) 

iSkyRadModel Sky radiance model selection 

Semi-empirical sky radiance 

model of Harrison and 

Coombes 

iSkyIrradModel 
How are sky irradiances 

obtained 
RADTRANX 

Iastropt Absorption model (pure water) Smith and Baker 

Itype Type of concentration input Constant with depth 

Wavel Wavelength selection MODIS 

Ichlfl Chlorophyll fluorescence On 

icdomfl CDOM fluorescence Off 

ibiolum Bioluminescence presence Off 

iraman Raman scattering (inelastic) Off 

Iflagsky Sky model Semi-analytical 

suntheta Solar zenith angle (in degrees) 45 

sunphi Solar azimuthal angle 0 

cloud Cloud cover 0 

Windspeed Windspeed 3.10 m/s 

Ibotm Type of bottom boundary Water column is infinitely deep 

Output depths Depth values Zero to 50 m, increments of 2 m 

 

 

Table 2.6 Matlab scripts relevant to radiance transfer modelling 

Name Description 

generateiops Generates IOP files for Ecolight run 

sampleerrors Generates IOPs for given parameters 

alt_ouput 
Combines all model outputs into one file for each 

quantity 
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Key points from chapter 2 

1. MODIS Aqua satellite remote sensing measurements were used to construct a 

database of Irish Sea reflectance. These data were processed from level 0 to 

level 2B using SeaDAS data analysis package. Consolidation of satellite 

reflectance data created time series covering the extent of the Irish Sea. 

Matlab routines were developed for the purpose of correcting and analysing 

satellite data. 

 

2. In-situ measurements of SPMR upwelling radiance, Lu, were reprocessed 

using a Matlab routine developed to correct a processing error uncovered 

during the course of the study. Pre processed Lu values generated 

discrepancies in subsequent Rrs of up to 150%. 

 

3. SIOPs and varying ranges of in-water constituents were provided to Ecolight 

radiance transfer package to generate 20328 model runs. Matlab software 

developed specifically for use with Ecolight allowed the batch processing and 

extraction of data. 
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Chapter 3 

 

Use of the Proudman Oceanographic Laboratory Coastal 

Ocean Modelling System (POLCOMS) 

 

Summary 

POLCOMS is a physical ocean model developed by the Proudman Oceanographic 

Laboratory (Holt et al., 2001, Holt et al., 2005 and Holt et al., 2008). The model 

simulates hydrological processes in the shallow and deep waters of the UK shelf, 

with a fine resolution grid of approximately 1.85 km covering the Irish and north 

Celtic Sea. Baroclinic layers are combined to construct a three-dimensional model 

which can generate small scale vertical and horizontal changes in density. Physical 

properties of the water column are simulated incorporating actual climatological 

observations. With excellent feature-preserving properties, POLCOMS can 

effectively simulate on-shelf baroclinic processes such as fronts and river plumes. 

The purpose of this chapter is to provide a general introduction to the POLCOMS 

model. This includes a simple validation of model outputs and a description of 

secondary variables relevant to this work. This chapter shall also include a section 

related to estimating bed shear values in the Irish Sea. 

 

3.1 Model equations 

Equations of state and motion are the foundation of the POLCOMS model. The 

coordinate system is defined in spherical polar sigma coordinates, with χ, ϕ and σ 

describing eastward, northward and vertical directions respectively. Here, σ = (z – ξ) 

/ (h + ξ), where z is the Cartesian vertical coordinate, h is the water depth relative to 

mean sea level (z = 0) and ξ is the elevation above this point. Subsequently, total 

water depth H = h + ξ. Discretised levels in σ represent baroclinic layers which are 

variable over horizontal space. An approximation of the UNESCO equation of state 

(Fofonoff and Millard, 1983) is used to calculate density as a function of potential 

temperature (T), salinity (S) and pressure (p);  
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following Mellor (1991). The hydrostatic pressure is given by; 
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Here ρ0 = 1027kgm
-3

, Z = z – ξ = σH. Pα is the atmospheric pressure and 
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0

. The incompressible, hydrostatic, Boussinesq equations of motion are 

solved to allow time splitting between barotropic and baroclinic components. The 

equations are divided into depth varying and depth independent parts; so the 

eastwards velocity is ),,,(),,( tσφχutφχuu r+= and the northward velocity is 

),,,(),,( tσφχvtφχvv r+= . The depth mean equations are; 
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and 
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whilst the equations for the depth varying components are given by;  

 

[ ]χBSχr

r NLBFFHuD
R

φuv
fvuL

tδ

uδ
−−−+Π−++−= −1)(

tan
)(   (3.7) 

 

and 

 

[ ]φBSφr

r NLBGGHvD
R

φu
fuvL

tδ

vδ
−−−+Π−++−= −1

2

)(
tan

)(    (3.8) 

 

 

A full description of the derivation of these equations and their component terms can 

be found in (Holt & James, 2001).  

 

3.2 Model variables 

The POLCOMS model generates a series of functional physical parameters, as 

shown in Table 3.1. Each property is computed as a three-dimensional variable. 

Primary model outputs relevant to this study include potential temperature (
o
C), 

salinity (p.s.u), depth (m) and vector components of current velocities (ms
-1

), which 

were obtained from Dr Jeff Polton at the Proudman Oceanographic Laboratory, 

Liverpool. Daily average temperature and salinity values were generated for the top 

and bottom of the water column, whilst current velocities, u and v, were depth 

averaged. The period of simulation ranged from 1
st
 January 2006 to 31

st
 December 

2007.   
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Table 3.1 POLCOMS model variables. 

Variable Description Units 

aa Turbulent viscosity m
2
 s

-1
 

ak Turbulent diffusivity m
2
 s

-1
 

al Mixing length m 

b Buoyancy m s
-2

 

bsal Boundary condition salinity p.s.u. 

btmp Boundary condition temperature 
o
C 

fu u volume flux (per length) m
2
 s

-1
 

fv v volume flux (per length) m
2
 s

-1
 

om Vertical velocity (σ-units) s
-1

 

qsq Turbulent kinetic energy x 2 m
2
 s

-2
 

sal Salinity p.s.u. 

tmp Potential temperature 
o
C 

u Eastward horizontal velocity m s
-1

 

v Northward horizontal velocity m s
-1

 

u0 Eastward velocity (last time step) ms
-1

 

v0 Northward velocity (last time step) m s
-1

 

ur Eastward velocity (depth varying) m s
-1

 

vr Northward velocity (depth varying) m s
-1

 

met1 Surface forcing data (time 1) Various 

met2 Surface forcing data (time 2) Various 

pressure Pressure for compressibility N m
-2

 

rhobar Mean density kg m
-3

 

aln Mixing length profile n.d. 

spm Suspended particulate matter or tracer g m
-3

 

bed Deposited material g m
-2
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3.3 Model performance 

As a first step, model performance was investigated by comparison with satellite 

measured sea surface temperature (SST). The high spatial and temporal coverage of 

satellite measurements make this an efficient technique for model validation. The 

two-dimensional correlation coefficient, which describes the degree of linear 

dependence between two vectors (images), was calculated using monthly averages of 

satellite measured (MODIS) and model simulated SST. Figure 3.1 shows seasonal 

changes in the two-dimensional correlation coefficient (Noda and Ozaki, 2004) for 

SST comparisons over a period of two years. For both years, a general decrease in 

the correlation coefficient in spring and summer months, suggests the model is 

failing to reproduce surface temperature values during this hydrologically complex 

period. Accurate model representation of SST for the remaining months in 2006 is 

indicated by correlation coefficients close to 1. Results for 2007 show varied levels 

of agreement between MODIS and POLCOMS data. The minimum coefficient 

values for the 2007 simulation occur during autumn months, contradictory to the 

expected summer (Holt et al., 2005). 

 

Images of September 2007 monthly averaged SST magnitudes are shown in Figure 

3.2. With the lowest correlation coefficient, this example has been chosen due to the 

apparent poor performance of model simulations for this period. The spatial variation 

in SST can be observed from images generated from MODIS and POLCOMS data. 

Analysis of transect data from SST images indicates the existence of a temperature 

offset, where for a large part of the region of interest, POLCOMS is systematically 

underestimating the surface temperature values. Figure 3.3 contains data from the 

displayed transect (Figure 3.2) which runs south to north from point A. Values 

obtained from POLCOMS are approximately 2 
o
C less than those measured by the 

satellite at each stage of the transect. The temperature gradient located between 60 

km and 100 km of Figure 3.3 is indicative of a thermal front. A difference of ~10 km 

separates the location of the measured and modelled front, demonstrating the model 

capability of accurately reproducing hydrological features. 
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Figure 3.1 Two dimensional correlation coefficients calculated for monthly averaged 

MODIS and POLCOMS SST. The data time series ranges from 2006 to 2007, 

depicted by black and red markers respectively. Months containing no data points did 

not yield any cloud-free satellite measurements in the region of interest. High 

correlation coefficients indicate a good level of agreement between measured and 

modelled data. 

 

 

 

Figure 3.2 MODIS and POLCOMS September 2007 (lowest 2-d correlation 

coefficient) monthly averaged SST. The black line depicts location and orientation of 

transect. 
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Figure 3.3 Transect extract of MODIS (red) and POLCOMS (blue) September 2007 

monthly averaged SST. POLCOMS is under-estimating SST as illustrated by 

consistent offset. However similar locations of region of strongest thermal gradient 

suggest the model is effectively simulating hydrological features. 

 

 

Verification of POLCOMS SST has shown varied levels of model performance. 

Winter simulations produce estimations of SST which closely correlate with satellite 

measurements. The model effectively fails to reproduce absolute sea surface 

temperatures during spring and summer months, where quantitative under-

estimations of SST are generated. In these examples, the maximum difference 

between measured and modelled SST is approximately 2
o
C. Nonetheless, important 

spatial features are captured by POLCOMS meaning modelled data can be used for 

the purposes of this study. 
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3.4 Derived variables 

POLCOMS model variables provide predictive information on UK waters. 

Application of primary outputs to alternative hydrological equations can offer 

additional information on the state of our seas. A hydrological feature of particular 

interest is the stratification and mixing process of coastal shelf seas. Stratification of 

the water column is a phenomenon present in most coastal and shelf seas. There are 

two stratification types considered, salinity, where a vertical gradient in the saline 

content promotes separation from mixed waters and thermal, where the water column 

is separated by large temperature differences. Thermal stratification occurs during 

periods of calm, when high insolation heats the top layer of water creating a 

temperature difference between the upper and lower layers. The upper, less dense 

water is separated from the cooler, more dense water by a thin layer known as the 

thermocline in which there are distinct temperature and density gradients. A similar 

separation occurs when the water column in salinity stratified. Here discretised layers 

of density are induced by variations in the saline content of the water. 

 

3.4.1 Simpson-Hunter criterion 

Predictions of stratification and mixing regimes can be obtained by considering 

changes to the potential energy available in the water column relative to mixed 

conditions. For stratification to occur, potential energy must exceed turbulent kinetic 

energy. The rate of change of potential energy, V, per area, A, with time is given by; 

 

c

gQhα
WρkδUρkε

π
γ

dt

dV
aswb

23

4 33 −+=      (3.9) 

 

where U is the tidal current amplitude, W is wind speed, Q is the heating rate and h is 

water depth. Definitions for the remaining terms in this equation can be found in 

Table 3.2. Wave and current induced mixing provides a positive input to potential 

energy (decreasing stratification), whilst heat exchange at the ocean surface (and 

buoyancy effects from freshwater river discharge) reduce the available potential 

energy and increase stratification. At a front, where transitions between stratified and 

mixed regimes occur, V = 0; 
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33

3

4

2
WρkδUρkε

π
γ

c

gQhα
aswb +=       (3.10) 

 

If the wind effect is uniform and ε, γ, and k are considered constants, the formation of 

a front is determined by the parameter h/U
3
. This is known as the Simpson-Hunter 

criterion (SHC) (Simpson & Hunter, 1974). High values of SHC indicate 

stratification – the surface mixed layer is large or the current velocity is inadequate to 

overturn the surface layer. Low values indicate mixing of the water column, with 

shallow depths or strong tidal velocities. In this form, the SHC is seasonally 

dependent and can only be used to predict stratification in summer climates.  

 

Table 3.2 Terms from equation (3.9) 

Term Description Unit 

ρw, ρa Density of seawater and air respectively kg m
-3

 

kb, ks Bottom and surface drag coefficient respectively n.d. 

γ Ratio of wind-induced surface current to wind speed n.d. 

α Volume expansion coefficient K
-1

 

g Acceleration due to gravity m s
-2

 

c Specific heat J kg
-1

 K
-1

 

ε, δ Efficiencies n.d. 
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3.4.2 Delta sigma 

One technique for investigating stratification in coastal seas involves analysis of the 

density structure of the water column. Using temperature and salinity outputs from 

the POLCOMS model, stratification can be predicted by comparing the density 

estimated at the water surface and seafloor. The density of seawater, ρ, depends on 

temperature, (T), salinity, (S) and pressure, (p) through a relation known as the 

equation of state; 

 

[ ]),,(1)0,,(),,( pTSKpTSρpTSρ −=      (3.11) 

 

where K(S,T,p) is the bulk modulus. Fofonoff and Millard (1983) published a 

detailed description of this algorithm in a UNESCO technical paper. The quantity 

sigma-T (σT), is more commonly employed and is equal to (ρ-1000). Delta sigma (or 

∆σ), the difference in σT between the top and bottom of the water column, is used to 

predict patterns of stratification. High and low values of ∆σ are expected in stratified 

and mixed regimes respectively.  

 

The feasibility of ∆σ as a predictor of stratification can be assessed using field 

observations of Sigma-T, which is measured routinely on research cruises using 

conductivity – temperature – depth profiling instruments (CTD) (Sea-Bird 

Electronics Inc., Washington, USA). Salinity is estimated from conductivity 

measurements and pressure derived from depth. Figure 3.4 a) shows model-derived 

∆σ calculated with temperature and salinity from 07 August 2006 (consistent with 

Bristol Channel 2006 research cruise). Station locations are highlighted on the map 

with the corresponding CTD profiles shown in Figure 3.4 b). Stations 3, 4 and 5 are 

located in a region with high values of ∆σ and would therefore be described as 

stratified. The density gradients, measured in CTD profiles at these stations, which 

are indicative of stratification, corroborate this assumption. General agreement 

between model predicted and in-situ observed stratification suggests ∆σ can be used 

as a suitable predictor of stratification. 
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a)  

b)  

 

Figure 3.4 a) ∆σ calculated from modelled temperature and salinity for 07 August 

2006, with station locations highlighted in magenta. Density gradients in depth 

profiles b) measured at each station indicate the presence of stratification. Results 

from modelled predictor of stratification are consistent with in-situ field 

measurements. 
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3.4.3 Bed shear stress calculation 

The erosion, suspension and deposition of sediment in coastal seas is controlled by 

the bed shear stress (BSS) (Soulsby & Clarke, 2005) which is a measure of the 

frictional force exerted on an area of the sea floor by wave and current flows (N m
-2

). 

The inclusion of a wave component to the total BSS introduces seasonality to this 

hydrodynamic parameter, where increased wind-induced waves raise the levels of 

BSS in shallow (< 100 m) waters. 

 

For a rough turbulent flow regime (determined by the Reynolds number) (Thorpe, 

2005), maximum bed shear stress, τmax, under combined waves and currents is a 

function of the depth averaged current velocity, Ū, and the maximum drag 

coefficient, CDmax; 

 

2

maxmax UCρτ D=                      (3.12) 

 

where ρ is the density of sea water. CDmax can be found using the following 

expression; 
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Here, 
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For equation (3,13), 

 

( )
2

1
2

1

2

2

1 



 −+= AAACDm        (3.18) 

 

with 

 

( )
( )

[ ]

1

23

0

*

1
ln2

1)ln(

ln

1ln

2

1

T

TT

zδ

δh

U

u
A e −

=
−









=      (3.19) 

 

( ) 1

3

0

*

2
ln

4.0

ln

1

T

T

zδU

uκ
A e ==        (3.20) 

 

Here, h is the water depth z0 is the bed roughness length (median grain diameter, d50 

= 0.5 mm, divided by 12), δ is the wave boundary layer thickness, κ is von Karman’s 

constant (= 0.40), ϕ is the angle between wave and current directions, ar = 0.24, and 

u*e is the effective friction velocity. The parameter u*e can be written in terms of the 

current, τc, and wave, τw, contributions to BSS; 
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ττ 22
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The wave-only component of BSS, τw, is dependent on the wave orbital velocity 

amplitude at the seabed, Uw, and the friction factor for rough turbulent flows, fwr; 

 

2

2

1
wwrw Ufρτ =          (3.22) 

 

and 

 

52.0

0

39.1

−









=

z

A
fwr         (3.23) 

 

The orbital amplitude of wave motion, A, is the product of the wave orbital velocity 

and the wave period; 

 

π

TU
A w

2
=          (3.24) 

  

Here wave orbital velocity, Uw, is obtained from measurements of wave period, T, 

significant wave height, H, and water depth, h; 

 

)sinh(khT

Hπ
U w =         (3.25) 

 

k is the wave number, derived from wavelength L; 

 

L

π
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2
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where (for deep water waves), 
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For τmax calculations, wave information was extracted from a spectral WAve Model 

(WAM) coupled with POLCOMS high resolution Irish Sea tidal model (Brown et al., 

2010). τmax was calculated using maximum daily wave (T, H) and current (Ū) 

POLCOMS-WAM outputs for 2005. The unknown angle between wave and current 

directions was set to 0
o
 for all BSS calculations. Figure 3.5 shows τmax varying as a 

function of angle. Setting the angle between wave and current flows to constant zero 

ensures the generation of absolute maxima. Estimations of τmax and ∆σ will be used 

to identify hydrological features in the Irish Sea. These shall form the basis of the 

physical parameters predicted to influence sediment dynamics in the region. 

Modelled parameters will be analysed in conjunction with ocean colour data to 

determine whether reflectance variability can be attributed to physical properties. All 

POLCOMS data was analysed using the Matlab software package. Relevant scripts 

are described in Table 3.3 (scripts available on request). 

 

 

 

Figure 3.5 Varying τmax as a function of angle between wave and current flows. 

 

Table 3.3 Matlab scripts for POLCOMS analysis 

Name Description 

POLsat Projects POL and satellite data to consistent coordinates 

equation_of_state 
Calculates density as a function of temperature, salinity 

and depth. 

timeseries_rrs667_delsig Generates time series of satellite and POLCOMS data 

read_daily_UV_max Extracts maximum current and wave data 

calculate_trms Calculates maximum bed shear stress τmax 
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Key points from chapter 3 

1. POLCOMS data were obtained from the Proudman Oceanographic 

Laboratory. These consisted of surface and bottom temperature and salinity, 

depth and depth-averaged current velocities. From the WAM model, wave 

height and period were also obtained. 

 

2. Temperature, salinity and depth data were used to calculate surface and 

bottom density using equations of state.  

 

3. Validation of model temperature predictions were performed using MODIS 

satellite Sea Surface Temperature (SST) data. This demonstrated a 

discrepancy in the absolute value of modelled sea surface temperature, 

however geographical locations of thermal fronts were approximately 

consistent with MODIS SST. 

 

4. Comparison between top and bottom density provides an indicator of 

stratification, ∆σ. The use of ∆σ as a suitable stratification parameter was 

validated using CTD field measurements of sigma-T stratification. Stations 

containing gradients in sigma-T from density profiles corresponded to 

locations exhibiting increased ∆σ. 

 

5. Bed shear stress was calculated for the Irish Sea using POLCOMS-WAM 

model outputs. These will be used to highlight physical features in the region 

of interest. 
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Chapter 4 

 

Relationships between suspended mineral concentrations 

and red-waveband reflectances in optically complex shelf 

seas 

 

Summary 

This chapter considers the uncertainties in estimates of mineral suspended solid 

(MSS) concentration that arise in waters where unknown quantities of optically 

significant constituents chlorophyll a, (CHL) and coloured dissolved organic matter, 

(CDOM) are present. It uses a combination of radiative transfer modelling and in-situ 

measurements of specific inherent optical properties to generate a data set 

representative of UK shelf seas. A range of constituent concentrations were 

considered: 0 - 20 g m
-3 

for MSS, 0 - 10 mg m
-3 

for CHL and absorption coefficients 

of 0 – 1.0 m
-1

 at 440 nm for CDOM.  When only MSS was present, the modelled 

relationship between Rrs and MSS concentration was described by a series of 

hyperbolic curves containing wavelength dependent coefficients. A near linear 

relationship existed between modelled Rrs667 and MSS, where the curve saturation 

plateau occurred at concentrations greater than 20 g m
-3

. This is a consequence of the 

dominance of pure water absorption which contributed 80 percent of the total 

absorption signal at red wavelengths. The addition of CHL and CDOM generated a 

more complex relationship. Second-order polynomial functions were therefore 

derived to give the upper and lower MSS values corresponding to a given Rrs667 

measurement for specified ranges for CHL and CDOM. Validation of the 

relationship using UK field observations showed substantial agreement except at 

Rrs667 values less than 0.001 sr
-1

, where MSS concentrations were underestimated. 

This however could be a result of differences in the nature of MSS measured at 

coastal and offshore sites. Overall, the results indicate that MSS distributions in 

coastal regions can be estimated to a precision of +/-  2.5 g m
-3

 at concentrations of 

20 g m
-3

 and +/1.0 g m
-3

 at 5 g m
-3

 provided the concentrations of the other optically 
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significant materials are within the range specified in the model. A non-linear 

approach is required for concentrations of MSS greater than 20 g m
-3

. 

 

4.1 Introduction 

Optical reflectance variations are the result of changes in concentrations of three 

optically significant constituents, chlorophyll a (CHL), mineral suspended solids 

(MSS) and coloured dissolved organic matter (CDOM) (Kirk, 1994). Commonly, 

algorithms derived for the simultaneous estimation of each of these constituents are 

based on statistical regression methods and generate considerable errors 

(Sathyendranath 2000). Difficulties arise from the complexity of the three component 

inversion procedure. More recently, the development of neural network (Doerfer & 

Schiller 2007) and spectral matching techniques (Kuchinke et al., 2009) have 

produced more accurate retrievals of combinations of constituents. However, these 

too are subject to various disadvantages, as the accuracy of their retrievals relies on 

the quality of the training data sets (neural networks) and look-up tables (spectral 

matching) on which they are based. Furthermore, the geographical area specific 

nature of spectral matching and neural network techniques prevents transference to 

non represented regions. By attempting to retrieve concentrations of MSS only, the 

problem is made simpler. Accurate estimations of MSS hold many practical 

applications, such as the monitoring of hydrological features such as river outflows 

and plumes (Warrick et al. 2007, D’Sa & Ko 2008, Lahet & Stramski 2010), 

assessment of extreme weather events (Lohrenz et al, 2008, Yan & Tang, 2009) and 

for tracking the transport of chemicals and pollutants (Aldridge et al., 2003, 

Charlesworth et al., 2006). Estimates of suspended mineral concentrations are also 

necessary for predicting the light climate in coastal seas. Methods for quantifying 

suspended mineral concentrations in highly turbid areas have recently been reviewed 

by Hommersom et al. (2010). In less turbid waters, the contribution by other 

constituents is not masked by the dominance of MSS.  To date, there have been no 

systematic studies conducted to review the interfering effects of other constituents on 

the MSS retrieval. The object of this study is to quantify these effects. This will be 

done using the Irish Sea, a semi-enclosed basin located between the islands of Great 

Britain and Ireland, as a test site. Here, an empirical algorithm exists for the retrieval 
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of MSS concentrations (Binding et al., 2003) and concentration ranges of the other 

two constituents have been previously determined (Tilstone et al. 2005, McKee et al. 

2007). 

 

4.2 Remote sensing reflectance 

For a given wavelength λ, remote sensing reflectance Rrs(λ) is defined as the ratio of 

the water leaving radiance Lw(λ) to downward irradiance just above the sea surface 

Ed(λ). Remote sensing reflectance is related to the total backscattering and absorption 

coefficients of a uniform water column (bb and a) by; 
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−
=               (4.1) 

 

where fLβ is a variable function of the radiance distribution and volume scattering 

function, Q is the ratio of upwelling irradiance to radiance just below the surface, rF 

is the Fresnel reflectance and n is the refractive index of seawater (Mobley, 1999).  

Values for the factor fLβ are difficult to derive analytically, and so solutions of 

equation (4.1) are usually computed numerically by radiative transfer modelling. By 

holding illumination conditions and scattering phase function constant and ignoring 

inelastic scattering, Rrs can be considered to be proportional to bb/a in restricted 

circumstances. Total backscattering and absorption coefficients can be expressed as 

the sum of the contributions from the three optically significant constituents (CHL, 

MSS and CDOM). Total a and b are obtained by multiplying the concentration of 

each constituent by the appropriate specific inherent optical property (indicated by an 

asterisk).  Consequently, assuming that scattering from CDOM can be neglected: 

 

CDOMaCHLaMSSaa

CHLbMSSbb

a

b
R

CDOMCHLMSSW

bCHLbMSSbWb
rs ***
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+++

++
=∝   (4.2) 

 

Radiance transfer modelling was completed using the Ecolight radiance transfer 

package version 5 (Sequoia). Reflectance signals were generated under standard 

conditions, i.e., a solar zenith angle of 45 degrees, zero cloud cover and low wind 
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(3.1 ms
-1

). As a first step, SIOPs were interpolated to MODIS wavelengths. Inherent 

optical properties were derived using the values shown in Table 2.3 and 

corresponding concentration ranges representative of the Irish Sea, 0 to 1.0 m
-1

 for 

CDOM, 0 to 10 mg m
-3

 for CHL and 0 to 20 g m
-3

 for MSS. Particulate volume 

scattering functions were estimated by selecting Fournier-Forand phase functions 

(Fournier and Forand, 1994) with relevant bb/bp ratios from the Ecolight library. 

With concentration ranges spaced in logarithmic increments, 20328 model runs were 

carried out.  

 

4.3 Satellite images 

Irish Sea reflectance values, measured by the MODIS Aqua radiometer, were 

obtained from GSFC Ocean Color Web. Using SeaDAS version 6.1, the data were 

processed with the default 2-band aerosol model and iterative NIR correction. Level 

2 (Rrs) data was mapped to an equidistant cylindrical projection and further 

processing carried out in Matlab (see section 2.1 for details). 

 

4.4 Modelled relationships between MSS and Rrs 

Using MSS SIOPs noted in Table 4.1, along with absorption and backscattering 

coefficients for pure seawater, the fractional contribution by seawater to total 

absorption and backscattering was investigated with the inclusion of increasing 

concentrations of MSS. Results are shown in Figure 4.1. The graph highlights the 

increasing importance of absorption by seawater at red wavelengths. Here, 

absorption by seawater contributes approximately 80% to total absorption measured 

at 667 nm. In contrast, backscattering by seawater is low, meaning the total 

backscattering coefficient is mainly dependent on MSS concentration. This has a 

profound consequence on the relationship between MSS and Rrs at red wavelengths, 

where the denominator of equation (4.2) is dominated by absorption due to seawater 

and the numerator covaries with MSS concentration. Therefore, the bb/a ratio is a 

strong function of MSS producing an effective estimator of the constituent. Due to 

the effects of CHL fluorescence at 678 nm, and the use of NIR wavebands in 

atmospheric correction routines, Rrs measured at 667 nm is the most suitable 
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estimator of MSS.  A similar conclusion was drawn from a more complex analysis of 

the underlying optics by Nechad et al. (2010).  
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Figure 4.1 Fractional contribution of pure water to the total backscattering 

coefficients (left axis and open symbols) and absorption coefficients (right axis and 

filled symbols) for water columns containing varying concentrations of mineral 

suspended solids. MSS values in units of g m
-3

 are indicated for each curve. 

 

The importance of the wavelength dependency of pure seawater absorption can also 

be seen in Figure 4.2. This shows reflectance measured at several MODIS 

wavebands as a function of MSS. Rrs value were calculated using Ecolight radiance 

transfer calculations in which CHL and CDOM were equal to zero. The solid lines 

depict a family of hyperbolic curves calculated using equation (4.3) with wavelength 

dependent coefficients given in Table 4.1.  

 

MSSC

MSSB
ARrs

+

×
+=          (4.3) 

 



 

   

87 

Coefficient A, the intercept of the curves on the y- axis, equals the value of bb/a for 

water. The sum of coefficients A and B provide the value at which Rrs saturates and 

coefficient C controls the sign and steepness of the curves. For wavelengths greater 

than 550 nm, coefficient A is equal to zero and equation (4.3) is of the same form as 

the Nechaud et al. (2010) suspended matter algorithm. The range for which Rrs can 

be considered as an approximately linear function of MSS increases with 

wavelength, and the reflectance curve for 667 nm is close to linear up to the 

displayed value of 20 g m
-3

.  
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Figure 4.2 Modelled relationships between concentrations of mineral suspended 

solids (MSS) and remote sensing reflectance (Rrs) for MODIS wavebands.  The 

symbols indicate values calculated using Ecolight, and the lines are hyperbolic 

curves generated using equation (4.3) with the wavelength-dependent coefficients 

listed in Table 4.1. 
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Table 4.1 Wavelength-dependent coefficients for equation (4.3). 

Waveband 412 443 490 531 551 667 

A 0.028 0.015 0.005 0.001 0.001 0.001 

B -0.017 -0.002 0.012 0.023 0.027 0.083 

C 0.079 0.052 0.441 1.746 2.693 69.93 

 

 

4.5 Sensitivity to interfering substances 

The separate addition of CDOM and CHL to MSS plus seawater are shown in Figure 

4.3 and Figure 4.4 respectively. The effect of adding CDOM (Figure 4.3) always 

decreases the Rrs667 value, as CDOM supplements only the absorption coefficient of 

equation (4.2). Adding CHL (Figure 4.4) has a more complex effect, whereby below 

5 g m
-3

 of MSS, its addition increases the total value of Rrs667 and above 5 g m
-3

 

MSS it reduces it. This is a consequence of the relative significance of the 

chlorophyll contribution compared to seawater in the total backscattering to 

absorption ratio. The combined effect of adding CHL and CDOM is shown in Figure 

4.5, which shows a plot of the maximum and minimum MSS values which are 

consistent with a given Rrs when the CDOM and CHL components are allowed to 

vary over the full range of the model (0-1 m
-1

 for CDOM, 0-10 g m
-3

 for CHL). The 

upper (u) and lower (l) boundaries of these potential MSS values can be described by 

second order polynomials of the form: 

 

),()667(),()667(),(),( 32

2

1 luCRluCRluC
lu

MSS rsrs +×+×=   (4.4) 

 

where MSS has units of g m
-3

 and Rrs667 has units of sr
-1

. Values for the coefficients 

(C1,C2,C3) for the two boundaries (u,l) are listed in Table 4.2. Interestingly, the 

calculated boundaries cover the range of variability in the MSS vs Rrs 667 

relationship that was attributed to variability in the specific scattering coefficient of 

mineral particles by Binding et al. (2005). 
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Figure 4.3 Effects of adding CDOM at the concentrations indicated on the 

relationship between MSS and Rrs in the 667 nm waveband. 

 

 

 

Figure 4.4 Effects of adding CHL at the concentrations indicated on the relationship 

between MSS and Rrs in the 667 nm waveband. 
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Figure 4.5 Upper and lower boundaries for the MSS values corresponding to a given 

Rrs at 667 nm when CHL and CDOM are simultaneously present in the ranges 0-10 

mg m
-3

 and 0-1 m
-1

 respectively. The symbols indicate values calculated by radiative 

transfer modelling and the lines are best fits of equation (4.4), generated using the 

coefficients listed in Table 4.2. 

 

Table 4.2 Coefficients for equation (4.4). 

Boundary C1 C2 C3 

Upper 1.20 x 10
4
 1214.3 -0.01 

Lower 1.10 x 10
4
 1365.2 -1.5 

 

 

4.6 Validation using in situ measurements 

Standard MSS analyses do not distinguish between different classes of mineral 

particles. Particle populations which are dominated by phytoplankton are known to 

exhibit a pronounced absorption peak at 676 nm. Conversely, this peak is not present 

in the absorption spectrum of MSS. Therefore, it is possible to distinguish between 

particle assemblages dominated by phytoplankton and those by suspended minerals 

using the ration of particulate absorption measured at 650 nm and 676 nm.  Figure 
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4.6 shows a histogram of the relevant ratio of absorption coefficients averaged over 

the top 5 m of the water column.  The distribution is clearly bimodal, and a threshold 

figure of 0.8 has been used to classify the stations into two groups. Further analysis 

showed that stations in Group 1 (phytoplankton dominated) were all located offshore 

in depths greater than 60 m. Additional evidence suggests group consists 

predominantly of biogenic minerals and is not resuspended sediment. 

 

 

 

Figure 4.6 Bimodal frequency distribution for the ratio of the non-water absorption 

coefficients in the 650 nm and 676 nm wavebands measured in situ using the ac-9. 

The ratio value of 0.8 was used to classify stations as Group 1 (white bars) or Group 

2 (grey bars). 

 

The frequency of cloud cover over the Irish Sea makes satellite based validation of 

this technique difficult. Therefore, results were validated against Rrs profile 

measurements obtained by the Satlantic SPMR. Measurement errors were estimated 

where duplicate cast or sample analyses existed. These were taken to be the standard 

deviation of residuals from a least square fit of scatterplots of duplicate 

measurements and were +/- 0.7 g m
-3

 for MSS and +/- 0.001 sr
-1

 for Rrs. Figure 4.7 

contains water sample measurements of MSS plotted against SPMR derived Rrs667 
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for 120 stations in the Irish Sea. Superimposed on this figure are the upper and lower 

boundaries derived from the MSS equation.  When taking into account the relevant 

errors, estimated from multiple measurements obtained at stations, approximately 

90% of field observations fall within the limits of the proposed MSS boundaries. 

Points lying outside the limits have Rrs667 values less than 0.001 sr
-1

 and all fall 

within the Group 1 stations defined above.  Figure 4.7 implies that the boundaries 

generated by equation (4.4) are effective for mineral particles derived from 

suspended sediment, but under-estimate the presence of biogenic silica produced by 

diatoms. 
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Figure 4.7 MSS determined by gravimetric analysis of near-surface water samples 

plotted against Rrs at 667 nm measured by in-situ radiometry, with estimated errors 

of observation for both variables.  The solid lines indicate the upper and lower MSS 

limits predicted by radiative transfer modelling for the CHL and CDOM ranges used 

in Figure 4.5. White symbols indicate those stations classified as Group 1 and black 

symbols those classified as group 2 in Figure 4.6. 
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4.7 MSS mapping by satellite remote sensing 

A contour map of Rrs667 generated from a MODIS image of the Irish Sea acquired 

2
nd

 May 2007 is shown in Figure 4.8. Transects drawn on Figure 4.8 run west to east, 

from the open waters of St Georges Channel (point A) into the Bristol Channel (point 

B) and south to north from point A into the Irish Sea (point C).  The upper and lower 

limits of MSS calculated from equation (4.4) on the assumption that CHL and 

CDOM concentrations are unknown but fall within the ranges 0-10 mg m
-3

 and 0-1 

m
-1

 respectively, are illustrated in Figure 4.9. The transects begin in the clear waters 

of the Celtic Sea. A steep increase in sediment concentration can be seen at 140 km 

as the first transect (A to B) enters the turbid inner Bristol Channel. A more gradual 

increase in MSS is found in transect 2 (A to C), where the location of the Celtic Sea 

front is indicated by an increase in sediment concentrations at 100 km. This figure 

shows that it is possible to locate major features and transitions in mineral particle 

distributions to within a few kilometres in spite of the calculated uncertainties in 

absolute values, and this capability is potentially important for validating sediment 

transport models using ocean colour imagery. 

 

 

 

Figure 4.8 Remote sensing reflectance in the 667 nm waveband derived from a 

MODIS Aqua image acquired on May 2
nd

 2007, with transects extending from St 

Georges Channel (A) into the Bristol Channel (B) and the Irish Sea (C). 
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Figure 4.9 Upper and lower boundaries of possible MSS values for the transects 

drawn on Figure 4.8,  on the assumption that CHL and CDOM concentrations are 

unknown but fall within the ranges 0-10 mg m
-3

 and 0-1 m
-1

 respectively, calculated 

using equation (4.4). 

 

4.8 Discussion 

The detection of low concentrations of MSS in coastal shelf seas is of considerable 

significance. These areas are subject to the greatest errors associated with 

concentration retrievals due to the complex composition of constituents contained 

within the water. Radiance transfer modelling has shown that a single-band 

algorithm relying on Rrs667 is an effective quantitative indicator of MSS with a 

maximum uncertainty of +/- 4 g m
-3

 for concentrations up to 20 g m
-3

. This is true for 

areas containing CHL concentrations up to 10 mg m-3 and CDOM to 1m
-1

. The 

hyperbolic form of the MSS vs Rrs relationship suggests a non-linear approach is 

required for concentrations of MSS in excess of 20 g m
-3

. Field observations 

measured during several Irish Sea research cruises confirm the existence of an 

approximate linear relationship between Rrs667 and concentrations of MSS. However 

a small number of stations exhibit non-consistent characteristics. One explanation is 

that a high proportion of the MSS measured at these stations consisted of diatom 
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frustules rather than suspended sediment. The development of a technique which 

specifies uncertainty in MSS values in terms of upper and lower boundaries has two 

advantages. First, it reflects the fact that the uncertainty arises from the composition 

of the water body being inadequately known as well as simply from errors of 

observation. Secondly, variable uncertainties can be generated through the seasonal 

adjustment of equation coefficients. Application of this technique to other regions 

depends on the degree of spatial variability of the specific backscattering coefficient 

(bb*MSS). There is remarkably little published information on this variability and 

this is a topic which is in urgent need of further study. 

 

Key points from chapter 4 

1. In the presence of MSS, the fractional contribution of seawater to total 

absorption is significantly wavelength dependent and becomes increasingly 

dominant at red wavelengths. The backscattering contribution by seawater is 

contrastingly low, meaning total backscattering depends primarily on MSS 

concentration. 

 

2. The effect of adding MSS to seawater was determined by radiance transfer 

modelling. A near linear relationship exists between Rrs667 and MSS 

concentration up to 20 g m
-3

. Radiative transfer modelling confirms use of red 

wavelengths for remote sensing of MSS. 

 

3. Addition of CHL and CDOM to radiance transfer calculations illustrated the 

effect of other optically significant material (OSM) on the MSS retrieval. The 

uncertainty in the MSS retrieval varied with OSM values and was best 

indicated by explicitly stating the range of MSS concentrations that would be 

associated with a given Rrs signal. 

 

4. Validation of the MSS algorithm using in-situ observations shows good 

agreement with measured values.  Boundaries generated by equation (4.4) 

explain a large portion of the variability observed in the in-situ dataset. 
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5. MSS distributions in coastal regions can be estimated to a precision of +/-  

2.5 g m
-3

 at concentrations of 20 g m
-3

 and +/1.0 g m
-3

 at 5 g m
-3

 provided the 

concentrations of the other OSM are within the specified range of the model. 

 

6. Application of the algorithm to satellite reflectance data reproduces spatial 

features commonly observed in the Irish Sea. Rrs667 is a suitable quantitative 

indicator of mineral suspended sediment concentration. Analyses in the 

following chapters are based on observations of Rrs667, with the implied 

assumption that Rrs can be converted to MSS using equation 4.4. 
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Chapter 5 

 

Temporal and spatial patterns of reflectance variability in 

the Irish Sea 

 

Summary 

This chapter considers the feasibility of developing an objective classification 

scheme from Rrs667 variability suitable for defining hydrological features in the Irish 

Sea. Time series constructed from 181 MODIS Aqua images were used to analyse 

seasonal and spatial patterns of variation in Rrs667, and by implication MSS. Results 

from autocorrelation analysis showed annual periodicity in all areas except the 

Bristol Channel. The spatial distribution in time series statistical parameters was used 

to classify the region into locations containing high and low reflectance variance. 

Increased values of variance occurred in shallow waters of the region of interest. A 

further classification scheme was devised by considering the distribution of 

individual time series around their mean values. By calculating the time spent below 

the mean reflectance the region can be classified into locations containing distinct 

hydrological dynamics. This technique was improved by determining the period 

spent below the Irish Sea spatial Rrs667 minimum value (= 9.148 x 10
-3

 sr
-1

). Results 

accurately replicate seasonal sediment patterns in the Irish Sea. A thorough 

understanding of reflectance variability offers unique insights into the mechanisms 

driving physical processes. 

 

5.1 Introduction 

Mineral suspended solids (MSS) are the inorganic fraction of the total particulate 

matter suspended in coastal shelf seas. These cohesive or non-cohesive fine 

sediments include clays, silts and muds with particle diameters ranging from less 

than 0.01 mm to 0.1 mm. MSS plays an important role in the shelf sea ecosystem. As 

an efficient scatterer of light, mineral particles increase the magnitude of water 

leaving radiance returned to space, limiting the penetration of light within the upper 

layers of the ocean (Kirk, 1994). Accurate representation of MSS concentrations 
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from satellite imagery is therefore crucial for understanding the biological and 

physical dynamics of optically complex shelf seas (Robinson, 2008). 

 

In principle, ocean colour observations acquired by means of satellite radiometry 

provide unparalleled insight into the dynamics of marine sediments in shelf seas due 

to the frequency of synoptic measurements. Information on short and long scale 

events can be extracted from an archive containing 30 years of satellite data. Bowers 

et al. (1998) and Eleveld et al. (2008) used satellite remote sensing to estimate 

seasonal variations in suspended sediment in the Irish and North Seas respectively, 

whilst Chen et al. (2007) considered monthly changes of turbidity in Tampa Bay. 

More recently Nechad et al. (2010) evaluated algorithm performance by comparing 

time series of sediment concentrations in Belgian waters derived from different 

satellite sensors. This study focuses on the application of time series analysis to 

reflectance signals measured over the Irish and Celtic Seas from July 2005 until July 

2010. By considering the spatial and temporal variability of MODIS remote sensing 

reflectance measured at 667 nm, an objective classification scheme is derived for the 

hydrodynamically diverse geographical regions of the Irish Sea. 

 

5.2 The test site 

The Irish Sea is a semi-enclosed basin situated between the islands of Great Britain 

and Ireland. This area contains various interesting hydrodynamic features, including 

seasonal thermal stratification fronts and permanent salinity fronts. There are two 

well documented regions of persistent seasonal stratification located in the north west 

Irish Sea (Gowen et al., 1995 and Xing et al., 2001) and south at the Celtic Sea 

border (Brown et al., 2003). In both areas, stratification appears to correlate with the 

existence of low tidal currents (Bowers et al., 2002). The eastern Irish Sea contains a 

complex body of water which is subject to salinity stratification owing to the input of 

fresh water from three major rivers (Verspecht et al., 2009). Regions of high tidal 

energy (current velocity > 1.5 m s
-1

) can be found in various locations such as the 

point north of Anglesey, east of Wicklow Head and the Bristol Channel (Simpson & 

Hunter, 1974).  
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There are two main sources of suspended sediment in the Irish Sea, those contributed 

by estuaries and rivers and sediment eroded as a result of shear friction on the sea 

floor. The contribution by estuaries and rivers only affects waters a small distance 

from the source. Sediment in suspension is transported throughout the water column 

by turbulent kinetic energy. A map of the Irish Sea marine landscape is shown in 

Figure 5.1. The majority of the region is covered by gravel and sand, with particle 

diameters greater than 0.1 mm. There are two muddy banks found at the north-west 

and north-east of the Irish Sea. A muddy section of the Bristol Channel may account 

for high MSS concentrations measured in this area. Small mud banks found close to 

Wicklow Head and North Anglesey may explain high concentrations measured at 

these locations, however rock formations suggest a more complex hydrodynamic 

system is present at North Anglesey (Bowers et al., 2005).   
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Figure 5.1 Marine landscape showing types and properties of sediments in the Irish 

Sea. MSS sediments are defined as particles < 0.1 mm (sand grain dimension). Image 

courtesy of National Oceanographic Centre, Liverpool. 
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5.3 MSS concentration from remote sensing reflectance 

Commonly, algorithms used to derive sediment concentrations from reflectance 

spectra are developed using empirical relationships. These techniques can generate 

reasonable results but their reliance on a priori knowledge of the presence of other 

optically significant constituents prevents accurate representation of retrieval errors. 

In highly turbid areas (MSS > 20 g m
-3

), Doxaran et al. (2003) demonstrated the 

effectiveness of estimating sediment concentrations from ratios of remote sensing 

reflectance. Single band algorithms exist for less turbid waters which rely on the 

same technique. There is some agreement in the research community that reflectance 

measured at red wavelengths is a useful quantitative indicator of sediment 

concentration (Binding et al., 2003, Nechad et al., 2010, Ouillon et al., 2008). The 

existence of a approximately linear relationship between Rrs at red wavelengths (667 

nm, 678 nm) and concentrations of MSS less than 20 g m
-3

 , explained in detail in 

chapter 4, can be attributed to the bb/a ratio. At red wavelengths, a is dominated by 

absorption due to seawater whilst bb is determined predominantly by the MSS 

contribution. Consequently bb increases significantly with increasing concentrations 

of MSS, whereas a remains relatively unchanged. Saturation of the curve becomes 

significant where MSS concentrations are in excess of 20 g m
-3

.  

 

Concentrations of MSS were obtained from measurements of Rrs667 (sr
-1

) using the 

equation; 

 

),()667(),()667(),(),( 32

2

1 luCRluCRluC
lu

MSS rsrs +×+×=
   

(5.1) 

 

with coefficients (C1,C2,C3) for the upper and lower boundaries (u,l) listed in Table 

4.3 . A full description of the derivation of this formula can be found in chapter 4.  
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5.4 Satellite data 

Irish Sea Rrs667 signals measured by the MODIS Aqua radiometer were obtained 

from GSFC Ocean Color Web (section 2.1). Over 180 partially cloud free images 

were extracted from the archive spanning the time period July 2005 until July 2010. 

Data were processed using SeaDAS software version 6.1, using the default 2-band 

aerosol model with iterative NIR correction. Level 2 (Rrs) data was mapped to an 

equidistant cylindrical projection and further processing carried out in Matlab.  

 

i) Overall patterns of reflectivity 

Marked temporal and spatial variations in reflectance measured at red wavelengths 

are frequently observed in the Irish Sea. For example, figure 5.2 contains daily 

images of Rrs667 measured on a) 29 January 2006, b) 02 May 2007, c) 06 August 

2005, and d) 08 October 2008. The obvious existence of seasonal variability suggests 

that the reflectance in this region may be temporally correlated with physical 

processes. Increased insolation during spring and summer promotes stratification of 

the water column in the Celtic Sea and north-west Irish Sea, allowing sediment to 

sink out of surface waters. This hydrological event is recognisable in the reflectance 

patterns of the May and August MODIS images, where reduced Rrs signals are found 

in stratified areas (section 1.3). A further reduction in Rrs across the majority of the 

Irish Sea in August suggests sediment is settling from the surface of the water 

column in both mixed and stratified regimes. This may be attributable to prolonged 

periods of calm weather. The January image, which is representative of winter 

conditions, shows a general increase in the background reflectance signal in all areas.  
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ii) Spatial features 

Reflectance maxima remain spatially consistent in each of these images, with the 

brightest signals appearing in the Bristol Channel, North Anglesey and Wicklow 

Head (locations indicated in Figure 1.3). These geographical locations are subject to 

the greatest tidal current velocities in the Irish Sea, indicating a correlation between 

tidal stirring and remote sensing reflectance exists (Bowers et al., 1998). However, 

the tidal current velocities, which remain relatively unchanged temporally on a 

monthly scale, cannot explain the seasonal variations in Rrs observed in the MODIS 

satellite imagery. Therefore an alternative physical process must be influencing 

seasonal patterns of reflectance. 
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a)  b)  

 

(sr
-1

) 

c)  d)  

 

(sr
-1

) 

 

Figure 5.2 Rrs667 (sr
-1

) measured by MODIS instrument on a) 29 January 2006, b) 

03 May 2007, c) 06 August 2005 and d) 08 October 2008.  Level 0 ocean colour data 

obtained from Goddard Space Flight Centre and processed using SeaDAS version 

6.1 image processing software.  
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5.5 Time series processing 

As a first step, MODIS Rrs667 data were projected onto a reduced resolution grid 

containing 29 x 49 grid cells. New pixel values, corresponding to a geographical area 

of approximately 12 km x 14 km, were generated by averaging all local Rrs signals. If 

more than 50 percent of the original values located in a cell were either cloud or 

negative pixels, no value was returned. The resulting data set consisted of 1421 

individual time series covering the full extent of the Irish and north Celtic Seas. Each 

time series was linearly interpolated at 10 day increments to correct for missing data 

and inconsistent sample spacing. Next, noise was removed from the interpolated time 

series by twice applying a moving average smoother with an averaging window of 7 

points. The existence of a potential trend was also considered when reprocessing the 

time series. An extra processing step involved linearly detrending the data and 

investigating the response from the linear contribution. The detrending routine 

subtracts the mean value from the data to redistribute points around y = 0 axis. A 

histogram of detrending gradients (Figure 5.3) showing a mode gradient of zero 

indicates no linear trend exists for this data set. The mean value was subtracted from 

the detrended time series so that it fluctuates around the y = 0 axis. Finally, the 

detrended time series was normalised by its mean maximum value. The data 

generated at each processing stage will be referred to as original, interpolated, 

smoothed, detrended and normalised respectively. A visual explanation of the 

processing stages is shown in Figure 5.4. 

 

 

 

Figure 5.3 Gradient of linear contribution to the seasonal trend. Values close to zero 

indicate no trend exists in the Irish Sea time series data. 
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Figure 5.4 Manipulation of Rrs667 through time series reprocessing for a station 

location in the central Irish Sea. 

 

5.6 Time series characteristics 

Initial inspection of time series plots for several locations in the Irish Sea highlights 

the spatial and temporal variability of Rrs667 in this area. Sample normalised time 

series for three locations is shown in Figure 5.5 b) with corresponding grid locations 

shown in a). Asymmetric seasonal cycles are present in each of the grid cell 

examples. Therefore the reflectance variability cannot be accurately represented by 

fitting a sinusoidal function to the data. Large variations in amplitude and mean 

values are also noted. The time of maximum reflectance varies from mid December 

to mid February. Furthermore, there is no spatial link connecting the occurrence of 

the maxima. For example, an early peak in the Celtic Sea does not correlate to an 

early peak in the north Irish Sea. 
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a)  

b)  

 

Figure 5.5 b) Normalised time series for three locations in the Irish Sea shown in a). 

An asymmetric pattern exists for all functions.  
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5.7 Periodic variability in the reflectance signal 

Autocorrelation analysis is a statistical technique which describes how a signal is 

cross-correlated with itself as a function of the time separation. Statistically the 

autocorrelation function, ρ(k), for a stationary, (mean and variance are time 

independent) random process is defined as; 
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where σx is the variance of series x and r(k) is the covariance between two 

observations, xn and xn+k; 
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Here, E, is the expectation operator. The autocorrelation coefficient has a value of 1 

when observations are completely correlated and -1 when out of phase. By 

definition, at zero lag time every function has an autocorrelation coefficient equal to 

1. If periodicity exists in a data set, the location of the second peak in a correlogram 

identifies the duration of the period, an example of which is shown in Figure 5.6. 

This figure contains two correlograms for time series measured at different locations 

in the Irish Sea. Figure 5.6 a) consists of a series of peaks which indicates some form 

of periodicity exists in the relevant location. Contrastingly, the correlogram 

presented in Figure 5.6 b) has one prominent peak at zero lag time then a series of 

randomly spaced peaks, suggesting this time series is non-periodic. Consistency in 

the time lags calculated between peaks one to three distinguishes periodic pixels. 

Application of autocorrelation analysis to the Irish Sea detrended time series has 

demonstrated annual periodicity in Rrs667 variability for the majority of the test site, 

as shown in Figure 5.7. Furthermore, pixels which exhibit non-annually periodic 

characteristics are found mainly in the Bristol Channel and at coastal locations 

corresponding to river inlets.  
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a)  

b)  

 

Figure 5.6 Correlogram for periodic a) and non-periodic b) time series from the 

central Irish Sea (a) and the Bristol Channel (b). The location of the second peak in 

a) indentifies the period in days. 
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Figure 5.7 Irish Sea periodicity as determined by autocorrelation analysis. Pixels 

highlighted in red are non-periodic. The colour bar shows length of period in days. 

The majority of pixels exhibit approximately annual periodicity. 

 

5.8 Objective classification scheme for the different regions of the Irish Sea 

Spatial variations were analysed by generating time series statistics for each grid cell. 

As a first step, the image was characterised by four main parameters; detrended time 

series variance, mean maximum Rrs signal for each detrended time series, average 

minimum value for every time series and the smoothed time series mean (Figure 

5.8). Features in the image of the spatial distribution on the statistical parameters 

correspond to geographical regions of interest in the Irish Sea.  
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a)  b)  

c)  d)  

 

Figure 5.8 Maps of a) average maximum detrended Rrs667, b) average minimum 

detrended Rrs667, c) average smoothed Rrs667 and d) time series variance, (sr
-1

). 

These parameters can be used as a preliminary classification scheme for indentifying 

geographical regions in the Irish Sea. 
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5.8.1 Reflectance variance classification 

The area can be divided into patches containing high and low variance. If a time 

series is defined as having high variance, the difference between the seasonal minima 

and maxima is large. A threshold variance of 3 sr
-1

 was used to classify the region 

into high and low variance regimes (Figure 5.9). Geographical locations for this 

classification are illustrated in Figure 5.10 where black and white pixels occur in 

high and low variance regimes respectively. High variance is assigned to pixels in 

shallow waters, suggesting these areas are most susceptible to seasonal processes 

such as wind driven currents. Contrastingly, low variance values can be found in 

deeper parts of the Irish Sea where insolation is the only external seasonal change 

affecting the condition of the water column.  

 

 

 

Figure 5.9 Histogram of reflectance variance showing classification threshold. 
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Figure 5.10 Classification of reflectance variance into high (black pixels) and low 

(white pixels) regimes. These classified regions will be considered individually in 

subsequent chapters. 

 

5.9 Clarification rate 

A noticeable feature of Rrs667, and by implication sediment, variability in the Irish 

Sea is the rate at which different regions clarify. Comparison of detrended time series 

extracted from two locations highlights the difference between waveforms (Figure 

5.11). For the Celtic Sea time series, the reflectance signal decreases at a greater rate 

than that of the central Irish Sea, i.e. the reflectance signal falls below the mean value 

temporally earlier in the Celtic Sea time series. This suggests this region clarifies 

relatively quicker. Moreover, Rrs667 values generally recover in the Irish Sea before 

the Celtic Sea, meaning the central Irish Sea becomes more turbid earlier in the 

season. This translates as different roots or x-axis crossing points shown as coloured 

crosses on the detrended time series plot (Figure 5.11). The average time difference 

between the down to up crossing points provides temporal information on the stage 

of the clarification cycle. This is essentially the period of the year in which 
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reflectance lies below the mean value. It is possible to develop a classification 

scheme relating the difference in time to geographical regions with specific 

hydrological features in the Irish Sea. The product of this technique is the time 

Rrs667 spends below the pixel average for each individual grid cell. A contour of this 

parameter is shown in Figure 5.12. Relevant features such as known regions of 

stratification are identifiable on this map. 

  

 

 

Figure 5.11 Crossing points for a Celtic Sea detrended time series (red crosses and 

black line) and a central Irish Sea time series (blue crosses with green line) for two 

years of the time series. Red points cross the y=0 axis before the blue when reducing 

from the maximum value, and appear after the blue when on the increasing slope. 
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Figure 5.12 Classification scheme based on normalised time series. The contour 

levels indicate the time spent below the time series mean on a pixel by pixel basis. 

  

The classification scheme can be improved by considering the time series 

distribution around an alternative value. The Irish Sea spatially averaged minimum 

Rrs667 was calculated by averaging the mean detrended time series minima for each 

individual grid cell located within the boundaries of the Irish Sea.  This number, 

which can also be described as the Irish Sea mean background level of Rrs667, is 

equal to 9.148 x 10
-3

 sr
-1

. The duration below the spatial minima threshold was 

determined by calculating the time difference between down to up crossing points. 

Results are shown in Figure 5.13. Each contour level defines a specific duration 

below the Irish Sea mean Rrs667 background level. The contour can be used as a 

predictor of how clear/turbid the region should be at various times of the year. This is 

a useful device suitable for the classification of water regimes in the Irish Sea. 
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Figure 5.13 Classification scheme from distribution of normalised time series around 

the Irish Sea average minimum value. The contour levels indicate the time (days) 

spent below threshold value of Rrs667 (=  9.148 x10
-3

 sr
-1

). 

 

5.10 Discussion 

Using Rrs667 as a quantitative indicator of MSS, the spatial and temporal variability 

of sediment in the Irish Sea was investigated. The existence of seasonal variability in 

the Rrs signal indicated that reflectance was spatially correlated with physical 

processes. Over 1000 individual time series covering the extent of the Irish Sea were 

generated from MODIS satellite images. The time series exhibited asymmetric 

properties, contrary to results published by Bowers et al. (1998) where a sine 

function was used to best represent the data set. A detrending routine applied to the 

time series data set demonstrated that no linear trend in Rrs667 variability exists in 

this area. However, strong periodic cycles were found at the majority of grid sites. 

Application of autocorrelation analysis to each time series produced periodic cycles 

of approximately 365 days. Annual periodicity was demonstrated in all regions 
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except the Bristol Channel. Here, Rrs667 signals remained consistently high 

suggesting reflectance had little or no response to seasonal processes. The variance 

of the reflectance time series was used as a feature extractor, where high and low 

values are separated into 2 groups covering identifiable geographical regions. High 

variance pixels were found in shallow regimes. These areas are subject to the 

additional external effects of wind driven currents and insolation. This may account 

for an increased variance in shallow waters. A second group was classified as low 

variance, occurring mainly in deeper waters (>50 m). Waves have an oscillatory 

velocity on the seafloor in water depths up to approximately 10 times the wave 

height (Whitehouse et al., 2000). Therefore, in these deeper sections of the Irish Sea, 

the only external seasonal process influencing the variability of suspended sediment 

is insolation. This may explain the existence of decreased variance as a reduction in 

energy input from external factors may dampen the pattern of seasonal variability. 

The hydrodynamics of each statistically different group shall be considered 

separately in the following chapters (chapters 6 and 7). In order to classify the region 

further, the distribution of time series data around its temporal mean was 

investigated. More precisely, the total time spent below the mean value characterised 

the degree of sediment clarification on a pixel by pixel basis. A contour map of the 

result acts as a simple predictor of sediment settling periods. This technique applied 

to any sea where time series data exists will classify regions based on their clearing 

characteristics. By incorporating local sediment statistics, an improved classification 

scheme was developed, which involved calculating the time spent below the Irish 

Sea mean background Rrs667 of 9.148 x 10
-3

 sr
-1

. The more detailed contour map 

accurately replicates sediment patterns in the Irish Sea.  
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Key points from chapter 5 

1. Consolidation of MODIS Aqua reflectance generates time series covering the 

extent of the Irish Sea. Applying a reprocessing routine which includes linear 

interpolation of data to specified increments fills the gaps of missing data. 

This makes it possible to reconstruct temporal events using the available 

series. 

 

2. The reprocessing stages also indicate no linear trend exists in the reflectance 

variability. Furthermore, asymmetry in the seasonal cycle suggests variability 

cannot be represented by a sinusoidal wave.  

 

3. Through autocorrelation analysis, annual periodicity was demonstrated in all 

regions of the Irish and north Celtic Seas, except the Bristol Channel. 

 

4. Known hydrological features are highlighted in regional reflectance statistics, 

such as average minimum or mean reflectance. Reflectance variance can be 

used as an objective classification scheme.  

 

5. The region was subsequently divided into geographical locations of high and 

low reflectance variance. High reflectance regions correspond mainly to 

shallow coastal areas, whilst low variance is observed in deeper parts of the 

Irish Sea. The hydrodynamics of each classified group shall be considered in 

the following chapters. 

 

6. A further classification scheme was developed by considering the distribution 

of time series reflectance around their mean values. 
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Chapter 6 

 

Relationships between hydrological parameters and remote 

sensing reflectance in tidally stirred shelf seas. Part 1: 

stratification patterns in low reflectance variance regimes 

 

Summary 

This chapter investigates the feasibility of obtaining information on hydrological 

processes from ocean colour data measured at the locations identified in chapter 5 as 

having low temporal variance. Using Rrs667 as an indicator of suspended sediment 

concentration, variations of reflectance can be attributed to mechanisms driving 

sediment transport. The existence of a relationship between Rrs667 and model 

POLCOMS derived delta sigma, ∆σ, was investigated through analysis of remote 

sensing time series. Initial results suggested a power law relationship connects these 

two parameters, but the classification of data into three distinct groups using 

Gaussian mixture modelling demonstrated the limitations of this relationship. It was 

shown that a time dependent factor was contributing to the breakdown of the simple 

relationship. This was apparent in time series where the sediment and hydrological 

dynamics were out of phase. Establishment of time dependent correlations may 

provide important information for the formulation and validation of hydrodynamic 

models and also for the choice of locally tuned algorithms for interpreting satellite 

images.  

 

6.1 Introduction 

Accurate representation of a shelf sea ecosystem relies on the knowledge of two co-

dependent systems; the quantitative estimate of sea water and its constituent 

composition and the physical processes in which they are embedded (Robinson, 

2008). Individually, each system provides useful information on the state of our 

oceans (Antoine et al., 1996, O'Reilly et al., 1998, Siegel et al., 2002). However, 

coincident analysis offers greater understanding of the mechanisms driving the 

apparent reflectance variability in coastal seas (Mortimer, 1988). Commonly, the 
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effects of physical forcing agents are considered when investigating phytoplankton 

bloom dynamics, where growth is controlled by the availability of light and nutrients 

which in turn depend on various climatic factors (Behrenfeld et al., 2006). As a 

result, chlorophyll a has been associated with stratification (Sathyendranath et al., 

1995), tidal stirring (Cloern, 1991) and winds (Pennington et al., 2006). These 

physical factors also control sediment dynamics in shelf seas. In this case, 

concentrations of MSS can be used to identify and map hydrological features such as 

tidal maxima and river plume transport. In the 2009 paper published by Doxaran et 

al., satellite reflectance values were used in conjunction with field observations of 

salinity and turbidity to investigate the dynamics of a marked turbidity maximum 

(TM) in the Gironde estuary. It was shown that the TM location varied with river 

flow into the estuary whilst sediment concentrations were predominantly controlled 

by tidal currents. Although this estuarine environment differs significantly from the 

Irish Sea (sediment concentrations range from approximately 80 to 2000 gm
-3

), this 

study demonstrates the effectiveness of physical-optical analysis. A similar study 

conducted for the Irish Sea showed that in some parts, patterns of suspended 

sediment were correlated with tidal stirring (Weeks et al., 1993 and Bowers et al., 

1998). However, this did not account for the seasonal variability present in the 

region. In an attempt to fully understand the interacting processes driving seasonal 

patterns of sediment, Bowers et al., 2005 and Ellis et al., 2008 considered the size 

distribution of flocculated particles. It was suggested that the aggregation and break-

up of cohesive sediment in response to turbulent shear was responsible for the 

temporally varying levels of suspended particulate matter at locations containing 

maximum values of tidal currents. Furthermore this provided a sustainable source of 

fine sediments at these locations.  

 

In the central East China Sea, the existence and variability of a sediment plume was 

described by Shi et al. (2010) in terms of changes in the stability of the water 

column. Strong vertical mixing (identified by minimal temperature gradients 

measured between 0 and 50 m) and enhanced surface winds coincide with maximum 

levels of satellite derived diffuse attenuation at 490 m (Kd490). Contrastingly, low 

values of Kd490 were measured in summer months, where stratification reduced 
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sediment resuspension by vertical mixing. Physical-optical analysis is also useful for 

hydrological model tuning, whereby satellite estimates of suspended sediment load 

are provided as input parameters in numerical routines. Model variables can then be 

altered to demonstrate sensitivity to particular hydrodynamic parameters such as 

settling velocities and critical shear stresses for erosion. Data assimilation has proven 

effective in several studies, including Vos et al. (2000) in the North Sea, and more 

recently, van der Wal et al. (2010), in the Dutch Westerschelde estuary. In this paper, 

it was again proposed that patterns of suspended particulate matter, and bottom 

sediment, were related to tides, winds and freshwater discharge. 

 

These examples highlight the prospect of improving our understanding of the shelf 

sea ecosystem by considering the driving forces responsible for spatial and temporal 

sediment variability. However, very few studies attempt to infer physical properties 

from ocean colour. One example by van der Lee et al. (2009) related the 

Kolmogorov microscale to satellite derived particle size in the Irish Sea. The 

relationship between these two parameters was complex, but it serves as a reminder 

that additional supplementary information can be obtained from the ocean colour 

signal. This study investigates the existence of a potential link between the optical 

reflectance signal measured remotely by satellite and the physical dynamics of 

mixing and stratification deduced from numerical modelling. Using mineral 

suspended solids (MSS) as a tracer of the hydrodynamics, a simple hypothesis was 

developed; in mixed regimes, turbulent energy transports sediment to the sea surface 

where an Rrs signal can be measured. In stratified waters, sediment sinks out of the 

upper layer, eliminating a detectable Rrs signal at the surface (Jones et al., 1998). A 

schematic description of the hypothesis is shown in Figure 6.1. Establishment of a 

correlation between Rrs667 and ∆σ may provide important information for the 

formulation and validation of hydrodynamic models and also for the choice of 

locally tuned algorithms for interpreting satellite images.  
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a)  b)  

 

Figure 6.1 Schematic view of sediment dynamics under mixed a) and stratified b) 

conditions. 

 

6.2 Test site 

A possible link between vertical mixing processes and remote sensing reflectance 

was explored using the Irish Sea as a test site. This area contains various interesting 

hydrodynamic features, including seasonal thermal stratification fronts and 

permanent salinity fronts. It is also a region of high tidal energy (Simpson and 

Hunter, 1974). The Irish Sea offers several advantages as a test site, including the 

existence of a well-tested numerical model of its hydrodynamics (POLCOMS) (Holt 

et al., 2005; Brown et al., 2010) and a large database of observations of seawater 

composition and in-situ optical properties. Regions of low reflectance variance were 

considered (as classified in chapter 5) as locations potentially influenced by 

stratification. Their location is illustrated as red pixels in Figure 6.2.  

 

 

Figure 6.2 Regions of low reflectance variance classified in chapter 4 shown in red. 
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6.3 Modelled data 

The stratification parameter, ∆σ, was developed from POLCOMS calculations of 

daily averaged temperature and salinity, along with a map of Irish Sea bathymetry 

(chapter 3). These were obtained using climatological model inputs for 2007. Density 

at the top and bottom of the water column was determined using equations of state 

(Fofonoff and Millard, 1983). The corresponding difference in density, or ∆σ, was 

used as an indicator of stratification (kg m
-3

). The difference may be positive or 

negative depending on the choice of coordinates. Here, ∆σ is negative where the 

bottom density is subtracted from the top. Large absolute values of ∆σ are indicative 

of stratification, whilst small differences suggest the water column is homogeneously 

mixed. ∆σ was calculated for each day containing a cloud free satellite image. 

Monthly composites of ∆σ were also produced for the 2007 model outputs, and time 

series were generated by concatenating monthly data at each image pixel. 

 

6.4 Satellite data 

MODIS reflectance images of the Irish Sea were obtained from GSFC Ocean Color 

Web and processed using SeaDAS 6.1 with default atmospheric correction 

procedures (section 2.1). Using all cloud free images available in 2007 (32 images), 

monthly composites were generated by averaging pixels containing more than one 

reflectance value per month. This provided greater coverage of the test site, 

particularly in winter months where very few cloud free images were available. To 

compensate for a scarcity of observations during winter months, the January 2007 

and December 2007 composites were combined with December 2006 and January 

2008 respectively to generate the first and last winter scene. Time series of Rrs667 

were also produced on a pixel by pixel basis. 

 

For succinctness, analysis was performed using Rrs667, and by implication MSS. 

Conversion between the two parameters is possible at any stage of the study. 

Concentrations of the hydrodynamic tracer MSS can be obtained from measurements 

of Rrs667 (sr
-1

) using the equation; 
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with coefficients (C1,C2,C3) for the upper and lower boundaries (u,l) listed in Table 

4.3. A full description of the derivation of this formula can be found in chapter 4.  

 

6.5 Seasonal variability of reflectance and ∆σ 

Marked temporal and spatial variations in reflectance measured at red wavelengths 

are frequently observed in the Irish Sea. Figure 6.3 contains three daily images of 

Rrs667 measured by MODIS Aqua on a) 29 January 2007, b) 02 May 2007, c) 06 

August 2005 and the corresponding ∆σ values determined for each of these days (d, 

e, f). Increased insolation during spring and summer promotes stratification of the 

water column in the Celtic Sea and north-west Irish Sea, allowing sediment to sink 

out of surface waters. This hydrological event is recognisable in the reflectance 

patterns of the May and August MODIS images, where reduced Rrs signals are found 

in stratified areas. The January image, which is representative of winter conditions, 

shows a general increase in the background reflectance signal. A significant 

reduction in ∆σ during this period suggests that transportation of sediment to the 

surface is permitted due to destratification of the water column.  
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a) 

 

b) 

 

c)

 

d) 

 

e) 

 

f) 

 

 

Figure 6.3 MODIS images of Rrs667 (sr
-1

) measured a) 29 January 2007, b) 02 May 

2007 and c) 06 August 2005. Significant spatial and temporal variations in Rrs667 

can be seen in the Irish Sea throughout the year. These variations may be explained 

by changes in ∆σ (kg m
-3

), as shown in (d, e, f). 
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6.6 Relationship between Rrs667 and ∆σ 

Visual comparison of Rrs667 and ∆σ suggests a potential inverse correlation between 

these parameters exists. However, a bivariate plot of May data, shown in Figure 6.4, 

reveals the complexity of this relationship. No simple formula relates these two 

parameters. Further investigation was conducted using the 2007 time series data. The 

duration spent below the annual spatial minima (see chapter 5 for description) was 

calculated for Rrs667, along with the temporally averaged ∆σ value for each 

individual pixel. An approximately trimodal frequency distribution is evident in 

histograms of these averaged parameters (Figure 6.5). Two break points were applied 

to determine three subgroups present in both data sets. The location of break points 

was chosen specifically to separate the apparent natural trimodal distribution of the 

data. Application of a Gaussian mixture model also identified three subgroups of data 

which were consistent with those determined from break points. The model fits and 

break points are also displayed in Figure 5.5.  

 

 

 

Figure 6.4 Bivariate plot of ∆σ and Rrs667 measured in May 2007. No simple 

relationship exists between these parameters. 
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a)  

b)  

 

Figure 6.5 Histograms of duration below average annual minima a) and annual mean 

∆σ b). Red lines depict model fits from a Gaussian mixture distribution routine. Data 

were separated into 3 subgroups, defined by the mixture model. 
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It is significant that points contained within each of the Rrs667 and ∆σ subgroups 

correspond to geographical regions of the Irish Sea with locations illustrated in 

Figure 6.6 a) and b).   High variance regimes marked in red are excluded from this 

analysis and will be discussed in the following chapter. Yellow pixels occur in 

regions where Rrs667 spends the longest period below the average annual minima. 

These pixels also occur in areas exhibiting the largest stratification. Blue pixels 

appear to be an intermediate level for both Rrs667 and ∆σ parameters. Finally, black 

pixels, which are defined as mixed in the ∆σ classification, are present where Rrs667 

spends a short period below the 2007 scene minima. The classification scheme 

appears to be consistent with the original hypothesis that mixed waters promote 

Rrs667 signals detectable at the surface whilst stratification inhibits surface 

reflectance.  

 

As a next step, the spatial correlation or agreement between Rrs667 and ∆σ was 

investigated by comparing the classified groups of the two parameters. A simple 

subtraction of classified groups assigned numbers 1,2, or 3 highlights regions which 

contain data points consistent with the hypothesis. Moreover, deviations from the 

hypothesis, whereby classified groups do not occur in the same location, can also be 

determined. This result is shown in Figure 6.7. The map is colour coordinated 

depending on the level of agreement. Green pixels exhibit total agreement between 

the two classification schemes. These locations cover 66 percent of the test site. 

Values falling within an orange or red region are positioned in inconsistent groups, 

orange differing by one group and red by two. These are the spatial locations where 

the relationship between Rrs667 and ∆σ breaks down. 
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a)  b)  

 

Figure 6.6 Classification of Rrs667 a) and ∆σ b) using subgroups presented in 

trimodal histogram distributions. Red areas are regions of high variance and are not 

included in this analysis. 

 

 

 

Figure 6.7 Map showing spatial correlation between the reflectance and ∆σ groups. 

Green pixels contain data points which appear in the same classified groups (Figure 

6.5), whilst red and orange areas are inconsistent with the hypothesis. 
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6.7 Possible mechanisms generating complexity in the relationship between 

Rrs667 and ∆σ 

The deviation from a simple relationship was investigated using time series of 

monthly composites. Two example time series are shown in Figure 6.8 a) and b) 

taken from the Celtic Sea and eastern Irish Sea respectively, where ∆σ is depicted by 

blue curves and Rrs667 is shown in red. The variability of both parameters is 

illustrated effectively by this example. In the Celtic Sea, reflectance and stratification 

appear to be in phase. When stratification occurs, Rrs667 values decrease and 

destratification coincides with the recovery of sediment. However, the second (Irish 

Sea) example exhibits a more complex pattern, where the sediment dynamics do not 

necessarily follow stratification. In particular, there appears to be a time lag in the 

resuspension of sediment in the second half of the year. From this, we can deduce 

that a time dependent factor is contributing to the breakdown of the relationship 

between Rrs667 and ∆σ.  

 

Further investigation of the relationship was conducted using the following 

procedures: 1) Each time series was split into two parts, the first and second half of 

the year centred on 01 July. 2) The data were normalised by the maximum value to 

account for yearly variability in the available levels of sediment. 3) On a pixel by 

pixel basis the area under the curve was calculated for the two sections of the year, 

producing four output images (two for ∆σ and two for Rrs667). For ∆σ, a large area 

calculated in the first half of the year suggests stratification occurs late, whilst an 

increase in the second part indicates early destratification. The same is also true for 

Rrs667 in terms of settling and resuspension rates. 4) The area under the curve 

calculated for the second half of the year was subtracted from the area of the first. 

Differences in the dynamics can be reviewed by this subtraction (Figure 6.9 a) and 

b)). Analysis of these results relies heavily on the interpretation of the images. 

However, prior knowledge of Irish Sea hydrodynamics allows a sensible explanation 

to be developed describing the breakdown of the relationship in various geographical 

regions. 

 

 



 

   

135 

 

a)  

b)  

 

Figure 6.8 Time series of Rrs667 (red) and ∆σ (blue) taken from the 2007 archived 

data set measured at two locations in the test site. The sediment dynamics of the 

Celtic Sea, a), appear to be in phase with the hydrology of the water column. In the 

Eastern Irish Sea however, b) a more complex pattern of mixing exists which is not 

recognisable in the Rrs667 signal. 
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a)  

 

b)  

Figure 6.9 Differences in the area under the time series curve calculated for two parts 

of the year for a) Rrs667 and b) ∆σ. 

 

6.8 Discrepancies in the relationship described in terms of inconsistent 

dynamics 

Figure 6.9 a) shows the difference by subtraction of the area describing the settling 

(first half of the year) and the resuspension of sediment (second half of the year). No 

difference in integrated area would be expected if a strong correlation existed 

between Rrs667 and ∆σ as the seasonal dynamics would be consistent in this case. A 

positive difference indicates the first half of the year contains the greatest area under 

the curve. This exists if the sediment settles at a later date or recovers slower. North 

of the Celtic Sea front, a delayed response of sediment settling is a reasonable 

explanation for the discrepancy. Evidence is provided in Figure 5.13 which shows 

the duration spent below the spatial minima is small for regions with positive 

differences. However, south of the front, slow recovery of sediment is more 

probable, particularly in deeper regions of the Celtic Sea.  

 

In the case of ∆σ, shown in Figure 6.9 b), a similar analysis offers interesting insight 

into the hydrodynamics of the region. The subtraction of the area 2 (second half of 

(sr
-1

) (kg m
-3

) 
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the year) from area 1 (first half of the year) would generate positive values if the 

water column stratifies later or destratifies slower. From prior knowledge of the west 

Irish Sea, one would suggest slow breakup of the stratified regime is a sensible 

explanation for the failure of a simple relationship between Rrs667 and ∆σ in this 

location.  

 

6.9 Production of hydrodynamical information from Rrs667 

These examples serve as a reminder of the complexity of the physical dynamics in 

the Irish Sea and provide a potential explanation for the absence of a simple 

correlation between Rrs667 and ∆σ. However for the majority of the test site a power 

law relationship can be indentified. Figure 6.10 gives an example of power model fits 

for three locations. The coefficients of the power function vary spatially across the 

Irish Sea. For regions with agreement between Gaussian mixture model classified 

groups, shown as green pixels in Figure 6.7, Rrs667 can be expressed in terms of ∆σ 

as follows; 

 

1

0667 a

rs σaR ∆=         (6.2) 

 

Coefficients a0 and a1 are approximately equal to 0.3 and -0.5 respectively. Although 

limited to the boundaries defined by Figure 6.7, use of this formula can provide 

information on the hydrodynamics of the region by exploitation of satellite 

radiometric measurements of Rrs667. The R
2
 value describing the goodness of the 

power law model fit varies across the region of interest. For the data contained within 

Figure 6.10, residual analysis determines an R
2
 value of 0.51. Investigation of the 

sum of squares of the residuals suggests the model fails at low values of ∆σ, shown 

in Figure 6.11. The results are normalized to the sum of the square of the distances of 

points from the mean of all satellite reflectance values. This implies the absolute 

magnitude of mixing cannot generate quantitative estimates of Rrs667. The presence 

of a surface reflectance signal can however provide qualitative information on the 

mixing dynamics. Furthermore, by ignoring the residuals calculated in the fully 

mixed regime and considering only data obtained in the hydrodynamic transition 

period the R
2
 value is improved to 0.77.   
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Figure 6.10 Power law fits for three locations in the Irish Sea. 

 

 

 

Figure 6.11 Plot of square of residuals with corresponding ∆σ indicates the power 

law function fails to replicate Rrs667 at low values of ∆σ. 
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6.10 Potential applications 

The previous clarification of relationships between Rrs667 and ∆σ allows the 

development of practical applications, such as front detection from ocean colour 

images. Figure 6.12 shows transects taken from 2 locations in the Irish Sea, transect 

one from A to B and transect 2 from C to B. Annotated lines highlight the locations 

where sediment begins to drop from the upper layer of the water column. In both 

examples it can be seen that a corresponding gradient in ∆σ occurs at these locations. 

The initial point of Rrs667 reduction marks the location of the front. Changes in 

Rrs667 can therefore be used to determine the position of temporal onset of 

stratification fronts in the region.  

 

 

 

 

 

Figure 6.12 Transects taken from 2 locations in the Irish Sea demonstrate the 

potential of using gradients in ocean colour images to determine the location of 

fronts between stratified and mixed waters. 
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6.11 Discussion 

Coastal shelf seas are subject to various physical and hydrodynamic processes that 

promote bed erosion and transport of sediment to the sea surface. Use of Rrs667 as an 

indicator of MSS concentrations allows spatial patterns and temporal variability of 

suspended sediment concentrations to be monitored using remotely sensed ocean 

colour data. By understanding the mechanisms driving the variability it is possible to 

link remote sensing reflectance to the hydrodynamics of the water column. Irish Sea 

time series were used to explore a potential correlation between Rrs667 and 

stratification parameter ∆σ. On first inspection, a binary relationship appears to 

connect these two parameters, whereby the water column is either stratified with no 

reflectance signal or mixed with a signal. High surface reflectance is observed in 

regions of hydrodynamic mixing, whilst the absence of sediment in the upper layer 

of stratified waters prevents a detectable signal at the surface. However, further 

investigation suggests a more complex link exists. To fully understand the limitations 

of the simple binary relationship, data were categorised into three groups determined 

by Gaussian mixture modelling. This demonstrated regions of the test site in which 

consistent correlation existed between the two parameters. Moreover, this technique 

provided spatial classification of those geographical areas which showed ∆σ vs. 

Rrs667 relationships inconsistent with the original hypothesis. Time series measured 

at these locations showed sediment and hydrological dynamics were out of phase, 

suggesting a time dependent factor is contributing to the complexity of the 

relationship. Resistance to destratification in the eastern Irish Sea due to varying 

levels of freshwater input is one possible explanation for this discrepancy. However, 

further investigation is required to validate this hypothesis. Nonetheless, for the 

majority of the test site, the relationship between Rrs667 and ∆σ exists as power law. 

Transects taken from 2 locations in the Irish Sea demonstrate the potential of using 

gradients in ocean colour images to predict stratification fronts in coastal seas. This 

highlights the potential of exploiting satellite remote sensing to provide information 

on shelf sea dynamics. 
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Key points from chapter 6 

1. A stratification parameter ∆σ was calculated for pixels located within the low 

variance regime. Data extracted for the 2007 model run were combined to 

generate time series of ∆σ for the Irish Sea. 

 

2. Monthly composites of Rrs667 were generated and combined to create Irish 

Sea reflectance time series. 

 

3. Images of ∆σ and Rrs667 were generated using Matlab image processing 

software and used to illustrate spatial and seasonal changes in both 

parameters. Visual comparison indicates an inverse relationship exists. 

 

4. Application of a Gaussian mixture model to histograms of the annual average 

∆σ and the duration spent below the spatial minimum reflectance subdivided 

the low variance regime into three groups, exhibiting contrasting optical and 

physical dynamics. These groups correspond to geographical locations in the 

Irish Sea, one which remains strongly stratified for the majority of the year, 

an intermediate group which stratifies relatively later and a final section 

which remains proportionately mixed all year round.  Comparison of the 

optical and physical classified groups determined the level of conformity 

between parameters allowing geographical regions to be assigned by their 

level of correspondence. 

 

5. Time series were used to highlight limitations of a simple power law 

relationship between ∆σ and Rrs667. Discrepancies in the relation were found 

at locations where time series displayed inconsistent dynamics i.e. were out 

of phase. 

 

6. For the majority of the test site, surface reflectance values can be used as a 

predictive indicator of stratification. However, at locations containing 

dynamical discrepancies, such as slow recovery of reflectance or delayed 

destratification (red pixels in Figure 6.7) Rrs667 cannot be used to identify 
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fronts between stratified and mixed waters. Furthermore, the brightness of 

Rrs667 cannot determine the extent of stratification. The inverse argument for 

mixing is also true. Mixing of the water column may result in increased 

reflectance but the magnitude of mixing does not determine how much 

reflectance, and by implication MSS, will be measured at the surface. 
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Chapter 7 

 

Relationships between hydrological parameters and remote 

sensing reflectance in tidally stirred shelf seas. Part 2: Bed 

shear stress in high reflectance variance regimes 

 

Summary 

This chapter investigates variability in remote sensing reflectance, and by implication 

in suspended sediment concentrations, in high reflectance variance regimes in terms 

of maximum bed shear stress, τmax. The inclusion of a wave component in the total 

τmax introduces a seasonal factor, where increased wind-induced waves in winter raise 

levels of τmax in shallow waters. The statistical dependence of Rrs667 on τmax was 

determined by calculating time series correlation coefficients. This demonstrated 

geographical locations where reflectance variability was attributed to variations in 

τmax. For pixels where τmax and Rrs667 were correlated, the relationship existed as an 

approximately logistic function. This was used to estimate a threshold value for bed 

erosion in shallow coastal areas of the Irish Sea. 

 

7.1 Introduction 

Marked spatial and temporal patterns of red reflectance are apparent in satellite 

images of the Irish Sea. Here, sediments are controlled by various physical forcing 

agents, such as tidal stirring, mixed layer processes and external climatic factors. 

Previous attempts to quantify sediment dynamics in this region have focussed on 

changes in particle size as the predominant physical driver (Bowers et al., 2005, Ellis 

et al., 2008, van der Lee et al., 2009) but several questions remain unanswered 

regarding the general variability across the entire area. This study looks at bed shear 

stress (BSS, N m
-2

) as the physical mechanism controlling sediment and Rrs667 

variability in coastal regions of the Irish Sea. A number of papers present BSS as the 

primary driver of sediment dynamics at similar sites. In the North Sea, Jones et al. 

(1998) illustrated through in-situ observations of currents and winds that tidal stirring 

alone was not sufficient to erode bottom sediments in summer, whilst a contribution 
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to BSS from wind/wave processes enhanced resuspension in winter or during storm 

events.  A similar result was demonstrated in the Wadden Sea (Stanev et al., 2006) 

with the aid of a simple energy based model, where sediment concentrations 

increased in accordance with intensified wave-induced bottom shear stress. More 

recently, Stanev et al. (2009) tested their model result in the North Sea. Here, stresses 

due to waves and currents were compared with satellite derived surface suspended 

particulate matter (SPM) concentrations. It was shown for a large part of the test 

area, that surface sediment concentrations were a consequence of localised BSS. As a 

next step, model derived BSS was supplied as an input driver to simulate sediment 

variability in the North Sea (Dobrynin et al., 2010). Once again, SPM concentrations 

recovered from satellite measurements of reflectance were utilised for efficient 

validation of the model (Vos et al., 2000).  

 

Knowledge of sediment dynamics is crucial for the improved understanding of 

pollutant transport and distribution in coastal seas. This was the primary focus of a 

study conducted by Aldridge et al. (2003) who used a coupled hydrodynamic-

sediment transport model to map radionuclide transport across the Irish Sea. 

Although calculated sediment concentrations were in reasonable agreement with 

field and satellite data, the model was unable to reproduce seasonal variability. As 

noted, this may be a consequence of unaccounted wave erosion in winter. Also in the 

Irish Sea, an SPM model of sediment characteristics in Liverpool Bay showed a 

considerable percentage of sediment variance was explained by winds, waves and 

tidal currents (Krivtsov et al., 2008). More specifically, SPM variables were 

particularly influenced by winds and waves, whilst the relationship with tidal stirring 

remained generally weaker. These examples highlight the importance of wave-

induced BSS in the Irish Sea. However, direct measurements of the parameter are 

difficult to measure in-situ and therefore emphasis is placed on modelling 

procedures.  
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This work investigates the potential of exploiting satellite observations of ocean 

colour to provide useful information on BSS in coastal regions of the Irish Sea for 

the formulation and calibration of sediment models. For the purpose of this study, the 

coastal region is defined as the high reflectance variance regime determined by 

objective classification in chapter 4. This area was identified as exhibiting high 

variability in the satellite measured range of reflectance. The relevant geographical 

region is shown in Figure 7.1. 

 

 

 

Figure 7.1 Regions with high reflectance variance, as classified in chapter 5, are 

shown in red. 

 

7.2 Bed shear stress in the Irish Sea 

High variance pixels are predominantly located in shallow waters (< 30 m) 

immediately adjacent to the coast, where the water regime remains mixed all year 

round. The group classified as high variance contains 3 regions of high tidal velocity, 

the Bristol Channel, Wicklow Head and North Anglesey, which appear to be 

correlated with the occurrence of high sediment concentrations. At all locations 

except the Bristol Channel, surface sediment patterns were found to be annually 

periodic, suggesting a seasonal process is contributing to suspended sediment 

variability. In sufficiently shallow water, an additional current velocity at the seafloor 
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is generated by wind-induced waves (Whitehouse et al., 2000). The wave orbital 

velocity, Uw, is effective to depths, h, determined by the wave height, H; 

 

Hh ×< 10          (7.1) 

 

Consequently, at high variance locations bed shear stress is a product of tidal and 

wind-induced wave inputs. An increase in wave height and period during winter 

months in the Irish Sea cause levels of BSS to rise. Depending on the inherent 

conditions, the magnitude of BSS may be sufficient to erode and resuspend sediment 

into the water column, with the level of suspension proportional to flow velocity and 

roughness of the seabed (Soulsby & Clarke, 2005). This may account for the marked 

seasonal variability apparent in satellite imagery. A simple hypothesis was therefore 

developed: increasing BSS as a consequence of enhanced waves results in raised 

levels of surface sediment, promoting a brightening of the reflectance signature. The 

validity of this hypothesis was explored using the Irish Sea as a test site. 

 

For the year 2005, modelled wave and current values were extracted from the 

POLCOMS-WAM model (chapter 3). Calculations of maximum BSS, τmax, were 

performed on daily maximum values of wave period, significant wave height and 

depth-averaged current velocity using equations (3.11) to (3.24). Monthly 

composites were then created by averaging daily values. Figure 7.2 a), b), c) and d) 

displays τmax for months representing four seasons in 2005, January, May, August 

and October respectively. Marked spatial variability can be seen in Irish Sea BSS. 

Four locations, the inner Bristol Channel, Wicklow Head, Anglesey and Solway 

Firth, contain consistently high values of shear as a result of large tidal velocities. 

Geographically, these regions correspond to areas of maximum brightness in Rrs667 

images (Figure 5.2). Significant temporal differences can be seen in BSS patterns 

recovered in Cardigan Bay, where large values are found in winter months, and a 

reduction is shown in summer. Similarly, this pattern is evident in the outer Bristol 

Channel and Liverpool Bay. These changes are a consequence of additional bed 

shear stress produced by waves.  
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a)  b)  

c)  d)  

 

Figure 7.2 τmax (N m
-2

) calculated for a) January, b) May, c) August and d) October 

2005. Marked spatial variability is demonstrated in these images. Consistently high 

values of BSS are found in the Bristol Channel, Wicklow Head and Anglesey. 
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7.3 Rrs667 as an indicator of suspended sediment concentrations 

Optical measurements of ocean colour were obtained from the MODIS Aqua satellite 

(section 2.1). In 2005, 29 cloud free satellite images appeared over the Irish Sea. The 

data were subsequently processed using SeaDAS software and combined to generate 

monthly composite of Rrs667. This reflectance parameter can be used as a proxy of 

surface sediment concentrations in these waters (chapter 4). Conversion between 

Rrs667 and MSS is possible only within the limits given by the upper and lower 

bounds of the relationship described in chapter 4. However for succinctness, Rrs667 

was used in analyses. 

 

7.4 Time series analysis 

Time series of τmax and Rrs667 were created for pixels located within the high 

variance classification area, where each time series point was represented by monthly 

composite values. Examples of time series extracted from several marked locations 

in the Irish Sea are shown in Figure 7.3 a) to g). In these examples, the time frame is 

expressed in terms of serial date number, which increments 1 number per day.  

 

a)  
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b)  

c)  

d)  
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e)  

f)  

g)  

 

Figure 7.3 Time series of Rrs667 (red) and τmax (blue) taken from several locations in 

the Irish Sea. 
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Marked variability is apparent in time series taken from the region of interest. These 

provide information on the optical and physical dynamics of the water column.  

 

i) Figure 7.3 a) contains data extracted from Solway Firth. Seasonal 

variability in τmax is apparent where lower values are found in summer 

months. Increases in Rrs667 appear to coincide with increased values of 

τmax. Sporadic estimations of τmax during summer months suggest 

sensitivity to wind-induced changes at this location.  

ii) In Liverpool Bay, shown in Figure 7.3 b), seasonal changes in τmax appear 

inconsistent. A significant reduction is apparent in spring resulting in a 

loss of sediment from the upper layer. The values remain consistently low 

during summer with a weak increase occurring in autumn, suggesting 

2005 may have had a particularly calm winter. Further evidence is 

demonstrated by diminished levels of τmax and Rrs667 in December 

months for all time series. Raised Rrs667 during autumn and winter 

implies the increase is sufficient to overcome the critical threshold of 

motion, τcr. This number must be exceeded for sediment resuspension to 

take place. 

iii) At Wicklow Head, Figure 7.3 c), a small seasonal difference in τmax 

corresponds to a reduction in MSS in summer. τmax calculated at 

Anglesey, Figure 7.3 d), remain approximately consistent all year round. 

The corresponding variability in reflectance must be the result of an 

alternative forcing agent.  

iv) A strong seasonal cycle is present in Cardigan Bay, Figure 7.3 e), with 

increased values of τmax in winter generating more surface sediment. 

v) Similarly, this pattern is apparent in the outer Bristol Channel, Figure 7.3 

f). Moving towards the coast, τmax recovered from the inner Bristol 

Channel τmax remains the highest in the region, Figure 7.3 g). Here 

sediment dynamics are inconsistent with seasonal shear variations, 

suggesting another factor is forcing variability in this region. 
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7.5 Correlation analysis 

The statistical dependence of Rrs667 on τmax was evaluated by computing Spearman’s 

rank correlation coefficient, ρ, (Wilcox, 2001). This non-parametric measure 

describes the effect of one data set on another; 
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        (7.2) 

 

Here, di = xi − yi , is the difference between observational ranks (the order in which 

they lie in the n length data set). A Spearman correlation of 1 or -1 exists when two 

variables are monotonically related, even if their relationship is non linear. 

Contrastingly, a Spearman correlation of zero indicates there is no tendency for one 

data set to increase or decrease with the other. ρ coefficients were calculated for Irish 

Sea time series, shown in Figure 7.4, illustrating locations where Rrs667 and τmax are 

statistically linked.  

 

 

 

Figure 7.4 Spearman’s correlation coefficient, ρ, calculated from Irish Sea time 

series. A value of 1 or -1 indicates a perfect monotonic relation exists between the 

parameters. 
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From this we have some indication as to where τmax is controlling sediment dynamics 

in the Irish Sea. Significant correlation is demonstrated in Cardigan Bay and parts of 

Wicklow Head and the outer Bristol Channel, whilst negligible dependence is found 

at the inner Bristol Channel and Solway Firth.  

 

7.6 Relationship between Rrs667 and τmax 

Further investigation was conducted by generating simple scatter plots of τmax and 

normalised Rrs667, focussing on regions known to exhibit correlation between the 

two parameters. An example scatter plot containing data extracted from Cardigan 

Bay is shown in Figure 7.5. The non-linear trend exhibited in this example is 

common to the region. Data appears to exist in three groups, the first occurring at 

low values of τmax and Rrs667. Here, increasing τmax does not increase reflectance 

signals which remain close to zero. This could be due to levels of τmax not exceeding 

the critical value required for sediment erosion, τcr. Next, the intermediate group 

containing spring/autumn and winter data show coincidental increase of Rrs667 and 

τmax. A final group can be classified where maximum values of Rrs667 occur. Finite 

availability of sediment for suspension places an upper limit on the potential 

magnitude of Rrs667, translating as a plateau on the scatter plot. Increasing BSS will 

not continue to increase Rrs667 once the saturation point is reached.  Scatter plots of 

these two variables appear to exhibit sigmoid curve characteristics, with an initial 

exponential stage inverting to a saturated plateau. The relationship between τmax and 

Rrs667 can be described by an approximately logistic function of the form; 

 

)exp(1

1

z
Y

−+
=         (7.3) 

 

where z = β0 + β1X. Here β0 is the curve intercept and β1 controls the steepness of the 

sigmoid. A generalized linear model (GLM) was used with a logistic link function to 

effectively model reflectance values from τmax. Coefficient estimates were determined 

at 5 locations in the Irish Sea by application of a least squares optimisation routine. 

Predicted values for the generalized linear model (solid lines) are shown with 

corresponding observations (points) in Figure 7.6.  
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Figure 7.5 Scatter plot of τmax Vs Rrs667 showing three seperate levels of data. The 

seasonal behaviour of Rrs667 offers some insight into hydrological dynamics 

controlling sediment variability. 

 

 

 

Figure 7.6 Logistic regression model (lines) applied to Irish Sea time series data 

(points). Generalized model coefficients determined by least squares regression. 
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Coefficient variability can be seen clearly from modelled predictions. Whilst 

steepness (β1) remains relatively constant, the curve growth sections cover a wide 

range of values due to varying intercepts (β0). For example, model predictions for 

Cardigan Bay (depicted in blue) estimate initial growth at τmax ≈ 0.25 N m
-2

, whereas 

the increase does not occur in Anglesey (black) until τmax ≈ 1.25 N m
-2

. This may be 

a consequence of geographically varying thresholds of sediment erosion, τcr, as 

Rrs667 cannot increase until τmax exceeds this limit. Coefficient variability prevents 

development of a general formula connecting surface sediment patterns to bed shear 

stress. Nonetheless, error statistics from residual analysis, shown in Table 7.1, 

indicate a definite relationship exists between Rrs667 and τmax at three locations in the 

Irish Sea, Cardigan Bay, Wicklow Head and the outer Bristol Channel. 

 

Table 7.1 Error statistics for logistic regression models. 

LOCATION R
2
 RMSE 

Cardigan Bay 0.7702 0.1924 

Wicklow Head 0.7134 0.1533 

Outer Bristol Channel 0.6549 0.1722 

Liverpool Bay 0.4086 0.2857 

Anglesey 0.4031 0.2322 

 

 

7.7 Estimates of threshold shear stress for sediment erosion, τcr, (N m
-2

) 

The threshold BSS for erosion is an important factor for coastal engineering studies. 

It determines whether stresses applied to the sea floor by wave and current flows are 

sufficient to erode and resuspend sediment in the water column. Using scatter plots 

of τmax and Rrs667, τcr can be estimated from generalized linear model coefficients. It 

is reasonable to assume that critical values for erosion have been exceeded when 

sediment levels reach half their potential magnitude. Assigning Y = 0.5 sr
-1

, equation 

(7.3) can be rearranged to give; 

 

1

0

β

β
X

−
=          (7.4) 



 

   

159 

This is the value of τmax where Rrs667 equals half of the total signal and provides an 

indication of expected τcr. Maps of τcr are obtained by applying this technique to 

regions of the Irish Sea containing regression R
2
 values greater than 0.6, Figure 7.7. 

Validation is challenging due to insufficient availability of field data, however 

laboratory measurements of τcr published by HR Wallingford (Whitehouse et al., 

2000) can be used for approximate comparison (Table 7.2). These show that values 

of τcr predicted by equation (7.4) are within recognised UK ranges. However further 

validation is required to accurately assess retrievals and associated errors.  

 

 

 

Figure 7.7 τcr (N m
-2

) calculated from generalized linear model coefficients. 
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Table 7.2 Erosion properties determined in laboratory tests with muds extracted from 

UK locations. 

LOCATION τcr (N m
-2

) 

Cardiff Ely 1.1 

Cardiff Rhymney 2.5 

Fawley 2.2 

Grangemouth 1.4 

Harwich 1.8 

Ipswich 4.4 

Kingsnorth 1.6 

Medway 1.4 

Mersey 0.8 

 

 

7.8 Discussion 

Coastal shelf seas remain the most productive yet endangered part of our marine 

environment and thorough coastal management is essential for its long term 

protection. Satellite remote sensing provides a means of studying mesoscale changes 

and long term trends in biogeochemical and physical processes. This chapter 

explored the extent to which information on physical dynamics can be obtained from 

ocean colour, in particular, the relationship between Rrs667 and the parameter 

controlling sediment resuspension, τmax. The hypothesis that increases in τmax would 

result in raised levels of surface sediment was investigated using MODIS Aqua 

observed reflectance and POLCOMS modelled waves and currents. Focussing on 

high reflectance variance regimes, time series analysis demonstrated the existence of 

a correlation between these two parameters in several regions of the Irish Sea, mainly 

Cardigan Bay, the outer Bristol Channel, Wicklow Head, Liverpool Bay and 

Anglesey. τmax appears to influence the magnitude of surface sediment as well as 

temporal patterns. Moreover, this initial analysis indicated sediment variability was 

not a function of τmax in the inner Bristol Channel or Solway Firth. Results were 

corroborated by determination of the statistical dependence between Rrs667 and τmax 

through calculation of Spearman’s rank correlation coefficient. At locations 
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consistent with the hypothesis, the relationship between Rrs667 and τmax was an 

approximately logistical function. Coefficients determined through generalized linear 

modelling were variable throughout the test site, preventing the development of a 

general formula. Residual analysis highlighted three main regions where sediment 

dynamics were controlled by τmax, mainly Cardigan Bay, the outer Bristol Channel 

and Wicklow Head. Here estimations of the threshold of erosion were generated by a 

simple ratio of generalized linear model coefficients. Regions inconsistent with the 

hypothesis are; the Inner Bristol Channel, Solway Firth, Liverpool Bay and 

Anglesey. At these locations, additional physical processes appeared to be driving 

sediment variability. For example, it may be reasonable to assume that the Bristol 

Channel and Solway Firth estuaries require an alternative approach as their 

characteristics are inconsistent with open shelf seas. This is also true in Liverpool 

Bay, where the complex physical dynamics driven by freshwater input may cause 

deviations from a simple relationship. At this location sediment deposition appeared 

to correspond to a reduction in τmax however resuspension of sediment was not the 

result of increased shear. In Anglesey, τmax was shown to be relatively constant; 

however sediment patterns exhibited annual periodicity. This suggests an alternative 

physical process is causing sediment to fall during summer periods. One suggestion 

is the existence of biologically mediated cohesion, increasing the mass, and 

subsequently the settling velocity, of MSS and causing it to fall out of the surface 

layer (Jago et al., 2006). Sediment variability in this region may be a consequence of 

horizontal advection processes whereby sediment is transported to a location 

horizontally rather than vertically from the sea floor (Perianez et al., 2002). In this 

case, a reduction in wind strength would reduce the magnitude and frequency of 

horizontally advected sediment concentrations thus producing lower surface 

estimates. These inconsistencies point to further work in the field. Nonetheless, 

investigation of the existence of potential relationships between hydrological and 

optical parameters is providing novel insights into the physical dynamics controlling 

sediment variability in coastal shelf seas. 
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Key points from chapter 7 

1. For 2005, modelled wave and current data were extracted from the 

POLCOMS-WAM model and used to calculate maximum bed shear stress in 

the Irish Sea high variance regions. Time series were created by combining 

daily average values. Monthly composites of Rrs667 were also combined to 

generate 2005 reflectance time series. 

 

2. Images of τmax were created to show seasonal and spatial variability in the 

region of interest. 

 

3. Concurrent time series analysis of τmax and Rrs667 showed regions where 

increased Rrs667 coincided with increases in τmax. This was further 

demonstrated by correlation analysis. 

 

4. Scatter plots were used to show an approximate logistic function connects 

Rrs667 and τmax at various high variance regions of the Irish Sea. Error 

statistics for logistic regression modelling showed in Cardigan Bay, the outer 

Bristol Channel and Wicklow Head increasing τmax results in increased 

Rrs667. 

 

5. Inconsistencies were found at the Inner Bristol Channel, Solway Firth, 

Liverpool Bay and Anglesey. At these locations, additional physical 

processes are driving sediment variability. 

 

6. The critical value for sediment erosion can be estimated using ocean colour 

data at locations were sediment dynamics are controlled by the magnitude of 

bed shear stress. 
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Chapter 8 

 

Conclusions and future work 

 

Summary 

This chapter contains the conclusions drawn during the course of the work presented 

in this thesis. A brief general discussion is presented prior to specific conclusions 

relating to each issue identified in chapter 1. This chapter concludes with 

recommendations for future work in the field. 

 

8.1 General discussion: summary of work 

The multidisciplinary nature of this project required a number of different data 

collection techniques. The first phase of the study concentrated on satellite 

measurements of reflectance. Over 200 satellite images covering the Irish Sea were 

obtained and processed during the course of this study, creating an extensive image 

archive. Processing was carried out using SeaDAS software, which incorporated the 

default 2-band aerosol model with iterative NIR correction. Various Matlab 

programming scripts were developed for data analysis and image processing. A 

simple validation was performed with the small number of available in-situ matchups 

which indicated remote sensing reflectance values were recorded at sufficient 

accuracy to be utilised in the study. The second aspect of the research was concerned 

with data derived from in-situ optical measurements obtained from various Irish Sea 

research cruises. These were predominantly used for algorithm validation purposes. 

SPMR measurements of radiance and irradiance were collated with water sample 

analyses and quality checked to create a dataset suitable for interdisciplinary 

comparisons. An alternative processing routine was developed to correct a ProSoft 

processing error uncovered during the course of the study. The third aspect of the 

research focussed on radiative transfer modelling. IOPs, determined as the product of 

SIOPs and varying combinations of optically significant constituents, were supplied 

to the Ecolight radiative transfer numerical modelling package to simulate shelf sea 

radiance distribution. This generated 20328 model runs suitable for effective 
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representation of the Irish Sea optical environment. Validation of Ecolight model 

outputs with in-situ reflectance data showed that reflectance is sufficiently modelled 

at red wavelengths. Matlab scripts were created to assist with Ecolight batch 

processing and the extraction of data from output files. The final phase of this study 

required hydrodynamic data from the POLCOMS numerical modelling system. This 

was provided by the Proudman Oceanographic Laboratory along with several Matlab 

scripts developed for data extraction. Temperature and salinity calculated at the top 

and bottom of the water column were used in conjunction with depth to determine 

density from the equation of state. Surface temperature values predicted by the model 

were validated using MODIS Sea Surface Temperature data. This indicated that the 

locations of hydrodynamic features such as thermal fronts were not affected by the 

existence of a temperature offset. Comparison of top and bottom density values 

provided an indication of stratification, whereby large differences in density were 

indicative of a stratified water column. The use of ∆σ as an effective stratification 

parameter was confirmed using in-situ measurements of water column density 

structure. Stations exhibiting density gradients in CTD sigma-T profiles were located 

in regions of stratification predicted by the ∆σ parameter. As a final step, Irish Sea 

maximum bed shear stress, τmax, was calculated from POLCOMS-WAM wave and 

current data. 

 

Chapter 4, which focussed on the development of an algorithm appropriate to 

recovering MSS concentration from optically complex seas, contained the first 

primary results of the study. Using a combination of water sample analyses and 

radiance transfer simulations, it was shown that reflectance measured at red 

wavelengths was the optimal parameter for remote sensing of MSS. The effect of 

CHL and CDOM on the MSS recovery was also determined through use of radiance 

transfer modelling. The algorithm presented in chapter 4 recovers MSS as a function 

of other optically significant materials. It relies on the assumption that concentrations 

of CHL and CDOM lie within the specified range of the model. By recovering a 

range of MSS for a given Rrs667 signal, the retrieval error is encompassed in the 

estimate. Through comparison with in-situ observations, a degree of optical closure 

was obtained. The variability observed in field measurements of reflectance can be 
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explained by the presence of other optically significant constituents. Application of 

the algorithm to satellite Rrs667 data accurately reproduced known sediment feature 

sin the Irish Sea. It was demonstrated, therefore, that Rrs667 can be used as a suitable 

indicator of surface sediment concentrations. 

 

Chapter 5 contained a detailed description of Rrs667, and by implication MSS, 

variability in the Irish Sea. Time series of Rrs667 were generated at each point of a 

mesh grid devised to cover the extent of the test site, reducing the computational time 

and memory storage required for 181 satellite images. A reprocessing routine was 

developed to normalise data and fill gaps corresponding to cloud cover in satellite 

images. A by-product of this routine demonstrated that no linear trend exists in the 

Irish Sea reflectance dataset. Using autocorrelation analysis, the periodicity of 

reflectance variability was defined as annual for the majority of the test site. Time 

series statistics could effectively highlight hydrological features. Reflectance 

variance was used to objectively classify the region into two regimes exhibiting 

distinct optical characteristics. It can therefore be assumed that surface sediment 

patterns observed in each regime are controlled by different physical processes. The 

test site was further classified by considering the distribution of time series points 

around their mean value. This technique can also be improved by considering 

duration spent below a threshold value of the average Irish Sea minimum reflectance. 

Both methods highlight hydrological features and can be used as a temporal predictor 

of water column clarification. 

 

Chapter 6 used the variance objective classification formed in chapter 5 to analyse 

low variance reflectance pixels in terms of stratification. Time series of monthly 

average modelled ∆σ were generated for the 2006 model run, along with time series 

of monthly composites of satellite Rrs667 for the same period. Maps of stratification 

were composed to display spatial and temporal changes across the region of interest. 

Using histograms of average ∆σ and the duration spent below the spatial minimum 

reflectance, the Irish Sea was subdivided into three groups with distinct hydrological 

and optical characteristics. Comparison of the physical and optical pixels contained 

within each group provides information on regions in which a simple relationship 



 

   

168 

correlates stratification and Rrs667. Furthermore, this technique also highlighted 

geographical locations in the Irish Sea where a more complex relationship exists 

between the two parameters. Investigation of time series at locations of 

inconsistencies showed sediment and stratification dynamics were out of phase. This 

was used to provide a potential explanation for the failure of a simple relationship. 

Nonetheless, for the majority of the low variance region, a power law correlates 

stratification and Rrs667. As the water column begins to stratify, the magnitude of 

Rrs667 decreases. By applying transects to satellite images, it was shown that Rrs667 

can be used as a qualitative indicator of stratification. However, the reflectance 

signal cannot determine the degree to which the water column is stratified. 

 

Chapter 7 focussed on high variance pixels to investigate changes in surface 

sediment patterns as a function of varying bed shear stress. For this study, the 2005 

time series of monthly maximum bed shear stress, τmax, were generated by averaging 

daily maximum values. Monthly composites of Rrs667 were also combined to 

compose a time series of satellite data for the same period. Images of τmax, were 

produced to illustrate how bed shear stress changes spatially and temporally, where 

the wave component adds a seasonal factor to the total value. Time series 

demonstrated the optical variability in conjunction with τmax and it was shown at 

several locations, Rrs667 values intensified with increased levels of τmax. In these 

regions, τmax was controlling sediment resuspension. This was also demonstrated 

through correlation analysis, which proved useful for indentifying areas where no 

relationship existed between Rrs667 and τmax. Locations where sediment dynamics are 

not attributable to τmax are Anglesey, the inner Bristol Channel and Solway Firth. In 

Cardigan Bay, the outer Bristol Channel and Wicklow Head, an approximately 

logistic function connects Rrs667 and τmax. Coefficients from a generalized linear 

model of these parameters were used to predict the threshold for sediment erosion.  
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8.2 Implications 

This section reviews the key issues identified in chapter 1.  

 

1. Can methods of quantitatively interpreting satellite images in optically 

complex waters be developed? 

 

Attempts to develop algorithms that are capable of the simultaneous recovery of 

CHL, MSS and CDOM, often encounter difficulties (Sathyendranath 2000). The 

problem is made simpler by considering only one constituent. This study has 

demonstrated that it is possible to develop methods for quantitatively deriving MSS 

from reflectance signals measured over optically complex waters. Using a 

combination of radiative transfer modelling and in-situ field observations, an 

algorithm specific to the recovery of MSS concentrations has been designed 

(equation 4.4). Radiative transfer modelling is an excellent tool for investigating 

parameters that influence the light distribution in shelf seas, and complements the 

traditional empirical analysis of field data. The use of radiative transfer modelling 

provides insights into potential sources of error, such as the affect of other optically 

significant constituents on the MSS retrieval. The algorithm developed during the 

course of study incorporates this error in the result. Radiance transfer calculations 

were conducted using SIOPs representative of UK shelf waters. In reality, even in a 

small geographical area such as the region of interest, SIOPs may exhibit significant 

variability. However, from equation (1.28) the numerator is controlled predominantly 

by MSS backscattering. Even if the CHL backscattering SIOP was increased by a 

factor of 5, backscattering by MSS would remain the dominant parameter for this 

region where concentrations of MSS are relatively high, meaning the relationship 

would stay unchanged. This leaves the specific absorption coefficients. Increasing 

a*CHL by a factor of 5 would result in the denominator being controlled by seawater 

and CHL concentration. In this case, the boundaries of the MSS retrieval range 

would be altered. Nonetheless, the proposed retrieval method captures the range of 

a*CHL values derived from optical measurements of UK shelf seas and could be 

altered to best represent optical properties of other locations. For this reason, a 

general algorithm covering the extent of a large region, for example, the European 
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continental shelf, is not applicable. Algorithms must be optimised to embody local 

optical characteristics. Knowledge of the physical dynamics of the water column 

may also assist with this process. By applying, a priori conditions, the maximum 

algorithm boundaries can be restricted. For example, during winter periods the 

modelled range of CHL can be reduced, resulting in a refinement of the retrieved 

MSS values. Once MSS has been recovered from the reflectance signal, it may be 

possible to infer concentrations of the remaining constituents, in particular CDOM. 

Figure 8.1 a) shows Rrs667 against Rrs443 calculated by radiance transfer modelling, 

where concentrations of CHL, MSS and CDOM lie within the ranges specified in 

chapter 4. Each colour on the figure represents a different concentration of MSS. 

Figure 8.1 b) shows the same ratio of reflectance, however in this example each 

colour represents a different concentration of CDOM. It may be possible to estimate 

the concentration of CDOM from the y-axis intercept (Figure 8.1 b) once the MSS 

group has been established. This points to future work in the field. 
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a) 

 

b)  

 

Figure 8.1 Ratio of reflectance measured at blue and red wavelengths. Colour points 

represent different concentrations of a) MSS and b) CDOM. The range of points is 

determined from combinations of each constituent supplied to the model. There is 

some indication that CDOM concentrations could be estimated from Rrs443 once the 

MSS group has been classified. 
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2. Given the existence of a significant archive of ocean colour images, is it 

possible to reconstruct temporal events from time series, even in areas such 

as the UK where there is high cloud cover? 

 

Ocean colour images can be combined to generate time series of satellite data, 

allowing the investigation of the temporal patterns of reflectance. Analysing satellite 

measurements in this way can yield more information than an individual image. 

Seasonal changes and long term trends can be surmised from the time series dataset, 

whilst cross comparisons provide information relating to the spatial consistency of 

variability. There exist various methods for analysing time series datasets, including 

resampling and interpolation procedures which essentially replace missing data in the 

series. This is particularly useful in regions such as the Irish Sea where few cloud 

free images are produced each year. Provided there are sufficient cloud free pixels to 

compose monthly composite images, temporal events such as maxima and minima 

can be accurately reconstructed by integration of satellite data. This was highlighted 

by results shown in chapter 5, where 5 years of seasonal patterns were effectively 

recreated from 181 satellite images. If however a significant break in the data set 

exists, interpolation methods assign erroneous values to the relevant increment space. 

Here, numerical shelf sea models could prove useful in predicting missing values. 

Time series analysis may assist with operational prediction and modelling purposes, 

where statistics could provide information on frequency and probability distributions. 

Coincident analysis with physical dynamics offers a real insight into the mechanisms 

driving reflectance variability in shelf seas. Time series analysis has proven crucial 

for this study and forms the basis of the main results presented in this thesis.  
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3. Is it possible to use ocean colour radiometry to gain useful insights into 

physical processes in shelf seas beyond patterns of primary productivity? 

 

The determination of patterns of primary productivity is commonly regarded as one 

of the fundamental objectives of ocean colour remote sensing. However the 

reflectance measured remotely by satellite can be utilised to provide information on a 

range of other processes. This study has demonstrated the potential of gaining useful 

insight into physical processes influencing shelf seas by analysing the dynamics of 

sediment (chapters 6 and 7). To do this, MSS was treated as a tracer of the water 

column hydrodynamics and ocean colour images were used to map surface sediment 

patterns. A rise in Rrs667 during winter periods was attributed to a well mixed water 

column or increased bed shear stress, whilst reductions of the reflectance signal in 

summer may signify water column stratification. Spatial patterns of Rrs667 could 

also be associated with physical processes through comparisons with tidal current 

velocities. Maximum values of Rrs667 are often observed in regions containing 

strong tidal currents. These examples illustrate how spatial and temporal patterns of 

suspended sediment can provide information on physical processes. This technique 

may also be extended to consider alternative optical constituents such as CDOM, 

whose dynamics could be closely monitored at the ocean-continent interface to 

investigate, for example, the influence of river runoff. Satellite data recorded at 

higher resolution (MERIS Full Resolution/ESA) would be required to enhance detail. 

Formal establishment of relationships between ocean colour and physical properties 

may assist with the development of hydrodynamic models as satellite imagery could 

be used to tune the model to better replicate hydrological features such as thermal 

fronts.  
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4. Can it be demonstrated that surface reflectance signals are driven by 

processes deeper in the water column? 

 

One recent development in shelf sea science is the creation of high resolution 

numerical models.  The tuning and validation of these models requires a synoptic 

view of shelf sea processes that is difficult to obtain from ship-based sampling or 

instrumented moorings.  Ocean colour observations can potentially fulfil this 

requirement if it can be demonstrated that the surface signals are driven by processes 

deeper in the water column. This study has shown that this condition is true for the 

Irish Sea. Using coincident analysis of satellite remote sensing data and oceanic 

properties derived from a numerical model, the relationship between surface Rrs667 

and water column stratification was quantified for the region of interest (chapter 6). 

Reflectance signals generally begin to fall at the onset of stratification. Values at the 

surface can only be measured in regions of non-stratified water. However, the 

inverse statement is not true; a mixed water column does not ensure a reflectance 

signal will be detected. Because of this, the relationship between Rrs667 and water 

column stratification is a complex one. In an attempt to explain regions of 

inconsistency, Rrs667 was investigated in conjunction with bed shear stress (chapter 

7). This physical parameter is known to control sediment resuspension in shallow 

waters. It was demonstrated at various locations that reflectance values changed 

according to the magnitude of stress applied at the sea bed. As with stratification, 

there were regions where sediment dynamics appeared to be influenced by 

alternative physical processes. However, for the majority of the test site, surface 

values of Rrs667 could be explained by the mechanisms driving reflectance 

variability. Figure 8.2 shows a hierarchal diagram of established relationships, and 

locations identified as requiring further study. Results presented in chapters 6 and 7 

could be improved and validated using in-situ data. However this was unavailable at 

the time of writing. 
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Figure 8.2 Hierarchal diagram of regions in which reflectance variability is explained 

by physical process. 
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5. Is it possible to infer directly from ocean colour, physical properties of the 

water column through development of simple algorithms? 

 

Having established that reflectance variability observed in the majority of the Irish 

and north Celtic Sea can be related to physical processes, this study has further 

demonstrated the difficulty of extracting quantitative properties of these processes 

from the reflectance signal. For a large area of the test site, a power law relationship 

exists between satellite measured Rrs667 and model derived stratification. At these 

locations, the reflectance signal could be used to predict the difference in density 

using an equation of the form (6.2). This result would be strengthened by validation 

with in-situ field data, but this was not available at the time of writing. For regions 

containing more a complex relation, Rrs667 cannot determine the extent of 

stratification. The inverse argument for mixing is also true. Mixing of the water 

column may result in increased reflectance but the magnitude of mixing does not 

determine how much reflectance, and by implication MSS, will be measured at the 

surface. The breakdown of a simple relationship serves as a reminder of the physical 

complexity of this relatively small region.  In shallow waters, a logistic function 

correlates Rrs667 and maximum bed shear stress. Therefore, to derive τmax from the 

reflectance signal, one would require a priori knowledge of the logistic steps and 

intercept. Coincident analysis of modelled τmax and Rrs667 has presented a simple 

equation for estimating the threshold stress for sediment erosion from satellite ocean 

colour. If corroborated with in-situ data, this could prove an extremely useful result.  
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8.3 Suggestions for future work 

The results presented in this thesis illustrate the effectiveness of a multidisciplinary 

approach to interpreting satellite ocean colour data and open up an exciting new field 

of study. The method applied to retrieving MSS concentrations from ocean colour 

may be extended to include other constituents such as CDOM. This may prove useful 

when attempting to understand the effects of freshwater processes, such as river 

runoff, at the ocean-continent interface. Coincident analysis with hydrodynamic 

models could also be extended to include sedimentary models. This would be useful 

for validation purposes, particularly model validation. The fundamental objective of 

this type of research is assimilation of satellite remote sensing data into 

hydrodynamic models. This work could be extended to assist this difficult task. For 

example, ocean colour derived measurements of MSS could be applied as an 

initialization parameter for sediment transport models. Consecutive ocean colour 

images would then provide continued initialization or validation tools. As mentioned 

previously in this work, satellite ocean colour images could also be utilised to better 

represent hydrological features such as thermal fronts. Moreover, assimilation of into 

numerical models could essentially fill the gaps in satellite time series. Accurate 

assimilation of ocean colour into ocean numerical models offers major research 

potential.  

 

In the context of this work, further research is required to explain reflectance 

variability at several locations in the Irish Sea. Incorporation of particle size 

distributions may shed light on the complex dynamics observed in Anglesey, whilst 

the Solway Firth and the inner Bristol Channel require an alternative hydrodynamic 

descriptor. This is also true for the eastern Irish Sea, where intricate relations with 

salinity stratification govern sediment resuspension and deposition. All results would 

be strengthened with the availability of additional in-situ data, obtained from 

research cruise expeditions or fixed moorings. These issues point to the need for 

further work in the field. 

 

 

 


