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Abstract

Subject matter experts have become increasingly important as sources of valuable information

in the support of decision making for the Dutch Defence. Yet, the Defence methodology toolbox

is lacking a methodology for dealing with quantitative subject matter expert judgements. In

this thesis we evaluate a methodology that reflects the discrete character of quantitative expert

judgements and is flexible in the amount of detail that can both be specified by the experts

and is needed for the decision problem at hand: the Bayes linear methodology. This entails

that the methodology can be applied within a relatively short time frame, leading to a short

response time. The methodology evaluated in this thesis also provides a vehicle to gradually

switch from expert judgement to actually observed data when this becomes available.

To date little guidance is available as to how to obtain the assessments from experts necessary

to populate a Bayes linear model. In this thesis we have evaluated (a bivariate extension of)

the extended Pearson-Tukey method for the derivation of the second order moment assessment

needed to quantify a Bayes linear model, by evaluating its performance for a wide variety of

bivariate distributions. We found this method to perform very well when variables are not

strongly skewed.

By means of simulation studies we show that the Bayes linear adjustment of moments can be

inaccurate for not joint Normally distributed variables. Yet, we find that the use of higher order

moment information can greatly increase the accuracy. For the distributions considered in this

thesis the increase is between five and eleven orders of magnitude when third and fourth order

moment information is used as well in the adjustment. For distribution with a poor performance

of the regular adjustment of moments this increase in accuracy is sustained when this higher

order moment information is to be obtained from expert assessments, leading to increased

accuracy between one and two orders of magnitude. Finally we develop a performance based

method to combine sets of (product) moment assessments from different experts into one set of

assessments that represents a rational consensus of the experts’ assessments, so that multiple

experts can be consulted for a Bayes linear study.

Based on the results presented in this thesis we strongly advise to complement the Defence

methodology toolbox with the Bayes linear methodology.



Chapter 1

Introduction

1.1 Introduction

The circumstances under which the Dutch Armed Forces have to operate have rapidly changed

in the past decade. The Armed Forces are faced more and more with a broad spectrum of

(new) operational theatres and irregular operating opponents. Together with the effect of rapid

technological developments, this places new challenges to Defence (Barros 2009). Since e.g. the

operational environments are increasingly unfamiliar prior to deployment, often little is known

and little data is available for analysis and decision support. Therefore subject matter experts

have become increasingly important as sources of valuable information. Yet, as (the elicitation

of) expert judgments are fundamentally different from ordinary data (collection), previously

proven methods for data collection and analysis do not suffice anymore. In this thesis we aim

to complement current methods available with a methodology especially tailored to work with

quantitative expert judgement.

We hold the viewpoint that when sufficient data is available, this data should be preferred

over expert judgements. However, when data is lacking, we will have to resort to the only

alternative available: the expert opinion. Therefore we focus in this thesis on cases in which

quantitative assessments are desired from subject matter experts (SMEs). These quantitative

assessments could e.g. be related to properties of (future) systems (of systems), like develop-

ment and whole life costs, reliability and other performance indicators for a broad spectrum of

operational circumstances. When SMEs are queried for assessments of magnitude, it is good

practice not to rely on point estimates only but to ask for judgments about the uncertainty

in these estimates as well. Probabilistic methods are therefore commonly applied to represent
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quantitative expert opinion. Starting from quantitative expert opinion, we would like to grad-

ually switch to actual observed data when this becomes available. Bayesian statistical methods

provide an excellent vehicle for this purpose. With Bayesian methods, priorly expressed quan-

titative beliefs can be revised in a rational and coherent way when data becomes available.

Bayesian methods have the nice property that the more data is available, the less the revised

beliefs will rely on the initial (expert) assessments.

Full probabilistic Bayesian methods however are very involved. Usually strong assumptions

are required about the probabilistic distribution of, and the relationships between variables

in the model to be able to conduct the calculation of revised beliefs. The specification of

the prior beliefs needed to operationalise Bayesian models can easily be beyond the ability of

subject matter experts, who are typically not experts in probabilistic methodology. Moreover,

this process can be very time consuming which poses immediately a restriction to its use in

military practice given the increasingly short time of response required in current military

decision making. So there is a need for a methodology that possesses the benefits of the full

probabilistic Bayesian approach, but suffers less from the disadvantages just described. In this

thesis we propose and evaluate a methodology that can potentially fulfil this need.

1.2 The Bayes Linear Methodology

In this thesis we will focus on the applicability of the Bayes linear (BL) methodology to deci-

sion support and analysis problems, wherein quantitative assessments are desired from subject

matter experts, that can be revised when data becomes available. The BL methodology was

developed by Michael Goldstein in a series of papers (Goldstein 1981, Goldstein 1986, Goldstein

1988a, Goldstein 1988b, Goldstein 1991, Goldstein 1994). This methodology takes expectation

rather than probability as the fundamental concept and is based on the following four principles

(Goldstein 1994):

Principle 1 Specify only those aspects of their beliefs that assessors are both

willing and able to quantify honestly.

Principle 2 Use coherent probabilistic guidelines for revising beliefs.

Principle 3 Base statistical models on judgements about observable quantities.

Principle 4 Use theory to interpret the underlying structure of beliefs.

In the base case, when we wish experts to assess their beliefs about magnitudes of quanti-

2



ties of interest and wish to learn more about these magnitudes by observing other quantities,

Goldstein argues that the bare minimum aspects that must be considered are:

1. some quantitative judgements as to the magnitudes of the various quantities,

2. some expression of the degree of confidence in the judgements of magnitude,

3. some expression of the extent to which the prior judgements about the various quantities

are interrelated (so that observation on some of the quantities may be used to modify

judgements on other quantities).

In the Bayes linear methodology assessments of respectively means, variances and covariances

are chosen to quantify these aspects. All three can be derived from first and second order

(product) moments, so Bayes linear models are thus fully specified by a second order moment

specification. Since belief revisions in light of new observations in this methodology also are

operations on moments only, the methodology can be viewed as a method of moments. The

assessment of moments can be given a strong foundation by the use of De Finetti’s definition

of coherent previsions: having the expert state their assessments such that no bet can be made

based on the assessments that would make the expert a sure loser. Once a Bayes linear model

is quantified by a set of coherent (product) moment assessments, the revision of these moments

in the light of new observations will also result in a coherent set of revised moments.

The methodology however is by no means restricted to the assessment and revision of

magnitudes only. As beliefs of magnitudes of uncertain quantities are specified, so can beliefs

about functions of these uncertain quantities be, for example the square or the cube of the

same quantity. By including these functions in the model, beliefs about e.g. variability and

asymmetry can be specified and revised as well. To quote Goldstein (1994), the Bayes linear

belief specification “may be viewed as reducing the full probabilistic approach to whatever level

of detail we feel is both within our ability to specify and adequate to the problem at hand”.

The methodology thus reflects the discrete character of quantitative expert assessments and

is flexible in the amount of detail that can both be specified by the experts and is needed for

the decision problem at hand. Furthermore, the methodology is assumption free as in that

it does not require the quantities to have a probability distribution from a certain family of

distributions. The only requirements needed are that the second order (product) moments for

the quantities in the model are finite, and coherently specified.

Although the methodology does not employ the concept of probability, Bayes linear belief

revisions can be compared with full probabilistic belief revision via the moments, since these

3



are also defined in a probabilistic setting, as probability weighted averages. In fact, in the base

case in which Bayes linear belief specification and revision are performed for only the quantities

themselves and not functions of these quantities, the belief revisions are identical to those in

the full probabilistic case using the same second order specification and the assumption of joint

Normality as the probability distribution for the quantities of interest (referred to as variables

in a probabilistic context). In this case the Bayes linear belief revision more or less reduces to

an old trick in a new jacket, although it must be acknowledged that the methodology provides

us with interpretative and diagnostic tools to analyse the specified beliefs as well, and, again,

does not require the concept of probability.

Although the BL methodology is designed to model and revise quantitative (expert) as-

sessments, little guidance has been provided to date on how the belief specifications needed to

quantify the model can be provided by subject matter experts, and how well the methodology

performs compared to the full probabilistic alternative. Therefore, to assess whether the Bayes

linear methodology can fulfil the need identified in the introduction, the questions formulated

in the next section need to be answered.

1.3 Research Questions

The Bayes linear methodology has the potential to meet the need specified in the introduction.

But before one could comfortably apply the methodology, an (affirmative) answer to the research

questions stated in this section is required.

To start, without experts being able to provide us with the moment assessments necessary

we will have no specified beliefs to analyse and revise, so:

1. Can experts provide the beliefs necessary, i.e. can they assess (product) moments confi-

dently and reliably?

Recall from the Principles 1 and 3 above that experts should be willing and able to make the

judgements required, and that experts should be asked only for judgements about (in principle)

observable quantities. Since we consider the Bayes linear approach as an alternative to full

probabilistic modelling, as a moment based approximation to it, we need to be able to assess

to what extent the Bayes linear belief revision corresponds to the belief revision we would have

found using full probabilistic modelling based on the same (product) moment assessments:

2. How accurate are the Bayes linear adjustment rules when considered an approximation
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to full probabilistic updating, when the quantities (variables) are not assumed to be joint

Normally distributed?

We anticipate deviations between Bayes linear and full probabilistic belief revision when vari-

ables are not joint Normally distributed. Since Goldstein states that in his moment based

method we can use whatever level of detail is within the ability of the expert to specify, we

wonder whether these deviations can be reduced by increasing the level of detail:

3. Can the accuracy of Bayes linear belief adjustment be improved by using higher order

information, and is this improvement sustained when deriving the moment assessments

necessary from expert assessments?

Finally, it is typical for expert judgement based studies and commonly advised that multiple

experts are consulted. What should a decision maker do with multiple sets of expert assessed

(product) moments:

4. How can we aggregate moment assessments of multiple experts?

We will now proceed to discuss how this thesis is set up to address these research questions.

1.4 Structure of the Thesis

The thesis is set up as follows. In Chapter 2 we will discuss the measurement of uncertainty with

probability and expectation. We will describe how these measures can be operationalised and

thereby given meaning when they are based on judgements (of experts), and how they can be

revised when new information becomes available. In Chapter 3 we discuss the difficulties, pitfalls

and dangers that might rise when we actually try to conduct measurements of uncertainty with

experts; the elicitation of quantitative expert judgements. We treat different approaches to

evaluating whether an elicitation exercise can be considered successful. We review the literature

on methods to elicit means, variances and covariances, thereby answering research question 1

for first and second order moment assessments.

We then proceed in Chapter 4 to formally introduce the methodology under evaluation in

this research: the Bayes linear methodology. We describe how a Bayes linear model can be

constructed from first and second order moment assessments, and the Bayes linear adjustment

rules for means and variances, core to the methodology. We discuss the interpretations that can

be given to the belief adjustments, and the interpretative and diagnostic tools provided by the

methodology to analyse the specified beliefs and (potential) revisions of these by observations.
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In Chapter 5 we consider the Bayes linear approach as an approximation to full probabilistic

updating. We investigate how accurate the Bayes linear adjustments rules are when variables

are not joint Normally distributed. We select a set of bivariate distribution families and evaluate

the difference between the Bayes linear adjusted mean and variance and the conditional mean

and variance for these distribution families. In this chapter we thus formulate an answer to

research question 2.

We then evaluate the possible benefits of using higher order (product) moment information

in Bayes linear belief adjustment, in Chapter 6. First we analyse the benefits for the situation

in which exact knowledge of the moments is available, part one of research question 3. We

then evaluate the performance of a methodology for the assessments of higher order (product)

moment assessments, completing the answer to research question 1. Finally we evaluate the

possible benefits of using higher order (product) moment information in Bayes linear belief

adjustment when the (product) moments necessary are derived from assessments experts can

provide, part two of research question 3.

In Chapter 7, finally, we address research question 4 by developing a performance based

aggregation method for sets of expert assessed (product) moments.

Throughout this thesis we will make use of the designations ‘subject matter expert’, ‘expert’

and ‘assessor’. We will use the term subject matter expert when referring to expert assessors

in a Defence context. Expert will simply stand for any expert, someone’s knowledge we wish

to use and we will use assessor to refer to someone in general assessing something. To improve

readability (expert) assessors will be referred to in masculine form and decision makers in

feminine form.
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Chapter 2

Uncertainty

Uncertainty about the value of a quantity can be studied by applying statistical methods to

observed values for that quantity. In this thesis however we focus on the case in which we are

interested to learn about the value of a quantity for which we do not (yet) have observations

available. We might be interested e.g. in the acquisition costs or performance of an aircraft

that is still only in the design phase, the reliability and accuracy of a new type of missile that

is too expensive to test in real trials, or the added operational value of self protective measures

yet to be developed. Even in the case that we could be informed by data that is available for in

some way comparable systems, subject matter expert judgement is needed to relate this data

to the system of interest. In this chapter we will therefore discuss the subjective assessment of

uncertainty via expectation and probability. We start with defining the concept and discuss

different categorisations that can be found in literature that distinguish between different types

of uncertainty. We will then discuss how uncertainty can be measured, introducing the concepts

of probability and expectation. Special attention will be given to the different interpretations

that can be given to these measures. Finally we will treat different ways in which measurements

of uncertainty can be revised when more information becomes available.

2.1 Uncertainty

Two topics are of main concern in this thesis: the representation of subjective uncertainty and

the revision of this subjective uncertainty in the light of new information/observations. So let us

first describe what we mean by uncertainty. At a basic level, something is uncertain whenever

it is not completely certain. According to the dictionary, certainty is “something that is clearly

established or assured”. In (Bedford & Cooke 2001) this ‘something’ is defined as a declarative
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sentence, which can be ‘established’ or ‘assured’ by determining (a) whether truth conditions

exist for it and (b) the conditions for the value ‘true’ hold.

An evaluation of uncertainty will depend on the information (set of observations) that is

available. We will demonstrate what we mean by this using a slightly modified example from

(Winkler 1996). Suppose we toss a coin. When only being told that the coin is fair, most

people will be very uncertain about whether the coin will land ‘heads’ or ‘tails’. But, if we have

information/observations on all conditions surrounding this toss (like e.g. initial side facing up,

height, velocity, wind, nature of surface the coin is bound to land on, etc.) the laws of physics

could be used to predict the outcome with certainty, or close to certainty. Therefore, the uncer-

tainty about the outcome of the coin toss depends on the available information/observations. In

fact, uncertainty is that which is reduced or removed by observation (Bedford & Cooke 2001).

Different types (or: classifications) of uncertainty are mentioned in the literature. The type

of uncertainty can have implications for how it can be measured. We will therefore first discuss

these types before treating the quantitative measurement of uncertainty.

2.2 Types of Uncertainty

In the coin tossing example of the previous section, probably the most frequently mentioned

categorisation of uncertainty was implicitly introduced: the distinction between aleatory (in-

trinsic) and epistemic (lack of knowledge) uncertainty. This classification is discussed in the

first subsection, followed by parameter and model uncertainty and finally volitional uncertainty.

Not to be confused with uncertainty is ambiguity (Bedford & Cooke 2001). The authors

point out that verbal and written language can often be explained in different ways. They state

that this ambiguity, i.e. the lack of well-defined truth conditions, must be removed to be able to

discuss uncertainty in a meaningful way. Where uncertainty is that which is reduced or removed

by observation, ambiguity is that which is removed by linguistic convention (Cooke 1991).

2.2.1 Aleatory and Epistemic Uncertainties

Aleatory uncertainties, derived from the Latin word for dice ‘alea’, arise through variability

intrinsic to a system. Epistemic uncertainties refer to the uncertainties due to lack of knowledge

of a system of interest (see e.g. (Winkler 1996, Bedford & Cooke 2001, O’Hagan & Oakley

2004)). So epistemic uncertainty could be reduced by gaining more knowledge about the system

of interest. Aleatory uncertainty, in contrast, is that uncertainty we cannot or do not make the

effort to reduce.
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When reconsidering the toss of the coin in the example in Section 2.1 (or maybe even better,

replace it with the throw of an ‘alea’), it should become clear that it is not always apparent

whether an uncertainty should be classified as aleatory or epistemic. Depending on the context

both classifications could be appropriate. Winkler (1996) therefore mentions this distinction

between types of uncertainty to be ’fundamentally flawed’. Though, in concrete situations the

distinction will usually be quite apparent: when considering to engage in a game of chance in

which winning or losing depends on the throw of a dice, it is usually not feasible to base that

decision on a physical model of the throw as suggested in Section 2.1.

Aleatory and epistemic uncertainties are in literature also referred to as irreducible/reducible,

stochastic/subjective, Type A/Type B and variability/state of knowledge.

2.2.2 Parameter and Model Uncertainty

Parameter uncertainty is described in (Bedford & Cooke 2001) as uncertainty about the ‘true’

value of a parameter in a mathematical model. Often no ’real-life’ interpretation of this param-

eter is available. The authors state that in this case parameter uncertainty can only be given

a meaning, and be measured, if this uncertainty is taken to represent the uncertainty of an

observer about the accuracy of model predictions on observable quantities. O’Hagan & Oakley

(2004) regard parameter uncertainty to be generally epistemic, since, they state, one commonly

just does not know what the correct values for input parameters are.

Quantifying model uncertainty is even more problematic, since “every model is definitely

false” (Morgan & Henrion 1990). Describing model uncertainty as ‘uncertainty about the truth

of the model’ would therefore not be useful (Bedford & Cooke 2001). O’Hagan & Oakley (2004)

speak of ‘uncertainty about model inadequacy’ and state that to be ‘unequivocally epistemic’.

They provide the following reasoning behind this. Consider the case in which a real process

has been modelled, but in which there still is some residual variability in the value of the

process when model conditions are repeated. This variability can be regarded as aleatory, if

it is considered to be natural to the process. At the same time adding more conditions to the

process could eliminate or reduce this residual variability. The removed variability then was due

to the lack of knowledge about these extra conditions, and therefore must have been epistemic.

By introducing a discrete variable to indicate which model is used, model uncertainty can

be seen as a special case of parameter uncertainty and can thereby be given a meaning (Bedford

& Cooke 2001). That is, as much meaning as can be given to parameter uncertainty.
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2.2.3 Volitional Uncertainty

Volitional uncertainty is uncertainty about so called first person events. A first person event is

an event whose defining conditions involve decisions of the acting subject (Cooke 1986). The

problem of first person events is that they cannot be measured via preference behaviour (the

measurement of uncertainty using preference behaviour will be introduced in the next section).

An example of the problem of measuring preference for a first person event, from (Bedford

& Cooke 2001), is the following: suppose a person P is asked for his preference between the

following two options:

(a) receive $1,000,000 if P cleans his cellar next weekend, or receive $0 otherwise,

(b) receive $1,000,000 if the Dow-Jones is lower at the end of the week, or receive $0 otherwise.

Considering most people in the position of P will prefer (a) to (b), one could say that (a) is

more likely to occur then (b). But when the stake of $1,000,000 is lowered to $1, most people

will probably prefer (b) to (a), implying (b) to be more likely to occur than (a). Thus, the act

of measuring uncertainty about first person events by observing preference behaviour influences

this uncertainty. This problem does not occur if another person than person P expresses his

preference for the above described options.

2.3 Measurement of Uncertainty

Uncertainty can be attributed in many ways. In everyday life words like ‘probably’, ‘unlikely’

and ‘rarely’ are used to express uncertainty, by which different degrees of uncertainty can be

distinguished. In the current and following two sections we will focus on how uncertainty can

be measured quantitatively, i.e. how we can express uncertainty as a finite number.

We will discuss the measurement of uncertainty in relation to either events or random

quantities. An event is something that either occurs or not, which we might not know with

certainty. By random quantity we will simply mean any well-defined quantity about the value

of which we might be uncertain. The concepts of event and random quantity can be easily

related using the indicator function of the event: the indicator function that takes the value 1

if the event occurs and 0 if not, is a random quantity.

Before we can measure uncertainty quantitatively, we first need to describe of course what it

exactly is we want to measure and how we intent to measure it. Lindley (2000, p.295) reminds

us that some sort of a standard is needed, since ‘all measurement is based on a comparison
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with a standard’. Cooke (2004) argues that this standard should have an operational definition.

Without clearly defining in empirically observable terms what a measurement of uncertainty is

representing, he states, it is not possible to assess whether a specific representation of uncer-

tainty is appropriate. This is of course especially the case with subjective representations of

uncertainty. What questions are to be asked to someone when a quantitative assessment of his

uncertainty about an event or quantity is desired? How are these questions to be understood

by the assessor, how should the answers given to them be interpreted and what meaning can

be given to them?

Various approaches to an operationally defined measure of uncertainty can be found in

the literature. In the remainder of this section we will introduce one of these: Bruno de

Finetti’s betting approach (De Finetti 1974). Starting from a description of the observable

phenomenon, betting behaviour, used in this measurement approach, we will show how two well-

known quantitative measures of uncertainty, probability and expectation, can be operationally

defined using this behaviour. The reason for discussing De Finetti’s approach here before the

other approaches is that it is a representation of subjective uncertainty and that both probability

and expectation can be defined directly from the observable phenomena in this approach. So

next to probabilistic methods, also moment-based methods like the Bayes linear methodology

that take expectation as the primitive notion can be directly operationally defined with De

Finetti’s approach. In the Sections 2.4 and 2.5 the mathematical definition and properties

of resp. probability and expectation are described. Section 2.6 treats other (operational)

definitions of probability, more commonly referred to as interpretations of probability. We will

discuss the implications these interpretations have on the types of settings in which probability

can be applied as measurement of uncertainty, and the different ways in which probabilities can

be revised when more information becomes available.

2.3.1 De Finetti’s Betting Approach: Coherent Previsions

De Finetti’s approach relates the uncertainty people have about a random quantity of interest

with their betting behaviour. His ideas were first published in the 1930s. The standard reference

to the De Finetti’s approach has become his Theory of Probability, first published in Italian in

1970 and in English in two volumes in 1974 and 1975. An extensive historical and philosophical

introduction into De Finetti’s approach can be found in (Lad 1996). This work also updates De

Finetti’s Theory of Probability with work done in the 25 years following its initial publication

(Schafer 2002).
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In De Finetti’s approach the ‘measurement standard’ for an individual’s uncertainty is his

prevision for a random quantity. A prevision is the value a person chooses when he is engaged

in a bet in which his loss depends on the difference between his stated value and the true value

of the random quantity. The bigger the difference, the bigger the loss. Formally, prevision is

defined to be the value x that an individual chooses in either one of the two following, equivalent,

criteria (De Finetti 1974, pp. 87-88):

• First criterion. Given a random quantity (or random magnitude) X , you are obliged to

choose a value x, on the understanding that, after making this choice, you are committed

to accepting any bet whatsoever with gain c(X − x), where c is arbitrary (positive or

negative) and at the choice of an opponent.

• Second criterion. You suffer a penalty L proportional to the square of the difference (or

deviation) between X and a value x, which you are free to choose for this purpose as you

please: L =
(

X−x
k

)2
(where k, arbitrary, is fixed in advance, possibly differing from case

to case).

It follows directly from both criteria that a person who does not want to be a sure loser,

should not state a prevision that is smaller than the minimum possible value of the quantity

or lager than its maximum possible value. A prevision smaller than the minimum value will

result in a positive loss with certainty, and stating the minimum value as prevision instead

would result in a smaller loss with certainty. A prevision that results in a sure loss is called

incoherent. A prevision for the indicator function of an event is therefore incoherent if it is not

in the closed interval [0, 1].

But even if previsions are coherent individually, it is possible that a set of previsions is

not. Let X for example be the indicator function for event A, and Y the indicator function

for event Ac, indicating event A not happening. If someone’s previsions for X and Y are resp.

0.75 and 0.5, then both previsions individually are coherent. But we can construct set of bets

using both previsions in which this individual will be a sure loser: if, using De Finetti’s first

criterion, we bet c on both quantities, this individual’s loss will be c(X − x) + c(Y − y) =

c((X + Y ) − (x + y)) = c(1 − 1.25) = −0.25c. So for any c > 0, this individual will be a sure

loser. Such a combination of bets leading to a sure loss is often referred to as a Dutch book.

In the current example no Dutch book can be made against an individual who makes sure that

both his individual previsions are coherent and that the sum of his previsions for X and Y is

equal to 1. Individuals who do not wish to engage in bets that will result in a sure loss should

thus state coherent previsions.
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One of the major implications of the definition of coherent previsions is that it assumes an

individual to be risk neutral. For example this would mean that if an individual is indifferent

to receiving 0.50 for certain or 1.00 if event A occurs, he would also have to be indifferent

to receiving 5,000,000 for certain or 10,000,000 if A occurs. Risk neutrality is not assumed a

generally valid assumption (French 1986). To make the assumption more realistic minimum and

maximum monetary values (often referred to as ‘stakes’) can be introduced between which the

assumption of risk neutrality seems reasonable. Or so called units of utility, defined especially

in such a way to ensure an individual’s risk neutrality in regard of it, could be used instead of

monetary units.

We shall now formalise De Finetti’s notion of coherency. With respect to the first criterion,

a set of previsions is said to be coherent if there is no linear combination of the bets for each

of the previsions with a negative supremum. In the context of the second criterion a set of

previsions is said to be coherent if there is no other possible choice that would certainly lead

to a uniform reduction in penalty L. Coherency thus requires an individual not to have a

preference for a given penalty if he has the option of another penalty that is certainly smaller.

De Finetti has shown that coherency of previsions for any two quantities X and Y , denoted

here as Pv(X) and Pv(Y ) respectively, is equivalent to the following two restrictions (De Finetti

1974, p.74):

(i) min R(X) 6 Pv(X) 6 max R(X),

(ii) Pv(X + Y ) = Pv(X) + Pv(Y ), (2.1)

where min R(X) is the smallest member of the realm of X and max R(X) the largest member.

The necessity of restriction (i) for avoiding a sure loss was already explained in this section.

The combined bet example from this section treats a special case of restriction (ii), which states

that previsions are linear.

If we restrict X to be an indicator function of some event A, we find from (i) that Pv(X) ≥ 0.

When A is the certain event the realm of X reduces to the value 1. So, again from (i), we

have that Pv(X) = 1 when A is the certain event. Let Y be the indicator function of event

B. If we consider the eventuality of either of the events A and B occurring, we find from

(ii) in terms of previsions of their indicator functions Pv(X OR Y ) = Pv(X + Y − XY ) =

Pv(X) + Pv(X) − Pv(XY ). If A and B cannot occur at the same time, i.e. XY ≡ 0, then

Pv(X + Y ) = Pv(X) + Pv(Y ). As we shall show in Section 2.4.1, these properties define

previsions of indicator functions of events to be probabilities.
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Previsions also satisfy the axioms of expectation, which will be described in Section 2.5.1.

To see this, we need to add that coherency implies that every linear relation between the

random quantities,
∑n

i=1 ciXi = c, must be satisfied by the corresponding previsions for these

quantities, so that
∑n

i=1 ciPv(Xi) = c (De Finetti 1974, p.89). So for the simplest case n = 1

we find that Pv(cX) = cPv(X).

We conclude this section with a geometric interpretation that can be given to a set of

coherent previsions, equivalent to the two restrictions from (2.1). Let X be a vector of random

quantities. Then the set of all coherent previsions for X is the closed convex hull of the realm

of X. The convex hull representation of coherent previsions will be of interest to us in Section

7.2.2, where we will discuss the aggregation of sets of coherent assessments.

2.4 Probability

A probability is a normalised measure of uncertainty that obeys certain mathematical proper-

ties. We will use the notation P (A) for the probability of an event A occurring. The probability

of an event occurring is a value between 0 and 1, where P (A) = 0 means that it is impossible

that A will occur. On the other extreme, a probability of 1 refers to the case that the event

is certain to occur. A probability of 0.5 means that an event is just as likely to occur than

not. We will first introduce the notion of a (σ-)field, a collection of events that can be assigned

probabilities, and then proceed to define probability formally with Kolmogorov’s axioms.

Events are defined here using set theory. Let Ω be a non-empty set of outcomes, or possible

worlds, and let ∅ be the empty set. Set B is called a subset of set A, notation B ⊆ A, if and

only if ∀ω ∈ Ω : (ω ∈ B ⇒ ω ∈ A). If in addition to B being a subset of A, there also exist

an element ω ∈ Ω that is an element of A but not of B, then B is called a proper subset of A,

with notation B ⊂ A. A set A ⊂ Ω is defined here as an event. For these events, the operations

union, intersection and complement be defined as:

A ∪ B := {ω ∈ Ω : ω ∈ A OR ω ∈ B} is called the union of A and B.

A ∩ B := {ω ∈ Ω : ω ∈ A AND ω ∈ B} is called the intersection of A and B.

Ac := {ω ∈ Ω : ω /∈ A} is called the complement of A.

A set of events F is called a field if:

i. ∅ ∈ F ,
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ii. If A ∈ F , then Ac ∈ F

iii. If A, B ∈ F , then A ∪ B ∈ F

If iii is augmented to account for infinite unions of events as in iii′.

iii′. If A1, A2, . . . ∈ F , then
⋃∞

i=1 Ai ∈ F ,

then F is called a σ-field.

2.4.1 Kolmogorov’s Axioms

Let F be a field over Ω, then the number P (·) obeying the following three axioms of Kolmogorov

is called a probability:

I. For each set A ∈ F , P (A) ≥ 0.

II. P (Ω) = 1.

III. If A ∩ B = ∅, then P (A + B) = P (A) + P (B).

The axioms state that probability (I) is a nonnegative number, that (II) the certain event is

assigned the probability 1 and (III) that if two events cannot occur at the same time, the

probability that either one of these events occurs is equal to the sum of the probabilities of

each of the events. The axioms I-III form a finitely additive positive normalized measure. The

third axiom can also be extended to account for infinite sequences of events, requiring F now

to be a σ-field:

III ′. If A1, A2, . . . are such that Ai ∩ Aj = ∅ for i 6= j, then P (
⋃∞

i=1 Ai) = Σ∞
i=1P (Ai).

The measure defined by the axioms I, II and III ′ is referred to as countable additive or

σ-additive.

Although Kolmogorov’s axioms are introduced here in the context of (σ-)fields of events,

their application is by no means restricted to this interpretation. For as Kolmogorov (1956

(1933), p.1) states: “Every axiomatic (abstract) theory admits, as is well known, of an unlimited

number of concrete interpretations besides those from which it was derived”. In the previous

section it was shown that a probability can be interpreted as someone’s prevision of an indicator

function, in Section 2.6 other interpretations will be discussed.
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2.4.2 Conditional Probability and Bayes Rule

The probability that event A occurs given that (hypothetically) it is certain that event B has

occurred is called the conditional probability of A given B, and is defined as:

P (A|B) =
P (A ∩ B)

P (B)
.

Since division by zero is not allowed, P (B) needs to be bigger then zero. The probability of an

event cannot be taken conditional on something that cannot occur.

Instead of this definition via unconditional probabilities, many authors that adhere a subjec-

tive interpretation of probability (e.g. Jeffreys, Jaynes) take conditional probability as primitive.

They argue that someone’s probability for an event is always conditional on his knowledge or

state of information about the event. Returning to the betting approach from Section 2.3.1,

De Finetti (1974) also introduces the notion of conditional prevision, prevision conditional on

event occurring. If X is any quantity and E any event, then your conditional prevision for X

given E, denoted by P (X |E), is the number you specify with the understanding that you are

thereby asserting your willingness to engage in any transaction that would yield you a net gain

of the amount s[XE−EP (X |E)], as long as |s[XE−EP (X |E)]| 6 S for every pair of numbers

(e, xe) in the realm of (E, XE), where S is the scale of your maximum stake (Lad 1996, p.123).

From Kolmogorov’s axioms and the definition of conditional probability the following well

known expression can by fairly easily derived (see e.g. (French 1986)):

P (A|B) =
P (B|A)P (A)

P (B)
. (2.2)

This equation is known as the simplest form of Bayes’ rule, or Bayes Theorem, and will be of

particular interest to us throughout this thesis. If we define A1, A2, . . . , AN to be any partition

of the certain event, that is Ω =
⋃N

i=1 Ai and Ak ∩ Al = ∅ for k 6= l, and let B be any event

such that P (B) > 0, then we can define the general form of Bayes’ rule as:

P (Al|B) =
P (B|Al)P (Al)∑N

i=1 P (B|Ai)P (Ai)
. (2.3)

Bayes rule plays an important role in the revision of probabilities in the light of new informa-

tion/observations. This will be discussed in Section 2.6.1.
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2.5 Expectation

The expectation of a quantity is also referred to as mean or as the first moment of that quantity.

The expectation of the n-th power of a quantity X , E(Xn), is called the n-th moment of X .

Product-moments refer to the expected values of products of uncertain quantities.

One of the earliest celebrated works on games of chance is Christian Huygens’ De Ratiociniis

in Ludo Aleae (1657). Huygens was the first to axiomatise a measure of uncertainty. Rather

than providing axioms for probability he started from an axiom of the ‘value’ of a fair game

and derived three theorems on expectations (Whittle 1992). In this section we will repeat the

axioms that mathematically define expectation, and show how expectation can be defined using

probability. We will use the notation E(X) to refer to the expectation (or expected value, or

mean) of a random quantity X .

2.5.1 Axioms

Expectation is a normalised positive linear operator, which is realised by satisfying the following

four axioms (see e.g. (Whittle 1992)):

A1. If X ≥ 0 then E(X) ≥ 0.

A2. If c is a constant then E(cX) = cE(X).

A3. E(X+Y)=E(X)+E(Y).

A4. E(1)=1.

From (2.1) (Section 2.3.1) it is clear that previsions satisfy the axioms A1, A3 and A4. We have

also described in Section 2.3.1 that coherency of previsions implies that Pv(cX) = cPv(X),

hence coherent previsions satisfy all expectation axioms.

We have defined expectation now directly from coherent previsions. A more common ap-

proach is to derive expectation as a probability-weighted average of the possible values of

a quantity. For the discrete case in which the outcome set Ω is a countable set of values

{ω1, ω2, . . . , ωk}, the expectation of a random quantity, or random variable, X is defined as:

E(X) =

k∑

i=1

P (ωi)X(ωi). (2.4)
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For the continuous case that Ω is the real line and ω a scalar, the expectation of X is defined

as:

E(X) =

∫ ∞

−∞

X(ω)f(ω)dx, (2.5)

for all X(ω) for which the integral is defined and absolutely convergent and with f(ω), referred

to as probability density on Ω, obeying

f(ω) ≥ 0,
∫ ∞

−∞

f(ω)dx = 1.

2.6 Interpretations of Probability and their Implications

In this chapter we have shown how personal betting behaviour can be operationalised as mea-

surement of uncertainty, with probability and expectation as mathematical consequences of

coherent bets. Historically the development has been in the opposite direction: Kolmogorov

(1956 (1933)) has been the first to formally define probability by the axioms given in Section

2.4.1, and since many attempts have been made to (operationally) define probability by giving

this mathematical concept an appropriate interpretation. In this section we will discuss the

most predominant of these interpretations, in the order in which they historically have been

introduced.

Classical interpretation: the classical interpretation is associated with Laplace (1820) and is

predominately discussed in the context of games of chance, like dice and card games. Laplace

related the probability of an event to the ratio of the number of outcomes favourable to the

event to the total number of possible outcomes, each assumed equally possible. So the prob-

ability of the event of a dice landing either ‘1’ or ‘6’ would therefore be related to the ratio

#{‘1’,‘6’}/#{‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’}=2/6=1/3.

The major weakness in the classical definition of probability is formed by the fact that each

outcome is assumed ‘equally likely’. Since ‘equally likely’ could just as well be described with

‘equally probable’, this definition of probability could be seen as making use of the notion of

probability itself and therefore as circular. An attempt to overcome this circularity is formed

by the principle of insufficient reason (according to Barnett (1982) first formally treated by

Bayes, although Laplace’s definition is usually referred to in literature), which specifically aims

to define the concept of ‘equally likely’ without using the notion of probability. But all attempts
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to such a definition have encountered paradoxes (French 1986).

Apart from the foundational problems the ‘equally likely’ concept incurs, it also limits the

application of probability: it cannot be deployed in situations in which possible scenarios are

clearly not equally likely to occur.

Relative frequency interpretation: the frequentist approach is largely based on the work of

Venn, Von Mises and Reichenbach (Venn 1876, Reichenbach 1949, Von Mises 1957). The basic

concept of this approach is that of infinitely repeatable experiments. The probability of an

event A is related to the long-run relative frequency of the occurrence of the event in under

identical circumstances repeated trials of such an experiment:

lim
n→∞

1

n

n∑

i=1

1A(ωi),

where ωi is the outcome of experiment i and 1A(ωi) the indicator function of the occurrence of

event A in experiment i. The expectation of a random quantity X can in the frequency approach

also be directly related to an observable phenomenon: the long-run arithmetic average:

lim
n→∞

1

n

n∑

i=1

X(ωi).

axiom of convergence, axiom of randomness.

The frequentist approach hypothesises a limit to exist for the relative frequency of the occur-

rence of an event and that this limit is unique, independent of whoever repeats the experiment

and whenever it is repeated (French 1986). It thus is an objective approach in the sense that “It

describes any view of probability which does not depend on the personal feelings or actions of

an individual” (Barnett 1982). Yet, the application of the frequency interpretation is limited:

events or propositions must be possible outcomes of repeatable trials.

The justifiability of the frequency approach is questioned on this reliance on the possibility

of an experiment to be repeated infinitely under identical circumstances. In practice it will

not be possible to repeat any experiment an infinite number of times. French (1986, p.234)

states that it is impossible to keep all circumstances identical when repeating an experiment.

He therefore argues that this must be interpreted as ‘identical in all aspects relevant to the

probability of an event’, leading to a circular definition of probability.

Logical interpretation: the logical approach to probability “[...] seeks to encapsulate in full
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generality the degree of support or confirmation that a piece of evidence E confers upon a given

hypothesis H” (Hájek 2010). Early proponents of this approach are Johnson (1921), Keynes

(1921) and Jeffreys (1939). A recent logical approach to probability is (Jaynes 2003). The

most systematic study of logical probability was by Carnap (1950). This approach considers

uncertainty about propositions rather than about events, and can be regarded as generalising

deductive logic. A degenerate case of this approach, in which we would have either impossibility

or certainty for each of the events, reduces to Aristotelian logic. The approach is ‘objective’ in

the sense that it does not attribute probability to persons. Instead, it is normative in aiming to

prescribe what one’s measurement of uncertainty should be given a certain ‘state of knowledge’.

It is therefore also referred to as ‘interpersonal’. The logical approach however fails to relate

the object of measurement to an (in principle) observable phenomenon, and thus lacks an

operational definition.

The logical interpretation suggests that people with the same knowledge should have the

same probabilities, referred to as the ‘necessary’ view. Lindley (2000) describes two difficulties

with this view. The first difficulty lies in defining exactly what is meant by ‘two people having

the same knowledge’. Secondly, this view entails probability to be independent from the ob-

server, and thus it should be possible to evaluate it without reference to a person, which is not

in agreement with the subjective definition. Furthermore, the situation in which two people

have exactly the same knowledge would be hard to realise in practice.

Frank Ramsey is with De Finetti one of the founders of the subjective interpretation of

probability. He developed his ideas at the same time as but independently from De Finetti.

He criticised Keynes’ logical interpretation by stating that “[...] there really do not seem to be

any such things as the probabilities he [Keynes] describes” ((Ramsey 1926, p.161), cited from

(Gillies 2000)). Where in the logical, interpersonal interpretation probability is considered to

be the same for all rational individuals, Ramsey abandons the view that rationality should

lead to a consensus on probability. Like De Finetti he views the probability of an event as

the degree of belief someone has in the event occurring, and proposed to measure the strength

of this belief by examining the character of some action to which it lead. And again like De

Finetti, he concludes that betting behaviour is a suitable action to measure the strength of this

type of belief.

Savage (1972 (1954)) proposes an alternative derivation of probability as degree of belief,

using rational preferences instead of coherent bets.
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Rational preference interpretation: the basic concept in the rational preference interpreta-

tion (Savage 1972 (1954)) is personal preference between events, determined via preference in

bets on these events. From these preferences subjective relative likelihoods are derived. Three

types of relative likelihoods are identified:

A % B, event A is believed to be as least as likely to occur as event B.

A ≻ B, event A is believed to be strictly more likely to occur as event B.

A ∼ B, events A and B are believed to be equally likely to occur.

Fishburn (1986) surveys the development of the axiomatic foundations for the rational pref-

erence approach from the pioneering era of Ramsey, De Finetti, Savage and Koopman (1940)

to the mid-80’s. We will repeat here the outcome of these development efforts. The proper-

ties suggested in the literature for (measures of) these relative likelihoods that are generally

considered uncontroversial are (Fishburn 1986):

• asymmetry: If A ≻ B, then NOT (B ≻ A),

• nontriviality: Ω ≻ ∅,

• nonnegativity: A % ∅,

• monotonicity: If A ⊇ B then A % B,

• inclusion monotonicity: If (A ⊇ B, B ≻ C) OR (A ≻ B, B ⊇ C) then (A ≻ C).

The following five axioms for the relative likelihoods, especially additivity, have been more

challenged in the literature for their desirability:

• transitivity: If A ≻ B AND B ≻ C, then A ≻ C),

• additivity: If A ∩ C = ∅ = B ∩ C, then A ≻ B ⇔ A ∪ C ≻ B ∪ C,

• complementarity: If A ≻ B, then NOT (Ac ≻ Bc),

• comparability: A and B are comparable if either A % B, B % A, or both hold.

• consistency: (A ∼ B ⇔ A % B AND B % A), and (A ≻ B ⇒ B ⊁ A).

Now, if for all pairs of events a weak preference % is given, and all pairs of events are comparable,

transitive and consistent, this is referred to as a weak order. A weak order that is nontrivial,

nonnegative and additive entails a measure of uncertainty that is unique up to rescaling. When
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normalised to unity this measure obeys the axioms of probability. The rational preference

approach to probability thus defines someone’s preference ordering to be rational if all the

properties needed to derive a probability measure from the ordering are satisfied.

The assumption of comparability has met with considerable debate. It requires that all

events can be meaningfully compared, even if they appear very different. Many authors believe

this cannot always be done (French 1986).

Propensity interpretation: the interpretation of probability as a physical ‘propensity’, or

disposition or tendency of a given type of physical situation to yield an outcome of a certain kind

was developed by the philosopher Karl Popper (Popper 1957, Popper 1959). Like the relative

frequency interpretation, probability as propensity views probability as a physical property

‘in the world’. Yet, in the propensity interpretation also single, non-repeatable events can be

evaluated.

2.6.1 Learning from Observations

There are two main approaches to learning (probabilistically) from observations today (Hacking

2001, p.190), one based on ‘laws of large numbers’ and one based on Bayes’ rule from Section

2.4.2. The first draws inferences using the way in which relative frequencies stabilise as the

number of trials increases. Typical notions in this approach are significance and confidence

(Lindley 2000, Hacking 2001). Significance expresses how surprising observed data is if a par-

ticular hypothesis about the state of the world is considered to be true. For this an appropriate

probability model linking the observations with the hypothesis is needed. If the data is very

surprising (e.g. the probability of observing data which is that extreme or more extreme is very

low), one will have little faith in the hypothesis being true.

Confidence regards the reliability of the probabilistic method used, rather than the specific

inference made. Suppose, based on the underlying probabilistic model, a 95%-confidence inter-

val is derived for a specific quantity of interest. This then is not to be interpreted as a 95%

probability that the true value of the quantity lies in that interval. Rather in 95% of the cases

for which a 95%-confidence interval is determined the true values for these quantities should

lie in those intervals specified. Ronald A. Fisher and Jerzy Neyman have contributed greatly

these ‘law of large number’ based inference methodologies.

For subjective or (inter)personal interpretations of probability Bayes rule is used to update

the ‘degrees of belief’ in the light of new observations. In this approach the probability of a
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hypothesis H of interest after having observed E (for evidence), P (H |E), can be directly derived

from the probabilities P (H), P (E|H) and P (E|Hc), assessed before learning E (Equation (2.3)

Section 2.4.2). P (H) is commonly referred to as prior probability in this context, P (E|H)

and P (E|Hc) as ‘likelihoods’ and P (H |E) as posterior probability of H after learning E. For

‘degree of belief’ interpretations of probability the prior probabilities and the likelihoods can

be directly assessed (e.g. no infinite amount of observations is needed to determine the limiting

relative frequencies), and Bayes rule follows either from the probability axioms or from first

principles (see Section 2.4.2). Hence Bayes rule then prescribes how to adjust the probability

of H after observing E. This type of inference is therefore also referred to as Bayesian, and its

users as Bayesians.

So where ‘relative frequentists’ cannot assess the probability of the hypothesis being true

given the observed data, subjectivists can. That is, when an additional assumption is made.

When someone states his prior probability and likelihoods at some time t, and learns E at

some later time t + 1, then his beliefs about H at time t + 1, Pt+1(H |E) are not necessarily the

same as his posterior probability Pt(H |E), which is assessed at time t. By adopting the Reflec-

tion Principle (Fraassen 1984, Fraassen 1995), which states a certain demand for ‘diachronic

coherence’ imposed by rationality, the two can be equated.

A second difference between frequentist and subjective methods of learning from data is

that in subjective methods prior beliefs and observed data are weighted, whilst in frequentist

methods only the data is evaluated. It has been pointed out though (?) that there is subjectivity

in the way the data is evaluated, such as judgements about an appropriate reference population

for the data.

Frequentist and subjective learning from observations can also be linked, through the concept

of exchangeability; a (finite or infinite) sequence of random variables is said to be exchange-

able if the probability of any finite vector of outcomes taken from that sequence is unchanged

when the order of outcomes is altered. De Finetti (1974) shows that in the case of a long

sequence of exchangeable events, an individual will revise his subjective probability such that

it will converge to the probability distribution found when the random variables are regarded

to be independent and identically distributed. A subjectivist that considers the outcomes of

sequential throws of a coin as exchangeable and who conditions his beliefs of the probability

of ‘heads’ in a throw conditional on outcomes of previous throws, will find his beliefs to track

the observed relative frequency of ‘heads’. Lindley (2000) points out that exchangeability is a

subjective judgement. A person that does not regard sequential throws of a coin to be fully
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exchangeable will therefore thus learn less from observed outcomes than someone who does.

In this section we have discussed the most predominant interpretations of probability. In

the relative frequency, prevision and rational preference interpretations probability is related to

observable phenomena. For the logical en propensity interpretations this is not the case. In the

Sections 2.3.1 and 2.5 we have seen that expectation can be both operationally defined from

first principles, and indirectly using probability.

2.7 Summary

In this chapter we have discussed the notion of uncertainty. We have introduced two mea-

sures of uncertainty, probability and expectation, and have shown how these measures can be

operationalised using subjective assessments. The way these measures are operationalised, or

interpreted, determines (and thus limits) the situations/problems to which they can be applied.

We have also shown how expectation can be defined using probability as the primitive notion,

and vise versa. We conclude with an observation made by Whittle (1992, p.47) about the

duality of the two measures: “[...] the recognition by pure mathematicians that the linear func-

tionals constituted by integrals with respect to a measure are objects which are technically dual

to that of a measure, and offer all the advantages as the prime concept that we are claiming”.

(Ramsey 1931), (Kyburg & Smokler 1964), (Kyburg 1980), (Huygens 1657)
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Chapter 3

Elicitation of Quantitative

Expert Judgements

In the previous chapter we have discussed how uncertainty can be measured. Regarding judge-

ments, we have described what ‘behaviour’ can be employed to measure someone’s uncertainty

about quantities of interest. Yet, this behaviour is susceptible to all sorts of influences, some of

which emerging from the interaction between the analyst and the person who’s judgements are

queried for. In this chapter we will discuss the difficulties, pitfalls and dangers that might rise

when we actually try to conduct measurements of uncertainty with experts; the elicitation of

quantitative expert judgements. First, in Section 3.2, we will discuss the role human memory

plays when experts formulate the judgements they are asked to provide. In Section 3.3 the

heuristics and biases are discussed that might be encountered in expert judgement elicitation.

Section 3.4 treats the problem of how we can evaluate whether expert judgement elicitation has

been successful. Different methods for the elicitation of probabilistic summaries are discussed

in Section 3.5, focussing on the elicitation of means, variances and covariances; the assessments

needed to quantify a Bayes linear model. The last section will treat the literature on how

different experts’ assessments can be aggregated.

First we will define what we mean by elicitation in this thesis.
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3.1 Elicitation

In this thesis we shall simply write elicitation when referring to the elicitation of expert judge-

ment. A broad definition of elicitation is given by Meyer & Booker (2001). They define elic-

itation as ‘the process of gathering the expert judgement through specially designed methods

of verbal or written communication’. Garthwaite, Kadane & O’Hagan (2005) review the litera-

ture on the subjective assessment of uncertain quantities, and are consequently more restrictive

when defining elicitation as ‘the process of formulating one’s knowledge about uncertain quan-

tities in the form of a (joint) probability distribution for those quantities’. We will also discuss

elicitation with regard to the subjective assessment of uncertain quantities. Since we consider

both probability and expectation as primitive concepts for measuring uncertainty we will take

a slightly broader view on elicitation, regarding it as the process of formulating one’s knowledge

about uncertain quantities in the form of an operationally defined measure of uncertainty for

these quantities.

3.2 Personal Knowledge

In the previous chapter we have described what ‘behaviour’ of experts can be employed to

measure their uncertainty about quantities of interest as probabilities or expectations. When

eliciting either probabilities or expectations from experts, the implicit presumption is of course

that these probabilities and expectations capture some of the knowledge the experts have about

the uncertain quantities they are assessed for. In this section we will first briefly discuss different

views on what constitutes this knowledge and how it can be ‘accessed’. The aim here is not

to treat these views in detail, but to focus on the implications that can be derived from these

views about how to perform the elicitation. We will then proceed to define what we mean by

‘expert’ and how we regard and treat the judgements experts can provide us with.

3.2.1 The Role of Memory

Much has been written about human memory but the process of human cognition, the mental

activity when a person processes information, is not well understood yet (Meyer & Booker 2001).

Two current models from cognitive psychology that describe human memory are the ‘fixed

image’ model and the ‘recategorisation’ model. The fixed image model, the more traditional,

distinguishes two types of memory: the long-term memory (LTM) and the short-term memory

(STM). The STM refers to information that has just been received and is being processed and is
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heavily restricted by its limited capacity. The large capacity LTM is thought of as the repository

of one’s knowledge. To demonstrate the working of the LTM, Hogarth (1987) gives the example

of memorizing the following sequence of letters: NBRRYNLGPTVC. Many people would find

it difficult to perfectly memorise this sequence in a short time, say 10 seconds. But knowing a

‘code’ for this sequence, e.g. that this sequence can be reproduced by taking the third letters

of the months of the year, would make it considerably easier to memorise the sequence. In this

view people are considered to construct their own informal ‘codes’ for remembering information.

So in this model memory does not work by remembering what is actually recalled, but memories

are rather reconstructed from fragments of information and the use of these codes.

Hogarth gives an interpretation of the fixed model that has important implications for the

elicitation of expert judgement. He writes that people are often capable of memorising far more

information that is personally relevant to them, than information that is novel to them. Their

perception of information is therefore selective rather than comprehensive. As an example of

this Hogarth refers to an experiment in which words were briefly flashed on a screen in front of

subjects. The subjects who were disallowed to eat for some time before the experiment, were

reported having seen more food-related words than subjects who had eaten as usual. A second

hypothesis in this model is that information that involves personal experience or observation of

incidents remains more important than less concrete information in memory. From these first

two hypotheses we can derive that it might be wise to consult different experts, to diminish

possible biases due to these personal preferences and imbalanced experiences. The use and

aggregation of multiple experts’ assessments is discussed in Section 3.6.

Thirdly, because of the limited capacity of the STM (Miller 1956, Cowan 2005), people can

often not perform some sort of ‘optimal’ information processing but are bound to make use of

heuristics and cognitive simplification mechanisms. It is important to be aware of these for they

can lead to biases in the elicited judgements. These heuristics and biases are more extensively

treated in Section 3.3.

Rosenfield (1988) introduces the newer recategorisation model. In this model the process

of recollection is represented as the recategorisation of groups of brain cells with temporarily

strengthened connections (Meyer & Booker 2001). How people perceive so called stimuli de-

pends on how these have been categorised. Meyer and Booker give the following example to

demonstrate this idea. When someone says ‘glay shrip’ in an experimental setting an English

speaking subject may hear the words ‘gray chip’. But when the subject subsequently learns

the words were spoken by a sea captain, she might recollect hearing ‘gray ship’. Thus, also in
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this model memory does not function as some sort of exact recollection process, but “it helps

us reconceptualise the world according to our beliefs, needs or desires” (Meyer & Booker 2001).

Meyer & Booker (2001) give two implications of the recategorisation model to be aware

of when making use of expert judgement. Firstly this model helps explaining the changes in

peoples thinking process in time through the recategorisation of their knowledge. Secondly, the

difference between the thinking process of an expert and a nonexpert is explained as a difference

in the number and interacting of associations.

Both models of human memory discussed here imply that when we ask an expert to give her

assessment for an uncertain quantity, we do not ask for a quantity that the expert has ready

‘in his head’ to be ‘extracted’. We will discuss the different views on this from the subjective

probability literature in the next subsection.

3.2.2 Expert Judgements

We have already been using the term ‘expert’, but have yet to describe for whom we use

this designation. Ideally an expert is someone who is deemed knowledgeable and experienced

in the subject area of the quantities to be elicited. We will follow Garthwaite et al. (2005)

however in using the term expert here for someone who is not necessarily more than just

the person whose knowledge we wish to elicit. For the elicitation we distinguish two types

of expertise: normative and substantive expertise (notions introduced by Winkler & Murphy

(1968)). Normative expertise refers to the ability of the assessor to express his opinion in the

desired (probabilistic) response mode, while substantive expertise refers to his knowledge about

the subject of interest. So the subject matter experts on e.g. ballistic missile interception

selected for a study on the properties of a new type of missile might very well be primarily

selected based upon their substantive expertise, and thus require us to be aware that these

experts do not necessarily have sufficient normative expertise, and might need training in the

desired response mode.

Adherents of the Bayesian approach (see Section 2.6.1) to learning from expert opinion

regard expert assessments as observations for which a prior distribution needs to be constructed.

In this approach a decision maker who is informed by an expert’s assessments acts as a ‘supra

Bayesian’ by expressing her beliefs about the expertise and intentions of the expert in the

form of a prior distribution for the expert’s judgement. The problem with this approach is,

especially when multiple experts are queried, that “it is thus the seemingly impossible task of

this supra Bayesian Decision Maker to evaluate the individuals, their prior information sets, the
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interdependence of these information sets, the experts’ [...] honesty, etc” (Genest & Zidek 1986).

Two approaches to avoid this task have been proposed by Jeffreys, the invariance approach,

and by Jaynes, the maximum entropy (or: minimum information) approach. Jeffreys suggest a

parametric prior distribution that is invariant under reparametrisation, commonly referred to

as Jeffreys prior. The maximum entropy approach aims to incorporate as minimal information

as possible to the prior distribution, while complying with the information that has been spec-

ified. The maximisation of entropy is always taken relative to some background or reference

distribution however. The choice of the background distribution thus has influence on the re-

sulting distribution and thereby adds information to it. A critique to these two approaches can

be found in (Seidenfeld 1979).

Finally we return to the debate in the subjective probability literature that is related to

this: the problem whether personal probabilities and expectations are precise. If probabilities

and expectations are not numbers ‘in one’s head’ waiting to be elicited, does there exist such a

thing as a ‘true’ personal probability for an event or expectation for an uncertain quantity?

Winkler (1967) argues that there is not. He holds that an expert, or any other individual

for that matter, does not have a built-in probability distribution for uncertain quantities of

interest. Winkler views the assessor as having certain prior knowledge which is not easy to

assess quantitatively. Therefore probabilistic expert judgement elicitation would not be about

extracting some ‘true’ subjective probability distribution from the expert, but rather about

expressing the expert’s beliefs in the form of a probability distribution. An opposing view is

that of O’Hagan (1988), who defines ‘true’ probabilities as those that would result if the expert

were capable of perfectly accurate assessments of her own beliefs. O’Hagan regards differences

that might be encountered in stated probabilities, e.g. as the result of different elicitation

methods, as due to more or less inaccurate attempts to specify the expert’s underlying ‘true’

probabilities. Though in (O’Hagan, Buck, Daneshkhah, Eiser, Gathwaite, Jenkinson, Oakley

& Rakow 2006) he or his co-authors acknowledge that someone’s estimate (not necessarily

a probability estimate) is not ‘sitting’ in memory waiting to be retrieved: “It is something

constructed from the ideas and associations that come to mind while the respondent thinks

about how to answer the question”.

As indicated in the previous subsection, research in the field of psychology has pointed out

important limitations of human cognitive abilities we have to be aware of when conducting an

elicitation.
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3.3 Heuristics and Biases

Well-known research in the area of human limitations in assessing uncertain quantities is the

work done by Kahneman and Tversky on heuristics and biases (see e.g. (Kahneman, Slovic

& Tversky 1982), and (Hogarth 1987) for an extensive listing of heuristics and biases). These

authors have identified several heuristics people might use when assessing uncertain quantities,

and have shown that these heuristics can lead to biased assessments. More recent treatments

of types of biases can be found in (Cooke 1991, Meyer & Booker 2001, Garthwaite et al. 2005).

Williams (2010) provides an extensive treatment of how heuristics can lead to biases in military

decision making. We will repeat some of the examples he gives in the current section to illustrate

the effect the heuristics can have.

Meyer & Booker (2001) define bias as ‘skewing of the expert judgement from some reference

point’. They distinguish two different types of bias, with corresponding reference points. The

first, cognitive bias, refers to the skewing from the standpoint of logical rules, the failure of the

judgement to comply with specified logical rules. The second, motivational bias, occurs when

the elicited judgement is skewed from the personal beliefs of the individual whose judgement

is solicited for. This occurs when what someone says is different from what he truly believes.

Social pressure and wishful thinking are two possible reasons for people to depart from stating

their true beliefs. Motivational biases can also occur through misinterpretation of the elicited

judgement by either an interviewer eliciting judgements or an analyst processing the judgements

(Meyer & Booker 2001).

Kahneman and Tversky have performed much research on cognitive biases. One of these

cognitive biases is the bias caused by the anchoring and adjustment heuristic. When estimating

an unknown quantity this bias can occur when people use the heuristic of first fixing an initial

value and then adjusting this value to arrive at a final estimate. Research has shown that

this adjustment is typically too small (see (Garthwaite et al. 2005) for examples). The British

Armed Forces exploited the effect of anchoring in World War II with the deception scheme

called the Cyprus Defence Plan:

“Following the German seizure of Crete, the British were concerned that the 4,000 troops

on Cyprus were insufficient to repel a German attack. Via the creation of a false division

headquarters, barracks, and motor pools along with phony radio transmissions and telegrams,

the British set out to convince the Germans that 20,000 troops garrisoned the island. A fake

defensive plan with maps, graphics, and orders was passed via double agents [in] a lost brief-
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case. The Germans and Italians fell for the ruse. This deception anchored the Germans on the

20,000 troop number for the remaining three years of the war. In spite of their own analysis

that the number might be too high, intelligence intercepts and post-war documents revealed the

Germans believed the number almost without question. This exposes another negative effect of

anchoring: excessively tight confidence intervals. The Germans were more confident in their as-

sessment than justified when considering the contradictory information they had. In summary,

the Germans were anchored, made insufficient adjustments and had overly narrow confidence

intervals.” (Williams 2010)

A second judgemental heuristic identified by Kahneman and Tversky is the availability

heuristic, which refers to the case when someone bases his estimate of the frequency or prob-

ability of an event on the ease with which he can recall information in favour of this event.

As discussed in the previous section the ease with which people can recall information can be

distorted by the way information is memorised. Personal and emotional involvement can thus

lead to biased assessments via the availability heuristic:

“For example, the subjective probability assessment of future improvised explosive device

(IED) attacks will most likely be higher from a lieutenant who witnessed such attacks than

one who read about them in situation reports. Bias in their assessment occurs because the

actual probability of future attacks is not related to the personal experience of either officer.”

(Williams 2010)

The representativeness heuristic is related to eliciting conditional probabilities like P (A|B),

the probability that event A will occur when it is given that B already has occurred. The

representativeness bias arises when people base their assessment of a conditional probability on

the degree of similarity between the events A and B. This heuristic fails to distinguish between

P (A|B) and P (B|A) while these probabilities are typically not equal. Using Bayes Theorem:

P (A|B) = P (A)
P (B)P (B|A). People using this representativeness heuristic thus ignore the so called

‘base rates’ P(A) and P(B). Therefore this bias is also frequently referred to as the ‘base rate

fallacy’. As an illustration of bias due to a base rate fallacy, consider the following example:

“While on a platoon patrol, you observe a man near a garbage pile on the side of a major

road. In recent IED attacks in the area, the primary method of concealment for the device is
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in the numerous piles of garbage that lay festering in the street (trash removal is effectively

non-existent due to insurgent attacks on any government employeeincluding sanitation work-

ers). You immediately direct one of your squad leaders to apprehend the man. Based on S2

[intelligence] reports, you know that 90 percent of the population are innocent civilians, while

10 percent are insurgents. The battalion S3 [operations officer] recently provided information

from detainee operations training—your platoon correctly identified one of two types of the pop-

ulation 75 percent of the time and incorrectly 25 percent of the time. You quickly interrogate

the man. He claims innocence, but acts suspiciously. There is no IED in the trash pile. What

is the probability that you detain the man and that he turns out to be an insurgent rather than

a civilian? Most cadets answered between 50 percent and 75 percent. This estimate is far too

high. The actual probability is 25 percent.” (Williams 2010)

Two important biases not directly related to heuristics people use when making assessments

are the overconfidence and the hindsight bias (see e.g. (Garthwaite et al. 2005)). The overconfi-

dence bias refers to a too narrow assessment of central confidence intervals, i.e. when assessing a

p% central confidence interval for quantities, less than p% of the post hoc observed realisations

appear to be in the assessed intervals. The hindsight bias can arise when people are asked for

the prior probability of an event for which it is already known whether it has occurred or not.

Research has pointed out people’s tendency to overestimate their prior probabilities of events

they think to have actually occurred and underestimate their prior probabilities for event they

think not to have occurred (see (Garthwaite et al. 2005) for references).

Cooke (1991) points out that probability and expectation assessments can also be distorted

if the assessor wrongfully acts as if he has some sort of control of the situation. To explain

this so called control bias, Cooke refers to an experiment described in (Langer 1975). In this

experiment office workers in New York were given the opportunity to buy a ticket for an office

lottery for $1, which gave them a chance of winning $50. A first group of 26 subjects was

allowed to draw their tickets themselves from an urn; a second group of 27 were just given

their tickets. When asked for which price the subjects would be prepared to sell their ticket to

someone else, whose identity was unknown to the subjects, the median selling price of subjects

in the group that was allowed to draw their own ticket was $8.67, against $1.96 in the other

group. Clearly the subjects’ selling prices are more an expression of their willingness to sell

their ticket, influenced by e.g. curiosity, than of their subjective beliefs of actually winning the

lottery.
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Finally, Meyer & Booker (2001) also identify an inconsistency bias, referring to inconsistent

statements subjects can give like contradictions. This type of bias can and should be identified

and dealt with during the elicitation process.

Unlike the inconsistency bias, the other above discussed biases are very hard to identify,

especially motivational biases. Many authors (e.g. (Hogarth 1975, Hogarth 1987, Meyer &

Booker 2001, Garthwaite et al. 2005)) stress the influence of the elicitation method on the

potential occurrence of biases. Therefore the elicitation process should be designed such as to

avoid biases from appearing in judgement as much as possible. Meyer & Booker (2001) state

that experts are subject to the same biases as others if the right preventive measures are not

used in elicitation. Further, they observe that approaches to handling biases are rare and still in

their early stages; two such approaches are given in (Cleaves 1986) and (Meyer & Booker 2001).

3.4 Evaluation of Elicitation

It has become clear from the previous sections that the elicitation of quantitative expert judge-

ment is not a straightforward activity. The quality of the elicited judgements will often strongly

depend on how the elicitation is conducted. But what exactly do we mean by the ‘quality’ of

the elicited judgements, how can we assess this?

In first instance many people will probably regard the elicitation of assessments of uncertain

quantities as successful if these assessments correspond to later observed values of these quan-

tities. Yet, at the time of the elicitation we probably do not have these observations available,

or else we would most likely have used these instead of the expert judgements. Also in our

definition of elicitation we do not mention observations. Instead, we regard the elicitation as

successful if it truthfully represents the expert’s beliefs. Garthwaite et al. (2005) express this

idea when they write for the elicitation of a probability distribution: “An elicitation is done

well if the distribution that is derived accurately represents the expert’s knowledge, regardless

of how good that knowledge is”.

O’Hagan et al. (2006) also hold that any evaluation of an elicitation should measure the

extent to which an expert’s knowledge and opinions are faithfully represented in probabilis-

tic form. That is, how close the elicited probabilities are to the expert’s ‘true’ probabilities.

Whether these ‘true’ probabilities exist or not (see discussion in Section 3.2.2), there is no way of

determining with certainty what they are. So in that sense, we cannot measure directly whether

resulting assessments faithfully represent the expert’s beliefs. But a prerequisite for a faithful

representation of the expert’s beliefs is that the expert should have a full and unambiguous
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understanding of the precise meaning of the assessments she is asked to give.

Coherency, introduced in Section 2.3.1, also constitutes a useful evaluation tool for the

faithfulness of elicited values. Recall that a set of assessments is said to be coherent if no so

called ‘Dutch Book’ can be made using these, i.e. if no set of bets using these assessments can

be constructed such that you would be a sure loser if you would bet accordingly. If an expert

agrees he would not engage in a bet that would result him a sure loss, then an incoherent set of

assessments cannot be a faithful representation of the expert’s beliefs. Thus, coherency checks

of assessments can be used to evaluate elicited probabilities and expectations. Yet, coherency

is by all means no guarantee for a faithful representation of the expert’s beliefs.

Summarising, the elicitation is successful when the resulting assessments are coherent and

faithfully represent the expert’s knowledge and opinions. In Section 3.4.2 we will introduce the

concept of proper scoring rules that can be employed to motivate experts to state their true

beliefs. From a practical perspective the assessments are often the most useful if they corre-

spond to (post hoc) observed values. In Section 3.6.2 we will discuss a model for aggregating

expert judgements based on how well the experts’ assessments of test quantities correspond to

observed values for these quantities. Yet there is another, urgent, reason for desiring expert

judgements to correspond to observations: scientific methodology. This will be discussed in the

next subsection.

3.4.1 Cooke’s Principles

Cooke (1991) suggests that any scientific study that uses (quantitative) expert judgement and

aims to achieve a rational consensus should comply with the following five principles:

Reproducibility. It must be possible for scientific peers to review and if necessary reproduce

all calculation. This entails that the calculational models must be fully specified and the

ingredient data must be made available.

Accountability. The source of expert subjective probabilities (expectations) must be identi-

fied.

Empirical Control. Expert probability (expectation) assessments must in principle be sus-

ceptible to empirical control.

Neutrality. The method for combining/evaluating expert opinion should encourage experts

to state their true opinions.

Fairness. All experts are treated equally, prior to processing the results of observations.
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The requirement of reproducibility is standard to scientific practice. Accountability to the

decision maker enhances the quality and credibility of the study, but might be quarrelsome

to achieve in practice. Cooke gives the example of experts judging the reliability of a new

technical system, that might be found in the employ of contracting firms designing the system

in question. This example is particularly relevant for Defence. The decision maker, in this

case Defence as the contractor, might wish to consult experts working for a contracting firm

on e.g. the reliability of a system considered for acquisition. Yet the experts’ assessments on

the reliability of the system might be in conflict with the aim of their firm to sell the system

to Defence, especially in the earlier stages of the acquisition process when the information

gathered from the contractor is not binding. The experts therefore might insist on anonymity

as a prerequisite to provide their genuine assessments. French (2011) acknowledges this issue of

experts insisting on anonymity and mentions an additional one: when the opinions of experts

are valued not only for their expertise, but also for who they are in the public’s eyes, anonymity

might also be desirable. Empirical control allows a study to be falsifiable in principle. Especially

for Defence it is of high importance to identify as soon as possible when the assessments given

by experts do not correspond to actually observed values. In the end they are interested in the

actual values of e.g. reliability and performance of their systems. The principle of neutrality

is fully in line with the aim of the elicitation to faithfully represent the expert’s knowledge,

argued earlier in this section.

The principle of fairness however is more controversial. The supra Bayesian approach men-

tioned in Section 3.2.2 for example requires a decision maker to express his beliefs about the

expertise and intentions for each of the experts. Cooke (1991) acknowledges that some ex-

perts are always preferred to others by the act of selecting experts to participate in the study,

but argues that “these decisions must be made initially on the basis of factors that cannot be

meaningfully translated into numerical input” needed in the Bayesian approach.

French (2011) discusses the applicability of Cooke’s principles and, being Bayesian, doubts

the persuasiveness of the fairness principle. He distinguishes three situations in which opinions

of groups of experts are employed which he refers to as (French 1985): the expert problem,

the group decision problem and the textbook problem. The first type refers to the situation

in which one decision maker wishes to be informed by a group of experts, the second type to

the situation where there is a group of decision makers that are their own experts. Thirdly,

in the textbook problem, a group of experts may just be required to give their judgements for

others to use in future undefined circumstances. French (2011) points out that “the textbook
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problem is gaining in importance since data and expert judgements can be made available over

the web to be used by many different individuals to shape their own beliefs in many different

contexts”. He argues that Cooke’s principles need more discussion if expert judgement studies

are to inform more public deliberation.

3.4.2 Scoring Rules

Cooke (1991) describes scoring as a numerical evaluation of probability assessments in the

light of corresponding observations. Lad (1996) defines scoring rules in the broader context

of assessments of expectations of uncertain quantities. In the literature two purposes can be

identified for the use of scoring rules: to motivate people to make truthful and well-considered

assessments and to evaluate the accuracy of their assessments (Cooke 1991, Morgan & Henrion

1990). Since better scores both result from people making more accurate assessments and

having more knowledge (Garthwaite et al. 2005), a scoring rule evaluates both normative and

substantive expertise.

Assessors can be motivated through the scoring system: the higher the score, the better

their assessment is perceived. To satisfy the principle of neutrality described in the previous

subsection and to comply Winkler’s definition of successful elicitation (i.e. assessments repre-

senting ‘true’ beliefs of their originators), proper scores can be employed. A scoring rule is said

to be proper if the assessor’s expected score reaches its maximum when the assessor states his

true beliefs.

Bolger & Wright (1993) identify two major approaches to appraising subjective probability

judgement in their review of rival models of probability judgement, which are well rehearsed

throughout the expert judgement literature: coherency (see Section 2.3.1) and calibration.

Incoherent judgements lead to an inconsistency bias (Section 3.3). Calibration measures the

extent to which an individual’s stated probabilities correspond to observed relative frequencies

and is traditionally measured in either of two situations: when eliciting discrete probabilities

and when eliciting quantiles of a continuous distribution. Roughly speaking an assessor is called

well-calibrated for probability value p if for the events that the assessor has assigned probability

value p, the relative frequency of occurrence of the events is equal to p. Then an assessor is well-

calibrated if he is well-calibrated for every probability value p. Through comparing subjective

probabilistic judgement with observations, calibration can be seen as a form of empirical control

over these judgements (Cooke 1991).

In addition to coherence and calibration, Cooke (1991) also discusses an information score
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to evaluate probabilistic assessments. Information is defined as the negative of entropy, and

entropy is a measure for the spread of the probability mass for an event or proposition of

interest. The more uniform the spread over all probabilities for an event, the less information

can be obtained about whether or not the event is likely to occur. Therefore when all other

things are equal, more informative assessments are preferred above less informative ones. A

scoring system employed in practice that scores assessors on both calibration and information

is the so-called classical model from Cooke (1991). The classical model will be introduced in

Section 3.6.2.

A good mathematical treatment of (proper) scoring rules is given by Lad (1996), discussing

the differing properties various scoring rules can have. By analysing these properties insight can

be gained in the appropriateness of the use of a scoring rule in specific situations. Critical in

the use of scoring rules in practice is that they must be sufficiently understood by the assessors

(Hogarth 1975).

Though widely applied in evaluation (scoring) schemes, there has been a wide debate as

to whether observations can be used to evaluate subjective probability assessments, at least

dating back Bonferroni in 1925, that has still not been completely settled. The original argument

focused around the question of whether relative frequencies could be used to evaluate subjective

probability. Where some (e.g. Bonferroni, Fréchet) held that only subjective probabilities that

are equivalent to relative frequencies can be regarded as valid, others (e.g. De Finetti) held that

subjective probabilities regarding a sequence of quantities represent the state of uncertainty of

the assessor about these. Therefore they considered making judgements about the correctness

of these assessments in the light of observed outcomes to be meaningless, in the same way that

resulting posterior probabilities should not be seen as corrections of previous judgements, but

as conditional on a different state of information (Lad 1996).

3.5 Eliciting Quantitative Subjective Uncertainty

In this section we will discuss people’s abilities to provide probabilistic assessments, i.e. as-

sessments of probabilities or of summaries of probability distributions. After briefly treating

more general results we will focus on the elicitation of means, variances and covariances; the

assessments needed to quantify a Bayes linear model. A good evaluation of elicitation methods

to quantify Bayes linear models is (Revie, Bedford & Walls 2010). We take the stance that

people should be asked about quantities that are observable (in principle) only, Principle 3 from

Section 1.1, with which many authors agree (see e.g. (Cooke 1991, Garthwaite et al. 2005)).

37



Much of the research on the elicitation of probabilistic quantities has been carried out

in artificial laboratory settings. It is therefore questioned to what extent the results from

many of these experiments are generalisable (see e.g. Winkler in his comments on (Hogarth

1975, p.290)), although these experiments are useful in anticipating which inconsistencies or

biases might be encountered. Ferrell (1994) concludes that the procedures for the elicitation of

probabilities are not based on a theory of judgement or on detailed knowledge of the process

by which people ‘produce’ a subjective probability. At the same time however, he does regard

the procedures for reducing bias and error to be sophisticated and well grounded in empirical

observation.

Many experiments have pointed out that people often behave as ‘conservative’ information

processors (see (Hogarth 1975) and (Garthwaite et al. 2005) for references). When people are

asked to adjust their probabilities after receiving new information in the form of observations,

these adjustments often appear to be ‘conservative’: the revised probabilities are closer to the

prior probabilities than when Bayes rule (see (2.3), Section 2.4.2) is applied. This phenomenon

could be explained with the anchoring and adjustment bias described in Section 3.3, where the

prior probability is taken as ‘anchor’. Hogarth (1975) references several researches that indicate

that people process information in a fundamentally different way than Bayes rule.

People also appear to have difficulties with assessing extreme values. Garthwaite et al.

(2005) point out that experiments show that subjects make poor assessments of extreme ‘tails’

of distributions, like when assessing e.g. 1%- and 99%-quantiles (the p%-quantile being the

value x p

100
for which P (X 6 xp) = p

100 ). As a possible explanation for this they state that

comparisons might possibly not come readily to mind when making assessments of unlikely

events. A similar explanation is given by Hogarth (1975), who therefore suggest avoiding the

use of the ends of the probability scale.

3.5.1 Elicitation of Means and Variances

Means and variances can both be derived from first and second order moments. The mean is

simply the first moment of a quantity. The variance is equal to the second moment of a quantity

minus the square of the first moment: V ar(X) = E(X2) − E(X)2.

In their review of experiments on people’s abilities to assess probabilistic summaries, Garth-

waite et al. (2005) find that subjects’ estimates of the mode, median and mean of samples show

a high degree of accuracy when the distribution sampled from is approximately symmetric (a

situation in which mode, median and mean are fairly similar). When sampling from a highly
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skewed distribution, estimates of modes and medians still showed reasonable performance, but

assessments of means appeared to be biased toward the median.

In Section 2.5 we have discussed that the mean of an uncertain quantity can be directly

assessed as the prevision for that quantity. Lad (1996) argues that variances can be assessed in

a similar manner using previsions. By acknowledging that functions of uncertain quantities are

uncertain quantities themselves, Lad defines the variance of a quantity X to be the prevision

of the quantity [X − Pv(X)]2, where Pv(X) is someone’s prevision for X . Yet, it is very

questionable to what extent people will be able to provide these type of previsions. We do not

regard variances in general to be observable quantities.

Many authors have found that in general it is not a good idea to have expert assess higher

order moments of an uncertain quantity directly (Gokhale & Press 1982, Morgan & Henrion

1990, Kadane & Wolfson 1998), although also more positive experiences exist (Clemen, Fischer

& Winkler 2000) (see Section 3.5.2). Even assessments of first moments (means) should be

treated carefully, as Peterson & Miller (1964) have shown they can be biased towards the

median for highly skewed distributions. Avoiding the direct assessment of higher moments is

in agreement with the argument mentioned at the beginning of this section to ask experts only

questions about observable quantities, considering people usually do not directly observe higher

moments.

Keefer & Bodily (1983), Keefer & Verdini (1990), Smith (1993) and more recently Reilly

(2002) provide excellent reading on how to derive expert assessments of means and variances

indirectly from assessments of quantiles of the variables of interest. The methods evaluated

in these articles do not require the assumption of a specific family of probability distributions

nor do they require the assessment of its parameters. Surprisingly enough one of the simplest

methods, the Pearson-Tukey method, is found to perform best for a large family of distributions.

3.5.1.1 Pearson-Tukey Approximations

The Pearson-Tukey method for estimating the mean and variance from quantile assessments is

based on the observation made by C.P. Winsor (Pearson & Tukey 1965) that the ratio of the

distances between suitable symmetrical quantiles to the standard deviation, the h%-distance:

h%-distance =
x(100−h) − xh√

V ar(X)
,

where x p

100
is the p%-quantile of X , is surprisingly constant for many well-known distributions.

Pearson & Tukey (1965) suggest the following approximation of the mean using the 5%-, 50%-
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and 95%-quantiles:

E(X) ≈ x0.50 − 0.185∆, with ∆ = x0.95 + x0.05 − 2x0.50.

The ∆-term is thus an approximation of the difference between the median and the mean of

the distribution of X . For an estimation of the variance Pearson & Tukey (1965) developed the

following iterative procedure, using 2.5%-, 5%-, 50%-, 95%- and 97.5%-quantiles:

V ar(X) ≈ max(σ̂2
0.05, σ̂

2
0.025)

where σ̂0.05 and σ̂0.025 are iteratively derived as:

σ̂0.05 =
x0.95 − x0.05

max
(
3.29 − 0.1( ∆

σ̂0.05
)2, 3.08

) ,

σ̂0.025 =
x0.975 − x0.025

max
(
3.98 − 0.138( ∆

σ̂0.025
)2, 3.66

)

starting with the values:

σ̂0.05 =
x0.95 − x0.05

3.25
,

σ̂0.025 =
x0.975 − x0.025

3.92
.

This procedure was tailored such as to give good results across the Pearson and Johnson SU

systems of distributions. Keefer & Bodily (1983) simplified this procedure by not requiring

iterations and eliminating the 2.5%- and 97.5%-quantiles:

V ar(X) ≈
(

x0.95 − x0.05

3.29 − 0.1( ∆
σ0

)2

)2

, with σ0 =
x0.95 − x0.05

3.25
.

Johnson (2002) explores the accuracy of the Pearson-Tukey approximation of the mean and

the modified Pearson-Tukey approximation of the variance by Keefer and Bodily for a range of

distributions that the authors assume plausible in a risk analysis context. The average error

found for the mean for the sampled Beta1, Beta2, Gamma, Lognormal and Golenko-Ginzburg

distributions (154 in total) was impressively small, 0.23%, and the maximum error found was

only 0.77%, for a Beta2 distribution. For the variance the average error encountered was 2.8%.

The maximum error in variance was 11.6%, for a Golenko-Ginzburg distribution.
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Keefer & Bodily (1983) evaluate a large set of three- and five-point discrete approximations

to Beta distributions, focussing on the approximation of the mean and variance from these.

As one of the three-point approximations the authors evaluate the extended Pearson-Tukey

approximation. For this approximation they take the 5%-, 50%- and 95%-quantiles with re-

spectively the probability masses 0.185, 0.63 and 0.185. So in the extended Pearson-Tukey

method the moments of X are approximated as:

E(Xn) = 0.185(x0.05)
n + 0.63(x0.50)

n + 0.185(x0.95)
n, (3.1)

The Pearson-Tukey approximation of the mean outperforms the other 14 approximations

considered in the evaluation, with an average absolute error of 0.02% and a maximum observed

error of 0.07% for the 78 Beta distributions considered. Other approximations that perform

well are the Swanson-Megill method with 0.05%, the extended Swanson-Megill also with 0.05%,

the modified Davidson-Cooper method with 0.14%, the Perry-Greig method with 0.37% and

the 5-point Bracket Median method with 0.74% as the average absolute error (see (Keefer &

Bodily 1983) for references to these approximation methods). For comparison, the original

PERT formula for the mean results in an average absolute error of 41.7%.

On the variance approximation both the modified Pearson-Tukey method and the extended

Pearson-Tukey method outperform the other approximations even more clearly, with an average

absolute error of 0.38% and 0.46% respectively and a maximum error of −1.7% and −1.6%

respectively. Other methods have average absolute errors that are much larger, such as the

extended Swanson-Megill approximation (2.7%), Moder-Rodgers (4.5%) and Davidson-Cooper

(5.6%). The original PERT formula for the variance has an average absolute error of 549%.

3.5.2 Elicitation of Covariances

A covariance can be derived as the product-moment of two quantities minus the product of

their means: Cov(X, Y ) = E(XY ) − E(X)E(Y ). Lad (1996) defines the covariance between

the quantities X and Y to be the prevision of the quantity [X − Pv(X)][Y − E(Y )], where

Pv(X) and Pv(Y ) are someone’s previsions for X and Y . We repeat here that we do not think

it is a good idea to have people assess higher moments directly, or covariances more specifically.

Yet, in an experimental study Clemen et al. (2000) did have a positive experience with the

direct assessment of correlations, which together with variances determine the covariance.

In this study the authors evaluate six different methods for the assessment of correlations.

In these methods correlation is derived from
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• an informal description of the strength of the relationship,

• a direct assessment of the correlation,

• a cumulative probability of one variable conditional on a quantile being hit by the other,

• a probability of concordance,

• a joint probability, and

• a probability for one variable conditional on a certain cumulative probability for the other.

The six methods were tested on two groups of MBA students to assess correlations between

‘general knowledge’ variables as the height and weight of fellow students, for which the true

correlations were known. The direct assessment of correlation performed best in this study, and

showed less variability than the other assessment method. In addition, the direct assessment

method can not lead to infeasible answers and was judged less difficult than alternate methods.

Revie et al. (2010) have tested four different methods for the assessment of covariance on 23

postgraduate students: the Direct Calculation (DC) method, the direct elicitation of correlation

(D), the Adjusted Expectation (AE) method and the Adjusted Uncertainty method (AU). In

the DC method, the covariance is calculated from assessments of the means and variances, an

assessment of the change of the expectation of one variable given that the expectation of the

other has changed by a certain amount, with the amount to be chosen by the assessor himself

and finally quantile assessments of one variable given that the other is known to be equal to a

certain value with certainty, this value again chosen by the assessor. The AE method uses the

means and variances, and a direct assessment of the Bayes linear adjusted expectation for a

certain value, chosen by the assessor, for the other variable. The AU method, finally, uses means

and variances and a direct assessment of the Bayes linear adjusted variance for one variable,

given that the other variable is observed to be equal to its mean.

Revie et al. (2010) concluded that for the vast majority of cases, the AU method is unsat-

isfactory since it does not allow the variance of one variable to increase for any observation

that is made for the other variable. The DC method led to the most acceptable results; no

incoherencies were encountered, and this method resulted in the least cases in which negative

correlations were found for relationship that the assessors had judged to be positive prior to

the assessment exercise. The DC method was also judged the most often preferred method,

the AU method the easiest. The authors do not report about the accuracy of the covariance

assessments for the different methods, i.e. the extent to which the assessments correspond to

the actual values of the covariances for the test questions.
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In this research we will evaluate bivariate generalisation of the extended Pearson-Tukey

method for the assessment of product moments, for three reasons. Firstly, the accuracy re-

ported for the univariate case raises expectations about the performance of the method for

product moments. Secondly, the bivariate generalisation uses marginal and conditional quan-

tiles to estimate product moments. Since we consider the univariate method to be one of the

best methods available for assessing means and variances, and this method uses quantile as-

sessments, we consider it to be convenient for the assessor to be asked about a similar type of

assessment, conditional quantiles, to derive product moment assessments. We note here that in

our opinion quantile assessments relate to observable quantities, if the quantities being assessed

are observable (in principle) themselves. Finally, in Chapter 6 we need assessments of higher

order product moments as well, which can also be provided by the bivariate Pearson-Tukey

method. We will introduce the bivariate generalisation of the extended Pearson-Tukey method

in Section 6.3, and evaluate its performance there.

3.6 Aggregation of Experts’ Assessments

When multiple experts are queried for their quantitative assessments, means of aggregating their

opinions are needed. Depending on the desired level of interaction between the experts involved

in the elicitation, different settings for eliciting judgement can be considered. On one extreme,

no interaction between the experts, individual interviews can be chosen. On the other extreme,

group sessions led by a so called moderator allow for full interaction between the experts.

A great advantage of group sessions is that it allows for synergistic effects from interexpert

discussions, which can lead to more accurate assessments and a greater amount of ideas (Meyer

& Booker 2001, Garthwaite et al. 2005). On the other hand, dominant people (e.g. strong

personalities, people taking higher hierarchical positions) and people adjusting their responses

to what they believe will be acceptable to the group can introduce motivational biases when

performing group elicitation. Garthwaite et al. (2005) also point out that judgements based on

overlapping experience of the experts can be overweighed by being repeated in discussions. In

a military setting this might occur when experts are selected that have been sent out on the

same missions.

A further distinction between group sessions and individual elicitation is that group sessions

seek for a consensus view, also referred to as behavioural aggregation. In the case where

only one resulting view is desired from elicitation, the individually gathered judgements will

need to be aggregated post hoc. Usually individual assessments will make use of some form
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of mathematical aggregation (one of the simplest forms of mathematical aggregation is e.g.

taking the average of the different responses). Mathematical aggregation methods are the topic

of the next subsection. A mathematical aggregation method that weighs the individual experts’

opinions according to their performance on test questions is discussed in Section 3.6.2.

Apart from the already mentioned motivational biases, behavioural aggregation also has

the obvious disadvantage that it can either appear impossible to reach a consensus or that

the pressure to reach a consensus leads to experts suppressing dissenting opinions (Garthwaite

et al. 2005). When a consensus is achieved, it is anonymous in the sense that it is the product

of group interaction and can not be accounted to individual experts. Mathematical aggregation

in principle allows for individual accountability. A criticism of mathematical aggregation is

that it obscures the differences between different opinions and the reasons for these differences.

Experts could e.g. have interpreted a question differently and therefore have reached different

answers. Or experts could have based their answers on different, but both valid knowledge.

Above that, mathematical aggregation could in principle lead to an aggregated answer none of

the involved experts agrees with (Meyer & Booker 2001).

Finally, a third extensively used setting in expert judgement elicitation is the Delphi method.

The Delphi method was developed by the RAND Corporation for the military during the cold

war. The method is designed to mitigate the motivational biases, such as strong personalities

or people with higher hierarchical ranks in the military dominating the discussions, typical to

interactive group elicitation. Through controlled knowledge exchange the method still aims to

benefit from synergistic effects. A typical Delphi elicitation could go as follows: first experts

give their judgements separately. The moderator collects this data, makes it anonymous and

distributes it back to the experts who are then asked to revise their judgements after receiving

this new information (of course they are allowed to keep their judgements unchanged). More

than one of these revision rounds are possible. The Delphi method thus forms a compromise

between individual and group elicitation. The method does not completely eliminate the pos-

sibility of motivational biases to rise from the sharing of judgements of other experts, and due

to the less efficient sharing of knowledge the synergy rising from this sharing will also be less

than in group sessions (Meyer & Booker 2001, Garthwaite et al. 2005).

3.6.1 Mathematical Aggregation Methods and their Properties

Two of the most popular methods for mathematical aggregation of quantitative assessments

are the linear and the logarithmic opinion pool, respectively taking a weighted average and a
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weighted geometric mean of the experts’ assessments (Garthwaite et al. 2005). In both methods,

higher weights (and thus a higher influence on the aggregated result) can be given to experts

who are believed to make more accurate assessments. In performance based weighting, these

weights are derived from the experts’ performance on so called ‘seed variables’, quantities for

which the true value is known to the analyst but not to the expert. The classical model of

Cooke (1991), introduced in the next section, is an implementation of the linear pool that uses

performance-based weighting to combine probability assessments.

Different aggregation methods of course have different properties. There has been an exten-

sive debate in the literature about the different properties mathematical aggregation methods

can have (see e.g. (McConway 1981, Genest & Zidek 1986, French 1985, French 1987, Cooke

1991), and about the desirability of each property. We will informally list the most predominant

of these properties here.

Marginalisation Property: The same marginal probabilities are found whether (a) the as-

sessors’ distributions are first combined to form a single distribution, and then some marginal-

isation (i.e. restriction to some subspace of the outcome space) is performed on this, or (b)

the individual assessors all perform the marginalisation separately, and the resulting individual

marginal distributions are combined into a single distribution.

Zero Preservation Property: If all assessors judge an event A to have probability zero, then

the combination of their probabilities for A is also zero.

Strong Setwise Function Property: The combined probability for an event A depends only

on the probabilities given to A by the individual assessors.

Independence Preservation Property: If all assessors regard two events A and B as indepen-

dent, then the combined probability for A is also independent of the combined probability for

B.

External Bayesian Property: The result of first combining, and then processing the results

of new observations via Bayes’ theorem is the same as first letting the experts process the results

of the new observations and then combining their updated probabilities.

Linear opinion pools have the marginalisation property, but fail to be externally Bayesian,

whereas the opposite holds for logarithmic pools. The relative desirability of both these prop-

erties will therefore be important when choosing between these combination methods. The

arguments in favour of the marginalisation property in a probability context are well rehearsed

in (Cooke 1991), though not uniformly accepted (see e.g. (Lindley 1985, French 1985)).

Garthwaite et al. (2005) warn that when the knowledge of some experts substantially over-
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laps, these pooling methods can lead to what they call double counting of expertise, e.g. when

experts having overlapping knowledge are assigned the same weights as other experts. At the

beginning of this section it was already mentioned that this double counting of expertise can

also occur in interactive group sessions. Garthwaite et al. (2005) therefore suggest to select the

experts such that their knowledge is complementary.

Mathematical aggregation methods other than the above described opinion pools are the

‘external’, or ‘supra Bayesian’ (see Section 3.2.2), approach (Lindley, Tversky & Brown 1979)

and the use of conjugate families of prior probability distributions. These methods are concerned

with the aggregation of probability distributions. In the external approach, assessments are

treated as ‘data’ to update prior beliefs. This requires substantial prior beliefs about the

experts’ opinions to be specified, also referred to as a supra Bayesian prior assessment. When

no meaningful prior assessments about the experts’ opinions can be given, non-informative

priors can be used. In the conjugate family approach, it is assumed that each of the experts’

opinions can be represented by a member of a specific family of probability distributions. The

family of distributions is chosen such that the aggregation of members of this family will also

be a member of the same family of distributions. Though computationally convenient, this

method thus makes strong assumptions about the experts’ opinions.

In their review Garthwaite et al. (2005) argue that it is not clear what a probability reached

by consensus of a group means and whether it is representative for that group’s behaviour.

They also question whose opinion is represented by a pooling of experts’ opinions. In the

‘supra Bayesian’-type approaches the aggregated result simply reflects the updated opinion of

the person who had stated his beliefs about the experts’ opinions, e.g. the decision maker or

the analyst conducting the elicitation.

3.6.2 Classical Model

The classical model (Cooke 1991) is an implementation of a linear pool of experts’ assessments

in which the weights used for each expert is derived from the performance of their assessments

on ‘seed variables’. Seed variables are variables for which the true value is known to the analyst

(and of course not to the assessors), or will become known within a short time. These variables

are thus ‘seeding the performance based combination model’. Performance-based weighting is

based on the assumption that the performance of the expert on the seed variables is in some way

informative for how the expert will perform on assessing the variables of interest to the study.

Therefore the seed variables should closely match these variables of interest. Cooke, Mendel
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& Thijs (1988) indicate that an expert’s performance on assessing general knowledge questions

does not predict his performance on variables in the expert’s field of expertise. Goossens, Cooke

& Kraan (1998) provide evidence that performance-based weighting, using application domain

specific test questions, leads to better results than when using equal weights for all the experts.

There is a version of the classical model for uncertain events, and a version for continuous

variables. We will introduce the latter here, since this version will be of interest to us in

Chapter 7. For the continuous version R quantiles for the cumulative probabilities f1, . . . , fR

are elicited from the expert for each of the seed variables X1, . . . , XN . The quantiles are ordered

such that 0 6 f1 < . . . < fR 6 1, and in addition f0 and fR+1 are taken to equal 0 and 1

respectively. We will use the notation xire here for these assessed quantiles, where index i

denotes the seed quantity, index r the quantile and e the specific expert. From the definition of

the quantiles the theoretical probability pr = P (xi ∈ [xire, xi(r−1)e]) = fr −fr−1 can be derived

for r = 1, . . . , R + 1, the probability that the true value xi for seed variable Xi is between the

fr−1%- and the fr%-quantile of expert e. The notation p is used here for the vector of these

theoretical probabilities (p1, . . . , pR+1). Finally, the relative frequency with which the true value

of a seed question falls between an expert’s stated fr−1%- and fr%-quantile is denoted with sr,

and s is taken to be the vector (s1, . . . , sR+1) of these relative frequencies.

The performance of the experts is measured by a score that is a combination of a calibration

and an information score. As discussed in Section 3.4.2, calibration measures the extent to which

an experts stated probabilities correspond to observed relative frequencies; in the current case

the extent to which the observed relative frequencies s correspond to the theoretical probabilities

p. To measure the (dis)agreement between s and p, the relative information function I(s,p) is

used, which is defined as:

I(s,p) =

R+1∑

r=1

si ln

(
si

pi

)
.

Now, as the number of seed questions N increases, the probability distribution of the variable

T = 2NI(s,p) will approach the chi-quare distribution with R degrees of freedom (Cooke 1991,

p.188). The calibration score C(e) of expert e in the classical model is taken to be the exceedance

probability of T , where T is taken to be chi-square distributed with R degrees of freedom:

C(e) = 1 − χ2
R (2NI(s,p)) , (3.2)

where χ2
R is the cumulative distribution function of the chi-square distribution with R degrees

of freedom. The name ‘classical model’ stems from the close relation between this calibration
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scoring and hypothesis testing in classical statistics, and is contrasted with Bayesian aggregation

methods.

The information score of the classical model expresses the degree to which the probability

mass in p is concentrated on the possible values of the seed variables, relative to a selected back-

ground probability measure. Let fie be the minimal information probability density function

of expert e for seed variable Xi satisfying the expert’s quantiles xire. That is, fie is piecewise

uniform with density pr

xire−xi(r−1)e
between the (r−1)th and the rth quantile assessed by expert

e for variable Xi. To fully determine fie, also a 0%- and a 100%-quantile, xi0 and xi(R+1),

are needed. These bounds need to be finite to ensure that fie is a proper probability density,

and need to lie outside the interval [min
e

(xi1e), max
e

(xiRe)] determined by the most extreme

quantile assessments of all experts. Further, let fi be the background probability measure for

seed Xi. The classical model information score I(e) is the average relative information of fie

with respect to the background measure fi over all seed variables:

I(e) =
1

N

N∑

i=1

[∫ xi(R+1)

xi0

fie(x) ln

(
fie(x)

fi(x)

)
dx

]
. (3.3)

For both the calibration and information score better performance corresponds to higher

scores. When the product of these scores is taken, this behaviour is preserved. The unnormalised

weight w′
e for expert e is derived as the product of the calibration and information scores,

multiplied by an indicator function that provides the opportunity to assign zero weights to

poorly calibrated experts:

w′
e = C(e) · I(e) · 1α(C(e)). (3.4)

The indicator function 1α(C(e)) is zero when the exceedance probability C(e) is below threshold

α. So provided that the calibration score is above threshold α, the better either of the calibration

or information score of an expert is, the greater the weight assigned to the expert is (unless all

other experts have a calibration score below α and the expert is already assigned the maximum

weight 1). The performance based weight we of the classical model for expert e can now simply

be determined by normalisation:

we =
w′

e∑
e w′

e

, (3.5)

trivially requiring that α in Equation (3.4) is chosen such that at least one expert has a nonzero

weight. The classical model linear pool with weights from (3.5) for variable Xj , referred to

as the decision maker’s distribution fjDM , can now be determined and is a function of cut-off
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value α:

fjDM (x, α) =
∑

e

we(α)fje(x), (3.6)

where fje is experts e’s minimal informative probability density function for Xj satisfying e’s

quantiles xjre for this variable, which could either be a seed variable or a non-seed variable of

interest for the study. Again, α is assumed to be chosen such that at least one expert has a

nonzero weight (note that the expert weights then sum to unity due to normalisation (3.5)).

The proposed procedure for choosing α virtually adds the decision maker linear pool fjDM (x, α)

to the linear pool of the experts, and then seeks to maximise the decision maker’s virtual weight

over α. Let wDM (α) be the weight for the decision maker in a new linear pool fjV with both

the decision maker and all the experts, where the experts have their weights derived from (3.5):

fjV (x, α) =

∑
e we(α)fje(x) + wDM (α)fjDM (x, α)

wDM (α) +
∑

e we(α)
. (3.7)

The weight wDM (α) is called virtual because the linear pool is not changed by adding the

decision maker with this weight and then normalising the pool again: fjV (x, α) is equal to

fjDM (x, α), as can be verified by substituting Equation (3.6) in (3.7). Now α is varied between

0 and maxe(C(e)) and chosen such that the decision maker’s virtual weight is maximised over

α:

α′ = argmax
α∈(0,maxe(C(e)))

wDM (α). (3.8)

Cooke however warns against the uncritical use of this procedure for determining the cut-off

α. He points out that it might be imprudent to let a very poorly calibrated expert dominate

other experts who are even worse (Cooke 1991, p.194), which might be the result of the pro-

cedure. On the other hand, the calibration scores tend to go down as well when the number

of seed variables increases (Cooke 1991, p.193). So caution and careful consideration of the

calibration scores are needed when determining an appropriate α.

3.6.2.1 Properties of the Classical Model Weighting Scheme

The classical model is designed to comply with the methodological principles for the use of

expert judgement discussed in Section 3.4.1. Reproducibility and accountability can be achieved

by providing scientific peers the unanonymised experts’ assessments, although there might be

circumstances in which this is less desirable as discussed in Section 3.4.1. Empirical control is

achieved in the scoring scheme, in which the experts’ indirectly stated probabilities are evaluated

against observed relative frequencies. The calibration score (3.2) can also be used to investigate
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whether any of the experts is calibrated well enough for a decision maker to have faith in the

performance of classical model linear pool based on the experts’ assessments.

To satisfy the principle of neutrality experts should be motivated to state their true beliefs.

The unnormalised weights (3.4) are designed such that an expert who understands this score,

can maximise his expected unnormalised weight by stating his true beliefs for the quantiles

he is asked to assess. At least, this would be the case if the calibration score would have an

exact calculation. Since the distribution of 2NI(s,p) approaches the chi-square distribution

arbitrarily closely when N is taken large enough, but remains an approximation for finite N ,

the unnormalised weight w′
e is referred to as a ‘weakly asymptotic strictly proper score’ (see

(Cooke 1991, Chapter 9) for details). The normalised weight however is not. If an expert

expects all other experts to perform so poor that they all receive a zero calibration score, then

he might expect small deviations from his true beliefs about the quantiles to be assessed for

the seed variables not to matter for his normalised weight. Finally, since all experts are treated

equally in the derivation of the weights, the classical model satisfies the principle of fairness.

The expert with the best calibration score (or experts with the best calibration scores if

there is no unique best expert) always remains in the classical model linear pool (clmp), since α

is always smaller than the best calibration score. This entails that the expert with the highest

unnormalised weight also always remains in the cmlp, since this expert must have a nonzero

calibration score.

There is no guarantee in the classical model that the cmlp performs better on the seed

questions than the best expert, or the equal weights linear pool.

3.7 Summary

In this chapter we have discussed what we asked for when we ask people to make quantitative

judgements. We have discussed the heuristics and biases people are susceptible to, and how to

evaluate if our elicitation exercise has been successful. We have discussed peoples abilities to

make probabilistic assessments, focussing on means, variances and covariances, the quantities

that need to be assessed to quantify a Bayes linear model. Finally we treated the aggregation of

experts’ probabilities, which will serve as a foundation for the development of the performance

based aggregation method of moment assessments in Chapter 7.
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Chapter 4

The Bayes Linear Methodology

The Bayes linear methodology has characteristics that make it very suitable for expressing and

revising quantitative expert judgements about uncertain quantities. The methodology reflects

the discrete character of quantitative expert assessments and is flexible in the amount of detail

that can both be specified by the experts and is needed for the decision problem at hand.

The methodology is assumption free as in that it does not require the quantities to have a

probability distribution from a certain family of distributions. In this chapter we introduce the

methodology. We describe how a Bayes linear belief structure can be constructed in Section 4.2.

The belief adjustment rules for the mean and variance, core to the methodology, are introduced

in Section 4.3, together with the possible interpretations that can be given to these belief

revisions and other occurrences of these rules in the literature. In Section 4.4 we summarise

the interpretative and diagnostic tools available to analyse the specified beliefs and (potential)

revisions of these by observations.

4.1 Introduction

“The essence of the belief structure construction is to allow us to make collections of belief

statements which are much less detailed than those required for the usual Bayesian analysis

but which still possess sufficient structure that they may be systematically analysed.”

(Goldstein 1988a)

The Bayes Linear (BL) methodology was developed by Goldstein in a series of papers

(Goldstein 1981, Goldstein 1986, Goldstein 1988a, Goldstein 1988b, Goldstein 1991, Goldstein

1994) and has been compiled into a comprehensive book (Goldstein & Wooff 2007). A brief
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overview over the methodology is given in (Goldstein 1998). Earlier considerations of linear

Bayes methods and some of the key results can be found in (Stone 1963) and (Hartigan 1969).

The methodology takes expectation rather than probability as the fundamental concept and is

based on the following four principles (Goldstein 1994):

Principle 1 Specify only those aspects of their beliefs that assessors are both

willing and able to quantify honestly.

Principle 2 Use coherent probabilistic guidelines for revising beliefs.

Principle 3 Base statistical models on judgements about observable quantities.

Principle 4 Use theory to interpret the underlying structure of beliefs.

In the base case, when we wish experts to assess their beliefs about magnitudes of quanti-

ties of interest and wish to learn more about these magnitudes by observing other quantities,

Goldstein argues that the bare minimum aspects that must be considered are:

1. some quantitative judgements as to the magnitudes of the various quantities,

2. some expression of the degree of confidence in the judgements of magnitude,

3. some expression of the extent to which the prior judgements about the various quantities

are interrelated (so that observation on some of the quantities may be used to modify

judgements on other quantities).

In the Bayes linear methodology assessments of respectively means, variances and covariances

are chosen to quantify these aspects. All three can be derived from first and second order (prod-

uct) moments, so BL models are thus fully specified by a second order moment specification.

The BL methodology can therefore be fully developed from De Finetti’s concept of coherent

previsions discussed in Section 2.3.1. By working only with (product) moment assessments BL

avoids the use of probability distributions and offers a simpler approach to belief analysis and

revision than full probabilistic methodology. BL avoids the need for distributional assump-

tions (unless assumptions are made in the derivation of the (product) moments) and involved

posterior distribution calculations.

The methodology is by no means restricted to the assessment and revision of magnitudes

only. As beliefs of magnitudes of uncertain quantities are specified, so can beliefs about functions

of these uncertain quantities be, for example the square or the cube of the same quantity. By

including these functions in the model, beliefs about e.g. variability and asymmetry can be

specified and revised as well. To quote Goldstein (1994), the Bayes linear belief specification
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“may be viewed as reducing the full probabilistic approach to whatever level of detail we feel

is both within our ability to specify and adequate to the problem at hand”.

The methodology thus reflects the discrete character of quantitative expert assessments and

is flexible in the level of detailed specified and reasoned with. Furthermore, the methodology is

assumption free as in that it does not require the quantities to have a probability distribution

from a certain family of distributions. The only requirements needed are that the second order

(product) moments for the quantities in the model are finite, and coherently specified.

Hence, while being similar in spirit to full probabilistic analysis, more complex problems

can be modelled with BL with a same amount of time and effort. BL models have a relatively

limited level of detail, but analyses and belief revisions are performed directly on and only with

the assessments given by the assessors.

The Bayes linear methodology has been applied in the water industry, in the analysis of

computer simulators for complex physical systems and various other studies. For an overview

of applications of the methodology and references to these, we refer to (Goldstein & Wooff 2007,

p.94).

4.2 Bayes Linear Belief Structure

In introducing the elements of a BL model we assume that there is a decision maker (DM) who

wishes to inform his decision by the BL model, and an analyst who helps him with building and

analysing the model. The DM and the analyst can be the same person. Let B = {X1, . . . , Xn}

be a collection of quantities about the value of which the DM is uncertain but interested for

her decision problem. We call B the base of the BL model. The BL model is fully specified

by the first and second order (product) moments for the quantities in base B: E(Xi) for i =

1, . . . , n, and E(XkXl) for k, l = 1, . . . , n. Note that these moments specify the means E(Xi),

variances V ar(Xi) = E(X2
i ) − E(Xi)

2 of the quantities in the base, as well as the covariances

Cov(Xi, Xj) = E(XiXj)−E(Xi)E(Xj) between them. Due to the linearity of expectations, this

second order (product) moment specification for B also determines the second order (product)

moment specification for the collection of all finite linear combinations of elements of B. We

will denote this collection with 〈B〉.

The only requirement for the first and second order moment assessments of the quantities

in base B is that these assessments are finite and coherent. Note that this requirement is often

not fulfilled for fat tailed distributions like e.g. the Cauchy distribution, which does not even

have a finite mean. We recall from Section 2.3.1 that a set of expectations is coherent if these
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expectations are in the convex hull of the realm of the quantities for which they are assessed. We

will refer to a set of quantities B with coherent first and second order moments specification

as a coherent belief structure on B, with notation: [B]. The requirement of coherency for

belief structure [B] entails that the covariance matrix for the quantities in B that can be

calculated from the (product) moments in [B] is nonnegative definite (see (Wisse, Bedford &

Quigley 2008a) for simple demonstration).

4.3 Belief Adjustments

The quantities of a Bayes linear base B are commonly divided into two collections denoted with

the vectors B and D. The quantities in D are the quantities for which observations (data) will

become available, which the decision maker will use to adjust his beliefs about the quantities in

B. The adjustment of means, variances of and covariances between the elements of B is done

by linear fitting on the observations D, hence the name Bayes linear methodology.

4.3.1 The Bayes Linear Adjustment Rules

The adjusted expectation of a random quantity X from B, given observation of the quan-

tities in D, notation ED(X), is the linear combination ED(X) = hD∗ which minimises the

expected squared error with X , E
(
[X − hD∗]

2
)
, over all h, where D∗ = (1,D), the vector D

supplemented by the unit constant.

The BL adjusted expectation ED(X) of X given D = d, resulting from this minimisation,

is determined by the prior mean, variance and covariance specifications for X and D, and the

observations d:

ED(X) = E(X) + Cov(X,D)V ar(D)†(d − E(D)). (4.1)

where the matrix V ar(D)† is the Moore-Penrose generalised inverse. When V ar(D) is non-

singular, V ar(D)† = V ar(D)−1 is the usual matrix inverse. The adjusted expectation is linear,

Equation (4.2), and conglomerable, Equation (4.3):

ED(a1X1 + a2X2) = a1ED(X1) + a2ED(X2) (4.2)

E(ED(X)) = E(X) (4.3)

The difference between the quantity X and the adjusted expectation ED(X) is referred to
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as the adjusted version of X given D, AD(X):

AD(X) = X − ED(X). (4.4)

The adjusted version AD(X) has expectation zero and is uncorrelated with both the data D and

the adjusted expectation ED(X). The variance of the adjusted version AD(X), the expectation

of the squared error (X − ED(X))2, is called the adjusted variance of X given D, notation

V arD(X). The adjusted variance is fully determined by the covariance matrix of X and D:

V arD(X) = V ar(X) − Cov(X,D)V ar(D)†Cov(D, X). (4.5)

Note that the adjusted variance does not depend on the observations d. The Equations (4.1) and

(4.5) form the core of the BL methodology and are referred to as the Bayes linear adjustment

rules. Since

X = ED(X) + AD(X)

and ED(X) and AD(X) are uncorrelated, we can split the variance into the two components

V ar(X) = V ar(ED(X)) + V ar(AD(X)). (4.6)

The variance of the adjusted expectation ED(X) is called the variance of X resolved by D,

RV arD(X). From (4.5) and (4.6) we find that

RV arD(X) = Cov(X,D)V ar(D)†Cov(D, X). (4.7)

The ratio of the resolved variance and the prior variance, called resolution RD(X), provides a

measure for how informative the observations D are for X :

RD(X) =
RV arD(X)

V ar(X)
= 1 − V arD(X)

V ar(X)
. (4.8)

4.3.2 Interpretations of Belief Adjustments

Goldstein & Wooff (2007) identify three different viewpoints to the Bayes linear approach.

We can see the BL analysis as an approximation to full Bayes analysis, requiring less time

and with simpler calculations. And, when considering BL as the more fundamental approach,

as a generalisation of full Bayes analysis, where the constraint of the requirement of a full
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probabilistic prior specification is relaxed. Thirdly, BL can be seen as complementary to full

Bayes analysis, offering a variety of interpretative and diagnostic tools to analyse the prior

beliefs and the belief adjustments. Section 4.4 will treat the interpretative and diagnostic

machinery of the BL methodology. We will now proceed to discuss the interpretations of the

BL adjusted mean and variance for each of these three interpretations.

The BL adjusted mean can be seen as an approximation to the full Bayes conditional mean.

In this view, the adjusted variance is a simple, easily computable upper bound on full Bayes

preposterior risk, under quadratic loss, for any full prior specification consistent with the given

mean and variance specifications (Goldstein & Wooff 2007).

When the quantities in D are indicator functions that together form an event partition,

the BL adjusted mean is equal to the full Bayes conditional mean. Starting from this equality,

Goldstein & Wooff (2007) argue that the adjusted expectation in the general case can also be

viewed as a natural generalisation of conditional expectation, without the restriction that one

must only perform the conditioning on indicator functions of a partition. The adjusted variance

is then interpreted as a prior variance, but applied to the residual variation one would have for

the quantity when the variation accounted for by the observations D is deducted from the prior

variance.

Thirdly, the adjusted expectation can be seen as an estimator of the value of X , comple-

mentary to certain standard estimators in multivariate analysis. The adjusted variance is then

simply the mean squared error of this estimator for the conditional mean.

4.3.3 Other Occurrences of the Adjustment Rules

The BL adjustment rules are also found in the literature as the linear least squares (LLS) solu-

tion to an overdetermined system of linear equations. The Extended Gauss-Markov Theorem

(see e.g. (Whittle 1992)) states that when random variables are jointly Normally distributed,

the LLS estimate X̂ of a vector X for data vector Y coincides with the conditional mean

of X given Y, E(X|Y). Furthermore, the variance-covariance matrix of the estimation error,

Cov(X−X̂), can then be identified with the conditional variance-covariance matrix Cov(X|Y).

So when the BL adjustments are considered approximations to full probabilistic updating, the

adjustment rules are exact when all variables are jointly Normally distributed.

Ericson (1969) has shown for variable X and data D and with finite prior variance that,

when the posterior mean of variable X is linear in the data (i.e. the conditioning set), this

posterior mean can be expressed in means and (co)variances of the distributions of X and D.
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The expression for the posterior mean is then equal to the BL adjusted mean. Ericson’s result

holds for example for conjugate prior models from the linear exponential family and is also

used in credibility theory (see e.g. (Klugman, Panjer & Willmot 1998)). The Pearson system

of bivariate distributions developed by Van Uven (Van Uven 1947a, Van Uven 1947b, Van Uven

1948a, Van Uven 1948b) has the property that the mean of one variable conditional on the

other is linear in the condition. So for this family the approximation of the conditional mean

with the BL adjusted mean is exact.

4.4 Analysis of Belief Structure and Diagnostic Tools

In this section different properties of the BL belief structure and the BL belief adjustment will

be discussed. More information on the concepts introduced in this section can be found in

(Goldstein & Wooff 2007). Via the so called canonical directions and corresponding resolutions

we can investigate how much we expect to learn in advance from a specific data set. So when

having the choice between different data sets, we can choose the one we expect to reduce our

uncertainty the most. When observations are available, the discrepancy tells us how concordant

(or discordant) with our prior expectations the observations are. The bearing of the adjustment

gives information about the magnitude and the direction of the adjustment together, whilst the

size measures the normalised magnitude of the adjustment. The measures help to determine

whether the observations are so discordant with prior beliefs that one could reconsider these

prior beliefs.

4.4.1 Canonical Resolutions

Whether we interpret the adjusted variance as an upper bound to preposterior risk, residual

variation or as the mean squared error of the adjusted mean, we would like it to be as small

as possible. That is, when we have the choice of observing either data D1 or D2, we would

choose the data that leads to the smallest adjusted variance. We have already noted that the

adjusted variance only depends on prior variances and covariances, and not on the value of the

observations. This means that for a fully specified belief structure we can determine how much

we expect to learn from the data before actually obtaining the observations.

The resolution RD(X), Equation (4.8), provides a scale free measure for the extent in which

the variance of a single quantity will be reduced by the observation of data D. But we can also

evaluate how much D tells us about all our quantities in B altogether. This is done by analysis

of the canonical structure of the belief structure [B].
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Canonical direction: the linear combination Zj ∈ 〈B〉 is called the jth canonical direction

for the adjustment of B by D if it maximises the resolution RD(Z) over all linear combinations

Z ∈ 〈B〉 that have non-zero prior variance and that are uncorrelated a priori with Z1, . . . , Zj−1.

Each Zj is scaled to have prior expectation zero and prior variance one.

Canonical resolution: the resolutions RD(Zi) of the canonical directions Zi are called

canonical resolutions, and are notated in short with λi.

The canonical directions and resolutions can be calculated from the resolution transform

matrix TB:D

TB:D = V ar(B)†RV arD(B)

= V ar(B)†Cov(B,D)V ar(D)†Cov(D,B). (4.9)

If the normed eigenvectors of TB:D are ordered from high to low, i.e. 1 ≥ λ1 ≥ λ2 ≥ . . . , λr ≥ 0,

then λi is the ith canonical resolution and its corresponding eigenvector is the ith canonical

direction Zi.

We thus expect to learn most about the quantities in B that have strong correlations with

the canonical directions with high resolutions.

4.4.2 Discrepancy, Size and Bearing

The discrepancy is a simple measure that can be used to assess the extent to which observations

are in accordance with prior specifications. The discrepancy of a single observation d, Dis(d),

is defined as the square of the standardised observation:

Dis(d) =
[d − E(D)]2

V ar(D)
. (4.10)

A large discrepancy can be an indication that either the prior expectation has been misspecified,

the prior variance has been underestimated or the observation has been misrecorded. A very

small discrepancy might indicate an overestimated prior variance. The discrepancy of a vector

of observations d is defined as

Dis(d) = [d − E(D)]T V ar(D)†[d − E(D)]. (4.11)

This vector discrepancy is equal to the maximum discrepancy found over all linear combinations

of elements of d that have positive variance.
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The size of and the bearing for the adjustment help to understand quantitatively how prior

beliefs are changed by the adjustment. The size of the adjustment of X by D = d, Sized(X),

is calculated as the normalised squared difference between the prior and adjusted expectation

Sized(X) =
[Ed(X) − E(X)]2

V ar(X)
. (4.12)

A large size of an adjustment indicates that the prior variance might be overly small in the

light of the adjustment, or that the observed change might be too large in the light of the prior

variability of X . The size of a vector B of quantities by D = d, Sized(B), is defined to be

the maximum size Sized(F+) found over all linear combinations F+ ∈ 〈B〉 that have positive

variance, and is calculated as

Sized(B) = [Ed(B) − E(B)]T V ar(D)†[Ed(B) − E(B)]. (4.13)

A property of the belief adjustment that expresses both the direction and magnitude of the

change between prior and adjusted beliefs is the bearing. The bearing of the adjustment of B

by D = d is

Zd(B) = [Ed(B) − E(B)]T V ar(B)†[B− E(B)]. (4.14)

The bearing may be interpreted as the linear (normalised) likelihood (Goldstein & Wooff 2007).

The bearing Zd(B) has the nice property that the magnitude of the adjustment of any linear

combination F ∈ 〈B〉 can be derived as the covariance with the bearing

Cov(F, Zd(B)) = Ed(F ) − E(F ).

Any quantity from B that is uncorrelated with the bearing of B will thus have its prior expec-

tation unchanged by the adjustment by d. The bearing of the adjustment is closely related to

the size of the adjustment; the latter is also calculated as the variance of the former:

Sized(B) = V ar(Zd(B)).

The prior expectation of this size of the adjustment is the trace of the resolution transform

matrix, tr(TB:D), which is equal to the sum of the canonical resolutions (eigenvalues of TB:D).

So if the size of the adjustment is much larger than the sum of the canonical resolutions, then

the adjusted beliefs are surprisingly discordant with our prior specifications. A much smaller
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size might indicate overstated prior uncertainty.

4.5 Summary

In this chapter we have introduced the Bayes linear methodology. We have discussed the

BL adjustment of means and variances, core to the methodology, and interpretations of these

adjustments. We treated the interpretative and diagnostic machinery available to analyse the

second order (product) moments specified, and the adjustments of these by observations. In

Section 3.5 we discussed how the second order (product) moments necessary to specify a Bayes

linear belief structure can be derived from expert assessments. In Section 6.3 we will continue

this discussion for the assessment of higher order (product) moments, and evaluate the bivariate

generalisation of the extended Pearson-Tukey method for this purpose. In the next chapter we

will consider the Bayes linear adjustment rules as approximation to full probabilistic updating,

and evaluate the accuracy of this approximation. We are not aware of any research that has

been performed up to date on this topic. In Chapter 6 we will evaluate the effect the inclusion

of higher order (product) moment information has on the accuracy of this approximation, both

when the (product) moments are exact and when the moments are derived using the bivariate

Pearson-Tukey method.
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Chapter 5

Bayes Linear Approximation

In this chapter we consider the Bayes linear approach as an approximation to full probabilistic

updating. We will investigate how accurate the Bayes linear adjustment rules are when variables

are not joint Normally distributed. We select a set of bivariate distribution families in Section

5.2 and evaluate the difference between the Bayes linear adjusted mean and variance and the

conditional mean and variance. First analytically in Section 5.3, and secondly using Monte

Carlo sampling in Section 5.4. The findings are summarised in the final section of this chapter.

5.1 Introduction

The Bayes linear adjusted mean, EY (X), and variance, V arY (X), of a single quantity X that

is adjusted by a single quantity Y are calculated as:

EY (X) = E(X) +
Cov(X, Y )

V ar(Y )
(y − E(Y )) , (5.1)

V arY (X) = V ar(X) − Cov(X, Y )2

V ar(Y )
. (5.2)

We shall simply write ‘adjusted mean’ and ‘adjusted variance’ when referring to these adjust-

ment rules. In Section 4.3.2 we have discussed three different ways in which these adjustment

rules can be interpreted. In this chapter we take the approximation interpretation, viewing

the BL adjustment of the mean as an approximation to the full probabilistic conditional mean

E(X |Y ). It is well known that expectation minimises squared error. In Chapter 4 we discussed

that the Bayes linear adjustment of the mean of X by Y , EY (X), is defined to be the linear

function of Y that minimises squared error with X . Therefore, for any conditional expectation

that is linear in the condition the conditional expectation will be identical to the Bayes linear
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adjustment rule for the mean, as was noted by Ericson in (Ericson 1969).

The adjusted variance is defined to be the expectation of the squared error of the adjusted

mean with X , E((X −EY (X))2). The adjusted variance can thus be interpreted as an approx-

imation to the expectation of the conditional variance, E(V ar(X |Y )) (note in (5.2) that the

adjusted variance also does not depend on Y ):

E(V ar(X |Y )) = E
(
E
[
(X − E(X |Y ))2|Y

])
= E

[
(X − E(X |Y ))2

]

≈ E
[
(X − EY (X))2

]
= V arY (X). (5.3)

In case the conditional mean is linear in the condition and the adjusted mean thus is ex-

act, the approximation (5.3) is exact as well, and the adjusted variance equals the expected

conditional variance. Among continuous bivariate distributions with a linear conditional mean

are the bivariate Normal, Filon-Isserlis beta, Kibble’s Gamma, Cheriyan’s Gamma, McKay’s

Gamma, a bivariate Pareto, Gosh’s F, Rhodes, Pearson’s bivariate Student and Pearson’s Type

II distribution (see e.g. (Mardia 1970) and (Balakrishnan & Lai 2009)), and the linear exponen-

tial family in general. Two examples of bivariate distribution with nonlinear conditional mean

are Gumbel’s bivariate exponential and the Farlie-Gumbel-Morgenstern bivariate Gamma dis-

tribution. Bivariate (and multivariate) Normally distributed variables do not only have a linear

conditional mean, but for these variables the conditional variance is also constant. Hence, for

joint Normally distributed variables the adjusted variance is also identical to the conditional

variance.

In general conditional variances will not be constant however, and the adjusted variance

might be a poor approximation to it. In this chapter we investigate the errors made using the

adjusted variance as an approximation to the conditional variance for a set of known bivariate

distributions. First analytically in Section 5.3 and by means of Monte Carlo sampling in Section

5.4. The set of bivariate distributions evaluated in this chapter is introduced in the next section.

5.2 Selection of the Distributions

The distributions for which the adjusted variance will be compared with the conditional variance

have been selected to cover as wide a variety of behaviours of the variables as possible. To be

able to perform the evaluations in Section 5.3 we need an analytical expression of:

• the conditional mean and variance,
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• the means and (co)variances.

To be able to calculate the difference measures for evaluation of the variance approximations de-

scribed in Section 5.4, and analyse these against properties of the marginal and joint behaviour

of both variables we further need to be able to calculate with sufficient precision:

• the marginal 5%− and 95%−quantile,

• the joint moments of up to the fourth order.

The marginal quantiles are needed for the calculation of the difference measures for the variances

described in Section 5.4.1. The additional moments are used to calculate the marginal skewness

and kurtosis, as well as the higher order correlations Corr(X i, Y j) with i, j = 1, 2, against which

the differences will be analysed.

First we searched the literature for systems of bivariate distributions covering a broad spec-

trum of distributions meeting the above requirements. The only system we found that meets

the above requirements is Van Uven’ bivariate extension of the Pearson system of distributions

(Van Uven 1947a, Van Uven 1947b, Van Uven 1948a, Van Uven 1948b). For this system the

joint, marginal and conditional distribution, the conditional mean and variance and the uncon-

ditional (product) moments can be expressed in the parameters of the two differential equations

defining the system. However, not all parameter combinations for the 17 parameters of this

system lead to proper density functions. Since we were not able to constraint the parameter

space such that each point in this space would correspond to a proper bivariate density function,

we could not use this system.

Instead we searched the literature for known bivariate distributions that meet the require-

ments stated. This resulted in the following four distributions for which we can perform the

desired calculations: Filon-Isserlis’ bivariate Beta, Kibble’s bivariate Gamma, Cheriyan’s bivari-

ate Gamma and a bivariate F distribution (see (Mardia 1970) and (Balakrishnan & Lai 2009)

for details). With these distributions we can investigate bivariate distributions with marginal

Type I (Beta), Type III (Gamma) an Type VI (F) distributions from the Pearson system of

univariate distributions. Each of the four distributions has a conditional mean that is linear

in the condition. For these distribution the Bayes linear adjusted mean thus is equal to the

conditional mean, as is shown in Appendix A.1. So the attention in the remainder of this chap-

ter will be turned to the accuracy of the adjusted variance. In the remainder of this section

each distribution will be briefly introduced, together with the sampling strategy applied for the

distribution in the evaluation in Section 5.4.
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5.2.1 Filon-Isserlis’ Bivariate Beta

The Filon-Isserlis surface is a bivariate Beta distribution, defined by the following probability

density function (pdf):

hFI(x, y) =
Γ(p1 + p2 + p3)

Γ(p1)Γ(p2)Γ(p3)
xp1−1yp2−1(1 − x − y)p3−1, x, y ≥ 0, x + y 6 1,

and p1, p2, p3 > 0. X has as marginal distribution a Beta distribution with shape parameters

p1 and p2 + p3. Y is distributed as a Beta distribution with parameters p2 and p1 + p3. Both

variables have a lower bound of 0, an upper bound depending on the value of the other variable

with a maximum of 1. Each variable can be symmetric, positively skewed or negatively skewed.

The kurtosis of the marginals can be smaller, equal to or larger than 3.

The joint moments of this distribution can be calculated as

E(XrY s) =
Γ(p1 + r)Γ(p2 + s)Γ(p1 + p2 + p3)

Γ(p1)Γ(p2)Γ(p1 + p2 + p3 + r + s)
.

The conditional mean and variance of X are given by

E(X |Y = y) =
p1

p1 + p3
(1 − y), (5.4)

V ar(X |Y = y) =
p1p3

(p1 + p3)2(1 + p1 + p3)
(1 − y)2. (5.5)

The 5%− and 95%−quantile of Y can be derived from the inverse cumulative distribution

function of the univariate Beta distribution with shape parameters p2 and p1 + p3.

Sampling from Filon-Isserlis’ Beta. A Filon-Isserlis distribution is defined by the pa-

rameters p1, p2 and p3. For the current analysis p1, p2 and p3 are independently sampled from

a Normal distribution with zero mean and a standard deviation of 10, of which the absolute

value is taken. The marginal Beta distributions of the Filon-Isserlis bivariate Beta distribution

are Pearson Type I distributions. In Figure 5.1a the cases from a sample of 10, 000 Filon-Isserlis

distributions are displayed that have a squared skewness and kurtosis smaller than 15, where

the sample was constructed as described in this paragraph.
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Figure 5.1: Diagram of the Pearson system of univariate distributions with for the a. Filon-
Isserlis, b. F, c. Kibble and d. Cheriyan distribution the cases displayed of a sample of 10, 000
that have a squared skewness and kurtosis smaller than 15.

5.2.2 Bivariate F

The bivariate F distribution used in this study is also known as the bivariate inverted Beta or

the bivariate inverted Dirichlet distribution. Its probability density function hF (x, y) is

hF (x, y) = Kx(ν1−2)/2y(ν2−2)/2

(
1 +

ν1x + ν2y

ν0

)−(ν0+ν1+ν2)/2

, x, y ≥ 0,

where the ν’s are positive and the constant K is given by

K = Γ

(
ν0 + ν1 + ν2

2

)
ν
−(ν0+ν1+ν2)/2
0

ν
ν0/2
0 ν

ν1/2
1 ν

ν2/2
2

Γ(ν0/2)Γ(ν1/2)Γ(ν2/2)
.
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Both X and Y have an F-distribution as marginal distribution, X with ν1 and ν0 degrees of

freedom, Y with ν2 and ν0. So both variables have a lower bound of 0, are positively skewed

and have a kurtosis bigger than 3 (the kurtosis of a Normally distributed variable).

The joint moments of this distribution are calculated as

E(XrY s) =
Γ(1

2ν0 − r − s)Γ(1
2ν1 + r)Γ(1

2ν2 + s)

Γ(ν0/2)Γ(ν1/2)Γ(ν2/2)(ν1/ν0)r(ν2/ν0)s
.

The conditional mean and variance of X are given by

E(X |Y = y) =
ν0 + ν2y

ν0 + ν2 − 2
(5.6)

V ar(X |Y = y) =
2(ν0 + ν1 + ν2 − 2)

ν1(ν0 + ν2 − 2)2(ν0 + ν2 − 4)
(ν0 + ν2y)2. (5.7)

The 5%− and 95%−quantile of Y can be derived from the inverse cumulative distribution

function of the univariate F-distribution with ν2 and ν0 degrees of freedom.

Sampling from F. The univariate F distribution is defined by the parameters ν0, ν1 and

ν2. For the current analysis ν1 and ν2 are independently sampled from a Normal distribution

with zero mean and a standard deviation of 10, of which the absolute value is taken. To ensure

finiteness of the higher moment used in the analysis ν0 is sampled in the same way as ν1 and ν2,

then a value of 12 is added to this. The marginal distributions of this bivariate F distribution

are Pearson Type VI distributions. See Figure 5.1b for the cases out of a sample of 10, 000 that

have both the squared skewness and kurtosis smaller than 15, where the sample is constructed

as described in this paragraph.

5.2.3 Kibble’s Bivariate Gamma

Kibble’s bivariate Gamma distribution is defined by the following pdf:

hKibble(x, y) = fα(x)fα(y)Iα−1

(
2
√

ρxy

1 − ρ

)
Γ(α)

1 − ρ
(ρxy)(α−1)/2e

−ρ(x+y)
1−ρ , x, y ≥ 0, 0 6 ρ < 1,

where fα(t) = 1
Γ(α)e

−ttα−1 and Iα(·) is the modified Bessel function of the first kind and order

ν. Both X and Y have as marginal distribution a Gamma distribution with the scale parameter

equal to 1 and shape parameter α. So both variables have a lower bound of 0, are positively

skewed and have a kurtosis bigger than 3 (the kurtosis of a Normally distributed variable).
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The joint moments of this distribution can be derived from the moment generating function

MKibble(s, t) = [(1 − s)(1 − t) − ρst]−α.

The conditional mean E(X |Y = y) and variance V ar(X |Y = y) of X are given by

E(X |Y = y) = (1 − ρ)α + ρy, (5.8)

V ar(X |Y = y) = (1 − ρ)2α + 2ρ(1 − ρ)y. (5.9)

The 5%− and 95%−quantile of Y can be derived from the inverse cumulative distribution

function of the univariate Gamma distribution with scale parameter 1 and shape parameter α.

Sampling from Kibble’s Gamma. To sample a member of the family of Kibble’s bi-

variate Gamma distributions it is sufficient to sample a set of allowable values for the two

parameters that fully determine the distribution. Thus sample a α > 0 and a ρ from the

interval [0, 1). For the current analysis α is sampled uniformly between 0 and 10, and, inde-

pendently, ρ uniformly between 0 and 1. Univariate Gamma distributions are Pearson Type

III distributions. In Figure 5.1c the cases from a sample of 10, 000 Kibble distributions are

displayed that have a squared skewness and kurtosis smaller than 15, where the sample was

constructed as described in this paragraph.

5.2.4 Cheriyan’s Bivariate Gamma

The Cheriyan distribution is also a bivariate Gamma distribution, the pdf hCheriyan(x, y) is

hCheriyan(x, y) =
e−(x+y)

Γ(θ1)Γ(θ2)Γ(θ3)

∫ min(x,y)

0

(x − z)θ1(y − z)θ2−1zθ3−1ezdz, x, y ≥ 0,

with θ1, θ2, θ3 > 0.

So again both X and Y have as marginal distribution a Gamma distribution with a scale

parameter of 1. The shape parameter of X ’s marginal distribution is θ1+θ3, the shape parameter

for Y is θ2+θ3. Both variables have a lower bound of 0, are positively skewed and have a kurtosis

bigger than 3.

The joint moments of this distribution can be derived from the moment generating function

MCheriyan(s, t) = (1 − s)−θ1(1 − t)−θ2(1 − s − t)−θ3 .
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The conditional mean and variance of X are given by

E(X |Y = y) = θ1 +
θ3

θ2 + θ3
y, (5.10)

V ar(X |Y = y) = θ1 +
θ2θ3

(θ2 + θ3)2(1 + θ2 + θ3)
y2. (5.11)

The 5%− and 95%−quantile of Y can be derived from the inverse cumulative distribution

function of the univariate Gamma distribution with scale parameter 1 and shape parameter

θ2 + θ3.

Sampling from Cheriyan’s Gamma. To sample a member of the family of Cheriyan’s

bivariate Gamma distributions it is sufficient to sample a set of allowable values for the three

parameters that fully determine the distribution. For the current analysis θ1, θ2 and θ3 are

independently sampled from a Normal distribution with zero mean and a standard deviation

of 500, of which the absolute value is taken. A set of 10, 000 Cheriyan distributions sampled as

here described is displayed in Figure 5.1d.

5.3 Analytical Evaluation

In this section we will evaluate the analytical expressions of the difference dvar between the

regular adjusted variance and the conditional variance:

dvar = V arY (X) − V ar(X |Y ),

for each of the distributions described in the previous section. The derivation of the expressions

evaluated in this section are given in Appendix A.2.

5.3.1 Filon-Isserlis’ Bivariate Beta

For the Filon-Isserlis Beta distribution the difference between the regular adjusted and the

conditional variance is:

dvar,F ilon−Isserlis(y) =
p1p2p3(1 + 2p1 + p2 + 2p3)

(p1 + p3)2(1 + p1 + p3)(p1 + p2 + p3)(1 + p1 + p2 + p3)

+
p1p3

(p1 + p3)2(1 + p1 + p3)
(2y − y2). (5.12)

On the whole domain of observation Y the adjusted variance and the conditional variance

are different. The difference is the lowest at the lower bound y = 0, where it is equal to the
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constant from (5.12), and highest at the upper bound y = 1. If y = 1, X needs to be 0 since

X, Y > 0 and X + Y 6 1. So if y = 1 there is no uncertainty left about X , the conditional

variance is 0 and the difference between the adjusted and the conditional variance is equal to

the adjusted variance.

In Figure 5.2 the relative difference between the adjusted and conditional variance is dis-

played against the cumulative probability of the condition, for 5 F-I Beta distributions. For the

case that all three parameters equal 6, we see that the relative difference is less than 50% only

between the 5%− and 80%−quantile of the condition. When parameter p1 is increased to 36

the relative difference decreases and is smaller than 50% on the whole domain of the condition.

The same results are found when only parameter p3 is increased to 36, which we might have

anticipated since both parameters are interchangeable in dvar,F ilon−Isserlis.

Figure 5.2: Relative difference between the adjusted and conditional variance over the cumula-
tive distribution of the condition, for 5 F-I Beta distributions.

For parameter p2 increased to 36 the opposite occurs, the relative difference increases on

almost the whole domain of the condition. Increasing all three parameters to 36 resembles the

effect of changing either p1 or p3 alone to 36. Finally, note that the adjusted and conditional

variance are in general not equal when the condition is equal to its expectation (dashed line).
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5.3.2 Bivariate F

The difference dvar between the adjusted and the conditional variance for the bivariate F

distribution is:

dvar,F (y) =
2ν2

0 [(ν0 + ν1 − 2)(ν0 + ν2 − 2) − ν1ν2]

ν1(ν0 − 2)2(ν0 − 4)(ν0 + ν2 − 2)

+
2ν2

0(ν0 + ν1 + ν2 − 2)

ν1(ν0 + ν2 − 2)2(ν0 + ν2 − 4)

+
2(ν0 + ν1 + ν2 − 2)

ν1(ν0 + ν2 − 2)2(ν0 + ν2 − 4)
(−2ν0ν2y − ν2

2y2). (5.13)

The relative difference between the adjusted and conditional variance gets smaller for the F

distribution when all three parameters increase, see Figure 5.3. The difference does not depend

(strongly) on parameter ν1, increases with increasing ν2 and decreases with increasing ν0.

Figure 5.3: Relative difference between the adjusted and conditional variance over the cumula-
tive distribution of the condition, for 5 F distributions.
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5.3.3 Kibble’s Bivariate Gamma

The difference dvar between the adjusted and the conditional variance for Kibble’s bivariate

Gamma distribution is:

dvar,Kibble(y) = −2ρ(1 − ρ)(y − 1

2
E(Y )). (5.14)

So for Kibble’s Gamma the adjusted and the conditional variance are equal when observation

y is equal to its prior mean E(Y ) and/or when the correlation ρ is zero (a correlation of 1 is

not allowed for this distribution, see Section 5.2.3). For observations y smaller than the prior

mean the difference is positive, for larger y the difference is negative. In Figure 5.4 we see that

the difference increases with both an increasing correlation and α.

Figure 5.4: Relative difference between the adjusted and conditional variance over the cumula-
tive distribution of the condition, for 5 Kibble distributions.

5.3.4 Cheriyan’s Bivariate Gamma

The difference for Cheriyan’s Gamma, dvar,Cheriyan, is:

dvar,Cheriyan(y) =
θ2θ3

θ2 + θ3
− θ2θ3

(θ2 + θ3)2(1 + θ2 + θ3)
y2. (5.15)
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This difference is zero when y2 = (θ2 +θ3)(1+θ2 +θ3) = E(Y )(1+E(Y )), since E(Y ) = θ2 +θ3.

So for y =
√

E(Y )2 + E(Y ) the BL adjusted variance is equal to the conditional variance. For

observations y <
√

E(Y )2 + E(Y ) the difference is positive, when y is larger the difference is

negative. This negative difference for y >
√

E(Y )2 + E(Y ) is not bounded. The relative differ-

Figure 5.5: Relative difference between the adjusted and conditional variance over the cumula-
tive distribution of the condition, for 5 Cheriyan distributions.

ence between the adjusted and conditional variance decreases with an increasing θ1 (Figure 5.5);

the absolute difference is unaffected by θ1, but the conditional variance itself increases with θ1.

When increasing either of the interchangeable θ2 and θ3 the relative difference becomes larger

at the bounds of the domain of the condition, but will not necessarily become strictly larger

or smaller in the center of the domain. When all three parameters are increased a mixed effect

results.

We now have an idea of the difference dvar between the adjusted variance and the conditional

variance for the four bivariate distributions under consideration. Yet, the analytical expressions

of this difference are in the parameters of each of the distributions. In the next section large

samples from these four bivariate distribution families are taken to explore if there are common

properties of a bivariate distribution via which we can learn about the accuracy of the adjusted

variance as an approximation to the conditional variance. We will end this section with one
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property that might be an indication for the size of dvar: the ratio of the minimum and

the maximum value of the conditional variance on the 5% − 95% interquantile range of the

condition. The more constant the conditional variance is over the condition, the better the

constant adjusted variance can in principle approximate it. In Table 5.1 the mean, standard

deviation, minimum and maximum value of this ratio in a sample of 10, 000 F-I Beta, F, Kibble

and Cheriyan distribution is given.

Table 5.1: The mean, standard deviation, minimum and maximum value of ratio of the mini-
mum and the maximum value of the conditional variance on the 5%− 95% interquantile range
of the condition. For a sample of 10, 000 F-I Beta, F, Kibble and Cheriyan distribution, in
percentages.

mean st.dev. min max
F-I Beta 38.70 21.88 0.00 100.00

F 51.27 17.46 11.14 95.44
Kibble 41.95 23.14 0.00 99.96

Cheriyan 91.78 5.91 54.99 100.00

For the Cheriyan distribution the difference between the minimum and the maximum value

of the conditional variance is by far the smallest on the 5% − 95% interquantile range of the

condition. The minimum value is on average 92% of the maximum value. For the F-I Beta and

the Kibble distributions the differences are the largest.

5.4 Monte Carlo Analysis

In this section we will analyse a sample of 10, 000 cases of each of the bivariate distributions

described in Section 5.2. For each case, we have calculated the value of four measures of the

difference between the adjusted and the conditional variance, and analysed these differences

against marginal and joint properties of the bivariates. In the next subsection we introduce

these four measures. In Section 5.4.2 we discuss how the analysis was set up in Matlab. The

results of the analysis will be discussed in the remainder of this section.

5.4.1 Difference Measures

The conditional variance and thus difference between the adjusted and conditional variance

depends on value of condition Y . In the measures describing this difference we therefore want

to take the behaviour of this difference over the values of Y into account. To be able to

calculate average differences over Y , we need a bounded domain of evaluation for Y (since it

is not possible to calculate the average of a non-constant function over an unbounded domain
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in general). For these bounds the 5%- and 95%-quantiles of Y have been chosen, so that the

observation can be ‘surprisingly but not extremely far away from its prior expectation’. The

following four measures are employed in this chapter to measure the difference between the

adjusted and conditional variance:

RDE. Relative difference when condition y is equal to its prior expectation E(Y ):

RDE =
V arY (X) − V ar(X |y = E(Y ))

V ar(X |y = E(Y ))
. (5.16)

The RDE tells us how big the difference between the BL adjusted variance and the conditional

variance is when we are least surprised by the value of the observation, that is when the

observation is exactly equal to what we had expected it to be.

MRD. Maximum relative difference for observation y on the interval [y0.05, y0.95], where y0.05

and y0.95 are resp. the 5%− and 95%−quantile of Y , calculated as:

MRD =
V arY (X) − V ar(X |y∗)

V ar(X |y∗)
, (5.17)

where y∗ is found as the value from the interval [y0.05, y0.95] maximising:

∣∣∣∣
V ary(X) − V ar(X |y)

V ar(X |y)

∣∣∣∣ . (5.18)

The MRD tells us about the maximum ‘damage’ we can expect, also when observation is

surprisingly but not extremely far away from its prior expectation. So in a military context the

MRD corresponds to the ‘worst case scenario’.

ARD. Average relative difference for observation y on the interval [y0.05, y0.95], calculated as:

ARD =

∫ y0.95

y0.05

V arY (X) − V ar(X |y)

V ar(X |y)
dy

y0.95 − y0.05
. (5.19)

With the ARD we can assess bias in the error, that is whether the BL adjusted variance is

structurally higher or lower than the conditional variance on the evaluated interval for the

observation.

AARD. Average absolute relative difference for observation y on the interval [y0.05, y0.95], calcu-
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lated as:

AARD =

∫ y0.95

y0.05

∣∣∣∣
V arY (X) − V ar(X |y)

V ar(X |y)

∣∣∣∣ dy

y0.95 − y0.05
. (5.20)

The AARD, finally, measures the average error, whether positive or negative, we make in the

approximation of the conditional variance, on the evaluated interval for the observation.

Note that both the ARD and AARD are not probability weighted errors over the 5 − 95%

interquantile range, and thus do not correspond the expected relative difference in this interval.

5.4.2 Implementation of the Analysis in Matlab

For each of the bivariate distributions described in Section 5.2 a sample of 10,000 cases was

taken. For each case of each of the bivariate distributions the following steps were undertaken:

Step 1. Sample the parameters defining the distribution according to the sampling strategies de-

scribed in Section 5.2. Sampling from the Normal distribution was conducted by using the

standard random number generator ‘rand()’ from Matlab which returns a value between

0 and 1 (uniformly) and using the inverse cumulative distribution function of the Normal

distribution from a standard Matlab statistics package.

Step 2. Calculate the (product) moments of up to the fourth order of the distributions using the

parameters from Step 1.

Step 3. Calculate the conditional mean and variance of the distribution as a function of the

condition using the parameters from Step 1.

Step 4. Calculate the Bayes linear adjusted mean and variance of the distribution (as a function

of the condition) using the moments calculated at Step 2.

Step 5. Calculate the values of the four difference measures RDE (5.16), MRD (5.4.1), ARD (5.19)

and AARD (5.20) described in Section 5.4.1 for the difference between the conditional

mean and variance calculated in Step 3. and the Bayes linear adjusted mean and variance

calculated in Step 4. For this the marginal 5%− and 95%−quantiles of the distribution

are needed. These quantiles we derived using the parameters from Step 1., Matlab’s

‘rand()’ function and using the inverse cumulative distribution function of the univariate

Beta (F-I Beta), F, and Gamma (Kibble, Cheriyan) distribution from a standard Matlab

statistics package.
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Step 6. Store the product moment matrix calculated in Step 2. and the values of the difference

measures at Step 5.

In the next section the stored difference measurements are analysed. The difference values

are further analysed against properties of the marginal distributions in Section 5.4.4, calculated

from the stored product moment matrices, and against joint properties in Section 5.4.5, again

calculated from the stored product moment matrices.

5.4.3 Overall Results

In Table 5.2 the mean, the standard deviation and the maximum of each of the four difference

measures is displayed for a sample of 10, 000 cases from each of the four distributions. The

difference between the adjusted and conditional variance dvar is the largest in the Filon-Isserlis

Beta sample, for all four difference measures. The average absolute difference in this sample is

75%. Even when the observed value is least surprising (equal to its expected value), the average

difference observed is still 5%. The average absolute maximum difference is of order 105%, and

on average the conditional variance is overestimated by 59% for the bivariate Beta distributions.

In Section 5.3 it was already discussed that this distribution has the largest fluctuations of the

conditional variance on the 5% − 95% interquantile range of the condition.

The Cheriyan distributions were shown to have by far the smallest fluctuations of the con-

ditional variance. And indeed the adjusted variance is also by far the best approximation of the

conditional variance for Cheriyan distributions. The average absolute difference is 2.2% and the

maximum AARD in the sample is 15% for this distribution. The average bias (ARD) is 0.06%

and the average difference for the condition equal to its expectation is about the same, 0.04%.

For the F distribution we find an average AARD of 19%, for the Kibble distribution the average

AARD is slightly higher with 27%. The variation of the AARD is also slightly higher for the

Kibble distribution with a standard deviation of 18% against 11% for the F distribution, as are

the average absolute maximum differences with 154% against 51%. The Kibble distribution on

the other hand has a slightly smaller bias (ARD) and the adjusted variance is exact for this

distribution when the condition is equal to its expectation, as shown in Section 5.3.3.

The results in Table 5.2 show that the adjusted variance is not a very close approximation of

the conditional variance, for the four distributions considered. In the next two sections we will

analyse the differences against marginal and joint properties of the distributions, to find out if

there are properties that can indicate bad approximation and that can enable us to anticipate

this.
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Table 5.2: Differences between adjusted and conditional variance for sample of 10, 000 cases
from each bivariate distribution family, differences in %.

F-I Beta mean∗ st.dev.∗ max F mean∗ st.dev.∗ max
AARD 75.41 1431.95 1.34·105 AARD 18.77 10.90 59.98
MRD 1.16·105 1.03·107 1.03·109 MRD 51.19 42.15 256.03
ARD 58.56 1430.59 1.34·105 ARD 1.02 3.25 18.83
RDE 4.91 10.38 199.51 RDE 1.87 2.36 13.95

Kibble mean∗ st.dev. max Cheriyan mean∗ st.dev. max
AARD 26.53 18.47 315.11 AARD 2.20 1.68 15.16
MRD 153.58 804.72 4.81·104 MRD 4.58 3.66 37.72
ARD 0.07 8.62 315.11 ARD 0.04 0.11 2.13
RDE 0.00 0.00 0.00 RDE 0.06 0.06 1.00

∗ For the MRD the mean and the standard deviation are calculated from the absolute value of the

MRD.

5.4.4 Evaluation against Marginal Properties

The Bayes linear methodology is a method of moments. Firstly, a BL model is fully specified

by first and second order (product) moments of the quantities in the base of the model, and

secondly the belief adjustments are all operations on (product) moments only. Higher order

marginal and product moments for the distributions under consideration, or functions thereof,

are thus the obvious properties to characterise the marginal and joint behaviour of the bivariates.

To allow for cross-distribution comparisons normalised central moments are used. As the

first two normalised central moments of a variable are always 0 and 1 respectively (when the first

two moments are finite), the first two normalised central moments of interest are the third order,

or skewness, and the fourth order, or kurtosis. A Normally distributed variable is not skewed,

i.e. has a skewness of 0, and has a kurtosis of 3 (or: an excess kurtosis of 0). Since the adjusted

variance is equal to the conditional variance for bivariate Normally distributed variables, we

are especially interested if a deviation of either of the two variables from a skewness of 0 and a

kurtosis of 3 has an impact of the difference dvar .

In Table 5.3 the average, standard deviation and extreme value of the marginal skewness

and excess kurtosis are given for different percentile ranges of the AARD of the sample of Beta

distributions. The average, standard deviation and maximum AARD are also included in the

table. We find that the average skewness of X increases with an increasing AARD. The same

holds for the average skewness of Y , but note that for a positive skewness of Y the average

skewness is close to zero for high percentiles of the AARD, while for a negative skewness the

average is close to zero for much lower percentile ranges. For the lower percentiles of the AARD

the average excess kurtosis of Y is much larger than for the higher percentiles, while the excess
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kurtosis of X has a higher average for higher percentiles of the AARD.

Figure 5.6: The AARD against the squared skewness and kurtosis for Beta, F and Gamma
distributions.

For the F distribution the average skewness and excess kurtosis of X also increase with an in-

creasing AARD, but for the average skewness and excess kurtosis of condition Y no monotonous

relationship with the AARD is found. For the Kibble and Cheriyan distribution no monotonous

relationship is found for either skewness and excess kurtosis, for both variables. The tables for

these distributions are included in Appendix B.1. We find a clearer relationship between the

skewness, kurtosis and the AARD when we plot the AARD on the Pearson diagram of Y , i.e.

against the squared skewness and regular kurtosis of Y , see Figure 5.6. For the Beta and F

distributions the AARD gets smaller when the (skewness, kurtosis)-value of the marginal dis-

tribution of condition Y approaches the Pearson Type III line. Yet in the limit, on the Type

III line itself, the AARD is not necessarily small, as the AARDs for the Kibble distributions

clearly show. Figure 5.6 is zoomed in on smaller skewness and kurtosis values to enable a clearer

distinction of individual distributions.
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Table 5.3: Mean, standard deviation and maximum value of skewness and excess kurtosis for different percentile ranges of AARD of 10, 000 FI-beta
distributions. AARD in %.

F-I Beta
Percentiles of AARD

0-1% 1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-99% 99-100%

AARD
mean 1.412 7.658 13.148 17.192 20.841 24.734 29.490 35.543 44.739 62.368 139.987 3.73·103

st.dev. 1.043 2.095 1.246 1.077 1.013 1.212 1.579 2.068 3.283 7.912 69.058 1.39·104

max 3.041 10.875 15.263 19.072 22.631 26.843 32.215 39.372 50.834 79.018 435.572 1.34·105

skew X < 0
mean -0.631 -0.391 -0.290 -0.244 -0.221 -0.222 -0.208 -0.176 -0.206 -0.310 -0.260 -0.124

st.dev. 0.752 0.568 0.297 0.227 0.226 0.253 0.204 0.177 0.197 0.265 0.369 0.000
min -3.360 -7.771 -1.949 -1.589 -1.477 -2.160 -1.066 -1.205 -0.919 -0.993 -1.661 -0.124

skew X > 0
mean 0.553 0.596 0.684 0.654 0.747 0.710 0.850 1.002 1.079 1.324 1.835 2.928

st.dev. 1.092 0.860 1.921 1.493 2.112 0.946 1.503 1.676 1.460 1.641 3.034 2.391
max 7.268 7.961 41.465 25.828 45.226 13.104 23.774 19.242 18.089 20.829 67.854 16.370

skew Y < 0
mean -0.012 -0.024 -0.038 -0.071 -0.117 -0.216 -0.512 -1.397

st.dev. 0.010 0.026 0.028 0.051 0.075 0.118 0.256 0.444
min -0.020 -0.081 -0.120 -0.221 -0.322 -0.538 -1.316 -2.618

skew Y > 0
mean 8.990 1.955 0.963 0.644 0.481 0.413 0.319 0.295 0.306 0.319 0.304 0.053

st.dev. 5.053 1.100 0.594 0.445 0.346 0.399 0.297 0.329 0.344 0.369 0.290 0.061
max 25.272 7.852 4.826 5.055 2.507 3.577 3.048 3.855 2.709 2.998 1.723 0.140

excess
kurtosis X

mean 1.104 0.921 3.548 2.503 4.974 1.369 3.405 4.526 4.066 5.676 15.879 18.767
st.dev. 6.199 5.201 76.766 35.143 97.064 9.450 32.301 30.319 24.257 27.631 193.970 44.700

max 58.125 87.330 2416.228 939.397 2784.723 244.327 801.192 499.866 467.316 560.231 5632.619 355.271

excess
kurtosis Y

mean 144.968 6.898 1.580 0.638 0.271 0.204 -0.013 -0.074 -0.149 -0.198 -0.003 2.321
st.dev. 162.023 8.628 2.630 1.477 0.748 1.185 0.547 0.656 0.438 0.441 0.525 2.071

max 819.904 78.011 29.371 25.931 7.717 15.041 10.887 16.324 7.949 9.126 2.245 9.522
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5.4.5 Evaluation against Joint Properties

Like we used marginal moments to describe the marginal properties of the distributions we

characterise the joint behaviour of the variables by their product moments. To enable cross-

distribution comparison (higher order) correlations ρi,j = Corr(X i, Y j) are calculated from

these product moments. To also be able to determine the difference of the joint behaviour from

the joint behaviour of joint Normal variables we analyse the differences dvar against δi,j

δi,j = Corr(X i, Y j) − CorrNormal(X
i, Y j),

where CorrNormal(X
i, Y j) are the higher order correlation of a bivariate Normal distribution

with the same first and second order (cross-)moments as the distribution under consideration.

Note that by definition δ1,1 = 0.

When the correlation is close to zero, the adjusted variance will barely be different from

the prior variance. Since the correlation is an expression of (linear) dependence between the

bivariates, a correlation close to zero might indicate that one will not learn much about the one

variable by observing the other, so the conditional variance might not be very different from the

prior variance even though in principle it could be. The relative difference between adjusted

and conditional variance could thus be very small when correlation is close to 0, especially when

the conditional variance is not close to 0.

In Table B.4 the average, standard deviation and maximum of the absolute correlation |ρ|

are given for different percentile ranges of the AARD, for all four distributions. The average

absolute correlation clearly increases with the percentile ranges of the AARD, for all distri-

butions. The same is found for the absolute value of δ1,2. For both the correlation and δ1,2

however, the average absolute values differ strongly within the same AARD percentile range

for the four distributions. For |δ2,1| and |δ2,2| no monotonous relationship with the AARD

percentile ranges was observed. The tables for |δ2,1| and |δ2,2| are included in Appendix B.2.

5.5 Summary and Conclusions

In this chapter we have investigated whether the Bayes linear adjusted variance can be good ap-

proximation to the conditional variance. We have analysed the difference between the adjusted

and conditional variance for samples from four bivariate distributions that have marginal dis-

tributions that cover wide range of Pearson Type I, III and VI distributions: the Filon-Isserlis

Beta, an F, Kibble’s Gamma and Cheriyan’s Gamma distribution.
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Table 5.4: Mean, standard deviation and maximum value of the absolute value of the correlation, |ρ|, and higher order correlation difference |δ1,2| for
different percentile ranges of AARD of 10, 000 F-I Beta, F, Kibble and Cheriyan distributions. AARD in %.

Percentiles of AARD
0-1% 1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-99% 99-100%

F-I Beta
|ρ|

mean 0.087 0.237 0.356 0.418 0.451 0.470 0.483 0.498 0.505 0.519 0.572 0.661
st.dev. 0.093 0.161 0.192 0.213 0.227 0.235 0.242 0.250 0.251 0.251 0.247 0.241

max 0.738 0.990 0.979 0.989 0.997 0.999 1.000 0.997 0.999 0.999 1.000 0.991

F
|ρ|

mean 0.067 0.165 0.264 0.323 0.356 0.388 0.429 0.475 0.537 0.616 0.720 0.816
st.dev. 0.021 0.062 0.077 0.088 0.097 0.101 0.111 0.116 0.119 0.125 0.129 0.108

max 0.100 0.302 0.405 0.458 0.505 0.545 0.591 0.647 0.710 0.795 0.885 0.912

Kibble
|ρ|

mean 0.005 0.062 0.170 0.287 0.411 0.531 0.643 0.701 0.696 0.702 0.774 0.933
st.dev. 0.004 0.035 0.059 0.086 0.119 0.164 0.201 0.208 0.211 0.202 0.149 0.074

max 0.013 0.151 0.315 0.470 0.650 0.832 0.995 1.000 1.000 0.999 0.999 0.998

Cheriyan
|ρ|

mean 0.223 0.306 0.321 0.370 0.396 0.438 0.469 0.497 0.556 0.597 0.632 0.695
st.dev. 0.301 0.298 0.246 0.215 0.202 0.209 0.205 0.201 0.203 0.180 0.175 0.155

max 0.906 0.950 0.974 0.953 0.977 0.975 0.978 0.985 0.991 0.974 0.985 0.988

F-I Beta
|δ1,2|

mean 4.4·10−4 7.0·10−4 1.2·10−3 1.7·10−3 2.3·10−3 3.2·10−3 4.4·10−3 6.4·10−3 9.4·10−3 1.6·10−2 3.4·10−2 1.1·10−1

st.dev. 1.3·10−3 1.4·10−3 1.9·10−3 2.6·10−3 3.2·10−3 4.0·10−3 5.0·10−3 6.5·10−3 8.3·10−3 1.2·10−2 2.0·10−2 3.6·10−2

max 8.0·10−3 2.5·10−2 1.1·10−2 2.8·10−2 1.7·10−2 2.0·10−2 2.4·10−2 2.8·10−2 3.6·10−2 4.8·10−2 9.6·10−2 2.1·10−1

F
|δ1,2|

mean 4.8·10−5 1.6·10−4 2.7·10−4 3.2·10−4 3.5·10−4 3.9·10−4 4.7·10−4 7.0·10−4 9.8·10−4 2.0·10−3 6.9·10−3 1.8·10−2

st.dev. 1.5·10−4 4.2·10−4 7.9·10−4 9.3·10−4 9.5·10−4 1.0·10−3 9.7·10−4 1.5·10−3 1.5·10−3 1.9·10−3 4.3·10−3 3.5·10−3

max 9.0·10−4 4.7·10−3 7.0·10−3 8.4·10−3 9.1·10−3 1.0·10−2 8.1·10−3 1.4·10−2 1.7·10−2 1.9·10−2 2.9·10−2 2.5·10−2

Kibble
|δ1,2|

mean 5.1·10−5 5.2·10−4 1.5·10−3 2.5·10−3 2.8·10−3 4.1·10−3 5.3·10−3 6.7·10−3 1.2·10−2 2.7·10−2 9.8·10−2 2.5·10−1

st.dev. 7.3·10−5 7.6·10−4 2.5·10−3 5.1·10−3 2.8·10−3 5.3·10−3 1.1·10−2 1.0·10−2 1.6·10−2 3.0·10−2 9.3·10−2 1.4·10−1

max 4.7·10−4 1.0·10−2 6.0·10−2 9.3·10−2 2.7·10−2 8.9·10−2 2.0·10−1 2.1·10−1 2.4·10−1 2.9·10−1 5.1·10−1 5.9·10−1

Cheriyan
|δ1,2|

mean 1.4·10−7 2.9·10−7 2.4·10−7 1.7·10−7 3.1·10−7 3.5·10−7 5.7·10−7 9.9·10−7 1.4·10−6 1.9·10−6 4.9·10−6 1.7·10−5

st.dev. 5.1·10−7 2.2·10−6 1.2·10−6 2.8·10−7 1.4·10−6 4.7·10−7 1.2·10−6 2.8·10−6 8.5·10−6 8.5·10−6 3.2·10−5 3.1·10−5

max 4.1·10−6 5.4·10−5 3.0·10−5 4.9·10−6 3.7·10−5 4.9·10−6 2.2·10−5 4.7·10−5 2.6·10−4 2.6·10−4 9.2·10−4 2.6·10−4
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Where the adjusted variance is constant, i.e. does not depend on the value of observations,

the conditional variances of the four distributions are not. The Cheriyan distribution however

has a far more constant conditional variance than the other three distributions on the 5%−95%

interquantile range of the condition: the minimum value of the conditional variance is on average

92% of the maximum conditional variance on the 5%−95% interquantile range of the condition.

For the other distributions the ratios of the minimum and maximum value of the conditional

variance are much lower with 39%, 52% and 42% for resp. the F-I Beta, F and Cheriyan

distribution.

The adjusted variance is not a close approximation of the conditional variance for the F-I

Beta, F and Kibble distribution. The average absolute error found over the 5% − 95% in-

terquantile range of the condition, in a sample of 10, 000 cases of each of these distributions,

is 75%, 19% and 27% respectively. When the condition is exactly as expected and equal to its

mean, the errors are smaller with respectively 5%, 2% for the F-I Beta and F distribution and

zero for the Kibble distribution. For F-I Beta distributions the adjusted variance overestimates

the conditional variance on average with 59%. For F, Kibble and Cheriyan distributions the

average biases are much smaller with resp. 1%, 0.07% and 0.04%.

For Cheriyan distributions the adjusted variance is a much better approximation of the

conditional variance, as we might have expected since the conditional variance is relatively

much more constant for these distributions. The average absolute error found in the sample of

10, 000 Cheriyan distributions is 2.2%, and the error for the condition equal to its expectation

is on average 0.06%.

The skewness and kurtosis of both marginals form no indicator on their own for the size of

the approximation error, i.e. we found no monotonous relationship with the size of the approxi-

mation error for the marginal skewness and kurtosis that is consistent for all four distributions.

In the introduction of this chapter we mentioned that the adjusted and the conditional vari-

ance are equal for joint Normally distributed variables and in this chapter we showed that the

adjusted variance is by far the best approximation to the conditional variance for the Cheriyan

distributions. These Cheriyan distributions have a skewness and kurtosis that are for both

marginals relatively close to the skewness and kurtosis of the Normal distribution. So having

both marginals with a skewness close to 0 (approximately symmetric) and a kurtosis near 3

might indicate a small approximation error, but this needs further investigation.

For the F-I Beta and F distributions we noted that the approximation errors get smaller

for (skewness, kurtosis)-values of the condition that are closer to (skewness, kurtosis)-values of
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Pearson Type III distributions, as depicted in Figure 5.6.

In Section 5.4.5 we found that the correlation and the higher order correlation difference with

the joint Normal distribution δ1,2 are good indicators of the approximation error, in the sense

that higher absolute values of these on average indicate a larger approximation error within the

same family of distributions. However, the absolute values of the correlation and δ1,2 cannot

be used as an indicator of the size of the approximation error for these four distributions. So

from an accuracy of the approximation perspective we would like the correlation and δ1,2 to be

as small as possible. From a ‘learning from observations’ perspective however the opposite holds.

Practitioners we would therefore recommend not to use the adjusted variance as an ap-

proximation the conditional variance in general. Two exceptions however are in place to this

recommendation: the adjusted variance might be a relative good approximation when the cor-

relation is very small and for distributions for which the conditional variance is considered to

be relatively constant, as is the case for the bivariate Normal and Cheriyan distribution.
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Chapter 6

Bayes Linear Variance

Adjustment using Higher Order

Information

In the previous chapter it was shown that the Bayes linear adjusted variance might be a poor ap-

proximation of the conditional variance, especially when the conditional variance varies strongly

with the value of the condition. An alternative way to approximate the conditional variance

in the Bayes linear methodology is to calculate the variance from the adjusted first and second

moment. In this chapter we evaluate the possible benefits of using higher order (product) mo-

ment information in Bayes linear belief adjustment. We show that this Bayes linear ‘adjusted

moment variance’, the variance calculated from the adjusted first and second moment, can

provide a much better approximation to the conditional variance. To calculate this adjusted

moment variance, more (higher) moment assessments are needed than for the regular adjusted

variance. In Section 6.3 a bivariate generalisation of the extended Pearson-Tukey method from

Section 3.5.1.1 is evaluated for this purpose. Next, the approximation of the conditional vari-

ance by the adjusted moment variance using Pearson-Tukey approximated moment assessments

is evaluated. In this chapter and the next, the term ‘moments’ will be used for both marginal

and product moments together, unless specifically stated otherwise.
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6.1 Bayes Linear Adjustment with Higher Order Infor-

mation

The Bayes linear methodology has been introduced as a second order method in Chapter 4.

A Bayes linear model is fully specified by first and second order moments of the quantities

in the base of the model, and the belief adjustments are all operations using these moments

only. Yet, knowledge of higher order moments can be used in Bayes linear adjustment by

taking higher powers of the quantities in the base of a Bayes linear model. Goldstein, developer

of the methodology, phrases this as follows: (Goldstein 1994, p.121): “Within a traditional

Bayes formulation, [the specification of means and (co)variances] may be viewed as a ‘second

order’ specification. However, by including as many functional forms as we feel are relevant

to the problem, we may specify whatever product order of moments we choose, subject only

to the constraint that we are able to make all of the necessary quantifications. We may even,

in the limit, choose to specify all joint prior moments, which is equivalent to making a full

probabilistic specification. Thus, the [...] specification [of means and (co)variances] may be

viewed as reducing the full probabilistic approach to whatever level of detail we feel is both

within our ability to specify and adequate to the problem at hand.”

In this chapter the Bayes linear adjustment of moments is again viewed as approximation to

their conditional counterparts in a full probabilistic approach. As the (conditional) variance can

be derived as the (conditional) second moment of a variable minus the square of the (conditional)

first, it will be evaluated whether the first two linearly adjusted moments can be used to form a

better approximation to the conditional variance than the regular adjusted variance investigated

in the previous chapter. The variance calculated from the adjusted moment will be referred to

as ‘adjusted moment variance’ with notation MV arY (X), so:

MV arY (X) = EY (X2) − EY (X)2,

where

EY (X) = E(X) + Cov(X, Y )V ar(Y )−1(Y − E(Y )), and

EY (X2) = E(X2) + Cov(X2, Y )V ar(Y )−1(Y − E(Y )).

Note that by including X2 in the base of a Bayes linear model, third order specifications are

needed to be able to perform the linear adjustment of the expectation of X2, since Cov(X2, Y ) =
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E(X2Y ) − E(X2)E(Y ).

But like higher powers of quantities can be included in the base of the model for which

the expectations are to be adjusted, also higher powers of the quantities that are going the

be observed can be included in the model. The notation EYn
(X i) will be used here for the

expectation of X i that is linearly adjusted by the first n powers of observation Y , Yn =

[Y 1, . . . , Y n]. From (4.1) in Chapter 4 it can be found that:

EYn
(X i) = E(X i) + Cov(X i,Yn)V ar(Yn)†(Yn − E(Yn)).

where Cov(X i,Yn) is the (1 x n)-vector of covariances Cov(X i, Y j) for j = 1, . . . , n, V ar(Yn)†

the Moore-Penrose inverse of the (n x n)-variance-covariance matrix of vector Yn and (Yn −

E(Yn)) the (n x 1)-vector of the differences (Y j − E(Y j)), j = 1, . . . , n.

EYn
(X i), which will be called the n-order adjusted moment of X i by Y , is in fact an n-order

polynomial in Y :

EYn
(X i) = k0 +

n∑

i=1

kiy
i,

with coefficients

k0 = E(X i) − Cov(X i,Yn)V ar(Yn)†E(Yn), and

( k1 . . . kn ) = Cov(X i,Yn)V ar(Yn)†

The adjusted moment variance derived from the n-order adjusted first and second moment

will be referred to as the n-adjusted moment variance, MV arYn
(X):

MV arYn
(X) = EYn

(X2) − EYn
(X)2.

MV arYn
(X) is a polynomial of order 2n and requires a 2n-th order moment specification.

When the conditional mean is linear in the condition, the Bayes linear adjusted mean is equal

to the conditional mean (see Section 5.1, p.61), thus also linear and will have coefficients of

higher order equal to zero. A linear conditional mean will thus reduce the adjusted moment

variance to be an n-order polynomial.

Recall the remark made in Section 4.2 that to be able to perform Bayes linear adjustment

of moments, the moments used in the adjustment need to be finite. This might not be the case

when dealing with distribution with heavy or long tails. Transformations of the variables in the

86



base of the belief structure might offer a solution, but this has not been explored in this thesis.

Finally, note that when the required 2n-th order moment specification is coherent, that

also the n-order adjusted moments are. The n-adjusted moment variance will thus always be

nonnegative when the moment specification is coherent. In the next section the n-adjusted

moment variance will be evaluated as an approximation to the full conditional variance.

6.2 n-Adjusted Moment Variance with Exact Moments

Following the methodology of Section 5.4, the 1- and 2-adjusted moment variances are compared

with the conditional variance in this section, for the same samples of 10, 000 cases of the

bivariate F-I Beta, F, Kibble and Cheriyan distributions (see Section 5.2 for details about these

distributions, and the sampling strategy applied). The difference measures used are defined

in Section 5.4.1, and measure the average absolute relative difference (AARD), the maximum

relative difference (MRD) and the average relative difference (ARD), all on the interval between

the 5%- and the 95%-quantile of the condition Y , and finally the relative difference at Y = E(Y )

(RDE), when the condition Y is equal to its expectation.

The results are displayed in Table 6.1. For all four distributions and for all four of the

difference measures the 1-adjusted moment variance has a larger mean and maximum difference

with the conditional variance than the regular adjusted variance investigated in the previous

chapter. For the F-I Beta distribution the AARD rises from 75% for the regular adjusted

variance to 520% for the 1-adjusted moment variance. For the F distribution the AARD

doubles from 19% to 39%. For both the bivariate Gamma distributions the AARD rises from

27% to 31% (Kibble), and from 2% to 51% (Cheriyan) respectively.

The 2-adjusted moment variance on the other hand constitutes an excellent approximation

to the conditional variance for the four distributions considered, much better than the regular

adjusted variance. The average AARD and MRD for the bivariate F-I Beta distribution found

are 3 · 10−6% and 4 · 10−4% respectively. The maximum relative difference encountered in the

10,000 cases considered, for values of condition Y between its 5%- and 95%-quantile, is −3%.

For the F, Kibble and Cheriyan distributions the maximum relative differences found in the

samples are only 2 · 10−6%, 4 · 10−7% and −8 · 10−3% respectively.

However, the Bayes linear belief structure is designed to represent someone’s beliefs: ex-

pectations, degree of confidence in these expectation judgements and judgements about the

interrelations of the quantities in the base of the belief structure (Goldstein 1994, p.120), all ex-

pressed in moments. Goldstein warns us therefore, as mentioned in the introduction above, that
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Table 6.1: Differences of the regular adjusted variance V arY (X), the 1- and the 2-adjusted moment variances MV arY1(X) and MV arY1(X) with the
conditional variance, when exact moments are used in the linear adjustments, for 10,000 F-I Beta, F, Kibble and Cheriyan distributions. Differences are
in percentages.

V arY (X) MV arY1(X) MV arY2 (X)
mean∗ st.dev.∗ max mean∗ st.dev.∗ max mean∗ st.dev.∗ max

F-I Beta

AARD 75.408 1431.948 1.342·105 519.879 1.660·104 1.175·106 3.344·10−6 2.520·10−4 2.505·10−2

MRD 1.161·105 1.033·107 1.031·109 1.337·105 7.840·106 -6.847·108 3.655·10−4 3.139·10−2 -3.106
ARD 58.556 1430.590 1.341·105 -184.320 7854.760 -7.176·105 2.487·10−6 2.520·10−4 2.505·10−2

RDE 4.911 10.384 199.510 388.125 1.534·104 1.416·106 2.499·10−6 2.376·10−4 2.374·10−2

F

AARD 18.770 10.902 59.977 39.286 65.217 700.853 4.512·10−8 8.443·10−8 1.157·10−6

MRD 51.187 42.150 256.026 179.026 353.929 -4139.489 6.648·10−8 1.204·10−7 1.593·10−6

ARD 1.021 3.251 18.832 4.547 4.187 24.775 4.344·10−10 9.573·10−8 1.157·10−6

RDE 1.873 2.359 13.951 42.060 57.374 527.846 3.718·10−10 9.338·10−8 1.137·10−6

Kibble

AARD 26.530 18.472 315.114 30.860 453.586 3.558·104 1.207·10−10 2.099·10−9 1.804·10−7

MRD 153.584 804.716 4.811·104 5346.492 1.639·105 -1.388·107 2.487·10−10 4.331·10−9 3.792·10−7

ARD 0.071 8.618 315.114 16.264 454.739 3.558·104 2.206·10−11 2.087·10−9 1.789·10−7

RDE 0 0 0 381.737 7114.959 6.359·105 2.102·10−11 1.831·10−9 1.538·10−7

Cheriyan

AARD 2.202 1.681 15.155 51.082 124.796 3886.515 5.176·10−5 2.130·10−4 7.521·10−3

MRD 4.584 3.659 37.725 133.707 330.977 -1.015·104 5.667·10−5 2.314·10−4 -8.291·10−3

ARD 0.044 0.109 2.135 7.022 17.150 531.335 -4.279·10−7 2.192·10−4 -7.521·10−3

RDE 0.056 0.056 1.000 71.564 174.752 5447.620 -4.273·10−7 2.191·10−4 -7.514·10−3

∗ For the MRD the mean and the standard deviation are calculated from the absolute value of the MRD.
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we are constrained by someone confidently being able to provide all of the necessary moment

quantifications. In the next section a method is introduced to derive higher order moments

for two variables from subjective assessments. In Section 6.4 this analysis will be repeated

for moments derived using this method, to evaluate whether the 2-adjusted moment variance

then still provides a better approximation to the conditional variance then the regular adjusted

variance.

6.3 Bivariate Pearson-Tukey Moment Derivation

In Section 3.5 it was argued that the direct assessments of moments is generally advised against,

since especially the higher moments are usually not observable quantities for the assessors.

Pearson & Tukey (1965) have provided a procedure for deriving first and second moments

(means and variances) from quantile assessments, which have been shown to provide accurate

approximations for a wide selection of distributions (see Section 3.5 for details). Keefer &

Bodily (1983) simplified the procedure proposed by Pearson and Tukey by proposing a three

point distribution approximation from which marginal moments are estimated as Equation

(3.1), which will be repeated here:

E(Xn) = 0.185(x0.05)
n + 0.63(x0.50)

n + 0.185(x0.95)
n,

where x0.05, x0.50 and x0.95 are resp. the 5%−, 50%− and 95%−quantiles of variable X .

The extended Pearson-Tukey method of Keefer and Bodily has the advantage that also higher

marginal moments than the second can be estimated with it, while still using only the same

three quantiles.

Yet, assessments of product-moments can not be derived with this method. The Pearson-

Tukey method is based on the observation that the h%-distance:

h%-distance =
x(100−h) − xh√

V ar(X)
,

is surprisingly constant for many well-known distributions (Pearson & Tukey 1965), where

h = 5 in the extended Pearson-Tukey method. Since this observation trivially also holds for

conditional marginal distributions, Keefer and Bodily note that a multivariate generalisation of

method, by using conditional quantiles, is straightforward. We will work out the bivariate case

here. A three point extended Pearson-Tukey approximation to the conditional distribution of X
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given Y = y is constructed by assigning probability mass 0.185, 0.63 and 0.185 to respectively

the 5%−, 50%− and 95%−conditional quantiles of X given Y = y: x0.05|y, x0.50|y and x0.95|y.

So we have that

P
(
X = x0.05|y|Y = y

)
= P

(
X = x0.95|y|Y = y

)
= 0.185, and

P
(
X = x0.50|y|Y = y

)
= 0.63.

By conditioning on the 5%−, 50%− and 95%−quantiles of condition Y , and assigning the

probability masses 0.185, 0.63 and 0.185 respectively to these unconditional quantiles of Y (the

univariate 3-point extended Pearson-Tukey approximation), we can thus construct a 9-point

bivariate distribution approximation in the following way:

P





X = x0.05|y0.05
, Y = y0.05

X = x0.50|y0.05
, Y = y0.05

X = x0.95|y0.05
, Y = y0.05

X = x0.05|y0.50
, Y = y0.50

X = x0.50|y0.50
, Y = y0.50

X = x0.95|y0.50
, Y = y0.50

X = x0.05|y0.95
, Y = y0.95

X = x0.50|y0.95
, Y = y0.95

X = x0.95|y0.95
, Y = y0.95





=





P
(
X = x0.05|y0.05

|Y = y0.05

)
· P (Y = y0.05)

P
(
X = x0.50|y0.05

|Y = y0.05

)
· P (Y = y0.05)

P
(
X = x0.95|y0.05

|Y = y0.05

)
· P (Y = y0.05)

P
(
X = x0.05|y0.50

|Y = y0.50

)
· P (Y = y0.50)

P
(
X = x0.50|y0.50

|Y = y0.50

)
· P (Y = y0.50)

P
(
X = x0.95|y0.50

|Y = y0.50

)
· P (Y = y0.50)

P
(
X = x0.05|y0.95

|Y = y0.95

)
· P (Y = y0.95)

P
(
X = x0.50|y0.95

|Y = y0.95

)
· P (Y = y0.95)

P
(
X = x0.95|y0.95

|Y = y0.95

)
· P (Y = y0.95)





=





0.1852

0.63 · 0.185

0.1852

0.185 · 0.63

0.632

0.185 · 0.63

0.1852

0.63 · 0.185

0.1852





=





0.034225

0.11655

0.034225

0.11655

0.3969

0.11655

0.034225

0.11655

0.034225





. (6.1)

In Figure 6.1 the nine points of the bivariate distribution approximation are depicted for two

positively dependent variables. Note that the roles of X and Y in the distribution approximation

are not symmetric: there are only three distinct values for Y and (usually) nine for X .
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x

y

y0.05

y0.50

y0.95

x0.05|y0.05 x0.50|y0.50
x0.95|y0.95

Figure 6.1: An example 9−point bivariate distribution approximation.

Since the 9-point discrete distribution described here is a fully specified probability distri-

bution, both marginal and product-moments can be calculated for it:

E(X iY j) =
∑

qy=0.05,0.50,0.95

∑

qx=0.05,0.50,0.95

pqx,qy
· xi

qx|yqy
· yj

qy
, (6.2)

with

pqx,qy
=






0.3969, when qx = qy = 0.50

0.11655, when either qx = 0.50 or qy = 0.50, but not both

0.034225, otherwise.

The accuracy of the bivariate extended Pearson-Tukey derived moments from (6.2) has been

tested for the same distributions for which the accuracy of the adjusted moment variance is

evaluated in this chapter, with the exception of the Kibble distribution. For this distribution the

conditional quantiles could not be determined with sufficient precision. As an extra reference

point, the accuracy has also been tested on the moments of the bivariate Normal distribution.
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The sample of 10, 000 Normal distributions used in this evaluation was obtained by sampling

for each bivariate Normal distribution both means independently from a Normal distribution

with zero mean and a standard deviation of 10. Both standard deviations were sampled, again

independently, from the same Normal distribution. The correlation for each distribution, finally,

was drawn uniformly between −1 and 1.

In Table 6.2 the mean, standard deviation and the maximum relative errors of the extended

Pearson-Tukey approximation of moments are displayed, in percentages, for the first eight

marginal moments and product moments of up to the sixth order. The results are based on

samples of 10, 000 cases from each distribution. Since all four distributions considered are

symmetrical in both variables, only the approximation of the marginal moments of one of the

variables is analysed. Symmetrical product moments are left out of Table 6.2 for the same

reason.

The relative errors in Table 6.2 look promising. We will discuss the results found for moments

of up to the fourth order here, since these will be of interest to us in the next section. The errors

found for marginal moments of up to the eighth order, and for product moments of up to the

sixth order are summarised in Table 6.2. The average absolute error is for the first four marginal

moments not much larger than 6% (for the fourth moment of F-I Beta) and is even below 1% in

the Cheriyan sample. Even though the generated cases for the Cheriyan distribution are close

to the Normal distribution on the Pearson diagram (see Figure 5.6), i.e. have a skewness and

excess kurtosis close to 0, the average absolute relative errors for the marginal moments are quite

different from those for the Normal distribution. For the FI-beta distribution the maximum

relative errors of approximately −100% are striking. When we plot the relative errors of the

marginal moments against the skewness of the variable, in Figure 6.2, we see that these errors

occur for highly positive skewed Beta distributions. For the F distributions the moments are

more and more underestimated as the skewness increases, and the size of the underestimation

increases with the order of the moment (Figure 6.3). For Gamma distributions we find the

opposite result. The higher the skewness, the more the moment is overestimated on average,

where the magnitude of the overestimation increases with the order of the moment (Figure 6.4).

Keefer & Bodily (1983) evaluate the accuracy of their 3-point discrete Pearson-Tukey distri-

bution approximation for 78 Beta distributions. They find an average absolute error of 0.02%

for the first moment, and a maximum of 0.07%. We find much larger errors of resp. 0.58% for

the average absolute error and −100% for the maximum. For the variance we find and average

absolute error of 2.1% and a maximum of 100%, where Keefer and Bodily report 0.46% and
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Table 6.2: The mean, standard deviation and the maximum of the relative errors of the Pearson-Tukey approximation of moments, based on a sample of
10, 000 cases from each of the bivariate Normal, F-I Beta, F and Cheriyan distributions, in percentages.

Marginal moments
E(X) E(X2) E(X3) E(X4) E(X5) E(X6) E(X7) E(X8)

Normal
mean∗ 0.000 0.027 0.041 1.176 1.854 6.271 8.990 14.909

st.dev.∗ 0.000 0.031 0.034 2.019 2.379 9.833 11.606 18.673
max 0.000 0.105 0.105 -9.690 -9.706 -50.958 -51.056 -80.935

F-I Beta
mean∗ 0.581 1.469 3.290 6.088 9.621 13.564 17.705 21.925

st.dev.∗ 5.182 8.453 12.479 16.971 21.438 25.530 29.079 32.012
max -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000

F
mean∗ 0.009 0.181 1.058 3.190 6.947 12.429 19.365 27.230

st.dev.∗ 0.024 0.501 2.903 6.933 11.844 17.250 22.418 26.390
max -0.457 -8.789 -40.063 -72.954 -91.193 -97.846 -99.627 -99.970

Cheriyan
mean∗ 0.000 0.159 0.473 0.940 1.558 2.323 3.233 4.283

st.dev.∗ 0.001 0.346 0.984 1.847 2.866 4.016 5.314 6.765
max -0.043 19.494 51.814 86.576 110.398 114.229 121.752 137.808

Product moments
E(XY ) E(XY 2) E(XY 3) E(X2Y 2) E(XY 4) E(X2Y 3) E(XY 5) E(X2Y 4) E(X3Y 3)

Normal
mean∗ 0.065 0.062 3.174 0.521 3.556 4.169 19.684 4.327 12.251

st.dev.∗ 1.167 0.566 27.509 1.320 33.412 73.483 293.020 8.075 151.867
max -92.359 38.700 1730.895 -14.366 2524.298 -4420.878 -21800.063 -68.710 9409.254

F-I Beta
mean∗ 0.987 1.521 2.796 2.420 5.035 3.420 7.988 5.283 5.089

st.dev.∗ 6.913 8.875 11.507 11.018 15.360 12.824 19.551 15.836 15.443
max -100.000 -100.000 -100.000 121.031 -100.000 114.703 -100.000 108.015 122.506

F
mean∗ 0.109 0.746 2.849 1.879 7.060 5.120 13.334 10.598 8.752

st.dev.∗ 0.216 1.404 5.178 3.370 11.193 8.399 17.808 15.192 13.274
max -2.461 -21.021 -58.959 -32.033 -86.762 -69.980 -97.275 -92.074 -80.265

Cheriyan
mean∗ 0.000 0.001 0.002 0.159 0.005 0.159 0.011 0.161 0.473

st.dev.∗ 0.001 0.008 0.065 0.345 0.213 0.351 0.434 0.404 0.985
max -0.043 -0.802 -6.417 19.453 -20.927 19.431 -42.004 -20.928 51.629

∗ The mean and the standard deviation are taken over the absolute values of the relative errors.
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−1.6% respectively. When we only consider Beta distributions with a skewness smaller than

3, we find an average absolute error of 0.07% and still a maximum error as high as 19% for

the mean. And for the variance 0.90% and 85%. For samples of size 78 instead of 10, 000 and

distributions with a skewness smaller than 3, the average absolute errors for the mean and

variance do correspond to the results reported by Keefer and Bodily, but the maximum errors

are still an order of magnitude larger. Apparently increasing the sample size allows for the

more extreme cases with larger relative errors to have a bigger impact on the results found.

The average absolute relative errors for the product moments are even better. For product

moments up to the fourth order these errors are smaller than 3.2%. For the Normal, F-I Beta

and the F distribution the average absolute errors for the product moments are comparable. The

Normal distribution does have higher maximum errors, and often a higher standard deviation

of the errors than the F-I Beta and the F distribution. For the Cheriyan distribution the errors

are much smaller, with the largest average absolute error being only 0.5% and a maximum

relative error of 52% for E(X3Y 3).

6.3.1 Limitations of the (bivariate) Pearson-Tukey Moment Deriva-

tion

We have evaluated the accuracy of the bivariate extended Pearson-Tukey moments derivation

here for bivariate Normal, F-I Beta, F and Cheriyan distributions. Even though the average

relative errors reported in Table 6.2 are relatively small, indicating good performance of the

approximation, we also found that the errors increase fast with skewness for all distributions

(with the exception of the Normal distributions of course, which are not skewed), see 6.2, 6.3

and 6.4. For the distributions investigated in this section the absolute value of the relative

errors is different for similar skewness values, so we can not advise a bound for the skewness

above which the Pearson-Tukey approximation could be considered inaccurate. It might be an

interesting topic for further research to see whether it is possible to derive such a bound for

the ratio of the interquantile ranges (x0.50 − x0.05) and (x0.95 − x0.50). For the distributions

considered here the approximation can be considered accurate for a value of 1 for that ratio.

Can a relationship be identified between the accuracy of the Person-Tukey approximation and

this ratio? Finally we note that the results reported in this section do not necessarily generalise

to other (bivariate) distributions.
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6.4 Adjusted Moment Variance with Pearson-Tukey De-

rived Moments

In Section 6.2 it was shown that the 2-adjusted moment variance is an excellent approximation

of the conditional variance for the F-I Beta, F, Kibble and Cheriyan distributions and in the

previous section it was found that the bivariate Pearson-Tukey method in general provides a

good approximation to the first four order moments. In this section the 2-adjusted moment

variance will be evaluated for moments derived from (conditional) quantiles using the bivariate

Pearson-Tukey method. But only for the F-I Beta, F and Cheriyan distribution, since the

conditional quantiles could not be determined with sufficient precision the Kibble distribution.

The results are given in Table 6.3.

For F-I Beta and F distributions the 2-adjusted moment variance with Pearson-Tukey ap-

proximated moments provides a much better approximation to the conditional variance than the

regular adjusted variance. For the Cheriyan distribution we find the contrary, even though the

Pearson-Tukey approximation of moments is by far the most accurate for these distributions.

In the previous chapter (Table 5.1 and discussion) we noted that the conditional variance of

the Cheriyan distribution is relatively constant in the sample we have taken. Yet, it is unlikely

that the relatively large differences between the 2-adjusted moment and conditional variance

is due to the applying a quadratic approximation to a relatively constant conditional variance.

For in Table 6.3 we find that the bias ARD is almost identical to and the maximum error MRD

is very close to the average absolute difference AARD, which implies that the approximation

error made is very constant over the values of the condition considered, and must be in the

constant term of the quadratic approximation.

For the F distribution the relative difference is completely constant over the values of the

condition. The 2-adjusted moment variance underestimates the conditional variance on average

with 0.8% in the sample of F distributions, with a maximum difference encountered of −12%.

The average bias for F-I Beta distributions found is −0.9%. For the Cheriyan distribution the

conditional variance is on average overestimated by 77%.

6.5 Summary and Conclusions

In this chapter we have shown that the 2-adjusted moment variance provides an excellent

approximation to the conditional variance for all distribution evaluated: the F-I Beta, F, Kibble

and Cheriyan distributions. The highest average absolute error found is of order 10−5% for the
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Table 6.3: Differences of the regular adjusted variance V arY (X), the 1- and the 2-adjusted moment variances MV arY1(X) and MV arY2(X) with the
conditional variance, when Pearson-Tukey derived moments are used in the linear adjustments, for 10,000 F-I Beta, F and Cheriyan distributions.
Differences are in percentages.

V arY (X) MV arY1(X) MV arY2 (X)
mean∗ st.dev.∗ max mean∗ st.dev.∗ max mean∗ st.dev.∗ max

F-I Beta

AARD 75.408 1431.948 1.342·105 484.184 1.609·104 1.133·106 3.206 13.039 669.437
MRD 1.161·105 1.033·107 1.031·109 1.099·105 7.563·106 -7.354·108 3.249 15.625 1091.817
ARD 58.556 1430.590 1.341·105 -151.922 7036.469 -6.746·105 -0.912 13.137 615.718
RDE 4.911 10.384 199.510 388.222 1.540·104 1.422·106 -0.903 13.578 704.953

F

AARD 18.881 11.087 62.565 31.538 44.440 414.655 0.775 0.861 12.322
MRD 51.730 43.345 275.108 140.658 244.232 -2585.743 0.775 0.861 -12.322
ARD 1.064 3.363 20.587 3.978 5.239 32.186 -0.775 0.861 -12.322
RDE 1.907 2.439 15.171 40.024 54.423 485.479 -0.775 0.861 -12.322

Cheriyan

AARD 2.202 1.681 15.155 106.187 117.705 3905.935 76.742 21.797 100.143
MRD 4.584 3.659 37.725 167.651 301.493 -9968.396 79.155 21.225 100.186
ARD 0.044 0.109 2.135 83.630 29.133 627.554 76.532 22.522 100.143
RDE 0.056 0.056 1.000 148.179 177.535 5542.975 76.546 22.560 100.184

∗ For the MRD the mean and the standard deviation are calculated from the absolute value of the MRD.
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Cheriyan distributions, and the highest average absolute maximum error (MRD) found is in

the order of 10−4%, for the F-I Beta distributions.

Next we evaluated the approximation of marginal and joint moments from conditional quan-

tiles using the bivariate generalisation of the extended Pearson-Tukey method. For the Normal

distribution the average absolute errors in a sample of 10, 000 cases are below 1.2% for the

marginal moments of up to the fourth order, and below 3.2% for the product moments of up to

the fourth order, the highest error found for these product moments for all four distributions.

The average absolute errors were smallest for the Cheriyan sample with errors below 1% and

0.2% for resp. the marginal and product moments of up to the fourth order. The largest errors

for marginal moments to the fourth order were found for the F-I Beta sample, with an aver-

age absolute error of 6.1%. For this distribution the average absolute errors for the product

moments to the fourth order are below 2.8%. For the F distributions we found the average

absolute errors to be below 3.2% and 2.9% for resp. the marginal and product moments of up

to the fourth order. For all distributions we found that the errors increase with the skewness

of the distribution.

The results found for the approximation errors of the first two marginal moments for the

Beta distribution are much larger than reported earlier by Keefer & Bodily (1983). Yet when

the sample size of 78 is taken as Keefer and Bodily have done, instead of the sample size of

10, 000 used in this research, the average errors found do correspond in general with those

found in the earlier research of Keefer and Bodily, but the maximum errors are still and order

of magnitude larger. Apparently increasing the sample size allows for the more extreme cases

with larger relative errors to have a bigger impact on the results found.

Even though the average relative errors reported here are relatively small, indicating good

performance of the moment approximation, we also found that the errors increase fast with

skewness for all distributions (with the exception of the Normal distributions of course, which

are not skewed), see 6.2, 6.3 and 6.4. For the distributions investigated in this chapter the

absolute value of the relative errors is different for similar skewness values, so we can not advise

a bound for the skewness above which the Pearson-Tukey approximation could be considered

inaccurate. It might be an interesting topic for further research to see whether it is possible to

derive such a bound for the ratio of the interquantile ranges (x0.50 − x0.05) and (x0.95 − x0.50).

For the distributions considered here the approximation can be considered accurate for a value

of 1 for that ratio. Can a relationship be identified between the accuracy of the Person-Tukey

approximation and this ratio? Finally we note that the results reported in this section do not
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necessarily generalise to other (bivariate) distributions.

Next we evaluated the 1- and 2-adjusted moment variance approximation to the conditional

variance using moments derived with the extended Pearson-Tukey method. For the F-I Beta

and F distributions the 2-adjusted moment variance provides a very good approximation to the

conditional variance, much better than the regular adjusted variance evaluated in the previous

chapter. The average AARD found for the F-I Beta distribution reduced from 75% for the

regular adjusted variance to 3.2% for the 2-adjusted moment variance. The average MRD

(maximum error) is 1.2 · 105% for the regular adjusted variance for this distribution, but only

3.3% for the 2-adjusted moment variance. The average AARD for the F distribution reduced

from 19% for the regular adjusted variance to 0.8% for the 2-adjusted moment variance, and

the average MRD from 52% to 0.8%.

For the Cheriyan distributions we find the opposite however. The regular adjusted variance

provides a much better approximation than the 1- and 2-adjusted moment variances, even

though the Pearson-Tukey approximation of moments is by far the most accurate for these

distributions. The average AARD is 2.2% for the regular adjusted variance, and 77% for the

2-adjusted moment variance.

The Cheriyan distribution has by far the most constant conditional variance (see Table 5.1).

In Section 5.5 we suggested that the regular adjusted variance might be a good approximation

for distributions for which the conditional variance is considered to be relatively constant over

the condition. It might a good suggestion for further research to see whether a decision statistic

can be derived that can help to choose between the regular adjusted and the 2-adjusted moment

variance to approximate the conditional variance. It might be possible to base this decision

statistic on the conditional quantiles used in the bivariate Pearson-Tukey method, which are

readily available. From these conditional quantiles, the 5%−, 50%− and the 95%−quantiles,

the conditional variance can be approximated using the univariate Pearson-Tukey method for

three values of the condition: the 5%−, 50%− and the 95%−quantiles of the condition. When

these three derived conditional variances are relatively constant, the regular adjusted variance

might be preferred as approximation. If not, the 2-adjusted moment variance might be the

better option.

Striking in the approximation results of the 2-adjusted moment variance is that the bias

in the approximation error is relatively large compared to the average absolute error. For

the F-I Beta distribution the bias is −0.9%, and the average absolute error 3.2%. For the F

and Cheriyan distributions the approximation error is practically constant over the evaluation
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interval of the condition, with biases of resp. −0.8% and 77% for average absolute errors of as

well −0.8% and 77%. It would be an interesting subject for further research to see if this bias

could be reduced.

Finally, in this chapter we have worked with exact (conditional) quantile assessments. In

reality experts might not be willing or able to assess these precisely, and indifferent to small

changes in their assessments. The impact of small changes in the quantile assessments has not

been taken into consideration in this evaluation, and is an interesting topic for further research.
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Figure 6.2: Relative errors in % of Pearson-Tukey approximated moments against the skewness
for Beta distributions with a skewness smaller than 20.
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Figure 6.3: Relative errors in % of Pearson-Tukey approximated moments against the skewness
for 10,000 F distributions.
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Figure 6.4: Relative errors in % of Pearson-Tukey approximated moments against the skewness
for 10,000 Gamma distributions.
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Chapter 7

Combining Moment Assessments

of Multiple Experts

In this chapter we will discuss the mathematical aggregation of moment assessments of different

experts, and develop a performance based combination method from first principles. We will

take the situation in which a decision maker (DM) wishes to base his moment assessments

solely on the experts’ assessments, with as special case a DM who wishes to base his Bayes

linear belief structure on those of individual experts. This problem is also referred to as the

expert problem (French 1985, French 2011), and has been discussed for the aggregation of

probabilistic assessments in Section 3.6. Since the behavioural methods for aggregating expert

assessments described in that section do not depend on the type of assessments queried for, the

focus in this chapter is on mathematical aggregation methods.

In Section 7.1 we translate the properties that mathematical combinations of probabilities

can possess, discussed in Section 3.6.1, to a moment context. These properties will be more

formally defined in Section 7.2, where we show that the requirement for an aggregation method

for moments assessments to possess the marginalisation and zero preservation properties is

equivalent to requiring the aggregation method to be a linear pool of the experts assessments.

In Section 7.3 we develop a performance based weighting scheme for moment assessments. The

performance of the proposed weighting scheme is compared with that of the classical model

weighting scheme of Cooke in Section 7.4. The results are summarised and discussed in the

final section.
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7.1 Expert Combination Properties Revisited

In Section 3.6.1 an overview is given of properties of mathematically combined expert proba-

bilities, with discussion. In this section we will repeat these properties loosely for expectations

rather than probabilities. A formal definition of these properties for the combination of Bayes

linear belief structures is given in the next section. Here we consider the case in which the

experts’ collections of expectations are combined to form the decision maker’s collection of ex-

pectations.

Marginalisation Property. The same combined expectations are found whether (a) the as-

sessors’ expectations for uncertain quantities are first combined and then expectations for all

finite linear combinations of these quantities are derived, or (b) the assessors’ expectations for

the finite linear combinations of the quantities are first derived individually, and the resulting

expectations are then combined.

In principle a marginalisation property for any combination function of the quantities can be

defined. We have chosen to base the property on linear combinations here though to correspond

to the linearity of the expectation operator.

Zero Preservation Property. If all assessors judge a quantity to have expectation zero, then

the combined expectation also equals zero.

Strong Setwise Function Property. The combined expectation for a quantity X depends

only the expectations assessed for X by the individual assessors.

Independence Preservation Property. If all assessors regard two quantities X and Y as

uncorrelated then in the combined assessment X and Y are also uncorrelated. Therefore ’Zero

Correlation Preservation’ is the appropriate description in this context.

External Bayesian Property. The result of first combining, and then processing the results

of new observations via Bayes linear adjustment is the same as first letting the experts process

the results of the new observations and then combining their Bayes linear adjusted expectations.

The arguments in favour and against the desirability of some of these properties are discussed
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in Section 3.6.1 for the combination of probabilities. The following example, based on the

flashlight example in (Cooke 1991), shows that the marginalisation property is also compelling

when combining expectations.

Example 7.1. Suppose I move into a new house and I am interested in the number of days D

it will take to get broadband internet at the new address. The process of getting broadband for

people in my situation consists of two distinct, consecutive phases: getting the phone line in the

new house connected (Phase A) and making the connected phone line ready for broadband usage

(Phase B). Two experts, George and Anna, who I esteem equally, give independently of each

other 25 days as their expectation of D. When I ask about their expectation of the duration

of the phases A and B (DA and DB), George’s expectations are respectively 5 and 20 days,

but Anna’s expectations are resp. 20 and 5 days. Suppose the combination function I use to

combine their assessments results in an expectation of 10 days for phase A and an expectation

of 10 days for phase B. Deriving the total duration in this way would result in an expectation

of 20 days for me. But both experts agree on their estimation of the total duration as 25, and

agree that at least one of the phases already takes 20 days to finish.

Assuming that assessors stay consistent in their assessment of E(D) = 25, the marginali-

sation property demands that the combined expectation of D remains 25 whatever phases are

identified for the process.

The marginalisation property is adopted as the guiding principle in the investigation into

appropriate combination functions for the combination of collections of expectations in the next

section.

7.2 The Linear Pool of Bayes Linear Belief Structures

In this section we shall loosely follow the line of reasoning adopted by McConway (McConway

1981) to show that also in an expectation context, the marginalisation property together with

the zero preservation property is equivalent to the strong setwise function property. Then we

show that the strong setwise function property is equivalent to specifying a linear pool as the

expert combination rule. While the results are similar to those in (McConway 1981), the proofs

are technically slightly different and a little simpler. Will will first introduce the terminology

used in this section.
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7.2.1 Terminology

In the following we assume that the decision maker is interested in assessing means, variances

and covariances for a collection of unknown real-valued quantities {X1, . . . , Xn}. We will make

use of the following definitions:

e := number of expert assessors.

B := some subset of {X1, . . . , Xn}.

B1,2 := the collection of quantities consisting of the elements of B, the

squares of the elements of B and the cross products of the

elements of B.

〈B〉 := collection of all linear combinations of elements of B.

[B] := coherent belief structure on B, fully defined by B and a coherent

set of expectations for the elements of B1,2 (for a definition

see second paragraph of Section 4.2).

[B](Z) := expectation of linear combination Z ∈ 〈B〉, derived from the

expectations for the elements of B1,2 specified for belief

structure [B].

[B]i := coherent belief structure of assessor i, i = 1, . . . , e.

[B]T := restriction of a belief structure on B to T , T ⊆ B.

B(B) := collection of all coherent belief structures for B.

CB([B]1, . . . , [B]e) := combination function that combines e coherent belief

structures on B into one coherent belief structure on B;

CB : B(B)e → B(B).

C := a class of combination functions defined on T 1,2, with T ⊆ 〈B〉.

The B1,2 notation is introduced to make explicit the quantities for which expectations are

defined in a BL belief structure, since the pooling is performed on these expectations. Note that

the subscript B in CB is just there to indicate the domain on which the combination function

C is defined. We denote the restriction of the function CB to the subdomain T with CT . So we

have by definition that if CB ∈ C and T ⊆ 〈B〉, then CT is also an element of C: CT ∈ C. In the
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following we further assume the expert assessors to give consistent assessments across different

belief structures in the sense that if the collections B1,2 and T 1,2 of two belief structures [B]

and [T ] share the same elements, we assume the experts to assess the same expectations for

these elements for both belief structures. This means that we assume [B]iT = [T ]i for all T ⊆ B,

i = 1, . . . , e. Further we note that coherency implies that the expected value of a constant c

must equal c.

7.2.2 Definitions and Support for the Linear Pool

The marginalisation property for Bayes linear belief structures is defined as:

Definition 7.1. BL-Marginalisation Property (BL-MP). We take T ⊆ 〈B〉 a non-empty sub-

collection of finite linear combinations of elements of B. A class C of combination functions has

the marginalisation property if and only if, for all B, all T ⊆ 〈B〉 and all CB ∈ C, there exists

a combination function CT ∈ C such that for all Z ∈ T 1,2,

[CB([B]1, . . . , [B]e)](Z) = [CT ([T ]1, . . . , [T ]e)](Z) (7.1)

for all [T ] ∈ B(T ) and for all [B] ∈ B(B).

The BL-marginalisation property thus states that the same expectations are found whether

(a) the more refined individual expectations of elements of B1,2 are first combined and then

the expectations for the elements of T 1,2 are determined from these expectations, or (b) first

individual expectations for the elements of T 1,2 are determined and then these expectations are

combined.

Definition 7.2. BL-Weak Setwise Function Property (BL-WSFP). A class C of combination

functions has the weak setwise function property if and only if for each Z ∈ 〈B〉 there exists a

function FZ : Re → R such that for all B and all CB ∈ C,

[CB([B]1, . . . , [B]e)](Z) = FZ

(
[B]1(Z), . . . , [B]e(Z)

)
(7.2)

for all [B]1, . . . , [B]e ∈ B(B).

In words, the BL-WSFP says that the combined expectation for the linear combination Z

depends only on the individual expectations for Z of each of the assessors and possibly on the

specific linear combination Z itself, e.g. on which quantities of B have a nonzero coefficient in

the linear combination Z.
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Theorem 7.1. A class C of combination functions has the BL-WSFP if and only if it has the

BL-MP.

Proof. (I) BL-WSFP ⇒ BL-MP. Take T ⊆ 〈B〉, Z ∈ T and CB, CT ∈ C. Using Definition

7.2 and assuming consistency of the experts in the sense that [B]i(Z) = [T ]i(Z), for i = 1, . . . , e,

we find

[CT ([T ]1, . . . , [T ]e)](Z) = FZ

(
[T ]1(Z), . . . , [T ]e(Z)

)

= FZ

(
[B]1(Z), . . . , [B]e(Z)

)
= [CB([B]1, . . . , [B]e)](Z).

for all B, for all T ⊆ 〈B〉, for all Z ∈ T , for all [B]1, . . . , [B]e ∈ B(B) and all [T ]1, . . . [T ]e ∈ B(T ).

So by definition, the marginalisation property holds, and in particular [CT ([T ]1, . . . , [T ]e)] and

[CB([B]1, . . . , [B]e)] are coherent belief structures on resp. T and B.

(II) BL-MP ⇒ BL-WSFP. Take Z ∈ 〈B〉, let [Z] be a coherent belief structure on Z. If C

satisfies BL-MP, we get from (7.1) that for all CB ∈ C there is a CZ ∈ C such that

[CB([B]1, . . . , [B]e)](Z) = [CZ([Z]1, . . . , [Z]e)](Z) (7.3)

for all B, for all Z ∈ 〈B〉, for all [B]1, . . . , [B]e ∈ B(B) and all [Z]1, . . . [Z]e ∈ B(Z). The right-

hand side of (7.3) depends only on Z and [Z]i(Z), for i = 1, . . . , e. Therefore C also satisfies

BL-WSFP.

But it would be even nicer if the combined expectation of Z would not depend on the specific

linear combination Z itself, e.g. whether Z is a linear combination of 2 or 2000 elements of B

and which elements are or are not in the linear combination Z, but only on the expectations of

each of the assessors.

Definition 7.3. BL-Strong Setwise Function Property (BL-SSFP). A class C of combination

functions has the strong setwise function property if and only if there exists a function G :

Re → R such that for all B, all Z ∈ 〈B〉 and all CB ∈ C,

[CB([B]1, . . . , [B]e)](Z) = G
(
[B]1(Z), . . . , [B]e(Z)

)
(7.4)

for all [B]1, . . . , [B]e ∈ B(B).

Definition 7.4. BL-Zero Preservation Property (BL-ZPP). A class C of combination functions

has the zero preservation property if and only if, for all CB ∈ C, for all B, for all [B] ∈ B(B)
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and all Z ∈ 〈B〉,

[B]1(Z) = . . . = [B]e(Z) = 0 ⇒ [CB([B]1, . . . , [B]e)](Z) = 0

The BL-ZPP thus states that if all assessors judge a quantity to have expectation zero, then

the combination of their expectation is also zero.

Theorem 7.2. For a class C of combination functions the following are equivalent: (a) C

satisfies BL-MP and BL-ZPP, and (b) C satisfies BL-SSFP.

Proof. (I) BL-SSFP ⇒ BL-MP and BL-ZPP. Suppose CB ∈ C satisfies BL-SSFP, so that

there exists a G as in (7.4); then [B]1(Z) = . . . = [B]e(Z) = 0 implies

[CB([B]1, . . . , [B]e)](Z) = G (0, . . . , 0) (7.5)

from (7.4). Remember that coherency implies that the expected value of a constant c must

equal c. By taking the particular case Z ≡ 0, we see that the left-hand side of (7.5) is 0,

and hence that G(0, . . . , 0) = 0. So C satisfies BL-ZPP. But BL-SSFP implies BL-WSFP by

definition, and BL-WSFP implies BL-MP by Theorem 7.1. So BL-SSFP implies BL-MP and

BL-ZPP.

(II) BL-MP and BL-ZPP ⇒ BL-SSFP.

Suppose CB ∈ C satisfies BL-MP and BL-ZPP. By Theorem 7.1, CB then satisfies BL-WSFP,

so there exists FZ : Re → R such that (7.2) holds. Since CB satisfies BL-ZPP, we also have

FZ(0, . . . , 0) = 0 (7.6)

for each Z ∈ 〈B〉.

Now suppose X, Y ∈ 〈B〉. By linearity of coherent expectations (see (2.1) in Section 2.3.1)

we have,

[CB([B]1, . . . , [B]e)](X + Y ) = [CB([B]1, . . . , [B]e)](X) + [CB([B]1, . . . , [B]e)](Y ) (7.7)

It follows that,

FX(x1, . . . , xe) + FY (y1, . . . , ye) = FX+Y (x1 + y1, . . . , xe + ye)
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Similarly, taking X + (Y − X) = Y , we have

FX(x1, . . . , xe) + FY −X(y1 − x1, . . . , ye − xe) = FY (y1, . . . , ye) (7.8)

Hence, using (7.6) and (7.8) we see that,

FX(x1, . . . , xe) = FX(x1, . . . , xe) + FY −X(0, . . . , 0) = FY (x1, . . . , xe).

We find FX ≡ FY , so FX does not depend on X and therefore BL-SSFP holds.

Theorem 7.3. For a class C of combination functions the following are equivalent:

I C satisfies BL-SSFP

II For each CB ∈ C there exist real numbers α1, . . . , αe, nonnegative and

summing to 1, such that for all B, all Z ∈ 〈B〉 and all [B] ∈ B(B),

[CB([B]1, . . . , [B]e)](Z) =

e∑

i=1

αi[B]i(Z).

Proof. (II) ⇒ (I). The combined expectation for Z ∈ 〈B〉 (left-hand side) depends only

on the expectations assessed by each of the individual assessors (right-hand side), so BL-SSFP

is satisfied. It remains to show that the linear pool gives a coherent belief structure. This is

shown separately in Theorem 7.4 below.

(I) ⇒ (II). Suppose C satisfies BL-SSFP. Then there exists a function G as in (7.4). From (7.7)

it follows that,

G(x1, . . . , xe) + G(y1, . . . , ye) = G(x1 + y1, . . . , xe + ye) (7.9)

Repeatedly using (7.9), we have for any z1, . . . , ze ∈ R,

G(z1, . . . , ze) = G(z1, 0, . . . , 0) + G(0, z2, . . . , ze)

= G(z1, 0, . . . , 0) + . . . + G(0, . . . , 0, ze−1, 0) + G(0, . . . , 0, ze)

So if we define Gi(z) = G(

i−1︷ ︸︸ ︷
0, . . . , 0, zi,

e−i︷ ︸︸ ︷
0, . . . , 0) for i = 1, . . . , e, we can write G(z1, . . . , ze) =

∑e
i=1 Gi(z). Also (7.9) implies that Gi(x+ y) = Gi(x)+Gi(y) for x, y ∈ R, so each Gi satisfies

Cauchy’s functional equation (Aczél 1966, Sec. 2.1.1). Further we see that

lim
△x→0

Gi(x + △x) = lim
△x→0

Gi(x) + Gi(△x)
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Note that △x is a constant and recall again that coherency implies that the expected value of

a constant C must equal C. We find that

lim
△x→0

Gi(x + △x) = lim
△x→0

Gi(x) + Gi(△x) = lim
△x→0

Gi(x) + △x = Gi(x).

Hence Gi(x) is continuous and we find that Gi(z) = αiz, where αi is a constant.

We complete the proof by examining the case in which z is a constant and all experts agree

that z ≡ C 6= 0. We find by G(C, . . . , C) = C =
∑e

i=1 Gi(C) =
∑e

i=1 αiC that
∑e

i=1 αi =

1.

As mentioned in the introduction of this chapter we call the set of expectations obtained

by taking the linear pool of expectations of experts, the decision maker (DM) opinion. We

now give the remaining promised result, that if the experts have all given a coherent set of

expectations then the DM using a linear pool will automatically do so. In particular, if each

of the experts have provided a vector of expectations and a non-negative definite covariance

matrix, then that derived for the DM should be so too.

Theorem 7.4. If a set of experts each provides a coherent set of expectations then the decision

maker based on a linear pool of these sets of expectations is also coherent.

Proof. This follows immediately from the convex hull interpretation of coherency (see last

paragraph of Section 2.3.1). If each expert’s vector of expectations is coherent, then each of

these vectors is in the closed convex hull of the realm of the assessed quantities. Since an affine

linear combination of these vectors remains in this convex hull, the linear pool must also be

coherent.

Finally, we note that the linear pool does not have the zero correlation preservation and

externally Bayesian properties. This can be easily shown by the following example.

Example 7.2. Consider the case where two experts are consulted for their expectations for

the uncertain quantities X , Y and XY . Suppose Expert 1 assesses these as E1(X) = E1(Y ) =

E1(XY ) = 0 and Expert 2 as E2(X) = E2(Y ) = E2(XY ) = 1. So both experts assess X and Y

to be uncorrelated, since for both the covariance Cov(X, Y ) = E(XY )−E(X)E(Y ) = 0. If we

combine these assessments by using a linear pool with a weight of 1
2 for both experts, we find

the DM expectations to be EDM (X) = EDM (Y ) = 0.5 = EDM (XY ), resulting in a covariance

of the DM of 0.25. Hence we find that the linear pool does not posses the zero correlation

preservation property.
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Staying with this example, suppose now the realisation of Y is observed. By looking at the

adjustment rule for the expectation for X given Y , EY (X),

E(X) + Cov(X, Y )[V ar(Y )]−1(Y − E(Y ))

we see that the adjusted expectation for each of the experts does not change, where it does

change for the DM. Therefore the linear pool is not externally Bayesian.

We now proceed to discuss how the weights for experts might be chosen.

7.3 Performance Based Weighting

We speak of performance based weighting when weights are derived from the performance on

seed variables. The performance on these seed variables is then applied to derive a combined

assessment for the other variables. In order to gain confidence in the assessments on the

other variables, the seed variables should closely match them. The classical model of Cooke

(Cooke 1991), described in Section 3.6.2, is an implementation of the linear pool that uses

performance based weighting to combine probability assessments. In this section we develop a

performance based weighting scheme for moment assessments analogous to that of the classical

model. The concepts of calibration and information used in the classical model weighting scheme

do not translate directly into a Bayes linear context, but we shall show that it is possible to

build a scoring rule that possesses some similar properties.

The basis for a scoring rule can be obtained from the observation that my expected value

of a quantity X is defined in a moment context as the value E(X) I would choose if I were to

take part in a lottery with a small monetary penalty of c(x − E(X))2 when the realisation of

X becomes known and equals x. Hence when a number of expected values are being assessed

for seed variables X1, . . . , Xn, we can define a penalty function for an expert giving assessed

expectations a1, . . . , an for X1, . . . , Xn, by

φ(a1, . . . , an) =
n∑

j=1

cj(xj − aj)
2, (7.10)

where xj is the realisation of variable Xj (unknown to the expert at the time of assessment), and

the quantities cj are positive scaling variables bringing each quantity to a common monetary

scale. Using φ as the basis for weighting is plausible as the expert will minimize future expected
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loss φ by assessing his expected values - remember from the definition of expectation, De

Finetti’s second criterion of prevision given in Section 2.3.1, that the expected value minimizes

the expected quadratic loss - as is appropriate. We shall return to a discussion of the choice of

scaling quantities cj later. For the moment we note that φ is a loss function, that is, we should

have more confidence in an expert with a smaller φ.

7.3.1 The Moment Model Weighting Scheme

A weighting scheme that uses the φ function can be defined as follows. First we compute the

φ value for each expert, giving values φ1, . . . , φe. To be able to exclude bad performing experts

from the linear pool we introduce a cut-off value α > 0 (at the moment this is arbitrary, but a

specific choice will be made shortly). Any expert with loss φ > α will be given weight 0. The

unnormalised weight w′
i for expert i is the difference between the cut-off and the loss,

w′
i = (α − φi) · 1α>φ, (7.11)

where the indicator function 1α>φ is there to assign weight 0 to experts that have a loss φ

greater than or equal to α. The performance based expert weights wi are subsequently derived

by normalising the weights w′
i:

wi =
w′

i∑
i w′

i

(7.12)

The cut-off value α is chosen within the interval (min(φ1, . . . , φe),∞) by optimisation so

that the loss of the combined expert is minimized. Note that the two extreme cases for α in

this interval give:

α ց min(φ1, . . . , φe): All the weight is given to the expert with the smallest loss, or equally to

those experts with smallest loss in case of a tie.

α ր ∞: Equal weight is given to each expert.

7.3.2 Weighting Scheme Properties

Clearly there is some degree of arbitrariness in the scheme proposed. However, two important

properties in its favour should be mentioned. The first is already clear from the discussion above:

if an expert wishes to choose a set of expected values so as to maximize his unnormalised

score, then he should simply use the same assessment procedure he would have used if he

were to minimize quadratic loss (thereby providing his genuine expectation) for each quantity
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individually.

The second property relates to the choice of scaling variables. Clearly the choice of these

variables is important in determining the overall loss φ. However, only relative values of the

scaling variables are important:

Theorem 7.5. If φ is a loss function defined as above, then for any constant c > 0, the function

cφ is also a loss function, and the normalized weights obtained from the two loss functions are

identical.

This follows easily from the observation that if α is an optimal cut-off value for φ then cα

is an optimal cut-off value for cφ, so that upon normalization the constant c will disappear.

It is worth pausing to consider in what way calibration and information are reflected in this

weighting scheme. Cooke requires the experts to use the same quantiles for all seed variables

in order that there is a common “scale” defined by the probability bins (usually 0-5%, 5%

- 50% , 50% - 95% , 95% -100% ). Thus calibration can be defined in terms of quality of

assessing likelihood of quantile bins over all the seed variables. In the scheme we are proposing,

the common scale is defined by a choice of scaling variables, and the calibration is performed

directly in terms of quadratic loss. Assuming that variances of quantities are being assessed,

the overall loss φ contains also terms such as (x2−E(X2))2 which take account of the spread of

the variables. Hence uncertainty about the spread is taken into account, though in a different

way to Cooke’s information function (which rewards low spread per se).

7.3.3 Expert Weighting Properties and Geometric Interpretation

We begin by discussing some theoretical properties of the weighting scheme and then show some

examples and give the geometric interpretation.

Theorem 7.6. The weighting scheme has the following properties:

1. The unnormalised weight of an expert is a proper scoring rule.

2. The expert with the smallest loss always remains in the pool.

3. The DM loss is always smaller than, or equal to the loss of any individual expert.

4. The DM loss is always smaller than, or equal to the loss obtained when using equal weights

for all experts.

5. The weighting scheme defines a continuous mapping from a vector of expert losses to a

vector of expert weights.
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Proof. (1) It is well known that the expected value minimizes quadratic loss. Hence for

the expert to minimize his overall loss he should give his own mean value of each quantity. The

score remains proper with the use of cut-off α. (2) This follows directly from the definition of

the weighting. (3) and (4). These follow from the fact that they correspond to the two cases

α = min(φ1, . . . , φe) and α = ∞ as noted before. (5) Continuity is obvious when all the expert

losses differ from the cut-off value. For an expert i who does not have the smallest loss, as

φi ր α we have wi ց 0, and wi = 0 for φi ≥ α. For an expert with the smallest loss, continuity

at φi = α is not an issue as this is outside the allowed range of α. Hence the weighting scheme

defines a continuous mapping from a vector of expert scores to a vector of expert weights.

To understand the geometry of the weighting scheme we first observe that the quadratic

scoring rule is related to a Euclidean norm (just the usual norm, but scaled by our scaling

constants). Hence the loss φ is in fact the squared distance (using this norm) from the realisation

vector to the expert’s vector of expectations. We now look at some simple examples to gain

insight in the behaviour of the scoring rule.

Example 7.3. Suppose we have four expert assessors, who are asked to state their expectations

for two uncertain quantities X and Y . Let ei = (Ei(X), Ei(Y )) be the vector of expectations

of X and Y of Expert i. Suppose the experts would give the following coherent assessments:

Expert assessments

e1 (4, 1) e3 (4, 4)

e2 (2, 3) e4 (7, 3)

In Figure 7.1 these assessments are plotted on the (X, Y )-plane. The line drawn around the

assessments in this figure is in fact the convex hull of the experts’ expectations. Because each

of the experts has given coherent expectations, all the points (x, y) inside this convex hull also

represent coherent expectations for (X, Y ), and hence a decision maker that uses a linear pool

of the experts’ assessments will also be coherent (Theorem 7.4).

Suppose we choose to score the assessments with the penalty function (??) with scales

cX = cY = 1 and that after the experts have given their expectations, we observe realisation

r1 = (4.75, 2). Then we can compute the normalised weights w1, w2, w3 and w4 for the experts

and the DM expectations (EDM (X), EDM (Y )) based on the linear pool using these weights,

for all possible cut-off values α. We choose α to be greater than the minimum penalty score

φmin = min(φ1, . . . φ4) of the experts, thereby leaving at least one (the best) expert in the

pool. The dashed line in Figure 7.1 represents the range of values of the DM expectation vector

for α ∈ (φmin,∞). So the graphical interpretation of choosing the optimal cut-off α, i.e. the
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1

X

Y

e1

e2

e3

e4

r1

Possible DM expectations

Figure 7.1: Realisation in convex hull.

α that minimizes the DM penalty, is simply choosing the point on the dashed line that is the

closest to the vector of realisations.

Example 7.4. We take the same assessments and scales as in the previous example, yet now

we take a look at what happens when we observe a realisation outside of the convex hull of the

experts’ assessments, r2 = (10, 2).

1

1

X

Y

e1

e2

e3

e4

r2

Possible DM expectations

Figure 7.2: One expert selected.

The dashed line of possible DM values (Figure 7.2) starts when an infinitely great cut-

off value α is evaluated, leading to equal normalised weights wi = 1
4 for all experts and the

corresponding vector (4.25, 2.75) for the DM. With α decreasing the scores of the experts become

relevant and the DM vector starts to move in the direction of the better experts, all the way

until it meets the best expert, Expert 4. Expert 4’s assessment is in this case also the point on

the line of possible DM assessments that is the closest to the realisation.

Example 7.5. In this example we evaluate the case where we have three experts, of which

two have equal but both relatively poor performance. Suppose we have the following coherent

expectations:
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Expert assessments

e4 (1, 1)

e5 (11, 3)

e6 (21, 1)

Now, after receiving these expectations we observe r3 = (11, 0.9). The DM score is now opti-

mised by taking cut-off α as large as possible, leading to equal weights wi = 1
3 for all experts

(Figure 7.3). In fact, it does not matter how poor experts 4 and 6 judgements of E(X) are,

as long as these have about the same norm distance to the realisation xr3 and are in opposite

direction of xr3 , we will get the same expectations for the decision maker, after optimisation

over α.

X

Y

e4

e5

e6
r3

Possible DM expectations

Figure 7.3: Experts with relatively big losses selected.

We will now turn to Cooke’s principles for the use of expert judgement, discussed in Section

3.4.1, and show that the linear pool with the performance based weighting scheme as described

in Section 7.3.1 can comply with these principles. All quotes in the remaining part of this

section are taken from (Cooke 1991).

The principle of reproducibility requires the possibility “for scientific peers to review and if

necessary reproduce all calculations”. This property can be fulfilled by specifying the weighting

scheme explicitly and making the experts’ assessments accessible. When also the source of

the assessments is specified explicitly, accountability is achieved. By using performance based

weights, the principle of empirical control is satisfied. The neutrality principle requires that “the

method for combining/evaluating expert opinion should encourage experts to state their true

opinions”, which is exactly what is pursued by using an unnormalised score with the strictly

proper scoring rule property. As all experts are treated equally, also the principle of fairness is

fulfilled.

Finally, we will apply the moment model introduced in this paper on expert judgement data
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gathered in an application of Cooke’s classical model as an illustrative example and compare

the results with those obtained when using the classical model.

7.4 Moment Model vs. Classical Model

The moment and the classical model have been compared on data from five actual applications

of the classical model: prime rent assessments, dikering safety assessments, thermal comfort in

buildings assessments, radionuclide transport in soil assessments and atmospheric deposition

assessments. Detailed results of the comparison on these five applications can be found in

Appendix C. Before discussing the results, we will first describe the method of comparison and

discuss one of the cases in more depth as an illustrative example.

7.4.1 Method of Comparison

To compare the weighting schemes five applications with a relatively high amount of seed

variables were selected from applications of the classical model. For each case the first half of

the seed variables was used for deriving performance based weights in both the moment and

classical model. The second half of the variables was used to test the performance of the linear

pools using both these sets of weights. These linear pools are in the following referred to as

MDM for the moment weighting scheme and CDM for the classical scheme. The performance of

both these linear pools for the second half of the seed variables was evaluated through computing

for each pool the scores under both weighting schemes: the penalty φ (moment model) and the

product of calibration and information (classical model). The calculation of the calibration and

information scores is described in Section 3.6.2.

The original data were expert assessments for the 5%-, 50%- and 95%-quantiles for the seed

variables. To be able to use the moment scheme, these assessments needed to be translated into

assessments of moments of the variables. We are interested in the experts’ abilities to assess

means and variances, therefore assessments for first and second moments are sufficient. As

translation method the extended Pearson-Tukey (EP-T) method described in Section 3.5.1.1 is

used.

7.4.2 Illustrative Case: Prime Rent Assessments

The prime rent case involved 5 investments managers who each gave assessments on the rent

indices of office space for the major cities in the Netherlands for the future (Qing 2002). Apart
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from the 16 original seed variables, realisations for 15 more variables were observed post hoc.

Assessments for the 16 original seed variables have been used to derive the performance based

linear pools for both weighting schemes: MDM and CDM . Secondly, the performance of these

linear pools was evaluated on the remaining 15 variables.

To be able to calculate the moment model score for the assessments of each of the experts

we need to determine appropriate values for the coefficients cj of the score (7.10) first. Since

all variables assessed by the experts are of the same scale (prime rents in Dutch Guilders per

m2), the errors made by the assessors are as well. We therefore use the same coefficients for

all seed variables. Yet, since we score both the assessment of means and variances via the

first and second moments, we need to choose a coefficient c1 that brings first moment errors

to a monetary scale and a coefficient c2 that brings assessment errors of second moments to a

monetary scale. The penalty function φ1 used thus becomes:

φ1(a1, . . . , an, b1, . . . , bn) =

n∑

j=1

c1(xj − aj)
2 +

n∑

j=1

c2((xj)
2 − bj)

2, (7.13)

where aj and bj are the derived assessments for an expert of resp. the first and second moment of

variable Xj , xj the observed realisation of Xj and n the number of variables that are evaluated

in the score. The first summation in (7.13) penalises deviations of first moment assessments

from the realisations, the second summation penalises deviations of second moment assessments

from the square of the realisations. When determining an appropriate value for c1 to bring

assessment errors on first moments to a monetary scale, we need to make sure that the penalty

is large enough for the assessors to matter, but small enough to avoid risk averseness of the

assessors against large money losses. For this purpose a value of 1 Euro cent, entailing total

penalty scores in the order of tens to hundreds of Euros, was deemed appropriate. In the default

case the value for c2 was chosen such that both summations in (7.13) are on average equal for

all experts, on average resulting in an equal total penalty for first moment assessments and

second moment assessments. Or, more formally, choosing c2 such that r2 = 0.5 in

r2 =

∑n
j=1 c2((xj)

2 − bj)
2

φ1
. (7.14)

The results of the comparison for r2 = 0.5 are shown Table 7.1. The optimised performance

based weights are very different for both methods. The classical model assigns in this case

weight 1 to its best performing expert (i.e. the expert with the highest product of calibration

and information). The moment model on the other hand finds a very diverse pool of experts to
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Table 7.1: Comparison of MM and CM for Prime Rent data (r2 = 0.5)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Weights

Expert 1 0.143 1 0.2 1 0 0 0 0
Expert 2 0.172 0 0.2 0 1 0 0 0
Expert 3 0 0 0.2 0 0 1 0 0
Expert 4 0.537 0 0.2 0 0 0 1 0
Expert 5 0.148 0 0.2 0 0 0 0 1

Moment model score

16 original seed variables
penalty φ1 5257 18001 12518 18001 17262 116911 8157 17863

15 performance variables
penalty φ1 2756 2887 4680 2887 15261 34616 7006 9448

Classical model score

16 original seed variables
calibration 0.3053 0.3305 0,0561 0.3305 0.1472 0.0201 0.0001 0.0042
information 0.5099 0.8572 0.1790 0.8572 0.9554 0.1556 1.5357 0.6126
score 0.1557 0.2833 0.0100 0.2833 0.1407 0.0031 0.0001 0.0026

15 performance variables
calibration 0.2880 0.3579 0.1824 0.3579 0.0000 0.0006 0.0390 0.0390
information 0.5026 0.6724 0.1674 0.6724 0.7465 0.1641 1.3837 0.9623
score 0.1448 0.2406 0.0305 0.2406 0.0000 0.0001 0.0540 0.0375

MDM , CDM : performance based linear pools using resp. moment and classical model.

be the optimal choice, based on the experts’ performance on the 16 seed variables. If we look

at the performance of the linear pools CDM and MDM on the additional 15 variables for which

the realisations are known, we find a mixed picture. The MDM slightly outperforms CDM when

the penalty φ1 is considered (2756 (Euro cents) versus 2887 (Euro cents)), but the CDM has a

better score in the classical model (0.1448 versus 0.2406). Note here that the lower the penalty

score, the better the performance, whilst the opposite holds for the score in the classical model.

Both performance based linear pools perform better than the linear pool using equal weights.

The results in Table 7.1 are based on r2 = 0.5. However, when r2 is varied the weights of

MDM change and also the results change. Figure 7.4 gives an impression of how the weights

change for different values of r2. The higher the value of r2, i.e. the more important the

assessments of the second moments become, the lower the weight assigned to expert 1, eventually

resulting in weight zero for high values of r2. Indeed the penalty score for the derived second

moments assessments for expert 1 is 26% worse than the worst penalty score of the experts 2,

4 and 5.

In Table 7.2 the results for MDM and CDM are summarized for r2 = 0.1, r2 = 0.5 and

r2 = 0.9. The results for r2 = 0.1 are consistent with those for r2 = 0.5, only the differences

are greater. The weights are even more spread over the experts for MDM (see Figure 7.4).

The MDM pool now more distinctly outperforms the CDM pool on the penalty score φ1, while

the opposite holds for the unnormalised weight of the classical model. When r2 is set to 0.9,

a different picture is obtained. Only the experts 2, 4 and 5 have a non-zero weight in MDM .

Expert 1, who is assigned weight 1 in the classical model, is now assigned a zero weight in
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the moment model. CDM now has a slightly smaller penalty score, whilst MDM has a slightly

better score in the classical model.

The prime rent case explored in this section thus shows that the moment weighting scheme

can lead to very different weights than Cooke’s classical model. Neither method however had

a strictly better performance. Both performance based weighting schemes outperformed the

equal weights linear pool.
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Figure 7.4: MDM weights for r2, prime rent data

Table 7.2: Comparison of MM and CM for Prime Rent data (r2 = 0.1, 0.5 and 0.9)

r2 = 0.1 r2 = 0.5 r2 = 0.9

MDM CDM MDM CDM MDM CDM

Moment model score

16 original seed variables
penalty φ1 2931 8887 5257 18001 24705 100667

15 performance variables
penalty φ1 1749 2009 2756 2887 11686 10851

Classical model score

16 original seed variables
calibration 0.3053 0.3305 0.3053 0.3305 0.3378 0.3305
information 0.4972 0.8572 0.5099 0.8572 0.5688 0.8572
score 0.1518 0.2833 0.1557 0.2833 0.1921 0.2833

15 performance variables
calibration 0.1824 0.3579 0.2880 0.3579 0.4314 0.3579
information 0.4801 0.6724 0.5026 0.6724 0.5747 0.6724
score 0.0875 0.2406 0.1448 0.2406 0.2479 0.2406

7.4.3 Comparison on Five Applications

A similar analysis has been applied to the other four applications. The results are summarized in

Table 7.3. Only for two out of the five cases different choices of r2 lead to different performance

based weights in the moment model. In none of the cases both models select the same experts
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Table 7.3: Comparison of the classical model and moment model on 5 applications

r2 = 0.1 r2 = 0.5 r2 = 0.9

MDM scores better than CDM on penalty φ 3/5 3/5 2/5
MDM scores better than CDM on cal × info 2/5 2/5 3/5
Both models select same experts 0/5 0/5 0/5
Both models agree on best expert 0/5 0/5 0/5
Both models agree on ranking experts 0/5 0/5 0/5
MDM at least as good as equal weights on φ 3/5 4/5 4/5
CDM at least as good as equal weights on φ 3/5 3/5 3/5
MDM at least as good as equal weights on cal × info 4/5 5/5 4/5
CDM at least as good as equal weights on cal × info 4/5 4/5 4/5
MDM at least as good as best expert on φ 4/5 4/5 4/5
CDM at least as good as best expert on φ 3/5 3/5 3/5
MDM at least as good as best expert on cal × info 3/5 3/5 4/5
CDM at least as good as best expert on cal × info 4/5 4/5 4/5

MDM , CDM : performance based linear pools using resp. moment and classical model.

for their linear opinion pool (i.e. assign the same set of experts a non-zero weight). Even,

in none of the cases the moment and the classical model agree on which expert has the best

performance on the seed variables.

The remainder of the results will be discussed for r2 = 0.5. The results are only slightly

different for different values of r2, as can be seen in Table 7.3.

When loss function φ1 is used to evaluate the performance of the linear pools MDM and

CDM , we find that the moment model DM, MDM , has a better score on the performance

variables than the classical model DM, CDM , in 3 out of the 5 cases. In 4 out of 5 cases MDM

performs at least as good as the equal weight linear pool and as when choosing the best expert

as DM. In 3 out of 5 cases CDM performs at least as good as the equal weight linear pool and

as when choosing the best expert as DM.

When the classical model score is used as performance measure, CDM has a better score

than MDM in 3 out of 5 cases. CDM performs at least as good as the equal weights linear pool

in 4 out of 5 cases, against 5 out of 5 cases for MDM . Finally, in 4 out of 5 cases CDM scores

at least as good on the performance variables as when choosing the best expert as DM, against

3 out of 5 cases for the moment model DM.

7.5 Summary and Conclusions

In this chapter we have developed a performance based aggregation method for moment as-

sessments from first principles. We have translated the most predominantly discussed desirable
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properties mathematical aggregation methods of probabilistic assessments can have into the

context of moment methods. We have shown that also when expectation is taken as the prim-

itive, that the requirement for the aggregation method to possess the marginalisation and zero

preservation properties is equivalent to requiring the aggregation method to be a linear pool of

the experts’ assessments. Note that this result has been derived here in an expectation frame-

work. The result is analogous to McConway’s argumentation for the support of using a linear

pool of expert probability distributions (McConway 1981), is consistent with McConway’s result

since a linear combination of probability distributions entails a linear combination of expecta-

tions as well, but does not follow from his result.

The linear pool of experts’ expectations has the nice property that when all experts have

provided a coherent set of assessments, any linear pool of these assessments also constructs

a coherent set of assessments. The meaning of the pooled assessment through a combination

function is questioned by Garthwaite et al. (2005): “Another criticism of all these pooling

methods is that it is not clear whose opinion (if anyones) the resulting probability distribution

represents”. Yet we think it is clear that in many cases the decision maker is genuinely unable

to specify a prior distribution and is genuinely unable to choose between a number of technical

experts with excellent qualifications and different opinions. Rather than choosing uninformative

priors as a solution, or forcing the decision maker into choices that he or she feels uncomfortable

with, we believe that the combined expert represents a synthetic but plausible prior that the

decision maker could more fairly adopt than other alternatives that are available.

In Section 7.3 we have developed a weighting scheme that is based on the performance

of the experts. This weighting scheme is similar to Cooke’s classical model weighting scheme

discussed in Section 3.6.2, but has certain theoretical advantages over it. Firstly, the moment

model weighting scheme is much simpler and derived from first principles: the basis of the

performance assessment is a quadratic scoring rule which also constitutes the foundation of De

Finetti’s definition of an expectation (see Section 2.3.1). In the classical model, the ‘weighing’

of the calibration and information scores in the overall score, the unnormalised weight ((3.4)

in Section 3.6.2), is fixed but arbitrary. In the moment model the concepts of calibration and

information are both accounted for in one score, the loss: a smaller loss corresponds to both

better calibration and more informativeness. It must be noted though that the moment model

does not prescribe how the losses for the different quantities and for different moments of the

same quantity should be ‘weighed’ in the overall loss φ. Secondly, the unnormalised weight

of the moment model is a strictly proper scoring rule, where the unnormalised weight of the
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classical model is only weakly asymptotic strictly proper.

A third advantage of the moment model over the classical model is that, given true values

of the seed quantities, the moment model weighting scheme forms a continuous mapping from

the experts’ assessments to a vector of expert weights. In the classical model there can be a

huge difference in weights for experts that have given very similar assessments, depending on

whether probability bins are just hit or just missed by the realisations of the seed variables.

Fourthly, the moment model also does not require an arbitrary choice of bounds for the seed

variables, as the classical model does. Finally, but maybe most important, the moment model

enables us to also evaluate and score the performance of the experts in assessing dependencies

between quantities as well.

Like the classical model the moment model always keeps the best performing expert in the

pool, but the moment model linear pool is certain to have at least as good a performance on

the seed quantities as the best expert and equal weights linear pool. The results in Section 7.4

do not give evidence that either of the weighting schemes has a better performance than the

other. Where classical model scheme regularly has only the best expert with nonzero weight,

the weights seem more spread over experts for the moment model.

For all the reasons summarised in this section, we therefore recommend the moment model

to aggregate sets of expert moments.

(Wisse, Bedford & Quigley 2008b)
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Chapter 8

Conclusions

In this final chapter we will summarise the results reported in this thesis. We will discuss the

answers formulated to each research question, describe the limitations of these answers and give

suggestions for further research. Finally we will discuss the implications of the results of this

research for Defence.

8.1 Derivation of Moments from Expert Assessments

We propose the use of the bivariate Pearson-Tukey method to derive the assessments of the

moments needed to quantify Bayes linear models, for two reasons. Firstly, this method has

a good performance. Previous research has shown that with the univariate Pearson-Tukey

method means and variances can be approximated very well for a wide variety of distributions.

In fact, the method performed best in all publications we have found on this topic. We refer to

Section 3.5.1.1 for details and the references to this research.

In Section 6.3 we have evaluated the bivariate extension of this method, for bivariate Normal,

F-I Beta, F and Cheriyan distributions. The maximum average absolute error found for these

distributions is 6.1% for marginal moments of up to the fourth order, and 3.2% for product

moments to this order. We found that the errors for the marginal moments correlate strongly

with the skewness of the variable, where larger errors are found for stronger skewed distributions.

It would be a valuable topic for further research to investigate whether adjustments to the

bivariate Pearson-Tukey method can be proposed that would reduce the errors found for more

strongly skewed distributions.

The results found for univariate Beta distributions correspond to the results reported in a

previous study when only Beta distributions with a skewness smaller than 3 are considered,
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although the maximum errors we encountered are an order of magnitude larger.

The second important reason for our preference for the bivariate Pearson-Tukey method

is due to the military context wherein this research is placed, and wherein simplicity and

robustness are required. This method only requires marginal and conditional quantiles as input

from experts, which form in our opinion much less complicated assessments to make than some

of the alternative approaches require that have been investigated in the literature (discussed in

Section 3.5.2).

The results reported in this thesis are based on large samples drawn from bivariate Normal,

F-I Beta, F and Cheriyan distributions. Although with these samples a wide variety of bivariate

distributions is covered, the result reported in this research do not necessarily generalise to other

bivariate distributions.

8.2 The Accuracy of the Bayes Linear Adjustment Rules

The Bayes linear adjustment of the mean and variance is exact for multivariate Normal distri-

butions, i.e. the adjusted mean and variance are equal to the conditional mean and variance for

this distribution. We have evaluated the accuracy of the adjustment rules for bivariate F-I Beta,

F, Kibble and Cheriyan distributions. These distributions all have a conditional mean that is

linear in the condition, which entails that the adjusted and conditional mean are equal for these

distributions (see Section 5.1). We evaluated the accuracy of the adjusted variance analytically

and by calculating the difference with the conditional variance for large samples from the four

distributions. These samples cover a wide variety of bivariate distributions common in practice.

It should be noted however that the results reported in this thesis do not necessarily generalise

to other bivariate distributions.

The adjusted variance is not a close approximation of the conditional variance for the F-I

Beta, F and Kibble distribution. The average absolute error found over the 5% − 95% in-

terquantile range of the condition, in a sample of 10, 000 cases of each of these distributions,

is 75%, 19% and 27% respectively. When the condition is exactly as expected and equal to its

mean, the errors are smaller with respectively 5%, 2% for the F-I Beta and F distribution and

zero for the Kibble distribution. For F-I Beta distributions the adjusted variance overestimates

the conditional variance on average with 59%. For F, Kibble and Cheriyan distributions the

average biases are much smaller with resp. 1%, 0.07% and 0.04%.

For Cheriyan distributions the adjusted variance is a much better approximation of the

conditional variance. The average absolute error found in the sample of 10, 000 Cheriyan
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distributions is 2.2%, and the error for the condition equal to its expectation is on average 0.06%.

Where the adjusted variance is constant, i.e. does not depend on the value of observations, the

conditional variances of the four distributions investigated are not. The Cheriyan distribution

however has a far more constant conditional variance than the other three distributions on the

5%− 95% interquantile range of the condition: the minimum value of the conditional variance

is on average 92% of the maximum conditional variance on the 5% − 95% interquantile range

of the condition. For the other distributions the ratios of the minimum and maximum value of

the conditional variance are much lower with 39%, 52% and 42% for resp. the F-I Beta, F and

Cheriyan distribution.

Practitioners we would therefore recommend not to use the adjusted variance as an ap-

proximation the conditional variance in general. Two exceptions however are in place to this

recommendation: the adjusted variance might be a relative good approximation when the cor-

relation is very small and for distributions for which the conditional variance is considered to

be relatively constant, as is the case for the bivariate Normal and Cheriyan distribution.

8.3 The Benefits of Using Higher Order Information

In Chapter 6 we have shown that the conditional variance can be approximated extremely well

by calculating the variance from the adjusted first and second moment and using fourth order

(product) moments in the adjustment. We refer to this approximation as the (Bayes linear)

2-adjusted moment variance. The good results are found for all four distributions evaluated:

the F-I Beta, F, Kibble and Cheriyan distributions. The highest average absolute error found

is of order 10−5% for the Cheriyan distributions, and the highest average absolute maximum

error found is in the order of 10−4%, for the F-I Beta distributions.

We also evaluated the 2-adjusted moment variance for fourth order moments derived from

(conditional) quantiles with the bivariate Pearson-Tukey method. For the F-I Beta and F distri-

butions the 2-adjusted moment variance provides a very good approximation to the conditional

variance, much better han the regular Bayes linear adjusted variance. The average absolute

error found for the F-I Beta distribution reduced from 75% for the regular adjusted variance

to 3.2% for the 2-adjusted moment variance. The average maximum error is 1.2 · 105% for

the regular adjusted variance for this distribution, but only 3.3% for the 2-adjusted moment

variance. The average absolute error for the F distribution reduced from 19% for the regular

adjusted variance to 0.8% for the 2-adjusted moment variance, and the average maximum error

from 52% to 0.8%.
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For the Cheriyan distributions we found the opposite however. The regular adjusted variance

provides a much better approximation than the 2-adjusted moment variance, even though the

Pearson-Tukey approximation of moments is by far the most accurate for these distributions.

The average absolute error we found is 2.2% for the regular adjusted variance, and 77% for the

2-adjusted moment variance.

The Cheriyan distribution has by far the most constant conditional variance (see Table

5.1). In the previous section we suggested that the regular adjusted variance might be a good

approximation for distributions for which the conditional variance is considered to be relatively

constant over the condition. It might a good suggestion for further research to see whether

a decision statistic can be derived that can help to choose between the regular adjusted and

the 2-adjusted moment variance to approximate the conditional variance. It might be possible

to base this decision statistic on the conditional quantiles used in the bivariate Pearson-Tukey

method, which are readily available. From these conditional quantiles, the 5%−, 50%− and the

95%−quantiles, the conditional variance can be approximated using the univariate Pearson-

Tukey method for three values of the condition: the 5%−, 50%− and the 95%−quantiles of the

condition. When these three derived conditional variances are relatively constant, the regular

adjusted variance might be preferred as approximation. If not, the 2-adjusted moment variance

might be the better option.

Striking in the approximation results of the 2-adjusted moment variance is that the bias

in the approximation error is relatively large compared to the average absolute error. For

the F-I Beta distribution the bias is −0.9%, and the average absolute error 3.2%. For the F

and Cheriyan distributions the approximation error is practically constant over the evaluation

interval of the condition, with biases of resp. −0.8% and 77% for average absolute errors of as

well −0.8% and 77%. It would be an interesting subject for further research to see if this bias

could be reduced, thereby reducing the error in general even further.

In this thesis we have worked with exact (conditional) quantile assessments. In reality

experts might not be willing or able to assess these precisely, and indifferent to small changes

in their assessments. The impact of small changes in the quantile assessments has not been

taken into consideration in this evaluation, and is an interesting topic for further research.
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8.4 Performance Based Aggregation of Moment Assess-

ments

In Chapter 7 we have developed a method to aggregate sets of (product) moment assessments

from different experts based on their performance on test questions. By using the extended

Pearson-Tukey method to translate quantile assessments to moment assessments, we have been

able to compare the performance of our proposed moment model with that of a performance

based aggregation method for quantile assessments, the classical model of Cooke, on five actual

applications. Both models have shown to be of comparable performance in these applications.

We have shown that the moment model possesses nice and desirable theoretical properties, and

has many theoretical advantages over the classical model from the literature. The moment

model e.g. enables us to test the performance of the experts in assessing dependencies as well.

We recommend the moment model to aggregate sets of expert moments.

8.5 Implications of Research for Defence: Complementing

the Defence Methodology Toolbox

Based on the results presented in this thesis we strongly advise to complement the Defence

methodology toolbox with the Bayes linear methodology. We consider the Bayes linear method-

ology to be the best option available in general for situations in which subject matter experts

are asked for quantitative assessments about interrelated quantities, and when assessments of

magnitude and the uncertainty about these assessments are desired. The Bayes linear method-

ology reflects the discrete character of quantitative expert assessments and is flexible in the

amount of detail that can both be specified by the experts and is needed for the decision prob-

lem at hand. This entails that the methodology can be applied within a relatively short time

frame, leading to a short response time.

Furthermore, the methodology is assumption free as in that it does not require the quantities

to have a probability distribution from a certain family of distributions. The assessments needed

from subject matter experts to quantify a Bayes linear model are not highly involved. We

belief these assessments do not require the subject matter experts to be expert in probabilistic

methodology as well, and that they can be provided after only some basic introduction.

As mentioned in the introduction of this thesis, we hold the viewpoint that when sufficient

data is available, this data should be preferred over subject matter expert judgements. The
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Bayes linear methodology provides the vehicle to gradually switch from expert assessments

to actually observed data when this becomes available. With the methodology the expert

assessments are revised by data in a rational and coherent way. The Bayes linear methodology

has the nice property that the more data is available, the less the revised beliefs will rely on

the initial subject matter expert assessments.

Two limitations for the application of the methodology need to be mentioned. Firstly, most

results reported in this thesis about the accuracy of the methodology are found by evaluation

a set of bivariate distribution families, covering a wide spectrum of distributions common in

practice. The results however do not necessarily generalise to other distribution families. The

second limitation is related to the case of a high probability of observing extreme values. A

Bayes linear model quantified using the bivariate Pearson-Tukey method, as proposed in this

thesis, might provide less accurate results for cases in which variables are heavily skewed. Fur-

thermore, for distributions with heavy tails not all moments needed for Bayes linear belief

adjustment are necessarily finite. Transformations of the variables in the base of the belief

structure might offer a solution, but this has not been explored in this thesis. We therefore

identify this as an important area for further research.

Finally we note that although the conclusions in this thesis are formulated with respect to

Defence applications, these conclusion are by no means restricted to this area of application.
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Appendix A

Derivations of Equations for

Chapter 5

The (condidional) means, variances and covariances in this appendix are taken from (Mardia

1970) and (Balakrishnan & Lai 2009).

A.1 Equality of Adjusted and Conditional Mean

A.1.1 F-I Beta

Conditional mean:

E(X |Y = y) =
p1

p1 + p3
(1 − y)

Means, variance and covariance:

E(X) = p1

p1+p2+p3

E(Y ) = p2

p1+p2+p3

V ar(Y ) = p2(p1+p3)
(p1+p2+p3)2(p1+p2+p3+1)

Cov(X, Y ) = − p1p2

(p1+p2+p3)2(p1+p2+p3+1)
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Bayes linear adjusted mean:

EY (X) = E(X) +
Cov(X, Y )

V ar(Y )
(y − E(Y ))

=
p1

p1 + p2 + p3

+
−p1p2(p1 + p2 + p3)

2(p1 + p2 + p3 + 1)

p2(p1 + p3)(p1 + p2 + p3)2(p1 + p2 + p3 + 1)

(
y − p2

p1 + p2 + p3

)

=
p1

p1 + p2 + p3
− p1

p1 + p3

(
y − p2

p1 + p2 + p3

)

=
p1(p1 + p3) + p1p2

(p1 + p2 + p3)(p1 + p3)
− p1

p1 + p3
y

=
p1

p1 + p3
− p1

p1 + p3
y

=
p1

p1 + p3
(1 − y)

A.1.2 F

Conditional mean:

E(X |Y = y) =
(ν0 + ν2y)

ν0 + ν2 − 2

Means, variance and covariance:

E(X) = ν0

ν0−2

E(Y ) = ν0

ν0−2

V ar(Y ) =
2ν2

0(ν0+ν1−2)
ν2(ν0−2)2(ν0−4)

Cov(X, Y ) =
2ν2

0

(ν0−2)2(ν0−4)

Bayes linear adjusted mean:

EY (X) = E(X) +
Cov(X, Y )

V ar(Y )
(y − E(Y ))

=
ν0

ν0 − 2
+

2ν2
0ν2(ν0 − 2)2(ν0 − 4)

(ν0 − 2)2(ν0 − 4)2ν2
0(ν0 + ν1 − 2)

(
y − ν0

ν0 − 2

)

=
ν0

ν0 − 2
+

ν2

(ν0 + ν1 − 2)

(
y − ν0

ν0 − 2

)

=
ν0

ν0 − 2
− ν0ν2

(ν0 + ν2 − 2)(ν0 − 2)
+

ν2

(ν0 + ν2 − 2)
y

=
ν0(ν0 + ν2 − 2) − ν0ν2

(ν0 + ν2 − 2)(ν0 − 2)
+

ν2

(ν0 + ν2 − 2)
y

=
ν0(ν0 − 2)

(ν0 + ν2 − 2)(ν0 − 2)
+

ν2

(ν0 + ν2 − 2)
y

=
(ν0 + ν2y)

ν0 + ν2 − 2

140



A.1.3 Kibble

Conditional mean:

E(X |Y = y) = ρ(y − α) + α

Means, variance and covariance:

E(X) = α

E(Y ) = α

V ar(Y ) = α

Cov(X, Y ) = ρα

Bayes linear adjusted mean:

EY (X) = E(X) +
Cov(X, Y )

V ar(Y )
(y − E(Y ))

= α +
ρα

α
(y − α)

= ρ(y − α) + α

A.1.4 Cheriyan

Conditional mean:

E(X |Y = y) = θ1 +
θ3

θ2 + θ3
y

Means, variance and covariance:

E(X) = θ1 + θ3

E(Y ) = θ2 + θ3

V ar(Y ) = θ2 + θ3

Cov(X, Y ) = θ3

Bayes linear adjusted mean:

EY (X) = E(X) +
Cov(X, Y )

V ar(Y )
(y − E(Y ))

= θ1 + θ3 +
θ3

θ2 + θ3
(y − θ2 + θ3)

= θ1 +
θ3

θ2 + θ3
y
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A.2 Derivation of dvar

A.2.1 F-I Beta

Conditional variance:

V ar(X |Y = y) =
p1p3

(p1 + p3)2(1 + p1 + p3)
(1 − y)2

Variances and covariance:

V ar(X) = p1(p2+p3)
(p1+p2+p3)2(p1+p2+p3+1)

V ar(Y ) = p2(p1+p3)
(p1+p2+p3)2(p1+p2+p3+1)

Cov(X, Y ) = − p1p2

(p1+p2+p3)2(p1+p2+p3+1)

Bayes linear adjusted variance:

V arY (X) = V ar(X) − Cov(X, Y )2

V ar(Y )

=
p1(p2 + p3)

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)

− p2
1p

2
2(p1 + p2 + p3)

2(p1 + p2 + p3 + 1)

(p1 + p2 + p3)4(p1 + p2 + p3 + 1)2p2(p1 + p3)

=
p1(p2 + p3)

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)

− p2
1p2

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)(p1 + p3)

=
p1(p2 + p3)(p1 + p3)

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)(p1 + p3)

− p2
1p2

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)(p1 + p3)

=
p1(p2 + p3)(p1 + p3) − p2

1p2

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)(p1 + p3)
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So dvar,F ilon−Isserlis is:

dvar,F ilon−Isserlis(y) = V arY (X) − V ar(X |Y = y)

=
p1(p2 + p3)(p1 + p3) − p2

1p2

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)(p1 + p3)

− p1p3

(p1 + p3)2(1 + p1 + p3)
(1 − y)2

=
p1(p2 + p3)(p1 + p3) − p2

1p2

(p1 + p2 + p3)2(p1 + p2 + p3 + 1)(p1 + p3)

− p1p3

(p1 + p3)2(1 + p1 + p3)
+

p1p3

(p1 + p3)2(1 + p1 + p3)
(2y − y2)

=
p1(p2 + p3)(p1 + p3)

2(1 + p1 + p3) − p2
1p2(p1 + p3)(1 + p1 + p3)

(p1 + p3)2(1 + p1 + p3)(p1 + p2 + p3)2(p1 + p2 + p3 + 1)

− p1p3(p1 + p2 + p3)
2(p1 + p2 + p3 + 1)

(p1 + p3)2(1 + p1 + p3)(p1 + p2 + p3)2(p1 + p2 + p3 + 1)

+
p1p3

(p1 + p3)2(1 + p1 + p3)
(2y − y2)

=
p1p2p3(1 + 2p1 + p2 + 2p3)

(p1 + p3)2(1 + p1 + p3)(p1 + p2 + p3)(1 + p1 + p2 + p3)

+
p1p3

(p1 + p3)2(1 + p1 + p3)
(2y − y2)

A.2.2 F

Conditional variance:

V ar(X |Y = y) =
2(ν0 + ν1 + ν2 − 2)

ν1(ν0 + ν2 − 2)2(ν0 + ν2 − 4)
(ν0 + ν2y)2

Variances and covariance:

V ar(X) =
2ν2

0(ν0+ν2−2)
ν1(ν0−2)2(ν0−4)

V ar(Y ) =
2ν2

0(ν0+ν1−2)
ν2(ν0−2)2(ν0−4)

Cov(X, Y ) =
2ν2

0

(ν0−2)2(ν0−4)
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Bayes linear adjusted variance:

V arY (X) = V ar(X) − Cov(X, Y )2

V ar(Y )

=
2ν2

0 (ν0 + ν2 − 2)

ν1(ν0 − 2)2(ν0 − 4)
− 4ν4

0ν2(ν0 − 2)2(ν0 − 4)

(ν0 − 2)4(ν0 − 4)22ν2
0(ν0 + ν1 − 2)

=
2ν2

0 (ν0 + ν2 − 2)

ν1(ν0 − 2)2(ν0 − 4)
− 2ν2

0ν2

(ν0 − 2)2(ν0 − 4)(ν0 + ν1 − 2)

=
2ν2

0 (ν0 + ν2 − 2)(ν0 + ν1 − 2)

ν1(ν0 − 2)2(ν0 − 4)(ν0 + ν1 − 2)
− 2ν2

0ν1ν2

ν1(ν0 − 2)2(ν0 − 4)(ν0 + ν1 − 2)

=
2ν2

0(ν0 + ν2 − 2)(ν0 + ν1 − 2) − 2ν2
0ν1ν2

ν1(ν0 − 2)2(ν0 − 4)(ν0 + ν1 − 2)

=
2ν2

0 [(ν0 + ν2 − 2)(ν0 + ν1 − 2) − ν1ν2]

ν1(ν0 − 2)2(ν0 − 4)(ν0 + ν1 − 2)

So dvar,F is:

dvar,F (y) = V arY (X) − V ar(X |Y = y)

=
2ν2

0 [(ν0 + ν2 − 2)(ν0 + ν1 − 2) − ν1ν2]

ν1(ν0 − 2)2(ν0 − 4)(ν0 + ν1 − 2)

+
2ν2

0(ν0 + ν1 + ν2 − 2)

ν1(ν0 + ν2 − 2)2(ν0 + ν2 − 4)

+
2(ν0 + ν1 + ν2 − 2)

ν1(ν0 + ν2 − 2)2(ν0 + ν2 − 4)
(−2ν0ν2y − ν2

2y2)

A.2.3 Kibble

Conditional variance:

V ar(X |Y = y) = (1 − ρ)2α + 2ρ(1 − ρ)y

Variances and covariance:

V ar(X) = α

V ar(Y ) = α

Cov(X, Y ) = ρα
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Bayes linear adjusted variance:

V arY (X) = V ar(X) − Cov(X, Y )2

V ar(Y )

= α − ρ2α2

α

= α(1 − ρ2)

So dvar,Kibble is:

dvar,Kibble(y) = V arY (X) − V ar(X |Y = y)

= α(1 − ρ2) − (1 − ρ)2α − 2ρ(1 − ρ)y

= α(1 − ρ2) − α(1 − ρ2) − α(−2ρ + 2ρ2) − 2ρ(1 − ρ)y

= −α(−2ρ + 2ρ2) − 2ρ(1 − ρ)y

= 2αρ(1 − ρ) − 2ρ(1 − ρ)y

= −2ρ(1 − ρ)(y − α)

= −2ρ(1 − ρ)(y − E(Y ))

A.2.4 Cheriyan

Conditional variance:

V ar(X |Y = y) = θ1 +
θ2θ3

(θ2 + θ3)2(1 + θ2 + θ3)
y2

Variances and covariance:

V ar(X) = θ1 + θ3

V ar(Y ) = θ2 + θ3

Cov(X, Y ) = θ3

Bayes linear adjusted variance:

V arY (X) = V ar(X) − Cov(X, Y )2

V ar(Y )

= θ1 + θ3 −
θ2
3

θ2 + θ3
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So dvar,Cheriyan is:

dvar,Cheriyan(y) = V arY (X) − V ar(X |Y = y)

= θ1 + θ3 −
θ2
3

θ2 + θ3
− θ1 −

θ2θ3

(θ2 + θ3)2(1 + θ2 + θ3)
y2

= θ3 −
θ2
3

θ2 + θ3
− θ2θ3

(θ2 + θ3)2(1 + θ2 + θ3)
y2

=
θ3(θ2 + θ3)

θ2 + θ3
− θ2

3

θ2 + θ3
− θ2θ3

(θ2 + θ3)2(1 + θ2 + θ3)
y2

=
θ2θ3

θ2 + θ3
− θ2θ3

(θ2 + θ3)2(1 + θ2 + θ3)
y2
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Appendix B

Additional Tables to Chapter 5

B.1 AARD against skewness and kurtosis: F, Kibble and

Cheriyan
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Table B.1: Mean, standard deviation and maximum value of skewness and excess kurtosis for different percentile ranges of AARD of 10, 000 F distributions.
AARD in %.

F
Percentiles of AARD

0-1% 1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-99% 99-100%

AARD
mean 2.320 5.979 9.610 11.648 13.081 14.676 16.667 19.439 23.357 29.803 42.384 56.576

st.dev. 0.387 1.494 0.764 0.460 0.408 0.510 0.675 0.939 1.382 2.497 5.261 1.857
max 2.862 8.111 10.803 12.398 13.809 15.575 17.882 21.159 25.891 34.823 53.628 59.977

skewness of X < 0
mean

st.dev.
min

skewness of X > 0
mean 0.645 0.696 0.692 0.682 0.690 0.726 0.762 0.833 0.913 1.077 1.435 1.847

st.dev. 0.244 0.288 0.309 0.302 0.273 0.280 0.236 0.284 0.247 0.262 0.282 0.207
max 2.100 3.020 3.291 3.291 2.990 2.967 2.191 3.071 3.232 3.260 3.708 3.021

skewness of Y < 0
mean

st.dev.
min

skewness of Y > 0
mean 2.293 1.145 0.717 0.631 0.617 0.665 0.691 0.762 0.856 1.017 1.380 1.799

st.dev. 0.518 0.487 0.257 0.229 0.217 0.236 0.163 0.192 0.169 0.175 0.205 0.069
max 2.993 3.370 3.651 2.605 2.673 2.811 2.308 2.649 2.020 2.119 2.009 1.868

kurtosis of X
mean 0.822 0.984 0.989 0.960 0.958 1.071 1.135 1.402 1.661 2.347 4.350 7.510

st.dev. 0.857 1.193 1.380 1.337 1.091 1.242 0.845 1.374 1.233 1.459 2.022 1.819
max 6.831 14.292 18.025 18.025 13.925 13.640 7.638 14.949 17.165 17.562 25.060 18.064

kurtosis of Y
mean 8.524 2.498 1.004 0.803 0.775 0.912 0.936 1.163 1.455 2.089 4.025 7.127

st.dev. 3.788 2.412 1.278 0.952 0.953 1.112 0.617 0.878 0.735 0.900 1.335 0.622
max 13.951 19.227 23.991 12.081 12.948 14.829 9.853 14.202 8.143 9.563 8.731 7.732
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Table B.2: Mean, standard deviation and maximum value of skewness and excess kurtosis for different percentile ranges of AARD of 10, 000 Kibble
distributions. AARD in %.

Kibble
Percentiles of AARD

0-1% 1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-99% 99-100%

AARD
mean 0.344 3.825 9.522 14.382 18.482 22.276 25.384 28.678 33.573 42.137 62.827 108.485

st.dev. 0.228 1.788 1.567 1.243 1.193 0.997 0.848 1.117 1.800 3.422 11.018 26.175
max 0.698 6.822 12.187 16.428 20.482 23.896 26.889 30.756 36.979 48.841 90.073 315.114

skewness of X < 0
mean

st.dev.
min

skewness of X > 0
mean 1.079 1.010 0.968 0.983 0.894 0.956 0.978 1.036 1.264 1.696 2.847 5.095

st.dev. 0.809 1.240 0.768 1.059 0.396 0.721 0.958 1.147 1.091 1.359 2.306 4.219
max 5.928 23.609 15.436 20.833 5.556 11.366 14.917 28.035 16.156 13.546 25.507 21.107

skewness of Y < 0
mean

st.dev.
min

skewness of Y > 0
mean 1.079 1.010 0.968 0.983 0.894 0.956 0.978 1.036 1.264 1.696 2.847 5.095

st.dev. 0.809 1.240 0.768 1.059 0.396 0.721 0.958 1.147 1.091 1.359 2.306 4.219
max 5.928 23.609 15.436 20.833 5.556 11.366 14.917 28.035 16.156 13.546 25.507 21.107

kurtosis of X
mean 2.720 3.836 2.290 3.131 1.433 2.149 2.810 3.579 4.180 7.080 20.120 65.372

st.dev. 7.308 37.118 13.857 25.610 2.376 8.900 17.920 39.345 18.449 19.792 55.284 126.035
max 52.708 836.075 357.402 650.992 46.311 193.779 333.763 1178.908 391.501 275.244 975.887 668.283

kurtosis of Y
mean 2.720 3.836 2.290 3.131 1.433 2.149 2.810 3.579 4.180 7.080 20.120 65.372

st.dev. 7.308 37.118 13.857 25.610 2.376 8.900 17.920 39.345 18.449 19.792 55.284 126.035
max 52.708 836.075 357.402 650.992 46.311 193.779 333.763 1178.908 391.501 275.244 975.887 668.283
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Table B.3: Mean, standard deviation and maximum value of skewness and excess kurtosis for different percentile ranges of AARD of 10, 000 Cheriyan
distributions. AARD in %.

Cheriyan
Percentiles of AARD

0-1% 1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-99% 99-100%

AARD
mean 0.030 0.291 0.653 0.944 1.230 1.540 1.941 2.450 3.159 4.061 5.443 8.761

st.dev. 0.017 0.126 0.088 0.085 0.086 0.098 0.129 0.178 0.240 0.285 0.666 1.526
max 0.062 0.492 0.800 1.089 1.378 1.721 2.175 2.771 3.603 4.611 7.213 15.155

skewness of X < 0
mean

st.dev.
min

skewness of X > 0
mean 0.082 0.076 0.075 0.072 0.078 0.082 0.090 0.099 0.103 0.109 0.129 0.180

st.dev. 0.031 0.043 0.038 0.024 0.033 0.028 0.033 0.041 0.038 0.038 0.059 0.062
max 0.190 0.949 0.415 0.314 0.546 0.241 0.335 0.486 0.392 0.379 1.046 0.482

skewness of Y < 0
mean

st.dev.
min

skewness of Y > 0
mean 0.135 0.105 0.093 0.086 0.082 0.080 0.079 0.080 0.078 0.077 0.086 0.132

st.dev. 0.160 0.059 0.044 0.031 0.027 0.025 0.025 0.029 0.025 0.023 0.023 0.038
max 1.513 0.668 0.695 0.498 0.224 0.288 0.314 0.426 0.422 0.427 0.264 0.301

kurtosis of X
mean 0.012 0.012 0.011 0.009 0.011 0.011 0.014 0.017 0.018 0.020 0.030 0.054

st.dev. 0.010 0.046 0.019 0.008 0.019 0.010 0.015 0.023 0.019 0.018 0.063 0.046
max 0.054 1.351 0.259 0.147 0.446 0.087 0.168 0.355 0.231 0.216 1.641 0.349

kurtosis of Y
mean 0.065 0.022 0.016 0.013 0.011 0.010 0.010 0.011 0.010 0.010 0.012 0.028

st.dev. 0.346 0.041 0.030 0.016 0.010 0.009 0.009 0.013 0.011 0.010 0.008 0.020
max 3.433 0.669 0.724 0.372 0.076 0.125 0.148 0.272 0.267 0.273 0.105 0.136
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B.2 AARD against |δ2, 1| and |δ2, 2|: F, Kibble and Cheriyan
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Table B.4: Mean, standard deviation and maximum value of the absolute value of higher order correlation differences |δ2,2| and |δ2,2| for different percentile
ranges of AARD of 10, 000 F-I Beta, F, Kibble and Cheriyan distributions. AARD in %.

Percentiles of AARD
0-1% 1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-99% 99-100%

F-I Beta
|δ2,1|

mean 4.0·10−2 2.0·10−2 9.3·10−3 5.5·10−3 4.1·10−3 4.2·10−3 3.1·10−3 3.1·10−3 3.0·10−3 2.8·10−3 2.8·10−3 2.3·10−3

st.dev. 4.2·10−2 3.2·10−2 1.5·10−2 1.0·10−2 8.3·10−3 1.2·10−2 6.7·10−3 7.4·10−3 7.4·10−3 1.0·10−2 1.1·10−2 7.2·10−3

max 2.6·10−1 6.0·10−1 1.7·10−1 1.2·10−1 9.4·10−2 2.4·10−1 9.5·10−2 1.1·10−1 7.8·10−2 1.7·10−1 2.5·10−1 4.9·10−2

F
|δ2,1|

mean 6.0·10−3 2.0·10−3 3.5·10−4 2.2·10−4 2.0·10−4 2.4·10−4 1.9·10−4 3.3·10−4 6.4·10−4 1.7·10−3 6.4·10−3 1.7·10−2

st.dev. 2.8·10−3 2.8·10−3 1.4·10−3 1.2·10−3 1.1·10−3 1.2·10−3 3.7·10−4 3.6·10−4 2.9·10−4 1.0·10−3 3.6·10−3 2.9·10−3

max 1.4·10−2 2.2·10−2 2.8·10−2 1.6·10−2 1.6·10−2 1.6·10−2 9.0·10−3 5.8·10−3 2.4·10−3 1.2·10−2 1.9·10−2 2.0·10−2

Kibble
|δ2,1|

mean 5.1·10−5 5.2·10−4 1.5·10−3 2.5·10−3 2.8·10−3 4.1·10−3 5.3·10−3 6.7·10−3 1.2·10−2 2.7·10−2 9.8·10−2 2.5·10−1

st.dev. 7.3·10−5 7.6·10−4 2.5·10−3 5.1·10−3 2.8·10−3 5.3·10−3 1.1·10−2 1.0·10−2 1.6·10−2 3.0·10−2 9.3·10−2 1.4·10−1

max 4.7·10−4 1.0·10−2 6.0·10−2 9.3·10−2 2.7·10−2 8.9·10−2 2.0·10−1 2.1·10−1 2.4·10−1 2.9·10−1 5.1·10−1 5.9·10−1

Cheriyan
|δ2,1|

mean 3.7·10−6 2.9·10−6 2.1·10−6 7.5·10−7 5.1·10−7 4.8·10−7 5.6·10−7 8.7·10−7 9.0·10−7 9.0·10−7 8.3·10−7 5.2·10−6

st.dev. 1.4·10−5 3.2·10−5 3.2·10−5 5.4·10−6 1.4·10−6 1.4·10−6 3.1·10−6 7.4·10−6 1.3·10−5 1.3·10−5 1.8·10−6 1.1·10−5

max 1.1·10−4 8.9·10−4 9.7·10−4 1.4·10−4 1.9·10−5 2.8·10−5 9.2·10−5 2.0·10−4 4.0·10−4 4.1·10−4 3.1·10−5 9.2·10−5

F-I Beta
|δ2,2|

mean 3.9·10−2 2.0·10−2 1.1·10−2 7.5·10−3 7.1·10−3 8.2·10−3 8.5·10−3 1.1·10−2 1.4·10−2 2.0·10−2 4.1·10−2 1.1·10−1

st.dev. 4.0·10−2 3.1·10−2 1.5·10−2 1.0·10−2 8.7·10−3 1.3·10−2 8.1·10−3 9.3·10−3 1.1·10−2 1.4·10−2 2.3·10−2 3.6·10−2

max 2.5·10−1 5.7·10−1 1.7·10−1 1.2·10−1 9.8·10−2 2.4·10−1 9.8·10−2 1.2·10−1 8.8·10−2 1.9·10−1 3.2·10−1 2.1·10−1

F
|δ2,2|

mean 6.0·10−3 2.2·10−3 6.5·10−4 5.3·10−4 5.0·10−4 5.4·10−4 4.3·10−4 5.4·10−4 4.8·10−4 6.4·10−4 1.1·10−3 1.8·10−3

st.dev. 2.8·10−3 2.8·10−3 1.6·10−3 1.6·10−3 1.5·10−3 1.7·10−3 1.1·10−3 1.6·10−3 1.5·10−3 1.9·10−3 2.6·10−3 3.0·10−3

max 1.4·10−2 2.3·10−2 3.0·10−2 1.8·10−2 1.9·10−2 1.9·10−2 1.2·10−2 1.4·10−2 1.6·10−2 1.9·10−2 3.2·10−2 2.1·10−2

Kibble
|δ2,2|

mean 8.9·10−5 8.6·10−4 2.2·10−3 3.3·10−3 3.5·10−3 4.3·10−3 4.8·10−3 5.4·10−3 9.4·10−3 1.9·10−2 3.7·10−2 2.3·10−2

st.dev. 1.1·10−4 1.0·10−3 2.9·10−3 5.1·10−3 4.1·10−3 6.6·10−3 9.9·10−3 1.0·10−2 1.6·10−2 2.7·10−2 3.8·10−2 3.1·10−2

max 6.7·10−4 9.8·10−3 5.4·10−2 8.0·10−2 3.2·10−2 8.0·10−2 1.4·10−1 1.4·10−1 1.5·10−1 1.6·10−1 1.5·10−1 1.6·10−1

Cheriyan
|δ2,2|

mean 3.6·10−6 2.9·10−6 2.3·10−6 9.7·10−7 8.6·10−7 8.4·10−7 1.1·10−6 1.9·10−6 1.8·10−6 2.1·10−6 5.1·10−6 1.6·10−5

st.dev. 1.4·10−5 3.2·10−5 3.2·10−5 5.8·10−6 2.0·10−6 1.7·10−6 3.2·10−6 8.7·10−6 6.3·10−6 7.0·10−6 3.3·10−5 3.6·10−5

max 1.2·10−4 9.0·10−4 9.8·10−4 1.6·10−4 3.9·10−5 2.8·10−5 8.3·10−5 2.3·10−4 1.8·10−4 2.0·10−4 9.3·10−4 2.7·10−4
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Appendix C

Detailed Results of the

Comparison of the Classical

Model and the Moment Model

The moment model scores and weights reported in this thesis were calculated with Microsoft

Excel. The classical model calibration and information scores, and the classical model weights

were calculated in the Excalibur v1.0 Light software, provided by Roger Cooke from TU Delft.

C.1 Case 1: Prime Rent Indices

The prime rent case involved 5 investment managers who each gave assessments on the rent

indices of office space for the major cities in the Netherlands for the future, see (Qing 2002).

The 16 original seed variables were used to derive the decision maker weights for both the

classical model, CDM , and the moment model, MDM . The 15 additional variables for which

the realisations were observed post hoc were used to test the performance of CDM and MDM .

Coefficient c1 = 1 has been used for the moment model. In Tables C.1, C.2 and C.3 the results

are given for resp. r2 = 0.1, 0.5 and 0.9. The results for both the moment and the classical

model linear pool are summarised in Table C.4.
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Table C.1: Comparison of MM and CM for prime rent data (r2 = 0.1)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Weights

Expert 1 0.235 1 0.2 1 0 0 0 0
Expert 2 0.161 0 0.2 0 1 0 0 0
Expert 3 0.000 0 0.2 0 0 1 0 0
Expert 4 0.461 0 0.2 0 0 0 1 0
Expert 5 0.143 0 0.2 0 0 0 0 1

Moment model score

16 original seed variables
penalty φ1 2931 8887 6736 8887 10301 61738 4557 10646

15 performance variables
penalty φ1 1749 2009 3180 2009 10073 22972 4933 5937

Classical model score

16 original seed variables
calibration 0.3053 0.3305 0.0561 0.3305 0.1472 0.0201 0.0001 0.0042
information 0.4972 0.8572 0.1790 0.8572 0.9554 0.1556 1.5357 0.6126
score 0.1518 0.2833 0.0100 0.2833 0.1407 0.0031 0.0001 0.0026

15 performance variables
calibration 0.1824 0.3579 0.1824 0.3579 0.0000 0.0006 0.0390 0.0390
information 0.4801 0.6724 0.1674 0.6724 0.7465 0.1641 1.3837 0.9623
score 0.0875 0.2406 0.0305 0.2406 0.0000 0.0001 0.0540 0.0375

MDM , CDM : performance based linear pools using resp. moment and classical model.

Table C.2: Comparison of MM and CM for prime rent data (r2 = 0.5)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Weights

Expert 1 0.143 1 0.2 1 0 0 0 0
Expert 2 0.172 0 0.2 0 1 0 0 0
Expert 3 0 0 0.2 0 0 1 0 0
Expert 4 0.537 0 0.2 0 0 0 1 0
Expert 5 0.148 0 0.2 0 0 0 0 1

Moment model score

16 original seed variables
penalty φ1 5257 18001 12518 18001 17262 116911 8157 17863

15 performance variables
penalty φ1 2756 2887 4680 2887 15261 34616 7006 9448

Classical model score

16 original seed variables
calibration 0.3053 0.3305 0,0561 0.3305 0.1472 0.0201 0.0001 0.0042
information 0.5099 0.8572 0.1790 0.8572 0.9554 0.1556 1.5357 0.6126
score 0.1557 0.2833 0.0100 0.2833 0.1407 0.0031 0.0001 0.0026

15 performance variables
calibration 0.2880 0.3579 0.1824 0.3579 0.0000 0.0006 0.0390 0.0390
information 0.5026 0.6724 0.1674 0.6724 0.7465 0.1641 1.3837 0.9623
score 0.1448 0.2406 0.0305 0.2406 0.0000 0.0001 0.0540 0.0375

MDM , CDM : performance based linear pools using resp. moment and classical model.
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Table C.3: Comparison of MM and CM for prime rent data (r2 = 0.9)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Weights

Expert 1 0.000 1 0.2 1 0 0 0 0
Expert 2 0.208 0 0.2 0 1 0 0 0
Expert 3 0.000 0 0.2 0 0 1 0 0
Expert 4 0.614 0 0.2 0 0 0 1 0
Expert 5 0.178 0 0.2 0 0 0 0 1

Moment model score

16 original seed variables
penalty φ1 24705 100667 64966 100667 80403 617347 40810 83328

15 performance variables
penalty φ1 11686 10851 18289 10851 62315 140222 25807 41296

Classical model score

16 original seed variables
calibration 0.3378 0.3305 0.0561 0.3305 0.1472 0.0201 0.0001 0.0042
information 0.5688 0.8572 0.1790 0.8572 0.9554 0.1556 1.5357 0.6126
score 0.1921 0.2833 0.0100 0.2833 0.1407 0.0031 0.0001 0.0026

15 performance variables
calibration 0.4314 0.3579 0.1824 0.3579 0.0000 0.0006 0.0390 0.0390
information 0.5747 0.6724 0.1674 0.6724 0.7465 0.1641 1.3837 0.9623
score 0.2479 0.2406 0.0305 0.2406 0.0000 0.0001 0.0540 0.0375

MDM , CDM : performance based linear pools using resp. moment and classical model.

Table C.4: Summary of Comparison of MM and CM for prime rent data

r2 = 0.1 r2 = 0.5 r2 = 0.9

MDM CDM MDM CDM MDM CDM

Moment model score

16 original seed variables
penalty φ1 2931 8887 5257 18001 24705 100667

15 performance variables
penalty φ1 1749 2009 2756 2887 11686 10851

Classical model score

16 original seed variables
calibration 0.3053 0.3305 0.3053 0.3305 0.3378 0.3305
information 0.4972 0.8572 0.5099 0.8572 0.5688 0.8572
score 0.1518 0.2833 0.1557 0.2833 0.1921 0.2833

15 performance variables
calibration 0.1824 0.3579 0.2880 0.3579 0.4314 0.3579
information 0.4801 0.6724 0.5026 0.6724 0.5747 0.6724
score 0.0875 0.2406 0.1448 0.2406 0.2479 0.2406
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C.2 Case 2: Dikering Safety

The dikering safety case (Van Elst 1997) involves 17 experts assessing 47 seed variables. Seven

seed variables were judged to be of a different scale and left out of the current evaluation. These

are the variables with the identifiers: ‘mod6’, ‘mod7’, ‘mod8’, ‘mod9’, ‘mod10’, ‘mod11’ and

‘mod12’. The first 20 seed variables of the 40 left we used to derive the performance based

weights for both the classical model, CDM , and the moment model, MDM . The remaining 20

were used to test the performance of the classical and moment model linear pools. Coefficient

c1 = 1000 has been used for the moment model. The moment model results in the same DM

weights for r2 = 0.1, 0.5 and 0.9. The results for r2 = 0.5 are displayed in Tables C.5 and C.6.
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Table C.5: Comparison of MM and CM for dikering safety data, for exp. 1-7. (r2 = 0.5)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp.7

Weights

Expert 1 1 0 1/17 1 0 0 0 0 0 0
Expert 2 0 0.5 1/17 0 1 0 0 0 0 0
Expert 3 0 0 1/17 0 0 1 0 0 0 0
Expert 4 0 0 1/17 0 0 0 1 0 0 0
Expert 5 0 0 1/17 0 0 0 0 1 0 0
Expert 6 0 0 1/17 0 0 0 0 0 1 0
Expert 7 0 0 1/17 0 0 0 0 0 0 1
Expert 8 0 0 1/17 0 0 0 0 0 0 0
Expert 9 0 0 1/17 0 0 0 0 0 0 0
Expert 10 0 0.5 1/17 0 0 0 0 0 0 0
Expert 11 0 0 1/17 0 0 0 0 0 0 0
Expert 12 0 0 1/17 0 0 0 0 0 0 0
Expert 13 0 0 1/17 0 0 0 0 0 0 0
Expert 14 0 0 1/17 0 0 0 0 0 0 0
Expert 15 0 0 1/17 0 0 0 0 0 0 0
Expert 16 0 0 1/17 0 0 0 0 0 0 0
Expert 17 0 0 1/17 0 0 0 0 0 0 0

Moment model score

20 seed variables
penalty φ1 3356 4906 4868 3356 4722 4859 5015 5115 5120 5103

20 performance variables
penalty φ1 4506 2642 33718 4506 3455 4583 3376 16866 11447 142282

Classical model score

20 seed variables
calibration 1.19E-08 2.16E-02 6.67E-04 1.19E-08 2.16E-02 6.67E-04 8.81E-09 1.07E-17 7.65E-03 3.57E-15
information 1.2031 0.3356 0.4519 1.2031 0.3356 0.5167 0.9160 2.3397 0.0182 1.7215
score 1.43E-08 7.26E-03 3.02E-04 1.43E-08 7.26E-03 3.45E-04 8.07E-09 2.51E-17 1.39E-04 6.15E-15

20 performance variables
calibration 0.2200 0.2200 0.1704 0.2200 0.0003 0.5505 0.0106 0.4280 0.0106 0.0106
information 0.7289 0.3356 0.4519 0.7289 1.5683 0.7351 1.2538 0.6011 0.3663 0.3187
score 0.1604 0.0738 0.0770 0.1604 0.0005 0.4046 0.0132 0.2573 0.0039 0.0034

MDM , CDM : performance based linear pools using resp. moment and classical model.
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Table C.6: Comparison of MM and CM for dikering safety data, for exp. 8-17. (r2 = 0.5)

Exp. 8 Exp. 9 Exp. 10 Exp. 11 Exp. 12 Exp. 13 Exp. 14 Exp. 15 Exp. 16 Exp. 17

Weights

Expert 1 0 0 0 0 0 0 0 0 0 0
Expert 2 0 0 0 0 0 0 0 0 0 0
Expert 3 0 0 0 0 0 0 0 0 0 0
Expert 4 0 0 0 0 0 0 0 0 0 0
Expert 5 0 0 0 0 0 0 0 0 0 0
Expert 6 0 0 0 0 0 0 0 0 0 0
Expert 7 0 0 0 0 0 0 0 0 0 0
Expert 8 1 0 0 0 0 0 0 0 0 0
Expert 9 0 1 0 0 0 0 0 0 0 0
Expert 10 0 0 1 0 0 0 0 0 0 0
Expert 11 0 0 0 1 0 0 0 0 0 0
Expert 12 0 0 0 0 1 0 0 0 0 0
Expert 13 0 0 0 0 0 1 0 0 0 0
Expert 14 0 0 0 0 0 0 1 0 0 0
Expert 15 0 0 0 0 0 0 0 1 0 0
Expert 16 0 0 0 0 0 0 0 0 1 0
Expert 17 0 0 0 0 0 0 0 0 0 1

Moment model score

20 seed variables
penalty φ1 5052 5103 4722 5115 4464 5109 5103 5103 4970 5103

20 performance variables
penalty φ1 4940 2106 54800 3139 3347 16995 8302 332281 332445 332234

Classical model score

20 seed variables
calibration 8.81E-09 3.57E-15 2.16E-02 1.07E-17 4.92E-17 3.76E-15 3.57E-15 3.57E-15 1.41E-07 3.57E-15
information 1.1100 1.7215 0.3356 2.3397 2.1895 1.9200 1.7215 1.7215 0.7592 1.7215
score 9.78E-09 6.15E-15 7.26E-03 2.51E-17 1.08E-16 7.23E-15 6.15E-15 6.15E-15 1.07E-07 6.15E-15

20 performance variables
calibration 0.0106 0.2392 0.2200 0.0000 0.0000 0.4280 0.0000 0.2200 0.2200 0.2200
information 0.7963 0.7744 0.6332 1.8366 2.3068 0.9305 2.0388 0.6364 0.5691 0.6550
score 0.0084 0.1853 0.1393 0.0000 0.0000 0.3983 0.0000 0.1400 0.1252 0.1441

MDM , CDM : performance based linear pools using resp. moment and classical model.
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C.3 Case 3: Thermal Comfort in Buildings

The thermal comfort in buildings case (De Wit 2001) involves 6 experts assessing 48 seed

variables. The first 24 seed variables we used to derive the performance based weights for both

the classical model, CDM , and the moment model, MDM . The last 24 were used to test the

performance of the classical and moment model linear pools. Coefficient c1 = 1000 has been

used for the moment model. The moment model results in the same DM weights for r2 = 0.1,

0.5 and 0.9. The results for r2 = 0.5 are displayed in Table C.7.
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Table C.7: Comparison of MM and CM for thermal comfort in buildings data (r2 = 0.5)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Weights

Expert 1 0 0 1/6 1 0 0 0 0 0
Expert 2 0 0 1/6 0 1 0 0 0 0
Expert 3 0 0 1/6 0 0 1 0 0 0
Expert 4 1 0 1/6 0 0 0 1 0 0
Expert 5 0 0 1/6 0 0 0 0 1 0
Expert 6 0 1 1/6 0 0 0 0 0 1

Moment model score

13 seed variables
penalty φ1 1773 6994 2673 3872 3222 5534 1773 3430 6994

13 performance variables
penalty φ1 2284 6263 2752 4344 3076 5743 2284 3593 6263

Classical model score

13 seed variables
calibration 0.0000 0.1816 0.0008 0.0003 0.1203 0.0003 0.0000 0.0000 0.181633
information 0.1650 0.7305 0.1421 0.6449 0.5527 0.4630 0.1650 0.8092 0.730458
score 0.0000 0.1327 0.0001 0.0002 0.0665 0.0002 0.0000 0.0000 0.132676

13 performance variables
calibration 2.41E-08 1.04E-03 2.41E-08 9.85E-06 1.60E-02 3.27E-08 2.41E-08 1.39E-11 1.04E-03
information 0.1650 0.7305 0.1421 0.6449 0.5527 0.4630 0.1650 0.8092 0.730458
score 3.97E-09 7.61E-04 3.42E-09 6.35E-06 8.84E-03 1.51E-08 3.97E-09 1.13E-11 7.61E-04

MDM , CDM : performance based linear pools using resp. moment and classical model.
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C.4 Case 4: Radionuclide Transport in Soils

The radionuclide transport in soil case is a study from the Joint EU-USNRC Project on Uncer-

tainty Analysis of Probabilistic Accident Consequence Codes (Harper, Goossens, Cooke, Hora,

Young, Psler-Sauer, Miller, Kraan, Lui, McKay, Helton & Jones 1995). These codes estimate

the risks and other endpoints associated with accidents from hypothesised nuclear installa-

tions. The case consists of 31 seed variables, assessed by 4 experts. Five seed variables were

judged to be of a different scale and left out of the current evaluation. These are the variables

with the identifiers: ‘S2 RU CS CA’, ‘S2 RU CS PO’, ‘S2 RU CS BA’, ‘S2B CR CS SS’ and

‘S2B CR CS LS’. The first 13 seed variables of the 26 left we used to derive the performance

based weights for both the classical model, CDM , and the moment model, MDM . The re-

maining 13 were used to test the performance of the classical and moment model linear pools.

Coefficient c1 = 10000 has been used for the moment model. In Tables C.8, C.9 and C.10 the

results are given for resp. r2 = 0.1, 0.5 and 0.9. The results for both the moment and the

classical model linear pool are summarised in Table C.11.

Table C.8: Comparison of MM and CM for radionuclide transport in soil data (r2 = 0.1)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4

Weights

Expert 1 0.1649 0 0.25 1 0 0 0
Expert 2 0.1957 0 0.25 0 1 0 0
Expert 3 0.3438 0.4614 0.25 0 0 1 0
Expert 4 0.2956 0.5386 0.25 0 0 0 1

Moment model score

13 seed variables
penalty φ1 1790 2564 1904 4767 4487 3139 3577

13 performance variables
penalty φ1 15670 27590 14255 12542 9172 9034 66129

Classical model score

13 seed variables
calibration 0.0195 0.1431 0.0195 0.0000 0.00 0.0102 0.0074
information 0.1538 0.2971 0.1509 1.7422 0.5656 0.5720 0.9141
score 0.0030 0.0425 0.0029 0.0000 0.0000 0.0058 0.0068

13 performance variables
calibration 3.27E-05 3.27E-05 3.27E-05 6.04E-13 1.46E-07 1.15E-04 2.43E-07
information 0.2352 0.3319 0.2485 1.5642 0.4731 0.6025 0.7910
score 7.68E-06 1.08E-05 8.12E-06 9.45E-13 6.92E-08 6.95E-05 1.92E-07

MDM , CDM : performance based linear pools using resp. moment and classical model.
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Table C.9: Comparison of MM and CM for radionuclide transport in soil data (r2 = 0.5)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4

Weights

Expert 1 0.25 0 0.25 1 0 0 0
Expert 2 0.25 0 0.25 0 1 0 0
Expert 3 0.25 0.4614 0.25 0 0 1 0
Expert 4 0.25 0.5386 0.25 0 0 0 1

Moment model score

13 seed variables
penalty φ1 3788 5350 3788 7504 7056 6822 7495

13 performance variables
penalty φ1 41647 126812 41647 21322 15731 14840 379020

Classical model score

13 seed variables
calibration 0.0195 0.1431 0.0195 0.0000 0.00 0.0102 0.0074
information 0.1509 0.2971 0.1509 1.7422 0.5656 0.5720 0.9141
score 0.0029 0.0425 0.0029 0.0000 0.0000 0.0058 0.0068

13 performance variables
calibration 3.27E-05 3.27E-05 3.27E-05 6.04E-13 1.46E-07 1.15E-04 2.43E-07
information 0.2485 0.3319 0.2485 1.5642 0.4731 0.6025 0.7910
score 8.12E-06 1.08E-05 8.12E-06 9.45E-13 6.92E-08 6.95E-05 1.92E-07

MDM , CDM : performance based linear pools using resp. moment and classical model.

Table C.10: Comparison of MM and CM for radionuclide transport in soil data (r2 = 0.9)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4

Weights

Expert 1 0.2589 0 0.25 1 0 0 0
Expert 2 0.2631 0 0.25 0 1 0 0
Expert 3 0.2420 0.4614 0.25 0 0 1 0
Expert 4 0.2360 0.5386 0.25 0 0 0 1

Moment model score

13 seed variables
penalty φ1 21609 31731 21627 33422 31386 41685 44582

13 performance variables
penalty φ1 277537 1066189 300979 104443 77828 69806 3341316

Classical model score

13 seed variables
calibration 0.0195 0.1431 0.0195 0.0000 0.00 0.0102 0.0074
information 0.1525 0.2971 0.1509 1.7422 0.5656 0.5720 0.9141
score 0.0030 0.0425 0.0029 0.0000 0.0000 0.0058 0.0068

13 performance variables
calibration 3.27E-05 3.27E-05 3.27E-05 6.04E-13 1.46E-07 1.15E-04 2.43E-07
information 0.2483 0.3319 0.2485 1.5642 0.4731 0.6025 0.7910
score 8.11E-06 1.08E-05 8.12E-06 9.45E-13 6.92E-08 6.95E-05 1.92E-07

MDM , CDM : performance based linear pools using resp. moment and classical model.

Table C.11: Summary of Comparison of MM and CM for radionuclide transport in soil data

r2 = 0.1 r2 = 0.5 r2 = 0.9

MDM CDM MDM CDM MDM CDM

Moment model score

13 seed variables
penalty φ1 1790 2564 3788 5350 21609 31731

13 performance variables
penalty φ1 15670 27590 41647 126812 277537 1066189

Classical model score

13 seed variables
calibration 0.0195 0.1431 0.0195 0.1431 0.0195 0.1431
information 0.1538 0.2971 0.1509 0.2971 0.1525 0.2971
score 0.0030 0.0425 0.0029 0.0425 0.0030 0.0425

13 performance variables
calibration 3.27E-05 3.27E-05 3.27E-05 3.27E-05 3.27E-05 3.27E-05
information 0.2352 0.3319 0.2485 0.3319 0.2483 0.3319
score 7.68E-06 1.08E-05 8.12E-06 1.08E-05 8.11E-06 1.08E-05

162



C.5 Case 5: Atmospheric Deposition

The atmospheric deposition application of the classical model was conducted as a pilot study for

the Joint EU-USNRC Project on Uncertainty Analysis of Probabilistic Accident Consequence

Codes (Harper et al. 1995). The application involved 4 experts assessing 24 seed variables.

Three seed variables were judged to be of a different scale and left out of the current evaluation.

These are the variables with the identifiers: ‘el. Iod. Trees’, ‘1-2 walls’ and ‘3-4 trees’. The

first 11 seed variables of the 21 left we used to derive the performance based weights for both

the classical model, CDM , and the moment model, MDM . The remaining 10 were used to test

the performance of the classical and moment model linear pools. Coefficient c1 = 108 has been

used for the moment model. The moment model results in the same DM weights for r2 = 0.1,

0.5 and 0.9. The results for r2 = 0.5 are displayed in Table C.12.

Table C.12: Comparison of MM and CM for atmospheric deposition data (r2 = 0.5)

MDM CDM Eq. weights Exp. 1 Exp. 2 Exp. 3 Exp. 4

Weights

Expert 1 0 0 0.25 1 0 0 0
Expert 2 0 1 0.25 0 1 0 0
Expert 3 0 0 0.25 0 0 1 0
Expert 4 1 0 0.25 0 0 0 1

Moment model score

11 seed variables
penalty φ1 1670 17986 92284 831245 17986 76614 1670

10 performance variables
penalty φ1 802615 42764 110402 22140 42764 14298 802615

Classical model score

11 seed variables
calibration 0.0011 0.8525 0.3696 0.3696 0.85 0.3696 0.0011
information 0.6257 0.6138 0.1158 0.3473 0.6138 0.3499 0.6257
score 0.0007 0.5233 0.0428 0.1283 0.5233 0.1293 0.0007

10 performance variables
calibration 0.2441 0.2281 0.4926 0.6828 0.2281 0.4926 0.2441
information 0.4759 0.2787 0.0749 0.1572 0.2787 0.2929 0.4759
score 0.1162 0.0636 0.0369 0.1073 0.0636 0.1443 0.1162

MDM , CDM : performance based linear pools using resp. moment and classical model.
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