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Abstract 

Robotic manipulators are today used in many industrial and field applications, 

especially in the kinematically redundant ones, which offer the possibility to approach a 

specific end-effector pose in infinitive different ways. This freedom allows to optimise 

secondary task alongside the main goal to drive the end-effector through a specific 

trajectory, and such optimisation problem has motivated the work of many researchers in 

the last decades. Historically, the energy of the manipulator has been considered a 

particularly important optimisation cost function: it is relevant in industrial settings, where 

manipulators operations are a standing cost, and even more in field environments, such as 

space, where the available power is limited. 

This thesis presents a study about inverse kinematics algorithms for redundant 

manipulators, aimed at optimising the energy required to perform manipulation tasks. First, 

a literature review surveying inverse kinematics and optimisation for both fixed-base and 

free-floating manipulators is presented. This presents the state of the art in the field and  

illustrates the motivation for this thesis. It also outlines the main challenges encountered in 

the development of optimisation algorithms for redundant manipulators.  

After this, two algorithms are presented and discussed within the thesis, a global and 

a local one. Both are based on nonlinear optimisation techniques. The global problem is 

talked first, and a method is proposed that can optimise different cost functions related to 

either kinetic energy or torques, with linear and nonlinear constraints, such as torque, power, 

and periodic motion. Furthermore, the algorithm is able to individuate multiple optima when 

they are present, thus increasing the chances to find the best (global) optimum. 

A local algorithm based on prediction of kinetic energy integral has also been 

developed. In order to illustrate related challenges, a workspace analysis is first presented 

that illustrates difficulties in providing reliable prediction of kinetic energy values along a 

specific end effector trajectory. Kinematic indexes are discussed through a qualitative and 

quantitative analysis aimed at assessing their correlation with kinetic energy, and results of 

a canonical correlation analysis is presented. Furthermore, it is illustrated that the a 

spaceborne robotic manipulator can be controlled concurrently with the Attitude and Orbit 

Control Systems of spacecraft, adding extra degrees of freedom. 

Following this, a local algorithm based on a predictive estimation of kinetic energy 

integral along a specified trajectory is presented and discussed. This algorithm is based on a 

simplified optimisation problem that allows to assess the direction of motion that will cause 

the smallest increase in the kinetic energy integral. This produces solutions that are closer to 

the global optimum respect to traditional algorithms. 

Simulations with a 3-DoF planar robot are used to validate the results. The global 

method is validated against a global algorithm existing in literature and shown to be able to 

solve a wider class of problems. The local algorithm is statistically compared against existing 

inverse kinematics methods, showing an reduction in kinetic energy up to 30%. The thesis is 

completed by a discussion about limits and further improvements of the work hereby 

presented. 
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Chapter 1. Introduction 

 

1.1 Motivation 
 

Mechatronic systems and space exploration are two of the great technological 

breakthroughs of the XX century, and they are closely related to each other. Robotics, in fact, 

have been part of the effort for space exploration and exploitation since, in a wide sense, 

every unmanned space mission is a “robot”, comprising the very first satellite Sputnik 1, 

launched on the 4th of October 1957. However, more specifically, a robot can be intended as 

a system of rigid bodies connected by joints [1]. According to this definition, the most obvious 

tasks that a roboticist will face are those related to controlling pose and velocity of a robot. 

Both need to be defined in an unambiguous way, characterised from the mathematical point 

of view, and set according to the operational needs of the robot user. These problems are 

usually expressed in terms of translating the position and velocity of each one of the joints 

of a robotic manipulator into the position and velocity of the so called end-effector, which is 

the part of the robot executing its main task (usually, a tool or a gripper fixed at the free end 

of the manipulator, although this may vary, and one example will be presented in this 

document, where the attitude of a spacecraft will be considered part of the end-effector). 

The science that tackles these problems is kinematics, and in fact one of the most 

classical problem in robotics is the computation of direct or inverse kinematics of robotic 

manipulators. The first one is the computation of the end-effector position given specific 

joint positions, while the latter one is the opposite problem: estimating which joint positions 

are required to obtain a specific end-effector position. Both problems present specific issues, 

and especially the inverse kinematics one has been widely studied for serial manipulators, 
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which constitute the vast majority of robotic manipulators in industrial applications. The 

problem of computing the inverse kinematics of a robot lies in the nonlinearity of the 

problem, which forces to resort to solution methods based on the inversion of a Jacobian 

matrix of the manipulator. Such technique, called differential inverse kinematics, is prone to 

numerical problems and instabilities, and this makes the inverse kinematics problem 

particularly tricky.  

The complexity is further increased for specific kinds of robotic manipulators, as 

some structures generate more complex problems than others. Two classes of manipulators 

for which extra complications arise are redundant and free-floating ones. Both the former 

and the latter ones feature special characteristics respect to their degrees of freedom: 

redundant manipulators feature more joints (degrees of freedom) than what is strictly 

necessary to execute its end effector task. Such manipulators are peculiar due to the fact that 

infinite solutions exist for the inverse kinematics problem, which allows for greater flexibility 

as it allows to approach each task in a variety of ways. However, in order to exploit the added 

possibilities, it is necessary to resort to extra constraints, or to optimisation techniques, in 

order to individuate a specific solution. This further complicates the already difficult inverse 

kinematics problem. 

Free-floating manipulators, instead, are manipulators that are not mounted on a 

fixed base, such as Remotely Operated Vehicles (ROVs) for underwater operations, or the 

Space Shuttle arm. The specific complication for this kind of manipulator is that, as soon as 

the manipulator moves, the base may also move, depending on the reactions transmitted 

from the robotic arm to the base. The motion is governed by the momentum conservation 

law, which constitutes a nonholonomic (non-integrable) constraint to the motion. This 

constraint is particularly difficult to tackle, since it implies that a specific position of the joint 
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doesn’t unambiguously correspond to a specific position of the end-effector, due to the fact 

that the base position depends not only on the current moment, but on the history of the 

manipulator motion as well. It should be noticed that a manipulator can be both redundant 

and free-floating at the same time. Mathematical techniques exist to adapt inverse 

kinematics techniques initially developed for fixed-base manipulators to free-floating 

manipulators, so that algorithms developed for ground use can be adopted for free-floating 

systems as well. 

From the nature of redundant manipulators, an optimisation problem naturally 

arises: their added freedom of motion allows in fact to solve the inverse kinematics problem 

as an optimisation problem, attempting to minimize a cost function such as kinetic energy, 

torque, or distance from obstacles. Redundant manipulators and novel optimisation 

techniques to solve their inverse kinematics problem are indeed the main topic of this thesis. 

Particularly, the main concern of this thesis is the optimisation problem that arises from the 

objective to minimise the kinetic energy and the torque integral of a redundant robotic 

manipulator. These functions are commonly associated with the energetic cost of 

manipulation tasks in literature, and many works have been published regarding their 

minimisation. This thesis particularly presents developments that extend the state-of-the-

art of global and local inverse kinematics solution methods for redundant manipulators, 

with a particular focus on energy optimal and near-optimal solutions. 

The topic is relevant for a variety of applications. Particularly, a case can be made for 

robotic systems used on field applications such as space and remote environments on Earth.  

For such systems, a big challenge is clearly posed by autonomy and battery life, making it 

obvious that a case exists for energy efficient inverse kinematics. This can have positive 

effects on the ability of an autonomous robotic system to perform prolonged operations. 
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Furthermore, powerful on-board computers are nowadays available for field robotics, 

making it possible to deploy algorithms featuring higher complexity than before. 

Industrial manipulators, although they feature less limited power resources, can also 

benefit from improved energetic performance, although in a different way. They usually 

perform a restricted set of motions throughout their whole operational life. As these motions 

can be optimised offline rather than in real-time, it is particularly relevant for them to be able 

to access algorithms that can find the best possible solution, taking into account all the real 

constraints they face during operations.  

1.1.1 Space robotics and redundancy 

As  mentioned earlier, space and robotics are very closed related topics, as most of 

the human artifacts that are sent to space are in fact automated. However, when it comes to 

the specific topic of interest for this thesis, free-floating manipulators, their history is much 

shorter. This kind of mission has become particularly interesting in recent years due to the 

growing interest in both space debris removal and in-orbit servicing, however very few space 

robotic arms have flown so far, and none of them has been explicitly designed for debris 

removal. The first robotic manipulator to see service in space was Shuttle Remote 

Manipulator System (SRMS), deployed from the Space Shuttle Columbia in 1981. SRMS, also 

knowns as Canadarm, is a 15.2 m long robotic manipulator with 6 Degrees of Freedom. Since 

when it has first been developed by Canadian Space Agency, and it has deployed in space 

several times, performing on-orbit service missions. A further version of the whole design is 

the so called Canadarm2, which official name is Space Station Remote Manipulator System 

(SSRMS): it is 16 metres long, and its number of DOF has been increased to 7. This has been 

possible with the addition of the Special Purpose Dexterous Manipulator (SPDM), it is able to 

perform activities previously carried out by astronauts through Extra Vehicular Activities 
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(EVA) [2]. Canadarm2 and its SPDM add-on are currently deployed on a movable platform, 

Mobile Remote Servicer Base System, which constitutes with them the so-called ISS Mobile 

Servicing System. However, it is not the only robotic system used on the ISS: Japanese Space 

Agency (JAXA) developed the Japanese Experiment Module Remote Manipulator System 

(JEMRMS), meant to support experiments performed in the Exposed Facility (EF) of the 

Japanese Experiment Module (JEM). It includes a 10 m long main arm with 6 Degrees of 

Freedom, and a 6 DOF 2 m long Small Fine Arm (SFA) [3]. Another robotic arm, European 

Robotic Arm (ERA), 11 m long with 7 DOF, has been deployed by European Space Agency 

(ESA), on a re-allocable base attached to the Russian segment of the ISS [4]. 

It shall be noticed that most of these manipulators are either redundant or were 

made redundant at a later stage with additions providing extra degrees of freedom. Indeed, 

redundant manipulators allow for greater flexibility than nonredundant ones, in that they 

allow to perform tasks while respecting additional constraints, which can vary from energy 

minimisation to obstacle avoidance, and in space environment are most likely to be 

constraints on the motion of the base which, like already said, depends on the motion of the 

arm through the equation of conservation of momentum.  

1.1.2 Current limitations and challenges 
 

 Given this additional flexibility, redundant manipulators are a very 

interesting field of research, yet the additional mathematical difficulties pose a number of 

challenges, due to the fact that inverse kinematics is a particularly difficult problem to 

optimise since, as already mentioned, it is nonlinear and prone to numerical problems. 

Generally, this problem is solved in different ways depending on the application the 

manipulator is designed for.  
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Such solution methods can be considered a subfield of robotic motion planning, 

which refers more generally to the topic of controlling the motion of a robot. For 

manipulators, this does not only include the inverse kinematics problem, but also choosing 

an end-effector trajectory that is considered suitable to execute the prescribed task. In this 

thesis, the focus is on those problems where a specific end-effector trajectory must be 

tracked, and it is necessary to compute a joints motion to perform it. Several practical 

situations of this kind exist in robotics, for example those where the end-effector is required 

to perform a specific manufacturing task, or inspection tasks where a camera or a similar 

instrument is mounted on the end-effector.  

The inverse kinematics problem of redundant manipulators can be solved either 

locally or globally. The difference between the two classes of methods is the scope of the 

solution: the local methods are based on dividing the desired trajectory in steps and provide 

an optimal solution for each step sequentially. That is, each step is optimised locally and 

independently from the others, using the result of the previous step as initial conditions. This 

means that the algorithm will act in a greedy way, looking for early gains while neglecting 

what further steps may bring. On the other hand, global methods have the advantage of 

considering the whole trajectory to be performed at once. That is, the algorithm will avoid 

an improvement of the solution at a given step if this produces a bigger loss at some other 

step. This kind of algorithm is usually based on an integral cost (integral along the trajectory 

under consideration) and it can provide higher quality (lower cost) solutions, at the price of 

algorithm complexity. Usually, roboticists prefer to use local methods when they have the 

necessity for a fast or even online solution, while they exploit global methods when they have 

less time constraints and can afford a solution with increased computational cost. 
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For local optimisation, and possibly for inverse kinematics problem in general, the 

most used method is Moore-Penrose pseudoinverse, which is based on a simple local least 

squares minimisation of joint velocities [5]. What makes it effective is that it is 

computationally simple, and it allows for countless variations based on a framework called 

task prioritisation [6]. This consists in modifying the solution obtained with Moore-Penrose 

pseudoinverse by adding an extra term to joint velocities, that doesn’t modify end-effector 

trajectory (i.e. the result is still a solution of the inverse kinematics problem). This extra term 

can be the result of a further optimisation, and allows to include secondary objectives such 

as obstacle avoidance. 

This flexibility allows for a huge number of specific adaptations of the Moore-Penrose 

pseudoinverse to different requirements and frameworks. The specific choice of the 

implementation to be used for a certain inverse kinematics problem can be found by asking 

what the most effective way is to solve inverse kinematics given the specific operational 

needs of the manipulation task under examination. For many manipulators tasks, the most 

obvious answer to this question is the avoidance of singularities. These are specific 

configurations where a specific end-effector velocity can only be achieved through infinite 

joint velocity, and they are the main issue related with Moore Penrose pseudoinverse, or any 

other pseudoinverse-based inverse kinematics algorithm. This problem is made even more 

complex in the case of orbiting manipulators, since they not only feature kinematic 

singularities, but dynamic singularities as well, which depend on their inertia tensor [7]. Their 

avoidance can be implemented with similar methods as classical manipulators, although with 

increased mathematical complexity, as it will be explained later in this thesis. The main 

reason for this issue is that any algorithm based on the Moore-Penrose pseudoinverse simply 

incorporates local information. It is particularly hard to develop an effective method of 
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solution that allow for better-than-local solutions because increases in computational cost 

mean that the algorithm will be harder to use online. The possibility to incorporate more 

than local information in an online method is something that researchers have been looking 

at in the last decades, and it is indeed one of the challenges that will be investigated in this 

thesis. 

The global problem is different than the one that is solved by pseudoinverse-based 

methods, in that in this case the motion is not locally optimised for each time step, but the 

inverse kinematics global problem is solved instead: that is, the whole trajectory is 

considered at once, and an integral cost is optimised, as opposed to the value of a specific 

function at a specific point. This kind of problem is of course much more mathematically 

complex, and features completely different solution methods, most of which are 

concentrated on point-to-point motion rather than precise tracking of a trajectory. The 

solutions methods that have been developed to the inverse kinematics problem are generally 

based on optimal control frameworks, such as Pontryagin maximum principle [8], or calculus 

of variations, and try to solve the problem by setting up a Two-Point Boundary Value Problem 

(TPBVP). 

Global methods feature a number of limitations that is quite consistent. An 

important limit lies in the necessity to solve a TPBVP, which is a mathematically complex task 

requiring a good initial guess, and presenting complications related to the imposition of 

boundary conditions. Furthermore, as outlined by some researchers [9], it may well happen 

that methods based on the calculus of the variations get caught in a local optimum, 

depending on the nature of kinematic constraints and of the initial conditions. One more limit 

is that real manipulators feature limits on joints excursions, velocity, as well as power and 

torques, which are usually hard to introduce in existing optimisation methods, which are in 
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the best cases able to incorporate linear constraints, but fail in considering nonlinear 

constraints, such as torque limits. Ideally, such nonlinear constraints should be extendable 

to obstacles and environmental constraints to the motion of the robotic arm, and be able to 

output periodic trajectory, where the robotic arm reaches the initial joint configuration again 

at the end of the motion. This kind of trajectory is particularly relevant for repetitive 

industrial applications. Challenges that invite for further investigation in the field of global 

inverse kinematics optimisation are the complexity of use of existing solutions, and their 

limitations regarding the ability to impose constraints which apply to real manipulators. 

1.2 Research aim and hypothesis 
 

1.2.1 Research Aim 
 

This thesis investigates the problem of optimal inverse kinematics solutions for 

redundant manipulators. More specifically, it aims at investigating if the problem of 

developing novel mathematical optimisation techniques to the inverse kinematics problem 

to obtain solutions that feature a minimisation of the integral energy cost of a predefined 

trajectory, while avoiding specific limitations of existing algorithms. It should be noticed that 

the particular target of this work is to obtain an overall performance increase over 

trajectories performed by a manipulator, as opposed to a local result. The problem will be 

discussed in a way that can be applied to both fixed-base and free-floating manipulators, 

making a case for the use of the results in space.  

The inverse kinematics problem of redundant manipulators is easily posed as an 

optimisation problem, however the methods used so far to individuate a solution feature 

several limitations. Such limitations are particularly striking considering that the field of 
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robotics has generally made use of a huge variety of optimisation techniques to tackle its 

problems, such as inverse kinematics itself, or the point-to-point motion problem. 

Conventional solutions to the IK optimisation problem rely on least squares 

optimisation for the local problem, and to calculus of variations or Pontryagin maximum 

principle for the global problem. The local schemes, exploiting the Jacobian matrix of the 

manipulator to calculate joint accelerations or velocities [10], feature, as already mentioned, 

kinematic singularities, where the manipulator Jacobian (i.e. the matrix characterising the 

problem) cannot be inverted. Singularities are an important reason why manipulators 

trajectories may become energetically expensive, since moving in their proximity increases 

joints velocities. In order to be mitigated, they require special implementation and numerical 

expedients, one of them being numerical damping, which however reduces tracking 

precision [11]. In a milestone paper for robotics, Yoshikawa [12] proposed to use 

manipulability as an index to implement singularity avoidance, but its use as a singularity 

avoidance tool has been doubted in literature (Staffetti et al. [13]). Much like Yoshikawa, this 

thesis aims at reducing the local optimality of the solution to produce an overall 

improvement along the complete trajectory being performed. In particular, this thesis aims 

to produce a substantially improved energetic cost for manipulation rather than 

concentrating on improving manipulability or other simplified measures. This is expected to 

bring as a side effect that singularities are way less frequent, since they naturally mitigated 

by the fact that the lowest-energy joint trajectory is generally far from them.  

For what concerns global algorithms, current implementations are limited in their 

ability to include constraints or varied complexity, and are limited in their flexibility and ease 

of use by the fact that they require to solve a Two-Point Boundary Value Problem (TPBVP), a 

problem featuring consistent mathematical complications and requiring educated guesses 
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from the user to be solved properly. Coherently with the aim of this thesis, a global solution 

method is sought, that allows to include the maximum possible variety of constraints (linear 

and nonlinear) and cost functions, while being easier to use than existing algorithms. 

Furthermore, it should be able to provide solutions of multi-objective optimisation problems 

and individuate multiple optima when these are present. 

The contribution to knowledge of this thesis is novel inverse kinematics optimisation 

methods that reduce operational costs of redundant manipulators by minimising their kinetic 

energy or joint torques norm integral along the complete end-effector trajectory. Although 

the impact of such an optimisation vary on the application, it is safe to say that many 

applications of redundant manipulators can benefit from reduced energetic needs, especially 

those fielded in environments such as space, where the amount of available power is limited 

and depending on factors not always under control. However, a reduction in power 

requirements can have an important impact even on more mundane industrial manipulators, 

since running costs are consequently reduced. 

1.2.2 Research hypothesis and scope 

 

In this thesis, a number of developments are presented to advance the state-of-the 

art of energy-optimal inverse kinematics algorithms for redundant manipulators. These 

developments include a global algorithm, a study of the workspace of fixed-base and free-

floating manipulators in relationship to energy-saving patterns, and a local algorithm. Each 

algorithm has been developed in order to set the following research hypothesis: 

“Mathematical optimisation tools can be developed for the inverse kinematics 

problem of redundant manipulators to obtain optimal or near-optimal solutions that feature 
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better results and less limitations than solutions provided by optimisation algorithms 

currently in use.” 

The scope of the research is thus the development of mathematical tools to solve 

the inverse kinematics problem of redundant manipulators. Such mathematical tools should 

be able to compute solutions which cannot be computed with currently existing algorithms, 

and provide practical advantages such as being closer to optimality, or being able to take into 

account practical constraints and limitations in a better way than existing mathematical tools.  

1.2.3 Research questions 

 

To develop the algorithms presented in this work, a number of research questions 

have been asked, following the early findings from a first literature review. These questions 

are concerned with current limitations of the solutions of the inverse kinematics problem for 

redundant manipulators, and they have been proven difficult to answer when compared to 

existing solution of the problem found in literature. By addressing them, the aim of the thesis 

would be satisfied and the state-of-the-art in inverse kinematics solutions would be 

extended. 

1. What considerations are necessary to solve the inverse kinematics problem for 

redundant manipulators end-effector trajectory tracking through mathematical 

optimisation of energy-related integral cost functions? 

2. How can the limitations of conventional solutions of the problem mentioned in 

question 1 be tackled by applying optimisation techniques that have not been used 

this way before? And how can such techniques be applied to free-floating 

manipulators? 
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3. Are there different limitations that come into play by applying different methods to 

the problem? How can they be tackled? 

1.2.4 Research objectives 
 

In order to achieve the desired research aim, it is necessary to divide it into separate 

objectives which constitute the milestones to reach in order to answer to the research 

questions. 

1. Conduct a detailed literature review on the state-of-the-art of the inverse kinematics 

problem, and on the use of optimisation algorithms for robotic motion planning, 

both considering fixed-base and free-floating manipulators. Limits to existing works 

should be identified and used as a starting point for further research. 

2. Identify representative cases for the development of energy-optimal inverse 

kinematics trajectories. 

3. Identify the specific challenges of energy optimisation in relationship with the 

manipulator pose and tasks within its workspace. 

4. Develop optimisation techniques that advance the state-of-the-art in redundant 

manipulators inverse kinematics by providing solutions that are closer to the global 

optimum compared to existing algorithms, and that allow to provide solutions not 

achievable with existing algorithms. 

5. Validate the techniques as per objective 4 by testing the introduced research 

hypothesis and verifying it on inverse kinematics problems. 

1.3 Research methodology 
 

The methodology adopted in this thesis follows the subdivision of the inverse 

kinematics problem into a local and a global version. The two problems introduce several 
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unique considerations that are peculiar to their specific mathematical formulation, although 

they also have some trait in common. They differ for number of parameters under 

consideration, initial and boundary conditions, and for the kind of cost function they use, as 

the global problem features an integral cost. This is reflected in the subdivision of the thesis, 

which tackles them separately. In order to analyse the challenges of predicting the global 

effects of a local optimisation, a workspace study has also been considered necessary, and 

performed observing how specific inverse kinematics algorithms change its shape and 

characteristics. The results of such study are presented before other results related to the 

local problem, since they allow for a better understanding of the challenges met during the 

development of this thesis.  

 

1.3.1 General methodological considerations 
 

Since this thesis is focussed on mathematical tools for the inverse kinematics 

problem, the main methodological assumption is that simulations can be used to validate the 

results, as opposed to physical experiments with manipulators. This assumption is considered 

reasonable because the main goal of the thesis is to produce mathematical solutions with 

peculiar characteristics (i.e. optimality, constraints, simplicity of use), as opposed to specific 

implementations of such solutions. Tools to develop such solutions purely in simulation are 

readily available, as formulations to compute kinetic energy, torque and other figures used 

to quantify manipulators energy consumption are can be easily found in literature and 

robotic textbooks [14]. On the other hand, performing physical experiments does not capture 

any specific aspect of a newly developed solution method, since the challenges of physical 

experiments are comparable for all inverse kinematics methods: inverse kinematics 

algorithms usually output the expected manipulator joints trajectory in terms of positions, 
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velocities or accelerations. Such trajectories are routinely implemented on real manipulators 

in research and in the industry, and the implementation process itself features similar 

challenges irrespectively from the algorithm exploited to compute the trajectory in the first 

place. This is supported by the amount of algorithms in literature validated solely by 

simulation (see for example [15]–[17]) or featuring similar results for simulations and 

experiments [18]. It is particularly to be noted that literature provides an optimal kinetic 

energy solution [15], which features local properties validated by simulation and global 

properties solely validated by mathematical proof. 

From this, it follows that it must be assumed that the inertial properties of the robotic 

manipulators under examination are well known. This assumption has already been made in 

inverse kinematics literature (see for example [19]) and allows to focus solely on the quality 

of the IK solution. It is noted that lack of knowledge of inertial properties of robotic 

manipulators is also a common problem for any motion planning algorithm involving kinetic 

energy or torques, and an important body of literature has been dedicated to manipulators 

system identification, with first published work being, to the author knowledge, by Atkeson 

et al. [20]. The accuracy and optimality by which trajectories obtained through inverse 

kinematics algorithm can be implemented on real manipulators depend thus on the 

knowledge of the manipulator dynamics, which in turn depend on the specific manipulator 

and system identification method. It is therefore considered to be beyond the scope of this 

work, as it introduces elements which do not depend on the IK solution. 

Having decided to validate the new algorithms by simulation, a further choice must 

be done about the manipulator to use in the simulation. Given the focus on mathematical 

tools, the validation has been performed on a simple 3-DoF planar manipulator, described in 

detail in Chapter 3. This manipulator topology has been kept the same throughout the whole 
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thesis. This uniformity allows to readily compare the solutions presented in the thesis to one 

another and can give a visual intuition of the difference between traditional algorithms and 

the newly developed ones. It in turn means that the implications of the use of the algorithms 

hereby presented on more complex manipulators are only touched briefly in Chapter 7, 

dedicated to the Conclusions, and no numerical examples are provided. As the scope of the 

work is to provide inverse kinematics solutions with enhanced mathematical properties than 

currently known ones, this is considered an acceptable assumption. A final methodological 

note regarding the choice of the manipulator is that most of the simulations are performed 

on fixed-base manipulators since, as illustrated in the chapter dedicated to the mathematical 

background of the thesis, it is possible to extend algorithms from a fixed-base to a floating-

base manipulator by means of specific mathematical tools [19]. 

As already specified as part of the research aim, this thesis will generally look at the 

performance along a complete trajectory rather than local results, which means that, while 

the local problem is optimised according to a local cost function, the quality of the solution 

will be evaluated observing the overall performance on a complete trajectory. This is 

considered methodologically important because it is assumed that further emphasis on 

strictly local algorithms, given the wealthy body of such algorithms available in literature, is 

not necessary. Many examples of such existing methods will be presented in next chapter.  

1.3.2 Literature review  

The literature review aims at providing a critical analysis of the state-of-the-art in 

robotic arms end-effector motion planning. The field is very vast and a complete literature 

review is beyond the scope of this thesis, it has been thus narrowed down to inverse 

kinematics for fixed-base and redundant manipulators, and to optimal control and 

optimisation algorithms applied to robotic arms. The works chosen have been mentioned 
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based on either historical relevance for the field, direct possibility of application to energy 

minimization, of relevance for the field of optimization applied to inverse kinematics.  

The goal of this chapter is to provide the reader with an understanding of current 

limitations in existing state-of-the-art in the field, and to identify the key gaps in literature, 

which are tackled by the research presented in this document.  

1.3.3 Global algorithm for inverse kinematics 
 

The first problem studied in this thesis is the global inverse kinematics problem, 

where a redundant robotic manipulator is supposed to perform a predefine end-effector task 

(tracking of a trajectory) while keeping an integral cost alongside the trajectory as low as 

possible. The problem is first introduced and considerations that must be taken into account 

in the development of a global algorithm are analysed, answering to research question 1. 

Looking for an answer to question 2, it is then observed that several optimisation methods 

are able to overcome specific limitations of the traditional approach: they are easier to use 

since they do not require to solve a TPBVP, they allow to take into account a variety of cost 

functions and constraints, and they can find multiple optima, allowing for a more complete 

search of solution space. Based on the problem under examination, it has been chosen to 

explore the direction of multi-start methods, exploiting sequential quadratic programming 

as underlying local method, to solve constrained kinetic energy and torque integral 

minimisation problems. The choice of multi-start is motivated by the nature of the 

optimization problem under examination: the required solution is continuous, differentiable, 

and features a very high number of parameters and nonlinear constraints. Other methods, 

such as Genetic Algorithms (GAs) are certainly more frequently adopted in robotics literature 

[21]–[23], however they are usually based on parametrizing continuous solutions in terms of 
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coefficients of continuous, or piece-wise continuous, polynomials, which in this case does not 

reduce the dimensionality of the problem, given the high number of constraints. 

Furthermore, the number of non-linear constraints consistently restricts the set of 

acceptable solutions and suggests the use of algorithms which feature an embedded capacity 

to incorporate such constraints at every optimization step. A simple approach based on 

gradient-based methods appears thus more promising. The quantity and nonlinear nature of 

constraints supports the case for sequential quadratic programming, which simplifies both 

the cost function and complex nonlinear constraints into a single quadratic problem (the 

algorithm is described in detail in Chapter 4). The resulting algorithm constitutes the research 

contribution of this thesis for what concerns global algorithms. In order to explore its 

potentialities, question 3 is first addressed, by finding that a potential problem related with 

the so called curse of dimensionality may appear. This is a known problem of many 

algorithms, and it refers to the fact that they may require an amount of time and memory to 

converge that grows very quickly with the number of variables, up to the point of becoming 

exponential to the number of variables. This may cause their use to be very lengthy and 

impractical, to the point that they would require too many resources to converge and would 

become intractable. 

 Particular care has been taken to solve this issue, further refining the new algorithm 

into an iterative version, which only takes a subset of the parameters of the complete inverse 

kinematics problem at a given step. The closer the iteration gets to the global solution, the 

higher the number of parameters considered, up to the point when the full problem is solved. 

In order to show its capabilities, this final version of the algorithm is evaluated by simulation. 

Particularly, the validation of the algorithm is performed against a solution method based on 

calculus of variations, taken from literature [15]. This comparison shows that the new global 
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algorithm presented in this thesis matches the performance of variational methods when it 

is used to solve problems for which traditional variational methods are able to find a solution. 

Finally, a complete investigation of the new algorithm is performed, exploring its capabilities 

to solve a set composed by various global optimisation problems, with kinetic energy and 

with torque integral as cost functions, and with a variety of constraints on joint displacement, 

velocity, torque and power and on cyclicity of the motion. The set of problems has been 

chosen considering the physical limitations and operational requirements of real robotic 

manipulators, and with the aim to demonstrate that a wide variety of global inverse 

kinematics problems can be tackled by the new algorithm with minimal tuning, and among 

them a few which have never been addressed before in literature (particularly torque and 

power constrained ones). 

1.3.4 Workspace analysis 
 

The biggest challenge when designing a local inverse kinematics algorithms is related 

to the non-linearity of the problem under consideration, and on the difficulties in 

understanding how reaching the local optimum at a certain point in the trajectory will 

influence the reminder of the motion [24]. In order to show the reader how this affects the 

resolution of the local inverse kinematics problem, workspaces of redundant manipulators 

are analysed from the energetic point of view. The analysis aims to investigate how kinematic 

indexes that literature links with well-behaved trajectories (i.e. non-singularity of the 

Jacobian) matrix are related with energetic performance. To this purpose, the end-effector 

of the manipulator under analysis is moved all along a planar workspace with constant 

velocity, and the resulting kinematic indexes values are analysed. The selection of kinematic 

indexes to be included in the analysis has been based either on their use in the field of inverse 
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kinematics or on their close relationship with variables that influence the energy and power 

figures of robotic manipulators. Further details are contained in the relevant chapter 

Since the relationship between kinetic energy (or power) and manipulator motion 

does not have a clear analytical form, the possibility to include a further research 

contribution in the thesis has been identified in  performing an analysis on a statistical basis 

to extract data features regarding correlations between kinematics indexes of redundant 

manipulators and kinetic energy and other energy-related variables. This is considered 

relevant both for the goal of motion planning, and for kinematic design considerations: in 

fact, minimization or maximization of kinematic indexes has been proposed and used as a 

design method in literature [25]. For the analysis hereby performed, the instrument of 

canonical correlation is used to assess which kinematic indexes influence the ability of a 

manipulator with a reduced energetic cost. This is a statistical technique that allows to 

quantify the correlation with linear combinations of variables rather than single variables, 

allowing to visualise which properties of a manipulator, and manipulator Jacobian, are more 

relevant for energetic performance. In order to allow for an understanding of the difficulties 

of predicting integral (global) energy costs when local algorithms are involved, the linear 

combination of kinematic indexes that features the highest correlation with kinetic energy is 

highlighted. Based on the analysis results, it is considered this function is a good 

approximator of the energetic behaviour of the manipulator, at least when considering only 

local variables to compute the approximation. Its optimization will thus will be used as a 

comparison with actual kinetic energy optimization in the reminder of the thesis, showing 

how much results can differ between a local approximator and the exact formulation 

involving joint velocities.. 
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Afterwards, the analysis is extended to space manipulators and their workspace, 

particularly to observing how energy-saving inverse kinematics change the size and nature of 

the workspace compared to the traditional way space manipulators are controlled. 

A peculiarity of space manipulators, in fact, is the implementation of constraints on 

the base. This is particularly important in the space environment, as the base must be kept 

in a specific orientation in order to maintain communication systems, solar panels and 

payload pointed to the right direction. The effort to do so can be partially demanded to the 

Attitude Control System (ACS), but this is usually considered impractical because of the 

mathematical complexity introduced by interactions between its actuators and the robotic 

arm joints. In this thesis, the workspace of the manipulator under analysis is extended by 

activating the ACS concurrently with the robotic arm, and effects on the nature of the 

workspace (i.e. size and manipulability of the overall ACS-manipulator system) are discussed. 

Some limitations in both fixed-space and free-base analyses occur due to the fact 

that the manipulators used are relatively simple: it is well possible that more complex robots 

would feature a different workspace structure. Simple manipulators have however already 

been used in literature to assess general properties of manipulators’ workspaces, even for 

free-floating ones[26], and the analysis should be considered under this light. Particularly, 

the properties that the thesis focuses on are the relationship between workspace and kinetic 

energy, and the amount of extension of the workspace of a free-floating manipulator that is 

made possible through the use of the ACS. It is noted in particular that space manipulators 

feature complex, dynamic coupling between their axes and that this is not captured with a 

planar manipulator. Practical concurrent control of a free-floating 6-DoF robotic arm and a 

3-axis base attitude control has however been achieved in literature with a formulation 

based on the conservation of momentum [27], similarly to the workspace extension method 
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presented in this thesis, which supports the case of the generalizability of the results hereby 

presented.  

1.3.5 Local algorithm for inverse kinematics  
 

The methodological approach to the local algorithms in this thesis has been chosen 

in the light of workspace analysis results. Taking the point that no discernible patterns have 

been individuated on a strictly local basis, it has been elected to include a prediction of the 

best direction of motion when the local optimisation is performed, which means that the 

optimization does not only rely on local information, but on insights about future direction 

of motion as well. This introduces a number of challenges in that the prediction has to be 

performed in a time that has to be as short as possible, yet it has to be accurate enough to 

effectively reduce the kinetic energy cost of the trajectory. A further challenge is the one 

introduced by the need to minimise a global (integral) cost by using a local algorithm. This 

generally means that results cannot be unambiguously mathematically proven to be optimal 

or better than any other local algorithm, since (with some notable exceptions presented in 

the literature review) local algorithms usually bear no relationship with global costs. Both 

these points dictate the shape of the proposed solution and the methodology adopted to 

validate it. 

In light of these considerations, a local algorithm is presented in this work that 

features the ability to introduce a prediction of the future energetic cost in the local 

optimisation. It is based on two additional hypotheses: 

1. At least a part of the future end-effector trajectory is known in advance and can be 

used for a prediction. 
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2. The solution does not necessarily have to be the globally optimal one, but it must 

clearly outperform traditional local inverse kinematics algorithms on a consistent 

number of cases. 

The first additional hypothesis is acceptable for applications where the end-effector 

trajectory is not being computed in real-time itself. For application where it is also computed 

in real time, the method would include a sub-second delay (0.1s for most of the examples in 

this thesis, as explained in Chapter 6), which can also be acceptable depending on the 

application. It is, in any case, a feature that is shared with Model Predictive Control (MPC) 

and other control algorithm exploiting predictions of future costs. The second additional 

hypothesis is instead directly derived from the nature of local algorithms: a local algorithms 

lacks the information to provide a provably optimal global solution (some formulations can 

be used for both local and global problems [15], but the method of solution changes 

radically). Thus, it is reasonable to look for a local solution which globally performs better 

than other local solutions over a set of analysed cases. 

Under the hypotheses presented for the whole thesis, and the additional two introduced 

here, it is possible to reduce the integral kinetic energy cost of a robotic manipulator inverse 

kinematics problem. The solution that allows to do so is based on an approximate prediction 

of the value of the integral of kinetic energy in future steps of a discretized trajectory. This 

prediction is based on a very small subset of future points and it does not need to be updated 

at every time step. Its purpose, rather than providing a precise result for future kinetic energy 

expense, is individuating the direction for which the energetic cost will be lower. 

The strategy pursued to reduce its computational cost is to update the prediction with a 

very large time step. This allows to compute it only a few times over the whole trajectory, 

reducing computational burden. In order to validate the method, three inverse kinematics 
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method available in literature have been included as terms of comparison, featuring the 

minimization of joints velocities norm, kinetic energy, and reactions transmitted to the base 

of the manipulator. The first cost function is widely used in inverse kinematics of redundant 

manipulators, and has been chosen as the benchmark of the comparison due to its huge 

diffusion, while the second one is directly relevant to the topic of energy minimization, and 

the third one is the main cost function used for free-floating manipulators [28]. All the 

methods chosen are based on the Jacobian matrix, which is a widespread and well-

understood inverse kinematics tool, used in practical robotics and in research. Jacobian-

based algorithms have been used for minimization of countless different cost functions, with 

velocities norms and kinetic energy being mentioned already in the first work on the topic 

[5]. Many other methods are available today in literature, their goal is however usually to 

add additional features to the optimization (e.g. joint limits) rather than improving the 

solution itself, as detailed in the literature review in Chapter 3, while Jacobian-based 

methods already provide the locally optimal solution for many cost functions. The use of the 

Jacobian is so frequent also due to the fact that it allows to add secondary objectives to the 

optimization task. In the light of this, the local algorithm presented in this thesis has been 

designed as a secondary task for Jacobian-based algorithms, allowing it to be incorporated in 

existing frameworks. 

A further term of comparison has been added, developing a version of the new predictive 

algorithm based on the function computed in workspace analysis with the highest correlation 

with kinetic energy, as a mean to show the difficulties in mapping characteristics of the 

manipulator to kinetic energy cost. 

 Thus, a total of five local algorithms has been simulated and compared. The number of 

trajectories simulated is 60 for every algorithm, of which 45 rectilinear and 15 circular, 
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resulting in 300 simulations. This has allowed for a comparison of average results of the 

algorithms under examination, showing the ability of the new predictive method to 

outperform all the others, and its validity as a novel knowledge contribution. 

1.4 Thesis organisation 

The thesis is structured in seven chapters, considering this introduction. 

Chapter 2 is the literature review chapter, where the literature about inverse 

kinematics and motion planning of redundant manipulators is discussed. The chapter 

discusses ground and orbiting manipulators, and analyses existing literature for local and the 

global inverse kinematics problem, while also providing some background regarding the 

general application of optimisation in robotics planning, and some illustration of workspace 

analysis methods available in literature. The findings of the literature are then discussed and 

commented individuating the gap that this thesis aims to fill. 

Chapter 3 illustrates mathematical background of the thesis, and the specific 

implementation used in the thesis as well. It is aimed at providing a general overview of the 

mathematical knowledge required throughout the course of this document, and the way it 

has been used in the validation of the thesis. It introduces manipulators’ kinematics and 

dynamics model, provides a complete description of the Moore-Penrose pseudoinverse, its 

numerical issues, task prioritisation, and the general flexibility provided by pseudoinverse-

based algorithms. After this, the generalised Jacobian is presented. This is a mathematical 

tool that  allows to compute free-floating manipulators kinematics with the same methods 

that are normally used to solve the inverse kinematics problem when the base of the 

manipulator is fixed to the ground. The chapter also explains the important difference 

between local and global optimisation, what their specific peculiarities are, and what most 
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used global optimisation meta heuristics are. Furthermore, the chapter presents the robotic 

manipulator used in the simulations and explains in detail which simulations are performed 

to present and validate the algorithms. The chapter is closed by a description of the 

simulating software used to perform all the analyses presented in this thesis. 

Chapter 4 is devoted to the presentation of the Interpolation-Based Global Kinematic 

Planner, the global optimisation method developed as part of this thesis. Such algorithm is 

able to optimise different cost functions with different sets of linear and nonlinear 

constraints, comprising periodicity of the trajectory, which is often required for industrial 

applications. It is based on an implementation of the multi-start algorithm and allows to 

optimise different integral cost functions (kinetic energy, joint torques squared norm) along 

an end-effector trajectory. It only requires a first guess of the manipulator initial 

configuration, from which it is able to generate a population of candidate trajectories and 

select those that yield a higher probability to be close to an optimum. These trajectories are 

then optimised with a method that does not involve a Two-Point Boundary Value Problem in 

order to find a solution. Furthermore, several optima are found at each run of the algorithm, 

overcoming a known limitation of variational methods, and allowing for more chances to find 

the effective global optimum. The chapter starts with a general overview of the algorithm, 

where a first version of the algorithm is presented. Since this version converges slowly for 

more complex problems, an improved, iterative version based on interpolation is presented 

and validated against an existing algorithm available in literature [15]. Several optimisation 

problems with constraints on joints displacement, velocity, torque or power are then solved 

and their solutions are commented. 

Chapter 5 features an analysis of the test manipulators workspace. The purpose of 

this analysis are several: on one hand, workspaces are characterised in terms of size and 
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patterns in preferential direction of motion depending on the algorithm and on the type of 

manipulator (fixed-base vs free floating, and free floating with attitude control system). On 

the other hand, a statistical analysis is performed to find correlations between the kinematic 

indexes of robotic manipulators (manipulability, Jacobian condition number etc…) and their 

kinetic energy along the motion on a certain trajectory, with the aim to characterise the 

relationship between manipulator configuration and expectation of kinetic energy cost. For 

this purpose, canonical correlation is used, which represents the correlation of linear 

combinations of variables. From this statistical analysis, it is observed that no kinematic index 

features high enough correlation with kinetic energy to be used as an alternative cost 

function in optimisation, and that a linear combination of them is selected as a possible 

approximator of kinetic energy. For free-floating manipulators, it is observed that reducing 

the base motion generally also reduces the workspace, and that attitude control system can 

be actively used to retain the manipulability of the manipulator (and thus extend the 

workspace). 

Chapter 6 is dedicated to the presentation of the local algorithm developed for this 

thesis, based on predictive minimisation of a cost functions. The algorithm is meant to 

integrate with traditional Jacobian based pseudoinverse methods rather than substitute 

them, due to the simplicity, versatility and diffusion of pseudoinverse schemes. It is based on 

computing the value of a rough prediction of the kinetic energy integral along the trajectory,  

and exploit task minimisation to drive the manipulator in the direction where such prediction 

has a minimum. The prediction does not need to be updated at every time step, and does 

not need an extensive set of parameters, thus allowing to be used quite flexibly and reducing 

computational cost for real time execution. The predictive algorithm has been tested in two 

versions, PMKE (Predictive Minimisation of Kinetic Energy), based on the minimisation of a 
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prediction of the kinetic energy, and PMCI (Predictive Minimisation of Correlated Indexes), 

which is based on the minimisation of a linear combination of kinematic indexes correlated 

with kinetic energy, as obtained from the workspace analysis. The first one has shown to 

provide much better results, being superior to traditional algorithms on a large set of 

trajectories, thus justifying its computational overhead, while the latter one illustrates the 

difficulty in predicting kinetic energy without precise knowledge of the motion.  

Finally, Chapter 7 features conclusions, limitations and further development of this 

thesis, with some points being made about computational time reduction for both the 

algorithms, and about their application to more complex manipulators. Furthermore, the 

possible introduction of environmental constraints and obstacle avoidance in the global 

algorithm is discussed. 
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Chapter 2. Kinematic motion planning and optimisation in 

robotics 

2.1 Introduction 
 

In this chapter, a survey of literature is conducted, about the state-of-the-art of 

redundant manipulators motion planning. This literature review mostly focuses on inverse 

kinematics and does not pretend to be exhaustive on the topic. Its main goal is to present 

previous research that the author considers relevant to have a complete perspective of the 

field, and to provide readers with the necessary knowledge to understand the contributions 

presented in this thesis in relation with their field of application. The chapter will be 

organised as follows: first, a general survey about methods to solve inverse kinematics and 

kinematic planning optimization method for redundant robotic arms is presented. This part 

is fairly general and can be applied to a number of different manipulators configurations, 

although some of the mentioned works are related to peculiar cases (e.g. hydraulic 

actuators). After this part, a more specific section is devoted to research that has been 

especially dedicated to motion planning of free-floating robotic systems. A further section 

reviews the workspace analysis papers that have been inspirational for the approach taken 

in this thesis.  Finally, a discussion about literature review findings to completely individuate 

the gap filled by this thesis will be presented. 
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2.2 Kinematic planning algorithms for redundant manipulators 
 

2.2.1 Pseudoinverse based local methods 

 

Redundant robotic systems motion planning has different factors of complexity. 

Most notably, the main issues come from the use of redundancy: while it allows far more 

movements and tasks to be accomplished. It also increases control complexity. So far, the 

most used methods for motion planning optimisation of redundant robotic arms, as already 

mentioned in the introduction, have been pseudoinverse-based algorithm. They have been 

used in plenty of variations and have several interesting properties: it has fast execution 

times, can be used to prioritise specific tasks over others and it can be used to optimise a 

variety of different cost functions while driving the robot end-effector through a predefined 

path. This comes however at a price: it only provides local optima, which can be quite far 

from the global one. Local methods are also vulnerable to singularities, which cause large 

errors and mechanical stress on the manipulator. This makes IK frameworks not ideal; yet, 

offline optimisation methods are too cumbersome for real-time applications, due to their 

heavy computational requirements.  

To the best of author knowledge, the first systematic review of about pseudoinverse-

based inverse kinematics is in Klein and Ching-Hsiang [29], which is indeed a milestone in the 

research on the use of pseudoinverse for robotic control. The paper outlines how the 

pseudoinverse generally keeps the instantaneous power required low, since it minimises 

joint velocities, which is a rough approximation of kinetic energy minimisation. It also states 

that the pseudoinverse, minimising velocities, keeps the manipulator away from 

singularities, which was however proven incorrect by Bailleul et al. [30]. Many of the 

subsequent works evolved their algorithms from the concept of weighted pseudoinverse, as 
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previously presented by Whitney [5]. This concept is based on optimising each joint with a 

different weight, rather than trying to reduce the velocities norm, in order to prioritise 

specific aspects of the motion. A possible variation of this exploits the inertia matrix of the 

manipulator as a weight matrix, resulting in a local minimisation of the kinetic energy at every 

time step. This kind of solution will be used as comparison for the local algorithms 

implemented in this thesis. 

After that, IK have been proposed as a redundancy resolution method for several 

applications, most notably energy or torque minimisation, but obstacle avoidance, joint-limit 

avoidance, or simply singularities avoidance, have been explored as well. Nakamura et al. 

work about obstacle avoidance [6] is extremely important for robotic manipulators control, 

as it introduces the concept of task prioritisation to solve redundancy problems: this is a 

method to superimpose different motion tasks, so that a first one follows the end effector 

predefined path, while the others optimise secondary criteria. Its first application was, as 

mentioned, obstacle avoidance, but it has been used in most of IK optimisation schemes 

afterwards. In [31], Chevallereau and Khalil propose more applications of the task 

prioritisation framework, which they call null-space method, particularly they maximise the 

distance from singularities through manipulability, and the distance from joints limits. 

Several other applications have been developed along the years, with manipulability being a 

favourite cost function for being maximised as secondary task [12]. Manipulability, which has 

already been mentioned in the introduction, is a quantity depending on the determinant of 

the Jacobian matrix of a robotic manipulator, and it approaches 0 close to singularities. This 

makes its maximisation quite an effective method to avoid singularities. More complex 

applications have been developed along the years, with the concept going as far as being 

used to maintain the position of the centre of gravity of a legged robot, as proposed by Mistry 
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et al. [32]. Such scheme uses the task prioritization framework to switch between different 

configurations of the robot, depending on which leg is on the ground. An alternative 

approach to take into account extra constraints in the motion of a redundant manipulator is 

to include them as extra rows in the Jacobian (augmented Jacobian), which was defined as 

state space augmentation method by Sciavicco and Siciliano [33]. This algorithm, however, 

features extra singularities, which do not normally appear in the original manipulator 

Jacobian.  

Several researchers have followed the direction of pointwise minimising the joint 

torques as a mean to minimise the actuator consumption, associating such an algorithm to 

positive results regarding the minimisation of the kinetic energy integral along the whole 

trajectory. Some analysis on this approach is presented by Hollerbach and Suh [24], who 

however found out that a dynamics-based inverse kinematics resolution method can lead to 

instabilities on longer trajectories. Particularly remarkable for the scope of this thesis is one 

quote from the paper, “It seems that local tampering with the energetics of movements as 

led to global disaster”, which summarizes the complexity of achieving a satisfying global 

result based on local methods. Two works exploit the calculus of variation to provide local 

solutions with global properties: Kazerounian and Wang [34] presented a local solution that 

is able to minimise the integral of the norm of joint velocities, while a strictly energy-focused 

approach was followed by Nedungadi et al. [5], who used calculus of variation to find a 

formulation of torque minimisation that can lead to the global minimum of kinetic energy. 

Both works can be either local or global depending on the way they are used, however the 

latter case requires the solution of a two point boundary value problem, while the solution 

also presents stability issues that make the search particularly hard in both the local and the 
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global case. The algorithm developed by Nedungadi is however provably optimal, which has 

led to it being selected as a mean to validate the global algorithms presented in this thesis. 

The first research providing actuator models for local energy consumption 

minimisation was presented by Vukobratovic et al. [35], who introduced dynamic models of 

hydraulic and electrical actuators and showed indeed that a major advantage of energy 

minimisation compared to joint velocities minimisation is that it tends to move joints with 

low inertia more than those with high one, thus reducing consumption. This is a key point 

about energy minimisation algorithms and will often be observed in the results hereby 

presented as well. One further merit of the authors is that their algorithm is able to 

implement limits on both joint positions and rates. As pointed out by Nenchev [10] in his 

review, these early studies made it every apparent that a trade-off between local 

optimisation and global stability is generally unavoidable: pointwise minimisation must 

always be relaxed not to get stuck in singularities. For this reason, some authors, such as 

Wampler and Nakamura [11], [36] proposed damped least square formulations. These are 

solutions that balance between velocities and end-effector tracking error by adding an extra 

term to the least squares’ formulation, so that the velocities norm is balanced against the 

tracking error. This concept was further refined by Schinstock et al. [37], who introduced a 

damped least squares scheme based on only damping in the neighbourhood of singularities, 

which allows to keep a low tracking error anywhere else in the workspace. A further 

refinement to the method has been developed by Maciejewski and Klein [38], which 

presented numerical filtering. This is a method based on individuating the direction with the 

lowest singular value and selectively damping only that one (i.e. only the actual direction 

where the singularity lies). This solution is today widespread as it is quite effective and simple 

to implement and, although it can  lead to the manipulator losing the track, nevertheless can 
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find uses where perfect tracking is not essential, or as a safety measure to avoid the 

manipulator to get damaged during the motion. 

Despite approaches based on pseudoinverse matrix have been investigated for a long 

time, improvements on existing results are still being published in recent years.  An idea 

based on switching between different tasks has been presented by Kelemen et al. [39], who 

change the priority of the tasks in order to choose the order that requires less computational 

time. This is particularly useful for hyper-redundant manipulators with an extremely high 

number of DOF. Another recent pseudoinverse-based approach has been presented by 

Woolfrey et al. [40], who present a framework able to keep the correct tracking when the 

manipulator is subject to large external forces. 

2.2.2 Other local methods 
 

Since stable local solutions are so elusive, especially when it comes to the torque 

minimisation problem, in the last 20 years a few authors attempted to solve the local 

problem with different methods other than pseudoinverse. These sounded more promising 

than traditional, and unstable, algorithms, and some results are particularly worth 

mentioning, especially regarding torque local optimisation. Most of these efforts are focused 

on solutions based on quadratic programming, an optimisation technique aimed at 

minimising a quadratic cost function subject to equality and inequality constraints. 

Particularly, the generalisation of a Quadratic Programming based inverse kinematics 

algorithm to inequality constraint is a breakthrough result obtained by Kanoun et al. [41]. 

The method allows to include constraints such as joints mechanical limits and actuators 

maximum velocities, but its main challenge lies in the ability to provide a result in real-time. 

Many algorithms have been proposed, featuring different principles from classic optimisation 
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techniques to neural networks. Some practical solutions have been presented in the 90s, for 

example by Cheng et al. [42], who proposes workspace decomposition, a technique to divide 

the problem into smaller subproblems. This technique allows them to optimise distance from 

singularities with several kinds of constraints on joints angles, velocities and accelerations. 

The problem of torques minimisation has been tackled by a few researchers, especially using 

neural networks as a method to solve quadratic programming problems. An example is 

provided by Tang et al. [43], who propose two different kinds of neural networks, Lagrangian 

Networks and Primal Dual Networks. Both methods are successfully used for local 

minimisation of torques, while the second one also manages to enforce a maximum torque 

limit in the solution. A similar approach has been sought by Zhang et al. [44], who proposed 

a simple neural network to locally optimise torques while considering joint limits. A more 

recent work has been presented by Zhang et al. [45], proposing a unified approach for 

velocity and acceleration level quadratic programming solution methods, and introducing a 

new neural networks based solver featuring piecewise linear dynamics, which they show to 

be able to tackle the problem of local optimisation both on velocity and acceleration level. 

Recently, Faroni et al. [17] proposed a predictive-control based method to ensure respect of 

kinematic constraints, and aiming at avoiding situations where a manipulator moves in such 

a way that kinematic constraints cannot be respected in future steps. 

Some other prediction techniques for inverse kinematics, unrelated with quadratic 

programming, are available in literature, and they usually involve nonlinear model predictive 

control (NMPC). It is worth mentioning Rybus et al. [46], who presented an NMPC for non-

redundant free floating robots, aimed at minimising control action. The implementation they 

present doesn’t seem to be feasible in real-time. In fact, to the author knowledge, NMPC has 

not been applied to the general inverse kinematics problems in real-time yet. Another work, 
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by Schuetz et al. [47], features an MPC solution based on Pontryagin Minimum Principle to 

reduce velocities and accelerations norm. However, it does feature a large time-step (10ms), 

and differentiability problems on velocities and accelerations. Furthermore, it features a 

small horizon which can only be improved at the price of renouncing to real-time capabilities.  

In fact, an issue for the application of predictive control is that robotic manipulators inverse 

kinematics requires a very high time resolution (in the order of milliseconds, or at least 

hundredths of second), while at the same time a good performance respect to optimality can 

only be reached when a large part of the trajectory is considered at once (tenths of second). 

Thus, an NMPC-based control would need to overcome these complications. 

2.2.3 Optimal Control based global methods 

 

Alongside local (and online) inverse kinematics method, offline methods based on 

optimal control have been pursued. These techniques are slower, but allow to find minima 

of a global cost function, or at least a function that takes into account a wider time horizon 

than local algorithms, although this happens at the price of much longer execution times. 

They usually minimise a function constituting the sum of error and “control cost” (usually 

joints kinetic energy or actuators torque) on a predetermined set of points, but might be 

used for other metrics such as execution times or such. The set may correspond to the whole 

trajectory or to a finite number of points after last completed integration step. Some authors 

have already been mentioned to use a variational approach provide local results that can be 

exploited for global solutions by solving a two-point boundary value problem. This is certainly 

one of the most used techniques, as is the Pontryagin maximum principle. Calculus of 

variations is based on variations, which are small changes in functions and functionals. A 

solution for this kind of problem can be derived considering the Euler-Lagrange equation of 

the calculus of variations. While the method allows to find analytical expressions for 



53 
 
 

 

 

complicate solutions of optimisation problems involving integral costs, it is also prone to a 

number of limitation related to the need to solve a TPBVP in order to exploit such solutions. 

Furthermore, they make use of the Jacobian in their formulation, which leads to numerical 

instabilities during the solution process. Pontryagin maximum principle, on the other hand, 

is a method that establishes certain conditions under which a continuous optimal control 

problem can become a more manageable TPBVP on a limited set of points, through the use 

of a function called Hamiltonian [48], which makes the problem easier to solve than its 

original form, although still a difficult one due to its TPBVP nature. 

The first authors to use an optimal control approach, to our knowledge, are 

Nakamura and Hanafusa [8], who exploit Pontryagin maximum principle to derive a minimum 

joints velocities norm solution, and provide the mathematical formulation for one based on 

integral of torques. Another early paper worth mentioning is by Suh and Hollerbach [16] 

which provide a global solution that minimises the joint torque integral along a trajectory 

through the use of calculus of variations. The proposed algorithm, however, has a complex 

mathematical formulation involving the second derivative of torques, and requires to solve 

a Two-Point Boundary Value Problem involving acceleration and jerk of the manipulator 

joints. Even then, as the author mentions, even with improvements it can at most consider 

joint limits, while no constraints can be introduced on velocities, accelerations, or other 

variables. Furthermore, methods based on calculus of variations have been showed to not 

necessarily lead to the best optimum, as observed by Martin et al. [9], who showed that the 

solutions of a specific global problem are not only several, but also do generally not lie in the 

same homotopy class. This is, they can’t be continuously deformed into each other, meaning 

an algorithm based on derivatives cannot reliably find them. 
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Despite their limitations, Pontryagin maximum principle and calculus of variations 

have been used to minimise different cost functions in literature. For example, some 

attempts have been done to minimise task execution time (i.e. time to move the manipulator 

end effector along a specific geometric path). First one, to author’s knowledge is authored 

by Galicki [49], who showed that the optimal solution saturates some of the actuators while 

following the trajectory by adjusting the others. Similar results are also observed by Wa and 

Watanabe [50], and will indeed by observed in this thesis as well. Other attempts were made 

to optimise distance from joint limits, by Zhen-Lei Zhou et al. [51], which is based on adding 

terms to the cost function. This work also attempts to implement a periodic constraint on 

the motion, which bears some importance in industrial environments, since robotic arms are 

meant to perform cyclic tasks. Indeed, the global algorithm presented in this thesis also 

features the ability to produce periodic optimal trajectories.  A work based on Pontryagin 

Maximum Principle to minimise energy consumption is presented in [52] by Halevi et al. for 

electromechanical linear actuators. This work features a mathematical model of the 

actuators to be included in the cost function evaluation, but the adaptability of the approach 

for revolute joints is doubtful. 

Several other works address the issue of offline energy minimising motion planning. 

Schiller and Dubowsky [53] proposed a two phases algorithm, based on discretising the 

workspace as a grid first, and performing a local optimisation once the best path has been 

found on the grid. A variational, Jacobian-free approach was instead sought by Hirakawa et 

al. [18], who proposed an algorithm to find the minimum electrical energy consumption 

along a trajectory. This work is especially interesting for its cost functions, which introduces 

modelling of electrical motors, and because it approximates the solution through spline 

interpolation, a concept that will be exploited in this thesis as well to formulate an iterative 
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solution of the global problem. In [54] Saramago et al. investigate offline path planning for 

non-redundant manipulators using a multi-objective cost function involving both trajectory 

time, mechanical energy, and the presence of obstacles. Also worth mentioning is that 

Ferrentino et al. [23] designed a Genetic Algorithm (GA) to perform time-optimal control of 

non-redundant robotic manipulators along specified paths, subject to torque constraints. 

Their method is suited for avoiding torque jitter close to singular points, which traditional 

solvers struggle to tackle. 

Recent works aiming at time optimality were presented by Reiter et al. [55], who 

proposed a solution for the time-optimal path tracking problem of kinematically redundant 

manipulators that takes into account the technological limits of the robot, which is 

formulated as a nonlinear programming (NLP) problem solved with a multiple shooting 

method. In [56], the same authors presented a contribution to the solution of the time-

optimal trajectory planning problem for kinematically redundant manipulators. In the 

proposed approach, the problem is divided into the trajectory optimization and an underlying 

inverse kinematics problem. The former is solved using a numerical computation scheme, 

augmented to fully exploit redundancy in an optimal way such that the latter problem yields 

optimal results. 

2.2.4 Dynamic programming based global methods 

 

Some of the most recent approaches to inverse kinematics are based on dynamic 

programming, which allows to solve the global inverse kinematics problem, although with 

some limitation. This is a method based on portioning a big problem into subproblems that 

are easier to solve, and whose result is related to the result of the bigger problem through a 

relationship known as the Bellman Equation [57]. Particularly, it requires a discretisation of 
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both time and input parameters, which leads to a very high dimensionality. Despite this 

drawback, it has been proposed because it allows to incorporate different constraints and 

most importantly it avoids to solve TPBVP, which are very similar problems than the ones this 

thesis aims to solve.  Among most notable works, Ferrentino et al. [58] discusses the flexibility 

of dynamic programming for multi-objective optimisation and for finding solutions in 

different homotopy classes and with different type of constraints. The numerical example he 

uses aims at the optimisation of the integral of joint velocities, thus no solution is provided 

for kinetic energy and torque. Dynamic programming approaches were previously sought by 

Guigue et al. [59], who proposed an algorithm to solve multi-objective optimisation problems 

for a 7-Degrees-of-Freedom (DOF) manipulator. Their work is particularly relevant because it 

is one of the few attempts, in the author’s knowledge, to solve a bi-objective optimisation 

problem with a different method than weighted squares in robotics. 

Another approach to multi-objective optimisation in robotics has been proposed by 

Pashkevich et al., who proposed multi-objective optimization algorithms [60], [61] via graph 

representation of the search space and dynamic programming procedures, which allow 

generating smooth manipulator trajectories within acceptable time, considering 

simultaneously kinematic, collision, and singularities constraints. Also, Gao et al. [62] 

proposed a methodology based on dynamic programming to optimize the robot and 

positioner motions in redundant robotic system for the fiber placement process, which 

allows user to find time-optimal smooth profiles for the joint variables while taking into 

account maximum joint velocities/accelerations and collision constraints. Nevertheless, none 

of these works considers quadratic cost functions, which are necessary for the minimization 

of kinetic energy, joint torques, or reaction forces/torques. 
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 Dynamic programming was also sought by Field et al. [63], who present a solution 

of the energy minimisation problem based on it. Their intuition does not serve the purpose 

to find the global optimum, since each one of the iterations only explores a subspace of the 

search space; however, it manages to avoid mediocre local minima, and keeps execution time 

at reasonable length by avoiding the curse of dimensionality usually involved with such kind 

of algorithms. Finally, Nurmi et al. [64] recently presented a dynamic programming solution 

for hydraulically powered redundant manipulators. Their approach works sensibly better for 

hydraulic actuators than general energy minimising algorithms, proving that actuators 

models might be beneficial for specific problems. However, the burden of the computational 

complexity means this method cannot be used online. 

2.2.5 Point-to-point motion 

 

The works mentioned so far are focused on the manipulator having to follow a specific 

geometric path in the Cartesian space. However, a consistent body of literature also exists 

for point-to-point problems, which are by nature a global problem. This is particularly 

interesting for this thesis despite it does not focus on the inverse kinematics problem, 

because it is one of the problems for which the robotics community made consistent and 

heterogeneous use of nonlinear optimisation algorithms. Most of the attention in this 

direction has been focused on obstacle avoidance through evolutionary algorithms, 

especially genetic ones (GA). This has been due to several advantages they have over other 

methods: they allow to find a global solution, do not imply the use of derivatives or gradients, 

and are suitable for a wide range of constraints. First author to extensively describe the 

possibility to use this methods in robotics, to the best of our knowledge, was Davidor [65]. 

Since then, many different works have been published on the topic. Shintaku [22]  proposed 

a GA based solution to find the minimal energy solution for an underwater manipulator, 
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based on solving the optimal control problem as a two-boundary value problem. McAvoy et 

al. [66] proposed to combine B-spline and GAs to obtain an optimal trajectory for a redundant 

manipulator tasked to perform a pick-and-place operation. Tian and Collins [67] present a 

floating point GA-based solution able to overcome obstacles and minimise joint 

displacements in the process. Collisions free trajectories were also proposed by Ata and Myo 

[68], who used a Generalised Pattern Search based on merging Genetic Algorithms with 

direct search. Saravanan and Ramabalan [69] proposed a complex cost function integrating 

transfer times, singularity avoidance, accelerations and other parameters, and obtained very 

promising results through Differential Evolution. 

Another kind of evolutionary algorithm is the Particle Swarm Optimisation (PSO), 

which has also been exploited to solve robotics problems. Worth mentioning are Stevo et al. 

[70], who used it to calculate a point-to-point trajectory optimised respect to several 

different objectives (minimum time, energy consumption, joint displacement), and Hansen 

et al. [71], who used it to minimise electrical energy consumption with a realistic model of 

actuators and losses. More recently, PSO was used to plan a point-to-point motion of a 7’DOF 

arm by Jin et al. [72], who used it to plan a motion that could avoid singularities and obstacles. 

2.2.6 Offline mapping based methods 
 

Finally, some authors sought a hybrid approach based on using offline calculated 

global solutions to find an optimum in real time. To the author’s knowledge, first attempt in 

this direction is presented by D’Souza et al. [73], who tackle the problem of learning a non-

convex non-linear problem such as inverse kinematics. For such problems, averaging among 

learned solutions does not usually provide another valid solution; this problem was solved 

by the authors by constraining the learning set through a learning algorithm called Locally 
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Weighted Projection Regression, which allows learning of inverse kinematics only on 

localised region where convexity holds. The problem was further studied by Berenson et al. 

[74], who proposed a practical implementation of the learning process based on a planner 

and a retriever of past trajectories working in parallel. The planner would be used for new 

trajectories, while a retriever would be used to extract similar ones stored in memory and 

adapt them. The advantage of the method is that it does not need to calculate trajectories in 

advance, while at the same time it can improve its results through machine learning when 

the trajectories library is big enough. More recently, Hauser [75] proposed to create an 

offline problem optimum map, to use as a tool to dramatically reduce the search space during 

online calculations. His paper establishes theoretical foundations to assess the characteristics 

of the training data required to achieve a certain approximation quality. Finally, Raja et al. 

[76] presented a learning framework for the inverse kinematics of a mobile manipulator on 

uneven terrain. Their method deals with joint constraints, and with the necessity to keep the 

wheels on the ground, and maximize the robotic arm manipulability. 

2.3 Kinematic planning for free-floating manipulators 
 

2.3.1 Uses of free-floating manipulators and notable technology demonstration 

missions 

 

Manipulators are generally meant to substitute humans in highly repetitive and time-

consuming tasks. In orbit, this becomes even more important, since astronauts time is 

precious and limited, and furthermore humans require complex infrastructure and minimal 

exposure to risks. A list of tasks that are accomplished, or could be accomplished, by 

manipulators, include: EVA support, spacecraft deployment, assembly and maintenance, 

inspection, refuelling. More in detail, they can be described as follows: 
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• EVA support: astronauts need robotic support during their extra vehicular 

activities, in order to hold themselves or their tools in place, to grasp floating 

objects, and other tasks. The most important example of this use of space 

robotics is the fixing of the Hubble Space Telescope, which was first held in 

1994, and again in 1997, 1999, 2002, 2009. During this operations, robotic 

manipulators were mostly used by astronauts to anchor themselves. 

• Spacecraft deployment: for decades now, robotic manipulators have been 

used in space to deploy spacecraft or retrieve them. This also includes 

berthing (and de-berthing) from a space station. 

• Assembly and maintenance: this use is typical of the ISS and consists in 

moving equipment and instruments around the station. As already 

mentioned, most of the manipulators on-board the ISS can be relocated, 

allowing to support human activities across the whole station. 

• Inspection: instruments mounted on robotic arms can be used to inspect 

parts of the spacecraft that are normally unreachable. The most notable 

example is the Inspection Boom Assembly (IBA) used on the Space Shuttle as 

an extension to the SRMS. Being nearly 15 metres long, it permits visual 

inspection of the thermal shielding of the Space Shuttle, increasing the safety 

of the re-entry manoeuvre [77]. 

• Refuelling: extending satellites lifespan has always been a priority in space 

industry, and one of the bottlenecks is the quantity of fuel available on board 

for attitude and orbit control. NASA is one of the frontrunners to 

demonstrate such technologies in space, having operated a technology 
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demonstration mission with Canadarm2 and Dextre, during which a satellite 

was refuelled after manipulating protective coatings, valves and pipe caps 

[78]. 

In addition to fully functioning robotic systems mentioned in the introduction, 

several other technology demonstration missions have been developed, or are under 

development, in order to make space manipulators able to accomplish as many tasks as 

possible. The first one was the Experimental Test Satellite VII (ETS-VII) developed by JAXA, 

which featured a 6-DOF robotic arm, and was launched in 1997 to verify some technologies 

and aspects of autonomous rendezvous and docking, and robotic servicing [79]. This included 

capture and berthing of a target satellite, which was however tied to avoid an accidental loss 

[80]. Another interesting demonstration mission was Orbital Express mission, launched in 

2007, and developed by Boeing and Defense Advanced Research Projects Agency (DARPA). It 

featured technologies related to providing several on-orbit services, such as autonomous 

rendezvous and docking, in-orbit refuelling, and replacement of special components (an 

autonomous robotic arm transferred backup battery and computer to a target spacecraft, 

especially designed to be accessible for servicing [81]). DARPA projects also include 

Spacecraft for the Universal Modification of Orbits (SUMO), which later evolved in Front-end 

Robotics Enabling Near-term Demonstration (FREND). The former was initiated in 2002 to 

combine a detailed stereo photogrammetric image with robotic manipulators in order to 

grasp an existing spacecraft for servicing [82]. The latter was meant for a way broader 

objective: enabling autonomous rendezvous and docking with a spacecraft not explicitly 

designed to allow on-orbit servicing [83]. It featured a 7-DOF robotic arm and associated 

control system, and it accomplished a full-scale laboratory demonstration of autonomous 

grappling of a variety of possible interfaces [84], [85]. Afterwards, the program has further 



62 
 
 

 

 

evolved to PHOENIX, which was aimed at recycling some components of old satellites in 

geosynchronous orbit [86], and today it is known as Robotic Servicing of Geosynchronous 

Satellites (RSGS), focused on providing a modular robotic manipulator toolkit to be added to 

a commercial spacecraft, to make it able to provide services to satellites in GEO orbit, mainly 

payload substitution or update. In 2005, NASA launched Demonstration for Autonomous 

Rendezvous Technology (DART) [87], with the objective to validate innovative components 

and algorithms for autonomous rendezvous and proximity operations. A mission planned, 

but so far never turn into practice, was Technology Satellites Demonstration and Verification 

of Space Systems (TECSAS), jointly developed by DLR, CSA and Russian Space Agency [88]. It 

consisted in a servicing satellite equipped with a robotic arm, and a target microsatellite, and 

it was meant to perform several phases of the on-orbit servicing, from rendezvous, to flying 

inspection, capture, stabilisation, manipulation of the target satellite, and control, either 

active with telepresence or passive during autonomous operations. Although the project was 

discontinued due to the participating agencies having different priorities, DLR still chose to 

continue with the development, renaming it Deutsche Orbital Servicing (DEOS). The 

objectives were reset to evaluate procedures and operations for capture and deorbiting of a 

non-cooperative spacecraft [89]. 

2.3.2 Inverse kinematics of free-floating manipulators 

 

When a satellite equipped with a robotic manipulator has approached a non-

cooperating spacecraft, the motion of the manipulator itself must be planned in order to 

ensure the target can be properly grabbed. This is mostly an inverse kinematics problem. Its 

analysis can start from the point that both linear and angular momentum are preserved in 

absence of external forces; however, the system is non-holonomic, as shown by Masutani et 

al. [90] in a milestone paper for space robotics. They consequently showed the conventional 
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control method for industrial robots, based on local feedback at each joint, is not suitable for 

grasping a floating object. This problem has already been mentioned in the introduction, and 

its implication is that the motion of the base spacecraft and of the robotic arm are couple by 

a constraint on angular momentum, which is constant for the whole system. The main issue 

regarding this constraint is that non-holonomicity implies non-integrability, which is in fact 

what does not allow a simple joint position control. 

Consequently, a first path planning attempt was made by Vafa and Dubowsky [91], 

[92], who presented a cyclic motion trajectory of a manipulator’s joint, defined “Self-

Correcting motions”, to change the base orientation. Their idea was that a nominal trajectory 

was first selected and then, if any sensible deviation of the base orientation occurred, it 

would be corrected by adding small cyclic motions to the joints. The same authors later 

developed a tool called Disturbance Map (DM) in [93], which was meant to help selecting 

paths by identifying the direction of joint movements that would cause the maximum or 

minimum disturbance. This method was however pointwise, meaning that disturbances 

would only be calculated at specific points. Their work was further improved into an 

Enhanced DM (EDM), which was developed by Dubowsky and Torres [94], who also managed 

to use it to effectively plan the manipulator motion while reducing the reactions on the base 

spacecraft. 

A fundamental result for the solution of the inverse kinematics problem for free-

floating manipulators has been presented by Umetani and Yoshida [19], who introduced the 

use of a generalised Jacobian to control the manipulator. This Jacobian incorporates the 

dynamics of the base of the manipulator, allowing to include in the computation the end-

effector motion caused by the non-holonomic constraint on the total momentum of the 

system. This result is of fundamental importance for the control of free-floating manipulators 
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and can be used attitude control of satellites in general. It allows to use algorithms developed 

with traditional Jacobians for control of space manipulators, and indeed it will be used in this 

thesis to illustrate the possibility to use algorithms both for ground-based and free-floating 

manipulators. It is interesting to notice that, as the base inertia increases, its behaviour 

becomes more similar to the Jacobian of a ground-based manipulator with the same 

configuration, perfectly corresponding to it for an inertia tensor going to an infinitive value. 

This result is of fundamental importance for the field and its mathematical formulation is 

presented in detail in next chapter. 

Although the generalised Jacobian allows effective kinematic control of free-floating 

manipulators, the fact that it incorporates dynamic characteristics of the system leads to the 

existence of a different kind of singularities, named dynamic singularities, which were 

investigated by Papadopoulous [7]. These are typical of free-floating manipulators and 

depend on the dynamic characteristics of the spacecraft. In order to avoid them, he 

developed a path planning technique in the Cartesian space [147], based on calculating the 

Path Dependent Workspace (PDW), which is the part of the workspace that can induce 

singularities, and subtracting it to the reachable workspace, in order to obtain a Path 

Independent Workspace (PIW), which is guaranteed not to cause dynamic singularities. Some 

years later, Siciliano and Sciavicco [95] proposed a task-space augmentation method to 

include the base motion as a constraint in the generalised Jacobian, adding a row for each 

constrained base motion. This formulation cold be shown to be equivalent to the fixed-

attitude-restricted Jacobian Matrix proposed by Nenchev et al. [96]. Some researchers, such 

as Cocuzza et al. sought to minimize the reaction torque transferred to the base spacecraft 

in redundant manipulators [97]. This was done through different methods (Jacobian 

pseudoinverse and constrained least squares), and tested with a 2D manipulator, both in 
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laboratory conditions and during a parabolic flight. Other researchers, such as Sabatini et al. 

[98], developed a coordinated control for the arm and the platform, aimed at reaching the 

Reaction Null Workspace by moving the platform first, and grab a manipulation target 

without further reactions on the base spacecraft afterwards. A different approach, certainly 

worth mentioning, was sought by Yoshida [27], who proposed a control able to activate the 

attitude control system based on a feedforward term computed from the conservation of 

momentum. A similar but more sophisticated, torque-based approach, was instead 

suggested by De Stefano et al. [99]. 

2.3.3 Path planning for free-floating manipulators 
 

Alongside techniques to compute the inverse kinematics of a robotic manipulator, 

methods have been proposed to plan the motion of the manipulator in relationship of a 

target end effector position and velocity at a given time, without constraining the full 

trajectory, except for the need to keep the base spacecraft motion as limited as possible. 

Noticeably, Pandev and Agrawal [100] proposed a method called Mode Summation, to plan 

a Cartesian path of a free-floating system with prismatic joints. It is of particular interest since 

it avoids inversion of the Jacobian matrix and also provides a singularity-free path for the end 

effector, although it is to be considered that no requirement was formulated for the 

spacecraft final attitude. 

 A further advancement was produced by Nenchev et al. [101], [102], who introduced 

the Reaction Null Space (RNS), representing the manipulator motion that causes no 

disturbance to spacecraft attitude. A reactionless trajectory generation strategy based on 

this was proposed by Piersigilli et al. [103] in order to find a path which would not affect base 

attitude. An approach based on Reaction Null Space was also proposed by Pisculli et al. [104]. 
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In order to deal with the dynamic singularity problem of the Cartesian space path planning, 

Xu et al. [105] chose to use the direct kinematic equation instead. Their method exploits a 

parametrization of the joint trajectories by polynomial or sinusoidal functions, and a 

numerical (Newtonian) method to find the parameters through several iterations. This didn’t 

address the possibility to go through different paths to reach the desired pose (due to the 

nonholonomic nature of the problem), and the long calculation times required for numerical 

methods, which didn’t allow for real-time use of their findings. The problem of planning the 

path of a free-floating robot with angular momentum was first addressed by Yamada et al. 

[106], [107]. By proposing a variational optimisation approach in the joint space, they 

managed to obtain the required change in satellite attitude only by joint control. Suzuki and 

Nakamura  [108] showed that a free-floating space robot with 6-DOF cannot follow an 

arbitrarily desired trajectory in the 9-D coordinate space (three for the base spacecraft and 

six for the manipulator) without making use of some additional control other than the joints’ 

one. Then, they proposed to solve the problem of following a 9-D path in such a way by 

introducing a perturbation around the path itself, resulting in a Spiral Motion. Yoshida et al. 

[109] proposed the concept of Zero Reaction Maneuver (ZRM), which is obtained by equating 

to 0 the base velocity in the angular momentum equation. Its existence is however limited to 

6-DOF manipulators. Another original strategy was formulated by Nakamura and Mukherjee 

[110], featuring a path planning scheme that deals with the total nonlinearity of the whole 

satellite/manipulator system. The idea behind it is to control both the base and the 

manipulator by only actuating the manipulator joints, and it was called Bi-Directional 

Approach, which was however affected by singularities, and only provided non-smooth 

trajectories. The latter problem was addressed by Papadopulos et al. [111], who proposed a 

path planning technique based on smooth, continuous polynomials, which can control both 
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the endpoint location and the base attitude. Further work showed that it could be improved 

drastically by using high order polynomials. The same concept was later extended by 

Tortopidis and Papadopoulos [112] to n-DOF manipulators. Some researchers, starting with 

Franch et al. [113], have tried to solve the path planning problem for space manipulators by 

employing flatness theory. This is an extension of the concept of controllability from linear 

to nonlinear dynamical systems, and it can be used to design differentially flat systems, which 

are in turn easily linearizable and controllable. On the same path, Agrawal et al. [114] 

extended the method to a three-link space robot, obtaining also significant control 

improvements, as they managed to avoid the use of Nonlinear Programming (NLP) to solve 

the rate equations. Xu et al. [115] pursued a much different approach, trying to only employ 

direct kinematics for the path planning of a 6-dof manipulator, and solve them through a 

genetic algorithms based optimisation. This kind of solution provides a smooth solution, and 

constraints to both the motion path and the reactions on the base. Furthermore, since it does 

not exploit inverse kinematics, it does not incur in singularities. Same authors also proposed 

a similar algorithm, employing particle swarm optimisation, in [116]. However, while the first 

presents very long convergence time, the second may fail to converge depending on the 

constraints.  

2.4 Workspace analysis 

 Many works have been published about workspace analysis of robotic manipulators, 

and some of those related with free-floating manipulators have already been mentioned, as 

they play an important role in understanding the inverse kinematics or the path planning of 

such systems. The oldest work that presents results on fixed-base manipulators’ workspace, 

to the best author’s knowledge, is by Kumar and Waldron [117]. Most of the techniques 

developed afterwards are devoted to individuating the boundaries of the workspace rather 
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than proper characterisation. A survey of some of these methods has been presented by 

Haug et al. [118] in last century. A lot of effort has been devoted to Monte Carlo methods, 

with authors such as Cao et al. [119] and Guan et al. [120], while some authors used different 

search algorithms, such as branch-and-prune (e.g. Bohigas et al. [121], [122]). However, 

papers aiming to characterise the workspace in different ways other than individuating the 

boundaries are generally lacking, although some example can be found (e.g. Zacharias at al. 

[123]). This work presents an analysis of the manipulability of a humanoid robot and its 

approach is to create a manipulability map by dividing the workspace in so called reachability 

spheres, which quantify how many end-effector positions within the sphere are reachable. 

This work is however focused on producing a mapping, but does not elaborate on it 

relationship with energy. 

In order to develop a method to study workspaces from the energetic point of view, 

there are two very interesting works that the author deems worth mentioning. Both of them 

refer to nonredundant space manipulators, but their approach can be useful for redundant 

and fixed-based ones as well. The first one, by Vafa and Dubowski [93], has already been 

mentioned in previous sections as an approach to free-flying manipulators motion planning. 

It proposes an algorithm for kinematic planning that is alternative to the generalised Jacobian 

used in this thesis. It is not as practical for kinematic planning, but it allows for an easier 

assessment of the workspaces size. The authors’ key finding in this regard is that a free-

floating manipulator workspace is influenced by the use of an attitude control system: it is in 

any case smaller than a fixed-base manipulator, but the loss of size can be limited by an active 

attitude control system, while it is maximum when the attitude is only determined by the 

forces ad torques transmitted to the base by the manipulator. The second paper is by 

Umetani and Yoshida [26], and it presents some observations about the difference in 
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manipulability between fixed base and free-flying manipulators. The authors further expand 

the concepts in the previous work, and provide the interesting concept of straight-path 

workspace: that is, the workspace reachable by moving the end-effector on a straight path 

in every direction. Furthermore, they observe that, while for fixed-base manipulators the 

manipulability only depends on the distance from the base joint, free-flying manipulators are 

also influenced by the orientation of the base and the direction respect to it. Errore. L'origine 

riferimento non è stata trovata., from the paper, illustrates the difference.  

 

Figure 2-1 Manipulability distribution for space and ground-fixed manipulator [26]   
 

2.5 Discussion and key findings 

The field of robotics presents a huge amount of open research questions and possible 

approaches, and this holds true even restricting the research scope solely to inverse 

kinematics. The nature of its mathematical and technical problems is characterised by non-

linearity and modelling hardships, and it has been tackled with a very diverse range of 

methods, with different objectives and scopes. 
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Naturally, computational techniques designed for industrial robotic manipulators 

evolved into maturity earlier than those invented for spaceborne systems, which feature 

increased complexity and a more restricted and less urgent field of application. Furthermore, 

they have a much higher number of applications, each one with its own specific 

requirements, while space robotics has a more specific scope, mostly limited to perform the 

manipulation with as less motion as possible of the base spacecraft. 

For this reason, ground based systems feature a wide spectrum of challenges and 

constraints. The difference between online (local) algorithms and offline (global) ones has 

already been mentioned. This reflects into different applications, which allow for one or the 

other approach: for example, industrial manipulators can rely on offline planning and 

extended computational resources to solve their inverse kinematics problem, whereas 

robotic systems operating in on-field applications (e.g. ROVs) need to plan their motion 

online, or within a limited time frame at best, and their computational resources are much 

more limited.  For ground systems, research has been produced for much longer than for 

orbiting systems, and the set of questions that have been asked is much wider and more 

established. Thus, while spaceborne manipulators have mostly seen inverse kinematics 

focused on base orientation control [95], [97], the number of optimisation criteria applied to 

ground manipulators is much wider, spacing from obstacle avoidance [53], [54] to minimum 

time [53], with a great deal of research on kinetic energy [15] or torque [44] minimisation. 

These last two are particularly important problems in the context of redundant 

robotic manipulators because energy represents a key variable in manipulators operations. 

The reasons to minimise kinetic energy or torque are however different in nature depending 

on the application: for industrial facilities, the focus lies on reducing operational costs by 

reducing power consumption, while applications on the field, such as space, the case for 
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power use reduction mostly lies in the necessity to not consume precious resources such as 

battery life. The direction for further improvement, for both global and local algorithm, lies 

in the limitations of the optimisation methods, which have partially been already mentioned, 

and can be observed by investigating the literature hereby reviewed in detail. 

2.5.1 Global inverse kinematics key findings 

 

The global methods feature limitations related to the nature of the solution methods, 

based on optimal control, such as Pontryagin maximum principle, or calculus of variations. In 

the works cited in the literature review, it has been observed that much work has been done 

on the use of Pontryagin maximum principle for the minimisation of various cost functions 

(time [53], velocities norm [124]), or applying it to specific kind of manipulators (e.g. with 

linear actuators [52]), while calculus of variations has been used to find explicit formulations 

to minimise kinetic energy and torques norm along a desired trajectory. These results all 

come however at the expensive cost of needing to solve a Two-Point Boundary Value 

Problem (TPBVP). Solving such problems can be extremely difficult and involves the 

computation of a first estimate of the joint space trajectory to follow, to the point that some 

authors [8] propose specific techniques to facilitate the problem in the case of robotics. It is 

also complicated by the fact that they exploit manipulators Jacobian matrices during their 

search for the optimum. Jacobians are prone to singularities just the same as they are for 

local methods, and thus they can cause instability and numerical issues in the solution 

process. Furthermore, imposing realistic boundary conditions can be difficult (for example, 

in Nedungadi [15] imposing zero velocity at initial and final time means no control over initial 

joints configuration, and thus end-effector position). What’s more, variational methods 

cannot include constraints, ad Pontryagin maximum principle is only able to incorporate joint 

limits. Some works have been presented based on modifications of the methods to include 
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specific kinds of constraints, such as acceleration or periodicity of the motion, but no method 

is currently used that can include them all. Martin et al. [9] also outlined a strong limitation 

in the fact that global approaches based on calculus of variations can get caught in a local 

optimum, depending on the nature of kinematic constraints. Thus, limitations in current 

global methods mostly lie in four categories: 

• Necessity to solve a TPBVP, with all the complications it bears. 

• Numerical problems caused by dependency on evaluations of the Jacobian matrix of 

the manipulator. 

• Difficulties in implementing heterogeneous constraints, such as nonlinear 

constraints (actuators power, actuators torque) and cyclicity of the motion. 

• The possibility to find the actual global optimum largely depends on the initial guess. 

One more point could be made looking at the fact that all the algorithms present in literature 

present a formulation specifically developed for solving the problem under examination, and 

no general-purpose optimisation algorithm for the global inverse kinematics problem exists. 

Ideally, it would be beneficial to be able to optimise different cost functions without 

necessarily modifying the underlying algorithm, even more so if such underlying algorithm 

were able to efficiently tackle multi-objective optimisation problems. All these issues are 

properly addressed by the new global inverse kinematics algorithm developed for this thesis, 

the Interpolation-Based Global Kinematic Planner. This is a multipurpose inverse kinematics 

solution method that can address different cost functions and constraints, and can 

automatically produce a high number of initial guesses and evaluate the most promising 

ones. 
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2.5.2 Local inverse kinematics key findings 

 

Online methods, contrary to global methods, are limited by the fact that their 

optimisation task is limited to a local scope. This leads to a number of limitations: optimality 

on the complete trajectory is not guaranteed, and furthermore the cost function local 

improvement can lead to instabilities on the long run. This has been observed very clearly in 

literature for Jacobian-based energy optimisation methods, which are all based on torque or 

acceleration optimisation [10]. These schemes are usually based on linearization of the 

Jacobian matrix around the current manipulator configuration, which is then exploited to 

compute either accelerations or velocities. This however does not take into account the 

problem conditioning: as explained in depth in next chapter, Jacobian matrix is not invertible 

for certain manipulator’s configurations, called singularities. Local methods are normally not 

able to avoid such singularities, as they do only take into account the locally linearized 

relationship between joints and end-effector velocities. Mathematical tools have been 

developed to limit this problem (numerical damping has been already mentioned), but they 

come at the price of reducing tracking precision. In a milestone paper for robotics, Yoshikawa 

[12] proposed to use manipulability as an index to implement singularity avoidance. This is 

an index that depends on the Jacobian determinant, and which assumes a value of zero when 

the manipulator is in a singular configuration. It is still however locally optimised, which 

means it does only allow to locally avoid singularities but does not provide any guarantee to 

compute a trajectory with a reduced energy cost (they are only loosely correlated, as will be 

shown later in this document). Furthermore, even its main use as a singularity avoidance tool 

has been doubted in literature (Staffetti et al. [13]). 
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The other broad category of local methods is Quadratic Programming based 

methods, which do not necessarily involve a convergence time that is short enough to be 

online, and thus require ad-hoc methods to be solved fast enough. Quadratic programming 

constitute an improvement on classic Jacobian-based methods in that they allow to include 

kinematic constraints in the task more naturally, due to the nature of QP. They however come 

at the cost of requiring neural networks implementations, or complex solvers, although some 

results have been obtained in this regard, especially in the direction of respecting kinematic 

limits, although this still happens locally, which means that respecting the limits at a certain 

step of the trajectory does not imply the manipulator will be able to respect them in future. 

This problem has been partially tackled by Faroni et al. [17] with a predictive control, 

however the main issue with the quadratic programming approach remains the 

computational time, and the ability to predict how their local optimisation will influence 

future motion of the redundant manipulator. 

It is evident that local inverse kinematics methods also feature limits in their ability 

to optimise the motion of redundant manipulators, however such limits are of a completely 

different nature than global methods: in this case, the question that arises is whether it is 

possible to develop inverse kinematics computation methods that lie in between global 

algorithms, able to optimise a complete trajectory at once, and local ones, which only 

consider one point at once. Some solutions that feature both local and global characteristics 

have been presented [15], but they are solved in completely different ways depending if they 

are used globally or locally (TPBVP or local least-squares), and in the latter case they do not 

feature any global characteristics. A method sometimes used in control systems to 

incorporate a longer time horizon than just the local one is predictive control, which however 

is relatively slow for solving IK, not having allowed so far an online implementation (for 



75 
 
 

 

 

example [47]).  Indeed, it would also be helpful to have solutions that are either less 

dependent on the Jacobian matrix condition number, or help keeping such condition number 

as low as possible. It is worth noticing that Jacobian-free approaches mentioned so far in this 

work either belong to the category of offline methods or are based on learning the inverse 

kinematics offline and approximate them online rather than calculate them. 

The reasons why Jacobian matrix is so widespread in online methods despite its 

shortcomings are however many: it is a relatively simple and elegant solution to a complex 

problem, it is straightforward to implement, and guarantees a good degree of precision when 

far from singularities. As of today, it is widely known and comprehensively understood in the 

robotics community, and it is featured in an overwhelming amount of theoretical research 

and practical implementations. Furthermore, as already mentioned, a Jacobian-based 

method exists that allows any algorithm suitable for fixed base manipulators to be used for 

free-floating manipulators [19], and generalisations exist to include extra constraint and 

further optimisation tasks [6], [32], [125]. For such reasons, it sounds sensible that the use of 

improved optimisation methods compared to those available in literature should aim to 

improve the quality of traditional inverse kinematics by adding their ability to compute the 

solution beyond the local problem in an online fashion, rather than aiming to substitute such 

an established tool. Frameworks exist (most notably task prioritisation [6]) that allow to 

superimpose different kinematic solutions and, as already mentioned, they have been widely 

used to improve specific aspects of inverse kinematics solutions, such as manipulability [12] 

or distance from joint limits [51]. The process of developing an energy-saving online planning 

method for redundant manipulators in this thesis should thus be oriented in the direction of 

integration with existing algorithms. This set of considerations led to the development of the 

online algorithm presented in this thesis, which aims to complement inverse kinematics 
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frameworks with the ability to estimate the direction of joint motion for which minimum 

kinetic energy will be achieved and incorporate it in the solution. This is achieved through a 

prediction based on a limited number of points along the trajectory. Such prediction doesn’t 

need to be updated at every time step of the algorithm, which allows to save computational 

power and run the algorithm at sufficient speed to be of interest for problems which require 

an online solution. 

2.5.3 Free-floating manipulators key findings 

 

Free-floating manipulators are not as technologically mature as ground based 

systems, thus most of the research in the field of free floating manipulators aims to solve 

some of the fundamental issues related to the nature of such systems – which is 

understandable, since very few actual missions have flown, especially compared to the 

massive number of industrial robots, and to the massive amount of theoretical research in 

debris removal respect to the practical results (no single debris has ever been removed 

according to the author’s knowledge). Thus, main points addressed so far are related to the 

control of systems with nonholonomic constraints [19], [126], to the dimensions and nature 

of the workspace [92], and to the ability to keep the base spacecraft attitude stable [95], [97].  

The inverse kinematics problem for nonholonomic systems has been solved with 

many techniques, with the generalised Jacobian [19] being in the author’s opinion the most 

versatile solution, not least because Jacobians are a familiar tool for the whole robotics 

community. The importance of this tool lies in the fact that algorithms normally adopted for 

ground systems can be easily ported to free-floating manipulators, although it should be 

noticed that extra singularities, called dynamic singularities, do exist [7], worsening the 

biggest downside of the Jacobian-based algorithms. This is very relevant because it allows to 
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exploit any Jacobian-based algorithm for a free-floating system as well. However, care must 

be taken because it is usually advisable to keep the base spacecraft orientation constant, 

which results in an extra constraint. Thus, a degree of redundancy is lost in the transition 

from a fixed-base to a floating-base manipulator. Considering these peculiarities, it is 

observed that the problem of energy minimisation in a space environment has not been 

explored in depth, despite energy and power being scarce resources in orbit. An energy 

saving algorithm, in fact, can reduce the need for solar power and allow a robotic space 

manipulator to operate with a higher power margin. Such algorithm can be developed on 

fixed-base manipulators and, based on [19], be readily applied to space manipulation. A 

possible obstacle for this is the reduction in redundancy, caused by the necessity to keep the 

base stable, however room for research in this direction exists as well, since only few 

researchers explored the possibility to correct the manipulator disturbance to the base by 

using the ACS (most notably Yoshida [27]). The ACS may be used to obtain extra degrees of 

freedom and have more freedom in the choice of an inverse kinematics algorithm, provided 

that a suitable control method is developed. Based on literature findings, especially the work 

by Vafa et al. [91], it can be reasonably expected that the workspace size would be increased 

by the inclusion of the ACS in the inverse kinematics computation. This is discussed in deeper 

detail in next section, dedicated to the workspace analysis key findings. 

2.5.4 Workspace analysis key findings 

The goal of workspace analysis in this thesis is to investigate the relationship 

between a manipulator pose and position, and its energetic figures. In order to develop a 

method to study workspaces from the energetic point of view, two specific works have been 

identified as particularly worth attention, both on them focussed on nonredundant space 

manipulators [26], [93].  
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 Both papers analyse manipulators workspace from different points of view, and 

provide directions to understand the workspaces of redundant manipulators, both free-flying 

and fixed-base. The straight-path workspace concept exploited by Umetani and Yoshida [26] 

is particularly interesting for the purpose of this document, in that moving the end-effector 

through straight paths till the limit of the workspace is reached allows to analyse it in terms 

of how reachable it is from a specific initial end-effector position, as opposed to analysing 

the reachability only in terms of existence of valid joints configurations for a certain end-

effector position. Furthermore, the energetic cost of such straight paths can be quantified, 

allowing to observe not only how reachable a certain end-effector position is from the 

starting configuration, but also how expensive it is to reach it. 

 One more important point made by the authors of the paper [26] is that workspaces 

can be analysed depending on performance indexes such as manipulability. This is a sensible 

approach for this thesis as well: the amount of energy or power required for a manipulator 

to follow a specified trajectory depends on velocities or accelerations, and it is especially hard 

to assess in advance. On the other hand, several performance indexes have been proposed 

for design and performance assessment of robotic manipulators (e.g. [25]). Most of them 

only depend on the joint configuration (through the Jacobian or the Inertia matrix), which 

means they do not depend on velocities. Studying the relationships between such indexes 

and energy or power related performance indicators, it is possible to observe what kind of 

connection exists between configurations and energy requirements of a trajectory, allowing 

to assess the difficulties in adopting configuration-based planning for a trajectory-dependent 

cost function.  

The work by Vafa bears instead a specific interest for free-floating manipulators, as 

it points at a specific direction to explore to improve free-flying manipulators workspaces: 



79 
 
 

 

 

using a control method that incorporates both the attitude and the manipulator control, the 

workspace of the manipulator can be extended. This suggests a possible use for energy saving 

algorithms for free-floating systems, since it may be argued that keeping the base fixed has 

a cost in terms of workspace size. Indeed, an increased size of the workspace can have 

positive effects on the amount of fuel required to approach a target, reducing the positioning 

requirement of the robotic manipulator.  Control methods able to control both attitude and 

manipulator’s joints at the same time are known in literature (e.g. Yoshida [27]), however 

they’ve never been used to perform an assessment of the workspace characteristics. This 

leads to the workspace analysis to be divided in two parts: an assessment of the workspace 

characteristics of fixed-base redundant manipulators, based on the correspondence between 

kinematic indexes and energetic costs, and an assessment of workspace characteristics of 

free-floating manipulators based on the algorithms used to control them, and on the 

inclusion of the ACS. The original work by Vafa can provide validation to the latter one, since 

it observes changes in workspace size, and the analysis presented in this thesis should of 

course observe them as well.  

Starting from these considerations on literature, a workspace analysis is performed 

in this thesis using a 3-DoF manipulator. For the fixed-base case, a large amount of data has 

been generated by moving a manipulator end effector through rectilinear trajectories over 

the whole workspace, starting from different initial manipulator configurations. This wealth 

of data has been analysed through statistical techniques in order to find correlations with 

kinematic indexes of robotic manipulators, while qualitative analysis has also been 

performed observing the graphical results of the analysis. The problem of extending the 

results to free-floating manipulators through the use of the attitude control system, 

represented by a reaction wheel, has also been discussed and validated by simulation of free-
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floating manipulators workspace. This allows to consider energy minimisation algorithms as 

a viable alternative to reaction minimisation algorithms, and is thus discussed in detail, with 

some considerations about the different extension of workspaces with and without attitude 

control.  

2.6 Conclusions 

Based on the key findings observed in the different subtopics tackled in the literature 

review, a knowledge gap in current research can be identified in energy saving inverse 

kinematics strategies for redundant manipulators. The gap exists in both local and global 

motion planners, and it is relevant for fixed-base and free-floating manipulators alike. It is 

observed in the lack of algorithms implementing mathematical optimisation methods able to 

overcome the typical issues related with the limited scope of the local solution, and with the 

limitations of optimal control methods for the global problem. This thesis presents three 

research contributions aimed at improving the state-of-the-art in the field of energy saving 

inverse kinematics for redundant manipulators: 

• A global algorithm that is not limited by the choice of initial condition, does 

not require the solution of a TPBVP, is not limited by Jacobian-related 

numerical issues, and can incorporate a variety of different constraints 

corresponding to actual operational constraints of robotic manipulators. 

• A workspace study that is aimed at relating kinetic energy to kinematic 

indexes of a robotic manipulator, and at  analysing the effects of ACS on the 

workspace size and manipulability distribution of a free-floating 

manipulator. 

• A local algorithm that incorporates a prediction on future energy cost, and 

allows for a local solution that features more stability (less singularity issues) 
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and produced trajectories with a reduced kinetic energy cost compared to 

traditional algorithms. 

The research questions presented in the introduction of this work has thus shown to 

be relevant and in need for an answer. Relevant material about how it is tackled will be 

further presented in next chapter, featuring the mathematical and implementational 

background of the thesis. 
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Chapter 3. Theoretical background and implementation 

3.1 Introduction 

This chapter is dedicated to present the mathematical background of the thesis, and 

how it has been implemented in order to develop the results presented in the reminder of 

this document. It is mostly a summary of all the relevant mathematics available in the 

literature on the field of inverse kinematics and mathematical optimisation, but it has been 

included as a separate chapter from literature review, because of the complexity of the 

relevant concepts, which deserves a separate in-depth description, and because of their 

fundamental role in the challenges and the solutions adopted in the reminder of the thesis.  

First, an overview of direct and inverse kinematics of manipulators is briefly presented. 

Afterwards, a discussion about singularities and workspaces is introduced, mostly re-

elaborated from content by Siciliano and Sciavicco [14], unless otherwise stated. This part is 

then followed by an explanation of the subtleties of kinematics of free-flying manipulators. 

The mathematical background is concluded by a general discussion about optimisation and 

its most important techniques, with references to its uses in robotics. A final section of the 

chapter introduces the manipulator model and the mathematical expressions of the end-

effector trajectories used for this thesis, alongside the structure of the simulators that have 

produced all the numerical results presented in the reminder of the document. 

3.2 Mathematical background 

3.2.1 Kinematics and dynamics of manipulators 

According to Siciliano and Sciavicco [14] “a manipulator can be schematically 

represented from a mechanical viewpoint as a kinematic chain of rigid bodies (links) 

connected by means of revolute or prismatic joints.” The manipulator has two ends: one is 
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constrained to a base, while the other is the so called end-effector. The latter one is the object 

of interest of study for the manipulator motion planning. More specifically, its motion along 

a specific trajectory is the main concern of motion planning. The difficulties arise from the 

fact that each link contributes, adding its elementary motion to the previous one. 

Furthermore, while obtaining the end effector position from the joint positions (Direct 

Kinematics) is a straightforward task for open chain manipulators, the opposite problem, 

called Inverse Kinematics, is not as easy. In fact, it is nonlinear and rarely features a closed-

form solution, and it may have multiple or infinitive solutions, or even no solution, in reason 

of some peculiar manipulator structure. For the purpose of this thesis, only those 

manipulators with more degrees of mobility than degrees of freedom are taken into 

examination. These are called redundant manipulators, and they play an important role in 

robotics since, while their inverse kinematics problem almost always presents an infinite 

number of solutions, they also allow to take further constraints or minimization of cost 

functions into account, which is indeed the aim of this work. 

Direct kinematics of robotic manipulators is a mathematical operation that 

transforms joint space coordinates into Cartesian coordinates. That is, its input is the joint 

vector of size 𝑛 × 1, with n number of joints, and it results in the corresponding 𝑚 × 1 end 

effector position vector in Cartesian space, with m being the number of end effector degrees 

of freedom. Direct Kinematics is usually calculated by performing a sequence of coordinates 

transformations from joint 0 (base joint) to N, in a sequential fashion: 

𝑇𝑁
0 = 𝑇1

0 𝑇2
1 𝑇3

2 … 𝑇𝑁
𝑁−1  (3-1) 

In this formula, each one of the T represents a transformation matrix from one link 

to the following one. Its general formulation is: 
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𝑇𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑠𝑖𝑛𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1𝑑𝑖
𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑐𝑜𝑠𝛼𝑖−1 𝑐𝑜𝑠𝛼𝑖−1𝑑𝑖

0 0 0 1

] 

(3-2) 

In this formulation, the parameters represent geometrical features of the link, as per 

Denavit Hartenberg convention [127]. According to Craig definitions [128], and referring to 

figure 1, the meaning of the parameters is: 

 

Figure 3-1 Denavit Hartenberg axis naming convention [128] 

 

𝑎𝑖 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑗𝑜𝑖𝑛𝑡 �̂�𝑖𝑡𝑜 �̂�𝑖+1 𝑎𝑥𝑖𝑠 𝑎𝑙𝑜𝑛𝑔 �̂�𝑖 

𝛼𝑖 = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 �̂�𝑖𝑎𝑛𝑑 �̂�𝑖+1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 �̂�𝑖 

𝑑𝑖 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑗𝑜𝑖𝑛𝑡 �̂�𝑖−1𝑡𝑜 �̂�𝑖  𝑎𝑥𝑖𝑠 𝑎𝑙𝑜𝑛𝑔 �̂�𝑖  

𝜃𝑖 = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 �̂�𝑖−1 𝑎𝑛𝑑 �̂�𝑖 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 �̂�𝑖 

 

As already mentioned, the opposite problem, called Inverse Kinematics, is much 

more complex: generally, it is possible to obtain the joint vector from the Cartesian vector 

only for very simple manipulators. To overcome this issue, differential kinematics are used. 
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This is because joint velocities and Cartesian velocities can be related witch each other 

through a linear mapping, although dependent on the configuration, called Jacobian Matrix, 

or Jacobian for short. The Jacobian of a manipulator is surely the most important 

mathematical instrument used to deal with the inverse kinematics problems. Its size is 𝑟 × 𝑛, 

where r is the number of degrees of freedom of the end effector, while n is the number of 

degrees of mobility of the manipulator (i.e. the number of joints). The Jacobian only depends 

on joint positions and, once it is known, end effector velocities can be calculated with: 

𝒗 = 𝑱(𝒒)�̇� (3-3) 

In this formula, 𝒗 is the end effector velocities vector, 𝒒 is the joint positions vector 

and �̇� the joint velocities vector, while 𝑱(𝒒) is the Jacobian of the manipulator. This equation 

constitutes the aforementioned differential kinematics of a robotic manipulator. The inverse 

problem is expressed as: 

�̇� = (𝑱(𝒒))
−1
𝒗 (3-4) 

As already pointed out, this is a way more complex problem to solve, since the 

Jacobian might be non-invertible or ill conditioned. There are configurations at which 

mobility is reduced and it is not possible to impose an arbitrary motion to the end effector. 

These configurations are called singularities, and their characteristics are widely studied in 

robotics. When the manipulator hits a singularity, infinite solutions of the inverse kinematics 

problem may exist. In the neighbourhood of the singularity, small velocities in the Cartesian 

space determine high velocities in the joint space. 

Singularities can be divided in two categories: boundary singularities, and internal 

singularities. The former ones are not a true issue, since they lie on the limit of the reachable 

manipulator workspace. The internal ones, though, can occur inside the workspace because 
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of the alignment of two or more joints, because of peculiar end-effector configurations, or 

because of special relationships between dynamic characteristics of the base and the 

manipulator in the case of free-base manipulators. They represent a serious problem to take 

into account for motion planning.  

A further point to take into account is that, in the case of redundant manipulators, 

the Jacobian is not squared (the number of rows is lower than the number of columns). This 

means that a suitable substitute for the Jacobian must be used in place of it. The most used 

method, presented for the first time by presented in [5], is to formulate the problem as a 

constrained linear optimisation problem, featuring the satisfaction of the equation (3-3) and 

the minimisation of a quadratic cost functional of the joint velocities: 

𝑔(�̇�) =  
1

2
�̇�𝑇𝑾�̇� 

(3-5) 

Where 𝑾 is an 𝑛 × 𝑛 symmetric positive definite weighting matrix. This can be solved, for 

example, by the method of Lagrangian multipliers, which uses the modified cost functional: 

𝑔(�̇�, 𝝀) =  
1

2
�̇�𝑇𝑾�̇� + 𝝀𝑇(𝒗 − 𝑱�̇�) 

(3-6) 

Where 𝝀 is an (𝑟 × 1) unknown vector that permits to incorporate the constraint (3-3) in the 

functional to minimise. The minimum of the functional lies where its derivatives equal zero: 

(
𝜕𝑔

𝜕�̇�
)
𝑇

= 0      (
𝜕𝑔

𝜕𝝀
)
𝑇

= 0 
(3-7) 

Which gives the optimal solution: 
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�̇� = 𝑾−1𝑱𝑇(𝑱𝑾−1𝑱𝑇)−1𝒗 (3-8) 

A special case occurs when the weighting matrix is the identity matrix, yielding: 

�̇� = 𝑱+𝒗 (3-9) 

Where: 

𝑱+ = 𝑱𝑇(𝑱𝑱𝑇)−1 (3-10) 

Is the right pseudoinverse or Moore-Penrose pseudoinverse of the Jacobian. Its solution 

locally minimises the norm of joint velocities, and it is the most widespread control strategy 

for redundant manipulators. Another possible choice for the weight matrix 𝑾 is the inertia 

matrix of the manipulator 𝑩(𝒒), which is used to locally minimise the kinetic energy of the 

manipulator.  It should be noticed that, if �̇�∗ is a solution of (3-3), �̇�∗ + 𝑷�̇�𝟎 is also a solution, 

as long as P is the null space projector for matrix J. This has important consequences, since it 

allows the optimisation of another objective, often referred as secondary task, as first 

presented in [6]. The expression of P can be easily obtained using the Lagrangian multipliers 

again, and it yields: 

𝑷 =  𝑰 − 𝑱+𝑱 (3-11) 

Which can be used to generate a solution such as: 

�̇� = 𝑱+𝒗 + (𝑰 − 𝑱+𝑱)�̇�𝟎 (3-12) 

The second term of this expression, called homogeneous solution, attempts to satisfy 

an additional constraint specified through �̇�𝟎. In other terms, the operator P produces an 

internal motion that does not alter the end effector position, but locally optimises another 
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constraint compatibly with it. There are several measures that have been used for �̇�𝟎, and 

the solutions developed in this thesis in indeed also rely on the possibility to include special 

tasks within an inverse kinematics framework. The most interesting extra constraint for the 

purpose of this document is indeed the manipulability, expressed as:  

𝑤(𝒒) = √det(𝑱(𝒒)𝑱𝑇(𝒒)) 
(3-13) 

This figure is one of the indexes used to assess a manipulator’s mobility and its 

physical meaning is related to the manipulator capability to turn joint velocities into end 

effector velocities. In order to understand what it means, the reader shall observe the 

expression:  

𝒗𝑇(𝑱(𝒒)𝑱𝑇(𝒒))
−1
𝒗 = 1 (3-14) 

This equation represents the points on the surface of an ellipsoid in the end effector 

velocity space. For the given posture, end-effector can reach high velocities when moving 

along the direction of the major axis, and lower velocities when moving along the directions 

of the minor axes. The shape and orientation of the ellipsoid depend on the quadratic form 

𝑱(𝒒)𝑱𝑇(𝒒), which in turn only depends on the manipulator configuration. The volume of the 

ellipsoid is proportional to the quantity 𝑤(𝒒), which can be used to provide a measure of the 

overall freedom of movement of the manipulator, since 𝑤(𝒒) = 0 when a singularity is 

reached. This, however does not necessarily mean that, when 𝑤(𝒒) assumes a high value, a 

redundant manipulator is far from singularities, as the ellipsoid might be very extended in 

some directions and very narrow in others. 

In order to address the issue of minimising energy and power consumption of robotic 

manipulators, it is necessary to also know the expression of torques. Its derivation can be 
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again found in many robotics manuals ([1], [14], [128]), here only the formulation will be 

presented: 

𝝉 = 𝑴(𝒒)�̈� + 𝒏(𝒒, �̇�) +  𝒈(𝒒)  (3-15) 

Where 𝑴(𝒒) is the joint-dependent inertia matrix, 𝒏(𝒒, �̇�) is the term that comprises 

Coriolis and centrifugal forces, and 𝒈(𝒒) is the gravity term. It is worth noticing that an index 

similar to kinematic manipulability can be obtained through the manipulator dynamics, 

through the equation: 

𝝉𝑇𝝉 = 1 (3-16) 

This expression represents the dynamic manipulability ellipsoid and its complete 

derivation can be found, again, in [14]. For redundant manipulators, the expression would 

be: 

(�̇� + 𝑱𝑩−𝟏𝒈)
𝑇
𝑱+𝑇𝑩𝑇𝑩𝑱+(�̇� + 𝑱𝑩−𝟏𝒈) = 1 (3-17) 

Where 𝒈 is the gravity acceleration and all the other symbols have already been 

introduced. This equation individuates an ellipsoid for which, in each direction, the distance 

between the surface of the ellipsoid and the end effector is proportional to the accelerations 

that can be imposed to the end effector in that direction while respecting equation (3-16). 

Considering the core of the quadratic form, the dynamic manipulability will be defined as: 

 

𝑤𝑑(𝒒) = √det(𝑱
+𝑇𝑩𝑇𝑩𝑱+) (3-18) 

Which, oppositely to the kinematic manipulability, is higher when the robot is closer 

to singularities. Both kinematic and dynamic manipulability allow to quantify the freedom of 
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movement of robotic manipulators, and their evolution along trajectories will be used 

throughout this thesis for analysis purposes. 

One further thing to be noticed about expressions (3-11) and (3-12) is that they can 

be used to add further tasks, by using the null operators to project them on the previous one. 

This is particularly important for manipulators with a high number of degrees of freedom, 

and allows for generalisation of results obtained with only one secondary task. 

Even for simple robots, equation (3-3) rarely has an analytical solution. For this 

reason, all the work hereby presented has exploited discrete numerical integration, based on 

the simplest possible technique, the so called Euler integral: 

𝒒𝒌 = 𝒒𝒌−𝟏 + �̇�𝒌𝛥𝑡 (3-19) 

Where k is a time step index. This technique works no matter how solvable the 

system is, but it still needs the Jacobian to be square and full rank which, apart from the 

already mentioned specific issues of redundant manipulators, also requires special handling 

in proximity of singularities [1]. 

Along with Euler integration, another important numerical technique is the Finite 

difference method. Finite difference generally consists in approximating the derivative of a 

function through the difference between two of its values at different points. It can generally 

be defined like: 

�̇�𝒌 = 
𝒒𝒌 − 𝒒𝒌−𝟏

𝛥𝑡
 (3-20) 

In a way that is specular to (3-19). Both formulations will be used along this 

document depending on the context. 



91 
 
 

 

 

3.2.2 Kinematics of Free - Flying Manipulators 

When dealing with space manipulators, kinematics are different than fixed base 

manipulators due to the fact that the base is not fixed on the ground and, for this reason, the 

momentum generated by the arm will influence the basis orientation. This translates into an 

extra constraint on the manipulator kinematics, that the momentum remains constant along 

the motion. Since this constraint acts on velocities, and is in fact non-integrable, it is called a 

non-holonomic constraint. Such a constraint, for the translational momentum of system 

composed by n rigid bodies, can be expressed as: 

∑𝑚𝑖�̇�𝒊 = 𝑐𝑜𝑛𝑠𝑡.

𝑛

𝑖=0 

 
(3-21) 

Where 𝑚𝒊 is the mass of the i element, and 𝒓𝒊 is the position of the centre of mass 

of the i element. For rotational momentum, the expression is: 

∑(𝑰𝒊𝝎𝒊 +𝑚𝑖𝒓𝒊  × �̇�𝒊) = 𝑐𝑜𝑛𝑠𝑡.

𝑛

𝑖=0 

 
(3-22) 

Where 𝑰𝒊 is the inertia matrix of the i element with respect to the centre of mass, 

and 𝝎𝒊 is the angular velocities vector of the i element. The main issue when trying to solve 

the inverse kinematics of a problem involving (3-21) and (3-22), is that not even forward 

kinematics feature a closed-form solution, since the end-effector position depends on the 

inertia matrix, which in turn changes according to the joints configuration. This means that it 

is necessary to know the history of the postural change in order to derive a solution. 

Historically, two approaches have been sought: one by Vafa and Dubowsky [93] features the 

use of imaginary mechanical links to simulate the basis kinematic behaviour, while the other 

one, provided by Umetani and Yoshida [19], uses the inertia properties of the manipulator to 

compute a Generalised Jacobian, which allows to solve the problem in the same form as 
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equation (3-4) for fixed-base manipulators. The results obtained by the first one are 

interesting especially concerning the analysis of the workspace of a free-flying manipulator. 

The latter one, however, provides an elegant solution that does not require any change from 

the classic Inverse Kinematics solution methods, apart from using a different Jacobian, 

making it extremely valuable. For this reason, algorithms that are presented in this thesis are 

mostly simulated with fixed-base manipulators, since their floating-base implementation has 

been demonstrated to be straightforward in [19]. 

In order to solve the inverse kinematics problem for free-flying manipulators, 

Umetani and Yoshida observe that equation (3-4), in this specific case, can be rewritten as: 

𝒗 = 𝑱𝒔�̇�𝒔 + 𝑱𝒎�̇�𝒎 (3-23) 

 Where 𝑱𝒔 is the Jacobian of the spacecraft attitude angular velocities, 𝑱𝒎 is the 

Jacobian of the manipulator, �̇�𝒔 is the base spacecraft attitude rates of change, and �̇�𝒎 are 

the manipulator joints velocities. Considering m to be the End Effector degrees of freedom, 

and n the degrees of redundancy, 𝑱𝒔 is m x 3, while 𝑱𝒎 is m x n. This leaves the inverse 

problem with m equations and n x 3 unknown variables. In order to fill the gap, momentum 

conservation equations are used. They are rewritten with the expression: 

𝑰𝒔�̇�𝒔 + 𝑰𝒎�̇�𝒎 = 𝑐𝑜𝑠𝑡. (3-24) 

Where 𝑰𝒔 and 𝑰𝒎 are respectively the spacecraft part and the manipulator part of 

the inertia matrix of the system, and their sizes are 3 x 3 and 3 x n. This, considering the 

momentum equal to zero, leads to the relationship: 

�̇�𝒔 = −𝑰𝒔
−𝟏𝑰𝒎�̇�𝒎 (3-25) 

Which can be substituted into (22) to obtain: 
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𝒗 = (𝑱𝒎 − 𝑱𝒔𝑰𝒔
−𝟏𝑰𝒎)�̇�𝒎 (3-26) 

The term 𝑱𝒎 − 𝑱𝒔𝑰𝒔
−𝟏𝑰𝒎, summarised as 𝑱∗in literature, is the Generalised Jacobian 

Matrix of the manipulator and can be used in the inverse kinematics general case, where the 

manipulator base is not fixed. Its expression is generally much more complex than the fixed 

base case, and can lead to significant complications in computation, nevertheless it is an 

efficient way to solve the free-flying manipulator problem. 

This result is particularly important because it shows that any Jacobian-based 

algorithm that is proven successful for inverse kinematics of fixed base manipulators can be 

used for free-flying manipulators. Furthermore, it is worth noticing that the generalised 

Jacobian can be used to compute the base position and orientation once the manipulator 

velocities are known even in cases for which the manipulator velocities have not been 

calculated through a traditional, Jacobian-based method. This will have important 

consequences on the methodology of this thesis, as next chapter will show. 

3.2.3 Local versus global optimisation in motion planning 

 

 In previous chapter, the concepts of local and global optimisation have been 

mentioned several times, in reference to scientific findings about motion planning of robotic 

systems. However, the meaning of these concepts has not been systematically presented yet. 

When it comes to mathematical optimisation, the first thing to do is to properly define a 

standard, continuous optimisation problem [129]: 

minimise
𝑥

𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1,… , 𝑝

 

(3-27) 
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Where: 

𝑓(𝑥) ∶  ℝ𝑛  ⇒  ℝ  is the objective function to be minimised over the n-variable vector x, 

𝑔𝑖(𝑥) ≤ 0 are the inequality constraints, 

ℎ𝑗(𝑥) = 0 are the equality constraints, 

𝑚 ≥ 0 and 𝑝 ≥ 0. 

When m and p equal zero, the problem is said to be unconstrained. The standard 

form defines a minimisation problem, however the definition for maximisation problems can 

easily be obtained by negating the cost function. 

Alongside with the standard form, another definition is important to understand how 

optimisation is used in robotics, and why it is so difficult to apply it to certain problems. This 

is the definition of convex function. A function 𝑓(𝑥) ∶  ℝ ⇒  ℝ is convex if: 

∀ 𝑥1, 𝑥2 ∈  ℝ, ∀𝑡 ∈ [0,1]: 𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2) ≤ 𝑓(𝑡𝑥1) + (1 − 𝑡)𝑓(𝑥2) (3-28) 

This definition is important for optimisation because it implies that, if a local 

minimum of the function is found, it is also a global minimum, which means the function 

assumes the lowest possible value in that point. Convex optimisation problems can be solved 

with a number of techniques illustrated, for example, in [129]. One possible, very simple 

method for optimisation of such problems is the least squares method. The aforementioned 

Moore-Penrose pseudoinverse is a possible application of least squares, and in fact it is used 

to find the minimum of joint velocities norm. 

Non-convex optimisation problems are, on the other hand, way more complicated in 

that they feature a number of local minima, only a subset of them (at least one) being global 

minima. This means that, for such problems, finding a minimum does not guarantee the 
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function cannot assume lower values elsewhere. This complicates the optimum search in 

that several classical methods, efficient for convex functions, will only find a minimum 

without any further guarantee about its nature. In order to overcome this limitation, global 

optimum methods often use heuristics to increase the chance to find a local optimum that is 

also the global minimum [130]. 

Heuristic methods are techniques that are developed to solve a problem by trading 

completeness, accuracy, and ultimately mathematical rigorousness for increased speed and 

chance of convergence to the desired result. They’re often used when traditional methods 

are too slow or impractical, or simply when they do not bear enough chances of convergence. 

In order to analyse methods implying heuristics, a further distinction must be done, between 

actual heuristics and metaheuristics [131]. 

Heuristics are non-rigorous methods based on the nature of the problem. An expert 

with extensive knowledge of the field can make an educated guess or implement an empirical 

search method that will allow an optimisation algorithm to reduce its search space only to 

the part of the solution space where a global optimum is likely to be found. On the other 

hand, metaheuristics are general, practical methods who still lack mathematical guarantees 

of non-heuristic methods, but have been proved successful on a wide family of possible 

problems. They can be used as a sort of black-box when classical methods do not provide a 

good solution, still the available knowledge about the problem is not sufficient to provide a 

tailored heuristic method. 

Many metaheuristic methods have been developed by imitation of natural 

phenomena, such as Genetic Algorithms, probably the most successful family of 

metaheuristic methods for non-convex optimisation, which found many uses in robotics, as 

mentioned in previous chapter. Another nature inspired method that found some inspiration 
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in robotic is the simulated annealing method, while less attention from the robotics 

community was received by the multi-start algorithm, which will be used to provide a 

solution for the global problem presented in this thesis, indeed by the use of a problem-

specific heuristic. 

While all these methods share the purpose of avoiding the pitfalls of only searching 

for solutions in the attraction basin of a certain local optimum, they exploit different tactics 

to reach such a goal. Genetic Algorithms are inspired by genetics, and exploit a set of 

candidate solutions called chromosomes, from which they derivate new solutions through a 

procedure that involves an evaluation of fitness, crossover of most fit solutions, and eventual 

mutation [132]. The first step consists in giving each chromosome a score through a fitness 

function, which usually is the cost function of the optimisation problem. Following this, some 

of the chromosomes are selected for crossover, which implies mixing the two solutions 

through a specific operator to obtain offspring: that is, new solutions that contain traits of 

their parent solutions, and are hopefully closer to the global optimum. Once this process is 

completed, some solutions undergo occasional mutation, which is a stochastic change in its 

parameters, in order to avoid pitfalls of local minima and introduce further variety, in case 

some parts of the solution space were not covered by the initial population. 

Simulated annealing is also inspired by nature, but in a completely different way: it 

mimics thermodynamic phenomena related to the freezing and crystallization of liquids, or 

with the cooling and annealing of metals [133]. This method has been developed by 

observing that solidification of crystalline materials naturally reaches a low energy state 

when materials are cooled slowly enough. In fact, cooling them quickly doesn’t give the 

atoms enough time and energy to reposition themselves and reach an ordered state. By 

analogy, simulated annealing is used for problems that feature a cost function with a high 
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number of minima. For such problems, a slow convergence is required to find the best 

optimum by allowing the solution parameters to line up in a similar fashion to atoms 

exploiting their thermal mobility to solidify into a crystal. The subtleties of how it is done in 

practice are beyond the scope of this thesis, but it essentially based on the Boltzmann 

probability distribution: 

𝑃𝑟𝑜𝑏(𝐸) ~ 𝑒−
𝐸
𝑘𝑇 

(3-29) 

This equation states that a system at temperature T has its energy probabilistically 

distributed among states E, while k is the Boltzmann constant. This means that, even at low 

temperature, there’s a non-zero possibility of the energy being in a higher state and, 

conversely, that by reducing temperature, the energy could go uphill rather than downhill. 

By setting a proper temperature evolution and an annealing schedule this can be exploited 

to escape local minima of the energy function (which is in fact the cost function to optimise) 

and find the global optimum. 

 Finally, Multi-start algorithms are based on the generation of several sets of initial 

conditions and the use of traditional deterministic algorithms, such as the gradient method, 

to generate a possible solution from each one of them (e.g. see [134]). This allows them to 

search for several local minima at once in a part of the search space, which can be the whole 

of it, or a portion chosen by a heuristic method. The have been somewhat less exploited in 

robotics, due to the difficulties in the individuation of suitable initial conditions: most choices 

are simply too far away from the best trajectory to stand any chance of convergence. Still, 

once a set of initial conditions is generated close enough to a minimum, the gradient-based 

nature of the optimisation implies the algorithm will converge on it in a very straightforward 
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way and without further complications. A manipulator specific heuristic method to 

complement Multi-start algorithm will be proposed in this thesis. 

 The presented methods are only a small subset of the non-convex optimisation 

methods available in literature (see for example [135]), yet they have been exploited in 

countless variations and applications. For the purpose of robotics systems, their main use, as 

seen in previous chapter has mostly been path planning in the Cartesian space rather than 

motion planning in the joint space. Focussing on actual motion planning, some distinctions 

need to be made in order to understand what kind of problems can be defined from the 

optimisation point of view. Motion planning problems are usually solved by discretising the 

path in several points, called path points [14]. This may lead to different definitions of the 

problem: the motion planning might move the end effector to the next path point without 

considering the rest of the path, or take into account a wider scope. In the first case the 

solution is always local, in the latter one it might still be local or global, depending on the 

number of path points and the nature of the algorithm exploited. 

 The weighted pseudoinverse method described in previous section allows to find the 

minimum of weighted velocities through the least square method for a single path point. For 

this reason, it is usually implemented as sequential optimisation problem: at every step, the 

solution for the next path point is computed using the previous path point as initial condition. 

This method only produces a sequence of local minima and it is unreliable to optimise 

trajectories as a whole since the solution might deteriorate the joint mobility for the 

following ones. Indeed, the stability issues of such algorithms have been highlighted by 

several researchers (e.g. [10]). 

The problem of optimising a trajectory as a whole requires instead the definition of 

a more complex cost function, as discussed for example by Nakamura and Hanafusa [124]. 



99 
 
 

 

 

The two authors evidence that two different quantities must be minimised, one being the 

trajectory error, and the other one being a cost to keep low during the trajectory, which may 

vary depending on the actual objective of the optimisation. It can be time, but it is usually a 

control cost, related to the power and energy required to move the end effector along the 

trajectory. Most frequent choices are squared joint velocities (sometimes referred as 

pseudo-kinetic energy), squared torques, or kinetic energy. It must be noticed that, due to 

the nature of the problem, the cost function is most of the times expressed as an integral 

along the trajectory. In the case of Nakamura and Hanafusa, it is formulated as an integral 

cost subject to a trajectory constraint, such as: 

minimise
𝑥

∫ 𝐶(𝒒, �̇�, �̈�, 𝑡)
𝑡𝑓𝑖𝑛

𝑡0

𝑑𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒙𝒓𝒆𝒇(𝑡) = 𝑓(𝒒(𝑡))
 

(3-30) 

Where 𝑡0 and 𝑡𝑓𝑖𝑛 are the initial and final times, 𝐶(𝒒, �̇�, �̈�, 𝑡) is the cost whose 

integral is to minimise, and 𝒙𝒓𝒆𝒇 is an end-effector trajectory dependent on joints motion. 

Another suitable form is the performance index of a non-linear quadratic regulator [136]: 

𝐶(𝒒, 𝒖, 𝑡) = ∫ [(𝒙(𝒒) − 𝒙 𝒓𝒆𝒇)
𝑇
𝑸(𝒒, 𝒖, 𝑡)(𝒙(𝒒) − 𝒙 𝒓𝒆𝒇) + 𝒖

𝑇𝑹(𝒒, 𝒖, 𝑡)𝒖]
𝑡𝑓𝑖𝑛

𝑡0 

𝑑𝑡 (3-31) 

Where 𝑡0 and 𝑡𝑓𝑖𝑛 are the initial and final times, 𝒙𝒓𝒆𝒇 is the reference end-effector trajectory, 

𝒙 the actual end-effector trajectory, 𝑸 is the trajectory error weight matrix, 𝒖 (e.g. joint 

velocities for kinetic energy) is the control vector and 𝑹 is the control cost weight matrix (e.g. 

the inertia matrix for kinetic energy). The formulation (3-30) is the one that will be used 

mostly in this thesis. In the discrete case, it becomes: 
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minimize
𝑞

∑ 𝐺(𝒒𝒊, �̇�𝒊, �̈�𝒊, 𝑖)𝛥𝑡

𝑡𝑓𝑖𝑛

𝑖=𝑡0 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒙(𝒒𝒊) = 𝒙𝑖,𝑟𝑒𝑓 𝑓𝑜𝑟 𝑖 = 𝑡0 . . 𝑡𝑓𝑖𝑛

 (3-32) 

Where 𝒙𝒊,𝒓𝒆𝒇 is the reference end-effector position at time 𝑖, 𝒙(𝒒𝒊) the actual end-effector 

position at time 𝑖, 𝒒𝒊, �̇�𝒊, �̈�𝒊 are the joint positions, velocities and accelerations at time 𝑖, 

𝐺(𝒒𝒊, �̇�𝒊, �̈�𝒊, 𝑖) is the cost function at time 𝑖, and 𝛥𝑡 is the discrete time step. 

 In literature, solutions of sequential optimisations problems on the path points are 

often referred as local solutions, while solutions of problems such as the one expressed by 

(3-31) and (3-32) are regarded as global solutions. The terms might give room for some 

confusion: it is necessary to point out that a global solution to a motion planning problem is 

not necessarily the globally optimal solution. It has already been mentioned that some 

researchers, such as Martin et al. [9] noticed indeed that, under certain conditions, optimal 

control methods may fail to find the global optimum, as two solutions might be in different 

homotopy classes: in the language of topology, this means that the most expensive one 

cannot be deformed continuously into the less expensive one. In such cases, optimisation 

algorithms that operate in continuous space (e.g. exploiting derivatives) will fail to find the 

global optimum. 

 

3.3 Implementation setup 
 

It is frequent, in the domain of engineering, to rely on simulations for a variety of tasks. This 

is frequently done since experiments with actual hardware are operationally expensive, and 

may be risky as well, due to the possibility of mechanical failures. For this reason, an approach 

where simulation is done first and tests on the physical system are only performed when 
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strictly required is considered essential for most successful engineering projects (e.g. [137]). 

Robotics research is no exception to this, and simulations of robotic manipulators reduce 

costs, as they reduce the need for testing on actual systems. 

For this reason, this thesis validation of results is based on simulations. This is for 

several reasons: first, a high number of tests is required in order to be confident about the 

performance of a new algorithm, and performing them with an actual manipulator would be 

very expensive. Secondly, several simulation parameters need to be tuned, sometimes with 

a trial and error approach, which may be hard when a physical system is involved. Finally, the 

environmental situation might be difficult to reproduce, as in the case of free-flying 

manipulators, which require experimental setups able to allow the base spacecraft to move 

freely, or difficult to measure, such as angular accelerations of robotic manipulators. 

The choice of simulation as a validation tool is thus quite straightforward. Some 

requirements are outlined regarding the simulation setup: 

1. The system simulated must be representative of a real robot. 

2. The system simulated must be representative of the kind of problem under examination. 

3. The system simulated must be as simple as possible and validity of the solutions must be 

easy to assess. 

This section of the thesis illustrates the simulation setup used to fulfil such requirements. 

3.3.1 Simulators 

 Two different simulators have been used to perform the simulations required for this 

thesis, one for ground manipulators, and one for free-floating manipulators. Both are based 

on the finite difference formulations (3-19) and (3-20).  
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The two simulators use slightly different manipulators, although they bear many 

similarities. They represent an existing prototype robot used by University of Padova, and 

both have been validated and used in published research [97], fulfilling requirements 1 and 

2 regarding representativity. They are planar and feature 3 degrees-of-freedom, with all 

degrees of freedom provided by revolute joints, which is the one of simplest possible 

redundant configurations, allowing for ready visualisation of results, thus fulfilling 

requirement 3. Geometrical and inertial characteristics of the fixed-base manipulator are as 

per Table 3-1. 

Table 3-1 Simulated fixed-base manipulator geometrical and inertial characteristics 

Link # Mass  

[kg] 

Length  

[m] 

Moment of Inertia 

[Kg*m^2] 

Centre of Gravity  

[m] 

1 0.615 0.176 0.001811 0.0950 

2 0.615 0.176 0.003173 0.0717 

3 0.307 0.1375 0.002103 0.0526 

 

For the floating-base case, characteristics are presented in Table 3-2.  It can be 

noticed that characteristics of the base and of a reaction wheel have been added. The 

position of the centre of Gravity of the base is calculated respect to the base joint rotational 

axis, while the reaction wheel mass is considered to be part of the base spacecraft mass for 

what concerns the centre of gravity. 

Two end-effector coordinates are controlled for both the fixed and the floating base 

simulator, x and y while, depending on the algorithm, base orientation 𝜑 might be controlled 

as an end-effector coordinate as well. In the latter case, the extra-degree of freedom would 

be used to keep the base fixed, thus turning the manipulator into a non-redundant one. 
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Hence the reaction wheel has been added, to provide one further degree of freedom with an 

actuator that is already available on board: this permits to retain the possibility to optimise 

additional tasks while the base is being kept fixed, and to observe cooperation between an 

Attitude Control System and a robotic manipulator being controlled concurrently. This can 

be done, again, by including the momentum conservation law into the Jacobian in a similar 

fashion to the generalised Jacobian as explained in the reminder of this thesis. 

Table 3-2 Simulated free-floating manipulator geometrical and inertial characteristics 

 
Link # Mass  

[kg] 

Length  

[m] 

Moment of Inertia 

[Kg*m^2] 

Centre of Gravity  

[m] 

Base 2.136 - 0.1455 0, -0.0870 

Reaction 

Wheel 

- - 0.002 - 

1 0.815 0.176 0.003173 0.0717 

2 0.815 0.176 0.003173 0.0717 

3 0.507 0.1375 0.002103 0.0526 

 

Summarising, the controlled end-effector coordinates are, respectively for the fixed-

base and floating-base cases: 

𝒙 = [ 𝑥 𝑦 ] 𝒙 = [ 𝑥 𝑦 𝜑] (3-33) 

 As for the simulators architecture, both are structured as per Figure 3-2Figure 3-2. 
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Figure 3-2 Simulator structure 

 
 A Parameters script is used to provide the inputs for the simulation. These are divided 

in two categories, trajectory parameters, which will be further fed to a trajectory maker 

script, and algorithm parameters, which will be directly used without further elaboration. 

The trajectory maker script’s role is to output the end-effector position, velocity and 

reference at each path point, its inputs are: 

• Joints initial configuration. 

• Type of trajectory: segment, or circle. 

• Direction of movement (only needed for segment). 
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• Characteristic dimension (length for segment, diameter for circle). 

• Total trajectory time. 

• Integration step. 

The inputs that are directly fed into the inverse kinematics solver are instead: 

• Type of algorithm. 

• Integration step. 

These will be integrated with the reference outputted by the trajectory maker. The inverse 

kinematic solver is tasked to calculate joints position, velocity and acceleration steps for each 

path point. Around this piece of software, three different kinds of planners have been built: 

a local one, a global one, and a workspace analyser. Their details will be discussed in 

dedicated chapters. 

3.3.2 End-Effector Trajectories 

End-effector trajectories are generally better suited for use when they feature 

smoothness and regularity, to avoid mechanical shocks to the transmission. For this reason, 

it is preferred that they feature continuous derivatives till the highest possible order. The 

end-effector velocity profiles for this thesis have been chosen according to this criterium. For 

this reason, it has been decided to make sure they have a smooth accelerations’ profile 

(continuous and with continuous derivative), as shown in Figure 3-3 for a trajectory being 

tracked on an interval of 1 second. The equation of motion of the end-effector is: 
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(3-34) 

Where T is the total motion time and 𝛽 =
2𝜋

𝑇
. This expression has already been used in 

literature  [138] due to its differentiability up to the second derivative. 

 

 

Figure 3-3 Sample End-effector trajectory 

 
For the workspace analysis, trajectories with constant end-effector velocity has been 

used instead. 

𝑑𝒙

𝑑𝑡
= 𝐾 

(3-35) 

This has the issue of a strong discontinuity in terms of acceleration at the beginning 

of the motion, but it allows to estimate the energy needed to reach a specific point without 
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end-effector velocity changes unequally affecting different parts of the trajectory, and thus 

allows for a less trajectory-dependent analysis. 

3.4 Conclusions 

In this chapter, the mathematical background for this thesis has been outlined, both 

from the theoretical point of view, and the specific implementation point of view. First, the 

inverse kinematics problem has been introduced and main resolution methods have been 

discussed, both for fixed-base and free-floating manipulators, have been presented, 

highlighting how the latter ones differ with respect to traditional robotic arms. Then, the field 

of optimisation for robotic manipulators has been outlined, and main optimisation 

algorithms used for robotic manipulators have been briefly explained. After this, a rationale 

for the implementation choices of simulators and trajectories is presented, and the specific 

simulation setup used for this thesis is introduced to the reader.  
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Chapter 4. The Interpolation-Based Global Kinematic 

Planner 

4.1 Introduction 

In this chapter, a new algorithm is presented for the resolution of the global tracking 

problem of a redundant manipulator, the Interpolation-Based Global Kinematic Planner 

(IBGKP). It is based on nonlinear optimisation techniques rather than classic optimal control 

methods. This allows the new algorithm to outperform traditional methods in that, 

differently from existing techniques, it can find the optimum of different cost functions with 

minimal adaption, and it can not only handle joint motion and velocity limits, but nonlinear 

constraints, on torques and power, as well. Furthermore, it is able to solve cyclic trajectories 

(those with same joints configuration and velocities at the starting and final point of the 

trajectory), and it can compute multiple optima and solve bi-objective optimisation 

problems, while featuring much lower dependency on the choice of initial conditions than 

traditional methods, and not having Jacobian-related numerical problems. In order to 

achieve these results, IBGKP uses a specifically developed pre-optimisation step to pick most 

promising initial conditions for the optimisation from a randomly generated initial 

population, and it exploits multi-start methods to find several optima at once. It is thus able 

to find constrained global optima to the inverse kinematics global problem. 

The chapter starts with an overview of the optimisation method hereby used, then it 

describes the problem to be solved in detail, and presents a first working version of the 

algorithm, which is however slow in converging. Thus, a more sophisticated version is 

introduced, which features reduced computational time and increased chances to find the 

global optimum. This latter, faster version is proven to effectively find optima of kinetic 
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energy through comparison with the unconstrained results obtained with existing methods. 

After this, the results obtained with the new method are shown to be effective to solve the 

constrained problem for different trajectories and boundary conditions, especially the cyclic 

ones, which are relevant for industrial tasks. The chapter is concluded with a brief discussion 

about bi-objective optimisation problems. 

4.2 Problem under consideration 

4.2.1 Overview 

An inverse kinematics global algorithm is an algorithm that optimises a cost function 

taking into account the whole trajectory. The cost function is usually an integral cost, such as 

the one presented in equation (3-31). 

There are several factors that may increase the complexity of optimising such a cost 

function. A linear version of this problem, called the Linear Quadratic Regulator (LQR)  [139], 

is very well understood and its solution is widely known. Most of the literature about optimal 

control is concerned with solving nonlinear problems that are linearizable or bear some 

similarity with the LQR, such as Nonlinear optimal tracking for control affine systems, which 

are expressed in the form (e.g. [140], [141]): 

{

�̇� = 𝑨(𝒙(𝑡))𝒙(𝑡) + 𝑩(𝒙(𝑡))𝒖(𝑡)

𝒚 = 𝑪(𝒙(𝑡))𝒙(𝑡)

 (4-1) 

Where the cost function assumes the form: 

𝐹(𝒖, 𝑡) = ∫ [(𝒚(𝑡) − 𝒚 𝒓𝒆𝒇(𝑡))
𝑇
𝑸(𝑡) (𝒚(𝑡) − 𝒚 𝒓𝒆𝒇(𝑡)) + 𝒖

𝑇𝑹(𝑡)𝒖]
𝑡𝑓𝑖𝑛

𝑡0 

𝑑𝑡 (4-2) 
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Solution methods with some proof of convergence have been provided for this kind 

of problem, and can be used for nonlinear problems provided that form (4-1) is a good 

approximation for them. However, considering 𝒙(𝑡) to be the joints trajectories and 𝒚(𝑡) to 

be the end-effector trajectory, it is not possible to rewrite direct kinematics of a robotic 

manipulator as an control affine system. 

Global optima for nonlinear problems usually require stochastic techniques to be found. 

This is because the structure of the problem doesn’t allow to readily recognise patterns to 

rely on for deterministic search, thus making statistic approaches necessary. In the field of 

robotic manipulators motion planning, genetic algorithms have been extensively used to 

minimise time, torques, energy, and enforce obstacle avoidance for point-to-point problems, 

but, while such problems have been extensively discussed, the same level of attention has 

not been given to tracking problems, where the end effector desired position and velocity 

are defined along the full length of the trajectory. 

As already mentioned in the literature review, some of the early work specifically 

presented for the tracking problem of redundant manipulators, tackled the global inverse 

kinematics problem through Pontryagin Maximum Principle [124]. However, it still has issues 

when applied to energy minimisation, most notably two: its computation requires to solve a 

two points boundary values problem (TPBVP), which is strongly dependent on the initial 

guess, and its mathematical formulation features high complexity and dependency on the 

Jacobian, which is a source of numerical problems. 

Another widely used approach is the one based on calculus of variations. As 

mentioned in the literature review, this kind of approach allows to find an explicit 

formulation for the optimisation problem, which can then be solved by solving a two points 

boundary value problem. Nedungadi et al. [15] provided an already mentioned solution for 
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kinetic energy, which is however prone to instability which makes the computation hard. 

Furthermore, it has been observed in literature [9] that trajectory tracking optimisation of 

redundant manipulators may feature multiple local minima, which hampers the ability of 

methods based on the calculus of variation to find the global one. These methods also have 

difficulties with respecting joint and velocity limits. Some global solution for the constrained 

problem has been presented in literature, for example by Guo and Zhang [142], but no 

general solution exists to the knowledge of the author, that allows to take both joint and 

velocity limits into account, not to mention torques or power limits. 

A point about this can be made that it is hard to consider such limits with either 

Pontryagin Maximum principle or with calculus of variations. A possible solution for joint 

limits mentioned in the literature review by Zhou et al. [51], but it is limited in that it relies 

on adding terms to the cost function, and consequentially weight factors to prioritise them. 

This means that the optimisation becomes multi-objective, yielding sub-optimal results for 

each one of the terms. 

In addition to these points, some researchers, such as Martin et al. [9] noticed that, under 

certain conditions, methods based un Euler-Lagrange equations may fail to find the global 

optimum, as solutions might be distributed among different homotopy classes: this means 

that the most expensive ones cannot be deformed continuously into the less costly one. In 

such cases, optimisation algorithms that are based on Euler-Lagrange equations fail if their 

initial conditions are not in the right homotopy class. Furthermore, not many solution 

methods exist for the constrained case, and they are usually limited in the cost function or 

constraints (usually posed on joints displacements and velocities), while their ability to find 

the actual global optimum, rather than a local solution to the global problem, has only rarely 

been discussed (an example is available in Nakamura [124]). 
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Despite the shortcomings of methods based on optimal control and calculus of 

variations, application of nonlinear optimisation techniques is not easy either, as the 

dimensionality of this problem can easily become very high, since it involves dividing the 

trajectory in path points, which need to be as many as possible in order to allow precise 

tracking. On the other hand, each steps adds n parameters to the optimisation, where n is 

the number of Degrees of Freedom of the manipulator. Furthermore, only small portions of 

the search space are relevant to the problem: most of the possible solutions feature 

excessive errors on trajectory tracking, to the point they are not only unworthy of 

consideration in order to find the solution, but considering them might considerably slow 

down the solution process. Even if it were possible to restrict the search space only to 

solutions with no tracking error, the redundant nature of the manipulator means there is still 

an infinitive amount of them. 

Many optimisation techniques, such as Genetic algorithms, focus heavily on the 

ability to search a wide space of possible solutions. This case is rather different, as the global 

inverse kinematics problem requires to restrict the search to very specific patches of the 

search space, as opposed to the wide search scope of GAs and other methods. This is due to 

the fact that the tracking of the trajectory imposes a number of nonlinear constraints equal 

to the number of DoF of the end-effector at every time step. Using a method that makes use 

of such constraints to reduce the search space is obviously preferable. Furthermore, GAs 

methods developed for robotics motion planning usually exploit a parametrization of joint 

trajectories as polynomials, with the coefficients of the polynomial being the parameters of 

the optimization. The high number of constraints, which does not allow to reduce the 

number of parameters this way. Multi-start algorithms, on the other hand, are based on the 

generation of several sets of initial conditions and the use of traditional deterministic 
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algorithms, such as the gradient method, on each one of them (e.g. see [134]). This approach 

allows to use deterministic algorithms that exploit augmented cost functions which include 

nonlinear constraints directly, such as Sequential Quadratic Programming (SQP). Multi-start 

optimisation algorithms exploit multiple sets of initial conditions to fully explore the search 

space of the cost function. They belong to the class of Random Search Methods, which have 

been proven to require mild assumptions to converge to the global optimum as the number 

of search attempts grows (for a proof, see, for example, [143]). The algorithm works as 

follows: 

1. Construct initial condition i. 

2. Apply a local search method to improve i. Let x be the solution obtained. 

3. If x is the best solution, save it. 

4. Repeat until a stop criterion is fulfilled. 

In modern implementations, rather than repeating the steps in a sequential way, 

steps from 1 to 3 are performed in parallel on different processors, and the best solution is 

chosen among all their outcomes. It should be noticed that several local methods have been 

developed specifically to perform constrained optimisation without the need to weigh 

fulfilment of constraints against other objectives (i.e. adding further terms to the cost 

function), such as Sequential Quadratic Programming or methods based on barrier functions 

[144]. Thus, an algorithm based un multi-start methods can be easily used for constrained 

optimisation. 

Multi-start ability to search for several local minima at once allows, depending on the 

chosen initial conditions, to investigate the whole solution space, or just a portion of it. This 
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latter case is important because in the case of redundant manipulators because, if it were 

possible to setup the search in such a way that only subspaces of the search space with low 

tracking error are selected, the search for an optimum would be much easier. In fact, a 

possible reason why multi-start methods have been somewhat less exploited in robotics 

could be the difficulties in the individuation of suitable initial conditions: most choices are 

simply too far away from the best trajectory to stand any chance of convergence. Still, once 

a set of initial conditions is generated close enough to a minimum, the gradient-based nature 

of the optimisation implies the algorithm will converge on it in a very simple and 

straightforward way. 

.  A huge amount of methods to construct initial conditions has been proposed (for 

some references, the reader can look, for example, at [145]), but none has been specifically 

developed for robotic manipulators precision tracking. Most of the existing proposals are 

aimed to explore as much of the search space as possible, while here the main aim is to only 

explore the part of the search space containing the kinematically compliant solutions, which 

should be continuous and differentiable functions respecting all end-effector trajectory 

constraints. A good strategy is to use existing local inverse kinematics methods, such as 

weighted pseudoinverse, while using randomly generated weights. In such a way, arbitrarily 

many random solutions can be generated that respect kinematic constraints, while each one 

of them is potentially very different from each other. 

The main intuition behind the new algorithm developed for this thesis is thus a new 

heuristic for multi-start algorithms, suited for generation of optimal kinematic solutions for 

the tracking problem of redundant manipulators. The approach hereby presented, called 

Global Kinematic Planner (GKP) is based on the pre-generation of sets of random 

pseudoinverse weights. Each one of these weight matrices can be used to obtain a different 



115 
 
 

 

 

solution for the tracking problem under examination, although it is not necessarily an optimal 

one. The most promising sets with respect to a cost function are then picked as initial 

conditions for a multi-start global optimisation. This approach is an improvement respect to 

a general multi-start framework, in that all sets of random starting points, being solutions for 

the end-effector trajectory, respect kinematics constraints, although in a non-optimal way, 

and most of them are continuous and differentiable (those for which a Jacobian singularity 

occurred during their computation are not continuous and differentiable in the specific point 

where the singularity occurred). This allows an easier optimisation of extra costs, such as 

kinetic energy or torques norm integral, as opposed to optimise trajectory error and 

additional objectives at the same time. This has a positive effect on chances of convergence 

and convergence times. The method hereby presented improves on optimal control 

methods, in that it may look for solutions in different homotopy classes, and generally 

explore the whole solution space rather than the neighbourhood of an initial guess. It allows 

for cost functions usually hard to optimise, and it is specifically designed for manipulators 

kinematics. This method also improves on solutions based on the calculus of variations in 

that it is especially suited for constrained problems: in this chapter, not only constraints on 

joints positions and velocities, but also on torques and power, are shown to be effective. Not 

only they can be imposed, but they may even allow for faster optimisation, reducing the 

search space. 

The main downside of such algorithm is can quickly fall into the curse of 

dimensionality, especially with problems with many degrees of freedom and/or path points. 

In order to extend the method to such problems, a further refinement, called Interpolation-

Based Global Kinematics Planner (IBGKP), has been necessary. The IBGKP is based on a 

relaxed problem with a restricted number of parameters. The solution of this problem is then 
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extended to a bigger set of parameters through interpolation, and further optimised, till the 

number of parameters of the complete problem is reached in an iterative fashion. This 

optimisation method is proven to be able to reach the same optimum in less time, and to be 

able to process a higher number of candidate solutions, providing a practical tool for 

optimisation of high dimensionality kinematic planning problems. 

4.2.2 Mathematical formulation and constraints 

As already mentioned in the chapter dedicated to mathematical background, the 

problem that is tackled by the IBGKP is the problem of minimising an integral cost function 

alongside a trajectory. This cost can be expressed in several different ways. One of them is 

to have a cost functions composed by two parts which weighted by gain matrices, the 

tracking error and a quadratic control cost. This is equation (3-32), repeated here: 

𝐶(𝒒, 𝒖, 𝑡) = ∫ [(𝒙(𝒒) − 𝒙 𝒓𝒆𝒇)
𝑇
𝑸(𝒒, 𝒖, 𝑡)(𝒙(𝒒) − 𝒙 𝒓𝒆𝒇) + 𝒖

𝑇𝑹(𝒒, 𝒖, 𝑡)𝒖]
𝑡𝑓𝑖𝑛

𝑡0 

𝑑𝑡 (3-31) 

Where all the symbols have the meaning already illustrated in previous chapter. Another 

one is to optimise a cost function subject to a trajectory constraint, such as (3-30): 

minimise
𝑥

∫ 𝐶(𝒒, �̇�, �̈�, 𝑡)
𝑡𝑓𝑖𝑛

𝑡0

𝑑𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒙𝒓𝒆𝒇(𝑡) = 𝑓(𝒒(𝑡))
 

 

(3-30)  

This latter formulation is the one used for the global algorithm presented in this chapter.. 

The integral function in (3-30) is defined to be the control cost. Several possible choices for 

it can be considered, as energy consumption has been measured in different ways in 

literature. For the purpose of this thesis, three of them have been particularly focused. One 

of them is the kinetic energy integral along the end-effector trajectory:  
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𝐸(𝒒, �̇�, 𝑡) =  ∫
1

2
�̇�𝑇𝑾�̇�

𝐿

0

𝑑𝑙 

(4-3) 

where L is the overall length of the trajectory. This function is kind of a natural choice, 

being a basic and established way to represent energy in mechanics, and having been already 

used many times in literature accordingly (for example, see [15]).   

Another index that has been widely used in literature as a measure of energy 

consumption, and is also used here, is the integral of the squared norm of torques, expressed 

as: 

𝐹(𝒒, �̇�, 𝒒,̈ 𝑡) =  ∫𝝉𝑇𝝉 

𝐿

0

𝑑𝑙 

(4-4) 

This expression, widespread in literature (for example [44], [146]), is a useful 

operational parameter to quantify the dynamic effort made by a manipulator during a certain 

trajectory and will be used as well. The expression of torques can be as simplified as (3-15) 

or include further terms, such as friction, in which case it would take the form: 

𝝉 = 𝑴(𝒒)�̈� + 𝒏(𝒒, �̇�) + 𝒌𝒗𝒊𝒔�̇�  +  𝒈(𝒒)  (4-5) 

Where 𝒌𝒗𝒊𝒔 are viscous friction coefficients depending on the materials interacting. 

The result is a damping term added to the torques. Both these expressions can be used as 

control costs of the IBGKP, and the one exploiting torques will be presented both with and 

without friction. This results in three cost functions: kinetic energy, joint torques squared 

norm integral and joint torques squared norm integral with viscous friction. 

While control costs such as kinetic energy or torques norm integral are featured in 

the second term of the expression (3-13), the first term refers to the error from a reference 
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trajectory. In fact, tracking problems such as the global inverse kinematics problem are 

characterised by a reference end-effector trajectory, expressed as a function of time in the 

cartesian space: 

𝒙𝒓𝒆𝒇(𝑡) = 𝒇(𝑡) (4-6) 

However, initial conditions can be posed in different ways. For the purpose of this 

work, conditions on joint positions and velocities have been taken into account, since they 

are the most reasonable for the task a robotic manipulator is supposed to perform, especially 

the latter ones on velocities: realistic working conditions feature the manipulator to start and 

conclude its motion with motionless joints. For this reason, a condition such as what follows 

are used in this work: 

�̇�(𝑡0) = 𝟎 (4-7) 

Indicating that the initial velocities are set to zero. Initial conditions on joint positions 

are enforced by the fact that any 𝒒𝟎 should respect the constraint: 

𝒙(𝒒𝟎) = 𝒙𝒓𝒆𝒇(𝑡0) (4-8) 

In case no further condition is posed, the trajectory will be said to have free initial 

configuration in the reminder of this work, although it is not exactly free, as it still must 

respect the constraint on initial end-effector position. The “free” term is thus referred to the 

fact that joints can assume any configuration within this limit. In case a precise condition on 

the joints configuration is posed, the problem will be said to have constrained initial 

configuration. Two kinds of constrained initial configuration problems are worth being 

mentioned for the purpose of this thesis. One of them is said to have fixed initial 

configuration, expressed as: 
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𝒒(𝑡0) = 𝒒0 (4-9) 

While the other is only defined for closed end-effector trajectories, and it encloses 

the cases where it is desired that the arm reaches its starting configuration again at the end 

of the trajectory, with the same velocity it had at the beginning of the trajectory. In this case 

initial conditions are still free in the sense that they’re not forced into a specific configuration. 

However, a cyclicity constraint is posed that can be expressed as: 

𝒒(𝑡0) = 𝒒(𝑡𝑓𝑖𝑛) 

�̇�(𝑡0) = �̇�(𝑡𝑓𝑖𝑛) 

(4-10) 

This is a case that is useful for industrial applications, since repetitive and cyclic 

motions are often the case for industrial manipulators. For the purpose of this thesis, only 

free initial conditions have been examined: it will become apparent in the rest of the chapter 

that the case with fixed initial configuration is easier to solve with the algorithm hereby 

presented, than the one with free initial configuration. Hence, simulations with fixed initial 

configuration wouldn’t provide any extra insight. 

Further consideration must be given to limits and constraints of the joints: real 

robotic manipulators feature joint limits, and constraints on joints velocities, torques, and 

power. The IBGKP is able to incorporate such constraints through the use of a local Sequential 

Quadratic Programming algorithm, which allows it to generate solutions that can be applied 

straightaway. From the mathematical point of view, the limits on joints can be expressed as 

−𝑞𝑙𝑖𝑚 < 𝑞𝑖 < 𝑞𝑙𝑖𝑚 for i, …, n 
(4-11) 
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Where n is the number of degrees of freedom of the manipulator. With symbols 

retaining the same meaning, constraints on velocities can be expressed as: 

−�̇�𝑙𝑖𝑚 < �̇�𝑖 < �̇�𝑙𝑖𝑚 for i, …, n 
(4-12) 

While limits on torques and power feature the following expressions: 

−𝜏𝑙𝑖𝑚 < 𝜏𝑖 < 𝜏𝑙𝑖𝑚 for i, …, n 
(4-13) 

−𝑊𝑙𝑖𝑚 < 𝜏𝑖�̇�𝑖 < 𝑊𝑙𝑖𝑚 for i, …, n 
(4-14) 

 

 

4.3 Description of the new global algorithm 
 

4.3.1 The Global Kinematic Planner 

 The new algorithm is first explained in a simple version featuring the main 

characteristics of the new method. This first version is called Global Kinematic Planner (GKP), 

and is able to provide good results, but usually has slow convergence times. A more 

sophisticated implementation, which has already been referred as Interpolation-based 

Global Kinematic Planner (IBGKP), is explained later in this chapter. This latter one features 

faster convergence times and allows for a more complete search over the solution space, and 

it is the one that has been used to compute the results provided in this thesis. 

 As already mentioned, the global algorithm presented in this thesis is based on the 

choice of suitable initial conditions for a multi-start optimisation. The underlying intuition is 

that a very high number of trajectories are randomly generated through the use of classic 

inverse kinematics algorithms. This populates a set of candidate initial conditions, where 
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each randomly generated trajectory is a candidate initial condition for the algorithm. The set 

is then ranked according to a criterion that reflects the chances of that specific initial 

condition to converge to a good optimum. This criterion might be the cost function without 

any modification, or a cost function modified to take into account a penalty for the violation 

of constraints. A subset constituted by the initial conditions with the best ranking is then used 

as initial conditions for the multi-start algorithm. 

More specifically, the algorithm that follows exploits weighted pseudoinverse as per 

formula (3-12) to generate the initial conditions for the multi-start search. As already 

mentioned in the Mathematical Background chapter, this is a widespread technique in 

robotics, when a task is meant to be locally optimised by giving different weights to each joint 

depending on the optimisation objective. Such objective usually is a local minimisation of the 

norm of velocities, but might be any local solution obtained exploiting least squares 

minimisation, which is indeed the case here. Reminding formula (3-12), the most usual cases, 

are where 𝑾 =  𝑰, which has already been identified as the Moore Penrose pseudoinverse, 

and is used to calculate the minimum-norm joint velocities required to obtain a specific end 

effector velocity, and the case were 𝑾 =  𝑩(𝒒), where the weight matrix is the inertia 

matrix. In this case, the algorithm would provide a local minimization of the kinetic energy. 

However, it is possible to exploit any set of weights that form a symmetric positive definite 

matrix, and indeed this is the case examined here, where different solutions are computed 

by randomly generating compliant weight matrices. The resulting algorithm is divided in 

three phases: 

• Initialisation: random weight matrices are generated. 
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• Population: the population of candidate trajectories is generated by using 

inverse kinematics schemes. 

• Optimisation: the best candidate solutions are used as initial conditions to 

perform a multi-start optimisation. 

More in detail, considering the trajectories to be divided in 𝑛𝑠𝑡𝑒𝑝𝑠 path points, and 

the robot to have 𝑛𝑗𝑜𝑖𝑛𝑡𝑠 joints, the steps of the Global Kinematic Planner are hereby 

presented. In their description, bold notations such as q, q  ̇etc… identify vectors as usual, 

while a notation with braces, such as {𝒒}, {�̇�} etc… identify a set of vectors, each one 

representing a different time step. 

Initialization 

1. Manipulator physical and inertial parameters, simulation parameters and end-

effector trajectory are taken as input. 

2. A set of joint configurations compliant with the desired end-effector initial position 

is taken as input. 

3. A set of symmetric positive definite weight matrices is generated with all eigenvalues 

randomly assigned between 0 and 1 (excluding 0 and 1 themselves). The number of 

weight matrices to be generated depends on computational power, but it must 

generally be high enough that increasing it doesn’t improve the best candidate 

solution anymore (see later in the chapter for further explanation). A feasible 

number is: 

𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
2 (4-15) 
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Where 𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 is the number of parameters of the problem taken into account, 

which corresponds to: 

𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑛𝑝𝑎𝑡ℎ 𝑝𝑜𝑖𝑛𝑡𝑠 ∗ 𝑛𝑗𝑜𝑖𝑛𝑡𝑠  (4-16) 

Where 𝑛𝑝𝑎𝑡ℎ 𝑝𝑜𝑖𝑛𝑡𝑠 is the number of points that define the desired end-effector 

trajectory, and 𝑛𝑗𝑜𝑖𝑛𝑡𝑠 is the number of DOF of the manipulator. 

Population 

4.  set of 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 solutions {𝒒𝒓𝒂𝒏𝒅𝒐𝒎}  is computed for each robot initial 

configuration defined at point 2, using the weight matrices generated at point 3 to 

weight the pseudoinverse. Each solution is obtained through formula (3-4), repeated 

here:  

�̇� = 𝑱𝑾𝒗 (3-4) 

Where 𝒗 is the desired end-effector velocity. 

Optimisation 

5. All candidate solutions generated during the population phase are ranked according 

to a criterion. In case of unconstrained optimization, the criterion is the value of the 

cost function, while, in case of constrained optimization, the criterion is the value of 

the cost function plus an extra term to penalize the violation of constraints on joint 

mechanical limits. This term has the same expression as that presented in [31] by 

Liegeois in a different context: 
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𝑤𝐽𝐿(𝒒) = 𝑘𝐽𝐿 ∑
1

2𝑛
 ∑(

𝑞𝑖 − �̅�𝑖
𝑞𝑖𝑀 − 𝑞𝑖𝑚

)
2𝑛

𝑗=1

𝑡𝑓𝑖𝑛

𝑖=𝑡0

 (4-17) 

The value 𝑘𝐽𝐿 is a weight to balance the extra term against the cost function, and the 

reminder of the expression is a quantity defined as the distance from the joint 

mechanical limits, computed for each time step and summed over the whole motion 

time. In Equation (14), 𝑞𝑖𝑀 (𝑞𝑖𝑚) is the maximum (minimum) i-th joint limit, �̅�𝑖 the 

mean value between the two, and n are the robot DOF. This term is included in the 

cost function to penalize candidate solutions that exceed joint limits by large 

amounts, as opposed to excluding all candidate solutions that violate the limits, and 

for this reason 𝑘𝐽𝐿 is set to 0.01. In this way, the solver is still able to consider 

candidate solutions that exceed the limits by a small amount on a limited number of 

path points. Other constraints are not considered for the ranking of solutions, since 

in all the simulations carried out joint limits appeared to be by far the most influential 

constraint for the ranking. The term in Equation (4-17) is not required to be explicitly 

part of the cost function used for the optimization (step 6 below), since all 

constraints, including trajectory tracking, are taken into account as part of the SQP 

algorithm. 

6. Multi-start algorithm is launched with the best 𝑛𝑟𝑢𝑛𝑠 candidate solutions according 

to the selected criterion, all the others are discarded. Joint limits and the other 

constraints are enforced through the fmincon function, which takes their 

expression/value as an input. The number 𝑛𝑟𝑢𝑛𝑠 depends on the computational 

power available and on the complexity of the problem. For the results presented in 

this work, 𝑛𝑟𝑢𝑛𝑠 has been set to 24. 
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7. Best solution is picked from the results of the multi-start. 

It must be highlighted that the use of a random weight matrix might feature very 

different results in term of joint displacements over the whole length of the trajectory 

despite apparently small changes in the weights. This makes it necessary for 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 to 

be sufficiently high, while on the other hand increasing it above a certain value will require 

additional computational time but will not sensibly increase the quality of the best candidate 

solution anymore. In order to investigate the relationship between 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 and the 

chances to find the best optimum, the value of the kinetic energy cost function for a three-

DOF planar robot has been computed for sets with 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 from 1 to 104.5 for a problem 

with 39 parameters, corresponding to an initial point and 12 following path points along a 

line, which for three DOF gives (12 + 1)*3 parameters. In Figure 1, the x-axis shows the 

number of candidate solutions in the set, and the y-axis shows the difference between the 

cost function value (𝐶) for the best member of the 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 set and the best computed 

value of the cost function obtained in the simulations (see Results, case 1a) for the system 

under consideration, according to Equation (15). 

𝑦 = log (𝐶𝑏𝑒𝑠𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 − 𝐶𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑚𝑢𝑚) (4-18) 

It can be observed that, for a number of 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 higher than the number of 

parameters, such difference tends to a linear function in logarithmic scale, which 

corresponds to a power law in linear scale. The best fit function is: 

𝑦 = 𝑒−4.0733 ∗ 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
−0.2030  (4-19) 

This suggests that, for the problem under consideration, increasing the number of 

𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 progressively reduces the distance between the initial guess and the globally 
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optimal solution. It is noted that the value of 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 obtained by Equation (12) is 1521, 

which falls well within the linear part of the graph.  

 

 

Figure 4-1 Difference between cost function value of best candidate solution and best computed value of cost 
function. 

  

4.3.2 Generation of starting configurations 

Step 2 of the Global Kinematic Planner involves the input of a set of initial joint 

configurations. However, it is most often the case where no known initial configuration is 

likely to be reasonably close to the one of the global optimum solution. In this case, the 

following method can compute more initial configurations starting from an existing one 

(𝒒𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏): 

1. A set of 𝑛𝑝𝑎𝑡ℎ 𝑝𝑜𝑖𝑛𝑡𝑠 joint velocity vectors {�̇�𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏} is randomly generated. In 

the examples provided in this paper, a normal distribution has been used, due to its 

effectiveness and the simplicity of implementation. Other methods are widely used for 



127 
 
 

 

 

finding initial conditions for multi-start algorithms, such as Latin hypercube [32]. This 

was not necessary here, but it could lead to better results when the chosen 

𝒒𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏 is thought to be far from the optimal one. 

2. An inverse kinematics problem is solved with end-effector velocity set to zero, robot 

initial configuration 𝒒 = 𝒒𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏, and secondary task {�̇�𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏}. 

This leads to a new initial configuration which does not affect the end-effector 

position: 

Equation (4-20) is obtained by considering the general solution of the inverse kinematics 

problem with Moore–Penrose pseudoinverse, as per equation (3-12), repeated here: 

�̇� = 𝑱+�̇� + (𝑰 − 𝑱+𝑱)�̇�𝟎 (3-12) 

Where �̇� is the desired end-effector velocity and �̇�𝟎 is a secondary task to be executed 

without modifying the end-effector velocity. This can be achieved by exploiting the null-space 

operator [33] (𝑰 − 𝑱+𝑱). If �̇� is set to zero in Equation (18), the joint velocities will not be 

affected by the end-effector velocity and will be equal to (𝑰 − 𝑱+𝑱)�̇�𝟎. Equation (17) is 

obtained by integrating Equation (4-20) from 𝒕𝟎 to 𝒕𝒇𝒊𝒏. 

The size of the set of initial configurations is an important parameter to ensure 

convergence on the best optimum, as the initial configuration of the manipulator influences 

the whole trajectory. In general terms, this set should be representative of the whole set of 

configurations that produce the desired end-effector initial position. Inverse kinematics as 

per Equation (3-12) is computationally inexpensive, which allows us to generate a high 

number of set members relatively inexpensively. The examples presented in this paper have 

been produced with a set of 66 initial configurations, which come from a trade-off between 

𝒒 𝒏𝒆𝒘 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏 = 𝒒𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏 +∫ (𝑰 − 𝑱+𝑱)�̇�𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏𝑑𝑡
𝒕𝒇𝒊𝒏

𝒕𝟎

 
(4-20) 
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the overall computation time required and the probability to discard an initial condition that 

would give an optimum better than the previous ones found. Some of the 66 initial 

configurations may violate the manipulator joint limits. On the one hand, the ranking 

function will penalize initial configurations in which joint limits are violated by large amounts 

(which will not be processed further) and, on the other hand, the SQP optimization will 

always provide optimal solutions that are compliant with all the constraints, even if some of 

the initial configurations violate the joint limit constraints by a small amount. 

4.3.3 The Interpolation-Based Global Kinematic Planner 

While the Global Kinematic Planner can find global optima of the problem expressed 

by (3-31), its computational complexity grows with both the number of DOF of the 

manipulator and the number of path points. Due to this, its use might be computationally 

expensive for problems featuring multi-DOF manipulators or long trajectories with high 

precision requirements. In order to overcome this issue, a global optimal solution on a 

reduced set of parameters can be calculated and extended on a higher number of parameters 

through interpolation. Such new solution can then be optimised again with the new number 

of parameters. This two steps approach will reduce computational time, since the second 

round of optimisation starts from an initial guess that is already optimal for a similar problem. 

The two steps can be then repeated adding more parameters through interpolation, until the 

desired time step is reached (eventually, the same as the Global Kinematic Planner). This 

method also allows a more thorough search on the solution space: since the optimisation of 

a single candidate solution is much less time consuming with a low number of parameters, it 

is possible to first run the multi-start algorithm with a high number of candidate solution 

𝑛𝑟𝑢𝑛𝑠, and then focus the following optimisation steps on the most promising solutions 

obtained. This allows to save computational power and may increase the chances to find a 
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global optimum. The method above outlined, called Interpolation-based Global Kinematic 

Planner, works as follows: 

 A subset of path points of the end-effector trajectory to track is selected. A sampling 

interval 𝛥𝑡𝑖𝑛𝑡𝑒𝑟𝑝 =  𝑛 ∗ 𝛥𝑡 with 𝑛 integer and 𝛥𝑡 discrete time step of the complete 

problem is used. Sampling can be thicker in parts of the trajectory where the cost 

function to be minimized is expected to be higher. 

 The Global Kinematic Planner is used to provide a solution {𝒒𝒊𝒏𝒕𝒆𝒓𝒑,𝒔𝒖𝒃𝒔𝒆𝒕}, as explained 

above. 

 A new 𝛥𝑡𝑖𝑛𝑡𝑒𝑟𝑝 is chosen, according to the formula 𝛥𝑡𝑖𝑛𝑡𝑒𝑟𝑝,𝑛𝑒𝑤 =
𝑛∗𝛥𝑡

𝑚
, where m is an 

integer submultiple of 𝑛. 

 A new set of path points is selected with 𝛥𝑡𝑖𝑛𝑡𝑒𝑟𝑝,𝑛𝑒𝑤 as a time step. 

 Cubic splines are used to interpolate the values of 𝒒 on the path points not included in 

the previous subset {𝒒𝒊𝒏𝒕𝒆𝒓𝒑,𝒔𝒖𝒃𝒔𝒆𝒕}, obtaining a complete {𝒒} vector on the new set of 

path points. 

 A further gradient-based optimization based on SQP is run with initial guess 

corresponding to the solution obtained at the previous step. 

 Steps 3–6 are repeated, decreasing 𝛥𝑡𝑖𝑛𝑡𝑒𝑟𝑝 until the desired step size 𝛥𝑡 is reached. 

Subject to available computational power, this can be as small as the one of the complete 

original problem. 

The solution obtained at step 5 is likely to be close to the optimal solution of the full 

global problem since it is an interpolation of a global optimal solution of a simplified version 

of the problem. For this reason, step 6 can run a much easier optimization (with faster 
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convergence) with respect to step 6 of the Global Kinematic Planner since the initial guess is 

already near-optimal.  This allows for faster convergence than with the Global Kinematic 

Planner. For timing purposes, the IBGKP has been tested on a machine featuring an Intel i7 

ninth generation exa-core processor with 32 GB RAM, SSD mass storage, and using Windows 

10 and Matlab version 2019b. The problem under examination featured 303 parameters and 

the planner solved it with 4 optimisation steps, with 𝛥𝑡 being progressively halved from an 

initial 0.08s to a final 0.01s, resulting in computational times around 300s and an exploration 

of 60 candidate solutions. For comparison, the global planner presented earlier in the chapter 

took times in the range of 600s for the same problem, while exploring only 6 candidate 

solutions. Similar computational times have been observed for all simulations in the reminder 

of this chapter, ranging from 160 to 400s. 

Before analysing the results, it must be noticed that no explicit gradient formulation 

for the local search is available a priori, since the control cost function may vary. Due to this, 

numerical gradient methods have been used to obtain the results of this thesis. For the 

unconstrained case, used for the validation of the algorithm, a Quasi-Newton method has 

been used, which exploits the Broyden - Fletcher - Goldfarb - Shanno (BFGS)  formula as 

proposed by [149] to approximate the Hessian of the function to optimise. For the 

constrained cases, the gradient optimisation has been performed through the use of 

Sequential Quadratic Programming algorithm [144]. This algorithm is based on the use of 

Lagrange multipliers to solve a problem that is equivalent to the nonlinear problem: 

min
𝑧
𝑓(𝑥)

𝑠. 𝑡
𝑏(𝑥) ≥ 0
𝑐(𝑥) = 0

 

(4-21) 
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 Given this problem, SQP solves it through a quadratic approximation of the 

Lagrangian function: 

 Where m is the number of inequality constraints, n is the number of equality 

constraints, and λ and σ are Lagrangian multipliers respectively for nonlinear and linear 

constraints. At each iteration of the algorithm, a search direction d is defined as a solution of 

the quadratic programming problem: 

The advantage of SQP compared to other algorithms, for this specific application, is that 

nonlinear (such as tracking) constraints in the quadratic expression (4-23) are much easier to 

handle than the nonlinear constraints in original expression (3-32). In all cases, the 

optimisation has been performed in Matlab trough fmincon or fminunc functions in MATLAB. 

4.4 Results and discussion 

4.4.1 Simulation setup for validation and analysis 

In order to prove the capabilities of the IBGKP properly, it is necessary to perform a 

simulation campaign divided in two steps, one aimed at validating the new algorithm against 

existing methods, and one aimed at providing IK solutions that are not yet available in 

literature. The first step is in this case performed by optimising the kinetic energy integral 

alongside a specific end-effector trajectory. This problem has already been solved by 

Nedungadi et al. [15], and thus another solution is available for comparison. Results obtained 

𝐿(𝑥, 𝜆, 𝜎) = 𝑓(𝑥) + ∑𝜆𝑖𝑏𝑖(𝑥) + ∑𝜎𝑗𝑐𝑗(𝑥)

𝑛

𝑗=1

𝑚

𝑖=1

 
(4-22) 

min
𝑑

𝑓(𝑥) + ∇f(x)T𝑑 +
1

2
𝑑𝑇∇𝑥𝑥

2 𝐿(𝑥, 𝜆, 𝜎)𝑑

𝑠. 𝑡
𝑏(𝑥) + ∇𝑏(𝑥)𝑇𝑑 ≥ 0

𝑐(𝑥) + ∇𝑐(𝑥)𝑇𝑑 = 0

 

(4-23) 
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by the new algorithm and by Nedungadi’s one have been compared and their similarity used 

to validate the IBGKP. Once this has been done, a sequence of other solutions has been 

provided with an array of different constraints and cost functions to analyse the performance 

of the new algorithm on several possible IK constrained problems. Constraints on torque and 

power available by each joint have not been previously tackled in literature, hence no 

comparison is available.  

Considering all the possible variations of cost function, limits and constraints 

reported in previous sections, the complete matrix of the possible conditions to simulate is 

illustrated in Table 4-1. They have been chosen to illustrate a wide number of specific 

unconstrained and constrained global inverse kinematics problems that the IBGKP can solve. 

The table lists in fact free and constrained motion cases, considering the three different cost 

functions proposed earlier in the chapter. The columns show different cost functions, which 

constitute the problems used as cases for illustrating the capabilities of the algorithm, while 

the rows shows the different sets of constraints applied to each one of them. Each cost 

function is defined by a number, and each constraints configuration by a letter, giving a total 

of 15 simulation conditions, each one identified by a number, for the algorithm used, and a 

letter, for the constraints used. 

Simulation conditions are characterised by letters, and each one of them has been 

tested with a single trajectory. In the cases with letters from a to d, this is a rectilinear 

trajectory, while in the case e, it is a circular trajectory.  Conditions a-d are solved with free 

initial configuration, while cases e are solved with cyclic boundary conditions, meaning that 

the initial and final manipulator configuration must be equal. The interest for these specific 

trajectories lies in the fact that the rectilinear one features multiple local optima for the 

integral of kinetic energy, while the circular one features tracking of the trajectory through 
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cyclic motion, a notoriously important case for robotic manipulators in industrial 

environment, which is often mentioned in literature (e.g. [150]). All simulations are 

performed with the end-effector velocity profile discussed in previous chapter, according to 

the expression (3-34), in order to have continuous end-effector velocity and acceleration 

along the whole trajectory. 

 
Table 4-1 IK problems used to illustrate the capabilities of the IBGKP 

 
Kinetic energy 

integral 
Torques squared 

norm integral 

Torques squared 
norm integral with 

viscous friction 

No constraints 1a 2a 3a 

Joints and velocities 1b 2b 3b 

Joints and torques 1c 2c 3c 

Joints and power 1d 2d 3d 

Joints, velocity and 
Cyclicity 

1e 2e 3e 

 
Both trajectories start with the same end effector position, 𝒙𝒊𝒏𝒊𝒕 =

[0.4678;−0.000], and run for a total time T = 1 s. The rectilinear trajectory has a length of 

0.40 m and reaches the end effector final position 𝒙𝒇𝒊𝒏 = [0.0983; 0.1526], while the final 

position is of course the same as the initial one for the circular one. The unconstrained kinetic 

energy integral solution for the rectilinear trajectory is also used for the validation of the 

algorithm against the solution method proposed by Nedungadi. Where constraints are 

present, their values are according to Table 4-2. 

Table 4-2 Constraints used in the global algorithm simulations 

 
Constraint Limit without friction Limit with viscous friction  

Displacement [deg] 90 on 1st joint, 120 for 2nd and 

3rd  

90 on 1st joint, 120 for 2nd 

and 3rd 
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Velocity [rad/s] 3.8  3.8  

Torque [Nm] 0.4  1 

Power [W] 0.7 2.75 

 

For all solutions presented in this chapter, 𝛥𝑡 = 0.01𝑠, which means each problem 

has 303 parameters, considering 3 Degrees of Freedom. All simulations have been performed 

by using the Interpolation-based Global Kinematic Planner, with a starting 𝛥𝑡𝑖𝑛𝑡𝑒𝑟𝑝 = 0.08𝑠, 

leading to 39 parameters. The time step has been then progressively halved, doubling the 

number of parameters at each iteration. 1521 candidate solutions have been generated, and 

the best 48 ones have been chosen to be optimised via multi-start method. It is observed 

that the rectilinear trajectory has several local minima, allowing for considerations about the 

performance of the algorithm in such situations. All the characteristics of the simulated 

trajectories have been summarised in Table 4-3. 

 

Table 4-3 Simulated trajectories characteristics 

Number 

# 

Shape Characteristic 
dimension 

Starting 
configuration  

1 Rectilinear 0.40m (length) Free 

2 Circular 0.05m (radius) Cyclic 

 

4.4.2 Algorithm validation 

 In order to validate the algorithm, an unconstrained solution for the kinetic energy 

integral is computed and compared with a solution obtained with an algorithm available in 

literature, which is based on calculus of variations. Results are very similar, with a negligible 

advantage for the Interpolation-based Global Kinematic Planner presented here. The 
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advantage is probably due to numerical differences caused by the implementation, on the 

other hand the similarity of the solutions shows that the new algorithm is for unconstrained 

problems as effective as a theoretically proven algorithm based on calculus of variations. The 

algorithm used for the validation has been proposed by Nedungadi et al. [15] and presents 

an acceleration-based inverse kinematics solution: 

�̈� = 𝑱𝑩
+(�̈� − �̇��̇�) + (𝑰 − 𝑱𝑩

+𝑱)𝑩−𝟏𝒏(𝒒, �̇�) (4-24) 

  Where 𝑱𝑩
+ is the pseudoinverse weighted with the inertia matrix, �̇� is the first 

derivative of the Jacobian, and 𝒏(𝒒, �̇�), as introduced in the mathematical background 

chapter, is a term comprising Coriolis and centrifugal terms of the torque. A complete 

derivation of this equation can be found in the relevant paper, for the purpose of this thesis 

it is worth mentioning that this formula can be used both as a local optimisation inverse 

kinematic method when the initial condition problem is solved, and as a global optimisation 

one when the two point boundary value problem is solved. This latter case is the one used 

for validation here: the global optima for the kinetic energy integral of a specific end-effector 

trajectory have been computed with both the Interpolation-based Global Kinematic Planner 

and the algorithm proposed by Nedungadi. The problem features free starting configuration, 

for both cases a boundary condition on joints velocities at initial time 𝑡0 has been posed as 

per (4-7): 

�̇�(𝑡0) = 𝟎 (4-7) 

   For the Interpolation-based Global Kinematic Planner, no further condition is 

necessary: since the end effector velocity approaches to zero at the end of the trajectory, the 

algorithm naturally reduces kinetic energy (and thus joints velocities) to zero approaching 
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the final time. On the other hand, a boundary condition at the final time 𝑡𝑓𝑖𝑛 is necessary for 

the Nedungadi algorithm to work: 

�̇�(𝑡𝑓𝑖𝑛) = 𝟎 (4-25) 

This condition allows to solve the tracking problem as a two-point boundary value problem. 

 The problem has been solved setting simulation parameters a explained in previous 

section, finding three local minima for the kinetic energy integral. The same problem has 

then been solved with Nedungadi variational algorithm with 𝛥𝑡 = 0.001𝑠, by solving the 

TPBVP with MATLAB routine bvp4c. It should be noticed that, in order to solve this problem 

an initial guess for each path point was required close to each optimum, while the same 

didn’t apply for the Interpolation-based Global Kinematic Planner, which requires much less 

input from the user. Result for kinetic energy and mean difference in joint position between 

Nedungadi solution and the Interpolation-based global kinematic planner are shown in Table 

4-4 (IBGKP in third column stands for Interpolation-based Global Kinematic Planner), while 

the three optimal trajectories are shown in Figure 4-2 starting from the best optimum found. 

Table 4-4 Values of the optima for the validation trajectory 

 
Optimum # Nedungadi solution IBGKP solution Mean difference in joints 

position 

1 0.0532 0.0528 5.8*10-3 

2 0.0567 0.0563 2.2*10-3 

3 0.0673 0.0671 3.8*10-3 
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Figure 4-2 Kinetic energy optima for the validation trajectory 

4.4.3 Simulations results 

For all simulations, relevant variables are summarised in two figures. First one shows 

energy related variables, in this order: kinetic energy, power, torques norm integral and 

kinetic energy integral. Second one shows a stroboscopic plot of the motion, alongside with 

joints positions and velocities, torque and power for each joint. A blue line is used for first 

joint, red one for second, and yellow one for third. Conditions featuring rectilinear 

trajectories (conditions a-b-c-d) are discussed first, starting with those using kinetic energy 

as control cost. After this, cases featuring torques norm integral with no friction, and finally 

cases featuring torques norm integral with viscous friction. The friction coefficient that has 

been used is 0.3, a typical coefficient for aluminium-aluminium interface. Cases featuring 
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cyclic motion (letter e) will be examined afterwards, since they feature different boundary 

conditions which are worth being examined against each other. 

4.4.3.1 Rectilinear trajectories 

 

CASE 1 (KINETIC ENERGY) 

The values of kinetic energy and joint torques norm integral for each constraints’ 

choice have been summarised in Table 4-5. It is important to notice that optimisation of a 

quadratic form of velocities does not guarantee continuity of the accelerations, which might 

be problematic for constraints involving accelerations. 

Table 4-5 Results for case 1 rectilinear trajectories 

 
Simulation Kinetic energy integral 

[Js] 

Torques squared norm 
integral 

[((Nm)^2)s] 

1a (no limits) 0.0528 0.1827 

1b (displacement and velocity) 0.0528 0.1820 

1c (displacement and torque) 0.0550 0.1564 

1d (displacement and power) 0.0529 0.1843 

 

First simulation, 1a, with no constraints, has been already partially discussed as part 

of the validation of the algorithm, however the best solution that has been found is worth 

more comments. Comparison with Nedungadi kinetic energy minimising algorithm has 

shown slightly lower values of the kinetic energy integral: this difference is quite small, and 

it can probably be ascribed to small differences in implementation. Figure 4-3 and Figure 4-4 

respectively show energy figures and kinematic and dynamic variables for each joint. It is 

possible to observe that the second and third joints feature enhanced motion, while the first 

one is less used: this is an effect of kinetic energy minimisation, which focuses on reducing 
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the motion of the joints with higher inertial properties, trying to reduce the burden on them. 

It is however interesting to observe the torques figure: the first joint is now the one showing 

the highest value by far, reaching up to 0.7067 Nm, while for power, first and second joints 

are comparable, with maximum values being 0.7721 W and 0.7303 W. In both cases, the third 

joint is showing way lower values (maximum values are 0.0632 Nm for torque and 0.2545 W 

for power). This shows minimisation of kinetic energy doesn’t necessarily imply lower effort 

for actuators. In fact, even when minimising kinetic energy, it makes sense to limit actuators 

torques and powers as per the other simulations hereby presented. 

 

Figure 4-3 Energy figures for trajectory 1a 
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Figure 4-4 Joint figures for trajectory 1a 

 
As already mentioned, constraints configuration 1b features limits in joints 

displacement and velocity, 1c in joints displacement and torque, and 1d in joint displacement 

and power. In all cases, the global optimum is close to the one obtained without constraints, 

and results are illustrated in the same order in Figure 4-5 and Figure 4-6 for 1b, Figure 4-7 and 

Figure 4-8 for 1c, and Figure 4-9 and Figure 4-10 for 1d. The stroboscopic plots are all similar, 

showing that the constrained optima are quite close to the unconstrained one. Constraints 

influence continuity and differentiability of the variables in different ways: in case 1b, with 

velocity constraints, it can be observed that, when third joint velocity reaches the limit, first 

and second joint velocities feature non-differentiable points as well to adapt the motion. 

Such non-differentiable points are due to the fact that optimisation of kinetic energy (or any 

cost based on a quadratic form of velocity) is only effective to provide continuity of velocity, 

and not necessarily differentiability, although it will guarantee it as much as possible. The 

case will be different for cases involving torques. It is interesting to observe, in Table 4-5, that 

the integral of joint torques norm is reduced as a result of this, possibly since second joint 
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torque is suddenly reduced when third joint mobility is reduced by the limit. Simulation 1c 

features a nonlinear constraint on joint torques, which produces the highest kinetic energy 

and the lowest joint torques norm integral among all the simulations featuring kinetic energy 

as control cost. Abrupt changes in torques values are reflected on joint powers, which are 

also influenced by the jumps. The joints velocity profile is however perfectly acceptable, and 

fully differentiable along the whole trajectory. Finally, simulation 1d features a power limit. 

When the power limit is reached, by joint 1 at time 0.31s, the reduction in mobility caused 

by the constraint is offset by increasing velocity and torque on joint 2, as visible in Figure 

4-10. As for joint limits, they are only reached by second joint at the end of the trajectory in 

both 1b and 1c, and no direct consequence of this is observable in the other variables.  

 

 

Figure 4-5 Energy figures for trajectory 1b 
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Figure 4-6 Joint figures for trajectory 1b 

 

 

Figure 4-7 Energy figures for trajectory 1c 
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Figure 4-8 Joint figures for trajectory 1c 

 

 

Figure 4-9 Energy figures for trajectory 1d 
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Figure 4-10 Joint trajectory for trajectory 1d 

 
CASE 2 (JOINT TORQUES NORM WITHOUT VISCOUS FRICTION) 

The results of the second cost function case for kinetic energy and torques norm 

integral are shown in Table 4-6.  

Table 4-6 Results for case 2 rectilinear trajectories 

 
Simulation Kinetic energy integral 

[Js] 

Torques squared norm 
integral 

[((Nm)^2)s] 

2a (no limits) 0.0842 0.0398 

2b (displacement and velocity) 0.0786 0.0932 

2c (displacement and torque) 0.0854 0.0864 

2d (displacement and power) 0.0849 0.0843 

 

Results for simulation 2a are shown in Figure 4-11 and Figure 4-12, while 2b, 2c and 

2d are respectively shown in Figures from Figure 4-13 to Figure 4-18. In simulation 2a, the result 

for torques is more than 450% less than simulation 1a, featuring kinetic energy as control 

cost, and the trajectory is completely different. This solution features low torques during the 
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first part of the trajectory, and a maximum torque values in the interval 0.6-0.8s. No joint is 

completely motionless at the end of the trajectory: the absence of friction implies that no 

torque is necessary to maintain their velocity, and thus the optimal solution saves on braking 

torque, to the point of accelerating most towards the end of the trajectory rather than at the 

beginning. This effect will be lower for the third case, featuring viscous friction. Joint 

velocities are also more balanced compared to 1a, with second and third joint featuring 

similar velocities, although it is to be noticed this simulations features the highest maximum 

velocity of all rectilinear trajectories, being it 4.99 rad/s for second joint at t=0.37s. The 

second joint is now the one with the highest torque, but its maximum is now around 60% 

less of the highest joint torque in the kinetic energy case, being up to 0.315 Nm. Power values 

are also greatly decreased compared to the kinetic energy case, with the highest value being 

0.4335 W at time 0.78s, which is reduced compared to kinetic energy optimisation highest 

value by around 50%. Looking at the energy figures of the whole manipulator, it is easy to 

observe that both kinetic energy is greatly increased from case 1a. The maximum in kinetic 

energy, 0.1398 J, corresponds to time 0.342s, when the values of all joint torques are close 

to zero, while the maximum of overall manipulator power (0.7325W at time 0.27s) 

corresponds to a local peak in power on all joints. Simulation 2b features a motion that is 

more like the one that has been seen in case 1, showing how the joint limits here affect the 

optimal solution. The cost function is also extremely increased, by almost 150%, while kinetic 

energy integral is the lowest one for case 2, due to the velocity limit. This shows the versatility 

of the Interpolation-based Global Kinematic Planner, which can adapt to the constraints’ 

configuration looking for optima that are far apart. One more aspect of this simulation that 

is worth mentioning is the joints velocity profile: while in simulation 1b velocity featured non-

differentiable points where velocity limit is reached, in simulation 2b the limit is approached 
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more gently. This behaviour is due to the fact that the optimisation function now comprises 

a quadratic function of accelerations (the integral of the square of joint torques norm), which 

causes them to be continuous along the trajectory. Simulations 2c and 2d, with joint torque 

and power limits, are quite similar since the limit is only reached in small portions of the 

trajectory. It is however interesting to observe, in 2c, the change of slope in torques and 

power when the torque limit is reached. This is due to the fact that the manipulator only has 

one degree of redundancy left after considering EE trajectory constraints. Thus, when 

another constraint is active, has no degrees of redundancy left, and it is forced to follow the 

trajectory corresponding to the only feasible solution.  

 

Figure 4-11 Energy figures for trajectory 2a 
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Figure 4-12 Joint figures for trajectory 2a 

 

 

Figure 4-13 Energy figures for trajectory 2b 
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Figure 4-14 Joint figures for trajectory 2b 

 

 

Figure 4-15 Energy figures for trajectory 2c 
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Figure 4-16 Joint figures for trajectory 2c 

 

 

Figure 4-17 Energy figures for trajectory 2d 
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Figure 4-18 Joint figures for trajectory 2d 

 
CASE 3 (JOINT TORQUES NORM WITH VISCOUS FRICTION) 

The values for kinetic energy and torques’ norm integral for case 3 are shown in Table 

4-7. Joint torques squared norm is obviously much higher, since torque is now required to 

maintain velocity.  

Table 4-7 Results for case 3 rectilinear trajectories 

 
Simulation Kinetic energy integral 

[Js] 

Torques squared norm 
integral 

[((Nm)^2)s] 

3a (no limits) 0.0569 0.6890 

3b (displacement and velocity) 0.0569 0.6890 

3c (displacement and torque) 0.0555 0.7019 

3d (displacement and power) 0.0557 0.6976 

 

A first observation regarding Table 4-7 is that the torque solutions featuring viscous 

friction, which is a function of velocity, feature solutions that are much closer to the kinetic 

energy global optimum. First simulation to be presented is 3a, illustrated in Figure 4-19 and 
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Figure 4-20. This solution is closer to the kinetic energy-based solution 1a, rather than the 

torque-based solution 2a, and joint velocities at final time are also very close to 0. This can 

be explained by the fact that friction (and thus velocity) plays a major role in this case, forcing 

the algorithm to keep a low velocity profile. This is in sharp contrast with solution 2a, which 

features highest joint velocity of all rectilinear trajectories, and it also shows how much 

friction influences results. From the value in Table 4-7, it is evident that most of the torque is 

spent contrasting friction (it features an increase of more than 10 times compared to 

simulation 2a). 

 

Figure 4-19 Energy figures for trajectory 3a 
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Figure 4-20 Joint figures for trajectory 3a 

Figures for simulation 3b are omitted since the limits do not come into play and its 

result is the same as 3a. Results for simulation 3c and 3d, shown respectively in Figure 4-21 

and Figure 4-22, and in Figure 4-23 and Figure 4-24, are more relevant since they show that, 

for the case with friction, limiting torques or power also reduces velocity: velocity only goes 

up to 2.952 rad/s in simulation 3c, and to 2.817 rad/s in simulation 3d. Simulation 3c features 

active torque constraints on joint 2 between times t=0.24s and t=0.49s. It can be clearly 

observed how the constraint on torque also limits velocity and power on joint 2 (maximum 

power is 2.876W), although it approaches its maximum value gently and without sudden 

changes. A similar phenomenon can be observed on simulation 3d as well, with power 

limiting velocity and torque as well (torque maximum value in this case is 1.052 Nm on joint 

2). In this case, however, changes in torques when the power constraint is activated can be 

abrupt, with the torque featuring a non-differentiable point at t=0.26s. Case 3 can be 

considered the most realistic one and is the closest step to implementing the tracking 

algorithm presented in this chapter on a real manipulator. 
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Figure 4-21 Energy figures for trajectory 3c 

 

 

Figure 4-22 Joint figures for trajectory 3c 
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Figure 4-23 Energy figures for trajectory 3d 
 

 

Figure 4-24 Joint figures for trajectory 3d 

 

4.4.3.2 Cyclic trajectories 

Cyclic trajectories present some different challenges than rectilinear ones. The most obvious 

one is that obviously displacements, velocities and accelerations must be continuous 

between the endpoint and the initial point. In order to obtain this, it is sufficient to simply 
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include control cost between the endpoint and the initial point in the cost function. This 

enforces continuity and differentiability of velocity when kinetic energy is used as control 

cost, and continuity and differentiability of accelerations when joints squared torques norm 

is used as control cost. One more point to notice about this kind of trajectory is that, even 

for small radii, the motion of the joint appears much enhanced in circular trajectories than in 

rectilinear ones, as the simulations will show. Thus, for the simulations hereby presented 

velocity has been limited again to 3.8 rad/s. Results for kinetic energy and torques noem 

integral are visible in Table 4-8. 

Table 4-8 Results for circular trajectories 
 

Simulation Kinetic energy integral 

[Js] 

Torques norm integral 

[((Nm)^2)s] 

1e (kinetic energy) 0.0554 1.898 

2e (torques norm) 0.1031 1.246 

3e (torques norm with friction) 0.0683 2.459 

 

 The value of the torque cost function is clearly much higher than for rectilinear 

solutions, surpassing them by one order of magnitude. The explanation for this probably lies 

in the big changes in joints velocity that are necessary to perform the trajectory under 

examination. The variables of interest for simulation with kinetic energy as control cost are 

illustrated in Figure 4-25 and Figure 4-26, while the ones for the simulation with torques 

norm without friction as control cost is shown in Figure 4-27 and Figure 4-28, and in Figure 

4-29 and Figure 4-30 for the one with friction. Looking at velocity, torque and power values 

for each joint, the increase in control cost can be easily justified. For the cases featuring 

kinetic energy and torque without friction as control costs, velocity limit is reached much 

more often than in the rectilinear case. If more than three constraints were active at some 



156 
 
 

 

 

timestep, the ability to track the trajectory would be completely lost at that path point (it 

must be remember that two constraints are imposed by the end-effector trajectory itself). 

However, the solutions computed by the algorithm for simulations 1e and 2e features at 

most three active constraints at the same time, retaining necessary freedom of movement, 

although in 2e the second joint reaches the velocity limit as the first joint also gets very close. 

Simulation 3e, on the other hand, gets close to the velocity limit only with second joint, due 

to the fact that high velocity, in this case, translates into a high torque value. Its value of 

kinetic energy integral also shows that in this case velocities play a much more important role 

in the control cost, putting the case with friction somewhere in between the other two as 

per joint motion profile. Looking at torques, their maximum values are respectively 4.144 

Nm, 2.919 Nm, and 2.696 Nm, while for powers they are respectively 5.813 W, 7.216 W and 

4.061 W. It is particularly interesting to observe the two cases featuring torque norm as 

control cost, as torque maximum value is higher in the one without friction rather than the 

one with friction. This peculiar result can be justified comparing the torque profile for each 

joint between the two simulations: in simulation 2e, the first joint features by far the highest 

torque (2.919 Nm against 1.177 Nm for the second joint and 0.1925Nm for the third), as it 

reaches similar velocity than the other two, but has by far the highest moment of inertia. In 

the case with friction, however, velocity has a cost in terms of torque regardless of the inertial 

properties. Considering that the algorithm optimised the squared norm of joint torques along 

the trajectory, the term for the first joint would become excessive if it were to have both high 

torque and high velocity. Thus, for the case of torque optimisation with friction, the third 

joint is the only one which can afford to move at a velocity close to the limit, and generally 

the friction term forces the algorithm to balance velocity and acceleration. 
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Figure 4-25 Energy figures for trajectory 1e 
 

 

Figure 4-26 Joint figures for trajectory 1e 
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Figure 4-27 Energy figures for trajectory 2e 

 

 

Figure 4-28 Joint figures for trajectory 2e 
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Figure 4-29 Energy figures for trajectory 3e 

 

 

Figure 4-30 Joint figures for trajectory 3e 

4.4.4 Multi-objective optimisation 

For some robotic applications, it is required to balance between different cost 

functions [59]. This kind of problem is tackled by multi-objective optimization. 

Considering a set of solutions Χ, and a set of cost functions 𝑓 = (𝑓1 . . 𝑓𝑝), a feasible 

solution 𝑥 ∈  𝛸 is a Pareto optimal solution of a multi-objective optimization problem 
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𝑚𝑖𝑛(𝑓(𝑥): 𝑥 ∈  𝛸) if, and only if, no 𝑥 ∈  𝛸 exists such that 𝑓(𝑥) ≤ 𝑓(𝑥). The set of Pareto 

optimal solutions of a multi-objective optimization problem form the Pareto optimal set, or 

Pareto front. 

When solving a multi-objective optimization problem, it is usually desired to find a 

solution that is as close as possible to the Pareto optimal set. In the ideal case, the full Pareto 

optimal set can be exactly computed, and it is possible to choose the preferred solution 

among its members. Exhaustive computation of the complete Pareto optimal set is, however, 

expensive and, in many cases, not possible, thus the problem is usually approached by 

computing some of the members of the set and using them as a representation of the full 

set. The most used method to do so in robotics is the weighting method [59], which, however, 

does not produce evenly distributed solutions, cannot individuate all members of the Pareto 

optimal set and, moreover, fails in the case of non-convex Pareto fronts [151]. A possible 

alternative to the weighting method is the ε-constraint method, which can capture the shape 

of the Pareto front in a more complete and representative way than the weighting method, 

even when the Pareto front is non-convex [152]. The use of the ε-constraint method has 

however not been possible so far in global inverse kinematics problems resolution because 

it requires the imposition of nonlinear constraints to the optimization problem under 

examination. This is possible through the use of the Interpolation-based Global Kinematic 

Planner presented in this work, which thus allows the use of the ε-constraint method. This 

has been demonstrated by analysing the bi-objective optimization problem resulting from 

optimizing both the kinetic energy integral and torques squared norm integral without 

friction while tracking the rectilinear trajectory used in rectilinear simulation cases. 

Particularly, its Pareto optimal set has been searched considering joint and velocity limits as 

per Table 4-2. 
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For the equally spaced implementation used here, the ε-constraint method steps are 

as follows: 

 The feasible solutions resulting in the minima of the two objective functions, {𝒒}𝑘𝑖𝑛 (for 

the minimum of kinetic energy integral) and {𝒒}𝑡𝑜𝑟 (for the minimum of torques squared 

norm integral), are computed separately. 

 The intervals 𝑖𝑛𝑡𝑘𝑖𝑛 = 𝐺𝑘𝑖𝑛({𝒒}𝑡𝑜𝑟) − 𝐺𝑘𝑖𝑛({𝒒}𝑘𝑖𝑛) and 𝑖𝑛𝑡𝑡𝑜𝑟 = 𝐺𝑡𝑜𝑟({𝒒}𝑘𝑖𝑛) −

𝐺𝑡𝑜𝑟({𝒒}𝑡𝑜𝑟) are computed. 

 Each interval is divided in k equally spaced steps 𝛥𝐺𝑘𝑖𝑛 and 𝛥𝐺𝑡𝑜𝑟, so that 𝐺𝑘𝑖𝑛({𝒒}𝑡𝑜𝑟) =

 𝐺𝑘𝑖𝑛({𝒒}𝑘𝑖𝑛) + 𝑘 𝛥𝐺𝑘𝑖𝑛 and 𝐺𝑡𝑜𝑟({𝒒}𝑘𝑖𝑛) =  𝐺𝑡𝑜𝑟({𝒒}𝑡𝑜𝑟) + 𝑘 𝛥𝐺𝑡𝑜𝑟. 

For each ℎ =  1 . . 𝑘 a single-objective kinetic energy integral optimization problem 

is solved with the formulation: 

minimize
𝑞

∫ 𝐺𝑘𝑖𝑛(𝒒, �̇�, 𝑡)
𝑡𝑓𝑖𝑛

𝑡0

𝑑𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺𝑡𝑜𝑟 = 𝐺𝑡𝑜𝑟({𝒒}𝑡𝑜𝑟) + ℎ 𝛥𝐺𝑡𝑜𝑟

 (4-26) 

Likewise, a single-objective torques squared norm integral optimization problem is 

solved with the formulation: 

minimize
𝑞

∫ 𝐺𝑡𝑜𝑟(𝒒, �̇�, �̈�, 𝑡)
𝑡𝑓𝑖𝑛

𝑡0

𝑑𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺𝑘𝑖𝑛 = 𝐺𝑘𝑖𝑛({𝒒}𝑘𝑖𝑛) + ℎ 𝛥𝐺𝑘𝑖𝑛

 (4-27) 

Following these steps, a set of Pareto optimal solutions has been computed, see 

Figure 4-31. 
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Figure 4-31 Pareto front of bi-objective optimization problem under consideration. 

This result shows the suitability of the Interpolation-based Kinematic Planner for 

individuating Pareto optimal sets with a more reliable method than the weighting method. 

4.5 Conclusions 

This chapter has been focused on the introduction and validation of a novel global 

inverse kinematics algorithm for redundant manipulators, the Interpolation-based Global 

Kinematics Planner. Such algorithm is an improvement over current state-of-the-art in that 

it is able to find multiple optima of different cost functions, with a wide set of constraints, 

without having to solve TPBVP and without including Jacobian matrices in the control cost. 

The cost functions that have been used is composed by a tracking error term and a control 

cost. Control costs that have been analysed are kinetic energy, joint torques squared norm, 

and joint torques squared norm with viscous friction. Different constraints, both linear and 

nonlinear, have been introduced as well, computing inverse kinematics solutions with 

constraints on joint displacements, velocities, torques, and powers. The Interpolation-based 

Global Kinematic Planner has been validated against an existing solution of the 
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unconstrained kinetic energy global problem, and then results for two different trajectories 

and different control costs and constraints have been presented and commented. 

 The novel algorithm has correctly performed providing feasible solutions for the 

global kinematics problem of a simple planar manipulator in all simulations. Usual issues with 

global algorithms, featuring long computational times and high number of parameters, have 

been mitigated through a sequential solution procedure based on interpolation and 

introduction of new parameters at each sequence step. The algorithm has also been shown 

to be able to provide results concerning the Pareto front of bi-objective optimisation 

problems, individuating several points of the Pareto front of the problem of optimising 

kinetic energy and torques without friction, through the ε-constraint method. 
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Chapter 5. Workspace analysis of fixed-base and free-

floating redundant manipulators 

5.1 Introduction 

 It has already been observed in the literature review chapter that workspace analysis 

has been mostly performed with specific attention to reachability rather than energy or 

power costs to move the end-effector across the workspace itself. This chapter presents a 

different method of analysis, as the scope is in this case to map how energetically expensive 

it can be to reach specific points of the workspace from a fixed starting position. To this goal, 

the workspace analysis performed here starts from a specific end-effector position and 

performs straight line motions with constant end-effector velocity across the workspace, till 

the point where a singularity or the boundary of the workspace are reached. At each time 

step, the value of several energy-related variables, and of the manipulator kinematic indexes, 

is logged. A qualitative and a quantitative analysis are conducted on these data, aiming in 

both cases at assessing patterns in the energy consumption distribution along the workspace. 

The goals of the analysis, in detail, are: 

1. To show what patterns exist that relate kinetic energy with manipulator 

configuration. To this goal, a qualitative and a quantitative analysis are performed on 

fixed-base manipulators. The first one aims at observing visually recognisable patterns in 

the manipulator workspace, while the quantitative one aims at correlating kinetic energy 

with kinematics indexes dependent on the manipulator configuration. This latter part of 

the analysis will exploit canonical correlation to individuate the linear combinations of 

kinematic indexes that better correlate with kinetic energy. 
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2. To show how IK algorithms influence the size of the workspace and the 

position of singularities. This part of the analysis is especially developed for free-floating 

manipulators, as it is shown that the use of the ACS in concurrence with the 

manipulator’s operation can sensibly increase the workspace size and retain the 

manipulator manipulability. 

3. To observe if redundant manipulators follow specific patterns in the 

distribution of kinematic indexes in their workspaces. 

The first part of the chapter is a description of how the analysis is performed: it explains 

which algorithms are included in the analysis, which kinematic indexes are computed, and 

which energy-related figures are taken into account. Second part is about the simulations 

and results obtained with fixed base manipulators, while the third part is about free-floating 

manipulators. Conclusions are drawn from these results, about the difficult predictability of 

redundant manipulators energetic cost, and about the relationship between free-floating 

redundant manipulators inverse kinematics algorithm and workspace size and 

characterisation. 

5.2 Choice of the algorithms under examination 

In order to produce meaningful comparisons, three algorithms have been selected. 

These three methods have been considered particularly relevant for the problem for 

different reason: the first one is the most important pseudoinverse-based method, while the 

second one is a local minimization of kinetic energy, and the third one is a typical local 

optimisation method for free-floating manipulators. The first one of the three algorithms is 

expressed by (3-9), repeated here: 
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�̇� = 𝑱+𝒗 (3-9) 

The solution obtained through this expression locally minimises joint velocities norms along 

the motion. This method shall be from now on referred to with the abbreviation LSV (for 

Least Squares on Velocities). 

A second method shall be chosen that directly minimises kinetic energy of the 

manipulator. A simple local method that achieves such a result can be obtained from (3-8), 

by using the inertia matrix as a weight matrix. 

�̇� = 𝑩−1𝑱𝑇(𝑱𝑩−1𝑱𝑇)−1𝒗 (5-1) 

This method is mentioned in literature as a simple way to use the weight matrix [24]. 

However, its local scope means that kinetic energy may not be minimised overall. Still, it can 

sometimes be effective, especially on very short trajectories since, as it is straightforward to 

figure out, this kind of solution performs better when the trajectory can be followed with 

limited excursion of the first joint, as it is the one with the highest inertial properties. It shall 

from now on be referred to as LMKE (Local Minimisation of Kinetic Energy). 

Free-flying manipulators, on the other hand, are mostly controlled through reaction 

minimisation algorithms: that is, transmission of torque form the manipulator to the base is 

minimised (often reduced to 0) along the manipulator motion. Many methods have been 

mentioned in the literature review, but one that is efficient and easy to implement is 

presented by Cocuzza et al. [97] and exploit the derivative of the general solution (3-12), 

again repeated here for convenience: 

�̇� = 𝑱+𝒗 + (𝑰 − 𝑱+𝑱)�̇�𝟎   (3-12) 

Which originates the expression: 
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�̈� = 𝑱+(�̈� − �̇��̇�) + (𝑰 − 𝑱+𝑱)�̈�𝟎 (5-2) 

Considering the torques to be defined as per (15), and neglecting the gravity term: 

𝝉 = 𝑴(𝒒)�̈� + 𝒏(𝒒, �̇�) (5-3) 

Where 𝑴(𝒒) is the joint-dependent inertia matrix and 𝒏(𝒒, �̇�) is the term that comprises 

Coriolis and centrifugal forces, it is possible to locally minimise torques transmitted to the 

base as a Least Squares problem with Equality constraints (LSE) in the �̈� unknown, originating 

the expression: 

�̈� = 𝑱+(�̈� − �̇��̇�) + [𝑴(𝑰 − 𝑱+𝑱)]+[𝑴𝑱+(�̈� − �̇��̇�) + 𝒏] (5-4) 

This provides the third and last solution method to be compared and shall from now on be 

referred as LSE (Least Square with Equality constraints). It should be noticed that, differently 

from other inverse kinematics schemes hereby mentioned, this one outputs accelerations. 

This has a consequence in that joint velocities are generally different than zero at the end of 

the trajectory.  

Of these three methods, first two are very related to the specific topic, because they 

are both attempts to minimise the energy cost of the manipulator motion, while the third 

one is used to solve a different problem in the framework of redundant manipulators local 

planners. All of them are relevant for the comparison, for different reasons: Moore-Penrose 

pseudoinverse is the most used method for local motion planning, local kinetic energy 

minimisation is the most direct way to minimise energy consumption, and reaction 

minimisation is the method of choice to control free-floating manipulators. The comparison 

for the latter one will indeed be based on less data than the first two, as it features a reduced 

workspace compared to them, allowing for less trajectories to be simulated. 
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5.3 Fixed-base manipulator workspace analysis description 

5.3.1 Qualitative analysis description 

Before moving into a quantitative analysis, a qualitative analysis is performed on the 

workspace. For non-redundant manipulator, each point in the cartesian space can only be 

reached with a very limited number of joint configurations, thus allowing to clearly map end-

effector position with kinematic singularities. This is not the case for a redundant 

manipulator, since its peculiar characteristic is that infinite configurations exist that are able 

to achieve a given end effector position. From this, a natural question arises if patterns in the 

reachability and energetic cost of moving the end effector to specific parts of the workspace 

arise. The qualitative analysis hereby performed tries to answer this question. 

In order to highlight the energetic characteristics of the motion, kinetic energy is of 

course the most relevant parameter. However, its integral is slowly varying on trajectories 

with constant EE velocity, and does not allow to evidence phenomena that are very limited 

in time, such as velocity spikes that take place when the manipulator is close to a singularity. 

Thus, for the purpose of this analysis, another index is used as well, that is more apt at visually 

analysing energy patterns in presence of singularities. Thus, a performance index that is used 

in this workspace analysis is the integral of the power absolute value along the trajectory: 

 

∫ |
𝑑𝐸

𝑑𝑡
|

𝐿

0

𝑑𝑙 

(5-5) 

This allows to consider power spent both to accelerate and slow down the manipulator 

end-effector. Its variability in correspondence of changes in velocity and acceleration of the 

manipulator joints can easily evidence energy-expensive patterns.  This index will be from 
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now on called total energy, and it will be exploited in the reminder of this chapter with the 

main purpose to evidence singularities. 

The qualitative analysis will be illustrated in the reminder of the chapter by means of 

contour plots of kinetic energy, total energy and manipulability of the manipulator (see 

below for a reminder about manipulability formulation). The manipulator is conventionally 

consider to be fixed to the base in the origin of each graph, with its end effector being at the 

other tip.  

5.3.2 Quantitative analysis description 

Kinetic energy is in any case a function of velocities, and for such reason energetic 

performance is hard to capture with a static index. Furthermore, none of the existing indexes 

seems specifically fit for the purpose (in fact, only dynamic manipulability, shown in equation 

(3-17), features some resemblance with the kinetic energy expression). The approach that is 

followed here is thus to observe what linear combination of kinematic indexes is more closely 

related to kinetic energy. This approach allows to understand which factors influence the 

kinetic energy the most, and get a better understanding of the complexity of the problem 

under examination. To this goal, values of kinetic energy and each of the kinematic indexes 

are logged at each time step of each trajectory, and their correlations are analysed. 

In order to perform such analysis, an interesting mathematical instrument is 

provided by statistics, which typically assesses if two events are related with each other 

through study of their correlation. Correlation between two variables X and Y can be 

expressed as: 

𝑐𝑜𝑟𝑟(𝑋, 𝑌) =  
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 

(5-6) 
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In this expression, 𝐸 is the expected value operator, 𝜇𝑋 and 𝜇𝑌 are the expected 

values of the two variables, and 𝜎𝑋 and 𝜎𝑌 are their standard deviations. In the context of 

this work, it makes sense to ask if this concept can be extended to a set of variables, and it 

indeed can, exploiting a concept called canonical correlation, which was first introduced by 

Hotelling [153]. Given two sets of variables 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) and 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑛), 

canonical correlation analysis aims to find two real vectors a and b that maximise the 

correlation: 

𝜌 = 𝑐𝑜𝑟𝑟(𝑎𝑇𝑋, 𝑏𝑇𝑌) (5-7) 

How 𝜌, a and b are calculated is beyond the scope of this thesis: it is sufficient to say 

that 𝑎𝑇𝑋 and 𝑏𝑇𝑌 are called canonical variables, while a and b are the canonical factors. In 

the case of correlating manipulator kinematic indexes with kinetic energy only, vector b 

would of course be reduced to only one coefficient. 

In the workspace analysis hereby presented, canonical variables factors have been 

calculated for the following set of kinematic indexes: 

• Manipulability 

• Dynamic manipulability 

• Jacobian Condition number 

• Worst-case velocity index 

• Spectral radius of the inertia matrix 

The latter one is not usually considered a kinematic index of robotic manipulators, 

but has been added because of the importance inertia matrix has in the computation of 

kinetic energy. Spectral radius of a matrix A is defined as: 
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𝜌(𝐴) = 𝑚𝑎𝑥{|𝜆1|, |𝜆2|, … , |𝜆𝑛|}  (5-8) 

 Where |𝜆1|, |𝜆2|, … , |𝜆𝑛| are the absolute values of the eigenvalues of the matrix. 

Including it in the analysis allows to take into account a rough measure of the amount of 

inertia that the manipulator is facing during its motion. The other kinematic indexes are 

extensively described in next section. 

Not all these variables are expected to have a sensible influence on the amount of 

kinetic energy that the manipulator reaches along the motion. For this reason, canonical 

correlation analysis shall be performed with subsets of the considered kinematic indexes as 

well. This would allow to only identify those indexes that are mostly related with kinetic 

energy. Considering KI to be a j x 1 vector of kinematic indexes correlated with kinetic energy, 

and b its corresponding canonical factors, the function of kinematics indexes with the highest 

correlation with kinetic energy is defined to be: 

𝐶𝑘𝑖𝑛 = 𝑏
𝑇 𝐾𝐼 (5-9) 

A question that might be asked is if such resulting combination of indexes can be 

somehow used to improve the search of kinetic energy optima. Its use in such a way is 

however not possible in a direct way, as the values of the kinematic indexes will not, in any 

case, incorporate complete information about the manipulator joints velocity. This topic will 

be discussed in more detail in next chapter, where results from this analysis will be tested as 

part of a local algorithm. It may however be possible to use the results presented in this 

chapter within a more complex heuristic search method, which will be subject of further 

work. 
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5.3.3 Kinematic indexes description 

Many indexes have been developed to assess the freedom of movement and how 

far away current manipulator configuration is from singularities. Manipulability and dynamic 

manipulability have already been mentioned in the Mathematical Background chapter, but 

others do exist. To the author’s knowledge, first index ever used to assess the Jacobian 

performance is the condition number, which is in general a performance index for matrix 

transformations in general. A discussion about its use for robotic manipulators was presented 

by Sainsbury and Craig [154]. The condition number of a mathematical function is defined as 

how much the output value of the function can change for a small change in the input. This 

is basically a measure of how errors in input produce errors in output. For the Jacobian of a 

robotic manipulator, the relationship between input and output variation is: 

‖𝜟𝒙‖

‖𝒙‖
= 𝑘

‖𝜟𝒒‖

‖𝒒‖
 

(5-10) 

When the manipulator is in a singular configuration, a big change in the joints 

velocities corresponds to a small change in the position of the end effector. Thus, a high 

condition number clearly indicates proximity to singularities. The Jacobian condition number 

can be calculated as: 

𝑘 = ‖𝑱‖‖𝑱−𝟏‖ (5-11) 

 On the opposite, the condition number of the inverse matrix reveals a singularity 

when it equals zero. A formula to compute it is: 

𝑘−1 =
𝜎𝑚𝑖𝑛 

𝜎𝑚𝑎𝑥
 (5-12) 

Where 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 are respectively the smallest and largest singular value of the Jacobian. 

Clearly, when one of the singular values equals 0, the matrix is singular. Being 𝜎𝑚𝑖𝑛 the 
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smallest singular value, and being singular values positive semidefinite, 𝑘−1 must be 0 as 

well. This is related with the already presented concept of manipulability ellipsoid, 

introduced in the Mathematical Background chapter in expression (3-13). The reader may 

recall that, when manipulability equals zero, the manipulator is singular, and the volume of 

the manipulability ellipsoid equals zero as well. This is directly related to singular values [14], 

as an alternative formula to express manipulability is: 

𝑤 = ∏𝜎𝑖

𝑛

𝑖=1

 
(5-13) 

Where 𝜎𝑖 is the i-th singular value of the Jacobian. The singular values are proportional to the 

length of the ellipsoid axes, and one of them approaching zero means that any end-effector 

velocity with a component in that direction will result in a singularity. 

It is interesting to observe that both feature limitations when used for performance 

prediction: 𝑘−1 is efficient in individuating singularities, but it doesn’t say anything about the 

singular values apart from the smallest one. The case for manipulability is even worse, as it 

may increase by increasing any 𝜎𝑖, which may however have no effect on getting further from 

an actual singularity. A more apt index to identify what’s the worst performance attainable 

for a robotic manipulator in a certain configuration has been developed by Olds [155]. This 

index identifies in which direction the surface of the ellipsoid is closer to its centre, and can 

be expressed as: 

𝜇𝑤𝑜𝑟𝑠𝑡 = 
1

max
1<𝑖<𝑛

‖𝑱𝑖
−1‖

2

 
(5-14) 

 Where 𝑱𝑖
−1 is the i-th row of 𝑱−1. This quantity is called the Worst Case Velocity Index, 

and it defines the end-effector velocity attainable in the less favourable direction with 
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current manipulability ellipsoid. More complex indexes have been developed as well [25], 

mostly for design purposes rather than for kinematic optimal control. 

5.4 Fixed-base simulations and results  

5.4.1 Fixed- base simulation setup 

In order to compute kinetic energy and the afore-mentioned indexes in the whole 

workspace, a straight-path workspace approach has been followed. That is: the usual 3 DoF 

manipulator (redundant in the plane) has been initialised with a starting end-effector 

position has been chosen, 𝒙𝒊𝒏𝒊𝒕 = [0.4678;−0.000], and the end-effector has then been 

moved along rectilinear trajectories along a number of directions trying to cover as much of 

the workspace as possible. Each trajectory has been considered to have reached the 

workspace boundary when one of the joint velocities or the end-effector error have been 

deemed too high. The threshold has been set to be 2 rad/s for velocities, and 0.03 m for end 

effector error.  It should be noticed that a high end-effector error means the algorithm 

doesn’t work, so the latter condition has never been reached for fixed-base. The simulation 

has been repeated for five initial joint configurations, all of them featuring the same end-

effector initial position. Such initial joint configurations have been chosen keeping the end-

effector fixed and choosing five equidistant positions for the first joint, covering its whole 

possible range without changing the end-effector position. Two of them are such that the 

second and third joint are aligned, all the values are reported in Table 5-1. 

 

Table 5-1 Initial configurations for workspace analysis 

Initial configuration # Joint 1 position Joint 2 position Joint 3 position 

1 0.4009 -0.6233 0 
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2 0.2004 0.0374 0.6474 

3 0 0.3269 -0.7541 

4 -0.2014 0.6015 -0.6484 

5 -0.4028 0.6233 0 

 

Considering this 5 starting position and the three algorithms that have been selected 

to the part of the study, this gives a total of 15 simulated workspaces.. 

Simulations are performed with a simulator based on the general architecture 

presented earlier in the thesis, in Figure 3-2. Two components have been added to the 

algorithm: the first input is now provided by a Workspace Explorer component, while a 

Workspace limit observer is used to stop the simulation of each trajectory. 

The algorithm now works as follows: 

1. A set of directions is required as input from the user. 

2. The Workspace Explorer sets the first direction to explore. 

3. The Kinematic solver moves the End Effector along the desired trajectory. 

4. Aforesaid kinematic indexes are calculated along the motion. 

5. A Workspace Limit Observer checks if joints velocity limit or end effector 

position error are violated. If yes, the kinematics solver quits the simulation 

and the final length of the trajectory is stored. 

6. The Workspace Explorer picks another direction to explore till all pre-set 

directions are explored. 
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Since every trajectory is independent from the others, this workspace exploring 

algorithm can be run using parallel computing to explore several directions at the same time, 

which speeds up calculation times and allows for a very high angular resolution of the 

workspace. Trajectories used for this kind of analysis are not only rectilinear, but they also 

feature constant end-effector speed. This is not fully realistic, as it produces an acceleration 

and peak on the first point of the trajectory. However, a different velocity profile would result 

in different parts of the workspace having different end-effector velocities, which would 

influence the results of workspace limits and kinetic energy, making it hard to compare 

results from different zones of the workspace itself. 

The directions explored for each initial joint configuration and each algorithm are 

512, equally spaced at π/256, which is this the angular resolution of the analysis, resulting in 

7260 simulated trajectories. The end effector velocity is 0.05 m/s which, considering a time 

steps of 0.001s, gives a radial resolution of 5 ∗  10−5 m. Considering that the kinematic 

indexes and kinetic energy are measured at every single time step, this provides an amount 

of data in the range of millions for every initial joint configuration. 
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Figure 5-1 Simulator layout for workspace analysis 

 

 

5.4.2 Fixed - base results 

5.4.2.1 Qualitative analysis 

Before observing results from canonical correlation analysis, it is interesting to have 

a look at Figure 5-2 and Figure 5-3, which show contour lines for total energy for initial 

configuration 1 respectively for LSV and LMKE. 

The distance between every contour line is 0.0004 J. Several peculiarities are worth 

noticing in these figures. First of them is that some preferential directions may be evidenced, 

and they are roughly perpendicular to the last joint. This does not vary depending with the 
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algorithm, which allows to hypothesize that such directions depend on some intrinsic 

characteristic of the joint configuration rather than on the computational method chosen. 

Observation of similar patterns are confirmed for other configurations examined as well, as 

a further example Figure 5-4 and Figure 5-5 show total energy for configuration 2. 

Another interesting peculiarity to observe are the wide differences in workspaces 

limits and position of singularities depending on initial joint configurations and algorithms, 

although not completely surprising, as the problem hereby examined is inherently nonlinear. 

LSE algorithm features the smallest workspace size (LSE workspace for configuration 1 is 

shown in Figure 5-6 as example), which is something to keep in mind for free-floating robots, 

as this is a clearly limiting factor for this solution method. LSV and LMKE, although they 

feature much bigger workspaces, are also affected by variability: the only common trait is 

that the robotic manipulator often has issues to complete longer trajectories (those passing 

through the central region of the workspace), which are more often affected by singularities. 

The limits of local algorithm when it comes to long trajectories have already been evidenced 

in literature [10]. 
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Figure 5-2 Total energy for configuration 1 solved with LSV 

 

Figure 5-3 Total energy for configuration 1 solved with LMKE 
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Figure 5-4 Total energy for configuration 2 solved with LSV 

 

Figure 5-5 Total energy for configuration 2 solved with LMKE 
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Figure 5-6 Total energy for configuration 1 solved with LSE 

 

Singularities, in particular, appear in figures as points where the contour lines get 

very close to each other and brighter in colour, or where the workspace ends way before the 

manipulator has reached its full extension. They are not evenly distributed and there’s 

apparently no pattern in them. For example, it can be observed that for LSV with starting 

joint configuration 3, a large portion of the workspace is not reachable due to the presence 

of singularities, as shown in Figure 5-7. One more, all important element to observe is that, 

while LMKE algorithm is explicitly based on minimising kinetic energy, although locally, it 

does not feature any special improvement over the LSV solutions over full trajectories, as can 

be easily observed by comparing the total energy figures for configurations 1 and 2. 



182 
 
 

 

 

 

Figure 5-7 Total energy for configuration 3 solved with LSV 

The explanation for this lies in the nature of the LMKE algorithm, which is simply 

based on weighting the joints depending on their inertia. This means it will use the outermost 

joint most, and resort to the ones closer to the base only when this is really needed. However, 

the reachability of the robot is of course limited unless the base joint is extensively moved as 

well. Due to the local scope of the algorithm, it is not possible to have any clue in advance 

when some extensive motion of the base joint will be needed to complete the trajectory. So 

it may happen that, at some point, a strong (and energetically expensive) adjustment of the 

base joint is needed in order to follow the trajectory. Generally, all algorithms presented so 

far are negatively affected by their local scope, which indeed is in most cases a very limiting 

condition. 
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Figure 5-8 Manipulability for configuration 1 solved with LSV 

Figure 5-8 illustrates manipulability contour lines for configuration 1 solved with LSV, 

with a distance of 0.001 between them. A structure similar to the one of non-redundant 

manipulators, as shown in the literature review chapter, is quite apparent: the centre and 

the external region of the workspace feature the lowest values (darker colours), while the 

intermediate region is the one with higher freedom of movement (brighter colours). Kinetic 

energy contour lines, in Figure 5-9, provide less interesting information, as the manipulator 

is moving very slowly, and kinetic energy generally increases in a noticeable way only in the 

neighbourhood of singularities. However, comparing the total energy and the manipulability, 

there’s a first hint that they’re not strongly related, as contour lines are completely different. 

The following paragraphs will show that canonical correlation analysis also confirms this, one 

of the most used kinematic indexes doesn’t actually give any significant insight on how 

energetically viable it is to reach a certain point in the workspace. 
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Figure 5-9 Kinetic energy for configuration 1 solved with LSV 

5.4.2.2 Quantitative analysis 

Before observing results from canonical correlation analysis, it may be interesting to 

have a look at Table 5-2, Table 5-3 and Table 5-4, which show the correlation between kinetic 

energy and each kinematic index for different positions and algorithms, respectively LSE, LSV 

and LMKE. The first difference can be drawn between LSE and LSV/LMKE: the first one shows 

sensibly lower correlation values for all variables. This can be explained by noticing that LSE 

is the only algorithm of the three that is acceleration based rather than velocity based. For 

LSV and LMKE, joint velocities are weighted by a mathematical formulation mainly involving 

the Jacobian matrix, which originates most of the kinematic indexes involved in the analysis. 

This provides a joint velocity vector that is more closely related with such matrix. For LSE, the 
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computational method is completely different and, as such, the joint velocities are more 

responsible of the variation of kinetic energy than the Jacobian. 

Table 5-2 Correlations of kinematic indexes with kinetic energy for LSE algorithm 

LSE Man. Dyn. 
Man. 

Cond. 
Number 

Inertia Matrix 
spectral radius 

Worst case 
velocity index 

1 54.51% 53.85% 45.10% 53.73v 53.42% 

2 53.63% 58.36% 45.81% 50.76% 51.83% 

3 53.36% 58.79% 45.42% 50.84% 51.62% 

4 52.16% 56.33% 49.79% 52.08% 51.04% 

5 55.18% 54.54% 45.91% 54.40% 54.12% 

 

Table 5-3 Correlations of kinematic indexes with kinetic energy for LSV algorithm 

LSV Man. Dyn. 
Man. 

Cond. 
Number 

Inertia Matrix 
spectral radius 

Worst case 
velocity index 

1 34.06% 70.37% 71.57% 55.18% 30.05% 

2 32.25% 73.00% 63.10% 47.05% 31.81% 

3 36.17% 75.77% 50.19% 50.27% 38.64% 

4 50.80% 71.15% 62.24% 61.07% 51.05% 

5 34.05% 70.36% 71.55% 55.15% 30.04% 

 

Table 5-4 Correlations of kinematic indexes with kinetic energy for LMKE algorithm 

LMKE Man. Dyn. 
Man. 

Cond. 
Number 

Inertia Matrix 
spectral radius 

Worst case 
velocity index 

1 21.37% 68.44% 72.24% 41.03% 18.13% 

2 20.32% 70.49% 72.49% 37.38% 16.91% 

3 24.65% 72.10% 69.32% 39.43% 21.86% 

4 25.39% 71.63% 68.43% 40.68% 23.00% 

5 21.43% 68.36% 72.23% 41.19% 18.17% 

  



186 
 
 

 

 

More in detail, the LSE shows correlations in the range 45%-58% for all variables. The 

most correlated one with kinetic energy is indeed the dynamic manipulability, showing a 

correlation in the range 53.8%-58.8%, while the lowest one is the condition number, showing 

values between 45.1% and 49.8%. All the other kinematic indexes are instead correlated with 

values around 50%. This is generally too low to consider them relevant for the design of a 

kinematic planning algorithm. 

When it comes to Moore-Penrose pseudoinverse solution (LSV), the difference is 

remarkable, in that the correlation with dynamic manipulability is in the range 70.3-75.8%, 

with the condition number being also noticeably correlated, in the range 50.2%-71.6%. The 

lower boundary of the range shows a correlation that is too small to be significant. However, 

looking at previously shown Table 5-3, it gives an insight on the condition number behaviour 

respect to kinetic energy when the LSV algorithm is used. When the workspace size is 

reduced (i.e. when a high number of singularities is present), the correlation between kinetic 

energy and condition number decreases. For example, initial joint configuration number 3 

solved with LSV algorithm features a reduced workspace due to a high number of singularities 

on the top left side, as previously shown in Figure 5-7, and correlation is low. Manipulability, 

on the other hand, is not strongly correlated with kinetic energy for LSV solutions, with the 

correlation value being in the range 32.2%-50.8%. Manipulability has sometimes been 

proposed as a good index to base singularities avoidance algorithms ([12]), and it can indeed 

prove its worth for this purpose. It is however not the most significant index for kinetic energy 

minimisation. The other two variables examined, inertia matrix spectral radius, and worst-

case velocity index, feature correlations respectively in the range 47.1%-61.1% (with most 

values around 50%), and 30-51%.  
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The correlations between configuration-dependent indexes for LMKE is slightly 

different, with dynamic manipulability being in the range 68.4% – 72.1% and Jacobian 

condition number in the range 68.4% -72.5%. The former is slightly less correlated than in 

the LSV case, while the latter is more correlated. On the other hand, manipulability feature 

correlation in the range 20.3%-25.4%, while the range is 37.9%-41.1% for the inertia matrix 

spectral radius, and 16.9%-23% for the worst case velocity index, showing that in the LMKE 

case the only really correlated indexes are dynamic manipulability and Jacobian condition 

number. 

At this point, it is clear canonical correlation analysis requires some extra attention 

to be put on the linear combination of dynamic manipulability and Jacobian condition 

number. Correlation coefficients for the case with only dynamic manipulability and Jacobian 

condition number, and for the one with the whole set of the five static indexes are presented 

for the cases LSV and LMKE respectively in Table 5-5 and Table 5-6, for each initial 

configuration. In the LSV case, the difference spans from 1.4% to 4.3%, while for LMKE it is in 

the range from 5.6% to 5.8%, showing more uniformity, possibly because of the lower 

number of singularities. Canonical coefficients are harder to interpret than correlation: their 

values can be observed in Table 5-7 and Table 5-8 for the whole set of configurations with LSV 

and LMKE. Results for LSV show no uniformity, apart from the fact that dynamic 

manipulability coefficient always stand out as the highest one. Apart from this, no other 

patterns are recognisable (coefficients for all other kinematic indexes do not even feature 

same sign). This changes for LMKE, for which again dynamics manipulability is the highest 

scoring variable, which can be expected due to its dependency on inertia matrix and Jacobian, 

which resembles kinetic energy formulation. The coefficients for all the other indexes are 
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generally more stable than with LSV case, featuring the same sign for all configurations and, 

apart from manipulability, also the same order of magnitude. 

Table 5-5 Canonical correlation of dynamic manipulability and condition number with kinetic energy 

 1 2 3 4 5 

LSV 73.55% 73.97% 75.93% 73.38% 73.54% 

LMKE 73.05% 74.45% 74.50% 73.75% 73.02% 

 

Table 5-6 Canonical correlation of the full set of indexes with kinetic energy 

 1 2 3 4 5 

LSV 75.83% 77.84% 77.36% 77.70% 75.83% 

LMKE 78.54% 80.12% 80.08% 79.48% 78.49% 

 

Table 5-7 Canonical coefficients for LSV 

LSV 1 2 3 4 5 

Man. -9.3401     3.1711   -17.7220   -45.8844    -9.2247 

Dyn. Man. 82.7259   100.5888   106.7686    52.3402    82.9785 

𝑘 0.0408     0.0676    -0.0026     0.0608     0.0405 

𝜌(𝐴) -6.8033    -7.7683     2.8284     5.0497    -6.8595 

𝜇𝑤𝑜𝑟𝑠𝑡  -0.0816    -1.2814     0.4824    15.0330    -0.1262 

 

Table 5-8 Canonical coefficients for LMKE 

LMKE 1 2 3 4 5 

Dyn. man.   -20.2199    -2.4697   -9.6742   -17.5337   -20.0768 

Man.    46.2659    42.1089    57.8107    58.1065    46.0321 

𝑘     0.1474     0.1694     0.1265     0.1223     0.1489 

𝜇𝑤𝑜𝑟𝑠𝑡     -6.1832    -8.4395    -6.8359    -6.6226    -6.2377 

𝜌(𝐴)     5.6048     1.2729     2.0837     5.0609     5.6025 
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At this point, some hypothesis can be formulated about the best approximator for 

kinetic energy with a linear combination of configuration dependent indexes. It seems 

sensible not to use results from LSE, as the objective of the algorithm is not related to the 

minimisation of kinetic energy and correlation coefficients are pretty low, meaning it is 

probably not particularly helpful. LSV gets closer to the objective, by featuring higher 

correlations. Still, it features two issues: its coefficients are quite variable depending on the 

initial configuration, making a choice hard, and its objective is optimising the norm of joint 

velocities rather than kinetic energy. LMKE is not only more related, as the cost function is 

kinetic energy, but it also features more uniformity in correlations. 

A local approximator for kinetic energy, as described by equation (5-9), can thus be 

developed averaging the canonical coefficients with LMKE algorithm for all the starting 

configurations. Since most of the coefficients are do not show high correlations with kinetic 

energy, only dynamic manipulability and condition number are part of the index, as the other 

variables do not seem to be relevantly correlated.  The formula used is: 

𝐾𝐼 =  31.0116 ∗ 𝑑𝑦𝑛.𝑚.+    0.1234 ∗  𝑘 (5-15) 

This function represents a configuration-dependent index that is highly correlated 

with kinetic energy, and it is supposed to convey as much information about kinetic energy 

as possible. However, in next chapter, it will be used as an approximation of kinetic energy 

within an optimisation algorithm, showing that local functions depending solely on the 

manipulator joints configuration hardly have any capability to predict the behaviour of a 

dynamic quantity such as kinetic energy. 
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5.5 Free-floating manipulators analysis 

5.5.1 Scope of the analysis 

 The fixed-base case computation is useful to observe the peculiarities of the 

workspaces generated by each algorithm. Particularly, the LSE method, which is the closest 

one to those actually used on free-floating manipulators ([109]), generates smaller 

workspaces than the others. This limit has already been observed in literature [92]. 

Furthermore, it is to be observed that the base attitude must be kept stable to respect its 

stability requirements. This enforces and extra-constraint on the angular velocity of the base 

spacecraft, and it will be shown that indeed the results are almost the same with all the three 

algorithms presented so far, due to the fact that the extra degree of redundancy is lost. 

On the other hand, Vafa and Dubowski [92] also observe that, if the base attitude is 

actively controlled, the workspace of a free floating manipulator can be increased, although 

it won’t reach the size of a fixed-base one (or, more precisely, it will tend to the size of a 

fixed-base one as the moments of inertia of the base increase). This is also very interesting 

for the purpose of optimisation algorithms, as the use of an attitude actuator could not only 

increase the workspace, but provide an extra degree of freedom, which in turn would allow 

to optimise a cost function on top of kinematic constraints. The analysis that is performed 

here for free-floating manipulators is aimed at assessing how the workspace is changed by 

the inclusion of an attitude actuator, a reaction wheel, among the actuator controlled 

degrees of freedom. This is relevant for the research questions asked in this thesis as an extra 

degree of freedom provided by the ACS allows to solve the IK problem with redundancy 

resolution methods that are used for fixed-base manipulators, provided that the Jacobian is 

updated according to the new configuration. In order to perform this analysis, two steps are 

performed: 
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1. An extra constraint is added to the Jacobian, enforcing the base rotation rate to be 

equal to 0 with an extra row. It is then shown that there is no difference between 

minimization of manipulator momentum transmitted to the base, and enforcing a 

constraint on the base while using velocity-based inverse kinematics schemes. 

2. A simple ACS constituted by a reaction wheel has been added to the Jacobian, 

constituting an extra column. This restores the redundancy to the manipulator, 

allowing to make use of any optimisation algorithm same as for fixed-base 

manipulators. In this case, a simple local optimisation has been used for 

demonstration purposes, but solution methods as the ones developed in this thesis 

can be used as well. 

The scope of the analysis is thus to evidence how the ACS allows to retain freedom 

of motion for a free-floating redundant manipulator beyond the workspace that can normally 

be accessed through reaction minimizing solutions. It is thus argued that energy minimizing 

solutions exploiting concurrent control of the manipulator and the ACS bear their own 

advantages for operating space manipulators over reaction minimising solutions. The main 

tool used for this analysis is manipulability contour plots, which will be used as a measure of 

overall manipulator freedom of movement. 

5.5.2 Simulation setup 

The free-floating problem is much more mathematically complex than the fixed-base 

one, as the Jacobian and Inertia Matrix feature an increased degree of complexity.  

For a planar manipulator such as the one used here, the base spacecraft has only one 

angular velocity, which is here identified with the symbol �̇�, coherently with 𝜑 being used 

for the spacecraft angular position as mentioned in the chapter dedicated to mathematical 
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background. In order to actively control it, a further row is added to the Jacobian. The direct 

kinematics problem then results into: 

[
�̇�
�̇�
�̇�
]=[

𝐽11 𝐽12 𝐽13
𝐽21 𝐽22 𝐽23
𝐽31 𝐽32 𝐽33

] [

𝑞1̇
𝑞2̇
𝑞3̇

] 
(5-16) 

Where the Jacobian is no more redundant and the last row has been obtained by 

rearranging the conservation of angular momentum as per (3-26). The full terms have been 

omitted due to their complex formulation. A similar procedure is then performed by adding 

a reaction wheel with fixed inertia, resulting in: 

[
�̇�
�̇�
�̇�
]=[

𝐽11 𝐽12 𝐽13 𝐽14
𝐽21 𝐽22 𝐽23 𝐽24
𝐽31 𝐽32 𝐽33 𝐽34

] [

𝑞1̇
𝑞2̇
𝑞3
𝜔𝑅𝑊

̇
] 

(5-17) 

Where 𝜔𝑅𝑊 is the reaction wheel rotational rate. In what follows, LSE and LSV based 

examples use the Jacobian as per equation (5-16), while the LMKE examples are computed 

with Jacobian (5-17). 

The rest of the simulation set up is similar to the one already introduced for the fixed-

base case, but with two differences: although the same initial end-effector position has been 

used, only one initial configuration is sufficient to demonstrate the workspace differences 

with and without ACS, so only configuration number 4 has been used. The other difference 

is that the angular resolution has been reduced for this case, due to the increased 

computational complexity and the lack of need for a statistically relevant quantity of data. 

The chosen angular resolution is 
𝜋

64
. Manipulability contour lines will be used to show that 

the reaction wheel can help to retain the manipulator freedom of movement in areas of the 

reachable workspace where it would normally be absent. Workspaces without reaction 
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wheel are presented first, with results with the reaction wheel following afterwards. In all 

cases, the end-effector is moved in rectilinear trajectories at a speed of 0.025 m/s. 

5.5.3 Results 

Figure 5-10 and Figure 5-11 respectively show the manipulability characteristics of 

the straight-path workspace of a free-floating manipulator without reaction wheel for LSE 

and LSV, when All workspaces are represented with manipulability contour lines at a distance 

of 8E-7. It is easy to see that the two results are almost the same. Since there is no 

redundancy involved, either the minimisation of the reactions, or equating to zero the 

rotation of the base spacecraft, exploit the extra degree of freedom, producing the same 

result. This is not true when a reaction wheel is used, which provides a further degree of 

freedom, leaving room for an optimisation task on top of the base spacecraft rotational 

constraint. 

 

Figure 5-10 Free-floating manipulator workspace with LSE algorithm 
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Figure 5-11 Free-floating manipulator workspace with LSV algorithm 

The reaction wheel, as already seen, allows to insert a further column in the Jacobian 

of the manipulator. The momentum conservation equation constitutes a non-holonomic, 

non-integrable constraint for the motion. Such a constraint can usually require the base 

spacecraft to rotate in order to be satisfied, since momentum can be generated from the arm 

motion, which must be countered by the base. A reaction wheel can be used to counter the 

momentum instead of having the base rotate, allowing it to be kept stable. In fact, it can 

“store” some of the momentum by its rotation, which can be later discharged. One further 

workspace simulation has been performed with LMKE algorithm in order to show what 

changes this implies. The results, again with manipulability iso-curves distant 8E-07 from 

each other, is shown in Figure 5-12. It is possible to notice that this figure can be roughly 

divided in two zones: one where the manipulability iso-curves are very close, and thus 

manipulability changes a lot, and one where it is much less variable. The position of the 

reaction wheel does not appear in the Jacobian, and thus does not change the relationship 
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between the joints velocities and the EE (or base) velocities, nor it introduces extra 

singularities. It is in fact trivial to observe that, for planar motion, the wheel inertia does not 

depend on its rotational position. From this, the conclusion is that there is an internal region, 

closer to the reaction free part of the workspace, where the motion is mostly achieved by 

the use of the manipulator actuators. Outside of this region, the manipulator is no more able 

to provide reaction-free motion, and the reaction wheel is mostly in charge for the 

accomplishment of the motion. In this case, the configuration of the robotic arm will still 

change, but not as much as in the reaction-free region, keeping manipulability more stable. 

If true, this somewhat confirms the results presented in literature. 

 

Figure 5-12 Free-floating manipulator workspace with reaction wheel with LMKE algorithm 

The stroboscopic plot of a sample trajectory, computed with LMKE, is shown in Figure 

5-13, with the joints and reaction wheel velocities being shown in Figure 5-14 and the 

manipulability in Figure 5-15. Colours for the joints are blue for the first joint, red for the 

second, and yellow for the third, while the reaction wheel is shown in purple. The reaction 
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wheel is very expensive from the energetic point of view, and thus the kinetic energy locally 

minimising algorithm tries to avoid its use as much as possible if the motion can be 

accomplished without it. Once the limits of the reaction free workspaces are reached, around 

time 0.6s, the algorithm makes extensive use of the wheel in order to keep the base 

spacecraft in position. At this point, the manipulability is totally stable and almost doesn’t 

change. This result is aligned with existing literature [93] and shows that attitude control 

system can be used to increase the degree of redundancy of a free-floating manipulator and 

to implement optimisation methods on the motion planning of such manipulator. 

Incidentally, it is also shown that a local kinetic energy minimisation may imply higher 

expense later in the trajectory, supporting the case for a prediction-based minimisation 

algorithm such as the one developed in next chapter. 

 

Figure 5-13 Stroboscopic plot of a sample free-floating trajectory 
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Figure 5-14 Joint velocities of a sample free-floating trajectory 
 

 

Figure 5-15 Manipulability of a sample free-floating trajectory 

5.6 Conclusions 

In this chapter, the workspace of a simple redundant manipulators has been analysed 

in a systematic way. First, kinematic indexes that are related to the configuration of a robotic 

manipulator have been introduced, alongside with their relationship with the manipulators’ 
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singularities. After this, canonical correlation has been introduced as an instrument to 

analyse the links between such indexes and kinetic energy, evidencing which kinematic 

indexes influence the kinetic energy of a manipulator most. An analysis has been performed 

on the workspaces of fixed-base manipulators, observing the complexity and nonlinearity of 

the relationship between manipulator configuration and energy. A linear combinations of 

dynamic manipulability and condition number has been evidenced to be the closest 

correlated function to kinetic energy. Such combination will be used in next chapter within a 

local algorithm to illustrate the fundamental incompleteness of knowledge regarding energy 

consumption when only local configuration-related information is considered. Finally, the 

extensibility of results to the free-floating case has been investigated, by adding a reaction 

wheel as an attitude control actuator to be used in conjunction with the manipulator joints. 

Such actuator has been controlled through the same Jacobian as the arm. The effect of the 

reaction wheel on the manipulator kinematics has been discussed and presented though 

simulation of the manipulator free-floating workspace. 
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Chapter 6. A local method based on the prediction of future 

kinetic energy integral 

6.1 Introduction 

In this chapter, a novel online inverse kinematics method for redundant 

manipulators is introduced and compared with three existing algorithms. Such a method can 

consistently reduce kinetic energy integral during the manipulator motion. The underlying 

principle of the algorithm is to estimate the direction of minimum kinetic energy expense by 

optimising a local approximation of the future kinetic energy integral. The prediction, which 

does not need to be updated at every time step, has been performed in two different ways: 

with the exact formula of kinetic energy to illustrate the validity of the approach in reducing 

kinetic energy, and with the kinetic-energy correlated function that has been derived in last 

chapter, to further show how kinetic energy results are unpredictable when the prediction is 

solely based on local variables. The prediction can be computed with a restricted number of 

parameters, resulting in a limited computational cost. As a result, the proposed method has 

enhanced singularity avoidance capability, alongside with well-behaved trajectories from the 

energetic point of view. Although the predictive algorithm does not involve Jacobian 

inversion in itself, its solution has been used as an extra task in a pseudoinverse-based inverse 

kinematics scheme. This provides precision tracking and allows to use the new method 

alongside existing pseudoinverse related theory. 

As previously outlined, extra task formulations do exist to overcome singularities, which 

are the most catastrophic failures of local algorithms. Jacobian singularities imply that a 

certain end-effector velocity is not attainable with finite joint velocities, and of course such 
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situation should be avoided in practical manipulators: much before reaching the singularity, 

high velocity and vibration may cause physical damage to the manipulator. 

While this occurrence has long been mitigated by the use of specific singularity 

avoidance algorithms ([6], [11]), this only allows to prevent extremely suboptimal 

trajectories, but doesn’t guarantee any optimality or near optimality from the energetic point 

of view. In order to obtain an energetically optimal trajectory, future energy cost has been 

here explicitly formulated, computed and taken into account. In order to compute its value 

as quickly as possible, the algorithm hereby presented relaxes the requirements for full 

optimality over the prediction horizon, choosing to limit the number of future path points 

taken into account and the frequency of updates of the prediction, which is not recomputed 

at every time step. 

This chapter is organised as follows: first section presents an overview of the chapter 

and the methodology used for investigation, then the mathematical formulation of the new 

algorithm and the parameters of the optimisation are introduced. Afterwards, numerical 

results to validate the algorithm are presented and discussed. The chapter is completed with 

an analysis of the new algorithm’s main parameters and main drivers in their choice and 

setting. 

6.2 Mathematical formulation of the new predictive algorithm 
 

The new algorithms hereby presented are both based on the possibility, widely 

exploited in literature to superimpose a further constraint to a pseudoinverse-based solution 

through the following formulation, already mentioned in previous chapters: 
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�̇� = 𝑱+𝒗 + (𝑰 − 𝑱+𝑱)�̇�𝟎 (3-12) 

   The homogeneous solution �̇�𝟎 is in this case used to add a further term based on an 

integral cost, such as the ones typically used in optimal control problems [139], comprising 

the integral of squared end effector error along the trajectory plus the kinetic energy integral 

along the trajectory. In the case where the whole length of the trajectory is optimised at 

once, a widely used expression which has already mentioned before in this document: 

𝐶(𝒒, 𝒖, 𝑡) = ∫ [(𝒙(𝒒) − 𝒙 𝒓𝒆𝒇)
𝑇
𝑸(𝒙(𝒒) − 𝒙 𝒓𝒆𝒇) + 𝒖

𝑇𝑹 𝒖]
𝑡𝑓𝑖𝑛

𝑡0 

𝑑𝑡 
(3-32) 

Final time 𝑡𝑓𝑖𝑛 doesn’t however need to be the time when the manipulator motion is 

completed. It is possible to define a time horizon ℎ, much shorter than the whole motion 

time. In this case, rather than optimising a control cost over the whole trajectory, it would 

only be optimised over a time window that extends from present time 𝑡0 to future time 𝑡0 +

ℎ. Furthermore, the quadratic control cost in the general case can be any motion-related 

function. The discrete formulation used for the PMKE algorithm developed by the author is: 

𝐶(𝒒, �̇�) = ∑[(𝒙𝒊(𝒒𝒊) − 𝒙𝒊,𝒓𝒆𝒇)
𝑇
𝑸𝒊 (𝒙𝒊(𝒒𝒊) − 𝒙𝒊,𝒓𝒆𝒇) + 

𝑡0+ℎ

𝑖=𝑡0 

𝐺(𝒒, 𝒒,̇ 𝑡) ]𝛥𝑡 

 

(6-1) 

 𝒙𝒊,𝒓𝒆𝒇 is the reference end effector positions at time 𝑖, 𝒙𝒊 the actual end effector positions 

at time 𝑖, 𝒌𝒊,𝒆𝒓𝒓 is the error weight matrix at time 𝑖, , �̇�𝒊 the joint velocities at time 𝑖, 𝛥𝑡 is the 

discrete time step and 𝐺(𝒒, 𝒒,̇ 𝑡) is a control cost function. For finite horizon optimisation, as 

in the case presented here, 𝑡𝑓𝑖𝑛 is dropped in favour of a closer time 𝑡 + ℎ, where h is a finite 

time horizon. 
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Computing such a cost for a real-time tracking algorithm is expensive and time 

consuming. For this reason, the algorithm hereby proposed exploits the pseudoinverse 

solution to track the trajectory instead. The integral cost is used instead to provide a velocity 

vector �̇�𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 pointing to the direction where kinetic energy integral is expected to 

feature the lowest value for the chosen trajectory. This velocity vector is used as an extra 

task added to the motion through the Jacobian null-space as per (3-12). 

The steps of the algorithm are as follows: 

1. A horizon h is selected. 

2. A prediction step size 𝛥𝑇 is selected. It is a multiple of the pseudoinverse 

algorithm step size 𝛥𝑡 and it is generally much larger. 

3. An update interval size 𝐼 is selected. It is a multiple of the pseudoinverse step 

size 𝛥𝑡, but it is generally smaller than 𝛥𝑇. 

4. Expression (74) is optimised with sampling times 𝑡 =  𝑡0 +  𝛥𝑇,… , 𝑡0 +

ℎ𝛥𝑇. Any deterministic optimisation algorithm can be used, for example any 

gradient descent method. This provides a prediction for a future window that 

is defined here as prediction window 𝑇𝑝 =  ℎ ∗ 𝛥𝑇. 

5. The solution of the optimisation at point 4 outputs a set of h joint 

configurations, for the h sampling times 𝑡 =  𝑡0 +  𝛥𝑇,… , 𝑡0 + ℎ𝛥𝑇. The set 

of these points is from now on referred as {𝒒𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏}. A specific point in 

the set is referred with its sampling time as a subscript, with a notation such 

as 𝒒𝜟𝑻. 
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6. A 4-th order spline interpolation from 𝒒𝟎 to 𝒒𝒉𝜟𝑻, passing from all the points 

in the set {𝒒𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏} is computed. Endpoint conditions of the interpolation 

are set so that �̇� and �̈� at 𝒒𝟎 are set equal to the ones reached by the 

manipulator at time 𝑡0, and are set to zero at 𝒒𝒉𝜟𝑻. This ensures the resulting 

spline won’t have large slopes in the interval of interest. The resulting spline 

is  from now on referred as 𝒒𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 = 𝒇(𝑡). 

7. For each step i in the update interval 𝐼, the trajectory is computed with 

pseudoinverse method as per expression (3-12), using the error between 

previous 𝒒𝒊−𝟏 and the computed value of  𝒒𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 as a secondary task. 

�̇�
𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚

=  
𝒒𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 − 𝒒𝒊−𝟏

𝑑𝑡
 

(6-2) 

 

8. Once 𝐼 time has passed, steps 4 to 6 are repeated for the new update 

interval, using the last time step of previous interval as 𝑡0. 

9. Steps 4-8 are repeated till the amount of time before the end of the 

trajectory is 𝑇𝑝. 

10. Steps left at this point are computed with the last computed 𝒒𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏. 

Two version of the algorithm are presented here, differing in the control cost 

𝐺(𝒒, 𝒒,̇ 𝑡). The first one has been called Predictive Minimisation of Kinetic Energy (PMKE), 

and it uses kinetic energy as control cost, while the second one, defined as Predictive 

minimization of kinematic indexes correlated with kinetic energy (PMCI), is different in that 

it uses the approximation of kinetic energy developed in last chapter as control cost. The first 
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formulation is the main research contribution of this chapter, while the second one is 

provided for comparison, in order to show the difficulties in improving the kinetic energy 

integral of a trajectory by only using local information from the manipulator configuration. 

Such difficulties persist even when trying to optimize locally defined variables in a predictive 

way, as the PMCI algorithm does. 

 Thus, the formulation of PMKE control cost is, as usual with kinetic energy: 

1

2
𝒒𝒊̇
𝑇𝑾(𝒒𝒊)𝒒𝒊̇  

(6-3) 

Where 𝑾(𝒒𝒊) is the configuration dependent inertia matrix. The formulation of the control 

cost based on correlated indexes is instead as per formula (5-15):  

𝐾𝐼 =  31.0116 ∗ 𝑑𝑦𝑛.𝑚.+    0.1234 ∗  𝑘 (5-15) 

This formulation will be used, in lieu of kinetic energy, to assess if a control cost only 

dependent on characteristics of the manipulator configuration can be used instead of a cost 

containing velocities, such as kinetic energy.  

6.3 Validation 
 

6.3.1 Validation strategy 

 It has already been explained in previous chapters that local algorithms are harder 

to evaluate than global algorithms because they are not built to find the best optimum, but 

rather to find a reasonably good optimum in a reasonably short time. Furthermore, for 

nonlinear problem like inverse kinematics, a local algorithm might be good for a specific set 

of trajectories and be inadequate for another. This happens because finding the best solution 
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at a given time step might be detrimental for the performance at future time steps, and most 

of the times there’s no precise way to tell in advance. 

Five different algorithms are compared in this chapter, with the classic LSV used as a 

datum, and the other ones reported in terms of variation respect to LSV. The first three are 

the same ones that have been used in the workspace analysis, and the last two have been 

presented within this chapter. 

1. Moore Penrose pseudoinverse (LSV). 

2. Local minimization of kinetic energy (LMKE). 

3. Local minimization of the reactions (LSE). 

4. Predictive minimisation of kinetic energy (PMKE).  

5. Predictive minimization of kinematic indexes correlated with kinetic energy 

(PMCI). 

It has been highlighted that an analysis based on the results on a big sample of 

trajectories is necessary, since the behaviour of local algorithms might vary a lot depending 

on the trajectory, and thus good (or bad) results on a few simulations do not allow to make 

any assumption about the overall quality of a specific solution method. 

In order to provide data for a complete analysis, an initial end-effector position has 

been chosen very close to the boundary of the workspace, and simulations have been 

performed in every direction, and starting from different joint configurations (all of them 

with the same end-effector position), in a similar fashion to what has been done to analyse 

workspaces. Indeed, starting joint configurations that will be used here are the same, as per 

Table 6-1. 



206 
 
 

 

 

 

Table 6-1 Initial configurations for local algorithm analysis 
 

Configuration # Joint 1 position Joint 2 position Joint 3 position 

1 0.4009 -0.6233 0 

2 0.2004 0.0374 0.6474 

3 0 0.3269 -0.7541 

4 -0.2014 0.6015 -0.6484 

5 -0.4028 0.6233 0 

 

Differently from the method used for the workspaces, however, simulations 

performed here feature a more realistic end-effector trajectory, as per formula (3-34), as it 

was done for the global planner. This allows to have continuous and smooth end-effector 

velocity and acceleration along the whole trajectory, comprising initial and final point. For 

each of the initial configuration shown in table, the end-effector motion has been simulated 

in three different directions. One of them has been set to pass through the origin, featuring 

thus an angle of π (opposite direction as the x axis), while the other two are separated from 

the x axis by angles of 1/8π and -1/8π, featuring thus directions of 7/8π and 9/8π respect to 

initial end effector configuration. Trajectories have been simulated of three different lengths: 

0.10m, 0.40m, and 0.70m. This choice is meant to highlight the behaviour of the case study 

algorithms different lengths of trajectories. Circular trajectories with radii of 0.15m and 

0.25m have also been simulated for each starting configuration. 

For all these simulations, kinetic energy has been computed and compared, without 

including singular trajectories. All the results have been compared considering the average 

performance of the algorithms on specific subsets (e.g. circular trajectories or rectilinear 

trajectories of a specific length). 
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6.3.2 Parameters description 

 

The full list of parameters to be involved in the algorithm are inverse kinematics time 

step size Δt, predictive optimisation time step size ΔT, horizon h, update interval I. This 

section explains their meaning and the value that has been chosen for the simulations 

performed for the purpose of this work. A sensitivity analysis will be presented later in the 

chapter. It is to be noticed that some of these parameters are necessarily different between 

the two versions of the predictive algorithm. 

Inverse kinematics time step size Δt: this parameter has been set to 0.001s. This is a 

standard value for inverse kinematics problems, widely used in research and industrial 

environments. 

Prediction time step size ΔT and horizon h: these altogether determine the prediction 

window 𝑇𝑝, which in turn determines the ability of the algorithm to be able to take into 

account future issues that could otherwise undermine the quality of the solution. The two 

parameters must be balanced considering that, for a fixed 𝑇𝑝, having a bigger h and a smaller 

ΔT allows for better resolution of the prediction, making it less likely for the algorithm to 

pursue local improvements over global ones. However, it also implies longer computational 

times. The horizon h doesn’t really influence the prediction for PMCI, since it is based on 

variables that only involve joint displacements. Thus, optimising them means finding the 

lowest value at the end of the prediction time 𝑇𝑝, without considering intermediary steps. 

This means that for PMCI, h can be set to 1, and 𝛥𝑇 = 𝑇𝑝. Things get more complex with 

PMKE, which involves joint velocities between the steps, thus requiring to consider a horizon 

h > 1, in order to limit the chance of unexpectedly high velocities within the prediction 
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window. This makes things slightly more complex, however for the robotic manipulator 

hereby presented satisfactory results are reached for an h value of 2. Thus, it has been limited 

to this value to avoid computational complexity. This means that, for PMKE, 𝛥𝑇 =  𝑇𝑝/2. This 

leaves the question open about how to choose 𝑇𝑝. Increasing it doesn’t change the 

computational complexity, which is only influenced by h, however a prediction too far in the 

future might not have the best influence on current path point, since only 1 or 2 path points 

are actually included in its computation, meaning that those in between are not considered. 

If their number grows too large, the prediction isn’t realistic anymore. Furthermore, it is hard 

to establish a proper 𝑇𝑝 because a value that is good for certain trajectories doesn’t 

necessarily fit others: some of them might benefit of a longer prediction window, while some 

others might prefer a short one, which makes it difficult to develop a tuning strategy. For the 

simulations presented this thesis, the value of the prediction window has been set to 20% of 

the simulation time. This means that, for trajectories with simulation time of 1s, the 

algorithm will include an expectation of the value of the future control cost for up to 0.2s for 

PMKE and 0.1s for PMCI, corresponding to respectively 200 and 100 inverse kinematics time 

steps. This means that 𝛥𝑇 equals to 0.1s for both PMKE and PMCI. This value rests on the 

assumption that no energy wasting phenomenon will take place in the first 0.1s of the 

trajectory, which sounds reasonable considering that the end-effector velocity is very low in 

the first part of the trajectory, and that only a very small distance is covered during it. For the 

rest of the trajectory, the optimisation algorithm works as planned, computing a rough 

prediction of the control cost integral, and considering it as a secondary input of inverse 

kinematics through null-space projection. Further discussion about the choice of these 

parameters can be found later, in the section Parameters Drivers. 
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Update interval I: the update interval is the variable that decides how often the 

prediction of the control cost is updated. It should be ideally set as big as the time step Δt, 

but this would slow down the algorithm much beyond what’s acceptable for real time 

computation. Real time computation on MATLAB and on the test machine used takes 0.0449s 

on average each time the prediction is updated for PMKE, and 0.0155 for PMCI. An 

acceptable time is thus 0.050s. Improved versions of the algorithm or superior test machines 

might allow to reduce these values even further. 

Their values have been set as per Table 6-2.  

Table 6-2 Parameters used for the local algorithm 
 

Parameter Δt [s] ΔT [s] H  I [s] 

PMKE 0.001 0.1 2 0.05 

PMCI 0.001 0.1 1 0.05 
 

6.3.3 Simulation results 

Since the number of simulations is very high, their results are compared through 

tables featuring average values, rather than by figures for every trajectory. Tables are 

presented in ascending order respect to trajectory length. Trajectories are divided in 

rectilinear and circular, and a different table is presented for the two sets. Each line of the 

table represents a set of trajectories with the same length, and it shows the mean of kinetic 

energy integral, alongside with its difference in term of percentage with the LSV case, which 

is used as reference. The percentage of singular trajectories for each algorithm is also 

highlighted. Trajectories have been considered singular if power exceeded 100W at any point 

of the trajectory, or if the inverse kinematics numerical solver failed straightaway. 

Occasionally, especially for the LSE algorithm, all trajectories of a certain length are singular. 

In this case statistical variables are omitted. 
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Table 6-3 Local algorithm results for rectilinear trajectories 
 

Length LSV LSE LMKE PMKE PMCI 

0.10m 
0.0797 

 
 

0.0069 
(-13.97%) 

 

0.0061 
(-23.68%) 

 

0.0058 
(-26.99%) 

 

0.0098 
(+23.18%) 

 

% singular 
trajectories 

0% 0% 0% 0% 0% 

0.40m 
0.0950 

 
0.1061 

(+11.70%) 
0.088913 
(-6.42%) 

0.0688 
(-27.59%) 

0.1198 
(+16.59%) 

% singular 
trajectories 

13.33% 40% 0% 0% 6.67% 

0.70m 
0.3680 - 0.3327 

(-9,59%) 
0.2933 

(-20.31%) 
0.3610 

(-1.89%) 

 20% 100% 26.67% 0% 33.33% 
 

The results for rectilinear trajectories, shown in Table 6-3, vary depending on their 

length: for the shortest ones, with a length of 0.10m, LSV performance is surpassed by all 

algorithms except for PMCI both from the point of view of kinetic energy integral 

minimization. LMKE features the best performance among algorithms solely based on 

pseudoinverse techniques, with -23.68% for kinetic energy integral, while LSE sits between 

LSV and LSE, with an improvement of -13.97%. PMKE stands out as the best algorithm for 

kinetic energy integral minimization, with -26.99%, showing a slight superiority even to 

LMKE. PMCI shows difficulties in providing an optimal solution, with +23.18% for kinetic 

energy. This can be explained by the fact that the algorithm optimises a cost function solely 

based on joint configuration, as opposed to joint configuration and velocities. This means 

that it will have a tendency to reach the best configuration to minimize its cost function, no 

matter how much joints velocity will have to be increased to reach it. The results on the 

shortest set of trajectory show that, although a local minimisation of kinetic energy such as 

the one pursued by LMKE algorithm is effective in minimizing kinetic energy over the whole 
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length of the trajectory, the PMKE algorithm can still produce improvements over it by taking 

into account the future energetic cost. The PMCI algorithm, on the other hand, suffers from 

not including velocities in its control cost, and shows that direct optimization of 

configuration-related values is too simple to provide results on a more than local scale. 

In the set of trajectories with a length of 0.40m, LSV algorithm shows one further 

flaw in that 13.33% of the sample is singular. Furthermore, the results show that LSE 

algorithm has lost most of its energetic effectiveness, exceeding LSV kinetic energy integral  

values by 11.70%. This happens despite the fact that 40% of the LSE trajectories are singular, 

thus reducing the sample to the 60% most energy-effective trajectories. This is also the last 

set of LSE trajectories, since those in the set with a length of 0.70m are all singular. It can be 

concluded that reaction minimization, while having its merits for the control of space 

manipulators, does not provide good performances from the energetic point of view. LMKE, 

at this point, shows a reduced effectivity too, although it still has an edge over LSV, with an 

improvement of 6.42%. Although these numbers seem quite small, it should be observed 

that LMKE features no singular trajectory while LSV, as already mentioned, has a singularity 

percentage of 13.33% in this sample. PMKE is the clear winner for this set, featuring no 

singularities, and still surpassing LSV by a margin of 27.59%. Once more, PMCI does not 

feature satisfying results, with a variation of the kinetic energy integral average value of 

+16.59%. Furthermore, it does feature a 6.67% of singular trajectories, confirming that a cost 

function based on information about manipulator configuration only is not suitable for the 

problem under examination. 

The last rectilinear set, featuring a length of 0.70m, is the most problematic one for 

local inverse kinematics based methods: the increased length means that probability to incur 

into a kinematic singularity is higher, and in fact 20% of the trajectories solved with LSV and 
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26.67% of the trajectories solved with LMKE are singular, while LSE method didn’t output any 

feasible solution for this set, producing a 100% failure rate. LMKE is still more successful than 

LSV at minimising kinetic energy integral, although it should be kept in mind that it also 

resulted in a higher number of singular trajectories: it features a kinetic energy integral 

average reduction of 9.59%. Although an improvement in kinetic energy integral is visible, 

the larger amount of singular trajectories means that the different is possibly negligible. 

PMKE is now a clear winner, with an average reduction of the kinetic energy integral as high 

as 20.31%. Furthermore, the algorithm produces no singularities. In longer trajectories, the 

prediction shows its full capability, allowing to complete them with strong energy savings 

compared to traditional algorithms, and decreased risk of singularity. PMCI doesn’t really 

compare in this case, with a decrease of -1.89% in kinetic energy integral cost compared to 

LSV.  Furthermore, it also features 33.33% of singular trajectories, the highest value among 

all algorithms except for LSE. The results from rectilinear trajectories show that correlated 

indexes don’t compare with actual predictive minimisation of kinetic energy integral, while 

PMKE outperforms existing methods on all sets of trajectories. 

Table 6-4 Local algorithm results for circular trajectories 
 

Diameter LSV LSE LMKE PMKE PMCI 

0,10m 
0.0664 0.0586 

(-11.80%) 
0.0437 

(-34.08%) 
0.0413 

(-37,72%) 
0.0667 

(+0.45%) 

% singular 
trajectories 

0% 60% 0% 0% 0% 

0,25m 
0.3991 - 

 
0.3092 

(-22.53%) 
0.3197 

(-19.90%) 
0.4120 

(+3.23%) 

% singular 
trajectories 

20% 100% 40% 0% 20% 

0,40m 
- - - 0.4422 

- 
- 

% singular 
trajectories 

100% 100% 100% 80% 100% 
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As shown in Table 6-4, some differences in behaviour can be evidenced on circular 

trajectories. It can be observed that these trajectories more issues with singularities, possibly 

due to their increased length compared to rectilinear ones, which increases the chances of a 

singularity along the way (longest circular trajectory is 1.2566m, 79.5% more than longest 

rectilinear trajectory at 0.70m). In fact, the shortest sample is the only one with complete 

sets of trajectories, except for LSE which has a 60% singularity rate. Those featuring smaller 

diameters taking advantage from both LMKE and PMKE, as they feature a size sufficiently 

small to never necessitate any major motion of the first joint (the one that would cause the 

highest kinetic energy increase). In a similar fashion to the rectilinear case, LSV is 

outperformed by every other algorithm from the energetic point of view, with PMKE being 

again a clear winner in this case (-37.72%). LMKE is however a close second, with -34.08%, 

while LSE follows at some distance (-11.80%). It should however be observed that LSE doesn’t 

really compete due to high number of singularities it features (60%). PMCI does not compete 

either, in that it is not able to anticipate increases in kinetic energy, resulting in almost the 

same performance of LSV, apart from a small increase (+0.45%). 

Looking at the subset with 0.25m as diameter, LSE is unable to provide any solution, 

while LSV and LMKE also feature singularities, respectively on 20% and 40% of trajectories. 

PMCI as well features 20% of singular trajectories like LSV, continuing the trend of mimicking 

its performance on circular trajectories. The overall results in this case are similar to the 

previous set, with LMKE featuring the best results (-22.53%), and PMKE being a close second 

with a kinetic energy integral reduction of -19.97% compared to LSV. However, PMKE 

performance is not affected by singularities, differently from the other algorithm, which 

makes its performance more reliable (in fact, considering the singular trajectory, even LMKE 
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would be much worse). PMCI is once again close to LSV in behaviour, featuring increased 

kinetic energy integral by +3.23%, following the datum very closely. 

The final set of trajectories that have been simulated is composed by circular 

trajectories with a diameter of 0.40m. All solutions obtained with algorithms without 

prediction terms (LSV, LSE, LMKE) are singular, thus comparison between LSV algorithm and 

other solutions is no longer possible. PMKE features 80% of singular trajectories (4 out of 5) 

and PMCI features 100% singular trajectories too. This result suggests too that PMKE is more 

reliable than traditional inverse kinematics algorithm when it comes to singularity free 

solutions for motion planning problems, although it is less reliable than with circles of smaller 

diameters. 

Table 6-5 Local algorithm relative changes compared to LS, for all trajectories 
 

Type of 
trajectory 

LSV LSE LMKE PMKE PMCI 

Rectilinear - +9.71% -9.19% -21.89% +2.26% 

% singular 
trajectories 

11.11% 60% 8.89% 0% 13.33% 

Circular - -11.80% -26.37% -22.78% +2.84% 

% singular 
trajectories 

40% 86.6% 46.67% 26.67% 40.00% 

 

Table 6-5 shows results based on the complete set of 90 inverse kinematics problems 

and 450 simulations: the percentages shown are the average changes in value between each 

of the subsets that compose the rows of previous result tables. The two versions of the newly 

introduced algorithm provided very different results: while PMKE showed to be able to both 

reduce energy and avoid singularities, PMCI was by far less trustworthy and its performance 

has been very close to a plain LSV. For rectilinear trajectories, PMKE averaged -21.89% 

reduction in kinetic energy integral, much better than second best, LMKE, with -9.19% 
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reduction of the kinetic energy integral, with 8.89% of solutions being singular. Results with 

circular trajectories are more mixed, with LMKE showing a better performance in kinetic 

energy integral reduction compared to PMKE (the two are respectively sitting at -26.37% and 

-22.78%), but with more singular solutions (46.67% vs 26.67%, mostly concentrated on bigger 

circles). Overall, PMKE features a superior ability to reduce energy on rectilinear trajectories, 

while also avoiding singularities. Results with PMCI show instead that kinematic indexes 

aren’t a good indicator for kinetic energy consumption at all, or at least that more 

sophistication is needed to turn them into a viable tool for online optimisation of kinetic 

energy. The numbers for this algorithm are an increase of +2.26% for kinetic energy integral 

for rectilinear trajectories, and +2.84% for circular trajectories, resulting in values overall very 

similar to the LSV, with a comparable number of singular solutions. These results show the 

inefficiency of local approximators in properly estimating a dynamic variable such as kinetic 

energy. It has been already been commented for the shortest set of trajectory that, since 

PMCI optimizes a quantity that is solely configuration-dependent, it actively searches for a 

minimum which might be considerably far from the current manipulator configuration, 

resulting in an excessive kinetic energy expense to reach it. More generally, it can be said 

that it does not provide a solution that is much distant from LSV, and in doing so it causes an 

overheard in kinetic energy integral value. 

6.4 Observations on the setting of parameters 

 Previous section showed that PMKE algorithm is a viable alternative to traditional 

inverse kinematics algorithm, due to its ability to reduce kinetic energy integral of a robotic 

manipulator and reduce risks related to singularities. This leaves however the question open 

about its parameters and what’s the best way to set them. For the results hereby presented, 

a combination of the parameters that could give reasonably good results without excessively 



216 
 
 

 

 

increasing computational times has been chosen, however this is not the only possible 

choice. 

Generally speaking, tuning the parameters of the algorithm without excessively 

reducing the computational speed requires a trade-off: it can either be chosen to have 

frequent updates of the predicted kinetic energy value, requiring to perform the optimisation 

more often, or improving the quality of the prediction itself. The choice of having more  

frequent updates lead to reducing the updated interval I, while the choice of improving the 

quality of the prediction is more subtle, as the prediction is driven by three different 

parameters, the prediction step time ΔT and the horizon h. If ΔT is increased while keeping h 

fixed, the prediction will span more in future, but an excessive increase in ΔT may cause the 

prediction to become imprecise, as it won’t be able to capture phenomena that require a 

faster time step than ΔT to be observed. Furthermore, with a bigger ΔT, effective use of the 

spline interpolation could become a problem, as the longer ΔT, the more it would get far 

from proper tracking, resulting in excessive velocities for the secondary task of the 

pseudoinverse solution. On the other hand, increasing h also means that the prediction will 

span for more time in future, without interpolation risks related to an excessive increase of 

the time step. However, the computational time will become larger, as increasing h also 

increases the number of parameters involved in the simulation.  

In order to explore these possibilities, solutions obtained with PMKE and different 

update intervals I are compared with a global solution. This allows to check the difference 

with the best possible solution. The result with an update step of 0.025s is presented in Figure 

6-1 (energy figures) and Figure 6-2 (kinematic figures), while results for globally optimal 

solution (with time step reduced to 0.01s) are presented in Figure 6-3 for energy figures, and 

Figure 6-4 for kinematic figures. 
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Figure 6-1 Energy figures for PMKE solution 
 

 

Figure 6-2 Joint figures for PMKE solution 
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Figure 6-3 Energy figures for globally optimal solution 

 

Figure 6-4 Kinematic figures for globally optimal solution 

As mentioned by Nedungadi et al. [15], when boundary conditions are imposed on 

the initial joint configuration, initial velocities must be left free if final conditions are specified 

as well (in this case, joints velocity at final time must be equal to zero) , which explains why 

the global solution, for this case, has non-zero initial velocities. The two solutions output 

particularly similar kinetic energy integral values in this case (although this can’t of course be 

a general rule, due to the prediction window limited size), being them 0.1852 J for the global 

solution and 0.1974 J from PMKE, with an increase with PMKE of only +6.59%. It can overall 
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be observed that MKPE performs a similar task as a global algorithm, but on a reduced 

window: it introduces an extra-velocity at the current time step, that will allow for kinetic 

energy integral reduction over the whole trajectory. The same trajectory is computed again 

with different update intervals I (an with the filter in place again), and their result is 

transcribed in Table 6-6, alongside with percentage difference from the global algorithm: it 

can be observed that the changes are very small: from an update interval size of 0.025s to 

0.050s, the loss in terms of cost function value is only 0.43%, and when the update interval 

goes from 0.025s to 0.075s, the percentage loss reaches 2.64%. This suggests that, for 

applications for which it is possible to introduce a higher delay, the best strategy is to refine 

the prediction rather than reduce the update interval, which is not the key parameter for the 

performance of the algorithm.  

Table 6-6 Influence of update interval I 
 

Update Interval [s] Global 0.025  0.050 0.075 

Kinetic energy Integral 
[J] 

0.1852 0.1974 
(+6.59%) 

0.1982 
(+7.02%) 

0.2023 
(+9.23%) 

 

Table 6-7 Influence of horizon h 

 
Horizon size 2 3  4 5 

Kinetic energy Integral [Js] 
0.2108 

 
0.1994 

(-5.41%) 
0.1953 

(-7.35%) 
0.1928 

(-8,54%) 

Trajectory computational 
time [s] 

2.579 4.659 7.935 13.029 

 

 Looking at different values of the horizon, increasing it seems instead a profitable 

strategy: Table 6-7 shows kinetic energy integral values for the same trajectory, with different 

value of the horizon h, alongside with computational times of the optimisation on a laptop 

featuring an Intel i7 9th Generation processor with 32GB RAM. The prediction time step size 
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𝛥𝑇 has been kept constant to 0.05s, thus resulting in extended prediction window 𝑇𝑝. It is 

easy to notice that higher values of the horizon allow to compute trajectories with lower 

energetic cost, while however also requiring a increase in computational time (for 

comparison, the trajectories used for the validation required computational times in the 

range 1.7-1.9s on the same machine). One further thing to notice is that the biggest decrease 

can be observed between a horizon value of 2 and a horizon value of 3 (-5.41%). Further 

increases of the horizon value bear minor improvements: going from 3 to 4 produces a 

further decrease of 1.92%, while going from 4 to 5 achieves just a 1.19% reduction of kinetic 

energy integral. This suggests that the optimal size of the prediction can strike a balance 

between computational time and performance, since at some point any improvement in the 

horizon will produce high increases in computational time in exchange for modest 

performance gains. The exact balance might possibly depends on the scale of the 

manipulator: that is, phenomena that increase the kinetic energy of the manipulator do not 

involve the whole trajectory at once, but rather a fraction of it. The maximum size of such 

fraction, measured as a length, is the optimal size of the prediction window of the PMKE 

algorithm. This length needs to be translated into a time to be input into the algorithm as 

parameters 𝑇𝑝, 𝛥𝑇 and h. In order to do so, it has been considered that the most challenging 

trajectories that have been simulated in the thesis are indeed the longer ones of 0.70m and 

above. During the algorithm tuning, it has been seen that the prediction on them will be less 

effective if the part of the trajectory used  for the prediction is shorter than 0.15m. This is 

consistent with the workspace analysis presented in previous chapter, which shows energy 

dissipating phenomena (singularities) influence their neighbourhood up to distances of the 

order of 1E-1m. Having a fixed h for computational time reasons, this makes the prediction 
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time step size dependent on the total time to perform the motion 𝑇 with a formulation such 

as: 

 𝛥𝑇 =  ⌊
𝑇

10
⌋ 

(6-4) 

Where the notation ⌊x⌋ denotes the floor of x. This leaves the question open about 

how to individuate such window for more complex manipulators. Hypotheses in this sense 

could be Monte Carlo methods, or reinforcement learning. Possible future developments 

about this topic and all the others touched in this thesis will be further explained in next and 

last chapter, which constitutes the conclusions of this work.  

6.5 Conclusions 

This chapter presented a comparison between three inverse kinematics available in 

literature, and an innovative algorithm based on the computation of an approximate 

prediction of kinetic energy along the desired end effector trajectory. This has been 

presented in two different versions. One, PMKE, is based on the approximate prediction of 

kinetic energy, while the other, PMCI, is based on the approximate prediction of a linear 

combination of kinematic indexes correlated with kinetic energy. While PMKE proved more 

successful than traditional algorithms in minimising kinetic energy, PMCI has served the 

purpose of showing that locally defined variables are not a reliable predictor of kinetic energy 

of a robotic manipulator. Further studies are required to extend the PMKE to more complex 

manipulators, and to develop reliable techniques to compute the optimal prediction window 

size. The concept of the PMCI should instead be substituted by more efficient ways to 

incorporate the local information obtained from kinematic indexes into energy-saving 

optimization methods, perhaps as a tool to select suitable initial conditions.  



222 
 
 

 

 

Chapter 7. Conclusions and further developments 
 

7.1 Introduction 

The inverse kinematics problem of redundant manipulator is a problem that has 

always captured the interest of robotics researchers, which in turn have provided a wealth 

of solutions for a vast array of cost functions and constraints. Despite being a well established 

and well understood field of research, with many practical robotics controllers featuring well-

working inverse kinematics algorithms, many questions still remain open about how to 

provide optimal solutions that reduce operational costs and alleviate power requirements, 

while incorporating all the different operational constraints that arise from practical 

manipulators. This chapter focuses on how the research questions were addressed, how the 

results in this thesis contribute to the field of knowledge of inverse kinematics of robotic 

manipulators, what limitations exist in proposed solutions, and how these can be addressed 

in the future. The chapter is organised as follows: first part reviews the research questions 

and the way they have been answered, second part focuses on the contributions to 

knowledge, and the third and final part reviews directions of future development of this 

work. 

7.2 Key research findings 

This thesis has presented an investigation on the inverse kinematics problem, with the 

two distinct aim to provide novel solutions to the problem both globally and locally. At this 

point, it is possible to go back to the research questions asked in chapter 1, and review how 

they have been answered by this document. 
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1. What considerations are necessary to solve the inverse kinematics problem for 

redundant manipulators end-effector trajectory tracking through mathematical 

optimisation of energy-related integral cost functions? 

This is the first question that has been answered. Particularly, it has been addressed with 

the literature review and Chapter 3, dedicated to the mathematical background of this thesis. 

Current state-of-the-art has analysed and a number of key findings have been observed. 

When necessary, these key findings have been further highlighted in the relevant chapters 

discussing the results (4, 5 or 6).  

Particularly, it has been observed that many proposed solutions of the IK problem of 

redundant manipulators aim at minimising the energy used by the manipulator in some form, 

be it the squared norm of joints velocity, or more sophisticated methods involving kinetic 

energy or torques. Furthermore, it has been found that the IK problem is in truth two distinct 

problems, although related in nature, the local and the global problem. Starting from this, 

literature review has investigated the nature of both problems, evidencing how the most 

relevant characteristic of the problem is its nonlinearity and non-existence of solutions in 

closed form, which leads to the necessity of using the so-called Jacobian matrix. A further 

complication for free-floating manipulators is that angular momentum must be preserved 

during the motion, resulting in a non-holonomic constraints that causes the base spacecraft 

attitude to vary during the manipulator motion, unless precise strategies are adopted to 

avoid it. 

The Jacobian matrix has been identified to be an important tool for both local and global 

methods, yet it is a source of limitations due to it being prone to singularities, points where 

a desired velocity in the cartesian space translates into extremely high or infinitive velocity 

in the joints space. From the nature of the Jacobian, numerical problems arise both for local 
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and global methods that have been used to tackle the IK problem. Such methods, for the 

local problem, involve the use of the Jacobian pseudoinverse as-is, while they incorporate it 

in frameworks based on calculus of variation for the global problem. They have been found 

to be affected in the first case by locality of the solution, which may or may not translate to 

a satisfying global result, and in the second case by several numerical complications related 

to the inversion of the Jacobian matrix, and to the necessity to solve a TPBVP. 

Based on these findings, it has been observed that main challenges, apart from the 

nonlinearity of the problem, lie for local algorithms in the complexity of providing some 

prediction to the nonlocal outcome of the optimisation without adding an excessive burden 

of complexity to the algorithm involved. This drives the research for local algorithms to the 

direction of providing a suboptimal, approximated prediction of a global cost (such as the 

kinetic energy integral) as quickly as possible, so that the manipulator can be driven to the 

less consuming direction. For the global problem, the main points to take care of can instead 

be summarised in two points. The first one is the lack of attention in algorithms available in 

literature about the problem of finding the actual global optimum of the global problem, as 

opposed to find an optimal solution that isn’t necessarily the best solution for the problem. 

The second one is the difficulty in handling complex constraints, especially nonlinear ones, 

like actuators’ torque or power limits. These limits occur in real manipulators, since of course 

their actuators are limited in output torque and power they can produce, but are rarely or 

never addressed in research works. One more important point regarding global methods is 

the inherent difficulty in establishing initial guesses as input to the algorithm. For many 

methods, such as those based on the TPBVP, the quality of the solution largely depends on 

the quality of the initial guess. 
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Apart from this general considerations on the algorithms available in literature, chapter 

3 of this thesis has been dedicated to the necessary mathematical tools necessary to tackle 

the problems presented in the thesis. The chapter includes a detailed analysis of the 

kinematics and dynamics of redundant manipulators, an overview of the methods used to 

solve redundant manipulator inverse kinematics, a description of most important nonlinear 

optimisation heuristics, and explanation of the manipulator models used and the trajectories 

analysed in the reminder of the thesis. 

A further dive into general considerations on the inverse kinematics problem for 

redundant manipulators has been presented in chapter 5, where an analysis of a redundant 

manipulator’s workspace has been presented. The content of the chapter further evidences 

the nonlinearity and complexity of the problem, through considerations on the so-called 

straight path workspace of a manipulator. This concept allows to see how the reachability 

and energetic cost of a manipulator’s trajectory can vary depending on the algorithm used 

to solve the IK problem, and on the manipulator initial configuration. 

2. How can the limitations of conventional solutions of the problem mentioned in 

question 1 be tackled by applying optimisation techniques that have not been used 

this way before? And how can such techniques be applied to free-floating 

manipulators? 

This question has been answered in chapters from 4 to 6, which illustrate the solutions 

and techniques that have been developed for this thesis. In chapter 4, a novel solution to the 

global inverse kinematic problem has been presented, the Interpolation-based Global 

Kinematic Planner (IBGKP). This method of solution, differently from traditional ones, does 

not rely on Pontryagin maximum principle or on calculus of variations, and is focused instead 

of obtaining a good initial guess to solve the IK problem with a powerful constrained gradient 
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descent method such as Sequential Quadratic Programming (SQP). To this goal, a heuristic 

based on multi-start method is presented, aimed at limiting its exploration to possible 

solutions that are compliant with EE trajectory constraints, as opposed to searching the 

whole joints space for solutions, which might result in initial guesses which result in 

completely different EE trajectories than what is required, and won’t converge, or converge 

in extremely long times. Multi-start methods, to the author’s knowledge, had never been 

used to solve the IK problem, and thanks to the vast array of existing gradient descent 

methods, they allow to avoid issues of conventional IK algorithms related to TPBVP and 

Jacobian-related numerical problems, while they also allow to include linear and nonlinear 

constraints in the process. 

Chapter 5 provides a workspace analysis which investigates the limitations of existing 

algorithms more than proposing solutions based on novel optimisation techniques. However, 

within this chapter, considerations are presented about the possibility to use different IK 

solvers for free-floating redundant manipulators. The requirement of free floating 

manipulators IK algorithms to reduce the manipulator’s reactions transmitted to the 

spacecraft is relaxed by including an ACS actuator (a reaction wheel) in the control algorithm, 

thus allowing the use of a wider variety of algorithms for free-floating manipulators. 

Chapter 6 answers the question for local algorithms. It presents PMKE (Predictive 

Minimisation of Kinetic Energy), a novel local IK method based on a prediction of the joints 

motion that will cause the kinetic energy integral to grow less during the motion. While the 

prediction is based on a gradient descent optimisation, its resulting joints velocity vector is 

used as a secondary task within a Jacobian pseudoinverse framework, allowing it to be 

integrated with existing algorithm, PMKE, although still local in a wider sense, is no more 

limited to just one path point, and it is thus able to avoid some of the pitfalls caused by the 
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locality of solutions. Its ability to move in the direction with the lowest kinetic energy integral 

allows for better singularity avoidance and for reduction of the integral up to 30% or more.  

3. Are there different limitations that come into play by applying different methods to 

the problem? How can they be tackled? 

Different kinds of limitation come into play depending on the problem under 

consideration. The main limit for the IBGKP presented in chapter 4 is certainly the so called 

curse of dimensionality, which means that the computational power and memory required 

to solve it can be exponential on the number of parameters of the optimisation, which in turn 

would cause not to have resources enough to converge. The curse of dimensionality has been 

countered by the fact that the IBGKP has been designed to be iterative. The joints trajectories 

are first optimised on a reduced subset of the path points, and the other path points are 

sequentially added by interpolating them with splines, and performing further steps of 

optimisation, till the complete global IK problem under examination is solved. 

 The local algorithm PMKE, presented in chapter 6, features a different kind of 

limitation in that a very precise prediction optimised at every time step would cause the 

algorithm to be unable to perform its task in real time. In order to overcome the issue, two 

methods have been adopted: the first one the prediction has been solely based on a coarse 

set of future path points, rather than all of them, resulting in a low number of parameters to 

optimise. The second one is that the prediction is not updated at every time step, but at 

rather large intervals of 25 or 50 timesteps, allowing for less optimisations of the prediction 

to be performed within the same trajectory. In order to avoid the discontinuities that this 

could cause, the prediction results are fitted with the local derivatives of the joints trajectory 

through interpolation with 4-th order splines. 
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7.3 Contributions to knowledge 

This document presents a number of developments on the topic of inverse kinematics of 

redundant robotic manipulators. These resulted in a number of contributions to knowledge 

that are summarised in this section. 

Limitations of local and global inverse kinematics methods A survey of literature has 

identified the shortcomings of the state-of-the-art of inverse kinematics methods. It has been 

subdivided according to the different categories of methods used to solve the problem, 

looking at both local and global methods, and both at fixed-base and free-floating 

manipulators. Furthermore, research regarding workspace characterisation of redundant 

manipulators has been reviewed. An analysis and discussion of the key findings for each 

subtopic has identified existing knowledge gaps and limitations in the field. 

Interpolation-based Global Kinematic Planner A global algorithm has been proposed to 

solve the inverse kinematics problem of redundant manipulators. This algorithm has been 

developed aiming at overcoming the most relevant limitations of the existing global inverse 

kinematics methods. Most notably, the algorithm is not based on calculus of variation and 

optimises a function which does not include the Jacobian matrix pseudoinverse, avoiding the 

numerical problems and the limitations of both. It can find multiple optima of different cost 

functions, limiting the influence of the initial guess on its result, and it can incorporate linear 

and nonlinear constraints. This latter property allows it to solve bi-objective optimisation 

problems by the ε-constraint method, which allows to individuate the Pareto front even 

when it is non-convex, differently from the weighting method normally used in robotics. 
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Workspace analysis A workspace analysis has been performed aiming at observing the 

energetic behaviour of different algorithms over the whole size of the workspace of a robotic 

manipulator. It has been observed that no existing kinematic index has so far been 

successfully used to characterise the expected energetic performance of a robotic 

manipulator in a specific configuration. In order to overcome this issue, the analysis has relied 

on canonical correlation to individuate which linear combinations of kinematic indexes bear 

the closest relationship with kinetic energy, showing that  a linear combination of dynamic 

manipulability and condition number feature the highest correlation with it. Alongside this 

quantitative analysis, some quantitative considerations have been made, regarding 

preferential directions of manipulators motion, and differences between the algorithms 

used. 

Free-floating manipulator control with ACS It has been observed, in relationship to 

workspace size, that authors in literature pointed out how the concurrent use of a free-

floating robotic arm with the ACS of the base spacecraft can enhance the size of the 

workspace. This has been practically being performed through the use of a generalised 

Jacobian incorporating a reaction wheel as part of the actuators controlled concurrently with 

the manipulators joints. The resulting algorithm has been shown capable to retain 

manipulability, exploiting the fact that the reaction wheel is able to absorb angular moment 

in excess. Thus, a practical method to increase the size of the workspace of a free-floating 

manipulator and to add it further degrees of redundancy exploiting the ACS has been 

presented. 

Predictive minimization of Kinetic energy The last contribution to knowledge of this 

thesis is a local algorithm based on the predictive minimisation of kinetic energy. This 

algorithm exploits an estimation of the direction of minimum kinetic energy expense by 
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optimising a local approximation of the future kinetic energy integral. The prediction does 

not need to be updated at every time step and can be computed with a restricted number of 

parameters, resulting in a limited computational cost. As a result, the proposed method has 

reduced energetic cost and enhanced singularity avoidance capability. 

 

7.4 Limitations 

This thesis covers a number of developments in the field of inverse kinematics of 

redundant robotic manipulators. Although these developments solve some of the issues 

presented in the literature review of this thesis, inverse kinematics is a complex field, and 

even more so when redundant manipulators are involved, and many limitations are still left 

to be overcome.  

Chapter 4 introduced a novel global inverse kinematics algorithm, the Interpolation-

based Inverse Kinematic Planner. Such algorithm is able to solve several different 

optimization problems, comprising bi-objective optimization problems, with a variety of 

linear and nonlinear constraints. It has been demonstrated with a three DOF planar robotic 

manipulator, resulting in an optimisation problem featuring 303 parameters. This has been 

helpful in providing a first proof of the algorithm capability, and has provided a number of 

solutions that are easy to visualize compared to three-dimensional ones. At current stage, 

the algorithm has however not been tested on more complex robotic arms, which would be 

challenging from the point of view of computational time especially. The algorithm is 

iterative, which helped in reducing computational times on the cases under examination, it 

must however be investigated on more complex problems. Another possible issue coming 

from increased complexity might be that the actual global optimum requires an extremely 
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high number of candidate solutions to be individuated, or that the global optimum of the 

partial problem solved at the first steps of the interpolation does not correspond to the global 

optimum of the complete problem. Both these issues can be partially offset with a higher 

number of processor cores, aiming at optimising more candidate solutions at the same time. 

But, although computational power is often helpful for optimisation problems, and 

particularly for those based on Random Search methods, specific behaviour of the algorithm 

on more complex problems must be investigated first, before drawing any conclusion. A 

further limitation to be observed for the IBGKP is that the only friction model that has been 

used is the viscous friction model. The ability to find a global solution must be tested with 

Coulomb friction and other more realistic models as well. 

Chapter 5 focuses on a workspace analysis. Such analysis has provided some 

understanding of the complexity of the problem of energetic minimization of redundant 

manipulators. Particularly, it has been shown that no specific kinematic index features a 

direct relationship with the kinetic energy. A closer relationship has been obtained by the 

use of canonical correlation, showing that the a linear combination of dynamic manipulability 

and condition number feature a correlation with kinetic energy in the range of 80%. This 

insight has however no direct application in finding energy-saving inverse kinematics 

solutions so far. It can possibly be used within an optimization heuristic to accelerate the 

individuation of a solution, but no practical method has been developed so far, especially 

because dynamic manipulability is prone to reach infinitive value close to singularity, just as 

much as the Jacobian matrix does. A further development of the chapter has been a practical 

inverse kinematic method to move a free-floating manipulator concurrently with the ACS of 

the base spacecraft, resulting in increased manipulability and extended workspace. Such 

motion could however be delicate to reproduce in practice, as any error in the motion of the 



232 
 
 

 

 

wheel could result in attitude disruption. This should be simulated or investigated further 

with a realistic dynamic model. 

Chapter 6 presents PMKE, a local inverse kinematics method for the minimization of 

kinetic energy integral along a predefined trajectory. The method, based on the optimisation 

of a prediction of the kinetic energy integral, has shown good capability in reducing the 

kinetic energy integral of a three DOF planar manipulator, it however still presents some 

limitations to be addressed. Most noticeably, the simplicity of the robotic arm has again been 

useful in proving the effectiveness of the algorithm on a simple simulation setup, it however 

also constitutes a limitation in that the new method must be tested on more complex 

manipulators. The main issue with a higher number of DOFs would probably be that the 

number of parameters involved in the kinetic energy prediction would increase, slowing it 

down. Ad-hoc solutions would need to be developed to speed up the computation. Another 

issue with PMKE are the tuning of its parameters, which depends on the specific manipulator, 

and requires trial-and-error and simulations to be performed appropriately. 

 

7.5 Applicability to practical robotics 

The contributions to knowledge provided by this thesis are mostly focused on the 

field of theoretical inverse kinematics, coherently with the original scope of providing novel 

solutions to the local and global inverse kinematics problems. In order to exploit such 

solutions for practical robotics, and especially in the field of free-floating manipulators, it is 

necessary to consider what the real operational constraints are for the field of space 

robotics. To this end, it must be first observed that, although each mission features its own 

peculiarities, a natural subdivision can be made between Low Earth Orbit (LEO) and 

Geostationary Orbit (GEO) missions. Former ones are characterised by altitudes below 
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1000km and orbital periods in the range of 60-100 minutes, while latter ones feature 

satellites that are meant to orbit over a specific point on Earth during their whole operational 

life, resulting in altitudes around 36000km and orbital periods of 24 hours. All the space 

manipulators used in practice (Space Shuttle and ISS ones) have been deployed in LEO, and 

have been used for satellite deployment and sometimes maintenance of expensive assets, 

such as ISS [156] and the Hubble Telescope [157], while most of the planned debris removal 

concepts in literature are aimed at being operated in LEO (e.g. it is worth observing that first 

in-orbit experiment of debris removal, ETS-VII, was performed in LEO [79], with an average 

altitude of 550 km). While mission concepts for space manipulators to be deployed in GEO 

have also been developed [158], they have been much more heavily focused on asset 

inspection, and maintenance, often aiming at the substitution of modular components, a 

concept inspired to the Orbital Replacement Units (ORU) used on the ISS. The reason for 

such a scope is that geostationary orbit is extremely expensive to reach, which in turn means 

that any extension of operational life of existing geostationary satellites save considerable 

costs by postponing the moment when they need to be substituted. 

Such subdivision results in different operational requirements: systems deployed in 

LEO are designed to capture objects moving with high speed, and missions with the goal to 

capture non-collaborating space debris are expected in the near future. The nature of such 

targets implies uncertainties on their position and dynamic parameters. Indeed, a vast body 

of literature has been devoted to techniques to reduce such uncertainties (e.g. [159]–[162]). 

In this context, it is hard to imagine the possibility to use a global algorithm, since the end-

effector trajectory shall follow the motion of the target, which might feature knowledge 

errors to be reduced in real-time based on sensors measurements, and thus it is most likely 

not fully known in advance. In such a scenario, motion planning must be effectuated quickly 
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and updated based on new information. This suggests the use of a local planner, which is 

more able to react to the changes of the target motion, and is able to compute an IK solution 

once the target motion (i.e. desired end-effector trajectory) becomes known. In the case of 

the PMKE presented in this thesis, the motion can be updated at intervals corresponding to 

the parameter I of the algorithm, inferior to 0.1s in the examples presented, which makes it 

suitable for such operational conditions. There are of course constraints on the 

computational time that can be afforded for the prediction of the kinetic energy integral: 

ideally, it should be recomputed every time an update of the target motion (and thus end-

effector motion) becomes available to the IK solver. Space manipulators however usually 

feature slower motion than their ground-based counterparts,  and literature presents times 

in the range of tens or hundreds of seconds (e.g. [104]) to complete a trajectory. This allows 

for tracking with larger time-steps then the 0.001s used in the simulations presented in 

Chapter 6, while an on-board implementation would be in C rather than in Matlab, resulting 

in faster execution times. 

The global algorithm presented in the thesis, IBGKP, is more inclined to direct 

practical use, because it can more readily include dynamic considerations and, more 

importantly, physical limits that occur with real manipulators. Its use in space is however 

limited to missions where the target and its motion are well understood in advance, as the 

full end-effector trajectory is a required input for the optimization. Such missions can be 

mainly individuated in maintenance missions, such as some of the ones carried out on the 

ISS (in the case of ORU replacement, the manipulation targets are usually placed on the ISS 

itself, making them very well known) and the ones planned in future missions to extend the 

life of geostationary satellites. In such case, the target is known and collaborative, and the 
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end-effector task required to carry out the maintenance mission can thus be planned offline 

and optimized as required. 

 

7.6 Concluding remarks and future perspectives 

This thesis addressed some of the open challenges of the inverse kinematics problem 

of redundant manipulators through novel algorithms based on optimisation techniques. 

Most specifically, this research presented solutions to obtain energy-efficient solutions for 

inverse kinematics, considering both the global and the local inverse kinematics problem. 

The two problems presented different issues, which lie mostly in numerical complexity and 

difficulties in imposing realistic constraints for the global methods, and in hardships in 

obtaining a globally well-behaved trajectory when solving the IK problem locally for local 

algorithms. 

According to this goals, the outputs of this work are algorithms and numerical 

methods that advance the state-of-the-art. Most notably, a global algorithm has been 

presented, and its capability demonstrated, to compute globally optimal solutions of 

different cost functions with nonlinear constraints. Local results of this work feature instead 

a first workspace analysis from the energetic point of view, an energy-optimal solution 

method for free-floating manipulators featuring concurrent control of the robotic arm and 

the base spacecraft ACS, and a local algorithm able to produce a consistent reduction of 

kinetic energy integral along an end-effector trajectory. All new algorithms have been 

validated against existing algorithms available in literature to prove their effectiveness, and 

the global algorithm has been used to solve problems that have not been solved before in 
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robotics literature to the author’s knowledge (torque and power constrained, bi-objective 

optimisation). 

Future research in this field can proceed in several interesting directions. Some have 

been mentioned when talking about the limitations: the most obvious future development 

is an extension of the work to manipulators with a higher number of degrees of freedom and 

testing on real manipulators. The manipulator used in this work has been chosen because it 

allows to focus on the novel algorithms rather than on the implementation but, although 

some practical manipulators with a limited amount of degrees of freedom exist, it is clear 

that extending the results to more complex problem would greatly increase the usefulness 

of the results of this work. 

While both the global and the local methods presented would benefit from an 

investigation on higher numbers of DOF, and from testing on a real physical manipulator, the 

challenges arising for the two would be of a different kind: the global algorithm presents from 

this point of view a higher level of maturity, in that it can already respect all the limitations 

(joints, velocity, torques) of a real manipulator. It is however to test if cases exist when the 

optimal solution on the complete problem does not fall close to the optimal solution on a 

subset of parameters, and how the algorithm would behave in such cases. A further limitation 

that could arise from manipulators with increased complexity is computational time. 

Regarding this, it is important to observe that the algorithm, so far, has only been coded in 

Matlab with an off-the-shelf implementation of SQP. An ad-hoc adaptation of the SQP 

method, or even just a lower level C/C++ implementation, might reduce the time and cost 

required for convergence. Further important improvements for the global algorithm 

presented in this thesis lie in the direction of obstacle avoidance: since the method has 

proven effective in respecting nonlinear constraints, a natural question arises if it can tackle 
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obstacles in the environment. Further questions arise from this, regarding the best 

implementation choice to represent obstacles as constraints, and to represent distance 

between the manipulator and the obstacles. Surely, such a development would in any case 

require several degrees of redundancy to be able to move around said obstacles. 

The chapters dedicated to local algorithms analysis and development show many 

possible developments, which in most cases come directly from their local nature. Most 

noticeably, the workspace analysis presented in this work shows limits of local minimization 

of kinetic energy and presents some insights about the relationship between manipulator 

configuration and kinetic energy. This is however not directly usable, so far, for improving 

robotic inverse kinematics planning, as the attempt to use PMCI in Chapter 6 has shown. 

More investigation is required in this sense, to see if the results regarding kinematic indexes 

and their canonical correlation can be used to support energy optimisation heuristics for 

redundant robotic manipulators. Chapter 5 also presented a solution specific to free-floating 

manipulators. Coordinating actuators of different nature such as reaction wheels and robotic 

joints actuators can be challenging, and experimental work with free-floating manipulators 

trajectory tracking is required to show the feasibility of the result in practice. 

Finally, the PMKE algorithm shows very promising results for online kinetic energy 

integral minimization. It also would benefit from future developments with a higher number 

of DOF and testing on a real manipulator, in this case however a more efficient 

implementation would be capital for the success of the experiment, as the algorithm 

currently failed in being real-time by a fraction of second. This can be expected in a test 

implementation in Matlab, which is of a different nature than implementations on real 

manipulators, a test with a speed-oriented implementation is however a necessity for future 

developments. One more future goal of the algorithm is to develop a version that effectively 
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optimizes torque integral. This is more challenging than kinetic energy, as the torque has 

more granular dependency of the time step, rendering the method used for the prediction 

much less effective. This leads to the main goal in the future development of the PMKE, which 

is to integrate the spline interpolation in the optimisation, in order to obtain a result that is 

well behaved not only at the path points where the prediction is computed, but on the spline 

interpolation connecting them as well. 

The reader can see that, despite having offered solutions for some of the open issues 

of the inverse kinematics problem of redundant manipulator, many points still remain open. 

This is due to the nonlinear, difficult nature of the inverse kinematics problem which, 

although being one of the first problems having been investigated in robotics, remains 

particularly challenging to these days, with new developments being published every year. 

Despite it seems so obvious for us humans to move in an efficient way and without violating 

our physical limits, it seems that the road to have our machines moving as efficiently as us, 

or more efficiently than us, still has not led us to a final destination. 

 

 

 

 

 

 

 

 



239 
 
 

 

 

 

 

References 
 

[1] D. R. Tobergte and S. Curtis, Handbook of Robotics, vol. 53, no. 9. 2013. 

[2] C. Sallaberger, “Canadian Space Robotic Activities,” Acta Astronaut., vol. 4, no. 10, 
pp. 239–246, 1997. 

[3] N. Sato and Y. Wakabayashi, “JEMRMS Design Features and Topics from Testing,” in 
Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics 
& Automation in Space: i-SAIRAS, 2001, pp. 1–7. 

[4] F. Didot, M. Oort, J. Kouwen, and P. Verzijden, “The ERA System : Control 
Architecture and Performances Results,” in Proceeding of the 6th International 
Symposium on Artificial Intelligence and Robotics & Automation in Space: i-SAIRAS, 
2001, pp. 1–7. 

[5] D. Whitney, “Resolved Motion Rate Control of Manipulators and Human 
Prostheses,” IEEE Trans. Man Mach. Syst., vol. 10, no. 2, pp. 47–53, 1969, doi: 
10.1109/TMMS.1969.299896. 

[6] Y. Nakamura, H. Hanafusa, and Tsuneo Yoshikawa, “Task-Priority Based Redundancy 
Control or Robot Manipulators,” Int. J. Rob. Res., vol. 6, no. 2, pp. 3–15, 1987. 

[7] E. Papadopoulos and S. Dubowsky, “Dynamic Singularities in Free- Floating Space 
Manipulators,” Trans. ASME, vol. 115, no. 1, pp. 44–52, 1993. 

[8] Y. Nakamura and H. Hanafusa, “Optimal Redundancy Control of Robot 
Manipulators,” Int. J. Rob. Res., vol. 6, no. 1, pp. 32–42, 1987. 

[9] D. P. Martin, J. Baillieul, and J. M. Hollerbach, “Resolution of Kinematic Redundancy 
Using Optimisation Techniques,” IEEE Trans. Robot., vol. 5, no. 4, pp. 529–533, 1989. 

[10] D. N. Nenchev, “Redundancy resolution through local optimization: A review,” J. 
Robot. Syst., vol. 6, no. 6, pp. 769–798, 1989, doi: 10.1002/rob.4620060607. 

[11] C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based on Vector 
Formulations and Damped Least-Squares Methods,” no. 1, pp. 93–101, 1986. 

[12] T. Yoshikawa, “Manipulability and redundancy control of robotic mechanisms,” in 
Proceedings. 1985 IEEE International Conference on Robotics and Automation, 1985, 
pp. 1004–1009. 

[13] E. Staffetti, H. Bruyninckx, and J. De Schutter, “On the invariance of manipulability 
indices,” Adv. Robot Kinemat., no. 1, pp. 57–66, 2002, doi: 10.1.1.18.2222. 

[14] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics - Modelling, Planning and 
Control. Springer-Verlag London Limited, 2009. 



240 
 
 

 

 

[15] A. Nedungadi and K. Kazerouinian, “A local solution with global characteristics for 
the joint torque optimization of a redundant manipulator,” J. Robot. Syst., vol. 6, no. 
5, pp. 631–654, 1989, doi: 10.1002/rob.4620060508. 

[16] K. S. K. Suh and J. Hollerbach, “Local versus global torque optimization of redundant 
manipulators,” Proceedings. 1987 IEEE Int. Conf. Robot. Autom., vol. 4, pp. 0–5, 
1987, doi: 10.1109/ROBOT.1987.1087955. 

[17] M. Faroni, M. Beschi, N. Pedrocchi, and A. Visioli, “Predictive Inverse Kinematics for 
Redundant Manipulators with Task Scaling and Kinematic Constraints,” IEEE Trans. 
Robot., vol. 35, no. 1, pp. 278–285, 2019, doi: 10.1109/TRO.2018.2871439. 

[18] A. Hirakawa, “Trajectory planning of redundant manipulators for minimum energy 
consumption without matrix inversion,” Robot. Autom. 1997., no. April, pp. 5–10, 
1997, [Online]. Available: 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=619323. 

[19] Y. Umetani and K. Yoshida, “Resolved motion rate control of space manipulators 
with generalized Jacobian matrix,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 2–12, 
1989, doi: 10.1109/70.34766. 

[20] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of Inertial Parameters of 
Manipulator Loads and Links,” Int. J. Rob. Res., vol. 5, no. 3, pp. 101–119, 1986. 

[21] P. Huang, W. Xu, B. Liang, and Y. Xu, “Configuration control of space robots for 
impact minimization,” 2006 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2006, pp. 
357–362, 2006, doi: 10.1109/ROBIO.2006.340202. 

[22] E. Shintaku, “Minimum energy trajectory for an underwater manipulator and its 
simple planning method by using a genetic algorithm,” Adv. Robot., vol. 13, no. 2, 
pp. 115–138, 1998, doi: 10.1163/156855399X00171. 

[23] E. Ferrentino, A. Della Cioppa, A. Marcelli, and P. Chiacchio, “An Evolutionary 
Approach to Time-Optimal Control of Robotic Manipulators,” J. Intell. Robot. Syst. 
Theory Appl., pp. 245–260, 2019, doi: 10.1007/s10846-019-01116-9. 

[24] J. M. Hollerbach and K. C. Suh, “Redundancy Resolution of Manipulators through 
Torque Optimization,” IEEE J. Robot. Autom., vol. 3, no. 4, pp. 308–316, 1987, doi: 
10.1109/JRA.1987.1087111. 

[25] C. Gosselin and J. Angeles, “A Global Performance Index for the Kinematic 
Optimization of Robotic Manipulators,” J. Mech. Des., vol. 113, no. September 1991, 
p. 220, 1991, doi: 10.1115/1.2912772. 

[26] Y. Umetani and K. Yoshida, “Workspace and Manipulability Analysis of Space 
Manipulator,” Trans. Soc. Instrum. Control Eng., vol. E-1, no. 1, pp. 1–8, 2001, doi: 
10.9746/sicetr1965.26.188. 

[27] K. Yoshida, “Practical Coordination Control Between Satellite Attitude and 
Manipulator Reaction Dynamics Based on Computed Momentum Concept,” IEEE Int. 
Conf. Intell. Robot. Syst., vol. 3, pp. 1578–1585, 1994, doi: 
10.1109/IROS.1994.407645. 

[28] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, “A review of space robotics 



241 
 
 

 

 

technologies for on-orbit servicing,” Prog. Aerosp. Sci., vol. 68, pp. 1–26, 2014, doi: 
10.1016/j.paerosci.2014.03.002. 

[29] C. A. Klein and C. H. Huang, “Review of Pseudoinverse Control for Use with 
Kinematically Redundant Manipulators,” IEEE Trans. Syst. Man Cybern., vol. SMC-13, 
no. 2, pp. 245–250, 1983, doi: 10.1109/TSMC.1983.6313123. 

[30] J. Baillieul, J. M. Hollerbach, and R. Brockett, “Programming and control of 
kinematically redundant manipulators,” in Proceedings of 23rd Conference on 
Decision and Control, 1984, pp. 768–774. 

[31] C. Chevallereau and W. Khalil, “A new method for the solution of the inverse 
kinematics of redundant robots,” in Proceedings. IEEE International Conference on 
Robotics and Automation, 1988, vol. 4, pp. 37–42. 

[32] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics with floating 
base and constraints for full body humanoid robot control,” 2008 8th IEEE-RAS Int. 
Conf. Humanoid Robot. Humanoids 2008, pp. 22–27, 2008, doi: 
10.1109/ICHR.2008.4755926. 

[33] L. Sciavicco and B. Siciliano, “A Solution Algorithm to the Inverse Kinematic Problem 
for Redundant Manipulators,” IEEE J. Robot. Autom., vol. 4, no. 4, pp. 403–410, 
1988, doi: 10.1109/56.804. 

[34] K. Kazerouinian and Z. Wang, “Global versus Local Optimization in Redundancy 
Resolution of Robotic Manipulators,” Int. J. Rob. Res., no. 1984, pp. 3–12, 1987. 

[35] M. Vukobratovic and M. Kircanski, “A Dynamic Approach to Nominal Trajectory 
Synthesis for Redundant Manipulators,” vol. 103, no. 4, pp. 580–586, 1984. 

[36] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions With Singularity 
Robustness for Robot Manipulator Control,” 2016. 

[37] D. Schinstock, T. Faddis, and R. Greenway, “Robust Inverse Kinematics Using 
Damped Least Squares With Dynamic Weighting,” … Intell. Robot. Field, Factory, …, 
pp. 861–869, 1994, doi: doi:10.2514/6.1994-1299. 

[38] A. A. Maciejewski and C. A. Klein, “Numerical Filtering of the Operation of Robotic 
Manipulators through Kinematically Singular Configurations.” pp. 527–552, 1988. 

[39] M. Kelemen, I. Virgala, T. Lipták, L. Miková, F. Filakovský, and V. Bulej, “A novel 
approach for a inverse kinematics solution of a redundant manipulator,” Appl. Sci., 
vol. 8, no. 11, 2018, doi: 10.3390/app8112229. 

[40] J. Woolfrey, W. Lu, and D. Liu, “A Control Method for Joint Torque Minimization of 
Redundant Manipulators Handling Large External Forces,” J. Intell. Robot. Syst. 
Theory Appl., vol. 96, no. 1, pp. 3–16, 2019, doi: 10.1007/s10846-018-0964-8. 

[41] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of redundant 
manipulators: generalizing the task priority framework to inequality tasks,” IEEE 
Trans. Robot., vol. 27, no. 4, pp. 785–792, 2011, doi: 10.1109/TRO.2011.2142450. 

[42] F.-T. Cheng, R.-J. Sheu, and T.-H. Chen, “The Improved Compact QP Method For 
Resolving Manipulator Redundancy,” IEEE Trans. Syst. Man Cybern., vol. 25, no. 11, 



242 
 
 

 

 

pp. 1521–1530, 1995. 

[43] W. S. Tang, S. Member, J. Wang, and S. Member, “Two Recurrent Neural Networks 
for Local Joint Torque Optimization of Kinematically Redundant,” vol. 30, no. 1, pp. 
120–128, 2000. 

[44] Y. Zhang and J. Wang, “A dual neural network for constrained joint torque 
optimization of kinematically redundant manipulators,” IEEE Trans. Syst. Man, 
Cybern. Part B Cybern., vol. 32, no. 5, pp. 654–662, 2002, doi: 
10.1109/TSMCB.2002.1033184. 

[45] Y. Zhang, S. S. Ge, and T. H. Lee, “A unified quadratic-programming-based dynamical 
system approach to joint torque optimization of physically constrained redundant 
manipulators,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 34, no. 5, pp. 
2126–2132, 2004, doi: 10.1109/TSMCB.2004.830347. 

[46] T. Rybus, K. Seweryn, and J. Z. Sasiadek, “Control System for Free-Floating Space 
Manipulator Based on Nonlinear Model Predictive Control (NMPC),” J. Intell. Robot. 
Syst., pp. 491–509, 2016, doi: 10.1007/s10846-016-0396-2. 

[47] C. Schuetz, T. Buschmann, J. Baur, J. Pfaff, and H. Ulbrich, “Predictive Online Inverse 
Kinematics for Redundant Manipulators,” in 2014 IEEE International Conference on 
Robotics and Automation (ICRA), 2014, pp. 5056–5061, doi: 
10.1109/ICRA.2014.6907600. 

[48] O. L. Mangasarian, “Sufficient Conditions for the Optimal Control of Nonlinear 
Systems,” SIAM J. Control, vol. 4, no. 1, pp. 139–152, 1966, doi: 10.1137/0304013. 

[49] M. Galicki, “Time-Optimal Controls of Kinematically Redundant Manipulators with 
Geometric Constraints,” IEEE Trans. Robot., vol. 16, no. 1, pp. 89–93, 2000. 

[50] S. Ma and M. Watanabe, “Time Optimal Path-Tracking Control of Kinematically 
Redundant Manipulators,” JSME Int. J., vol. 47, no. 2, pp. 582–590, 2004. 

[51] Z. L. Zhou and C. C. Nguyen, “Globally Optimal Trajectory Planning for Redundant 
Manipulators using State Space Augmentation Method,” J. Intell. Robot. Syst. Theory 
Appl., vol. 19, no. 1, pp. 105–117, 1997, doi: 10.1023/A:1007905817998. 

[52] Y. Halevi, E. Carpanzano, G. Montalbano, and G. Halevi, Yoram and Carpanzano, 
Emanuele and Montalbano, “Minimum Energy Control of Redundant Linear 
Manipulators,” J. Dyn. Syst. Meas. Control, vol. 136, no. September 2014, pp. 1–8, 
2014, doi: 10.1115/1.4027419. 

[53] Z. Shiller and S. Dubowsky, “On Computing the Global Time-Optimal Motions of 
Robotic Manipulators in the Presence of Obstacles,” IEEE Trans. Robot. an Autom., 
vol. 7, no. 6, pp. 785–797, 1991. 

[54] S. F. P. Saramago and V. Steffen Jr, “Trajectory Modeling of Robot Manipulators in 
the Presence of Obstacles,” Jounal Optim. Theory Appl., vol. 110, no. 1, pp. 17–34, 
2001. 

[55] A. Reiter, A. Muller, and H. Gattringer, “On Higher Order Inverse Kinematics 
Methods in Time-Optimal Trajectory Planning for Kinematically Redundant 
Manipulators,” IEEE Trans. Ind. Informatics, vol. 14, no. 4, pp. 1681–1690, 2018, doi: 



243 
 
 

 

 

10.1109/TII.2018.2792002. 

[56] A. Reiter, H. Gattringer, and A. Müller, “Redundancy resolution in minimum-time 
path tracking of robotic manipulators,” ICINCO 2016 - Proc. 13th Int. Conf. 
Informatics Control. Autom. Robot., vol. 2, no. Icinco, pp. 61–68, 2016, doi: 
10.5220/0005975800610068. 

[57] Richard Bellman, “On the Theory of Dynamic Programming,” Proc. N. A. S., vol. 38, 
pp. 716–719, 1952. 

[58] E. Ferrentino and P. Chiacchio, “A Topological Approach to Globally-Optimal 
Redundancy Resolution with Dynamic Programming,” in ROMANSY 22, Robot 
Design, Dynamics and Control, Springer International Publishing, 2019, pp. 77–85. 

[59] A. Guigue, M. Ahmadi, R. Langlois, and M. J. Hayes, “Pareto optimality and 
multiobjective trajectory planning for a 7-DOF redundant manipulator,” IEEE Trans. 
Robot., vol. 26, no. 6, pp. 1094–1099, 2010, doi: 10.1109/TRO.2010.2068650. 

[60] A. P. Pashkevich, A. B. Dolgui, and O. A. Chumakov, “Multiobjective optimization of 
robot motion for laser cutting applications,” Int. J. Comput. Integr. Manuf., vol. 17, 
no. 2, pp. 171–183, 2004, doi: 10.1080/0951192031000078202. 

[61] A. Dolgui and A. Pashkevich, “Manipulator motion planning for high-speed robotic 
laser cutting,” Int. J. Prod. Res., vol. 47, no. 20, pp. 5691–5715, 2009, doi: 
10.1080/00207540802070967. 

[62] J. Gao, A. Pashkevich, and S. Caro, “Optimization of the robot and positioner motion 
in a redundant fiber placement workcell,” Mech. Mach. Theory, vol. 114, pp. 1339–
1351, 2017, doi: 10.1016/j.mechmachtheory.2017.04.009. 

[63] G. Field and Y. Stepanenko, “Iterative Dynamic Programming : An Approach to 
Minimum Energy Trajectory Planning for Robotic Manipulators,” in Proceedings of 
the 1996 IEEE Intemational Conference on Robotics and Automation, 1996, pp. 
2755–2760. 

[64] J. Nurmi and J. Mattila, “Global energy-optimal redundancy resolution of hydraulic 
manipulators: Experimental results for a forestry manipulator,” Energies, vol. 10, no. 
5, 2017, doi: 10.3390/en10050647. 

[65] Y. Davidor, Genetic Algorithms and Robotics: A heuristic strategy for optimization. 
World Scientific Publishing Company, 1991. 

[66] B. McAvoy, B. Sangolola, and Z. Szabad, “Optimal trajectory generation for 
redundant planar manipulators,” in 2000 IEEE International Conference on Systems, 
Man & Cyberbetics, 2002, pp. 3241–3246, doi: 10.1109/icsmc.2000.886503. 

[67] L. Tian and C. Collins, “Motion planning for redundant manipulators using a floating 
point genetic algorithm,” J. Intell. Robot. Syst. Theory Appl., vol. 38, no. 3–4, pp. 
297–312, 2003, doi: 10.1023/B:JINT.0000004973.29102.33. 

[68] A. A. Ata and T. R. Myo, “Collision-free trajectory planning for manipulators using 
generalized pattern search,” Int. J. Simul. Model., vol. 5, no. 4, pp. 145–154, 2006, 
doi: 10.2507/IJSIMM05(4)2.074. 



244 
 
 

 

 

[69] R. Saravanan and S. Ramabalan, “Evolutionary Minimum Cost Trajectory Planning for 
Industrial Robots,” J. Intell. Robot. Syst., vol. 52, no. 1, pp. 45–77, 2008, doi: 
10.1007/s10846-008-9202-0. 

[70] S. Stevo, I. Sekaj, and M. Dekan, “Optimization of Energy in Robotic arm using 
Genetic Algorithm,” in 19th World Congress The International Federation of 
Automatic Control, 2014. 

[71] C. Hansen, J. Kotlarski, and T. Ortmaier, “Experimental validation of advanced 
minimum energy robot trajectory optimization,” 2013 16th Int. Conf. Adv. Robot. 
ICAR 2013, no. 1, pp. 1–8, 2013, doi: 10.1109/ICAR.2013.6766463. 

[72] M. Jin, Q. Liu, B. Wang, and H. Liu, “an Efficient and accurate Inverse Kinematics for 
7-DOF Redundant Manipulators Based on a Hybrid of analytical and Numerical 
Method,” IEEE Access, vol. 8, pp. 16316–16330, 2020, doi: 
10.1109/aCCESS.2020.2966768. 

[73] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning Inverse Kinematics,” in 
International Conference on Intelligence in Robotics and Autonomous Systems 
(IROS), 2001, pp. 1–8. 

[74] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning framework that 
learns from experience,” 2012 IEEE Int. Conf. Robot. Autom., pp. 3671–3678, 2012, 
doi: 10.1109/ICRA.2012.6224742. 

[75] K. Hauser, “Learning the Problem-Optimum Map: Analysis and Application to Global 
Optimization in Robotics,” no. Rlp, pp. 1–12, 2016, doi: 10.1109/TRO.2016.2623345. 

[76] R. Raja, A. Dutta, and B. Dasgupta, “Learning framework for inverse kinematics of a 
highly redundant mobile manipulator,” Rob. Auton. Syst., vol. 120, p. 103245, 2019, 
doi: 10.1016/j.robot.2019.07.015. 

[77] S. Greaves, K. Boyle, N. Doshewnek, C. Engineer, and S. Engineer, “Orbiter Boom 
Sensor System and Shuttle Return to Flight: Operations Analyses,” in AIAA Guidance, 
Navigation, and Control Conference, 2005, pp. 1–7. 

[78] R. L. Ticker, F. Cepollina, and B. B. Reed, “NASA’s In-Space Robotic Servicing,” 2015, 
pp. 1–8. 

[79] M. Oda, K. Kibe, and F. Yamagata, “ETS-VII, space robot in-orbit experiment 
satellite,” Proc. IEEE Int. Conf. Robot. Autom., vol. 1, no. April 1996, pp. 739–744, 
1997, doi: 10.1109/ROBOT.1996.503862. 

[80] K. Yoshida, H. Nakanishi, N. Inaba, H. Ueno, and M. Oda, “Contact Dynamics and 
Control Strategy Based on Impedance Matching for Robotic Capture of a Non-
cooperative Satellite,” in Proc. 15th CISM-IFToMM Symp. On Robot Design, 
Dynamics and Control-Romansy, 2004. 

[81] R. B. Friend, “Orbital Express Programm Summary And Mission Overview,” SPIE Def. 
Secur. Symp., vol. 6958, no. 2008, pp. 1–11, doi: 10.1117/12.783792. 

[82] A. B. Bosse et al., “SUMO : spacecraft for the universal modification of orbits,” 2004, 
vol. 5419, pp. 36–46, doi: 10.1117/12.547714. 



245 
 
 

 

 

[83] K. A. Harris, C. G. Henshaw, J. A. Lennon, W. E. Purdy, F. A. Tasker, and W. S. Vincent, 
“FREND : Pushing the Envelope of Space Robotics,” NRL Rev. - Sp. Res., pp. 239–241, 
2008. 

[84] T. J. Debus and S. P. Dougherty, “Overview and Performance of the Front-End 
Robotics Enabling Near-Term Demonstration (FREND) Robotic Arm,” in AIAA 
infotech@ aerospace conference, 2009. 

[85] H. A. Thronson, D. Akin, J. Grunsfeld, and D. Lester, “The Evolution and Promise of 
Robotic In-Space Servicing,” in AIAA SPACE Conference & Exposition, 2009. 

[86] D. Barnhart et al., “Phoenix Program Status - 2013,” in AIAA SPACE conference & 
exposition, 2013, doi: 10.2514/6.2013-5341. 

[87] T. E. Rumford, “Autonomous Rendezvous Technology (DART) Project Summary,” in 
SPIE’s SPace Systems Technology and Operations Conference, 2003. 

[88] B. Sommer, “Automation and Robotics in the German Space Program – Unmanned 
on-orbit servicing (OOS) & the TECSAS mission,” 2004, doi: 10.2514/6.IAC-04-
IAA.3.6.2.03. 

[89] D. Reintsema, J. Thaeter, A. Rathke, W. Naumann, P. Rank, and J. Sommer, “DEOS – 
The German Robotics Approach to Secure and De-Orbit Malfunctioned Satellites 
from Low Earth Orbits DEOS – A Robotic Servicing Mission,” in i-SAIRAS, 2010, pp. 
244–251. 

[90] Y. Masutani, F. Miyazaki, and S. Arimoto, “Sensory feedback control for space 
manipulators,” Proceedings, 1989 Int. Conf. Robot. Autom., pp. 1346–1351, 1989, 
doi: 10.1109/ROBOT.1989.100167. 

[91] Z. Vafa and S. Dubowsky, “On the dynamics of manipulators in space using the 
virtual manipulator approach,” Proceedings. 1987 IEEE Int. Conf. Robot. Autom., vol. 
4, pp. 579–585, 1987, doi: 10.1109/ROBOT.1987.1088032. 

[92] Z. Vafa and S. Dubowsky, “The Kinematics and Dynamics of Space Manipulators : The 
Virtual Manipulator,” Int. J. Rob. Res., vol. 9, no. 3, pp. 3–21, 1990, doi: 
10.1177/027836499000900401. 

[93] Z. Vafa and S. Dubowskr, “On the Dynamics of Space Manipulators Using the Virtual 
Manipulator , with Applications to Path Planning,” in Space Robotics: Dynamics and 
Control, Kluwer Academic Publishers, 1993, pp. 45–76. 

[94] S. Dubowsky and M. A. Torres, “Path planning for space manipulators to minimize 
spacecraft attitude disturbance,” in Pmedings of the 1991 IEEE International 
Conference on Robotics and Automation, 1991, pp. 2522–2528. 

[95] F. Caccavale and B. Siciliano, “Kinematic control of redundant free-floating robotic 
systems,” Adv. Robot., vol. 15, no. 4, pp. 429–448, 2001, doi: 
10.1163/156855301750398347. 

[96] D. N. Nenchev and K. Yoshida, “Analysis , design and control of free-flying space 
robots using fixed-attitude-restricted Jacobian Matrix,” Robot. Res. Fifth 
Intenraitonal Symp., no. June, pp. 251–258, 1991. 



246 
 
 

 

 

[97] S. Cocuzza, I. Pretto, and S. Debei, “Least-Squares-Based Reaction Control of Space 
Manipulators,” J. Guid. Control. Dyn., vol. 35, no. 3, pp. 976–986, 2012, doi: 
10.2514/1.45874. 

[98] M. Sabatini, P. Gasbarri, and G. B. Palmerini, “Coordinated control of a space 
manipulator tested by means of an air bearing free floating platform,” Acta 
Astronaut., vol. 139, pp. 296–305, 2017, doi: 10.1016/j.actaastro.2017.07.015. 

[99] M. De Stefano, H. Mishra, R. Balachandran, R. Lampariello, C. Ott, and C. Secchi, 
“Multi-rate tracking control for a space robot on a controlled satellite: A passivity-
based strategy,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1319–1326, 2019, doi: 
10.1109/LRA.2019.2895420. 

[100] S. Pandey and S. K. Agrawal, “Path Planning of Free-Floating Prismatic-Jointed 
Manipulators,” pp. 127–140, 1997. 

[101] D. N. Nenchev, K. Yoshida, P. Vichitkulsawat, and M. Uchiyama, “Reaction Null-Space 
Control of Flexible Structure Mounted Manipulator System,” IEEE Trans. Robot. an 
Autom., vol. 15, no. 6, pp. 1011–1023, 1999. 

[102] D. N. Nenchev, K. Yoshida, and M. Uchiyama, “Reaction Null-space Based Control of 
Flexible Structure Mounted Manipulator Systems,” in Proceedings of the 35th IEEE 
Decision and Control, 1996, pp. 4118–3123, doi: 10.1109/CDC.1996.577417. 

[103] P. Piersigilli, I. Sharf, and A. K. Misra, “Reactionless capture of a satellite by a two 
degree-of-freedom manipulator,” Acta Astronaut., vol. 66, no. 1–2, pp. 183–192, 
2010, doi: 10.1016/j.actaastro.2009.05.015. 

[104] A. Pisculli, L. Felicetti, P. Gasbarri, G. B. Palmerini, and M. Sabatini, “A reaction-
null/Jacobian transpose control strategy with gravity gradient compensation for on-
orbit space manipulators,” Aerosp. Sci. Technol., vol. 38, pp. 30–40, 2014, doi: 
10.1016/j.ast.2014.07.012. 

[105] W. Xu, B. Liang, C. Li, Y. Xu, and W. Qiang, “Path Planning of Free-Floating Robot in 
Cartesian Space Using Direct Kinematics,” Int. J. Adv. Robot. Syst., vol. 4, no. 1, pp. 
17–26, 1994. 

[106] K. Yamada, “Arm path planning for a space robot,” in Proceedings of the 1993 
IEEE/RSJ International Conference on Intelligent Robot an Systems, 1993, pp. 2049–
2055. 

[107] K. Yamada, S. Yoshikawa, and Y. Fujita, “Arm path planning of a space robot with 
angular momentum,” Adv. Robot., vol. 9, no. 6, pp. 693–709, 1994, doi: 
10.1163/156855395X00364. 

[108] T. Suzuki and Y. Nakamura, “Planning Spiral Motion of Nonholonomic Space 
Robots,” in IEEE international conferences on robotics and automation, 1996, no. 1, 
pp. 718–725, doi: 10.1109/ROBOT.1996.503859. 

[109] K. Yoshida, K. Hashizume, and S. Abiko, “Zero Reaction Maneuver: Flight Validation 
with ETS-VII Space Robot and Extension to Kinematically Redundant Arm,” IEEE Int. 
Conf. Robot. Autom., vol. 1, pp. 441–446, 2001, doi: 10.1109/ROBOT.2001.932590. 

[110] Y. Nakamura and R. Mukherjee, “Exploiting Nonholonomic Redundancy of Free-



247 
 
 

 

 

Flying Space Robots,” IEEE Trans. Robot. Autom., vol. 9, no. 4, pp. 499–506, 1993, 
doi: 10.1109/70.246062. 

[111] E. Papadopoulos, I. Tortopidis, and K. Nanos, “Smooth planning for free-floating 
space robots using polynomials,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2005, no. 
10, pp. 4272–4277, 2005, doi: 10.1109/ROBOT.2005.1570777. 

[112] I. Tortopidis and E. Papadopoulos, “On point-to-point motion planning for 
underactuated space manipulator systems,” Rob. Auton. Syst., vol. 55, pp. 122–131, 
2007, doi: 10.1016/j.robot.2006.07.003. 

[113] J. Franch, S. K. Agrawal, S. Oh, and A. Fattah, “Design of Differentially Flat Planar 
Space Robots : A Step Forward in their Planning and Control,” IEEE Int. Conf. Intell. 
Robot. Syst., vol. 3–4, no. October, pp. 3053–3058, 2003, doi: 
10.1109/IROS.2003.1249625. 

[114] S. K. Agrawal et al., “A Differentially Flat Open-Chain Space Robot with Arbitrarily 
Oriented Joint Axes and Two Momentum Wheels at the Base,” IEEE Trans. Automat. 
Contr., vol. 54, no. 9, pp. 2185–2191, 2009. 

[115] W. Xu, Y. Liu, B. Liang, Y. Xu, C. Li, and W. Qiang, “Non-holonomic Path Planning of a 
Free-Floating Space Robotic System Using Genetic Algorithms,” Adv. Robot., vol. 22, 
no. 4, pp. 451–476, 2008, doi: 10.1163/156855308X294680. 

[116] W. Xu, C. Li, B. Liang, Y. Xu, Y. Liu, and W. Qiang, “Target berthing and base 
reorientation of free-floating space robotic system after capturing,” Acta Astronaut., 
vol. 64, no. 2–3, pp. 109–126, 2009, doi: 10.1016/j.actaastro.2008.07.010. 

[117] A. Kumar and K. J. Waldron, “The Workspaces of a Mechanical Manipulator,” J. 
Mech. Des., vol. 103, pp. 665–672, 1981. 

[118] E. J. Haug, C.-M. Luh, F. A. ADkins, and J.-Y. Wang, “Numerical Algorithms for 
Mapping Boundaries of Manipulator Workspaces,” Adv. Des. Autom., vol. 2, no. 69, 
pp. 447–459, 1994. 

[119] Y. Cao, K. Lu, X. Li, and Y. Zang, “Accurate Numerical Methods for Computing 2D and 
3D Robot Workspace,” Int. J. Adv. Robot. Syst., vol. 8, no. 6, pp. 1–13, 2011, doi: 
10.5772/45686. 

[120] Yisheng Guan, K. Yokoi, and X. Zhang, “Numerical Methods for Reachable Space 
Generation of Humanoid Robots,” Int. J. Rob. Res., vol. 27, no. 8, pp. 935–950, 2008. 

[121] O. Bohigas, M. Manubend, and L. Ros, “A Complete Method for Workspace 
Boundary Determination on General Structure Manipulators,” IEEE Trans. Robot., 
vol. 28, no. 5, pp. 993–1006, 2012, doi: 10.1109/TRO.2012.2196311. 

[122] O. Bohigas, D. Zlatanov, L. Ros, M. Manubens, and J. M. Porta, “A general method 
for the numerical computation of manipulator singularity sets,” IEEE Trans. Robot., 
vol. 30, no. 2, pp. 340–351, 2014, doi: 10.1109/TRO.2013.2283416. 

[123] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing Robot Workspace Structure : 
Representing Robot Capabilities,” pp. 3229–3236, 2007. 

[124] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-Priority Based Redundancy 



248 
 
 

 

 

Control of Robot Manipulators,” Int. J. Rob. Res., vol. 6, no. 1, pp. 32–42, 1987, doi: 
10.1177/027836498700600103. 

[125] P. Baerlocher and R. Boulic, “Task-Priority Formulations for the Kinematic Control of 
Highly Redundant Articulated Structures,” IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol. 
1, no. October, pp. 323–329, 1998, doi: 10.1109/IROS.1998.724639. 

[126] Y. Umetani and K. Yoshida, “Resolved Motion Rate Control of Space Manipulators 
with Generalized Jacobian Matrix,” IEEE Trans. Robot. an Autom., vol. 5, no. 3, pp. 2–
12, 1989. 

[127] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms 
Based on Matrices,” J. Appl. Mech., pp. 215–221, 1955. 

[128] J. J. Craig, Introduction to Robotics, Third Edit. Upper Saddle River, NJ: Pearson 
Prentice Hall, 2005. 

[129] S. Boyd and L. Vandenberghe, Convex Optimization, Seventh Ed. 2009. 

[130] J. Pearl, Heuristics: Intelligent search strategies for computer problem solving. 1984. 

[131] A. P. Castaño, Practical Artificial Intelligence. Apress Media, 2018. 

[132] M. Melanie, An Introduction to Genetic Algorithms, Fifth Edit. Cambride, 
MAssachusetts: MIT Press, 1999. 

[133] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - 
The Art of Scientific Computing, Third Edit. Cambridge: Cambridge University Press, 
2007. 

[134] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti, “Scatter Search and 
Local NLP Solvers : A Multistart Framework for Global Optimization Scatter Search 
and Local NLP Solvers : A Multistart Framework for Global Optimization,” Informs J. 
Comput., vol. 19, no. 3, pp. 328–340, 2007, doi: 10.2139/ssrn.886559. 

[135] C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimisation, Second Edi. Springer 
International Publishing, 2009. 

[136] A. Wernli and G. Cook, “Suboptimal Control for the Nonlinear Quadratic Regulator 
Problem,” Automatica, vol. 11, pp. 75–84, 1975. 

[137] J. EIckhoff, Simulating Spacecraft Systems. Springer-Verlag Berlin Heidelberg, 2009. 

[138] S. Cocuzza, I. Pretto, and S. Debei, “a Constrained Least Squares Approach for 
Reaction Torque Control in Spacecraft / Manipulator Systems,” Int. Astronaut. 
Congr., 2009. 

[139] D. J. Bender and A. J. Laub, “The Linear-Quadratic Optimal Regulator for Descriptor 
Systems,” IEEE Trans. Autom. Control, vol. 32, no. 8, 1987. 

[140] T. Çimen and S. P. Banks, “Nonlinear optimal tracking control with application to 
super-tankers for autopilot design,” Automatica, vol. 40, no. 11, pp. 1845–1863, 
2004, doi: 10.1016/j.automatica.2004.05.015. 

[141] S. P. Banks and K. Dinesh, “Approximate Optimal Control and Stability of Nonlinear 



249 
 
 

 

 

Finite- and Infinite-Dimensional Systems,” Ann. ofOperations Res., vol. 98, pp. 19–
44, 2000. 

[142] D. Guo and Y. Zhang, “Simulation and experimental verification of weighted velocity 
and acceleration minimization for robotic redundancy resolution,” IEEE Trans. 
Autom. Sci. Eng., vol. 11, no. 4, pp. 1203–1217, 2014, doi: 
10.1109/TASE.2014.2346490. 

[143] F. J. Solis and R. J.-B. Wets, “Minimization by Random Search Techniques,” Math. 
Oper. Res., vol. 6, no. 1, pp. 19–30, 1981. 

[144] P. T. Boggs and J. W. Tolle, “Sequential Quadratic Programming,” Acta Numer., pp. 
1–52, 1996. 

[145] R. Martì, “Multi-Start Methods,” in Handbook of Metaheuristics, F. Glover and G. A. 
Kochenberger, Eds. Boston, MA: International Series in Operations Research & 
Management Science, vol 57. Springer, 2003. 

[146] B. J. Martin and James E., “Minimum-Effort Motions for Open-Chain Manipulators 
with Task-Dependent End-Effector Constraints,” Int. J. Rob. Res., vol. 18, no. 2, pp. 
213–224, 1999. 

[147] A. Liegeois, “Automatic Supervisory Control of the Configuration and Behavior of 
Multibody Mechanisms,” IEEE Trans. Syst. Man Cybern., vol. 7, no. 12, pp. 868–871, 
1977. 

[148] R. J. Beckman, W. J. Conover, and M. D. McKay, “A comparison of three methods for 
selecting values of input variables in the analysis of output from a computer code,” 
Technometrics, vol. 21, no. 2, pp. 239–245, 1979. 

[149] D. F. Shanno, “Conditioning of Quasi-Newton Methods for Function Minimization,” 
Math. Comput., vol. 24, no. 111, pp. 647–656, 1970. 

[150] B. W. Choi, J. H. Won, and M. J. Chung, “Optimal Redundancy Resolution of a 
Kinematically Redundant Manipulator for a Cyclic Task,” vol. 9, no. 4, pp. 481–503, 
1991. 

[151] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing weighted sums of 
objectives for Pareto set generation in multicriteria optimization problems,” Struct. 
Optim., vol. 14, no. 1, pp. 63–69, 1997, doi: 10.1007/BF01197559. 

[152] K. Chircop and D. Zammit-Mangion, “On Epsilon-Constraint Based Methods for the 
Generation of Pareto Frontiers,” J. Mech. Eng. Autom., vol. 3, no. 5, pp. 279–289, 
2013. 

[153] H. Hotelling, “Relations between two sets of variates,” Am. Math. Soc. Inst. Math. 
Stat., pp. 321–377, 1935. 

[154] J.K. Salisbury and J. Craig, “Articulated hands: Force control and kinematics issues,” 
Int. J. Robot. Reseorh, Vol. 1, No. 1., pp. 4–17, 1982, [Online]. Available: 
http://journals.sagepub.com/doi/pdf/10.1177/027836498200100102. 

[155] K. C. Olds, “Global Indices for Kinematic and Force Transmission Performance in 
Parallel Robots,” IEEE Trans. Robot., vol. 31, no. 2, pp. 494–500, 2015, doi: 



250 
 
 

 

 

10.1109/TRO.2015.2398632. 

[156] L. P. Patterson, “On-Orbit Maintenance Operations Strategy for the International 
Space Station - Concept and Implementation,” pp. 1–9. 

[157] D. King, “Hubble robotic servicing: Stepping stone for future exploration missions,” 
1st Sp. Explor. Conf. Contin. Voyag. Discov., vol. 1, no. February 2005, pp. 246–257, 
2005, doi: 10.2514/6.2005-2524. 

[158] W. Xu, B. Liang, B. Li, and Y. Xu, “A universal on-orbit servicing system used in the 
geostationary orbit,” Adv. Sp. Res., vol. 48, no. 1, pp. 95–119, 2011, doi: 
10.1016/j.asr.2011.02.012. 

[159] F. Aghili and K. Parsa, “An adaptive vision system for guidance of a robotic 
manipulator to capture a tumbling satellite with unknown dynamics,” 2008 IEEE/RSJ 
Int. Conf. Intell. Robot. Syst. IROS, pp. 3064–3071, 2008, doi: 
10.1109/IROS.2008.4650758. 

[160] F. Aghili, “A prediction and motion-planning scheme for visually guided robotic 
capturing of free-floating tumbling objects with uncertain dynamics,” IEEE Trans. 
Robot., vol. 28, no. 3, pp. 634–649, 2012, doi: 10.1109/TRO.2011.2179581. 

[161] J. P. Alepuz, M. R. Emami, and J. Pomares, “Direct image-based visual servoing of 
free-floating space manipulators,” Aerosp. Sci. Technol., vol. 55, pp. 1–9, 2016, doi: 
10.1016/j.ast.2016.05.012. 

[162] N. W. Oumer, G. Panin, Q. Mülbauer, and A. Tseneklidou, “Vision-based localization 
for on-orbit servicing of a partially cooperative satellite,” Acta Astronaut., vol. 117, 
pp. 19–37, 2015, doi: 10.1016/j.actaastro.2015.07.025. 

 

 

 

 

 

 

 

 

 

 

 

 

 



251 
 
 

 

 

 

APPENDIX A. Code samples 
 

A.1 Interpolation-Based Global Kinematic Planner 

The script below is the one used to generate the candidate solutions for the IBGKP. 

Its input are an ingress vector containing EE trajectory and its derivatives, a set of initial 

conditions initial_cond_matrix, and the number of path points qsize. The script computes all 

the 𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 and saves them in a startmatrix, orders them from the best one to the worst 

one, saves the best one in ptmatrix, and discards startmatrix. 

        x = ingressi.x_d; 

        xd = ingressi.xd_d; 

        xdd = ingressi.xdd_d; 

        times = ingressi.times; 

        dt = times(2)-times(1); 

        q0 = initial_cond_matrix; 

         

        samplesize = (3*qsize)^2; 

         

        ptmatrix = zeros(bestsolutionsnumber,3*qsize); 

  

        stddev = mean(std(results.qd)); 

  

        functionvalue = zeros(samplesize,1); 

  

        initcondmatrix = [normrnd(0,stddev,samplesize,qsize) 

normrnd(0,stddev,samplesize,qsize) normrnd(0,stddev,samplesize,qsize)]; 

  

        loc_qd = results.qd; 

        

        random_weights = zeros(3,3,samplesize); 

         

        random_eig = rand(1,3,samplesize); 

        for rr = 1:samplesize 

            loc_random_eig = random_eig(1,:,samplesize); 

            density = rand; 

            random_weights(:,:,rr) = full(sprandsym(3, density, 

loc_random_eig));  

        end 

  

        for k = 1:samplesize 

                q0loc = q0; 

                localinitcondition = initcondmatrix(k,:); 

                localstart = startmatrix(k,:); 

                qstart = q0loc(randi(size(initial_cond_matrix,1)),:); 

                J = jac_parfor(qstart,robot); 

                E = eye(3)-pinv(J)*J; 

                v = E*[localinitcondition(1); localinitcondition(qsize+1); 

... 

                localinitcondition(2*qsize+1)]; 
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                localstart(1) = qstart(1)+ v(1)*dt; 

                localstart(qsize+1) = qstart(2)+ v(2)*dt; 

                localstart(2*qsize+1) = qstart(3) + v(3)*dt; 

             

            for kk = 2:min(qsize,50) 

                J = jac_parfor([localstart(1); localstart(qsize+1); 

localstart(2*qsize+1)],robot); 

                E = eye(3)-pinv(J)*J; 

                v = E*[localinitcondition(kk); localinitcondition(qsize+kk); 

... 

                localinitcondition(2*qsize+kk)]; 

                localstart(1) = localstart(1) + v(1)*0.01*dt; 

                localstart(qsize+1) = localstart(qsize+1) + v(2)*dt; 

                localstart(2*qsize+1) = localstart(2*qsize+1) + v(3)*dt; 

            end 

             

            startmatrix(k,:) = localstart; 

        end 

 

        for u = 2:qsize 

  

            for k = 1:samplesize 

  

                localstart = startmatrix(k,:); 

                local_algo = algo; 

                J = jac_parfor([localstart(u-1); localstart(qsize+u-1); 

localstart(2*qsize+u-1)],robot); 

  

                 

                    J_plus = wpinv(random_weights(:,:,k),J); 

                    v = J_plus*xd(u,:)'; 

 

                localstart(u) = localstart(u-1) + v(1)*dt; 

                localstart(qsize+u) = localstart(qsize+u-1) + v(2)*dt; 

                localstart(2*qsize+u) = localstart(2*qsize+u-1) + v(3)*dt; 

                v_prec_loc = v; 

                startmatrix(k,:) = localstart; 

  

            end 

  

        end 

 

        switch cost_function 

            case 'VEL' 

                fun = 

@(q,x,dt,q0,qsize,robot)objectivefunctionMS_vel_norm_with_limits(q,x,dt,q0,q

size,robot,joint_limit_for_ranking, vel_limit); 

            case 'KIN' 

                fun = 

@(q,x,dt,q0,qsize,robot)objectivefunctionMS_with_limits_trj_constr(q,x,dt,q0

,qsize,robot,joint_limit_for_ranking, vel_limit); 

            case 'DYN' 

                fun = 

@(q,x,dt,q0,qsize,robot)objectivefunctionMS_dyn_with_limits(q,x,dt,q0,qsize,

robot,joint_limit_for_ranking, vel_limit, friction_C); 

        end 

         

        for i = 1:samplesize 

  

            functionvalue(i) = fun(startmatrix(i,:),x,dt,q0,qsize,robot); 

  

        end 
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        tic 

        [~,min_id] = sort(functionvalue,1,'ascend'); 

        toc 

  

        min_id = min_id(1:bestsolutionsnumber); 

        disp(functionvalue(min_id(1))); 

 

        for k = 1:bestsolutionsnumber 

  

            ptmatrix(k,:) = startmatrix(min_id(k),:); 

  

        end 

  

        clear startmatrix; 

 

A.2 Workspace analysis 

 Workspace analysis has been performed through the use of parallel computing. The 

following script computes every trajectory by using the function avvia_simulazione_H and 

stores the results in the columns of a series matrices every time (one per each variable of 

interest). When the matrices columns are not completely filled by the results (because the 

trajectory was interrupted earlier by a singularity), they are filled with NaN (“Not a Number”) 

which excludes them from any further analysis. 

parfor thetastep=1:searchspacesize  

     

    theta = thetastep*pi/256; 

    length = 2; 

    feasible = 1; 

    segmentenergyposition = 1; %indicates which energy value to store next 

    res = results; 

    res.qd = [0 0 0]; %initialize velocities 

    localingr = ingr; 

    localingr.r = length/2; 

    localingr.T = 4*localingr.r/v_max;  

    localingr.theta = theta; %write angle 

    [res, why(thetastep), finallength] = avvia_simulazione_H(res,localingr, 

v_max); 

    th_ln_lims(thetastep,:) = [theta, finallength]; %- v_max*dt)]; 

    res.en = [res.en; NaN(energysize-size(res.en,1),1)]; 

    res.manipulability = [res.manipulability; NaN(energysize-

size(res.manipulability,1),1)]; 

    res.en_tot = [res.en_tot; NaN(energysize-size(res.en_tot,1),1)]; 

    res.dyn_manipulability = [res.dyn_manipulability; NaN(energysize-

size(res.dyn_manipulability,1),1)]; 

    res.power = [res.power; NaN(energysize-size(res.power,1),1)]; 

    res.power_abs = [res.power_abs; NaN(energysize-

size(res.power_abs,1),1)]; 

    res.B_spectral_radius = [res.B_spectral_radius; NaN(energysize-

size(res.B_spectral_radius,1),1)]; 

    res.Jcondnumb = [res.Jcondnumb; NaN(energysize-

size(res.Jcondnumb,1),1)]; 
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    res.worstcasevelindex = [res.worstcasevelindex; NaN(energysize-

size(res.worstcasevelindex,1),1)]; 

    res.kin_pot = [res.kin_pot; NaN(energysize-size(res.kin_pot,1),1)]; 

    kin_energymatrix(:, thetastep) = res.en;  

    manipulabilitymatrix(:, thetastep) = res.manipulability; 

    energymatrix(:, thetastep) = res.en_tot;  

    dyn_manipulabilitymatrix(:, thetastep) = res.dyn_manipulability; 

    powermatrix(:, thetastep) = res.power;  

    power_absmatrix(:, thetastep) = res.power_abs; 

    B_spectral_radiusmatrix(:, thetastep) = res.B_spectral_radius; 

    Jcondnumbmatrix(:, thetastep) = res.Jcondnumb; 

    worstcasevelindexmatrix(:, thetastep) = res.worstcasevelindex; 

    kin_potmatrix(:, thetastep) = res.kin_pot; 

     

end%parfor 

 

A.3 PMKE 

 The following script executes the inverse kinematics according to the PMKE 

algorithm, with i being the number of path points. This piece of script is set for a predictive 

optimisation time step size ΔT of 100 time steps (0.1s), a horizon h of 2 and interval I of 50 

time steps (0.05s).  

for i=2:size(xdd(:,1)) 
 

            step_size = 100; 

            vel = [0 0 0]'; 

            horizon = 2; 

            lim = size(xdd(:,1),1)-step_size*horizon-1;  

            

                if ((mod(i,50) == 0) && i <lim) || (i == 2) 

                    t_interp=clock; 

                     

                    q_fit = 

optimizationtask1(q_prec,x,dt,i,step_size,horizon,q_fit,robot,qd_prec); 

                   pp1 = (spapi(4,[i-1 i-1 i-1 i+step_size i+2*step_size 

i+2*step_size i+2*step_size]*dt,[q_prec(1) qd_prec(1) qdd_prec(1) q_fit(1) 

q_fit(2) 0 0])); 

                    pp2 = (spapi(4,[i-1 i-1 i-1 i+step_size i+2*step_size 

i+2*step_size i+2*step_size]*dt,[q_prec(2) qd_prec(2) qdd_prec(2) q_fit(3) 

q_fit(4) 0 0])); 

                     pp3 = (spapi(4,[i-1 i-1 i-1 i+step_size i+2*step_size 

i+2*step_size i+2*step_size]*dt,[q_prec(3) qd_prec(3) qdd_prec(3) q_fit(5) 

q_fit(6) 0 0])); 

                    kk = 0; 

                elseif (mod(i,step_size) == 0) && i == lim 

                    q_fit = 

optimizationtask1(q_prec,x,dt,i,step_size,horizon,q_fit,robot,old_vel); 

                    pp1 = (spapi(4,[i-1 i-1 i-1 i+step_size i+2*step_size 

i+2*step_size i+2*step_size]*dt,[q_prec(1) qd_prec(1) qdd_prec(1) q_fit(1) 

q_fit(2) 0 0])); 

                    pp2 = (spapi(4,[i-1 i-1 i-1 i+step_size i+2*step_size 

i+2*step_size i+2*step_size]*dt,[q_prec(2) qd_prec(2) qdd_prec(2) q_fit(3) 

q_fit(4) 0 0])); 
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                    pp3 = (spapi(4,[i-1 i-1 i-1 i+step_size i+2*step_size 

i+2*step_size i+2*step_size]*dt,[q_prec(3) qd_prec(3) qdd_prec(3) q_fit(5) 

q_fit(6) 0 0]));  

  

                    kk = 0; 

               end 

                if i < 1001 

                    vel(1) = (fnval(pp1,i*dt)-q_prec(1))/dt; 

                    vel(2) = (fnval(pp2,i*dt)-q_prec(2))/dt; 

                    vel(3) = (fnval(pp3,i*dt)-q_prec(3))/dt; 

                    kk = kk + 1; 

  

                end 

            J = jac(q_prec); 

            qd_att = pinv(J)*xd(i,:)' + ((eye(3)-pinv(J)*J))*(vel); 

            qdd_att = (qd_att-qd_prec)/dt; 

 

%save results 

 

end %for 

 


