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Abstract

The world faces an immense burden of hepatitis C virus (HCV) infection related

morbidity and mortality. Transmission of HCV is ongoing, and the incidence of

HCV infection has been increasing in recent years. Approximately 130 - 150 million

people are estimated to be chronically infected with HCV and each year an estimated

three to four million individuals are newly infected (WHO, 2013; Mohd Hanafiah

et al., 2013). In developed countries, injecting drug users are considered as being

at the highest risk of prevalence of HCV. Thus, this thesis describes the spread of

HCV amongst injecting drug users. We use a mathematical model to study the

effect of heterogeneity on the progress of the disease by dividing the population of

addicts into p groups where they are sharing injecting needles in q shooting galleries

and investigate the epidemic behavior of the virus. Moreover, we estimate the basic

reproductive number R0 and show analytically that HCV is controlled by this number

R0, if R0 ≤ 1 then the disease dies out and if R0 > 1 the disease takes off in both

addicts and needles and there is a unique endemic equilibrium. We look at analytical

results on the effect of heterogeneity on the spread of HCV and optimal control of

the epidemic by needle exchange and needle cleaning. Simulations with realistic

parameter values estimated from data and the literature confirm the theoretical

results and we numerically investigate the effect of heterogeneity on the spread of

HCV. Then we extend the basic model to more realistic assumptions where addicts

move in and out of groups, and investigate the HCV dynamic behaviour. We obtain

similar analytical results again validated by simulations with realistic parameter

values estimated from data and the literature.
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Chapter 1
Introduction and Literature Review

“I simply wish that, in a matter

which so closely concerns the

wellbeing of the human race, no

decision shall be made without all

the knowledge which a little analysis

and calculation can provide.”

Daniel Bernoulli 1766

Bernoulli & Blower (2004)

It is nearly a quarter century since the Hepatitis C virus (HCV) was discovered.

Hepatitis C is a blood borne liver disease, caused by the hepatitis C virus. HCV

infection is a leading cause of chronic liver disease, including cirrhosis of the liver

and liver cancer. Since its discovery in 1989, infection with HCV has been recognised

as a major global health problem in many countries. According to the World Health

Organisation (WHO), approximately 130 - 150 million people are estimated to be

chronically infected with HCV and at risk of developing liver diseases including liver

cancer (WHO, 2013), and each year an estimated three to four million individuals are

newly infected and 350,000 deaths occur due to HCV related causes (Mohd Hanafiah

et al., 2013).
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HCV is transmitted primarily through direct percutaneous exposure to blood.

In many countries, the two most common exposures associated with transmission

of HCV are transfusion of blood from an unscreened donor and injecting drug use.

The dominant source of new HCV infection in most developed countries is injection

drug use (Shepard et al., 2005). Worldwide, recent estimates suggest that there

may be between 11 and 21 million injecting drug users (Mathers et al., 2008), and

HCV has been identified as the most common viral infection affecting injecting drug

users (Crofts et al., 2001; Aceijas & Rhodes, 2007). Hence, as injecting drug use has

created major international public health problems and individuals who inject drugs

are the highest risk of infection of HCV, the work described in this thesis focusses

on this risk group.

Recent years have seen an increasing trend in the number of publications that

utilize mathematical models in epidemiology, with also increased understanding of

what these models can provide and offer in terms of predictions. Mathematical mod-

els are being used to understand the disease dynamics, the transmission of infections

and to evaluate the potential impact of control programmes in reducing HCV infec-

tions. Many studies have been modeled and established to understand the intricate

relationship between the risk behaviour of injecting drug users and the transmission

of HCV, global prevalence, treatment and therapy options. Thus this thesis shall

discuss and explore the development and analyses of a mathematical model of the

prevalence of HCV among drug users. Mainly we develop a deterministic, compart-

mental mathematical model to approximate the spread of HCV in an injecting drug
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user population by Corson et al. (2012). In particular, we are interested in the

effect of heterogeneity of the population of addicts who share injecting needles and

syringes. In the following section, we outline briefly the work contained in this thesis.

1.1 Overview and Organization of the Thesis

In this thesis, we extend a mathematical model for the transmission of the HCV

epidemic via needle sharing among people who inject drugs by Corson et al. (2012).

Mainly, we shall discuss the heterogeneity effects where the people who inject drugs

form a community of size n and they are divided into p groups according to their

frequency of sharing injection equipment and they share m needles in q shooting

galleries. Shooting gallery can be defined as a place where addicts meet to inject

and share drugs. Our mathematical models are specified by a system of ordinary

differential equations of different groups of various stages of infectivity of addicts

and different stages of infectivity of needles. Then we move on to the main key

parameter of our models, “The Basic Reproduction Number” which is denoted by

R0. This is the main parameter as it determines whether or not an infectious dis-

ease can spread through both populations of addicts and needles. After we have

calculated R0, scenario analyses are performed to predict the effect of changes in

risk behaviours required to effect appreciable reductions in HCV infection and to

minimise R0. Special cases are also discussed in order to reduce the spread of the

epidemic among addicts and needles being shared under special assumptions which

give the minimum value of R0.

This is followed by analytical results and a stability analysis of solutions of our
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system of differential equations and initial conditions. We conclude this discussion

with estimation of some parameters, and present numerical simulations of HCV

prevalence and incidence among addicts and needles in Glasgow made by using the

survey data in 1990 and 1993. In the next part of this thesis, we shall describe and

extend our model by assuming that addicts are allowed to move in and out of the

groups, and we look at the impact of transmission of HCV under this assumption.

This is followed by presenting an expression for R0 and some important dynamical

results. Finally, we finish this chapter by showing some numerical results and simu-

lations.

The thesis will be explored in seven linked parts. Firstly, attention is turned

to set up the hypotheses of our model considering the impact of heterogeneity in

Chapter Two, where the population of addicts is divided into p groups and each

group has six different epidemiological categories. These groups are sharing m nee-

dles in q shooting galleries and leave the needles in three possible stages of infectivity.

To examine the pattern of prevalence of HCV among addicts and needles, we set up

a mathematical model of the transmission of an epidemic through needle sharing.

The expression for R0 is defined and special scenarios and cases are discussed which

aim to minimise this parameter.

In Chapter Three, we shall analyse qualitatively the model system of equations

to get insights into its dynamical features which will give better understanding of

the effect of heterogeneity on the spread of HCV. The possible endemic equilibria of

the system and the disease-free equilibrium are considered and discussed. We shall
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also look at the local and global stability of these equilibria, as well as persistence of

the disease.

Chapters Four and Five are aimed at the numerical simulations to assess the

effects of heterogeneity between different groups of the population of drug users and

different shooting galleries. We aim to do simulations using realistic parameter values

estimated from the literature. We obtain the plots of infected addicts, needles and

the antibody positive addicts in the cases where R0 exceeds unity and is less than

unity. In each figure we examined the prevalence of HCV and whether the disease

dies out or persists. Chapter Six discusses the theoretical results that are obtained

in Chapter Two numerically, computes the value of R0 and presents numerical sim-

ulation in each scenario.

Driven by the fact that addicts are expected to move in and out of groups as

they change their injection rate, we extend our model to consider this more realistic

assumption. This extension is discussed and studied in Chapter Seven. A system

of differential equations of HCV transmission among addicts and shooting galleries

needles are generated, where the number of addicts in each group is a dynamic vari-

able. Also, an expression for R0, dynamical analysis and stability results, numerical

work and simulation are discussed. The last chapter summarises our thesis, gives a

general conclusion and also suggests some further work.

This completes our outline of the work contained in this thesis. In the rest

of this chapter we will give a literature survey and present an introduction of HCV,
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its discovery and transmission routes. This is followed by a brief discussion about

HCV treatment and global prevalence of HCV. Then the impact of heterogeneity on

infectious diseases dynamics will be discussed, as well as the use of mathematical

models in epidemiology and R0 as key parameter. This is followed by a summary of

interventions to reduce the transmission of diseases (harm reduction policies). Fi-

nally, we shall present a review of some previous models of the prevalence of HCV

among drug users.

1.2 Background of Hepatitis C Virus

HCV is a small, enveloped, single stranded, positive sense ribonucleic acid (RNA)

virus. HCV can be classified as a member of the flaviviridae family of RNA viruses

(Simmonds, 1999). There are six major HCV genotypes identified, every type of the

six genotypes of HCV is unique with respect to its nucleotide sequence and response

to therapy (Kamal & Nasser, 2008). Infection with HCV can cause both acute and

chronic infections. The term of acute phase of HCV generally refers to the first six

months of the infection. Since no obvious symptoms are noticed and there is no

clinically apparent disease, many acute infections of HCV go undiagnosed. After

this six month period, if acute infected individuals have detectable HCV, they are

considered to have chronic phase HCV infection (Blackard et al., 2008). Nearly

80% of acute infection patients become chronically infected and about 20% will

spontaneously resolve the infection (Chow & Chow, 2006).
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1.2.1 Discovering Hepatitis C

For many years, patients suffered with end stage liver disease classified as crypto-

genic cirrhosis, which meant that the reasons that had caused the liver disease are

not known. Some people who received blood transfusions and developed hepatitis

were diagnosed with non-A non-B hepatitis (NANB) (Gallin et al., 2000). In 1989,

Michael Houghton and his team characterized and identified this non-A, non-B virus

which was named as hepatitis C (Maddrey, 2000; Mahtab, 2012). This discovery

represented a changing pattern in the field of infectious disease, which is the identi-

fication of an important human pathogen (Askari, 2007). Then blood banks started

screening blood donors for hepatitis C in 1990. Nevertheless, it was not until 1992

that a blood test for hepatitis C was perfected that effectively eliminated HCV from

the blood transfusion supply (Franciscus, 2010).

This discovery was an important and essential step to fighting this disease which

causes a serious public health problem worldwide. Moreover, it led to successful

efforts to develop a diagnostic test for HCV. Screening the blood supply was the

highest priority. Indeed, this achievement allowed us to begin to understand the

magnitude of the public spread of the disease. Unfortunately, although vaccines ex-

ist for hepatitis A and hepatitis B, there is no vaccine for the prevention of HCV

infection, but several vaccines are currently under development (Strickland et al.,

2008).
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1.3 Routes of HCV Transmission

In order to reduce the risk of the spread of HCV, we shall understand how this virus

infects people and what are the pathways that could transform a non-infected to an

infected person. HCV is most likely to be transmitted through large volume or re-

peated direct percutaneous exposure to blood, for example through blood transfusion

from infected donors, unsafe therapeutic injections or injecting drug use. Neverthe-

less, other routes such as sexual and perinatal transmission routes are also likely for

possible cross contamination of blood from an HCV carrier to uninfected individuals

(Tajima & Sonoda, 1996). The following groups are at known to be at increased risk

for HCV infection (WHO, 2013):

1.3.1 Blood Transfusion Recipients

Historically blood product transfusion has been a major mode of transmission. Before

1992, when screening of blood donors for HCV was introduced, transfusion with blood

or blood products increased the risk of transmission of HCV. The residual risk of

post-transfusion of HCV has decreased from 1 in 5,000 to 1 in 103,000 since the

introduction of blood screening donor programmes (Vogt et al., 1999). In England

estimates for the frequency of HCV infected donations dropped from 1 in 520,000

(1993 - 1998) to 1 in 30 million (1999 - 2001) when all donations were tested for

HCV RNA (Soldan et al., 2003).
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1.3.2 Perinatal Transmission

Perinatal transmission of HCV has been the subject of many review studies. The

perinatal transmission rate was 1.7% in infants of HCV antibody positive mothers

irrespective of HCV RNA, 4.3% when the mother was HCV RNA positive (Yeung

et al., 2001). In the study by Ohto et al. (1994) of the 53 antibody positive mothers

(31 were positive for serum HCV RNA), three babies (5.6% of babies born to these

mothers) become positive for HCV RNA. Although, there is evidence to suggest

perinatal transmission of HCV exists, it was discovered recently that mother-to-

child transmission has a lower risk, with consequences for the child which are poorly

understood. Moreover, no prophylaxis against HCV transmission via mother-to-child

is yet available.

1.3.3 Sexual Transmission

One of the most controversial areas of HCV is how much HCV can be transmitted

by sexual activity. There are no published data sufficient to show whether sexually

transmitted coinfections or particular sexual practices increase the likelihood of HCV

transmission through sex (Tohme & Holmberg, 2010). Risk of HCV transmission

by sexual contact differs by the type of sexual relationship. Persons in long-term

monogamous partnerships are at lower risk of HCV acquisition (0% to 0.6% per year)

than persons with multiple partners or those at risk for sexually transmitted diseases

(0.4% to 1.8% per year) (Terrault, 2002). Although transmission of HCV through

sexual intercourse with an infected person has not been proven, some studies and

data suggest that it may occur. However, the risk of sexual transmission is limited

which makes this group at low risk of HCV infection.
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1.3.4 Percutaneous Exposure in Other Settings

There are a wide variety of other activities that may pose a risk for HCV transmis-

sion. These include tattooing, body piercing, acupuncture and intranasal drug use.

Many researchers, who are interesting in tattooing and the risk of transmission of

HCV, found that tattooing is associated with a higher risk of infection. Tattooing

is associated with HCV infection, even among those without traditional HCV risk

factors such as addicts and blood transfusion prior to 1992, and is more common

among youths and young adults (Jafari et al., 2010). Health care workers are also

judged to be among those at risk of HCV infection, though the reported prevalence

is no greater than found in blood donors (Zuckerman et al., 1994). This suggests

that there has not been significant occupational transmission of HCV to these health

care workers.

1.3.5 Injecting Drug Use

The biggest risk factor cited for HCV transmission is injecting drug use. In developed

countries, injecting drug use appears to play the main role in the spread of HCV,

through blood to blood contact and sharing of injecting equipment. In a study of

716 injecting drug users, the prevalence among those who had injected for one year

or less in 1998 - 1999 was 64.7% (Garfein et al., 1996). It has been found that

HCV is more transmissible by needle stick puncture and sharing drug equipment

than human immunodeficiency virus (HIV) (Hagan & des Jarlais, 2000). Prevalence

estimates of HCV infection among drug users have been reported to be more than

50%. Furthermore, it appears that HCV has been identified as the most common

viral infection affecting injecting drug users worldwide (Aceijas & Rhodes, 2007).
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Consequently, the work in this thesis attempts to model the prevalence of this

disease in the highest risk group which is injecting drug users. We aim to discuss

and analyse the spread of HCV using mathematical models to understand, predict

and control this infectious disease.

1.4 Treatment of HCV

Generally HCV infects a person silently, and this is one of the most difficult char-

acteristics of HCV, that most infected individuals do not know that they have been

infected as there are no clear symptoms and they do not feel ill and are unaware that

they have been exposed to HCV. Over 80% of infected people with HCV develop

a chronic infection (Chow & Chow, 2006). The infection of HCV can sometimes

be cured. Treatment is aimed at eliminating the virus and slowing or stopping any

progression or developing of the disease. The immediate goal of HCV treatment is

to achieve a sustained virological response (SVR), defined by the continued absence

of HCV RNA six months after completion of treatment (Fabry & Narasimhan, 2006;

Puoti et al., 2013). The infection is cured in more than 99% of patients who achieve

a sustained virological response (EASL, 2014).

At least six major HCV genotypes are identified. While genotype does not predict

the result of HCV infection, it does predict the likelihood of treatment reaction and

also may determine the duration of treatment (Simmonds, 1999; Fried et al., 2002).

The chronic HCV infection can be treated with medication: the standard treatment

is based on a combination of peginterferon alpha and ribavirin. In general, treatment
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is expected to last for one to three months depending on the HCV genotype and

other factors, administered for 48 weeks for HCV genotype 1, and for 24 weeks for

HCV genotype 2 or 3 (McHutchison et al., 2009). The small percentage of infected

individuals with chronic HCV infection would recover without treatment, and have

the capacity to generate immune response against the virus (Elliott et al., 2006).

The clearance of the HCV infection is more likely to occur within three months

after symptoms appear. Overall, the patients must be tested with a sensitive HCV

RNA technique at the end of the treatment. Response to treatment is observed by

important quantitative tests of HCV RNA after 4 and 12 weeks of treatment. At

week 4, an undetectable HCV RNA level is defined as a rapid virologic response

(RVR). At week 12, the undetectable HCV RNA level is defined as an early viro-

logic response (EVR) (Bope & Kellerman, 2011). The endpoint of HCV treatment

is a sustained virologic response (SVR), which correlates strongly with a permanent

clearance of the virus and effectively a cure. Monitoring viral kinetics is useful for

predicting whether or not the sustained virologic response (SVR) is likely to develop

(Ghany et al., 2009).

1.5 Global Prevalence of HCV

Nearly 25 years since the discovery of HCV, it is now well established that HCV is of

global importance affecting all countries, leading to a major global health problem

that requires extensive active interferences for its control and prevention. Clearly,

HCV has a worldwide distribution, occurring among persons of all genders, ages and

regions of the world. For the estimation of the global burden of HCV, we need to
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know about the prevalence of HCV infection in each country. These data should

be determined based on community based researches, nevertheless, such data are

lacking in most countries (Lavanchy, 2009).

In 1999 the World Health Organisation (WHO) estimated that the worldwide

seroprevalence (positive HCV antibody) of hepatitis C infection was approximately

3%, with the virus infecting 170 million people, where nearly 150 million people are

estimated to be chronically infected with HCV in 2013 (WHO, 1999, 2013). Based

on submitted data and published studies, WHO has reported data on the world-

wide prevalence of HCV infection. Globally, the highest prevalence rate of HCV

was reported in Africa, with lower prevalence of HCV in Northern Europe . The

lowest prevalence (0.01% - 0.1%) has been reported from countries in the United

Kingdom and Scandinavia; the highest prevalence (15% - 20%) has been reported

from Egypt (Alter, 2007). The most affected regions are Africa and East Asia and a

lower prevalence has been estimated in North America, North and Western Europe

and Australia. Developed countries with lower prevalence rate of HCV infection in-

clude the United Kingdom and Scandinavia (0.01%-0.1%), Germany (0.6%), Canada

(0.8%), Australia (1.1%) and France (1.1%). On the other hand, a low but slightly

higher prevalence rate of HCV infection has been reported in the United States

(1.8%) and Japan (1.5% - 2.3%) (Wasley & Alter, 2000; Shepard et al., 2005; Alter,

2007).
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1.5.1 Global Prevalence of HCV amongst Injecting Drug

Users

In 2007, Aceijas and Rhodes reviewed data on HCV prevalence among injecting

drug users in 57 countries and in 152 sub-national areas. They found reports of

HCV prevalence of at least 50% among addicts in 49 countries (Aceijas & Rhodes,

2007). Later in 2011, Paul Nelson and colleagues review 4,386 reviewed sources and

1,019 literature sources to estimate national, regional, and global prevalence and

population estimates for hepatitis B (HBV) and hepatitis C (HCV) among injecting

drug users (Nelson et al., 2011). The investigators provide a review about HCV

prevalence data from 77 countries of the 152 countries where there were injecting

drug users populations, these countries hold 82% of the estimated population of

injecting drug users of the world. This study states that 10 million injecting drug

users might be positive for HCV antibodies and more than 80% of injecting drug users

in 12 countries are estimated to be HCV infected, and HCV antibody prevalence

was 60 – 80% in injecting drug users in 25 countries (Nelson et al., 2011). Table 1.1

summarises the results of worldwide HCV prevalence amongst injecting drug users by

region ranged according to the study of Aceijas and Rhodes (2007), whom undertook

a review of grey and published literature from 1998 to 2005 on the global prevalence

of HCV antibody and HIV/HCV co-infection among injecting drug users.
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Region HCV prevalence amongst drug users

Middle-East and North Africa 5 - 60%

Eastern Europe and Central Asia 10 - 96%

South and South-East Asia 10 - 100%

East-Asia and Pacific 34 - 93%

Latin America 2 - 100%

North America 8 - 90%

Australia and New Zealand 25 - 88%

Western Europe 2 - 93%

Table 1.1: HCV prevalence estimates among injecting drug users by region (Aceijas
& Rhodes, 2007).

Now, we shall discuss some results in these reviews of the spread of HCV among

injecting drug users.

1.5.1.1 Middle-East and North Africa

The prevalence of HCV among addicts has been estimated with the highest rate in

Israel 67%, and the lowest is in Turkey 28.9%. Both Saudi Arabia and Egypt are

estimated as 49.8% and 49.4% respectively (Nelson et al., 2011). Another study states

that HCV prevalence among injecting drug users in Egypt is 63% (El-Ghazzawi et al.,

1994). In the Aceijas and Rhodes (2007) global review, the high estimates of HCV

prevalence came from Syria, 60%, where there are approximately 800,000 addicts,

and the lowest prevalence is in Lebanon, 5%, where there are 440,000 addicts. This

study has reviewed only three countries in this region (Syria, Lebanon and Israel).
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1.5.1.2 Eastern Europe and Central Asia

The estimation of HCV prevalence in Eastern Europe, Aceijas and Rhodes (2007)

report that Bulgaria and Estonia have the highest rate with 60-95% and 95.5%

prevalence respectively. The lowest estimation rate is obtained from Hungary at

6-31%, with 25,000 addicts. The same result is reported in the review of Nelson et

al. (2011). Also, this review shows that Estonia and Russia have the highest rates

of HCV prevalence at over 90%, as Russia has the highest number of injecting drug

users in this region between 1.5 and 3 million addicts (Nelson et al., 2011). In Central

Asia, Aceijas and Rhodes (2007) report that Kazakhstan has the lowest rate, 38%,

and Turkmenistan has the highest, 46.2 - 74.4%.

1.5.1.3 South and South-East Asia

Thailand records the highest rate of HCV prevalence among injecting drug users with

89.8% prevalence. Both Singapore and South Korea have the lowest rate as both

prevalences of HCV are less than 50% (Nelson et al., 2011). According to Aceijas and

Rhodes (2007), Thailand has high rate of prevalence of HCV at 89%, also India and

Indonesia have more than 90% prevalence of HCV among injecting drug users, with

also high number of addicts (Indonesia 562,000 addicts and India 1,163,000 addicts).

1.5.1.4 East-Asia and Pacific

HCV prevalence estimates in China at 33.53-99.3% are the highest rate reported by

Aceijas and Rhodes in the East-Asia region, also China records the highest number

of injecting drug users at 1,928,000. Japan, Hong Kong and Taiwan have a high

rate of HCV prevalence of more than 50%. The result of the estimations of HCV in
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Japan and China in Nelson et al. (2011) are similar, at 64.8% and 67% respectively.

The lowest rate is in Taiwan with 41% (Nelson et al., 2011).

1.5.1.5 Latin America

The lowest estimate for the prevalence of HCV in this region is for Paraguay 9.8%,

the highest rate is for Mexico with 97.4% then for Brazil 63.9% (Nelson et al., 2011).

In another review by Kershenobich et al. (2011) the estimation of HCV prevalence

in Sao Paulo is 11% among injecting drug users.

1.5.1.6 North America

The global review of Nelson et al. (2011) indicates that the prevalence of HCV in

injecting drug users is over 60%, where in Canada it is 64% and in the United States

it is 73% (Nelson et al., 2011). Aceijas and Rhodes report that these rates are from

8% to 88% in the United States and 46% to 90% in Canada.

1.5.1.7 Australia and New Zealand

In a study by Law et al. (2003), the estimation of HCV prevalence among injecting

drug users is 83% in Australia. Both Australia and New Zealand have a similar HCV

estimation rate in the global review by Nelson et al. (2011), at 54.6% and 51.9%

respectively. According to the review of Aceijas and Rhodes (2007), these rates are

between 80% to 84% in New Zealand, and from 41% to 60% in Australia.

1.5.1.8 Western Europe

The prevalence rates of HCV prevalence in Western European injecting drug users

reported in the review by Mathëı et al. (2002) ranged between 37% and 98%. The
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HCV prevalence in injecting drug users where there are the highest number of addicts

estimated is in Spain, where there are 290,000, the HCV prevalence is in the range

59.5% to 85%. Then comes Germany with rate 82.5% where there are nearly 200,000

addicts. The lower rate of HCV prevalences are estimated in the UK (21.3-59%) and

Austria (26.3-33.1%) (Aceijas & Rhodes, 2007).

We have completed our discussions on the biology and epidemiology of HCV

infection. In what follows we shall discuss mathematical models in epidemiology.

The first section will discuss the structure of the mathematical model, then we shall

present some of the key concepts and techniques involved in the modelling of infec-

tious diseases. Secondly, we will look at the fundamental concept of modelling, R0,

followed by a discussion of heterogeneity and its impact on the dynamic of diseases.

Examples of mathematical models on the heterogeneity will discussed, two models

by Diekmann et al. (1990) and Greenhalgh (1996) will be reviewed briefly.

1.6 Epidemiology Mathematical Models

Epidemics of infectious diseases have been documented throughout history. The first

person to mathematically study the spread of infectious diseases was Daniel Bernoulli

(1760); this work was intended to evaluate the effectiveness of smallpox variolation

(Bailey, 1975). Recently, mathematical models have long been important tools for

understanding and controlling the spread of infectious diseases. The mathematical

models used to understand, forecast and control the spread of infectious diseases

such as HCV are diverse and growing rapidly. Also, these models are used to under-

stand the transmission of infections and to evaluate the potential impact of control
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programmes in reducing morbidity and mortality. One of the fundamental purposes

for studying infectious diseases is to improve control and ultimately to eradicate the

infection from the population. Thus models can be a powerful tool in this approach

and allow us to optimize the use of limited resources (Keeling & Rohani, 2011).

Mathematical models can take many forms, however they essentially describe a

system through mathematical equations. They allow studying how a system changes

from one state to the next, as well as the relation between variables used in the

equations that define the system (Hens et al., 2012). In the application of models of

infectious disease, Hens et al. distinguished two primary aims of these models: fore-

casting and understanding. They meant by forecasting that projections are made of

the number of infections and their consequences under various scenarios of interest.

By understanding Hens et al. meant that models are used that mimic a particular

process for the development or transmission of infectious diseases with the aim to im-

prove the knowledge of the process itself, rather than produce estimates of outcomes

of this process. One of the types of models is a deterministic model. In this model

the states of the system are the expected values of the outcomes. Thus deterministic

models represent the expected or average behaviour of the system.

19



Figure 1.1: Steps in the setting up and development of a model (Habbema et al.,
1996; Vynnycky & White, 2010).

1.6.1 Model Structure

In 1938, John Synge gave a description of applied mathematics to set the stage and

structure of mathematical modelling. He noticed that there are three stages in any

theory in applied mathematics including mathematical modelling: (i) creation of

mathematical formulation of axioms or laws, (ii) mathematical deductions of the be-

haviour of the model, (iii) comparison of these deductions with observations (Synge,

1938). The success of the model is to include sufficient complexity to make the

model valuable, but simple enough to understand, which necessarily requires that

an understanding is developed of the importance of various processes in determining

model behaviour. To illustrate how models are set up, Figure 1.1 shows a list of key

steps which might be involved in setting up and developing a model. Each step may

need to be reused many times until the model is completed and achieves its target.
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1.7 The Basic Reproductive Number R0

The basic reproductive number, R0, is one of the fundamental concepts in mathe-

matical biology. In 1911, Ronald Ross studied and established a model of malaria

transmission, and gave the standard incidence ratio and the basic reproductive num-

ber (Ross, 1911; Fu et al., 2013). In epidemiology, the basic reproductive number of

an infection is the number of cases that one case generates on average over the course

of the infectious period. The roots of the concept can be traced through the work

of Alfred Lotka, Ronald Ross and others, however its first modern application in

epidemiology was by George McDonald in 1952, who modeled the spread of malaria

(Macdonald, 1952; Fu et al., 2013).

The concept of R0 is fundamental to the study of the simple models, those with-

out complicating heterogeneity. This parameter measures the intrinsic ability of a

parasite to invade and persist in specified host populations (Anderson & May, 1992).

It comprises aspects of the three basic factors determining the epidemiology of an

infectious disease (Dowdle & Hopkins, 1998):

• The natural history of infection.

• The route of transmission.

• The environment and behaviour of the population.

The basic reproductive number R0 is defined as the expected number of secondary

cases produced by an index case in a completely susceptible population at equilib-

rium (Dietz, 1993), which is a measure of the potential for diseases to spread within
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a population. If R0 is less than unity then a few infected individuals introduced into

a completely susceptible population will, on average, not spread. On the other hand,

if R0 exceeds unity, then the number of infected individuals will increase with each

generation and the disease will spread (Dietz, 1993; Diekmann et al., 2012).

This number is the initial growth rate, when we consider the population on a

generation basis with infecting another host compared to begetting a child (Diek-

mann et al., 2012). R0 is a threshold parameter for invasion of a disease organism

into a virgin population of susceptibles. In many disease transmission models the

highest prevalence of infected hosts and final size of the epidemic is an increasing

function of R0 making it a good measure of spread (Brauer et al., 2008). Because

of the important role R0 has played in understanding and predicting epidemic be-

haviour, the concept has been generalized to account for heterogeneity and a more

complex description of the infection process. Techniques to calculate threshold values

from theoretical models include the eigenvalues of the Jacobian matrix, the existence

of the endemic equilibrium, and the constant term of the characteristic polynomial.

R0 can also be estimated from epidemiological data via the number of susceptibles

at the endemic equilibrium, over the average age at infection (Li et al., 2011).

Overall, no other concept has so effectively transcended mathematics, biology,

epidemiology, and immunology than R0. No other concept is so general that it can

be understood in terms of compartment models, network models, and partial differ-

ential equations. The threshold nature of R0 is used to monitor and control severe

real-time epidemics. Control measures are often deemed adequate if R0 ≤ 1, making
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the problems with R0 more than just theoretical. In conclusion, R0 is a quantity

that relates to the initial phase of an epidemic. This makes practical sense in terms

of disease prevention.

1.8 Heterogeneity Models

It has long been understood that the heterogeneity of a population with respect to

factors that may enhance or inhibit the transmission of infections may influence the

effectiveness of strategies to control such infections (Anderson & May, 1992). Het-

erogeneity is the primary complexity complicating model structure, both between

individuals in terms of risk of infection from other members of the population and

in pathogens. This is an area of active research in infectious diseases epidemiology

that is focused on a variety of potentially important problems (Dowdle & Hopkins,

1998). Therefore, it is important to allow individual heterogeneity in statistical and

mathematical models of infectious disease. Such models often involve specifying con-

tact rates between individuals (Farrington et al., 2013).

The heterogeneity of the population itself can play an important role in the

spread of an epidemic. Often the heterogenous population is divided into subgroups,

each of which is homogenous in the sense that group members have similar character-

istics. The division of the population into groups might be based not only on disease

related factors, such as latent period, infectious period, route of transmission and

amount of vaccination, but also on social, economic, cultural or geographic factors

(Dushoff & Levin, 1995; Hethcote, 1996). Most of the heterogeneity in disease trans-

mission is based on difference in the social behaviour of the population at risk for the
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disease. Hence, often the division of the population is based on the question:“Who

mixes with whom?” (Hethcote, 1996). Many epidemiological models have been for-

mulated with multiple groups and have defined contact matrices for the interaction

between individuals of the groups, such models by Lajmanovich and Yorke (1976),

Nold (1980), Dushoff and Levin (1995) and Greenhalgh (1996). We shall present

an overview of some important works which include the effect of heterogeneity in

modeling infectious disease.

1.8.1 Examples of Heterogeneity Models of Infectious Dis-

eases

Models of infectious diseases can provide valuable insights into how infectious dis-

eases spread and are controlled.

The work by Diekmann et al. (1990)

Because of the important role the basic reproductive number has played in under-

standing and predicting epidemic behaviour, Diekmann et al. (1990) develop the

theory of how to define and compute the basic reproductive number R0 in models

for infectious diseases in heterogeneous populations. Thus, this study attempted to

compute R0 in more complicated models involving heterogeneity in the population.

In general situations, the analysis of Diekmann et al. shows that R0 is given by

the maximum eigenvalue of the “next generation operator”. This method converts a

system of ordinary (or partial) differential equations of a model of infectious disease

dynamics to an operator that translates from one generation of infectious individ-
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uals to the next. The basic reproductive number is defined as the spectral radius

(maximum eigenvalue) of this operator.

The Model of Greenhalgh (1996)

As a specialist work on the infectious diseases, Greenhalgh (1996) modeled the ef-

fects of heterogeneity on the spread of HIV/AIDS among a population of injecting

drug users. This model allowed injecting drug users to visit shooting galleries with

variability in the rate at which they visit shooting galleries, their choice of shooting

gallery, and whether or not they clean their needles before use.

Later in another study, Greenhalgh & Hay (1997) considered an analysis of an

extended version of the basic model by Kaplan (1989), to allow for the possibility of

infectious drug users not always leaving a needle infected and the likelihood that HIV

positive addicts stop or reduce their amount of sharing injecting equipments. Green-

halgh (1996) modified the assumptions of the basic model of Kaplan who assumed

that all addicts behave exactly the same and all needles (equivalently all shooting

galleries) are exactly the same (Kaplan, 1989). In this model the population of n

addicts is divided into p groups of sizes n1, n2, . . . , np where
∑p

i=1 ni = n, and the

size of the different groups of drug users remained constant. Similarly, there are

m needles in q shooting galleries of sizes m1,m2, . . . ,mq where
∑q

j=1mj = m. For

i = 1, 2, . . . p and j = 1, 2, . . . q and where Λij = λipijni/mj, the differential equations
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which described the spread of the disease are:

dπi
dt

= (1− πi)

(
q∑

j=1

λipij(1− ξij)αβj

)
− µπi, (1.1)

dβj
dt

=

p∑
i=1

Λijπi −
p∑

i=1

Λijβj

(
1− (1− πi)(1− ξij(1− θ)

)
, (1.2)

with suitable conditions 1 ≥ πi(0) ≥ 0 and 1 ≥ βj(0) ≥ 0. The descriptions of the

model parameters are presented in Table 1.2. Recall that R0 is the key parameter

which determines the behaviour of the disease. Greenhalgh (1996) found that R0 is

the largest eigenvalue of this q × q matrix Qjk, where:

Qjk =

p∑
i=1

Λij(1− ξij)∑p
s=1 Λsj

(
1− (1− θ)(1− ξsj)

) α
µ
λipik.

ρ(Q) is the spectral radius of the matrix Q which is q × q with Qjk ≥ 0 for

j, k = 1, 2 ... q. ρ(Q) is defined to be the largest eigenvalue of the matrix Q.

The principal result in this model is if R0 ≤ 1 the system of equations (1.1)

and (1.2) has a unique equilibrium solution where the disease has died out in each

group of addicts and in each shooting gallery, and if R0 > 1 and disease is initially

present in either addicts or needles then the fractions of infected addicts and the

fractions of infected needles tend to their unique equilibrium values. Then, Green-

halgh looked at the effect of altering the assumptions that the different groups of

addicts were of constant sizes throughout the epidemic by introducing recruitment

of susceptible addicts into the population and deaths of individuals infected with

AIDS. He found that the equilibrium results were similar to the model with constant
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size population groups. The threshold value is the same as for the model with con-

stant size populations groups, with ni, the size of group i, replaced by its disease-free

equilibrium value.

Parameter Denotation

θ Probability that a susceptible addict flushes an infectious needle.

πi Fraction of type i addicts that are infected.

βj Fraction of needles in shooting gallery j.

ξij Probability that addict of type i effectively bleach cleans needle j

before use in shooting gallery.

λi Rate of addicts of type i visit shooting galleries.

α Probability of HIV transmission via shared needles.

pij Probability that addict i chooses shooting gallery j.

µ Rate of joining and leaving sharing, injecting population per addict.

Table 1.2: Descriptions of parameters in model of Greenhalgh (1996).

1.9 Harm Reduction

The term harm reduction refers to policies, programmes and practices that aim to

reduce the adverse health, social and economic consequences of the use of legal and

illegal drugs. Harm reduction applied to substance use, such as injecting, is a form

of secondary prevention. It aims to prevent the consequence of drug use, that is, to

reduce the burden of disease and improve the health of the population (Lenton &

Single, 1998). These approaches for injecting drug use focus on the harms associ-

ated with injecting: blood-borne viruses such as HIV and HCV. The current harm
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reduction approach has its roots in the spread of HIV infection among drug users in

the mid-1980s. This was a time when health workers started providing clean needles

to injecting drug users, rather than seeking to achieve their abstinence from drug

use in order to halt the spread of HIV (Abadinsky, 2010; Rehm et al., 2010). The

United Kingdom, Australia, Switzerland, The Netherlands and Canada have been

early adopters of the harm reduction strategies (Ritter & Cameron, 2006), and many

countries in Asia, Latin America and Eastern Europe are encouraged to follow these

policies. Nowadays, there is a need to provide people who inject drugs with options

that help to minimise risks from continuing to use drug and of harming themselves

or others.

In 2006, Ritter and Cameron presented a systematic review on the effectiveness

of harm reduction for injecting drugs, alcohol and tobacco, where the majority of the

literature concerned injecting drugs. In this review, Ritter & Cameron (2006) found

that harm reduction has solid efficacy, effectiveness and economic data that support

needle syringe programmes and outreach programmes in the area of injecting drugs.

Outreach is defined as contacting drug users in the society where they live. The

principles and keys of harm reduction on injecting drugs include: there is acceptance

that drugs are a part of society, the main target is reducing harm rather than drug

use. Harm reduction should provide a comprehensive public health framework. As

we mention above, HCV is a comparatively common blood-borne infection that is

primarily transmitted through injecting and sharing drugs. In the United Kingdom

80% of HCV infections are due to injecting drug use (de Angelis et al., 2009; Ritter

& Cameron, 2006). The risk of becoming infected with HCV increases with inject-
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ing duration. Thus, two key harm reduction interventions that may reduce HCV

transmission are (Turner et al., 2011):

(i) Needle and syringe programmes (NSPs).

(ii) Opioid substitution treatment (OST).

NSPs aim to reduce the use and sharing of injecting equipment that may be infected

with HCV, where OST aims to reduce injecting frequency and thereby reduce the

probability of sharing and increase coverage of NSPs. A combination of NSPs, OST

and treatment of injecting drug users of HCV has been argued to play a role in the

reduction of the incidence and prevalence of the infection of HCV (Martin et al.,

2011; Tod & Hirst, 2014).

1.9.1 Needle and Syringe Programmes (NSPs)

Needle and syringe programmes can be defined as providing sterile injecting equip-

ment to inject drug users. This facilitates the use of clean needles and syringes

and reduces the number of injections with used needles and syringes (WHO, 2012).

NSPs are one of the main harm reduction measures that aim to curb the spread

of blood-borne viruses such as HIV and HCV among injecting drug users. In the

review of Ritter & Cameron (2006), NSPs have the record as the most widely cited

and researched harm reduction intervention. For those who continue to inject, NSPs

based in drug services and chemists provide clean injecting equipment (NICE, 2014).

Ritter and Cameron described the literature as being predominantly positive with

respect to HCV control, although NSPs are predicted to have little impact on HCV

incidence and prevalence compared with HIV (Pollack, 2001). However, there is lim-

ited evidence to support the effectiveness of NSPs in preventing HCV transmission.
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Lack of evidence in support of these programs does not necessarily mean that NSPs

are ineffective (Turner et al., 2011). On the other hand harm reduction practices

including NSPs are sufficient to keep HIV prevalence at a very low level. The HCV

virus is so much more easily transmitted than HIV that HCV prevalence can be very

high and HIV prevalence very low even in populations following similar practices

(Weimer & Vining, 2009). Overall, NSPs might be the most strongly identified harm

reduction programme and the body of evidence is very strong towards their efficacy

and effectiveness (Pollack, 2001; Ritter & Cameron, 2006).

1.9.2 Opioid Substitution Treatment (OST)

Opioid substitution treatment is the primary pharmacological treatment option for

opioid dependence. OST can be considered as one of the most effective interventions

in controlling drug dependence that improve health and social functioning; it also

can reduce illegal drug use and the frequency of injection (WHO, 2012). A number

of different opioid agonists are used for OST, the most common is methadone, which

was first widely used in the 1960s as a drug for those dependent on heroin (Csiernik,

2011). The basis for use of methadone is that individuals receiving methadone would

have no need to use heroin or to be involved with various behaviours needed to main-

tain heroin addiction. Methadone does reduce heroin use, non-opioid drug use and

health problems (Sees et al., 2000; WHO, 2012).

Recent pooling of UK studies by Turner et al. (2011) has suggested that ex-

posure to high NSPs coverage and OST each alone approximately reduced the risk

of HCV infection by 50%, and together in full harm reduction of NSPs plus OST
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may reduce harm by 80% among injecting drug users. In conclusion, there is good

evidence that uptake of OST and NSPs can substantially reduce the risk of hepatitis

C virus transmission and prevalence of HCV among injecting drug users (Martin

et al., 2011; Turner et al., 2011; Vickerman et al., 2012a).

The Work by Vickerman et al. (2012a)

In 2012, Vickerman et al. developed a model to estimate the impact of OST and

NSPs on HCV prevalence among injecting drug users. The model simulated the

movement of addicts between different intervention and HCV infection states. Ad-

dicts are tracked through four different states of: no intervention, OST only, NSPs

only and a combination of OST plus NSPs. In general impact analysis, the model of

Vickerman et al. (2012a) projected the effect on HCV prevalence of three coverage

levels of OST and NSPs 20%, 40% or 60% for each, for three chronic HCV preva-

lence scenarios 20%, 40% and 60% with no OST or NSPs at baseline. The HCV

prevalence scenarios were achieved by varying the baseline force of infection. For a

baseline chronic HCV prevalence of 20%, 40% or 60% the model suggested that NSPs

and OST can reduce HCV transmission by 30%, however required the coverage of

each intervention to be more than 60% for 15 years or more than 40% for 20 years.

Although other studies have suggested that HCV prevalence can be reduced through

intervention (Turner et al., 2011), some studies emphasized the difficulty in reducing

HCV transmission to low levels (Murray et al., 2003). Scaling up NSPs and OST

can reduce HCV incidence among injecting drug users, however this reduction can

be modest and requires long-term intervention coverage and many years to occur.
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1.10 Prevalence of HCV in People with HIV

In the area of current epidemics and endemicity, coinfection with HIV and HCV is

a significant problem. These two viruses are similar in a number of ways, and are

highly prevalent amongst injecting drug users, as both viruses are transmitted easily

by exposure to infected blood. In general, the level of infection of HCV amongst HIV-

infected injecting drug users is much higher than HCV infection amongst injecting

drug users not infected with HIV, although the transmission route of both diseases

is spread by high risk injecting drug users (Vickerman et al., 2010). According to

the Centers for Disease Control and Prevention (CDC), about 25% of individuals

infected with HIV are also infected with HCV, and 50% - 80% of addicts are infected

with HCV within the first five years of starting to inject drugs (CDC, 2002).

It has been estimated that approximately three million drug users might be living

with HIV (Mathers et al., 2008). On the other hand, ten million drug users might

be infected with HCV (Nelson et al., 2011). In the review of Hagan & des Jarlais

(2000), among injecting drug users worldwide, HIV prevalence varies from 5 - 80%,

with annual HIV incidence between 1 - 50%. More consistency is shown in HCV

prevalence (50 - 90%) and annual HCV incidence (10 - 30%). Host, environmental

and viral factors that favor rapid spread of HCV among addicts suggest that HCV

infection in a population of injecting drug users may become endemic over a rela-

tively short period of time. Lower transmission efficiency for HIV also indicates that

its spread among injecting drug users may be somewhat slower (Hagan & des Jarlais,

2000).
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Prevention of primary infection with HIV and HCV is critical to reduce long-

term disease rates in injecting drug users. HIV and HCV amongst injecting drug

users are strong justifications of the policy of harm reduction. Also the expansion

of NSPs ensured people did not share injecting equipment and thus transmit blood-

borne viruses such as HIV and HCV. Moreover, the provision of OST enabled people

dependent on opiates such as heroin to move away from heroin use and injecting

with the attendant health risks (MacArthur et al., 2014; NAT, 2013). As we dis-

cussed above, there are recent studies indicating that the combination of OST and

NSPs can significantly reduce both HCV and HIV incidence (van den Berg et al.,

2007; Turner et al., 2011; Vickerman et al., 2012a). However, there is an order of

magnitude difference in transmissibility and prevalence between HIV and HCV in

injecting drug users, therefore levels of intervention coverage that prevent HIV may

not necessarily prevent HCV infection (Murray et al., 2003).

1.11 Examples of Mathematical Models

In this literature review we briefly outline some of the previous work on mathematical

modeling of the spread of HCV amongst injecting drug users. First we shall look at

some models of the spread of HCV and HIV, then we will outline some mathematical

models of the spread of HCV.
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1.11.1 Models that Examine the Spread of HCV and HIV

amongst Injecting Drug Users

As worldwide systematic ecological analysis by various authors has shown that there

is a strong positive relationship between the prevalence of HIV and that of HCV in

different injecting drug users populations, we shall discuss some models that examine

the spread of HCV and HIV amongst this high risk population.

The model by Vickerman et al. (2009)

Deterministic compartmental models are developed to simulate the transmission of

HCV and HIV amongst injecting drug users in Rawalpindi, Pakistan with different

levels of needle and syringe sharing (Vickerman et al., 2009). The model by Vick-

erman et al. was used to project the future HCV and HIV epidemics and estimate

the potential impact of a generic intervention measure, which eases the level of nee-

dle and syringe sharing, on the prevalence of HCV and HIV amongst injecting drug

users populations. Moreover, it was used to investigate why the prevalence of HCV

amongst injecting drug users in Rawalpindi was low despite the widespread reporting

of needle and syringe sharing.

The model projections suggest that the low HCV prevalence in Rawalpindi is

probably due to most HIV/HCV transmissions occurring in a small addicts’ sub-

group that shares needles and syringes frequently with strangers, with most needle

and syringe sharing incidents being low risk. In the HCV model the addicts’ popu-
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lation was stratified by: (1) HCV infection status, frequency of needle and syringe

sharing: do not share, share at low levels, share at high levels, and (2) length of

injecting career: recent initiates and long term injectors. Susceptible addicts, once

infected with HCV, were assumed to progress to an acute stage of infection. A pro-

portion of these newly infected addicts were assumed to progress to an acute stage

where they can spontaneously resolve their infection while the remaining proportion

of these newly infected addicts progress to an acute stage of infection which leads to

chronic HCV infection. The model assumed that, of addicts who can spontaneously

resolve their infection, a proportion become immune to HCV re-infection, and the

remaining proportion were assumed to become susceptible to HCV re-infection.

Vickerman et al. continued to stratify the population by frequency of needle

and syringe sharing and length of injecting career in the HIV model. This model

assumed that once a susceptible addict is infected with HIV he or she progresses

to a stage of infection where they have high levels of HIV. They are then assumed

to progress to a longer lasting infectious class where they have much lower levels of

HIV. At the end of this, the infected addict progresses to another stage of infection

with high levels of HIV, after which they develop AIDS.

The model suggested that most of the needle and syringe sharing events in

Rawalpindi are such that the risk of HCV transmission is relatively low. However,

there is a small group of high risk addicts that share more frequently with strangers,

hence the high prevalence of HCV-HIV co-infection. Projections suggest that the

prevalence of HIV in injecting drug users will increase to 5 - 12% by 2015, and the
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prevalence of HCV will increase if HIV increases HCV transmission. Also, any inter-

vention measures employed to reduce the sharing of needles and syringes would need

to achieve a sustained and substantial reduction greater than 40% in the frequency

of needle and syringe sharing for a notable decrease in the prevalence of HCV and

HIV to be observed over a ten year period if all addicts are reached.

1.11.2 Models that Examine the Spread of HCV amongst

Injecting Drug Users

Many authors studied the prevalence of HCV amongst injecting drug users through

the sharing of needles and syringes. In 2007, Vickerman modeled the impact on HCV

transmission of reducing syringe sharing: the London case study (Vickerman et al.,

2007). Later, Vickerman et al. (2012b) present a study to understand the trend of

HCV/HIV prevalence amongst injecting drug users. Moreover, Corson et al. (2013)

model the transmission of HCV according to time since onset of injection, where

the population can be separated into two risk groups (naive and experienced) with

different injecting risk behaviours. In a recent study, Grebely & Dore (2014) dis-

cussed the eradication of HCV infection in injecting drug users which is defined as

the complete and permanent worldwide reduction to zero new cases through deliber-

ate efforts, with no further control measures required. In this section we review two

models, which approximate the spread of HCV, as they are the most relevant to our

work. The first one is by Vickerman et al. (2007), and the second one is by Corson

et al. (2012).
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The model of Vickerman et al. (2007)

Vickerman et al. (2007) used a deterministic compartmental model to describe the

transmission of HCV amongst London injecting drug users for 2002 - 2003. This

work simulated the dynamics of HCV infection over the length of injecting career of

the addicts and was used to explore the impact of intervention measures that reduced

needle sharing in all addicts, addicts who have been sharing needles for more than

one year, and addicts with low or high frequencies of needle sharing. In this model,

the transmission of HCV through the sharing of injecting paraphernalia and the sex-

ual transmission of HCV was not considered. The model structure allowed for two

acute HCV infectious classes, one for those addicts who could spontaneously resolve

their acute infection and one which allowed addicts to progress to the chronic stage

of infection. The inclusion of these two separate acute HCV infectious classes meant

that the authors could assign a different transmission probability for each acute class.

Vickerman et al. divided the addicts’ population into three behavioural sub-

groups depending on their needle sharing frequency, to stratify the population by

HCV infection status. Therefore, the population of addicts is separated into those

that do not share needles, those who share needles infrequently and those who fre-

quently share needles. Addicts in the low and high risk groups were allowed to mix to

form sharing partnerships and it was possible to vary the degree of mixing between

random mixing and assortative mixing.

Model results showed that large sustained reductions in sharing rates (greater
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than 50%) would reduce HCV seroprevalence in addicts injecting for more than

eight years and modest reductions (less than 25%) would reduce HCV in those ad-

dicts injecting for less than four years. To reduce HCV prevalence to less than 10%

the simulations showed that needle sharing rates would have to reduce from the

baseline estimate of 16 events per month to 1 - 2 events per month. Furthermore,

the model results also suggested large reductions in HCV seroprevalence would only

be achieved if interventions were aimed at all addicts and reached them within their

first year of injecting. This modelling work provided insights into the difficulties in

controlling the spread of HCV amongst injecting drug users and the importance of

ensuring that interventions to reduce needle sharing reached all addicts, including

those who are within their first year of injecting. However, these projections assumed

that the reduction in needle sharing is maintained over the course of the injecting

careers of the injecting drug users.

The model by Corson et al. (2012)

Corson et al. developed a deterministic, compartmental mathematical model to

approximate the transmission of HCV among injecting drug users, building on the

model developed by Vickerman et al. (2007). They aimed to determine the level of

needle sharing, needle cleaning and needle exchange necessary for HCV elimination

among injecting drug users in Glasgow. The structure of the model enables addicts

to progress through various stages of HCV infection. The population of addicts is

divided into those susceptible to HCV infection denoted x, for those not previously

infected, and x1 for previously infected. Those in the acute stage of HCV infection
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(h1 and h2), those who have progressed to the chronic stage of HCV infection y and

those immune to HCV reinfection z (see Figure 1.2). The force of infection experi-

enced by a single susceptible IDU is given by f = λ(1 − ϕ)(αh(βh1 + βh2) + αyβy).

Then the authors derived a system of nine differential equations, six of them de-

scribe the transmission of HCV among addicts and three describe HCV prevalence

in needles.

Figure 1.2: HCV transmission flow diagram. The arrows indicate the possible tran-
sitions for addicts between stages of HCV infection and the parameters shown are
the per capita rate of flow between the stages (taken from Corson et al. (2012)).

Parameter Definition

ϕ Probability of successful needle cleaning.
τ Needle turnover rate.
λ Needle sharing rate.
αh Acute HCV transmission probability.
αy Chronic HCV transmission probability.
1/σ Duration of the acute HCV phase.
µ Rate of joining and leaving sharing, injecting population per addict.
δ Proportion that resolve HCV infection.
α Proportion of addicts that become immune.

Table 1.3: Table of Corson et al. (2012) model parameters definition.

Then they looked at the basic reproductive number R0 which determines the general

behaviour of HCV among addicts and needles. For this model, the expression of the
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total number of secondary infections caused by a single infectious addict entering the

DFE is given by:

R0 =
λ(1− ϕ)

µ(µ+ σ)(1 + τ̂)[µαh + αyσ(1− δ)]
,

where the parameters are defined in Table 1.3, γ = n/m is the number of addicts

per needle in the population and τ̂ = τ/λγ. The main theorem of this model, states

that if R0 ≤ 1 the model has a unique equilibrium solution where HCV has died out

in both addicts and needles. If R0 > 1, there is still the disease-free equilibrium,

however there is also a unique endemic equilibrium. Then, Corson et al. simulated

HCV for the population of Glasgow injecting drug users over time. The model

parameters are estimated and they examine the behaviour of HCV when R0 ≤ 1

and R0 > 1. Simulation has shown that the model tends to the endemic equilibrium

value with realistic parameter values giving HCV prevalence estimated at 69% which

agrees with observed data. Moreover, the authors examined the impact of various

control measures on R0. In particular they determined the threshold values of needle

sharing, needle cleaning and needle turnover that lead to R0 less than unity and

HCV elimination in addicts and needles.

1.12 Conclusion

The results of a literature review of the epidemiology and modelling of HCV, as well

as a more general overview of the concepts used to model infectious diseases have

been presented in this chapter. HCV causes substantial morbidity and mortality,

and is easily transmitted through contaminated syringes. This virus is primarily
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transmitted through blood to blood contact, with the majority of infections in de-

veloped countries attributed to a history of injecting drug use (Aceijas & Rhodes,

2007). Nevertheless, other routes such as sexual, perinatal transmission, tattooing,

acupuncture and intranasal drug use are likely for possible transmission (Tajima &

Sonoda, 1996; Jafari et al., 2010; Tohme & Holmberg, 2010; WHO, 2013). There is

no vaccine to protect against infection, but antiviral treatment is available for those

with chronic HCV. Although the success of treatment is genotype specific, the overall

response rate to treatment is 50 - 60% (Fried et al., 2002).

The mathematical models used to understand, forecast and control the spread of

infectious diseases such as HCV are diverse and growing rapidly. Also, these models

are used to understand the transmission of infections and to evaluate the potential

impact of control programmes in reducing morbidity and mortality. Thus, we out-

lined the model structure and discussed the basic reproductive number R0 as the

fundamental parameter which determines the disease dynamic and behaviour.

Heterogeneity is the primary complexity complicating model structure, both be-

tween individuals in terms of risk of infection from other members of the population

and in pathogens. This is an area of active research in infectious diseases epidemi-

ology that is focused on a variety of potentially important problems (Dowdle &

Hopkins, 1998; Farrington et al., 2013). In order to prevent the prevalence of HCV,

harm reduction policies and their impacts are discussed. In general, there is good

evidence that the full harm reduction NSPs plus OST can substantially reduce the

risk of HCV transmission among injecting drug users (Martin et al., 2011; Turner
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et al., 2011; Vickerman et al., 2012a).

In the next chapter we shall develop accurate models of the spread of HCV

and discuss a mathematical model of the heterogeneity impact of the spread of HCV

among addicts and needles. It will look at the model hypotheses and the model

governing system of differential equations that describe the progress of HCV.
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Chapter 2
Modelling the Effects of Heterogeneity on

the Spread of HCV

In this chapter we shall study and set up a deterministic mathematical model of

the effects of heterogeneity on the spread of HCV amongst injecting drug users and

shooting galleries. The first section of this chapter discusses the set of hypotheses

which are assumed to govern the system of differential equations that describe the

spread of HCV. Then we move on to give an expression of the key parameter of this

model “the basic reproductive number” R0. We finish this section by giving some

special scenarios of assumptions of different parameters that minimise R0. Eventu-

ally, a brief summary and discussion conclude.

We develop a mathematical model of the prevalence of HCV amongst a pop-

ulation of injecting drug users sharing needles in shooting galleries, based on the

simple model that was discussed by Corson et al. (2012) which assumed homo-

geneity in time since onset of injection and needle sharing rates, and a model of
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Greenhalgh (1996) who studied the effects of heterogeneity on the spread of HIV

and AIDS among a population of injecting drug users. Compared with the model

by Corson et al. (2012), this model focusses on the impact of heterogeneity on the

prevalence of HCV among this risky group. Furthermore, we do not consider the

treatment of chronically infected injecting drug users with antiviral therapy. Now,

we shall describe the set of hypotheses that are used to set up our model, then derive

the model equations.

2.1 Hypotheses and Notation

We consider a population of n injecting drug addicts divided into p groups sizes

n1, n2, . . . , np where n =
∑p

i=1 ni and n is large and constant for all time t. Each

group is homogeneous and differs from other groups, for example: female and male

or high sharing, low sharing and never sharing needles. In this model, we assume

that addicts stay in the same group for all time until he or she dies or stops injecting

the drug. As a result, when addicts leave the population due to permanent cessation

of injecting behaviour or death at per capita µ, they will immediately be replaced at

the same rate by other addicts susceptible to HCV infection. Later in Chapter Seven

we will develop this model by assuming that addicts are allowed to move in and out

of groups. Moreover, there are q shooting galleries, and the number of needles in

shooting gallery j is mj where m =
∑q

j=1mj and m is large and constant for all time

t. Each type i drug addict visits shooting galleries at rate λi.

On each visit he or she chooses shooting gallery j with probability Pij for j =

1, 2 . . . q where Pij ≥ 0 and
∑q

j=1 Pij = 1. On each visit to a shooting gallery the
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addict injects once with a needle chosen at random from that shooting gallery. When

an addict of type i leaves the population due to either permanent cessation of in-

jecting behavior or death, at per capita rate µ, he or she is replaced immediately by

an addict susceptible to HCV infection. The arrival rate of type i addicts at a given

needle in shooting gallery j is Λij = (λiniPij/mj). This model considers a heteroge-

neous population of drug users. We aim to approximate the spread of HCV in the

population, where this population is divided into p groups labeled i = 1, 2, . . . , p.

The ith group is also divided into six different stages as follows (see Figure 1.2):

1. we denote by xi the addicts who have never been infected with HCV and are

susceptible to HCV through sharing needles.

2. we denote by x1i the addicts who have been previously infected and have re-

covered and are susceptible to HCV infection again through sharing needles.

3. we denote by h1i those in the acute stage of HCV infection which leads to

chronic infection.

4. we denote by h2i those in the acute stage of HCV infection which leads to self

limiting HCV infection.

5. we denote by yi those whom have progressed to the chronic stage of HCV

infection.

6. we denote by zi those immune to HCV re-infection.

Similarly, the shooting galleries are divided into q groups labeled j = 1, 2, . . . , q.

Each shooting gallery j contains three different type of infectious needles divided as

follows:
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1. we denote by h1j the needles which were last used by an addict in the h1 acute

stage of HCV infection.

2. we denote by h2j the needles which were last used by an addict in the h2 acute

stage of HCV infection.

3. we denote by yj the needles which were last used by an addict in the y chronic

stage of HCV infection.

Also, in this model we assume that:

• The average rate that a type i addict shares needles is denoted by λi.

• A type i addict in shooting gallery j cleans his or her needle prior to use with

probability ϕij.

• The transmission probability relating to acute and chronic HCV infection by

shared needles is denoted by αh and αy respectively.

• A susceptible addict of type i (either xi or x1i) once infected with HCV will

progress to the acute stage of infection (either h1i or h2i). Those newly infected

with HCV will progress to the acute stage h1i with probability (1 − δ). From

here these addicts will either die, leave the sharing injecting population or

progress to the chronic infection and remain there until they either die or leave

the sharing injecting population. The remaining proportion δ of newly infected

type i infected addicts progress to the acute h2i stage. From here these addicts

will either die, leave the sharing injecting population or progress. Of those that

progress a fraction α progress to the immune stage, where they then remain

until they either die or leave the sharing injecting population. The remaining

fraction (1− α) of those who progress return to the susceptible class.
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• The only way that a type i addict can be infected is through the sharing of

needles used by a HCV acutely or chronically infected addict. Moreover, the

infectivity of the last addict who used the needle determines the infectivity of

this needle. Thus a needle last used by a susceptible addict is left uninfectious,

a needle last used by an addict in the acute h1 stage of infectivity is left in the

h1 stage (transmission probability per injection αh), a needle last used by an

addict in the acute h2 stage of infectivity is left in the h2 stage (transmission

probability per injection αh) and a needle last used by an addict in the chronic

y stage of infectivity is left in the y stage (transmission probability per injection

αy).

• The average duration that a type i addict remains in the acute stage is 1/σ

time units.

• The addict population is of size n where n is large and constant. Therefore,

any addicts who leave the population (e.g. due to death, entry to treatment

programmes, or incarceration or other reasons) are immediately replaced by

susceptible addicts. The per capita rate at which addicts leave or enter the

population is denoted by µ.

• We assume a needle turnover rate (the average rate at which addicts change

their needles for clean needles in shooting gallery j) of τj per year, addicts can

become infected only through the sharing of needles used by an HCV acutely

or chronically infected addict and that infectious needles do not lose their

infectivity if they are left unused for a period of time. An infectious needle,

when used by a susceptible, becomes non-infectious.
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2.2 Governing Model Equations

Let πxi(t) and πx1i(t) denote respectively the fraction of addicts in xi-susceptible

and x1i-susceptible stages of type i at time t. Using a similar definition, πh1i(t) and

πh2i(t) denote respectively the fractions of addicts of a type i in the acute stages h1

and h2 at time t. πyi(t) and πzi(t) denote respectively the fractions of addicts of a

type i in the chronic and immune stages at time t. In the same way, βh1j(t), βh2j(t)

and βyj(t) denote respectively the fractions of needles at time t in shooting gallery j

that were last used by an infected addict in infectious state h1, h2 and y respectively.

Also denote by γ = n/m, the number of addicts per needle in the population. Note

that in this model, the parameter µ is both the per capita birth rate and the per

capita death rate for all addicts.

The number of type i xi-susceptible addicts at time t+∆t

= The number of type i xi-susceptible addicts at time t

+ the number of type i xi-susceptible addicts recruited to share intravenous

injecting equipments in [t, t+∆t)

− the number of type i xi-susceptible addicts who develop acute HCV

infection as type i addicts choosing shooting gallery j in [t, t+∆t)

for some j = 1, 2, . . . q.

− the number of type i xi-susceptible addicts who leave the population due

cessation of injecting drug use or death in [t, t+∆t).
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We write this equation mathematically as follows:

nπxi(t+∆t) = nπxi(t) + nµ∆t−
q∑

j=1

nπxi(t)∆tλiPij(1− ϕij)

(αh(βh1j(t) + βh2j(t)) + αyβyj(t))− nπxi(t)µ∆t+ o(∆t).

Subtracting nπxi(t) from the two sides, we deduce that:

nπxi(t+∆t)− nπxi(t) = nµ∆t−
q∑

j=1

nπxi(t)∆tλiPij(1− ϕij)

(αh(βh1j(t) + βh2j(t)) + αyβyj(t))− nπxi(t)µ∆t+ o(∆t).

Dividing by n∆t and letting ∆t −→ 0 gives the following:

dπxi
dt

= µ− µπxi − πxi

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
.

Similarly, the number of type i x1i-susceptible addicts at time t+∆t

= the number of type i x1i-susceptible addicts at time t

+ the number of type i h2i infected addicts that spontaneously resolve

an HCV infection in time [t, t+∆t)

− the number of type i x1i-susceptible addicts who develop acute HCV

infection as type i addicts choosing shooting gallery j in [t, t+∆t)

for some j = 1, 2, . . . q

− the number of type i x1i-susceptible addicts who leave the population

due to cessation of injecting drug use or death in [t, t+∆t).
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Mathematically this can be written as:

nπx1i(t+∆t) = nπx1i(t) + σ(1− α)nπh2i(t)∆t−
q∑

j=1

nπx1i(t)∆tλiPij(1− ϕij)

(αh(βh1j(t) + βh2j(t)) + αyβyj(t))− nπx1i(t)µ∆t+ o(∆t).

Subtracting nπx1i(t) from the two sides, we deduce that:

nπx1i(t+∆t)− nπx1i(t) = σ(1− α)nπh2i(t)∆t−
q∑

j=1

nπx1i(t)∆tλiPij(1− ϕij)

(αh(βh1j(t) + βh2j(t)) + αyβyj(t))− nπx1i(t)µ∆t+ o(∆t).

Dividing by n∆t and letting ∆t −→ 0 gives the following:

dπx1i

dt
= σ(1− α)πh2i − µπx1i − πx1i

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
.

The number of type i acute infected h1i addicts at time t+∆t

= the number of type i acute h1i infected addicts at time t

+ the number of type i susceptible addicts (both xi and x1i) who develop

type i acute h1i HCV infection in time [t, t+∆t)

− the number of type i acute h1i addicts who develop chronic HCV

infection in [t, t+∆t)

− the number of type i acute h1i addicts who leave the population

due to cessation of injecting drug use or death in [t, t+∆t).
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Mathematically this can be written as:

nπh1i(t+∆t) = nπh1i(t) +

q∑
j=1

n∆tλiPij(1− δ)
(
πxi

(t) + πx1i(t)
)
(1− ϕij)

(αh(βh1j(t) + βh2j(t)) + αyβyj(t))− (µ+ σ)nπh1i(t)∆t+ o(∆t).

As we did earlier, subtracting nπh1i(t) from the two sides, dividing by n∆t and letting

∆t −→ 0 gives the following:

dπh1i

dt
=

q∑
j=1

(1− δ)(πxi + πx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh1i.

We use the same argument to calculate the number of type i acute infected h2i

addicts at time t+∆t.

So, the number of type i acute infected h2i addicts at time t+∆t

= the number of type i acute h2i infected addicts at time t

+ the number of type i susceptible addicts (both xi and x1i) who develop

type i acute h2i HCV infection in [t, t+∆t)

− the number of type i acute h2i addicts who resolve the infection or develop

to the immune class in [t, t+∆t)

− the number of type i of acute h2i addicts who leave the population

due to cessation of injecting drug use or death in [t, t+∆t).
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Mathematically this can be written as:

nπh2i(t+∆t) = nπh2i(t) +

q∑
j=1

n∆tλiPijδ
(
πxi

(t) + πx1i(t)
)
(1− ϕij)

(αh(βh1j(t) + βh2j(t)) + αyβyj(t))− (µ+ σ)nπh2i(t)∆t+ o(∆t).

Subtracting nπh2i(t) from the two sides, dividing by n∆t and letting ∆t −→ 0 gives

the following:

dπh2i

dt
=

q∑
j=1

δ(πxi + πx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh2i.

The number of type i chronic infected yi addicts at time t+∆t

= the number of type i chronic yi infected addicts at t

+ the number of type i acute h1i infected addicts who develop

chronic yi infection HCV time in [t, t+∆t)

− the number of type i chronic yi addicts who leave the population

due to cessation of injecting drug use or death in [t, t+∆t).

Thus we have:

nπyi(t+∆t) = nπyi(t) + n(πh1i(t)σ − µπyi(t))∆t+ o(∆t).

Subtracting nπyi(t) from the two sides, dividing by n∆t and letting ∆t −→ 0 gives

the following:

dπyi
dt

= σπh1i − µπyi.
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To calculate the last equation of the addicts model, we use a similar method for type

i immune addicts zi. We deduce that:

dπzi
dt

= σαπh2i − µπzi.

The number of type j of acute infected h1j needles at time t+∆t

= the number of type j acute h1j infected needles at t

+ the number of non-acute h1j infected needles which are used by type j

acute h1i infected addicts in [t, t+∆t) for i = 1, 2, . . . p

− the number of type j acute h1j needles which are used by non-acute h1i

addicts in [t, t+∆t) for i = 1, 2, . . . p

− the number of type j acute h1j needles which are exchanged in shooting

gallery j in [t, t+∆t).

Mathematically, we can write this as:

mβh1j(t+∆t) = mβh1j(t) +m

p∑
i=1

Λijπh1i(t)(1− βh1j(t))∆t

−mβh1j(t)

p∑
i=1

Λij(1− πh1i(t))∆t−mτjβh1j(t).∆t+ o(∆t).

Subtracting mβh1j(t) from the two sides, dividing by m∆t and letting ∆t −→ 0 gives

the following:

dβh1j

dt
=

p∑
i=1

Λijπh1i(1− βh1j)− βh1j

p∑
i=1

Λij(1− πh1i)− τjβh1j.
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We use a similar method to calculate the rate of change of the number of type j acute

h2j and chronic yj infected needles respectively, at time t, to deduce the following:

dβh2j

dt
=

p∑
i=1

Λijπh2i(1− βh2j)− βh2j

p∑
i=1

Λij(1− πh2i)− τjβh2j,

and

dβyj
dt

=

p∑
i=1

Λijπyi(1− βyj)− βyj

p∑
i=1

Λij(1− πyi)− τjβyj.

The system of differential equations which describe the progress of the disease are:

dπxi
dt

= µ− µπxi − πxi

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
, (2.1)

dπx1i

dt
= σ(1− α)πh2i − µπx1i − πx1i

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
,

(2.2)

dπh1i

dt
=

q∑
j=1

(1− δ)(πxi + πx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh1i, (2.3)

dπh2i

dt
=

q∑
j=1

δ(πxi + πx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh2i, (2.4)

dπyi
dt

= σπh1i − µπyi, (2.5)

dπzi
dt

= σαπh2i − µπzi, (2.6)

dβh1j

dt
=

p∑
i=1

Λijπh1i(1− βh1j)− βh1j

p∑
i=1

Λij(1− πh1i)− τjβh1j, (2.7)

dβh2j

dt
=

p∑
i=1

Λijπh2i(1− βh2j)− βh2j

p∑
i=1

Λij(1− πh2i)− τjβh2j, (2.8)

dβyj
dt

=

p∑
i=1

Λijπyi(1− βyj)− βyj

p∑
i=1

Λij(1− πyi)− τjβyj, (2.9)
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with suitable initial conditions: πxi(0), πx1i(0), πh1i(0), πh2i(0), πyi(0), πzi(0), βh1j(0),

βh2j(0) and βyj(0) ≥ 0 and πxi(0) + πx1i(0) + πh1i(0) + πh2i(0) + πyi(0) + πzi(0) = 1.

Correspondingly, βh1j(0) + βh2j(0) + βyj(0) ≤ 1. The model equations (2.1) to (2.6)

govern the progress of the spread of HCV amongst injecting drug users in each group

i of addicts over time while equations (2.7) to (2.9) illustrate how the proportion of

infectious needles change over time in each shooting gallery j. Now we move on to

compute the key parameter of our model, the basic reproductive number.

2.3 The Basic Reproductive Number

The basic reproductive number R0, is known as a central quantity in the investiga-

tion and management of infectious disease (Dietz, 1993). This value is defined as

the expected number of secondary cases caused by a single newly infected individ-

ual entering a completely disease-free population at equilibrium (Diekmann et al.,

1990). In this definition a secondary case means a case caused by direct contact

with the initial infected case. In our case a secondary case means: an addict infected

via sharing a needle with an initially infected individual entering the disease-free

population at equilibrium. In this section, we shall derive an expression for R0 as

there are multiple types of infected addicts and needles. The importance of this key

parameter is that it is a determinant of the total behaviour of our heterogeneous

model for the progress of HCV among addicts and needles over time.

The infection scenario can be as follows: (1) the infected addict of type i passes

the infection to uninfected needles in shooting gallery j, (2) the newly infected nee-

dles (at any stage of infectivity) then infect susceptible addicts of type k. To derive
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this number we first consider a single newly infected addict of type i entering a

disease-free population containing only susceptible addicts (at equilibrium).

By our assumption all rates are constant, this means that the expected dura-

tion (time) of infection is the inverse of the removal rate. Thus, each infected addict

shares injecting needles for an average 1/(µ+ σ) time units. During this time he or

she uses needles at rate λi and chooses the shooting gallery j at probability Pij, and

once infected with HCV moves into the acute stage h1i with probability (1− δ). In

this case, they remain there for an average 1/(µ+σ) time units. They then progress

to the chronic stage of infection with probability σ/(µ + σ) where they remain for

an average 1/µ time units, otherwise they leave the population. This addict, once

infected, can also move into the acute stage h2i with probability δ. They remain

there for an average 1/(µ+ σ) time units. After, there are two stages which addicts

can progress to, the immune stage with probability σα/(µ + σ) and they remain

there for an average 1/µ time units, or the x1i-susceptible stage with probability

σ(1 − α)/(µ + σ) where they remain for an average 1/µ time units, otherwise they

leave the population. Hence, in total a single newly infected addict in group i causes:

λiPij(1− δ)

µ+ σ
acute h1j infectious needles, (2.10)

λiPijδ

µ+ σ
acute h2j infectious needles, (2.11)

and

λiPijσ(1− δ)

µ(µ+ σ)
chronic yj infectious needles, (2.12)
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in shooting gallery j. We assume that these newly infected needles will be used

by uninfected addicts of different groups k. Thus, we want to derive the expected

number of these addicts in group k infected by these newly infected needles. The

acute h1j needle is infected for 1/(
∑p

l=1 Λlj + τj) time units. During this time it

infects:

Λkj(1− ϕkj)αh∑p
l=1 Λlj + τj

addicts in group k. (2.13)

Similarly, a single needle last used and infected by an addict in class h2j entering a

disease-free population at equilibrium infects:

Λkj(1− ϕkj)αh∑p
l=1 Λlj + τj

addicts in group k, (2.14)

and a single needle last used and infected by an addict in class yj entering a disease-

free population at equilibrium infects:

Λkj(1− ϕkj)αy∑p
l=1 Λlj + τj

addicts in group k. (2.15)

Thus, Qik the total expected number of secondary addicts in group k left infected

by a single newly infected addict entering group i is the sum of those infected by h1j

needles plus the sum of those infected by h2j needles plus the sum of those infected

via yj needles. So

Qik =

q∑
j=1

(
λiPij(1− δ)

µ+ σ
· Λkj(1− ϕkj)αh∑p

e=1 Λej + τj

+
λiPijδ

µ+ σ
· Λkj(1− ϕkj)αh∑p

e=1 Λej + τj

+
λiPijσ(1− δ)

µ(µ+ σ)
· Λkj(1− ϕkj)αy∑p

e=1 Λej + τj

)
,
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= ξ

q∑
j=1

λiPijΛkj(1− ϕkj)∑p
e=1 Λej + τj

, (2.16)

where ξ = (αyσ(1− δ) + αhµ)/µ(µ+ σ).

Similarly, if we consider a newly infected needle entering shooting gallery j at

the disease-free equilibrium (containing only uninfected needles), there are three

possibilities. The needle must either be a type h1j, h2j or yj infected needle in

shooting gallery j. The expected number of addicts infected in addicts group k are

again given in the formulae (2.13), (2.14) and (2.15) respectively in each of the three

cases. Then the expected number of needles infected in shooting gallery r are given

by the formulae (2.10), (2.11) and (2.12) with i replaced by k and j replaced by r,

λkPkr(1− δ)

µ+ σ
acute h1r infectious needles,

λkPkrδ

µ+ σ
acute h2r infectious needles,

and

λkPkrσ(1− δ)

µ(µ+ σ)
chronic yr infectious needles.

Thus the 3q × 3q matrix M giving the expected number of type h1r, h2r and yr

infected needles in shooting gallery r caused by a single h1j, h2j and yj infected

needle entering the disease-free equilibrium in shooting gallery j is given by a matrix

in blocks such as
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

h1r h2r yr

h1j Xjr
(1−δ)αh

µ+σ
Xjr

δαh

µ+σ
Xjr

σ(1−δ)αh

µ(µ+σ)

h2j Xjr
(1−δ)αh

µ+σ
Xjr

δαh

µ+σ
Xjr

σ(1−δ)αh

µ(µ+σ)

yj Xjr
(1−δ)αy

µ+σ
Xjr

δαy

µ+σ
Xjr

σ(1−δ)αy

µ(µ+σ)


where

Xjr =

p∑
k=1

Λkj(1− ϕkj)λkPkr∑p
e=1 Λej + τj

.

We assert that the matrix M has spectral radius:

ρ(M) = ξρ(X),

where ξ = (αyσ(1− δ) + αhµ)/µ(µ+ σ) as before and ρ denotes the spectral radius.

In the case q = 1 this is straightforward as then the matrix is

X11aIbJ for I, J = 1, 2, 3

where

a1 = a2 = αh, a3 = αy, b1 =
(1− δ)

µ+ σ
, b2 =

δ

µ+ σ
and b3 =

σ(1− δ)

µ(µ+ σ)
.

In this case (a proportional mixing matrix) the characteristic equation is

0 = det

∣∣∣∣∣∣∣∣∣∣∣
X11a1b1 − ω X11a1b2 X11a1b3

X11a2b1 X11a2b2 − ω X11a2b3

X11a3b1 X11a3b2 X11a3b3 − ω

∣∣∣∣∣∣∣∣∣∣∣
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i.e.

(X11a1b1 − ω)(X11a2b2 − ω)(X11a3b3 − ω) + 2X3
11a1a2a3b1b2b3

−(X11a1b1 − ω)X2
11a2a3b2b3 − (X11a2b2 − ω)X2

11a1a3b1b3

− (X11a3b3 − ω)X2
11a1a2b1b2 = 0.

So, the roots are ω = 0, ω = 0 and ω = tr(M) = X11(a1b1 + a2b2 + a3b3) = ξX11 =

ξρ(X) as required.

In the case q = 2 the characteristic equation is:

0 = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X11a1b1 − ω X11a1b2 X11a1b3 X12a1b1 X12a1b2 X12a1b3

X11a2b1 X11a2b2 − ω X11a2b3 X12a2b1 X12a2b2 X12a2b3

X11a3b1 X11a3b2 X11a3b3 − ω X12a3b1 X12a3b2 X12a3b3

X21a1b1 X21a1b2 X21a1b3 X22a1b1 − ω X22a1b2 X22a1b3

X21a2b1 X21a2b2 X21a2b3 X22a2b1 X22a2b2 − ω X22a2b3

X21a3b1 X21a3b2 X21a3b3 X22a3b1 X22a3b2 X22a3b3 − ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We make the column transformations

C
′

2 = C2 − C1
b2
b1
, C

′

3 = C3 − C1
b3
b1
, C

′

5 = C5 − C4
b2
b1
, C

′

6 = C6 − C4
b3
b1

0 = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X11a1b1 − ω ω b2
b1

ω b3
b1

X12a1b1 0 0

X11a2b1 −ω 0 X12a2b1 0 0

X11a3b1 0 −ω X12a3b1 0 0

X21a1b1 0 0 X22a1b1 − ω ω b2
b1

ω b3
b1

X21a2b1 0 0 X22a2b1 −ω 0

X21a3b1 0 0 X22a3b1 0 −ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Then we make the row transformations

R
′

1 = R1 +R2
b2
b1

+R3
b3
b1
, R

′

4 = R4 +R5
b2
b1

+R6
b3
b1
,

0 = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X11(a1b1 + a2b2 + a3b3)− ω 0 0 X12(a1b1 + a2b2 + a3b3) 0 0

X11a2b1 −ω 0 X12a2b1 0 0

X11a3b1 0 −ω X12a3b1 0 0

X21(a1b1 + a2b2 + a3b3) 0 0 X22(a1b1 + a2b2 + a3b3)− ω 0 0

X21a2b1 0 0 X22a2b1 −ω 0

X21a3b1 0 0 X22a3b1 0 −ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

i.e. ω = 0 (four times) or

0 = det

∣∣∣∣∣∣∣
X11(a1b1 + a2b2 + a3b3)− ω X12(a1b1 + a2b2 + a3b3)

X21(a1b1 + a2b2 + a3b3) X22(a1b1 + a2b2 + a3b3)− ω

∣∣∣∣∣∣∣ ,

i.e. the eigenvalues are (a1b1+a2b2+a3b3) multiplied by the eigenvalues of the matrix

∣∣∣∣∣∣∣
X11 X12

X21 X22

∣∣∣∣∣∣∣ .

In other words the spectral radius of the matrix M is ξρ(X).

In the case of q shooting galleries the proof is similar, just perform the column

operations:

C
′

2 = C2 − C1
b2
b1
, C

′

3 = C3 − C1
b3
b1
, C

′

5 = C5 − C4
b2
b1
, C

′

6 = C6 − C4
b3
b1

. . . , C
′

3q−1 = C3q−1 − C3q−2
b2
b1
, C

′

3q = C3q − C3q−2
b3
b1
.
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Then perform the row operations:

R
′

1 = R1 +R2
b2
b1

+R3
b3
b1
, R

′

4 = R4 +R5
b2
b1

+R6
b3
b1

. . . R
′

3q−2 = R3q−2 +R3q−1
b2
b1

+R3q
b3
b1
.

Hence the spectral radius is ξρ(X) or equivalently the spectral radius of the matrix

Q̂ where Q̂ = ξX. Thus from our previous work by (2.16) the expected number of

secondary addicts in group k left infected by a single newly infected addict entering

group i is

Qik = ξ

q∑
j=1

λiPijΛkj(1− ϕkj)∑p
e=1 Λej + τj

, (2.17)

where ξ = (αyσ(1−δ)+αhµ)/µ(µ+σ). We expect the basic reproductive number R0

to be the largest eigenvalue of the p× p matrix Q, with Qik ≥ 0 for i, k = 1, 2, . . . , p.

Recall that ρ(Q) the spectral radius of Q, is defined to be the modulus of the largest

eigenvalue of Q or:

ρ(Q) = max
16i6p

| λi | (2.18)

where λ1, λ2, . . . λp are the eigenvalues of Q. Note that the matrices Q and Q̂ defined

by:

Qik = ξ

q∑
j=1

λiPijΛkj(1− ϕkj)∑p
e=1 Λej + τj

, (2.19)

and

Q̂jr = ξ

p∑
k=1

Λkj(1− ϕkj)λkPkr∑p
e=1 Λej + τj

, (2.20)

have the same spectral radius. The following lemma is quoted from Lemma 3.3 of

Greenhalgh (1996) which says:
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Lemma 2.3.1. If A is a p× q matrix and B is q× p matrix then ρ(AB) = ρ(BA).

Proof. Proved in Greenhalgh (1996).

Lemma 2.3.2. Let Q and Q̂ be as defined above, then ρ(Q) = ρ(Q̂).

Proof. To prove this Lemma we write P = [ξλiPij]p×m and

R =

[
Λij(1− ϕij)∑p
e=1 Λej + τj

]
p×m

,

then Q = AB (i.e. Qik =
∑q

j=1AijBjk) where A = P and B = RT

Q̂ = BA =

p∑
k=1

BjkAkr.

Then ρ(AB) = ρ(BA) by Lemma 2.3.1.

R0 is of critical importance in epidemiological models with the disease usually

dying out when R0 ≤ 1 and an epidemic usually occurring when R0 > 1. In the

above section we described a completely general model for addicts visiting shooting

galleries where addicts had a completely general choice of shooting galleries to visit.

We now look at some special situations of this where the expression obtained for the

basic reproductive number simplifies. In particular, we are interested in the cases

that allow R0 to be as small a value as possible.

2.4 Minimisation of R0

The magnitude of R0 allows us to determine the amount of control effort which

is sufficient to control the spread of disease. By determining parameter values that
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minimise R0 we can determine whether a given control strategy will eliminate disease

or not. In this section we shall look at the following cases:

1. The effect of addicts in different groups visiting shooting galleries at different

rates on R0.

2. Optimal allocation of limited needle exchange effort between different shooting

galleries.

3. Optimal allocation of limited needle cleaning effort between different groups of

addicts and shooting galleries.

2.4.1 Optimal Scenario of Addicts in Different Groups Vis-

iting Shooting Galleries at Different Rates

We shall start off by looking at the effect on R0 of addicts in different groups visiting

shooting galleries at different rates. In the first instance we shall look at the situation

where addicts of type i, for i = 1, 2, . . . p choose the needles at random. As there

are mj needles in shooting gallery j and m needles altogether, this implies that

Pij = mj/m. Hence, equation (2.20) becomes:

Q̂jr =
ξ
∑p

k=1 λk
mr

m
λk

mj

m
nk

mj
(1− ϕkj)∑p

l=1 λl
nl

mj

mj

m
+ τj

,

=
ξ
∑p

k=1 λ
2
k
nk

m2 (1− ϕkj)mr∑p
l=1 λl

nl

m
+ τj

.

Note that the matrix Qjr has the form ajbr where:

aj =
ξ
∑p

k=1 λ
2
k
nk

m2 (1− ϕkj)∑p
l=1 λl

nl

m
+ τj

and br = mr.
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Lemma 2.4.1. If Q = [ajbk]q×q is a matrix with Qjk = ajbk, for j, k = 1, 2, . . . , q,

then ρ(Q) =
∑q

j=1 ajbj.

Proof. The characteristic equation of Q is:

0 = det(Q− ωI),

= det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1b1 − ω a1b2 a1b3 . . . a1bq

a2b1 a2b2 − ω a2b3 . . . a2bq

...
...

...
...

aqb1 aqb2 aqb3 . . . aqbq − ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting row q multiplied by ai/aq from the ith row for i = 1, 2, . . . , q−1 will not

change the determinant so this characteristic equation is:

0 = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω 0 0 0 . . . ω a1
aq

0 −ω 0 0 . . . ω a2
aq

0 0 −ω 0 . . . ω a3
aq

...
...

...
...

...
...

aqb1 aqb2 aqb3 . . . aqbq − ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant along the last column we see that it is:

−ωa1
aq
aqb1(−ω)q−2 + (−ω)a2

aq
aqb2(−ω)q−2 + · · ·+

(−ω)aq−1

aq
aqbq−1(−ω)q−2 + (−ω)q−1aqbq + (−ω)q = 0.
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Dividing by (−1)q−1 we have

ωq − ωq−1(a1b1 + a2b2 + · · ·+ aqbq) = 0.

Hence the eigenvalues are ω = 0 (q − 1) times and

ω = a1b1 + a2b2 + · · ·+ aqbq,

and the spectral radius is the largest eigenvalue which is

q∑
j=1

ajbj.

As a result, we deduce that:

ρ(Q̂) =

q∑
j=1

Qjj,

=
ξ
∑q

j=1mj

∑p
k=1 λ

2
k
nk

m2 (1− ϕkj)∑p
l=1 λl

nl

m
+ τj

. (2.21)

To simply the expression of ρ(Q̂), let us assume that the needle cleaning rate depends

only on j, so that ϕij = ϕj for i = 1, 2, . . . , p and j = 1, 2, . . . , q. Moreover, we also

assume that the population is homogeneous in needle exchange rate, which implies

that τj = τ for j = 1, 2, . . . , q,

ρ(Q̂) =

∑p
k=1 λ

2
knk∑p

l=1
λlnl

m
+ τ

ξ

m2

q∑
j=1

mj(1− ϕj). (2.22)
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Note that the Cauchy-Schwarz inequality (Steele, 2004) states that for any pairs of

sets of real numbers x1, x2, . . . , xp, y1, y2, . . . , yp

( p∑
i=1

xiyi

)2
≤

( p∑
i=1

xi
)2( p∑

i=1

yi
)2
.

Here, let us choose xi =
√
ni, yi =

√
niλi for i = 1, 2, . . . p. We deduce that:

( p∑
i=1

niλi

)2
≤

( p∑
i=1

ni

)( p∑
i=1

niλ
2
i

)
.

Hence ( p∑
i=1

niλ
2
i

)
≥ (

∑p
i=1 niλi)

2∑p
i=1 ni

.

So

ρ(Q̂) ≥ (
∑p

i=1 niλi)
2/
∑p

i=1 ni∑p
i=1

λini

m
+ τ

ξ

m2

q∑
j=1

mj(1− ϕj).

Therefore,

ρ(Q̂) ≥ nλ 2

nλ
m

+ τ

ξ

m2

q∑
j=1

mj(1− ϕj).

Here

λ =

∑p
i=1 niλi∑p
i=1 ni

,

is the average sharing rate of drug injectors in shooting galleries. However, this is

the value of R0 when λ1 = λ2 = · · · = λp = λ. So in this situation where the addicts

choose needles at random, Pij = mj/m, the needle cleaning rate depends only on the

shooting gallery, so that ϕij = ϕj, all addicts visiting shooting galleries at the same
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ratr, minimises R0.

Now, we assume that Pij = Pj but that this value is not necessarily equal to

mj/m (the probabilities Pij can take any positive values but these values must sum

to one). We again assume that the needle cleaning probability ϕij = ϕj depends

on the shooting gallery j but not the addict group i. The needle exchange rate τj

depends only on the shooting gallery. Thus, we have that:

Q̂jr =
ξ
∑p

k=1 λkPrΛkj(1− ϕj)∑p
l=1 λl

nl

mj
Pj + τj

.

Again Q̂jr factorises as ajbr where:

aj =
ξ
∑p

k=1 λkΛkj(1− ϕj)∑p
l=1 λl

nl

mj
Pj + τj

and br = Pr,

so ρ(Q̂) =
∑q

j=1 Q̂jj,

ρ(Q̂) =

∑q
j=1 ξ

∑p
k=1 λ

2
kP

2
j

nk

mj
(1− ϕj)∑p

l=1 nlλl
Pj

mj
+ τj

. (2.23)

This is the expression of R0 in (2.17). Now, we will show that again all addicts

equally likely to visit all shooting galleries (i.e. λ1 = λ2 = · · · = λp = λ) minimises

R0. We rewrite the equation (2.23) as the following:

ρ(Q̂) =

q∑
j=1

ξ
∑p

k=1 λ
2
knk

P 2
j

mj
(1− ϕj)∑p

l=1 λlnl
Pj

mj
+ τj

.
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As before, we deduce that:

p∑
i=1

niλ
2
i ≥

(
∑p

i=1 niλi)
2∑p

i=1 ni

.

So,

ρ(Q̂) ≥

(∑p
i=1 niλi

)2∑p
i=1 ni

q∑
j=1

ξ
P 2
j

mj
(1− ϕj)∑p

l=1 λlnl
Pj

mj
+ τj

. (2.24)

The right-hand side of (2.24) is the value of R0 when all addicts visit all shooting

galleries at the same rate, so this minimises the value of R0.

2.4.2 Optimal Allocation of Limited Needle Exchange Effort

between Different Shooting Galleries

We wish to allocate a given amount of needle exchange effort to have the maximum

effect. It seems reasonable to assume that this will have the most effect when R0 is

as small as possible. Hence our problem can be written mathematically as ‘choose

τ1, τ2, . . . , τq ≥ 0 subject to
∑q

j=1 τj ≤ τ to minimise R0’. To do this we use the La-

grange multiplier and set up the Lagrangian method. We introduce a new variable

ψ, called the Lagrange multiplier, and set up the Lagrange function.

We first deal with the situation where the needle cleaning probability ϕij depends

only on the shooting gallery j not the addict group i and addicts choose needles at

random so that Pij = mj/m. The needle exchange rate τj depends on the shooting

gallery j. Recall that from equation (2.22) if γ = n/m is the gallery ratio of addicts
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per needle:

R0 = ξ

p∑
k=1

λ2k
nk

m

q∑
j=1

mj

m
(1− ϕj)

γλ̄+ τj
.

The Lagrange function is:

F1 = ξ

p∑
k=1

λ2k
nk

m

q∑
j=1

mj

m
(1− ϕj)

λγ + τj
+ ψ

(
τ −

q∑
j=1

τj

)
,

=
ξ

m2

p∑
k=1

λ2knk

q∑
j=1

mj(1− ϕj)

λγ + τj
+ ψ

(
τ −

q∑
j=1

τj

)
. (2.25)

The necessary conditions for a local minimum requires the first-order conditions equal

to zero:

∂F1

∂τj
=

−ξ
m2

p∑
k=1

λ2knk
mj(1− ϕj)

(λγ + τj)2
− ψ = 0 (2.26)

as the equation (2.26) gives the optimum values of τj when ∂F1/∂τj = 0, we have at

τj = τ̂j:

ψ =
−ξ
m2

p∑
k=1

λ2knkmj(1− ϕj)

(λγ + τ̂j)2
.

Hence

λγ + τ̂j =

√
−ξ
∑p

l=1 λ
2
l nlmj(1− ϕj)

m2ψ
,

so,

τ̂j =

√
−ξ
∑p

k=1 λ
2
knkmj(1− ϕj)

m2ψ
− λγ. (2.27)

70



To find the optimal value of τj we rearrange the above equation and choose ψ < 0.

So that
∑q

j=1 τ̂j = τ :

τ =
1√
−ψ

q∑
j=1

√
ξ
∑p

k=1 λ
2
knkmj(1− ϕj)

m2
− qλγ,

τ + qλγ =
1√
−ψ

q∑
j=1

√
ξ
∑p

k=1 λ
2
knkmj(1− ϕj)

m2
,

√
−ψ =

1

τ + qλγ

q∑
j=1

√
ξ
∑p

k=1 λ
2
knkmj(1− ϕj)

m2
,

ψ =
−1

(τ + qλγ)2

[ q∑
j=1

√
ξ
∑p

k=1 λ
2
knkmj(1− ϕj)

m2

]2
.(2.28)

To check that it is a minimum value which minimises R0, we take the second-order

partial derivative of F1:

∂2F1

∂τi∂τj
=


0, if i ̸= j;

2ξ
m2

∑p
k=1 λ

2
knkmj(1−ϕj)

(λγ+τj)3
> 0, if i = j.

Hence we notice that τ̂j is a minimum as ∂2F1/∂τi∂τj is a positive definite matrix.

The minimised value of R0 is:

F1 =
ξ

m2

p∑
k=1

λ2knk

q∑
j=1

mj(1− ϕj)

λγ + τ̂j
,

but substituting the value of ψ from the equation (2.28) into the equation (2.27) we

deduce that:

λγ + τ̂j =

√
ξ
∑p

k=1 λ
2
k
nk

m

mj

m
(1− ϕj) (τ + qλγ)∑q

j=1

√
ξ
∑p

i=1 λ
2
i
ni

m

mj

m
(1− ϕj)

,
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so

F1 =
ξ

(τ + qλγ)

p∑
k=1

λ2k
nk

m

[ q∑
j=1

√
mj

m
(1− ϕj)

]2
, (2.29)

is actually the minimum value.

Now we look at the case where all the τ ′s are equal, so τ1 = τ2 = · · · = τq = τ/q.

In this case:

R0 = RE
0 =

p∑
k=1

nkλ
2
k

m

ξ
∑q

j=1
mj

m
(1− ϕj)

λγ + τ/q
,

=

p∑
k=1

nkλ
2
k

m

qξ

qλγ + τ

q∑
j=1

mj

m
(1− ϕj).

We shall now verify that this value of RE
0 exceeds the minimum value that we have

just found (2.29) as:

q

q∑
j=1

mj

m
(1− ϕj) ≥

[ q∑
j=1

√
mj

m
(1− ϕj)

]2
.

Indeed for any set of positive numbers a1, a2, . . . , aq let a and 1 be two vectors of

positive numbers where:

a = (a1, a2, . . . , aq),

and

1 = (1, 1, . . . , 1), q times.

Using the dot product to multiply these vectors, gives us the following:

| a · 1 |=∥ a ∥ · ∥ 1 ∥ cos θ, (2.30)
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where ∥ a ∥ and ∥ 1 ∥ are the length of the two vectors and θ is the angle between

them. Note that:

∥ a ∥ =
√
a21 + a22 + · · ·+ a2q,

| a · 1 |2 ≤ ∥ a ∥2 · ∥ 1 ∥2 .

Hence (2.30) yields: |
q∑

j=1

aj |2 ≤ q |
q∑

j=1

a2j | .

This also follows from the Cauchy-Schwarz inequality discussed earlier. We take

aj =
√

mj

m
(1− ϕj), so:

[
q∑

j=1

√
mj

m
(1− ϕj)

]2
≤ q

q∑
j=1

mj

m
(1− ϕj),

then we get the required result that RE
0 exceeds the minimum value of R0 given by

the equation (2.29).

The second case that we shall discuss is when the probability Pij giving the

choice of shooting galleries is given by Pij = mj/m but the needle cleaning prob-

ability ϕij depends on both the addict group i and the shooting gallery j. Recall

equation (2.21):

ρ(Q̂) = ξ

q∑
j=1

mj

∑p
k=1 λ

2
k
nk

m2 (1− ϕkj)

τj +
∑p

l=1
λlnl

m

.

Again, we use the Lagrange multiplier technique to minimise ρ(Q̂) subject to
∑q

j=1 τj =

τ . The objective function is:

F2 = ξ

q∑
j=1

mj

∑p
k=1 λ

2
k
nk

m2 (1− ϕkj)

τj +
∑p

l=1
λlnl

m

. (2.31)
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As we did previously, we use the Lagrange method to minimise ρ(Q̂). The Lagrange

function is:

F2 = ξ

q∑
j=1

mj

∑p
k=1 λ

2
k
nk

m2 (1− ϕkj)

τj +
∑p

l=1
λlnl

m

+ ψ

(
τ −

q∑
j=1

τj

)
.

Necessary conditions for a minimum require setting all first order derivatives to zero.

This occurs when τj = τ̂j for j = 1, 2, . . . , q.

∂F2

∂τj
=

−ξmj

m2

∑p
k=1 λ

2
knk(1− ϕkj)

(λγ + τj)2
− ψ = 0.

Hence

ψ =
−ξmj

m2

∑p
k=1 λ

2
knk(1− ϕkj)

(λγ + τj)2
,

λγ + τ̂j =

√
−ξmj

m

∑p
k=1 λ

2
knk(1− ϕkj)

ψ
,

τ̂j =

√
−ξmj

m2

∑p
k=1 λ

2
knk(1− ϕkj)

ψ
− λγ.

To find the optimal value of τ̂j, choose ψ < 0, to satisfy
∑q

j=1 τ̂j = τ .

q∑
j=1

τ̂j =

q∑
j=1

√
−ξmj

m2

∑p
k=1 λ

2
knk(1− ϕkj)

ψ
− qλγ,

τ = (−ψ)−1/2

q∑
j=1

√√√√ξ
mj

m2

p∑
k=1

λ2knk(1− ϕkj)− qλγ,

τ + qλγ = (−ψ)−1/2

q∑
j=1

√√√√ξ
mj

m2

p∑
k=1

λ2knk(1− ϕkj).
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To check that the solution is indeed a minimum value which minimises R0, we take

the second-order derivative of (2.31). We deduce that at τj = τ̂j:

∂2F2

∂τi∂τj
=


0, if i ̸= j,

2ξ
mj
m

∑p
k=1 λ

2
knk(1−ϕkj)ξ

(λγ+τ̂j)3
> 0, if i = j.

The minimised value of F2 is:

(−ψ)1/2
q∑

j=1

√√√√ξ
mj

m2

p∑
k=1

λ2knk(1− ϕkj)

=
ξ

(τ + qλγ)

[
q∑

j=1

√√√√mj

m2

p∑
k=1

λ2knk(1− ϕkj)

]2
.

In the case where ϕkj = ϕj is independent of the group of addict this reduces to what

we had previously in (2.29).

The next case that we want to survey is how to choose the needle exchange

effort within a constraint to minimise R0 when Pij, the probability that an addict of

type i chooses a needle in shooting gallery j depends on the shooting gallery j and

not the addict group i, but Pj is not necessarily equal to mj/m. The equation (2.20)

becomes:

Q̂jr = ξ

∑p
k=1 λkPrΛkj(1− ϕkj)∑p

l=1 Λlj + τj
,

= ξ

∑p
k=1 λ

2
kPjPr

nk

mj
(1− ϕkj)∑p

l=1 λlPj
nl

mj
+ τj

.
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Note that we found earlier that ρ(Q̂) =
∑q

j=1 Q̂jj, so:

ρ(Q̂) =

q∑
j=1

ξ

∑p
k=1 nkλ

2
k

P 2
j

mj
(1− ϕkj)∑p

l=1 nlλl
Pj

mj
+ τj

.

Then we are performing a similar process by using the Lagrangian method to find

the optimal allocation of τj subject to the constraint
∑q

j=1 τj = τ , and ρ(Q̂) is the

objective function. The Lagrangian is:

F3 = ξ

q∑
j=1

∑p
k=1 nkλ

2
k

P 2
j

mj
(1− ϕkj)∑p

l=1 nlλl
Pj

mj
+ τj

+ ψ

(
τ −

q∑
j=1

τj

)
.

The necessary conditions for a local minimum requires the following:

∂F3

∂τj
=

−ξ
∑p

k=1 nkλ
2
k

P 2
j

mj
(1− ϕkj)(∑p

l=1 nlλl
Pj

mj
+ τj

)2 − ψ = 0.

This implies that:

ψ =
−ξ
∑p

k=1 nkλ
2
k

P 2
j

mj
(1− ϕkj)(∑p

l=1 nlλl
Pj

mj
+ τ̂j

)2 .

Thus:

p∑
l=1

nlλl
Pj

mj

+ τ̂j =

√√√√−ξ
∑p

k=1 nkλ2k
P 2
j

mj
(1− ϕkj)

ψ
,

τ̂j =

√√√√−ξ
∑p

k=1 nkλ2k
P 2
j

mj
(1− ϕkj)

ψ
−

p∑
l=1

nlλl
Pj

mj

.
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To find the optimal value of τj, we choose ψ < 0 such that:

τ =

q∑
j=1

τj =

q∑
j=1

√√√√−ξ
∑p

k=1 nkλ2k
P 2
j

mj
(1− ϕkj)

ψ
−

q∑
j=1

p∑
l=1

nlλl
Pj

mj

,

τ +

p∑
l=1

nlλl

q∑
j=1

Pj

mj

= (−ψ)−1/2

q∑
j=1

√√√√ξ

p∑
k=1

nkλ2k
P 2
j

mj

(1− ϕkj).

This implies that:

ψ =

−
[∑q

j=1

√
ξ
∑p

k=1 nkλ2k
P 2
j

mj
(1− ϕkj)

]2
(
τ +

∑p
l=1 nlλl

∑q
j=1

Pj

mj

)2 .

Hence, the minimised value of F3 is:

q∑
j=1

ξ
∑p

k=1 nkλ
2
k

P 2
j

mj
(1− ϕkj)∑p

l=1 nlλl
Pj

mj
+ τ̂j

=

q∑
j=1

ξ
∑p

k=1 nkλ
2
k

P 2
j

mj
(1− ϕkj)√

ξ
∑p

k=1 nkλ2k
P 2
j

mj
(1− ϕkj)

√
−ψ,

=

[∑q
j=1

√
ξ
∑p

k=1 nkλ2k
P 2
j

mj
(1− ϕkj)

]2
τ +

∑p
l=1 nlλl

∑q
j=1

Pj

mj

.

In the special case where the needle cleaning probability ϕij depends only on the

shooting gallery j not the addict group i, we substitute ϕj for ϕij in the value of F3

to obtain:

=

[∑q
j=1

√
ξ
∑p

k=1 nkλ2k
P 2
j

mj
(1− ϕj)

]2
τ +

∑p
l=1 nlλl

∑q
j=1

Pj

mj

,

as the minimum value of R0.
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2.4.3 Optimal Allocation of Limited Needle Cleaning Ef-

fort between Different Groups of Addicts and Shooting

Galleries

We have considered the problem of how to allocate limited resources of needle ex-

change effort between shooting galleries used by competing groups of addicts. How-

ever, needle exchange is only one way to reduce HCV prevalence. Another way is to

allocate needle cleaning materials such as bleach between the different shooting gal-

leries, or alternatively educate the addicts to use efficient needle cleaning practices.

Now we shall discuss the needle cleaning probability choice that minimises the value

of R0. Again there is a given total amount of resource available to use, so that:

p∑
i=1

q∑
j=1

ϕij ≤ Φ.

We return to the case where addicts choose needles at random, so Pij = mj/m,

and needle exchange is heterogeneous so there is an amount τj of effort applied in

shooting gallery j. Then:

R0 =

q∑
j=1

mj

∑p
k=1

nkλ
2
k

m2 (1− ϕkj)ξ∑p
l=1

nlλl

m
+ τj

,

=

q∑
j=1

p∑
k=1

akbj(1− ϕkj)ξ,

where ak = nkλ
2
k/m

2 and bj = mj/(
∑p

l=1
nlλl

m
+ τj). The mathematical problem is

then to choose ϕkj subject to 0 ≤ ϕkj ≤ 1 and
∑p

k=1

∑q
j=1 ϕkj ≤ Φ to minimise

R0. Clearly the value of ϕkj that produces the maximal reduction in R0 is the value
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(k0, j0) of (k, j) that maximises akbj. Hence, we should apply the maximum amount

of that possible.

If Φ < 1 then we should choose ϕk0,j0 = Φ and we are finished. If Φ ≥ 1

then we should choose ϕk0,j0 = 1 and look for the pair (k, j) that maximises akbj

over the remaining values of k and j say (k1, j1) and apply the maximum amount

of control effort possible to that, and so on, until either we have used up all of the

needle cleaning effort Φ possible or R0 = 0. Hence, in this case the optimal policy

is to successively apply the maximal amount of needle cleaning effort possible to the

group k and shooting gallery j that has the maximum value of akbj until the needle

cleaning effort available is exhausted.

Similarly we can consider the problem of minimisingR0 subject to
∑p

k=1

∑q
j=1 ϕkj ≤

Φ when Pkj = Pj, not necessarily equal to mj/m:

R0 =

q∑
j=1

∑p
k=1 λkP

2
j

nk

mj
(1− ϕkj)ξ∑p

l=1 λlPj
nl

mj
+ τj

,

=

q∑
j=1

p∑
k=1

ckdj(1− ϕkj)ξ,

where ck = λ2knk and dj = P 2
j /(
∑p

l=1 nlλlPj +mjτj).

Following the same argument as above we deduce that the optimal policy is

to successively apply the maximal amount of needle cleaning effort ϕkj to the pair

(k, j) that maximises ckdj until we have applied an amount [Φ] of needle cleaning

effort (here [x] denotes the integer part of x) and then we apply the the remaining

79



amount Φ − [Φ] to the pair (k, j) that maximises ckdj over the remaining values

possible.

2.4.4 Optimal Scenario of Homogeneous Population

Last but not least, we consider the special case where the addict population is ho-

mogeneous which means that all addicts visit shooting galleries at the same rate λ.

Addicts are assumed to be homogeneous in cleaning rate of needles and random choice

of needles, so ϕij = ϕ and Pij = mj/m. We also assume that τ1 = τ2 = · · · = τq = τ .

From equation (2.20), it is straightforward to show the following:

Q̂jr =
ξ
∑p

k=1 λkPkrΛkj(1− ϕ)∑p
l=1 Λlj + τj

,

=
ξ
∑p

k=1 λk
mr

m
λk

nk

m
(1− ϕ)∑p

l=1 λl
nl

m
+ τj

.

Now recall that
∑q

k=1mk = m, λi = λ, i = 1, 2, . . . , p and
∑p

i=1 ni = n. Recall also

that R0 = ρ(Q̂) is the spectral radius of Q̂, where the spectral radius is defined to

be the largest absolute value of the eigenvalues of the matrix Q̂. (1, 1, . . . , 1) ∈ Rq is

a positive right eigenvector of Q̂ with corresponding eigenvalue:

λ(Q̂) =
ξλ2γ(1− ϕ)

λγ + τ
,

=
ξλ(1− ϕ)

1 + τ̂
,

where τ̂ = τ/λγ. By Lemma 2.1 of Nold (1980), we see that:

R0 = ρ(Q̂) = max | λ(Q̂) | .
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Therefore as the following parameters are defined in Corson et al. model:

R0 =
λ(1− ϕ)

µ(µ+ σ)(1 + τ̂)

[
µαh + σαy(1− δ)

]
. (2.32)

This specific case has been considered in the model discussed by Corson et al. (2012)

who obtain the same value.

These are the theoretical results concerning the special scenarios that minimise

R0. This completes our discussion of the basic reproductive number. Later on in

Chapter Six we shall confirm some of these theoretical results by numerical simu-

lation, and numerically find the impact of different control strategies on the basic

reproductive number.

2.5 Conclusion

In this chapter we have developed a mathematical model of the effect of heterogene-

ity on the prevalence of HCV, building on the models developed by Corson et al.

(2012) and Greenhalgh (1996). A system of differential equations has been derived

to describe the progress of the disease. Our discussion has ranged from calculating

an expression of the important concept of our model, R0, to finding the special cases

and scenarios that minimise this number.

We have shown that if each group of addicts has the same probability of vis-

iting shooting galleries and also the needle cleaning probability depends only on the

shooting gallery then all addicts visiting shooting galleries at the same rate min-
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imises R0. We have looked at the problem of allocation of a limited amount of

needle exchange effort to have the maximum effect under various conditions. Then

we looked at the problem of a allocation of limited amount needle cleaning effect

between groups and shooting galleries to minimise R0. Remember that R0 is defined

as the average number of secondary infections produced by a single infectious indi-

vidual entering a disease-free population at equilibrium. We expect the disease to

take off if R0 > 1 and die out if R0 ≤ 1. In the next chapter we shall investigate

these conjectures analytically.
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Chapter 3
Model Analytical Results

A major project in deterministic modelling of heterogeneous populations is to find

conditions for local and global stability of the equilibria and to work out the relations

among these stability conditions, the thresholds for disease take off and die out. In

this chapter we analyse the behaviour of our transmission model, focusing on the

conditions that result in HCV persistence or elimination. We perform an equilibrium

and stability analysis in order to determine the nature of any equilibrium solutions.

We shall find that the basic reproduction number R0 is a key parameter in this

regard. We shall prove that there are two equilibrium solutions:

• A zero solution (disease-free equilibrium) which is always possible.

• A non-zero solution which is possible if and only if R0 > 1.

We then show that if R0 ≤ 1 the disease will always die out, that is the disease-free

equilibrium is globally asymptotically stable. Next we show that if R0 > 1 there is a

unique non-zero endemic equilibrium solution. For R0 > 1 we shall show that (under

mild irreducibility conditions) that the disease-free equilibrium is unstable. Then

we show that under the same irreducibility conditions if R0 > 1 and the disease is
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initially present then the disease ultimately persists in all groups of addicts and all

groups of needles.

3.1 Main Analytical Results

Theorem 3.1.1. In the system (2.1)-(2.9), if R0 is less than or equal to unity, the

system has a unique equilibrium solution where the disease has died out in each group

of addicts and in each shooting gallery.

Proof. This theorem can be proved in several stages. Let π∗
xi, π

∗
si and β∗

lj denote

the equilibrium proportions of addicts and needles respectively. The existence of the

disease-free equilibrium is obvious with π∗
xi = 1 and π∗

si = 0 where s = x1, h1, h2, y, z

and β∗
lj = 0 where l = h1, h2, y. From the equilibrium versions of equations (2.7) -

(2.9), we have the following:

β∗
h1j

=

∑p
i=1 Λijπ

∗
h1i∑p

i=1 Λij + τj
, (3.1)

β∗
h2j

=

∑p
i=1 Λijπ

∗
h2i∑p

i=1 Λij + τj
, (3.2)

and

β∗
yj =

∑p
i=1 Λijπ

∗
yi∑p

i=1 Λij + τj
. (3.3)

From equation (2.3) we have that: π∗
h1i

= (1− δ)Ki where:

Ki =
1

µ+ σ

q∑
j=1

(π∗
xi + π∗

x1i
)λiPij(1− ϕij)(αh(β

∗
h1j

+ β∗
h2j

) + αyβ
∗
yj).
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Similarly, we have that:

π∗
h2i

= δKi,

π∗
yi =

σ(1− δ)Ki

µ
,

π∗
zi =

σαδKi

µ
,

β∗
h1j

=
Ki(1− δ)

∑p
i=1 Λij∑p

i=1 Λij + τj
,

β∗
h2j

=
Kiδ

∑p
i=1 Λij∑p

i=1 Λij + τj
,

β∗
yj =

σ(1− δ)Ki

∑p
i=1 Λij

µ(
∑p

i=1 Λij + τj)
. (3.4)

We get π∗
hi as the following:

π∗
hi = π∗

h1i
+ π∗

h2i
= (1− δ)Ki + δKi,

=
1

µ+ σ

q∑
j=1

(π∗
xi + π∗

x1i
)λiPij(1− ϕij)(αh(β

∗
h1j

+ β∗
h2j

) + αyβ
∗
yj),

=
1

µ+ σ

q∑
j=1

(1− π∗
h1i

− π∗
h2i

− π∗
yi − π∗

zi)

λiPij(1− ϕij)(αh(β
∗
h1j

+ β∗
h2j

) + αyβ
∗
yj),

=
1

µ+ σ

(
1− π∗

hi −
σ

µ
(1− δ)π∗

hi −
σ

µ
δαπ∗

hi

)
q∑

j=1

λiPij(1− ϕij)(αh(β
∗
h1j

+ β∗
h2j

) + αyβ
∗
yj),

=
1

µ+ σ

(
1− π∗

hi

(
1 +

σ

µ
(1− δ) +

σ

µ
δα

))
q∑

j=1

λiPij(1− ϕij)

∑p
k=1 Λkjπ

∗
hk∑p

k=1 Λkj + τj

(
αh + αy

σ

µ
(1− δ)

)
,

≤
p∑

k=1

Q∗
ikπ

∗
hk. (3.5)
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Here

Q∗
ik =

q∑
j=1

ξλiPij(1− ϕij)Λkj∑p
k=1 Λkj + τj

. (3.6)

Now, we want to express π∗
h1i
, π∗

h2i
, π∗

yi and π
∗
zi in terms of π∗

hi. Thus, we have:

π∗
h1i

=
(1− δ)Yi
µ+ σ

,

π∗
h2i

=
δYi
µ+ σ

,

π∗
yi =

σ(1− δ)Yi
µ(µ+ σ)

,

π∗
zi =

σαδYi
µ(µ+ σ)

,

where:

Yi =

(
1−π∗

hi

(
1+

σ

µ
(1−δ)+σ

µ
δα

)) q∑
j=1

λiPij(1−ϕij)

∑p
k=1 Λkjπ

∗
hk∑p

k=1 Λkj + τj

(
αh+αy

σ

µ
(1−δ)

)
.

Notice that

π∗
hi ≤

p∑
k=1

Q∗
ikπ

∗
hk,

where Q∗ is given by (3.6).

It is clear that the disease-free equilibrium π∗
xi = 1, π∗

si = 0 and β∗
lj = 0 for

each i, j is always a solution to the differential equations system (2.1) - (2.9). We

need to show that if R0 ≤ 1 then there is no other equilibrium solution. To show

that we need the following lemma:
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Lemma 3.1.2. The matrix Q∗
ik which is defined as follows:

Q∗
ik =

q∑
j=1

ξλiPijΛkj(1− ϕij)∑p
s=1 Λsj + τj

,

has the same eigenvalues as the matrix QT where:

QT
ik = Qki =

q∑
j=1

ξλkPkjΛij(1− ϕij)∑p
s=1 Λsj + τj

,

see equations (3.6).

Proof. We write

aj =

p∑
s=1

Λsj + τj.

Hence,

QT
ik =

q∑
j=1

ξλkPkjΛij(1− ϕij)

aj
,

=

q∑
j=1

ξλkλiPkjPij
ni

mj
(1− ϕij)

aj
,

=

q∑
j=1

ξλkλiPkjPij
nk

mj

ni

nk
(1− ϕij)

aj
,

= Q∗
ik

ni

nk

.

The required result is obtained as it is straightforward to show that if (e1, e2, . . . , ep)

is a left eigenvector of the matrix QT
ik then (n1e1, n2e2, . . . , npep) is a left eigenvector

of the matrix Q∗
ik. Thus the result follows.

The following corollary is interesting in view of our previous results.
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Corollary 3.1.3. If the matrix Q̂∗
jr is defined as follows:

Q̂∗
jr =

∑p
l=1 ξΛlr(1− ϕlr)λlPlj∑p

s=1 Λsr + τr
,

then it has the same spectral radius as the matrix QT
ik where:

QT
ik = Qki =

q∑
j=1

ξλkPkjΛij(1− ϕij)∑p
s=1 Λsj + τj

.

Proof. Similar to proof of Lemma 2.3.2.

We suppose that for each pair of groups i and k of addicts, λi > 0, and there

exists a shooting gallery j0 with:

Pij0(1− ϕij0)Λkj0 > 0.

This ensures that every group of addicts can transmit the infection forwards.

We are now in a position to complete the proof of Theorem 3.1.1, namely if

R0 ≤ 1 then the only equilibrium is the disease-free equilibrium. We shall prove

this by contradiction. Suppose that R0 ≤ 1 and there is another solution with some

π∗
hi0

= Ki0 > 0. Then from the equilibrium solutions (3.4) we deduce that each of:

π∗
h1i0

, π∗
h2i0

, π∗
yi0
, and π∗

zi0
,

is strictly positive. From the equilibrium versions of equations (2.1) and (2.2) we

deduce that π∗
xi0

> 0 and π∗
x1i0

> 0. Also, from the equilibrium equations (3.4) we
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deduce that for any j = 1, 2, . . . , q:

β∗
h1j
, β∗

h2j
, and β∗

yj,

are all strictly positive.

Next from the equilibrium versions of equation (2.3) and (2.4) we deduce that for

any other group i of addicts π∗
h1i

and π∗
h2i

are also strictly positive hence so is π∗
hi.

Then using equation (3.5):

π∗
hi <

p∑
k=1

Q∗
ikπ

∗
hk for i = 1, 2, . . . p.

Write πππ∗
h = (π∗

h1
, π∗

h2
, . . . , π∗

hp
). Hence there exists ϵ > 0 such that:

Q∗πππ∗
h > (1 + ϵ)πππ∗

h,

so

Q∗2πππ∗
h > (1 + ϵ)Q∗πππ∗

h > (1 + ϵ)2πππ∗
h.

Similarly,

Q∗3πππ∗
h > (1 + ϵ)3πππ∗

h.

Hence,

Q∗nπππ∗
h > (1 + ϵ)nπππ∗

h,
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arguing by induction, so

|Q∗nπππ∗
h| > (1 + ϵ)n|πππ∗

h|.

Therefore, as we can define a norm ∥A∥ on the space of s× t matrices by,

∥A∥ = sup{|Ax| : |x| = 1} = sup

{
|Ax|
|x|

, x ̸= 0

}
,

we obtain

∥Q∗n∥ = sup
x̸=0

{
|Q∗nx|
|x|

}
,

≥ |Q∗nπππ∗
h|

|πππ∗
h|

,

> (1 + ϵ)n,

and so ∥Q∗n∥1/n ≥ (1+ ϵ). As n −→ ∞, ∥Q∗n∥1/n −→ R0, the spectral radius of Q
∗.

Hence R0 ≥ (1 + ϵ) > 1. This contradicts R0 ≤ 1. We deduce that we must have

π∗
hi = 0 for each group i of addicts. Thus Ki = 0 for each group i. The equilibrium

solutions (3.4), then imply that π∗
h1i
, π∗

h2i
, π∗

yi and π
∗
zi are all zero for each group i

of addicts and β∗
h1j
, β∗

h2j
and β∗

yj are zero for each shooting gallery j.

The equilibrium version of (2.1) then implies that π∗
xi = 1 for each group i of

addicts and the equilibrium of (2.2) then implies that π∗
x1i

= 0 for each group i of

addicts. Thus ifR0 ≤ 1 any equilibrium solution must be the disease-free equilibrium.

The next theorem answers the question of what happens when 0 ≤ R0 ≤ 1.
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In this case we shall show that when R0 takes the values between 0 and 1 inclusive

HCV will die out in each group of addicts and needles in each shooting gallery.

Theorem 3.1.4. The disease will ultimately die out whatever the initial conditions

if R0 ≤ 1.

Proof. The strategy we use to prove this theorem involves a number of steps. First

we note that πhi = πh1i + πh2i represents the proportion of acutely infected addicts

in group i, and, for the disease to die out, we expect that πhi(t) −→ 0 as t −→ ∞

for each i. To establish this, we replace the differential equation for each πhi, in

which the right-hand side is complicated and includes many of the other unknown

variables, with a differential inequality that involves only πhi and π
∞
hk = lim sup

t→∞
πhk(t),

k = 1, 2, . . . p. For each i and j, we define

π∞
h2i

= lim sup
t→∞

πh2i(t), π∞
yi = lim sup

t→∞
πyi(t), π∞

zi = lim sup
t→∞

πzi(t),

β∞
h1j

= lim sup
t→∞

βh1j(t), β∞
h2j

= lim sup
t→∞

βh2j(t), β∞
yj = lim sup

t→∞
βyj(t).

To obtain the differential inequality for each πhi, we must first show that π∞
yi , π

∞
zi ,

β∞
h1j
, β∞

h2j
and β∞

yj can all be bounded above by expressions involving π∞
h1k

and π∞
h2k

k = 1, 2, . . . p. An identity connecting π∞
hk with π∞

h1k
and π∞

h2k
then leads to the dif-

ferential inequality from which we obtain an upper bound for πhi(t) in terms of π∞
hk,

k = 1, 2, . . . p This upper bound then leads to the contradiction that R0 > 1 if it is

assumed that π∞
hi > 0 for some i.

Now we aim to prove several results that give upper bounds on the limit supre-
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mum of each group i of addicts and shooting gallery j in terms of π∞
h1i

or π∞
h2i

. From

equation (2.3) and equation (2.4) we can express the link between π∞
h1i

and π∞
h2i

. Ar-

guing as in the model of Corson et al. (2012) and applying this result will complete

our proof. We have the following:

Lemma 3.1.5. π∞
yi ≤ σ

µ
π∞
h1i

.

Proof. Equation (2.5) gives:

d

dt
πyi = σπh1i − µπyi.

As we assume that π∞
h1i

is the lim sup of πh1i, then π
∞
h1i

+ ϵ ≥ πh1i for ϵ > 0 and

t ≥ t0(ϵ).

d

dt

[
πyi e

µt
]
= σπh1i e

µt,

≤ σ(π∞
h1i

+ ϵ) eµt, ∀ t ≥ t0(ϵ) and ϵ > 0.

Integrating over [t0(ϵ), t], we deduce that:

πyi(t) ≤ πyi(t0(ϵ)) e
[(−µ)(t−t0(ϵ))] + σ(π∞

h1i
+ ϵ)

[
1− e[(−µ)(t−t0(ϵ))]

µ

]
,

≤ ϵ+
σ

µ
(π∞

h1i
+ ϵ), ∀ t ≥ t1(ϵ) > t0(ϵ).

Letting t −→ ∞ and taking the lim sup and choosing ϵ1 = ϵ
µ
(µ + σ), we have the

following:

π∞
yi ≤

σ

µ
π∞
h1i

+ ϵ1.

So, the result follows as ϵ1 is positive and arbitrary. Using a similar argument it is
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straightforward to show that:

π∞
zi ≤ σα

µ
π∞
h2i
,

β∞
h1j

≤
∑p

i=1 Λijπ
∞
h1i∑p

l=1 Λlj + τj
,

β∞
h2j

≤
∑p

i=1 Λijπ
∞
h2i∑p

l=1 Λlj + τj
,

β∞
yj ≤

∑p
i=1 Λijπ

∞
yi∑p

l=1 Λlj + τj
.

Define πhk = πh1k+πh2k. πhk represents the proportion of addicts in group k who

are infected and in the acute phase.

Lemma 3.1.6. For each i = 1, 2, . . . p:

π∞
hi =

π∞
h1i

1− δ
=
π∞
h2i

δ
.

Proof. Using equations (2.3) and (2.4) we are able to find the relationship between

π∞
h1i

and π∞
h2i

.

d

dt

( πh1i

1− δ
− πh2i

δ

)
= −(µ+ σ)

( πh1i

1− δ
− πh2i

δ

)
.

Hence

( πh1i

1− δ
− πh2i

δ

)
=

(πh1i(0)

1− δ
− πh2i(0)

δ

)
exp(−(µ+ σ)t).
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Thus,
(

πh1i

1−δ
− πh2i

δ

)
−→ 0 as t −→ ∞. Hence given ϵ > 0 there exists t0 such that

for t ≥ t0:

(1− δ)πh2i ≤ (1− δ)π∞
h2i

+ ϵ/2,

and

δπh1i − (1− δ)πh2i ≤ ϵ/2.

So

δπh1i ≤ (1− δ)π∞
h2i

+ ϵ.

Hence,

δπ∞
h1i

≤ (1− δ)π∞
h2i

+ ϵ.

Since ϵ > 0 is arbitrary, then:

δπ∞
h1i

≤ (1− δ)π∞
h2i
.

A similar argument shows that:

(1− δ)π∞
h2i

≤ δπ∞
h1i
.

Hence, we deduce the following:

δπ∞
h1i

= (1− δ)π∞
h2i
.
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Recall that πhi = πh1i + πh2i, then:

π∞
hi ≤ π∞

h1i
+ π∞

h2i
= π∞

h1i

(
1 +

δ

1− δ

)
,

≤
π∞
h1i

1− δ
,

(1− δ)π∞
hi ≤ π∞

h1i
. (3.7)

However,

(1− δ)πhi = (1− δ)(πh1i + πh2i),

= πh1i + (1− δ)πh2i − δπh1i,

πh1i = (1− δ)πhi + δπh1i − (1− δ)πh2i.

Hence given ϵ > 0 exists t1 such that for t ≥ t1:

(1− δ)πhi ≤ (1− δ)π∞
hi +

ϵ

2
,

δπh1i − (1− δ)πh2i ≤ ϵ

2
,

πh1i ≤ (1− δ)π∞
hi + ϵ,

so

π∞
h1i

≤ (1− δ)π∞
hi + ϵ.
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Since ϵ > 0 is arbitrary, then:

π∞
h1i

≤ (1− δ)π∞
hi .

Hence

π∞
hi ≤

π∞
h1i

1− δ
.

Putting this together with (3.7) we deduce:

π∞
hi =

π∞
h1i

1− δ
=
π∞
h2i

δ
.

Now, we have:

d

dt
πhi =

q∑
j=1

(
1− πhi − πyi − πzi

)
λiPij(1− ϕij)

(αh(βh1j + βh2j) + αyβyj)− (µ+ σ)πhi.

Hence given ϵ > 0, there exists t2 ≥ t0 such that for t2 ≤ t:

d

dt
πhi ≤ (1− πhi)

q∑
j=1

λiPij(1− ϕij)
(
αh(β

∞
h1j

+ β∞
h2j

) + αyβ
∞
yj

)
− (µ+ σ)πhi + ϵ,
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≤ (1− πhi)

q∑
j=1

λiPij(1− ϕij)

αh(
∑p

k=1 Λkjπ
∞
h1k

+
∑p

k=1 Λkjπ
∞
h2k

) + αy

∑p
k=1 Λkjπ

∞
yk∑p

l=1 Λlj + τj

− (µ+ σ)πhi + ϵ,

≤ (1− πhi)

[
q∑

j=1

λiPij(1− ϕij)
(
αh + αy

σ

µ
(1− δ)

)
(∑p

k=1 Λkjπ
∞
hk∑p

l=1 Λlj + τj
+ ϵ

)]
− (µ+ σ)πhi.

= (µ+ σ)

[
(1− πhi)

(
q∑

j=1

λiPij(1− ϕij)ξ
∑p

k=1 Λkjπ
∞
hk∑p

l=1 Λlj + τj
+ ϵ1i

)
− πhi

]
,

= (µ+ σ)

[
(1− πhi)

(
p∑

k=1

Q∗
ikπ

∞
hk + ϵ1i

)
− πhi

]
,

where ϵ1 = ϵξ
∑q

j=1 λiPij(1−ϕij), and Q∗ is a matrix defined earlier. Recall that R0

is the spectral radius of Q∗ and R0 = ρ(Q∗) ≤ 1. Thus we have:

d

dt
πhi ≤ (µ+ σ)

[( p∑
k=1

Q∗
ikπ

∞
hk + ϵ1i

)
− πhi

(
1 +

p∑
k=1

Q∗
ikπ

∞
hk + ϵ1i

)]
.

Hence,

π∞
hi ≤

∑p
k=1Q

∗
ikπ

∞
hk + ϵ1i

1 +
∑p

k=1Q
∗
ikπ

∞
hk + ϵ1i

.

As ϵ is arbitrary hence letting ϵ −→ 0 and ϵ1i −→ 0 we deduce that:

π∞
hi ≤

∑p
k=1Q

∗
ikπ

∞
hk

1 +
∑p

k=1Q
∗
ikπ

∞
hk

.

Now, we suppose that some π∞
hi > 0 and that for each pair of groups i and k of

97



addicts, λi > 0 and there exists a shooting gallery j0 with:

Pij0(1− ϕij0)Λkj0 > 0. (3.8)

Then
∑p

k=1Q
∗
ikπ

∞
hk > 0 so there exists ϵ2 > 0 such that:

π∞
hi (1 + ϵ2) ≤

p∑
k=1

Q∗
ikπ

∞
hk,

(i.e. in vector notation)

πππ∞
h (1 + ϵ2) ≤ QQQ∗πππ∞

h ,

where πππ∞
h = (π∞

h1, π
∞
h2, . . . , π

∞
hp) ̸= 000, then:

πππ∞
h (1 + ϵ2)

2 ≤ QQQ∗2πππ∞
h ,

πππ∞
h (1 + ϵ2)

3 ≤ QQQ∗3πππ∞
h ,

000 < πππ∞
h (1 + ϵ2)

n ≤ QQQ∗nπππ∞
h .

Thus,

| πππ∞
h | (1 + ϵ2)

n ≤ ∥ QQQ∗n ∥ | πππ∞
h | where | πππ∞

h |≠ 0.

Hence,

∥ QQQ∗n ∥ ≥ (1 + ϵ2)
n,

∥ QQQ∗n ∥
1
n ≥ (1 + ϵ2),
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letting n −→ ∞, we deduce that:

R0 = ρ(Q∗) ≥ 1 + ϵ2 > 1.

This contradicts that R0 ≤ 1, thus if R0 ≤ 1 then each π∞
hk = 0. It is straightforward

to show that:

π∞
h1k
, π∞

h2k
, π∞

yk, π∞
zk, β∞

h1k
, β∞

h2k
and β∞

yk,

are all zero and hence:

π∞
x1k

= 0 and π∞
xk = 1.

So the system approaches the disease-free equilibrium as t −→ ∞. Therefore, we

must have:

lim
t→∞

πh1k(t) = lim
t→∞

πh2k(t) = lim
t→∞

πyk(t) = lim
t→∞

πzk(t) =

lim
t→∞

βh1k(t) = lim
t→∞

βh2k(t) = lim
t→∞

βyk(t) = 0.

This completes the proof of the global stability of the disease-free equilibrium when

R0 ≤ 1. Further analysis will show the existence of a non-zero endemic equilibrium

solution when R0 exceeds unity.

Theorem 3.1.7. If R0 ≤ 1, then there is only the disease-free equilibrium solution

to the system.

Proof. Actually this follows from the results above, and we have shown it before, but
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we can show it directly. As we mentioned earlier that:

π∗
hi = π∗

h1i
+ π∗

h2i
,

=
1

µ+ σ

(
1− π∗

hi

(
1 +

σ

µ
(1− δ) +

σ

µ
δα
))

q∑
j=1

λiPij(1− ϕij)

∑p
k=1 Λkjπ

∗
hk∑p

k=1 Λkj + τj

(
αh + αy

σ

µ
(1− δ)

)
,

= (1− π∗
hiP )

∑q
j=1 ξλiPij(1− ϕij)

∑p
k=1 Λkj∑p

k=1 Λkj + τj
π∗
hk,

= (1− π∗
hiP )

p∑
k=1

Q∗
ikπ

∗
hk, (3.9)

where P = 1 + σ
µ
(1− δ) + σ

µ
δα. Then we have:

π∗
hi =

∑p
k=1Q

∗
ikπ

∗
hk

1 + P
∑p

k=1Q
∗
ikπ

∗
hk

=
xi

1 + Pxi
,

where

xi =

p∑
k=1

Q∗
ikπ

∗
hk =

p∑
k=1

Q∗
ik

xk
1 + Pxk

.

This is considered as the key defining equation. We can write this as:

xxx = M(xxx)xxx, (3.10)

such that xxx is a vector xxx = (x1, x2, . . . , xp) and M is a matrix with:

Mik(xxx) =
Q∗

ik

1 + Pxk
.

Note that all Mik ≥ 0 and Mik(xxx) is decreasing in xxx. Also, M(000) = Q∗. We want to

show that if R0 ≤ 1, then the only non-negative solution xxx to this equation is xxx = 000
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(i.e. x1 = x2 = · · · = xp = 0). This will be done following a similar argument as in

the proof of Lemma 3.1 of Greenhalgh (1990).

Let us suppose that xxx is a non-zero (positive) solution to our equation xxx = M(xxx)xxx,

where xi ≥ 0 for i = 1, 2, . . . , p and some xj > 0. We have previously assumed that

for each pair of groups i and k of addicts λi > 0 and there exists a shooting gallery

j0 with Pij0(1− ϕij0)Λkj0 > 0. Hence, Q∗
ik > 0 for each i, k:

Mik(xxx) =
Q∗

ik

1 + Pxk
< Q∗

ik =Mik(000),

xxxi =

p∑
k=1

Mik(xxx)xk ≤
p∑

k=1

Mik(000)xk =
(
M(000)xxx

)
i
.

Moreover there is strict inequality here as some xi > 0. Hence:

xxx <M(000)xxx,

so, there exists ϵ > 0 such that:

xxx(1 + ϵ) < M(000)xxx,

xxx(1 + ϵ)2 < M(000)xxx(1 + ϵ) <M2(000)xxx.

Similarly:

xxx(1 + ϵ)3 < M3(000)xxx,

xxx(1 + ϵ)n < Mn(000)xxx.
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Take the norm for the vectors:

|xxx|(1 + ϵ)n < ∥ Mn(000) ∥ |xxx|,

(1 + ϵ)n < ∥ Mn(000) ∥,

1 + ϵ < ∥ Mn(000) ∥1/n .

Take the limit as n goes to infinity limn→∞ ∥ Mn(000) ∥1/n= limn→∞ ∥ Q∗n ∥1/n= R0.

Therefore we deduce that:

1 + ϵ ≤ R0,

this is a contradiction.

In this following section, we prove that there is at least one positive solution

equilibrium if R0 > 1. The next theorem is proved by a similar technique to Theorem

2 of the model by Greenhalgh (1993). We use C to represent the cone of positive

vectors:

C = {(x1, x2, . . . , xp) : x1 ≥ 0, x2 ≥ 0, . . . , xp ≥ 0}.

C is clearly a cone: if xxx ∈ C then αxxx ∈ C for all α > 0.

Theorem 3.1.8. Assume that R0 > 1. Then the equation (3.10) has at least one

positive non-zero solution corresponding to an equilibrium.

We use Theorem 1.6 of Gatica & Smith (1977) applied to the operator T : C −→ C

given by the equation:

T (xxx) = M(xxx)xxx. (3.11)

This theorem states:
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Theorem 3.1.9. Let T : C −→ C be a compact continuous operator acting on a

Banach space X where X = Rp, such that T (0) = 0 and T is Fréchet differentiable

at xxx=000 in the direction of the cone. Assume that T satisfies:

(a) T ′(000), the Fréchet derivative of T at xxx=0, has an eigenvector xxx ∈ C corresponding

to an eigenvalue ω0 > 1 and 1 is not an eigenvalue of T ′(000) with corresponding

eigenvector in C; and

(b) there exists an R > 0 such that if xxx ∈ C with |xxx| = R and Txxx = µxxx then µ ≤ 1.

Then T has a non-zero fixed point xxx0 ∈ C with |x0x0x0| ≤ R.

In order to apply this theorem we need to prove the following:

(a) T : C −→ C is a continuous compact operator;

(b) T ′(000) has an eigenvector xxx ∈ C corresponding to an eigenvalue ω0 > 1 and 1 is

not an eigenvalue of T ′(000) with corresponding eigenvector in C; and

(c) there exists an R > 0 such that if xxx ∈ C with |xxx| = R and Txxx = µxxx then µ ≤ 1.

To prove this theorem, we need to prove the following results:

Lemma 3.1.10. T(xxx):C−→ C is continuous in xxx for all xxx > 0.

Proof. We shall prove that given ϵ > 0 there exists δ > 0 such that for |xxx− x̃xx| < δ,

|T (xxx) − T (x̃xx)| < ϵ. As for each i and k Mik(xk) is continuous in xk, we know that

there exists δ > 0 such that for |xxx− x̃xx| < δ:

max{|M11x1 − M̃11x̃1|, |M12x2 − M̃12x̃2|, . . . ,

|M1pxp − M̃1px̃p|, . . . , |Mppxp − M̃ppx̃p|} <
ϵ

p
√
p
.
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Then we can use the triangle inequality:

|M11x1 − M̃11x̃1 + · · ·+M1pxp − M̃1px̃p| <
ϵ

p
√
p
+

ϵ

p
√
p
+ · · ·+ ϵ

p
√
p
,

=
pϵ

p
√
p
,

=
ϵ
√
p
.

Similarly for every row in the matrix M i.e. for row r, where r = 1, 2, . . . , p

|Mr1x1 − M̃r1x̃1 + . . . ,+Mrpxp − M̃rpx̃p| <
ϵ
√
p
.

For |xxx− x̃xx| < δ, we have from equation (3.11) that:

|T (xxx)− T (x̃xx)| = |M(xxx)xxx−M(x̃xx)x̃xx|.

For r = 1, 2, . . . p define:

Br =Mr1x1 − M̃r1x̃1 +Mr2x2 − M̃r2x̃2 + · · ·+Mrpxp − M̃rpx̃p.

From the definition of the norm |.| of a vector in Rp we deduce that:

∣∣∣∣∣
(
M11x1 − M̃11x̃1 +M12x2 − M̃12x̃2 + · · ·+M1rxr − M̃1rx̃r,

M21x1 − M̃21x̃1 +M22x2 − M̃22x̃2 + · · ·+M2rxr − M̃2rx̃r,

. . .

...
...

...,

,Mp1x1 − M̃p1x̃1 +Mp2x2 − M̃p2x̃2 + · · ·+Mprxr − M̃prx̃r

)∣∣∣∣∣
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=
√
B2

1 +B2
2 + · · ·+B2

p ,

≤

√
ϵ2

p
+
ϵ2

p
+ · · ·+ ϵ2

p
,

= ϵ.

Therefore, we deduce that:

|T (xxx)− T (x̃xx)| < ϵ.

Thus we have shown that |T (xxx)− T (x̃xx)| < ϵ, for |xxx− x̃xx| < δ. This implies that T (xxx)

is continuous in xxx.

Lemma 3.1.11. T(xxx):C−→ C is bounded.

Proof. We need to show that there exists K such that
[
M(xxx)xxx

]
i
=
∑p

k=1Mik(xxx)xk ≤

K for all i = 1, 2, . . . p. It is sufficient to show that each Mik(xxx)xk is bounded in C.

It is obvious that these quantities are bounded below by zero, because as mentioned

earlier Mik(xxx) ≥ 0. The term Mik(xxx)xk is given by:

[
Q∗

ik

1 +
(
1 + σ

µ
(1− δ) + σ

µ
δα
)
xk

]
xk. (3.12)

We know that Q∗
ik and all other parameters are fixed and finite. Thus, we can re-write

the expression (3.12) as follows:

Mik(xxx)xk =

(
A

1 +Bxk

)
xk,

where A and B are constants independent of xk. Since

xk
1 +Bxk

≤ 1

B
,
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we have that

Mik(xxx)xk ≤
A

B
.

Choosing K = pA
B

will complete the proof of this result.

In normed space a linear operator which is continuous must be bounded and if

such an operator is bounded it must also be continuous (Collatz, 1966). We know

that T (xxx) = M(xxx)xxx is a bounded continuous operator in Rp which is a finite dimen-

sional vector space. In a finite dimensional space the range of T is compact (Oden

& Demkowicz, 2010). Hence, T (xxx) is a continuous compact operator.

We have shown that the operator T (xxx) is a continuous compact operator, and

now we wish to show that T (xxx) is Fréchet differentiable at xxx = 0 in the direction of

the cone C. The operator T (xxx) is Fréchet differentiable at xxx = 0 in the direction of

the cone C if there is a bounded linear operator T ′(0) such that

T (xxx) = T (000) + T ′(0)(xxx) + o(|xxx|),

for all xxx in C (Greenhalgh, 1993). T ′(0) is called the Fréchet derivative of T (xxx) at

xxx = 000 in the direction of the cone C.

Lemma 3.1.12. T (xxx) is Fréchet differentiable at xxx = 0 in the direction of the cone
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C with Fréchet derivative

T ′(0) =



M11(0) M12(0) . . . M1p(0)

M21(0) M22(0) . . . M2p(0)

...
...

Mp1(0) Mp2(0) . . . Mpp(0)


.

Proof. T ′(0) is a bounded linear operator. Let us denote ω(xxx) to be:

ω(xxx) = T (xxx)− T (000)− T ′(000)(xxx). (3.13)

If T is Fréchet differentiable in the direction of the cone C, we must show that:

ω(xxx) = o(|xxx|), for all xxx ∈ C.

From equation (3.13) we deduce the following:

ω(xxx) =MMM(xxx)xxx− T (0)− T ′(0)(xxx).

We mention that M(0) = Q∗. Then:

ω(xxx) =



M11(xxx) M12(xxx) . . . M1p(xxx)

M21(xxx) M22(xxx) . . . M2p(xxx)

...
...

Mp1(xxx) Mp2(xxx) . . . Mpp(xxx)





x1

x2

...

xp


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−



M11(0) M12(0) . . . M1p(0)

M21(0) M22(0) . . . M2p(0)

...
...

Mp1(0) Mp2(0) . . . Mpp(0)





x1

x2

...

xp


,

=



M11(xxx)x1 +M12(xxx)x2 + · · ·+M1p(xxx)xp

M21(xxx)x1 +M22(xxx)x2 + · · ·+M2p(xxx)xp

...
...

Mp1(xxx)x1 +Mp2(xxx)x2 + · · ·+Mpp(xxx)xp



−



M11(0)x1 +M12(0)x2 + · · ·+M1p(0)xp

M21(0)x1 +M22(0)x2 + · · ·+M2p(0)xp

...
...

Mp1(0)x1 +Mp2(0)x2 + · · ·+Mpp(0)xp


,

=



[
M11(xxx)−M11(0)

]
x1 +

[
M12(xxx)−M12(0)

]
x2 + · · ·+

[
M1p(xxx)−M1p(0)

]
xp[

M21(xxx)−M21(0)
]
x1 +

[
M22(xxx)−M22(0)

]
x2 + · · ·+

[
M2p(xxx)−M2p(0)

]
xp

...
...[

Mp1(xxx)−Mp1(0)
]
x1 +

[
Mp2(xxx)−Mp2(0)

]
x2 + · · ·+

[
Mpp(xxx)−Mpp(0)

]
xp


.

Therefore, we observe that:

ω(xxx) = aaa1 + aaa2 + · · ·+ aaap, where for r = 1, 2, . . . p,
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aaar =



0

0

...

Ar

...

0


,

with only entry Ar in the rth row, where:

Ar = [Mr1(xxx)−Mr1(000)]x1 + [Mr2(xxx)−Mr2(000)]x2 + · · ·+ [Mrp(xxx)−Mrp(000)]xp,

|Ar| ≤ |Mr1(xxx)−Mr1(0)| |x1|+ |Mr2(xxx)−Mr2(0)| |x2|+ · · ·+ |Mrp(xxx)−Mrp(0)| |xp|.

Thus

|ω(xxx)| ≤ |A1|+ |A2|+ · · ·+ |Ap|,

≤ |M11(xxx)−M11(0)| |x1|+ |M12(xxx)−M12(0)| |x2|+

· · ·+ |Mp1(xxx)−Mp1(0)| |x1|+ |Mp2(xxx)−Mp2(0)| |x2|+

· · ·+ |Mpp(xxx)−Mpp(0)| |xp|.

Dividing by |xxx| we deduce the following:

|ω(xxx)|
|xxx|

≤ |M11(xxx)−M11(0)|
|x1|
|xxx|

+ |M12(xxx)−M12(0)|
|x2|
|xxx|

+

· · ·+ |Mp1(xxx)−Mp1(0)|
|x1|
|xxx|

+ |Mp2(xxx)−Mp2(0)|
|x2|
|xxx|

+

· · ·+ |Mpp(xxx)−Mpp(0)|
|xp|
|xxx|

,

109



≤
p∑

i=1

q∑
j=1

∣∣Mij(xxx)−Mij(0)
∣∣.

As Mij is continuous at xxx = 000, given ϵ > 0 there exists δ > 0 such that |xxx| < δ

implies that
∣∣Mij(xxx)−Mij(0)

∣∣ < ϵ/p2 for i = 1, 2, . . . , p. Thus,

|ω(xxx)|
|xxx|

< p2
( ϵ
p2

)
= ϵ.

As ϵ > 0 is arbitrary we deduce that

ω(xxx) = o(|xxx|),

and T (xxx) is Fréchet differentiable at xxx = 0 in the direction of the cone C.

Next we are going to prove the second part of the theorem. So, we need to show

that T ′(000) has an eigenvector xxx ∈ C corresponding to an eigenvalue ω0 > 1 and 1 is

not an eigenvalue of T ′(000) with corresponding eigenvector in C.

Lemma 3.1.13. T ′(000) has an eigenvector xxx ∈ C corresponding to an eigenvalue

ω0 > 1 and 1 is not an eigenvalue of T ′(000) with corresponding eigenvector in C.

Proof. T ′(000) is a matrix with positive entries (as we know that M(xxx) ≥ 0). We can

use the Perron-Frobenius theory of positive matrices (Bapat & Raghavan, 1997).

This theory says that there is a positive real number r, called the Perron root or

the Perron-Frobenius eigenvalue such that r is an eigenvalue of T ′(000) and any other

eigenvalue, λ is strictly smaller in absolute value, |λ| < r.
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Thus the spectral radius ρ(T ′(000)) = r. Furthermore, there exists an eigenvector

vvv of T ′(000) with eigenvalue r such that all components of vvv are positive. Therefore,

if ρ(T ′(000)) > 1, then T ′(000) has an eigenvector vvv ∈ C which corresponds to an eigen-

value ω0 > 1. The theory also states that there are no other eigenvalues with positive

eigenvectors. So, 1 cannot be an eigenvalue of T ′(000) with corresponding eigenvector

in C. This completes the proof of this result.

We are now going to prove last condition of the theorem, which will complete the

proof of Theorem 3.1.9.

Lemma 3.1.14. There exists R > 0 such that if xxx ∈ C with |xxx| = R and T (xxx) = µxxx,

then µ ≤ 1.

Proof. Assume that xxx ∈ C with |xxx| = R and T (xxx) = µxxx. Since T (xxx) is positive for

all xxx ≥ 0, then we obtain that µ ≥ 0.

Now let ηηη ∈ C where ηηη = xxx/R and |ηηη| = 1. Then

µ xxx = T (xxx),

µ R ηηη = T (R ηηη),

µ ηηη =
1

R
T (R ηηη).

As µ ≥ 0 then |µηηη| = µ|ηηη| = µ = 1
R
|T (R ηηη)|. We proved earlier that T (xxx) is a

bounded compact operator, thus there is a positive constant y which is independent

of R, such that: |T (xxx)| ≤ y for all xxx and hence:

µ =
1

R
|T (Rηηη)| ≤ y

R
.
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Hence, if R ≥ y then we have that µ ≤ 1.

We are now in position to show that the endemic equilibrium solution to our

model is unique. This is obtained by using a similar argument along the lines in the

proof of Theorem 3.1 of Lajmanovich & Yorke (1976), who developed a deterministic

model to examine the spread of gonorrhea in an non-homogeneous population. The

work of Lajmanovich and Yorke (1976) considers disease that does not confer immu-

nity (i.e. gonorrhea) in a population divided into n groups, Gi where i = 1, 2, . . . n,

having constant contact rates with each other. The authors study an autonomous

differential equation that models the development of the infection levels in the n

groups. Using a Liapunov function, they prove a striking dichotomy: either the dis-

ease dies out or there is a unique positive equilibrium state. The main result of their

work is that either the epidemic will die out naturally for every possible initial stage

of the epidemic, or when this is not true and the initial number of infectives of at

least one group is nonzero, the disease will remain endemic for all future time. Using

the results of Lajmanovich and Yorke we shall show that any non-zero equilibrium

solution must be unique. First, we need the following lemma:

Lemma 3.1.15. Suppose that some π∗
hk > 0 and for each i, k, λi > 0 and there

exists j0 with

Pij0(1− ϕij0)Λkj0 > 0.

Then for each i = 1, 2, . . . p, 1
P
> π∗

hi > 0, where P = 1 + σ
µ
(1− δ) + σ

µ
δα.

Proof. Under the above conditions for i, we have:

p∑
k=1

Q∗
ikπ

∗
hk > 0.
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Therefore,

1

P
> π∗

hi

=

∑p
k=1Q

∗
ikπ

∗
hk

1 + P
∑p

k=1Q
∗
ikπ

∗
hk

> 0.

Theorem 3.1.16. If R0 > 1, the system (2.1)- (2.9) has a unique endemic equilib-

rium.

Proof. Let (π̃∗
h1, π̃

∗
h2, . . . , π̃

∗
hp) and (π∗

h1, π
∗
h2, . . . , π

∗
hp) be two distinct non-zero equi-

librium solutions. This implies that π∗
hi0

̸= π̃∗
hi0

for some i0 ∈ 1, 2, . . . p. So,

π̃∗
hi0
/π∗

hi0
̸= 1, thus either π̃∗

hi0
/π∗

hi0
> 1 or π̃∗

hi0
/π∗

hi0
< 1. If π̃∗

hi0
/π∗

hi0
< 1 we

can redefine our parameters to allow us to assume without loss of generality that

π̃∗
h1/π

∗
h1 > 1, and moreover, that

π̃∗
h1

π∗
h1

>
π̃∗
hj

π∗
hj

∀ j = 2, 3, . . . p.

Then, from equation (3.9) we deduce that:

0 = −π̃∗
h1 + (1− Pπ̃∗

h1)

p∑
k=1

Q∗
ikπ̃

∗
hk,

= −π∗
h1 + (1− Pπ∗

h1)

p∑
k=1

Q∗
ikπ

∗
hk.

Now, we multiply the two sides of the first equation by π∗
h1/π̃

∗
h1. We deduce that:

0 = −π∗
h1 + (1− Pπ̃∗

h1)

p∑
k=1

Q∗
ikπ̃

∗
hk

π∗
h1

π̃∗
h1

,
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< −π∗
h1 + (1− Pπ∗

h1)

p∑
k=1

Q∗
ikπ

∗
hk.

This is because
π̃∗
hk

π̃∗
h1
π∗
h1 ≤ π̃∗

hk for k = 1, 2, . . . p and 1 − Pπ̃∗
h1 < 1 − Pπ∗

h1. This is a

contradiction thus we cannot have two distinct non-zero equilibrium solutions. This

implies that π∗
hi = π̃∗

hi for i = 1, 2, . . . , p. This complete the proof of existing a unique

endemic equilibrium when R0 > 1.

We have examined the behaviour of our disease transmission model in the case

where R0 ≤ 1. We have shown that this is a necessary and sufficient condition for

HCV to die out among group of injecting drug users and shooting galleries. We also

showed that for R0 > 1 there exists a unique endemic equilibrium. We shall prove

that under the condition R0 > 1 the disease-free equilibrium is unstable and HCV

will remain persistent in the population.

3.2 Stability of the Disease-Free Equilibrium

From mathematical and biological points of view, it is usually important to analyse

the local stability of the disease-free equilibrium in both cases where R0 ≤ 1 and R0 >

1. For R0 ≤ 1 we know that the disease-free equilibrium is globally asymptotically

stable hence locally asymptotically stable. Now we shall show that if R0 > 1 then

the disease-free equilibrium is unstable.

Theorem 3.2.1. The disease-free equilibrium is unstable if R0 > 1.

Proof. We know that for each group i of injecting drug users, πxi+πx1i+πh1i+πh2i+

πyi + πzi = 1. Since we are only interested in stability of the system behaviour, we

can reduce the system of (2.1) - (2.9) to a system which consists of equations (2.2)
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- (2.9). This done by omitting the equation (2.1) from consideration, as this will

not affect the final result because the equations are linearly independent. We take

the remaining equations (2.2) – (2.9) and linearise the system about the disease-

free equilibrium. That is we consider a small perturbation about the disease-free

equilibrium, thus πx1i, πh1i, πh2i, πyi, πzi, βh1j, βh2j and βyj are all small. Then we

neglect the quadratic and higher order terms which are of second and higher order

in small quantities. The equations become for i = 1, 2, . . . p and j = 1, 2, . . . q.

dπx1i

dt
= σ(1− α)πh2i − µπx1i, (3.14)

dπh1i

dt
=

q∑
j=1

(1− δ)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh1i, (3.15)

dπh2i

dt
=

q∑
j=1

δλiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh2i, (3.16)

dπyi
dt

= σπh1i − µπyi, (3.17)

dπzi
dt

= σαπh2i − µπzi, (3.18)

dβh1j

dt
=

p∑
i=1

Λijπh1i −
( p∑

i=1

Λij + τj

)
βh1j, (3.19)

dβh2j

dt
=

p∑
i=1

Λijπh2i −
( p∑

i=1

Λij + τj

)
βh2j, (3.20)

dβyj
dt

=

p∑
i=1

Λijπyi −
( p∑

i=1

Λij + τj

)
βyj. (3.21)

Note that in the above system of differential equations (3.14)–(3.21) the πzi term

appears only in the fifth equation (3.18). Consider the system ignoring this equation,

we have:

dπx1i

dt
= σ(1− α)πh2i − µπx1i, (3.22)
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dπh1i

dt
=

q∑
j=1

(1− δ)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh1i, (3.23)

dπh2i

dt
=

q∑
j=1

δλiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh2i, (3.24)

dπyi
dt

= σπh1i − µπyi, (3.25)

dβh1j

dt
=

p∑
i=1

Λijπh1i −
( p∑

i=1

Λij + τj

)
βh1j, (3.26)

dβh2j

dt
=

p∑
i=1

Λijπh2i −
( p∑

i=1

Λij + τj

)
βh2j, (3.27)

dβyj
dt

=

p∑
i=1

Λijπyi −
( p∑

i=1

Λij + τj

)
βyj. (3.28)

We shall show that if R0 > 1 then for the above set of equations (3.22)–(3.28) the

disease-free equilibrium is locally unstable. Then using the definition of the local

asymptotical stability (Jordan & Smith, 1987) and writing ξξξ = (πx11, πh11, πh21, πy1,

πx12, πh12, πh22, . . . , πyp, βh11, βh21, βy1, βh12, βh22, βy2, . . . , βyq), we deduce that there

exists ϵ > 0 such that for all t0 and δ > 0 there exists some ξξξ(0) with |ξξξ(0)| < δ and

|ξξξ(t1)| > ϵ for some t1 ≥ t0.

Hence returning to our earlier system of differential equations (3.14)-(3.21) when

R0 > 1 and writing ηηη = (πx11, πh11, πh21, πy1, πz1, πx12, πh12, πh22, . . . , πyp, πzp, βh11, βh21,

βy1 , βh12, βh22, βy2, . . . , βyq), we deduce that there exists ϵ > 0 such that for all t0

and δ > 0 taking πzi(0) = 0, ηηη(0) with |ηηη(0)| < δ and |ηηη(t1)| ≥ |ξξξ(t1)| > ϵ for some

t1 ≥ t0 as in the earlier case. This is because ξξξ(t) behaves the same in both sets of

equations. In other words local instability of the second set of linearised equations

(3.22) - (3.28) for R0 > 1 implies local instability of the first set.
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Thus our new system will consider 4p+ 3q equations. These 4p+ 3q differential

equations describe the neighbourhood of the equilibrium point and can be expressed

in the form

dxxx

dt
= Jxxx (3.29)

where xxxT = (πx11, πh11, πh21, πy1, πx12, πh12, πh22, . . . , πyp, βh11, βh21, βy1, βh12, . . . , βyq).

J the Jacobian matrix of this system at the disease-free equilibrium is given by:

JJJ =

 KKK LLL

MMM NNN

 ,

where KKK is the 4p× 4p matrix.

KKK =



KKK1 0 0 . . . 0

0 KKK1 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . KKK1


,

KKK1 =



−µ 0 σ(1− α) 0

0 −(µ+ σ) 0 0

0 0 −(µ+ σ) 0

0 σ 0 −µ


,

and
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LLL =



LLL11 LLL12 . . . LLL1q

LLL21 LLL22 . . . LLL2q

...
...

. . .
...

LLLp1 LLLp2 . . . LLLpq


.

Here for i = 1, 2, . . . p, j = 1, 2, . . . q,

LLLij =



0 0 0

(1− δ)λiPij(1− ϕij)αh (1− δ)λiPij(1− ϕij)αh (1− δ)λiPij(1− ϕij)αy

δλiPij(1− ϕij)αh δλiPij(1− ϕij)αh δλiPij(1− ϕij)αy

0 0 0


.

MMM =



MMM11 MMM12 . . . MMM1p

MMM21 MMM22 . . . MMM2p

...
...

. . .
...

MMM q1 MMM q2 . . . MMM qp


,

we have for k = 1, 2, . . . q and l = 1, 2, . . . p:

MMMkl =


0 Λlk 0 0

0 0 Λlk 0

0 0 0 Λlk

 .
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Also

NNN =



NNN11 0 . . . 0

0 NNN22 . . . 0

...
...

0 0 . . . NNN qq


where for j = 1, 2, . . . q:

−NNN jj =


∑p

i=1 Λij + τj 0 0

0
∑p

i=1 Λij + τj 0

0 0
∑p

i=1 Λij + τj

 .

Clearly, (−µ) is a p times repeated eigenvalue of JJJ . The remaining eigenvalues are

eigenvalues of the matrix Ĵ̂ĴJ where

Ĵ̂ĴJ =

 K̂̂K̂K L̂̂L̂L

M̂̂M̂M NNN

 .

Here we have that:

K̂̂K̂K =



K̂̂K̂K1 0 0 . . . 0

0 K̂̂K̂K1 0 . . . 0

0 0 K̂̂K̂K1 . . . 0

...
...

...
. . .

...

0 0 0 . . . K̂̂K̂K1


,

where

K̂̂K̂K1 =


−(µ+ σ) 0 0

0 −(µ+ σ) 0

σ 0 −µ

 ,
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and

L̂̂L̂L =



L̂̂L̂L11 L̂̂L̂L12 . . . L̂̂L̂L1q

L̂̂L̂L21 L̂̂L̂L22 . . . L̂̂L̂L2q

...
...

. . .
...

L̂̂L̂Lp1 L̂̂L̂Lp2 . . . L̂̂L̂Lpq


,

where for i = 1, 2, . . . p and j = 1, 2, . . . q:

L̂̂L̂Lij =


(1− δ)λiPij(1− ϕij)αh (1− δ)λiPij(1− ϕij)αh (1− δ)λiPij(1− ϕij)αy

δλiPij(1− ϕij)αh δλiPij(1− ϕij)αh δλiPij(1− ϕij)αy

0 0 0

 ,

M̂̂M̂M =



M̂̂M̂M11 M̂̂M̂M12 . . . M̂̂M̂M1p

M̂̂M̂M21 M̂̂M̂M22 . . . M̂̂M̂M2p

...
...

. . .
...

M̂̂M̂M q1 M̂̂M̂M q2 . . . M̂̂M̂M qp


,

where for k = 1, 2, . . . p and l = 1, 2, . . . q, we have that:

M̂̂M̂Mkl =


Λlk 0 0

0 Λlk 0

0 0 Λlk

 .

We wish to look at the neighbourhood stability of the matrix JJJ which is char-

acterized by its eigenvalues. It is sufficient to consider the neighbourhood stability

of the matrix Ĵ̂ĴJ . We will have shown that the disease-free equilibrium is unstable

if we find that at least one eigenvalue has a strictly positive real part. Recall our

assumption (3.8), which states that for each pair of groups i and k of addicts, λi > 0,
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λk > 0 and there exists a shooting gallery j0 with:

Pij0(1− ϕij0)Λkj0 > 0.

Let us call it assumption (A1).

Assumption (A1):

We assumed that λi > 0 ∀ i and, for each k ̸= i, there exists a shooting gallery j0

such that:

Pij0(1− ϕij0)Λkj0 > 0.

In other words, assumption (A1) implies that any pair of groups of addicts can spread

the disease from one to another. We make the additional assumption (A2) which

states:

Assumption (A2):

(i) For each shooting gallery j there exists a group of addicts i with:

Pij > 0.

In other words each shooting gallery can catch the disease from at least one

group of addicts.

(ii) For each shooting gallery j there exists a group of addicts k with:

Pkj(1− ϕkj) > 0.
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In other words each shooting gallery can spread the disease to at least one

group of addicts.

Note that if M is sufficiently large the matrix Ĵ̂ĴJ + MIII is an M -matrix (i.e. all

off-diagonal elements are non-negative). Then we have the following lemma:

Lemma 3.2.2. Under assumptions (A1) and (A2) if M is sufficiently large to ensure

that all diagonal elements of the matrix Ĵ̂ĴJ + MIII are strictly positive then matrix

Ĵ̂ĴJ +MIII is irreducible.

Proof. Assumption (A1) means that any group of addicts is reachable from any other,

then assumption (A2) means that any shooting gallery is reachable from any group

of addicts and from that shooting gallery the disease can spread back to the groups

of addicts. So the matrix Ĵ̂ĴJ +MIII is irreducible.

So we find that the matrix defined as Ĵ̂ĴJ +MIII is a positive irreducible matrix

for M large enough, thus Ĵ̂ĴJ +MIII has a largest positive eigenvalue (ω0 +M). This

eigenvalue is real and positive. The right eigenvector eee0 corresponding to (ω0 +M)

is a strictly positive eigenvector. From the definition of the eigenvalues and the

eigenvector we deduce that:

Ĵ̂ĴJeee0 = ω0 eee0, where eee0 ̸= 000.

Consider the set of differential equations for xxx given by the system (3.15) - (3.21)

with initial conditions given by eee0 the solution is:

xxx = eee0 e
ω0t,
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where

xxx =
(
πh11(t), πh21(t), πy1(t), πh12(t), πh22(t), πy2(t), . . . , πh1p(t), πh2p(t), πyp(t),

βh11(t), βh21(t), βy1(t), βh12(t), βh22(t), βy2(t), . . . , βh1q(t), βh2q(t), βyq(t)
)
.

It is more convenient and notionally simple to rewrite xxx = eee0 e
ω0t in the following

form:

πh11(t) = π0
h11
eω0t,

πh21(t) = π0
h21
eω0t,

...

βh1q(t) = β0
h1q
eω0t,

βh2q(t) = β0
h2q
eω0t

βyq(t) = β0
yqe

ω0t.

By substituting these quantities into the equation (3.19), we deduce that for each j:

d

dt
βh1j(t) =

d

dt
(β0

h1j
eω0t),

= ω0 β
0
h1j
eω0t,

=

[
p∑

i=1

Λijπ
0
h1i

−

[( p∑
l=1

Λlj

)
+ τj

]
β0
h1j

]
eω0t.
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It is straightforward to show the following by using a similar argument:

d

dt
βh2j(t) = ω0 β

0
h2j
eω0t,

=

[
p∑

i=1

Λijπ
0
h2i

− β0
h2j

( p∑
l=1

Λlj

)
+ τj

]
eω0t,

d

dt
βyj(t) = ω0 β

0
yje

ω0t,

=

[
p∑

i=1

Λijπ
0
yi −

[( p∑
l=1

Λlj

)
+ τj

]
β0
yj

]
eω0t.

Hence, we deduce that:

ω0 > −

(( p∑
l=1

Λlj

)
+ τj

)
,

β0
h1j

=

∑p
i=1 Λijπ

0
h1i

(
∑p

l=1 Λlj) + τj + ω0

,

β0
h2j

=

∑p
i=1 Λijπ

0
h2i

(
∑p

l=1 Λlj) + τj + ω0

,

and β0
yj =

∑p
i=1 Λijπ

0
yi

(
∑p

l=1 Λlj) + τj + ω0

.

We use a similar argument with the system equations of the group i of injecting drug

users. This gives us:

d

dt
πh1i(t) =

d

dt
(π0

h1i
eω0t),

= ω0 π
0
h1i

eω0t,

=

[
(1− δ)

q∑
j=1

λiPij(1− ϕij)
(
αh(β

0
h1j

+ β0
h2j

) + αyβ
0
yj

)
− (µ+ σ)π0

h1i

]
eω0t,
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d

dt
πh2i(t) =

d

dt
(π0

h2i
eω0t),

= ω0 π
0
h2i

eω0t,

=

[
δ

q∑
j=1

λiPij(1− ϕij)
(
αh(β

0
h1j

+ β0
h2j

) + αyβ
0
yj

)
− (µ+ σ)π0

h2i

]
eω0t.

Hence,

π0
h1i

(µ+ σ + ω0) = (1− δ)

q∑
j=1

λiPij(1− ϕij)
(
αh(β

0
h1j

+ β0
h2j

) + αyβ
0
yj

)
,

dividing the two sides by (1− δ) gives us:

π0
h1i

1− δ
(µ+ σ + ω0) =

q∑
j=1

λiPij(1− ϕij)
(
αh(β

0
h1j

+ β0
h2j

) + αyβ
0
yj

)
. (3.30)

Following a similar method, we deduce that:

π0
h2i

δ
(µ+ σ + ω0) =

q∑
j=1

λiPij(1− ϕij)
(
αh(β

0
h1j

+ β0
h2j

) + αyβ
0
yj

)
. (3.31)

Clearly the right hand sides of both equations (3.30) and (3.31) are equal. This

implies that:

π0
h1i

1− δ
(µ+ σ + ω0) =

π0
h2i

δ
(µ+ σ + ω0). (3.32)

From equation (3.30) it also follows that ω0 + µ+ σ ̸= 0. Hence dividing both sides

of (3.32) by (µ+ σ + ω0) we will obtain that:

π0
h1i

1− δ
=
π0
h2i

δ
.

Suppose that π0
hi = π0

h1i
+ π0

h2i
. We substitute the obtained relationship between
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π0
h1i

and π0
h2i

to deduce that:

π0
hi = π0

h1i
+ π0

h2i
,

= π0
h1i

(
1 +

δ

1− δ

)
,

=
π0
h1i

1− δ
.

Then, we can write π0
h1i

and π0
h2i

in terms of π0
hi.

π0
h1i

= (1− δ)π0
hi,

π0
h2i

= δπ0
hi.

Now, we express π0
hi by adding the second and the third equations of the system of

differential equations, hence we have:

dπhi
dt

=

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πhi. (3.33)

In the next step we substitute equation xxx = eee0 e
ω0t into the equation (3.33), this will

give:

ω0π
0
hi e

ω0t =
[ q∑

j=1

λiPij(1− ϕij)
(
αh(β

0
h1j

+ β0
h2j

) + αyβ
0
yj

)
− (µ+ σ)π0

hi

]
eω0t.

For the equation of πyi, we follow a similar steps as earlier and we obtain the following:

ω0 π
0
yie

ω0t =
[
σπ0

h1i
− µπ0

yi

]
eω0t.
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Hence ω0 > −µ and

π0
yi =

σπ0
h1i

ω0 + µ
,

=
σ(1− δ)π0

hi

ω0 + µ
.

Now we are in position to use the obtained results and relationship to express Q∗ in

terms of vector xxx elements. Recall that π0
hi = π0

h1i
+ π0

h2i
and using earlier results we

find that:

π0
hi(µ+ σ + ω0) =

q∑
j=1

λiPij(1− ϕij)
(
αh(β

0
h1j

+ β0
h2j

) + αyβ
0
yj

)
,

=

q∑
j=1

λiPij(1− ϕij)

(∑p
k=1 Λkj(αh(π

0
h1k

+ π0
h2k

) + αyπ
0
yk)

(
∑p

l=1 Λlj) + τj + ω0

)
,

=

q∑
j=1

λiPij(1− ϕij)

(∑p
k=1 Λkj

(
αh + αy

σ(1−δ)
µ+ω0

)
π0
hk

(
∑p

l=1 Λlj) + τj + ω0

)
.

Since Q∗ is an irreducible positive p× p matrix, from the Perron-Frobenius The-

orem, the spectral radius ρ(Q∗) is a positive real number and an eigenvalue of the

matrix Q∗, called the Perron-Frobenius eigenvalue. Moreover, Q∗ has a left eigenvec-

tor eee = (e1, e2, . . . , ep) with the eigenvalue ρ(Q∗) whose components are all positive.

Recall that we proved that the spectral radius of Q∗ is the basic reproductive number

R0. Thus,

ρ(Q∗) = R0,

eee ·Q∗ = R0eee.
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Now,

p∑
i=1

eiπ
0
hi = f(ω0),

where

f(ω0) =

p∑
i=1

ei

∑q
j=1 λiPij(1− ϕij)

∑p
k=1 Λkj

(
αh + αy

σ(1−δ)
µ+ω0

)
π0
hk

(µ+ σ + ω0)[(
∑p

l=1 Λlj) + τj + ω0]
.

Note that we have earlier shown that ω0 > −µ and:

ω0 > −

(( p∑
l=1

Λlj

)
+ τj

)
.

Hence

ω0 > −

[
min

(
µ, min

16j6q

(( p∑
l=1

Λlj

)
+ τj

))]
.

In this region f(ω0) is a monotone decreasing function of ω0 which approaches +∞

as ω0 tends to

−

[
min

(
µ, min

16j6q

( p∑
l=1

Λlj

)
+ τj

)]
,

from above. Moreover, f(ω) −→ 0 as ω −→ ∞. Hence f(x) is monotone decreasing

in

x > −

[
min

(
µ, min

16j6q

( p∑
l=1

Λlj

)
+ τj

)]
,

so the equation:

f(x) =

p∑
i=1

eiπ
0
hi
,
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has a unique real root in

x > −

[
min

(
µ, min

16j6q

( p∑
l=1

Λlj

)
+ τj

)]
.

But note that

f(0) =
1

µ+ σ

p∑
i=1

ei

q∑
j=1

λiPij(1− ϕij)

(∑p
k=1 Λkj(αh + αy

σ(1−δ)
µ

)

(
∑p

l=1 Λlj) + τj

)
π0
hk
,

=

p∑
i=1

p∑
k=1

eiQ
∗
ikπ

0
hk
,

= eee.QQQ∗.πhπhπh
0,

= R0.eee.πππ
0
h,

> eee.πππ0
h.

Hence the unique root ω0 of

f(x) =

p∑
i=1

eiπ
0
hi
,

is strictly positive. As the eigenvalue ω0 of Ĵ̂ĴJ ( and hence also of JJJ) is real and strictly

positive, we deduce that the disease-free equilibrium is unstable if R0 > 1.

Next, we turn our attention to the persistence of HCV. We shall show that if

R0 > 1 and HCV is initially present in the population either in the addicts groups or

in shooting galleries, then the disease ultimately persists in both addicts and needles.

3.3 Persistence of the Disease

As we mentioned earlier R0 determines the progress and spread of HCV. In this sec-

tion we will prove that if R0 > 1 and HCV is initially present in the population, either
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in the addicts’ groups or in shooting galleries, then the disease will be ultimately per-

sistent in both addicts’ groups and shooting galleries. In order to prove this, as in

the proof of Theorem 3.1.4, we need to show in the following results that our system

of ordinary differential equations (2.3) - (2.9), whose right hand side involves many

unknown variables, can be replaced it with a differential inequality involving only

one variable. Thus, we define πh1i,∞ = lim inft−→∞ πh1i(t), with similar definitions

for the other model variables.

Lemma 3.3.1. If πyi,∞ = lim inft−→∞ πyi(t) then,

πyi,∞ ≥ σ

µ
πh1i,∞.

Proof. From equation (2.5), we have:

d

dt

[
πyi exp (µt)

]
= σπh1i exp (µt),

≥ (πh1i,∞ − ϵ) σ exp (µt), ∀ t ≥ t1i(ϵ),

where πh1i ≥ πh1i,∞ − ϵ, for t ≥ t1i(ϵ). Integrating over [t1i(ϵ), t] gives us,

πyi(t) ≥ πyi(t1i(ϵ)) exp
[
(−µ)(t− t1i(ϵ))

]
+ (πh1i,∞ − ϵ)σ

[
1− exp

(
(−µ)(t− t1i(ϵ))

)
µ

]
,

≥ σ
(πh1i,∞ − ϵ

µ

)
− ϵ, ∀ t ≥ t2i(ϵ),

for some t2i(ϵ), sufficiently large. Taking the lim inf and letting t go to infinity, we

deduce that:

πyi,∞ ≥ σ

µ
πh1i,∞ − ϵ1,
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for t ≥ t2i(ϵ), where ϵ1 = ϵ(µ + σ)/µ. Let us assume that (σ/µ) πh1i,∞ > πyi,∞. As

ϵ1 > 0 is arbitrary, then we can choose:

ϵ1 =
1

2

[
σ

µ
πh1i,∞ − πyi,∞

]
,

to obtain a contradiction and the result follows.

Lemma 3.3.2. If πzi,∞ = lim inft−→∞ πzi(t) then,

πzi,∞ ≥ ασ

µ
πh2i,∞.

Proof. Similar to the proof of Lemma 3.3.1 using equation (2.6).

Corollary 3.3.3. For j = 1, 2, . . . q, if βh1j,∞ = lim inft−→∞ βh1j(t) then,

βh1j,∞ ≥
∑p

i=1 Λijπh1i,∞∑p
i=1 Λij + τj

.

Proof. We shall prove this using equation (2.7). Recall that πh1i ≥ πh1i,∞ − ϵ1, for

t ≥ t1i(ϵ), i = 1, 2, . . . p. Define:

t1(ϵ) = max
1≤i≤p

{t1i(ϵ)}.

Then for t ≥ t1(ϵ), we deduce that:

d

dt

[
βh1j exp

( p∑
i=1

Λij + τj

)
t
]

=

p∑
i=1

Λijπh1i exp
[( p∑

i=1

Λij + τj

)
t
]
,

≥
p∑

i=1

Λij(πh1i,∞ − ϵ) exp
[( p∑

i=1

Λij + τj

)
t
]
.
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As we did above, integrating over [t1(ϵ), t] gives:

βh1j(t) ≥ βh1j(t1(ϵ)) exp
[
−
( p∑

i=1

Λij + τj

)
(t− t1(ϵ))

+

p∑
i=1

Λij(πh1i,∞ − ϵ)

1− exp
[
−
(∑p

i=1 Λij + τj

)
(t− t1(ϵ))

]
∑p

i=1 Λij + τj

,
≥

∑p
i=1 Λij(πh1i,∞ − ϵ)∑p

i=1 Λij + τj
− ϵ,

for t ≥ t2(ϵ), some t2(ϵ) > 0. Taking the lim inf and letting t go to infinity, we deduce

that:

βh1j,∞ ≥
∑p

i=1 Λijπh1i,∞∑p
i=1 Λij + τj

− ϵ2,

where ϵ2 is positive and

ϵ2 = ϵ

( ∑p
i=1 Λij∑p

i=1 Λij + τj
+ 1

)
.

Suppose that ∑p
i=1 Λijπh1i,∞∑p
i=1 Λij + τj

> βh1j,∞.

Since ϵ2 is positive and arbitrary, then we can choose it as:

ϵ2 =
1

2

(∑p
i=1 Λijπh1i,∞∑p
i=1 Λij + τj

− βh1j,∞

)
,

which leads us to a contradiction. Thus,

βh1j,∞ ≥
∑p

i=1 Λijπh1i,∞∑p
i=1 Λij + τj

.
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We use a similar argument with equations (2.8) and (2.9), to obtain the following

for j = 1, 2, . . . q:

βh2j,∞ ≥
∑p

i=1 Λijπh2i,∞∑p
i=1 Λij + τj

, (3.34)

and

βyj,∞ ≥
∑p

i=1 Λijπyi,∞∑p
i=1 Λij + τj

. (3.35)

Next, we attempt to determine the relationship between πh1i,∞ and πh2i,∞. The

following lemma discusses finding this relationship.

Lemma 3.3.4.

(1− δ)πh2i,∞ = δπh1i,∞.

Proof. We follow a similar proof to Corson et al. (2012). Assume that (1−δ)πh2i,∞ ̸=

δπh1i,∞. Hence, either (1 − δ)πh2i,∞ > δπh1i,∞ or (1 − δ)πh2i,∞ < δπh1i,∞. Suppose

that (1− δ)πh2i,∞ > δπh1i,∞. From equations (2.3) and (2.4), and considering:

d

dt

(
πh1i

1− δ
− πh2i

δ

)
,

we find that δπh1i−(1−δ)πh2i −→ 0 as t −→ ∞. So given ϵ > 0 there exists t1(ϵ) > 0

such that δπh1i > (1− δ)πh2i− (ϵ/2) for t ≥ t1(ϵ). Moreover there exists t2(ϵ) > t1(ϵ)
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such that:

δπh1i ≥ (1− δ)πh2i −
ϵ

2
≥ (1− δ)

(
πh2i,∞ − ϵ

2(1− δ)

)
− ϵ

2
,

= (1− δ)πh2i,∞ − ϵ,

for t ≥ t2(ϵ). Taking the lim inf we deduce that:

δπh1i,∞ ≥ (1− δ)πh2i,∞ − ϵ.

As ϵ is positive and arbitrary we deduce that:

δπh1i,∞ ≥ (1− δ)πh2i,∞. (3.36)

Assuming that (1−δ)πh2i,∞ < δπh1i,∞, and using a similar argument we deduce that:

(1− δ)πh2i,∞ ≥ δπh1i,∞. (3.37)

From inequalities (3.36) and (3.37), the result follows and we obtain that:

(1− δ)πh2i,∞ = δπh1i,∞.

Lemma 3.3.5. Provided that at least one of πh1i0(0), πh2i0(0), πyi0(0), βh1j0(0),

βh2j0(0) and βyj0(0) > 0 for some i0 = 1, 2, . . . p or j0 = 1, 2, . . . q, then for all

i = 1, 2, . . . p and j = 1, 2, . . . q, πh1i(∆t), πh2i(∆t), πyi(∆t), βh1j(∆t), βh2j(∆t) and

βyj(∆t) are all strictly greater than zero for small ∆t > 0.
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Proof. We define πi =
∑

ξ πξi, βj =
∑

ξ βξj for i = 1, 2, . . . p, j = 1, 2, . . . q and

ξ = h1, h2, y and π†
i =

∑
η πηi for η = h1, h2, y, z. Also, define ψi = 1− π†

i .

Suppose first that πi0(0) > 0 for some i0 = 1, 2, . . . p. Then for any addict

group k by Assumption A1, there exists j0 with

Pkj0(1− ϕkj0)Λi0j0 > 0. (3.38)

Then

βj0(t) = βh1j0(t) + βh2j0(t) + βyj0(t),

and using a Taylor series expansion about t = 0 and appropriate model equations

we have, for ∆t > 0:

βj0(∆t) = βj0(0) +

(
p∑

i=1

Λij0πi(0)−
[( p∑

i=1

Λij0

)
+ τj0

]
βj0(0)

)
∆t+ o(∆t),

so, if βj0(0) = 0 then:

βj0(∆t) ≥ Λi0j0πi0(0)∆t+ o(∆t) > 0,

if ∆t is small enough, as Λi0j0πi0(0) > 0. Thus, we choose ∆t > 0 small enough and

starting at time t = ∆t rather than t = 0 we can assume that βj0(0) > 0. Now, for

addict group k, if ψk(0) = 0, then as:

dψk

dt
=

dπx1k

dt
+
dπxk
dt

,

= −λkψk

q∑
j=1

Pkj(1− ϕkj)Aj + µ(1− ψk) + σ(1− α)πh2k,
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where Aj = αh(βh1j + βh2j) + αyβyj, we have:

ψk(∆t) = ψk(0)− λkψk(0)∆t

q∑
j=1

Pkj(1− ϕkj)Aj(0) + µ(1− ψk(0))∆t

+ σ(1− α)πh2k(0)∆t+ o(∆t).

Then:

ψk(∆t) ≥ µ∆t+ o(∆t),

if ∆t is small enough. By choosing ∆t > 0 small enough and starting at time t = ∆t

rather than t = 0, we can assume that:

ψk(0) > 0,

and

βj0(0) > 0.

We have

πk(∆t) = πk(0) + λkψk(0)

q∑
j=1

Pkj(1− ϕkj)Aj(0)∆t− µπk(0)∆t

− σπh2k(0)∆t+ o(∆t).

In the case where πk(0) = 0:

πk(∆t) ≥ λkψk(0)Pkj0(1− ϕkj0)min[αh, αy]βj0(0)∆t+ o(∆t).
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By using (3.38), we can assume without loss of generality that:

πk(0) > 0 and ψk(0) > 0.

Note that as k can be any addict group we can assume without loss of generality

that πk(0) > 0 and ψk(0) > 0 for k = 1, 2, . . . p. Now for any shooting gallery say j,

then by Assumption A2(i) there exists a group of addicts i1 with

Pi1j > 0.

Then, we have:

βj(∆t) = βj(0) +

(
p∑

i=1

Λijπi(0)−
[ p∑

i=1

Λij + τj

]
βj(0)

)
∆t+ o(∆t).

Hence, if βj(0) = 0 we deduce that:

βj(∆t) ≥ Λi1jπi1(0)∆t+ o(∆t),

and from Assumption A2(i) we have:

Λij =
λi1Pi1jni1

mj

> 0.

If we start at t = ∆t instead of t = 0, we deduce that without loss of generality:

πk(0) > 0, ψk(0) > 0 and βj(0) > 0, for k = 1, 2, . . . p and j = 1, 2, . . . q.
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On the other hand, if for some k πh1k(0) = 0 we deduce that:

πh1k(∆t) = πh1k(0) + (1− δ)λkψk(0)

q∑
j=1

Pkj(1− ϕkj)Aj(0)∆t

− (µ+ σ)πh1k(0)∆t+ o(∆t),

≥ (1− δ)λkψk(0)min[αh, αy]

q∑
j=1

Pkj(1− ϕkj)βj(0)∆t+ o(∆t).

From Assumption A1, we pick any group of addicts i and we deduce that there exists

a shooting gallery j1 with:

Pkj1(1− ϕkj1)Λij1 > 0.

Hence Pkj1(1− ϕkj1) > 0 and Λij1 > 0 and moreover,

πh1k(∆t) ≥ (1− δ)λkψk(0)min[αh, αy]Pkj1(1− ϕkj1)βj1(0)∆t+ o(∆t),

> 0,

if ∆t is small enough. Thus, without loss of generality πh1k(0) > 0. We use a similar

argument with the other variables, we obtain that without loss of generality we may

assume that πh2k(0) > 0, πyk(0) > 0 and πzk(0) > 0.

Now consider the case where βh1j(0) = 0 for some j. By Assumption A2(i),

there exists a group of addicts i1 with:

Pi1j > 0.
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Hence,

βh1j(∆t) =

p∑
i=1

Λijπh1i(0)∆t+ o(∆t),

≥ Λi1jπh1i1(0)∆t+ o(∆t),

> 0,

if ∆t is small enough. So, without loss of generality we may assume the case where

βh1j(0) > 0. Following a similar argument we may assume that βh2j(0) > 0 and

βyj(0) > 0. Hence the results of Lemma 3.3.5 follow in the case where πi0(0) > 0 for

some i0 = 1, 2, . . . p.

Next suppose that βyj0(0) > 0 for some j0 = 1, 2, . . . q. Now, by Assumption

A2(ii) there exists a group of addicts k0 with:

Pk0j0(1− ϕk0j0) > 0.

Arguing as above and without loss of generality we may assume that πk0(0) > 0. Then

the results follow by the previous case. This completes our proof of the lemma.

Lemma 3.3.6. Suppose that at least one of πh1i0,∞, πh2i0,∞, πyi0,∞, βh1j0,∞, βh2j0,∞

and βyj0,∞ is strictly greater than zero for some i0 = 1, 2, . . . p or j0 = 1, 2, . . . q.

Then for i = 1, 2, . . . p and j = 1, 2, . . . q, πh1i,∞, πh2i,∞, πyi,∞, βh1j,∞, βh2j,∞ and

βyj,∞ are all strictly greater than zero.

Proof. Suppose first that πh1i0,∞ > 0 for some i0 = 1, 2, . . . p. Then by Lemmas 3.3.1,

3.3.2 and Lemma 3.3.4 we have πyi0,∞ > 0, πzi0,∞ > 0 and πh2i0,∞ > 0.
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For any addict group k by Assumption A1 there exists a shooting gallery j0

with:

Pkj0(1− ϕkj0)Λi0j0 > 0.

Then by Corollary 3.3.3:

βh1j0,∞ ≥
∑p

i=1 Λij0πh1i,∞∑p
i=1 Λij0 + τj0

,

≥ Λi0j0πh1i,∞∑p
i=1 Λij0 + τj0

,

> 0.

So there exists t0 > 0 and ϵ0 > 0 such that for t ≥ t0, βh1j0 ≥ ϵ0 > 0. Now

ψk = 1− πh1k − πh2k − πyk − πzk,

dψk

dt
= −λkψk

q∑
j=1

Pkj(1− ϕkj)Aj + µ(1− ψk) + σ(1− α)πh2k,

≥ µ− ψk

(
µ+ λk max(αh, αy)

)
,

= µ− Ckψk, (3.39)

where

Ck =
(
µ+ λk max(αh, αy)

)
.

Hence,

d

dt
(ψk e

Ckt) ≥ µ eCkt.
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Integrating over [t0, t):

ψk(t) e
Ckt − ψk(t0)e

Ckt0 ≥ µ

Ck

(eCkt − eCkt0),

ψk(t) ≥ ψk(t0)e
−Ck(t−t0) +

µ

Ck

(
1− e−Ck(t−t0)

)
.

Thus, there exists t1 > t0 such that for t ≥ t1, we have that:

ψk(t) ≥
µ

2Ck

= ϵ1.

From equation (2.3) of our model:

dπh1k

dt
=

q∑
j=1

(1− δ)(1− πh1k − πh2k − πyk − πzk)λkPkj(1− ϕkj)(αh(βh1j + βh2j)

+ αyβyj)− (µ+ σ)πh1k.

Then for t ≥ t1:

dπh1k

dt
≥ (1− δ)ϵ0ϵ1λkPkj0(1− ϕkj0)αh − (µ+ σ)πh1k.

This has the same form as the equation (3.39). Thus, there exists t2 ≥ t1 and ϵ2 > 0

such that for t ≥ t2:

πh1k ≥ ϵ2 > 0,

hence πh1k,∞ > 0. By Lemmas 3.3.1, 3.3.2 and 3.3.4, we have πyk,∞ > 0, πzk,∞ > 0

and πh2k,∞ > 0.

Now, for any shooting gallery j, by Assumption A2(i) there exists a group of
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addicts i1 with:

Pi1j > 0. (3.40)

Then, by Corollary 3.3.3, we have:

βh1j,∞ ≥
∑p

i=1 Λijπh1i,∞∑p
i=1 Λij + τj

,

≥ Λi1jπh1i1,∞∑p
i=1 Λij + τj

,

> 0.

On the other hand, we also know that πh2i1,∞ and πyi1,∞ are greater than zero, hence

similar arguments with βh2j and βyj show that βh2j,∞ > 0 and βyj,∞ > 0. Hence we

have proved Lemma 3.3.6 in the case where πh1i0,∞ > 0 for some i = 1, 2, . . . p. The

case where πh2i0,∞ > 0 then follows from Lemma 3.3.4.

In the case where πyi0,∞ > 0 for some i = 1, 2, . . . p, then for any addict group k

by Assumption A1, there exists a shooting gallery j0 with:

Pkj0(1− ϕkj0)Λi0j0 > 0.

Then, arguing as above, βyj0,∞ > 0 follows from the inequality (3.35). A similar

argument to the one used in the case where πh1i0,∞ > 0 shows that πh1k,∞ > 0. The

result of Lemma 3.3.6 then follows in the case where πyi0,∞ > 0.

Next consider the case where βh1j1,∞ > 0 for some j1 ∈ {1, 2, . . . q}. Now, by
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Assumption A2(ii), there exists a group of addicts k1 with:

Pk1j1(1− ϕk1j1) > 0.

Arguing as above and without loss of generality we may assume that πh1k1,∞ > 0.

Then the results follow as in the previous case. Finally, in the case where βh2j1,∞ > 0

or βyj1,∞ > 0 a straightforward following of a similar argument as for βh1j1,∞ > 0

shows that πh1k1,∞ > 0 and the result follows which completes the proof.

Theorem 3.3.7. Suppose that R0 > 1 and either

(i) for some i0 ∈ 1, 2, . . . p at least one of

πh1i0(0), πh2i0(0) or πyi0(0),

is strictly positive, or

(ii) for some j0 ∈ 1, 2, . . . q at least one of

βh1j0(0), βh2j0(0) or βyj0(0),

is strictly positive.

Then there exists η > 0 such that for t ≥ η, i = 1, 2, . . . p, j = 1, 2, . . . q, πh1i ≥ ϵπ∗
h1i

,

πh2i ≥ ϵπ∗
h2i

, πyi ≥ ϵπ∗
yi, βh1j ≥ ϵβ∗

h1j
, βh2j ≥ ϵβ∗

h2j
and βyj ≥ ϵβ∗

yj, where ϵ is a

fixed positive and small value depending only on the model parameters not the initial

conditions.

Proof. By Lemma 3.3.6 we need to consider only two cases, the first case where for

all i = 1, 2, . . . p and j = 1, 2, . . . q,πh1i,∞, πh2i,∞, πyi,∞, βh1j,∞, βh2j,∞ and βyj,∞ all are
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strictly positive (note i and j, not i0 and j0). The second case, where they all are

zero (again i and j, not i0 and j0). The first case is fairly straightforward. The

second is more complicated and probably needs more explanations. Thus let assume

that:

Case 1:

For all i = 1, 2, . . . p, j = 1, 2, . . . q, πh1i0,∞, πh2i0,∞, πyi0,∞, βh1j0,∞, βh2j0,∞ and βyj0,∞

are all strictly greater than zero. There exists ϵ1 > 0 such that for i = 1, 2, . . . p, j =

1, 2, . . . q πh1i,∞ ≥ 1
2
ϵ1π

∗
h1i

, πh2i,∞ ≥ 1
2
ϵ1π

∗
h2i

, πyi,∞ ≥ 1
2
ϵ1π

∗
yi, βh1j,∞ ≥ 1

2
ϵ1β

∗
h1j

,

βh2j,∞ ≥ 1
2
ϵ1β

∗
h2j

and βyj,∞ ≥ 1
2
ϵ1β

∗
yj. By the definition of πh1i,∞ and for i =

1, 2, . . . p, there exists a time Th1i such that for t ≥ Th1i, then πh1i(t) ≥ 1
4
ϵ1π

∗
h1i

.

Similarly, there is a time Th2i such that for t ≥ Th2i, then πh2i(t) ≥ 1
4
ϵ1π

∗
h2i

, Tyi such

that for t ≥ Tyi, then πyi(t) ≥ 1
4
ϵ1π

∗
yi, Tzi such that for t ≥ Tzi, then πzi(t) ≥ 1

4
ϵ1π

∗
zi.

Moreover, for j = 1, 2, . . . q there also exists a time Tβh1j
such that for t ≥ Tβh1j

, then

βh1j(t) ≥ 1
4
ϵ1β

∗
h1j

, Tβh2j
such that for t ≥ Tβh2j

, then βh2j(t) ≥ 1
4
ϵ1β

∗
h2j

and Tβyj
such

that for t ≥ Tβyj
, then βyj(t) ≥ 1

4
ϵβ∗

yj. Choose η to be the maximum time,

η = max
i=1,2,...p
j=1,2,...q

{Th1i, Th2i, Tyi, Tzi, Tβh1j
, Tβh2j

, Tβyj
},

and define ϵ = 1
4
ϵ1. Hence the theorem is true.

Case 2:

For i = 1, 2, . . . p and j = 1, 2, . . . q, πh1i0,∞ = πh2i0,∞ = πyi0,∞ = βh1j0,∞ = βh2j0,∞ =

βyj0,∞ = 0 are all zero. Let us suppose that ϵ > 0, and pick k0 ∈ {1, 2, . . . p}.

Lemma 3.3.5 shows that πh1k0(∆t) > 0. As πh1k0,∞ = 0 there exists ξ ≥ ∆t where

πh1k0(ξ) <
1
2
ϵπ∗

h1k0
. Suppose that πh1k0(t) goes beneath 1

2
ϵπ∗

h1k0
at time t0k0 , then
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next rises above 1
2
ϵπ∗

h1k0
at time t1k0 . More precisely following Corson et al. (2012) we

define t0k0 = inf{ξ ≥ ∆t, πh1k0(ξ) <
1
2
ϵπ∗

h1k0
} to be the first time after t = ∆t where

πh1k0 starts to go below 1
2
ϵπ∗

h1k0
and t1k0 = inf{ξ ≥ t0k0 , πh1k0(ξ) ≥ 1

2
ϵπ∗

h1k0
} to be

the first time after t = t0k0 where πh1k0 rises above 1
2
ϵπ∗

h1k0
. If πh1k0(∆t) ≥ 1

2
ϵπ∗

h1k0
,

then by the definition of t0k0 we have πh1k0(t0k0 + ν) < 1
2
ϵπ∗

h1k0
for some ν small and

positive. Therefore, t1k0 > t0k0 and by continuity πh1k0(t0k0) =
1
2
ϵπ∗

h1k0
= πh1k0(t1k0)

and so πh1k0 ≤ 1
2
ϵπ∗

h1k0
in (t0k0 , t1k0) and πh1k0 >

1
2
ϵπ∗

h1k0
immediately after time

t1k0 . Define the following:

S1(t) =

{
i ∈ 1, 2, . . . p, πh1i(t) ≥

1

2
ϵπ∗

h1i

}
,

S2(t) =

{
i ∈ 1, 2, . . . p, πh1i(t) <

1

2
ϵπ∗

h1i

}
.

Case 2a:

For ∆t small and positive.

S1(t0k0 +∆t) = ∅.

This implies that all πh1i(t0k0 + ∆t) < 1
2
ϵπ∗

h1i
at time t0k0 + ∆t. Similarly to t1k0

we define t1k02a ≤ t1k0 to be the first time after t = t0k0 where some πh1i rises above

1
2
ϵπ∗

h1i
and t1k02a = inf{ξ ≥ t0k0 , πh1i(ξ) ≥ 1

2
ϵπ∗

h1i
for some i ∈ 1, 2, . . . p}. Thus for

t ∈ (t0k0 , t1k02a) we are still in Case 2a. To discuss this case we need the following

lemmas:

Lemma 3.3.8. If ∆ > 0 is small and positive then for each i ∈ {1, 2, . . . p} there

exists a time T 1k0i > 0 such that if t0k0 + T 1k0i < t1k0, then for all t ∈ [t0k0 +
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T 1k0i, t1k02a):

0 < πyi <
(1
2
+ ∆

)
ϵπ∗

yi,

where T 1k0i depends only on the model parameters, ∆ and ϵ.

Proof. We have shown above that for t in (t0k0 , t1k02a) we have that πh1i(t) ≤ 1
2
ϵπ∗

h1i

for i = 1, 2, . . . p. From equation (2.5) we have:

d

dt

[
πyi exp(µt)

]
= σπh1i exp(µt),

≤ 1

2
σ ϵπ∗

h1i
exp(µt).

Integrating over [t0k0 , t] for t ≤ t1k02a:

πyi(t) ≤ πyi(t0k0) exp[−µ(t− t0k0)] +
1

2

σ

µ
ϵπ∗

h1i
,

≤ exp[−µ(t− t0k0)] +
1

2

σ

µ
ϵπ∗

h1i
,

= exp[−µ(t− t0k0)] +
1

2
ϵπ∗

yi.

Thus, taking t sufficiently large, say t ≥ t0k0 + T 1k0i completes the proof.

πyi(t) ≤
(1
2
+ ∆

)
ϵπ∗

yi,

where ∆ is small and positive.

Lemma 3.3.9. For each i = 1, 2, . . . p, there exists a time T 2k0i > 0 dependent only

on the model parameters, ∆ and ϵ, such that if t0k0 + T 2k0i < t1k02a, then for all

t ∈ [t0k0 + T 2k0i, t1k02a):

0 < πh2i <
(1
2
+ ∆

)
ϵπ∗

h2i
.
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Proof. We use a similar method as in the proof of Lemma 3.8 of Corson et al. (2012).

Define xi =
πh1i

1−δ
− πh2i

δ
. From the proof of Lemma 3.1.6 we have:

d

dt

( πh1i

1− δ
− πh2i

δ

)
=

d

dt
(xi) = −(µ+ σ)

( πh1i

1− δ
− πh2i

δ

)
.

Hence:

xi(t) = xi(0)e
−(µ+σ)t,

and

∣∣xi(t)∣∣ =
∣∣xi(0)∣∣e−(µ+σ)t,

≤
∣∣∣πh1i(0)

1− δ
− πh2i(0)

δ

∣∣∣e−(µ+σ)t,

≤
∣∣∣πh1i(0)

1− δ
+
πh2i(0)

δ

∣∣∣e−(µ+σ)t,

=
∣∣∣δπh1i(0) + (1− δ)πh2i(0)

δ(1− δ)

∣∣∣e−(µ+σ)t.

As πh1i(0) ≤ 1 and πh2i(0) ≤ 1, then we have:

∣∣xi(t)∣∣ ≤ e−(µ+σ)t

δ(1− δ)
.

Thus:

πh2i

δ
≤ e−(µ+σ)t

δ(1− δ)
+

πh1i

1− δ
,

πh2i ≤ e−(µ+σ)t

1− δ
+
δπh1i

1− δ
.
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As we know that for i = 1, 2, . . . p πh1i <
1
2
ϵπ∗

h1i
, so in [t0k0 , t1k02a] we have that:

πh2i ≤
1

2
ϵπ∗

h2i
+
e−(µ+σ)t

δ(1− δ)
,

taking t sufficiently large will complete the proof.

Lemma 3.3.10. For each i = 1, 2, . . . p, there exists a time T 3k0i > 0 dependent only

on the model parameters, ∆ and ϵ, such that for t ∈ [t0k0 + T 2k0i + T 3k0i, t1k02a):

0 < πzi <
(1
2
+ 2∆

)
ϵπ∗

zi.

Proof. We write equation (2.6) as:

d

dt

[
πzi exp(µt)

]
= σαπh2i exp(µt).

From Lemma 3.3.9 we have shown that, for t ∈ [t0k0+T 2k0i, t1k02a), πh2i ≤ (1
2
+∆)ϵπ∗

h2i

hence:

d

dt

[
πzi exp(µt)

]
≤

(1
2
+ ∆

)
ϵσαπ∗

h2i
exp(µt).

Integrating over [t0k0 + T 2k0i, t] gives:

πzi(t) ≤ exp[−µ(t− t0k0 − T 2k0i)] +
(1
2
+ ∆

)
ϵ
σα

µ
π∗
h2i
.

Then, provided that t is large enough, t ∈ [t0k0 + T 2k0i + T 3k0i, t1k02a]

πzi(t) ≤
(1
2
+ 2∆

)
ϵπ∗

zi,
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and the result holds. T 3k0i depends only on the model parameters, ϵ and ∆.

Define

T 1k0 = max
i∈{1,2,...p}

T1k0i,

T 2k0 = max
i∈{1,2,...p}

T2k0i,

and T 3k0 = max
i∈{1,2,...p}

T3k0i.

Using the needles’ model equations (2.7)-(2.9) together with Lemmas 3.3.8, 3.3.9

and 3.3.10, we have that for j = 1, 2 . . . q then there exists a T 4k0j > 0, such that

for t1k02a ≥ t ≥ t0k0 + T 4k0j > 0 , (1
2
+ ∆)ϵβ∗

h1j
> βh1j > 0. Similarly there exists a

T 5k0j > 0, such that for t1k02a ≥ t ≥ t0k0+T 2k0+T 5k0j > 0 , (1
2
+2∆)ϵβ∗

h2j
> βh2j > 0.

Finally, there exists a T 6k0j > 0, such that for t1k02a ≥ t ≥ t0k0 + T 1k0 + T 6k0 > 0,

(1
2
+2∆)ϵβ∗

yj > βyj > 0. Moreover, T 4k0j, T 5k0j, and T 6k0j are all dependent only on

the model parameters, ϵ and ∆, not the initial conditions. Now we define:

T 4k0 = max
j∈{1,2,...q}

T 4k0j,

T 5k0 = max
j∈{1,2,...q}

T 5k0j,

and T 6k0 = max
j∈{1,2,...q}

T 6k0j.

Although we have shown that, as each πh1i, for i = 1, 2 . . . p, becomes small, then

all other variables become small too, we now attempt to show that all other πh1i

cannot become arbitrary small. We shall do this by showing that t1k02a − t0k0 can

be bounded above by a fixed finite value and hence all πh1i cannot remain beneath

1
2
ϵπ∗

h1i
long enough to become arbitrarily close to the origin. There are two possi-
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bilities: first each πh1i stays beneath
1
2
ϵπ∗

h1i
long enough for all the other variables

to become small or some rise above 1
2
ϵπ∗

h1i
before all other variables have become

small. Hence, either:

(i) t1k02a ≥ t0k0 +max[T 1k0 + T 2k0 + T 3k0 , T 4k0 , T 2k0 + T 5k0 , T 1k0 + T 6k0 ]; or

(ii) t1k02a < t0k0 +max[T 1k0 + T 2k0 + T 3k0 , T 4k0 , T 2k0 + T 5k0 , T 1k0 + T 6k0 ].

Now we aim to show that t1k02a − t0k0 < Tk02a where Tk02a is a finite value

depending only on the model parameters, ∆ and ϵ. If (ii) holds then some πh1i rises

above 1
2
ϵπ∗

h1i
before all other variables have become small, and the result is proved.

Here we deal with the first case where t1k02a occurs at a time bigger than or equal

to the time that it takes for all other terms to become small. By using the result of

the instability of the disease-free equilibrium when R0 > 1 we shall show that πh1i

cannot become arbitrarily small.

Lemma 3.3.11. Suppose that πh1k0(∆t) ≥ 1
2
ϵπ∗

h1k0
. If all πh1i(t) i = 1, 2, . . . p are

beneath 1
2
ϵπ∗

h1i
just beyond time t0k0 then at least one πh1i(t) returns to the level

1
2
ϵπ∗

h1i
by time at least t1k02a = t0k0 + max[T 1k0 + T 2k0 + T 3k0 + T 7k0 , T 4k0 , T 2k0 +

T 5k0 , T 1k0 + T 6k0 ], which is finite and depends only on the model parameters, ∆ and

ϵ.

Proof. To prove this lemma we follow the proof of Lemma 3.10 of Corson et al.

(2012). Assume that ϵ2 is real and positive where 0 < ϵ2 < 1 and consider the

matrix J(ϵ2) given by:

JJJ(ϵ2) =

 KKK SSS

MMM NNN

 ,
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where KKK,MMM and NNN are defined as in the proof of Theorem 3.2.1 (the instability of

the disease-free equilibrium), and

SSS =



SSS11 SSS12 . . . SSS1q

SSS21 SSS22 . . . SSS2q

...
...

. . .
...

SSSp1 SSSp2 . . . SSSpq


.

Here for i = 1, 2, . . . p, j = 1, 2, . . . q,

SSSij =


0 0 0

(1− δ)λiPij(1− ϕij)αh(1− ϵ2) (1− δ)λiPij(1− ϕij)αh(1− ϵ2) (1− δ)λiPij(1− ϕij)αy(1− ϵ2)

δλiPij(1− ϕij)αh(1− ϵ2) δλiPij(1− ϕij)αh(1− ϵ2) δλiPij(1− ϕij)αy(1− ϵ2)

0 0 0

 .

In other words SSS = (1 − ϵ2)LLL where LLL was defined in the proof of Theorem 3.2.1.

Denote the eigenvalues of JJJ(ϵ2) by ωs(ϵ2) for s = 1, 2, . . . 4p+3q. Analogously to the

argument for the instability of the disease-free equilibrium, we define the matrix

Ĵ̂ĴJ(ϵ2) =

 K̂̂K̂K Ŝ̂ŜS

M̂̂M̂M N̂̂N̂N

 ,

where K̂̂K̂K, M̂̂M̂M and N̂̂N̂N are defined in the proof of the instability of the disease-free

equilibrium:

Ŝ̂ŜS =



Ŝ̂ŜS11 Ŝ̂ŜS12 . . . Ŝ̂ŜS1q

Ŝ̂ŜS21 Ŝ̂ŜS22 . . . Ŝ̂ŜS2q

...
...

. . .
...

Ŝ̂ŜSp1 Ŝ̂ŜSp2 . . . Ŝ̂ŜSpq


,
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where for i = 1, 2, . . . p and j = 1, 2, . . . q then Ŝ̂ŜSij =


(1− δ)λiPij(1− ϕij)αh(1− ϵ2) (1− δ)λiPij(1− ϕij)αh(1− ϵ2) (1− δ)λiPij(1− ϕij)αy(1− ϵ2)

δλiPij(1− ϕij)αh(1− ϵ2) δλiPij(1− ϕij)αh(1− ϵ2) δλiPij(1− ϕij)αy(1− ϵ2)

0 0 0

 ,

so Ŝ̂ŜS = (1− ϵ2)L̂̂L̂L where L̂̂L̂L is defined in the proof of Theorem 3.2.1. Now we re-order

the rows and columns of JJJ(ϵ2) so that ωs(ϵ2) = −µ for s = 3p + 3q + 1, 3p + 3q +

2, . . . 4p+3q. Then the remaining 3p+3q eigenvalues of JJJ(ϵ2) are the eigenvalues of

Ĵ̂ĴJ(ϵ2). Moreover, from Lemma 3.2.2 if M is large and positive then Ĵ̂ĴJ(ϵ2)+MIII is an

irreducible matrix of dimension (3p+3q)× (3p+3q) with eigenvalues ωs(ϵ2)+M for

s = 1, 2 . . . 3p + 3q. As in Corson et al. (2012), Lemma 2.1 of Nold (1980) implies

that the characteristic equation of Ĵ̂ĴJ(ϵ2) +MIII has a non-repeated real root that is

the spectral radius eigenvalue of Ĵ̂ĴJ(ϵ2) +MIII. If this root is denoted by M + ω1(ϵ2)

then all other eigenvalues have smaller real part, so ω1(ϵ2) is real and all the other

eigenvalues of Ĵ̂ĴJ(ϵ2) have strictly smaller real parts. This also holds even if ϵ2 = 0.

Moreover as ϵ2 −→ 0, ω1(ϵ2) −→ ω1(0) and we know that ω1(0) > 0 if R0 > 1 as we

have shown the instability of the disease-free equilibrium. So we can choose ϵ2 > 0

small enough so that ω1(ϵ2) > 0.

Without loss of generality we assume that 0 < ϵ2 < 1. We choose ϵ small

enough so that for i = 1, 2, . . . p:

1

2
ϵπ∗

h1i
+
(1
2
+ ∆

)
ϵπ∗

h2i
+
(1
2
+ ∆

)
ϵπ∗

yi +
(1
2
+ 2∆

)
ϵπ∗

zi < ϵ2, (3.41)

for t1k02a > t > t0k0+T 1k0+T 2k0+T 3k0 we have that π
†
i (t) = πh1i+πh2i+πyi+πzi < ϵ2
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for i = 1, 2, . . . p. For i = 1, 2, . . . p define t2k0i = inf{ζ ≥ 0: for t1k02a > t >

t0k0 + ζ, πi(t) < ϵ2}. So if t2k0i > 0 then by continuity πi(t0k0 + t2k0i) = ϵ2 and

t2k0i is the last time before t1k02a that πi(t) ≥ ϵ2. Note that for i = 1, 2, . . . p,

t2k0i ≤ T 1k0 + T 2k0 + T 3k0 . If t1k02a < t0k0 + T 1k0 + T 2k0 + T 3k0 there is nothing to

prove so consider the case where t1k02a > t0k0 + T 1k0 + T 2k0 + T 3k0 . For t1k02a > t >

t0k0 + T 1k0 + T 2k0 + T 3k0 we have that:

dxxx

dt
≥ Ĵ̂ĴJ(ϵ2)xxx,

where xxx =
(
πh11(t), πh21(t), πy1(t), πh12(t), πh22(t), πy2(t), . . . , πh1p(t), πh2p(t), πyp(t),

βh11(t), βh21(t), βy1(t), βh12(t), βh22(t), βy2(t), . . . , βh1q(t), βh2q(t), βyq(t)
)
. From Lemma

2.1 of Nold (1980) we have that forM sufficiently large and positiveMIII+Ĵ̂ĴJ(ϵ2) has a

strictly positive left eigenvector eee which corresponds to the spectral radiusM+ω1(ϵ2)

of MIII + Ĵ̂ĴJ(ϵ2). Hence eee is also a left eigenvector of Ĵ̂ĴJ(ϵ2).

Thus for t1k02a > t > t0k0 + T 1k0 + T 2k0 + T 3k0 we have that:

eee · dx
xx

dt
≥ eeeĴ̂ĴJ(ϵ2)xxx,

≥ ω1(ϵ2)eee · xxx.

For each i = 1, 2, . . . p, integrating over [t0k0+t2k0i, t] we deduce that for t ≥ t0k0+t2k0i:

eee · xxx(t) ≥ (eee · xxx)(t0k0 + t2k0i) exp[ω1(ϵ2)(t− t0k0 − t2k0i)],
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so if for some i0 ∈ {1, 2, . . . p}, t2k0i0 > 0, we have:

eee · xxx(t) ≥ πi(t0k0 + t2k0i0)ϵ2min(e3i0−2, e3i0−1, e3i0) exp[ω1(ϵ2)(t− t0k0 − t2k0i0)].

On the other hand if t2k0i = 0 for i = 1, 2, . . . p and πh1k0(∆t) ≥ 1
2
ϵπ∗

h1k0
, so that

πh1k0(t0k0) =
1
2
ϵπ∗

h1k0

eee · xxx(t) > 1

2
ϵπ∗

h1k0
min(e3k0−2, e3k0−1, e3k0) exp[ω1(ϵ2)(t− t0k0 − t2k0i0)].

Hence, if t2k0i0 > 0 for some i0 we define t2k0 = t2k0i0 . On the other hand if t2k0i = 0

for i = 1, 2, . . . p and πh1k0(∆t) ≥ 1
2
ϵπ∗

h1k0
, then we define t2k0 = 0. Then after a time

t0k0 + t2k0 + T 7k0 where T 7k0 depends only on the model parameters, ϵ, ϵ, ϵ2 and ∆

eee · xxx(t) > eee ·

(
1

2
ϵπ∗

h11,
(1
2
+ ∆

)
ϵπ∗

h21,
(1
2
+ ∆

)
ϵπ∗

y1,
1

2
ϵπ∗

h12,
(1
2
+ ∆

)
ϵπ∗

h22,(1
2
+ ∆

)
ϵπ∗

y2, . . . ,
1

2
ϵπ∗

h1p,
(1
2
+ ∆

)
ϵπ∗

h2p,
(1
2
+ ∆

)
ϵπ∗

yp,
(1
2
+ ∆

)
ϵβ∗

h11,(1
2
+ 2∆

)
ϵβ∗

h21,
(1
2
+ 2∆

)
ϵβ∗

y1,
(1
2
+ ∆

)
ϵβ∗

h12,
(1
2
+ 2∆

)
ϵβ∗

h22,(1
2
+ 2∆

)
ϵβ∗

y2, . . . ,
(1
2
+ ∆

)
ϵβ∗

h1q,
(1
2
+ 2∆

)
ϵβ∗

h2q,
(1
2
+ 2∆

)
ϵβ∗

yq

)
.

(3.42)

But if t1k02a ≥ t ≥ t0k0 +max[T 1k0 + T 2k0 + T 3k0 , T 4k0 , T 2k0 + T 5k0 , T 1k0 + T 6k0 , t2k0 +

T 7k0 ], then for i = 1, 2, . . . p and j = 1, 2, . . . q πh1i ≤ 1
2
ϵπ∗

h1i
, πh2i ≤

(
1
2
+ ∆

)
ϵπ∗

h2i
,

πyi ≤
(

1
2
+∆

)
ϵπ∗

yi, πzi ≤
(

1
2
+2∆

)
ϵπ∗

zi, βh1j ≤
(

1
2
+∆

)
ϵβ∗

h1j
, βh2j ≤

(
1
2
+2∆

)
ϵβ∗

h2j
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and βyj ≤
(

1
2
+ 2∆

)
ϵβ∗

yj all are true, which implies that

eee · xxx(t) ≤ eee ·

(
1

2
ϵπ∗

h11,
(1
2
+ ∆

)
ϵπ∗

h21,
(1
2
+ ∆

)
ϵπ∗

y1,
1

2
ϵπ∗

h12,
(1
2
+ ∆

)
ϵπ∗

h22,(1
2
+ ∆

)
ϵπ∗

y2, . . . ,
1

2
ϵπ∗

h1p,
(1
2
+ ∆

)
ϵπ∗

h2p,
(1
2
+ ∆

)
ϵπ∗

yp,
(1
2
+ ∆

)
ϵβ∗

h11,(1
2
+ 2∆

)
ϵβ∗

h21,
(1
2
+ 2∆

)
ϵβ∗

y1,
(1
2
+ ∆

)
ϵβ∗

h12,
(1
2
+ 2∆

)
ϵβ∗

h22,(1
2
+ 2∆

)
ϵβ∗

y2, . . . ,
(1
2
+ ∆

)
ϵβ∗

h1q,
(1
2
+ 2∆

)
ϵβ∗

h2q,
(1
2
+ 2∆

)
ϵβ∗

yq

)
.

(3.43)

From (3.42) and (3.43) we have a contradiction. Therefore

t1k02a < t0k0 +max[T 1k0 + T 2k0 + T 3k0 , T 4k0 , T 2k0 + T 5k0 , T 1k0 + T 6k0 , t2k0 + T 7k0 ],

< t0k0 +max[T 4k0 , T 2k0 + T 5k0 , T 1k0 + T 6k0 , T 1k0 + T 2k0 + T 3k0 + T 7k0 ].

Hence we have shown that if all πh1i(t) for i = 1, 2, . . . p are beneath 1
2
ϵπ∗

h1i
just

beyond time t0k0 , then at least one πh1i(t) returns to the level 1
2
ϵπ∗

h1i
by time at least

t0k0 + max[T 4k0 , T 2k0 + T 5k0 , T 1k0 + T 6k0 , T 1k0 + T 2k0 + T 3k0 + T 7k0 ], which is finite

and depends only on the model parameters, ϵ and ∆.

Case 2b:

S1(tk0 +∆t) ̸= ∅.

This implies that for some i ∈ {1, 2, . . . p} and ∆t small enough πh1i(t0k0 + ∆t) ≥

1
2
ϵπ∗

h1i
. Let t1k02b to be the next time after t0k0 but before t1k0 where S1(t1k02b+∆t) =

∅. If S1(t) ̸= ∅ in [t0k0 , t1k0 ] we deduce that t1k0 = t1k02b.

Lemma 3.3.12. Suppose that ∆ > 0 is small and positive. Then there exists T1k0
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dependent only on the model parameters, ∆ and ϵ, not on the initial conditions, such

that for t ∈ [t0k0 + T1k0 , t1k0 ],

0 < πyk0 <
(1
2
+ ∆

)
ϵπ∗

yk0
.

Proof. This is proved using a similar argument as in the proof of Lemma 3.3.8. We

know that πh1k0 ≤ 1
2
ϵπ∗

h1k0
in (t0k0 , t1k1) and from equation (2.5) we have:

d

dt
[πyk0 exp(µt)] = σπh1k0 exp(µt).

The result follows by a similar argument as in the proof of Lemma 3.3.8.

Lemma 3.3.13. There exists T2k0 dependent only on the model parameters, ∆ and

ϵ, not on the initial conditions, such that for t ∈ [t0k0 + T2k0 , t1k0 ],

0 < πh2k0 <
(1
2
+ ∆

)
ϵπ∗

h2k0
.

Proof. Similar to the proof of Lemma 3.3.9.

Lemma 3.3.14. There exists T3k0 dependent only on the model parameters, ∆ and

ϵ, not on the initial conditions, such that for t ∈ [t0k0 + T2k0 + T3k0 , t1k0 ],

0 < πzk0 <
(1
2
+ 2∆

)
ϵπ∗

zk0
.

Proof. Similar to the proof of Lemma 3.3.10.
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Hence for t ∈ [t0k0 + T1k0 + T2k0 + T3k0 , t1k0 ]

πxk + πx1k = 1− πh1k − πh2k − πyk − πzk,

≥ 1

2
,

if ∆ and ϵ are small enough.

By Assumption A1 for i0 ∈ {1, 2, . . . p}, there exists j0 with

Pk0j0(1− ϕk0j0)Λi0j0 > 0.

Then for i0 ∈ S1(t)

dβh1j0

dt
≥ Λi0j0

1

2
ϵπ∗

h1i0
− βh1j0

( p∑
i=1

Λij + τj

)
,

≥ 1

2
ϵ min
i0∈{1,2,...p}

Λi0j0π
∗
h1i0

− βh1j0 max
j0∈{1,2,...q}

( p∑
i=1

Λij + τj

)
.

We write A = 1
2
ϵmini0∈{1,2,...p} Λi0j0π

∗
h1i0

and B = maxj0∈{1,2,...q}

(∑p
i=1 Λij + τj

)
.

Hence, we can rewrite the above inequality as:

d

dt
(βh1j0 exp(Bt)) ≥ A exp(Bt).

Integrating over [t0k0 , t)

βh1j0(exp(Bt))− βh1j0(t0k0) ≥ A

B

(
exp(Bt)− exp(Bt0k0)

)
,

βh1j0 ≥ A

B

(
1− exp[−B(t− t0k0)]

)
,
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so there exists T4k0 depending only on the model parameters, not on the initial

conditions, such that for t ∈ [t0k0 + T4k0 , t1k02b]

βh1j0 ≥
A

2B
.

Now for t ∈ [t0k0 + T1k0 + T2k0 + T3k0 + T4k0 , t1k02b] then we deduce that:

d

dt
(πh1k0) ≥ (1− δ)λk0Pk0j0(1− ϕk0j0)αh

A

4B
− (µ+ σ)πh1k0 ,

≥ C − (µ+ σ)πh1k0 .

Here

C = (1− δ)αhλk0
A

4B
min
j0∈X

(
Pk0j(1− ϕk0j)

)
,

and X is the set {j ∈ {1, 2, . . . q} : such that Pk0j(1 − ϕk0j) > 0}. Hence, we have

that:

πh1k0(t) ≥ πh1k0(t0k0 + T1k0 + T2k0 + T3k0 + T4k0) exp
[
− (µ+ σ)(t− t0k0 − T1k0

−T2k0 − T3k0 − T4k0)
]

+
C

µ+ σ

(
1− exp[−(µ+ σ)(t− t0k0 − T1k0 − T2k0 − T3k0 − T4k0)]

)
,

≥ 1

2

C

µ+ σ
,

for time t ≥ t0k0+ + T1k0 + T2k0 + T3k0 + T4k0 + T5k0 where again T5k0 depends only

on the model parameters, ∆ and ϵ. Therefore, in the time [t0k0 , t2k02a], we find that
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πh1k0(t) is bounded below by the value

min
{1
2
ϵπ∗

h1k0
exp

[
− (µ+ σ)(T1k0 + T2k0 + T3k0 + T4k0 + T5k0)

]
,
1

2

C

µ+ σ

}
.

Here in Case 2b πh1k0(t) is bounded below by this value in [t0k0 , t1k02b]. After time

t1k02b we stop being in Case 2b and enter Case 2a.

Let us now consider Case 2a. We note that one of πh11, πh12, . . . πh1p say πh1i even-

tually rises above the value 1
2
ϵπ∗

h1i
. If this is πh1k0 then the result follows from our

previous results for Case 2a. Starting at 1
2
ϵπ∗

h1i
at time t0k0 , πh1k0 rises up again to

the level 1
2
ϵπ∗

h1i
and the time taken to do this can be bounded above by a quantity

that depends on only the model parameters, ϵ and ∆.

On the other hand, suppose that it is πh1i (i ̸= k0) that reaches the level 1
2
ϵπ∗

h1i

at time Tk0 . Then the maximum rate of increase of πh1i is denoted by L where

L = max
i∈{1,2,...p}

(1− δ)λiqmax[αh, αy].

Choose ∆1 =
1
2L
ϵπ∗

h1i
, then we deduce that:

πh1i(t) ≥ 1

4
ϵπ∗

h1i
for t ∈ [Tk0 −∆1, Tk0 ],

where

L ≤ 1

4∆1

ϵπ∗
h1i
.
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Now we choose ∆2 = mini∈{1,2,...p}
1
4L
ϵπ∗

h1i
. Then we have that:

πh1i ≥
1

4
ϵπ∗

h1i
, in the time [Tk0 −∆2, Tk0 ].

So not only does πh1i rise to the level 1
2
ϵπ∗

h1i
at time Tk0 , it also rises to at least the

level 1
4
ϵπ∗

h1i
in the whole small time interval [Tk0 −∆2, Tk0 ]. We shall now use this to

find a lower bound for πh1k0(Tk0).

For t in the interval [Tk0 − 1
2
∆2, Tk0 ], we have:

βh1j0(t) ≥ min
i0∈{1,2,...p}

Λi0j0

1

4
ϵπ∗

h1i0

(
1− exp

[
−maxj∈{1,2,...q}(

∑p
i=1 Λij + τj)

1
2
∆2

]
maxj∈{1,2,...q}(

∑p
i=1 Λij + τj)

)
.

We obtain that

πh1k0(Tk0) ≥
A′

µ+ σ

(
1− exp

[
− (µ+ σ)

1

2
∆2

])
,

where A′ = mini0,k0∈{1,2,...p}A
′′(i0, k0). Here

A′′(i0, k0) =
(1
4

)(1− δ)λk0Pk0j0(1− ϕk0j0)αhΛi0j0ϵπ
∗
h1i0

maxj∈{1,2,...q}(
∑p

i=1 Λij + τj)

×

(
1− exp

[
− max

j∈{1,2,...q}

( p∑
i=1

Λij + τj

)(1
2
∆2

)])
.

This illustrates that

πh1k0(Tk0) ≥ A∗,

where A∗ = A′

µ+σ

(
1− exp

[
(µ+ σ)1

2
∆2

])
> 0.
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Hence, the process alternates between Case 2a and Case 2b. Suppose that the

process starts in Case 2a. On leaving Case 2a at time Tk02a we have that:

πh1k0(Tk02a) ≥ A∗.

Note that A∗ = 1
2
M1ϵπ

∗
h1k0

, where M1 is a constant independent of ϵ and ∆. If

M1 ≥ 1 then A∗ ≥ 1
2
ϵπ∗

h1k0
. So the argument for Case 2b above shows that on

leaving Case 2b at time Tk02b:

πh1k0(Tk02b) ≥ min

12ϵπ∗
h1k0

exp[−(µ+σ)(T1k0+T2k0+T3k0+T4k0+T5k0)],
C

2(µ+ σ)

.

If M1 < 1 then replacing ϵ by the smaller value M1ϵ in the argument for Case 2b

shows that on leaving Case 2b at time Tk02b:

πh1k0(Tk02b) ≥ min

12M1ϵπ
∗
h1k0

exp[−(µ+σ)(T1k0+T2k0+T3k0+T4k0+T5k0)],
C

2(µ+ σ)

.

Hence in either case on leaving Case 2b at time Tk02b, πh1k0(Tk02b) ≥ A∗∗, where

A∗∗ = min

12 min(1,M1)ϵπ
∗
h1k0

exp[−(µ+σ)(T1k0+T2k0+T3k0+T4k0+T5k0)],
C

2(µ+ σ)

.

Now each subsequent time that the system leaves Case 2a at Tk02an say, πh1k0(Tk02an) ≥

A∗. Similarly each subsequent time that the system leaves Case 2b at time Tk02bn

say, πh1k0(Tk02bn) ≥ A∗∗.
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Hence the system alternates between Case 2a and Case 2b. The time between

entering and leaving Case 2a is bounded above by a time T 1a which depends only on

ϵ, ∆ and the model parameters, although it may stay indefinitely in Case 2b after

spending some time intervals in Case 2a. In the second and subsequent times in Case

2a the value on entering Case 2a will be at least A∗∗ and a straightforward modifica-

tion of the argument given for Case 2a shows that the second and subsequent times

spent in this case the time between entering and leaving can be bounded above by a

time T 2a which depends only on ϵ, ∆ and the model parameters. Hence whilst it is

in Case 2a πh1k0 can be bounded below by:

min
(1
2
ϵπ∗

h1k0
exp[−(µ+ σ)T 1a], A

∗∗ exp[−(µ+ σ)T 2a]
)
.

In Case 2b πh1k0 starts at a value of at least A∗ and whilst it is in Case 2b πh1k0 can

be bounded below by

min

12 min(1,M1)ϵπ
∗
h1k0

exp[−(µ+ σ)(T1k0 + T2k0 + T3k0 + T4k0 + T5k0)],
C

2(µ+ σ)

.

We deduce that πh1k0,∞ > 0 which contradicts that πh1k0,∞ = 0. This completes

the proof of Theorem 3.3.7 if the system starts in Case 2b (and πh1k0(∆t) ≥ 1
2
ϵπ∗

h1k0
).

A similar argument shows that the result of the theorem is true if the system

starts in Case 2a (and πh1k0(∆t) ≥ 1
2
ϵπ∗

h1k0
). We now discuss the situation where

0 < πh1k0(∆t) <
1
2
ϵπ∗

h1k0
. We needed to assume that πh1k0(∆t) ≥ 1

2
ϵπ∗

h1k0
to ensure

that in Case 2a some πh1k0(∆t) rise to the level 1
2
ϵπ∗

h1i
, in a time which could be

bounded above by a time which depended only on the model parameters, ϵ and ∆.
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Consider first the situation where the system starts in Case 2a. In this case the same

argument (slightly modified) shows that eventually (in a finite time) some πhi(t) rises

above the level 1
2
ϵπ∗

h1i
. On leaving Case 2a at time Tk02a, πh1k0(Tk02a) ≥ A∗. The

proof proceeds as in the case where πh1k0(∆t) ≥ 1
2
ϵπ∗

h1k0
.

If we start in Case 2b where 0 < πh1k0(∆t) ≤ 1
2
ϵπ∗

h1k0
then it is possible that

the system remains in Case 2b indefinitely. Even in this case after a finite time

πh1k0(t) ≥
C

2(µ+ σ)
.

Thus Theorem 3.3.7 is again true. If the system leaves Case 2b for Case 2a in finite

time then the argument for Case 2a above (now valid for πh1k0(∆t) > 0) shows that

Theorem 3.3.7 is again true.

In this section, we have discussed persistence of the disease. If R0 > 1 and disease

is initially present in at least one group of addicts or at least one shooting gallery,

then, provided that an irreducibility condition is satisfied, the disease will ultimately

persist in all groups of addicts and all needles. Moreover, the ultimate lower bound

for the level of HCV in infected needles and addicts depends only on the model

parameters not the initial conditions.

3.4 Conclusion

In this chapter we have investigated analytically the results and behaviour of our

basic HCV transmission model. A key parameter of our model is the basic reproduc-

tive number R0. We have shown that if R0 ≤ 1 then there is only the disease-free
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equilibrium which is globally asymptotically stable. If R0 > 1 and an irreducibility

condition is satisfied, then the disease-free equilibrium is unstable and there is also

a unique endemic equilibrium.

We also showed that if R0 > 1 and the irreducibility condition is satisfied then the

disease is ultimately persistent. The lower bound for the level of disease persistence

in both addicts and needles depends only on the model parameters, not on the initial

conditions.

This concludes the formal mathematical analysis of this model. In the next

chapter we shall describe numerical simulations using our HCV transmission model.

First we shall discuss parameter estimates in detail. Then a numerical study will

verify the analytical results obtained in the first two chapters, namely the results

that the disease will die out if R0 ≤ 1 and persist if R0 > 1.

Later in Chapter Six we shall look numerically at the analytical results obtained

previously which showed that R0 was minimised by all groups of addicts visiting

shooting galleries at the same rate. We shall also verify numerically our results on

optimal control of HCV by allocation of limited amounts of needle exchange and

needle cleaning effort obtained in Chapter Two.
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Chapter 4
Simulations on Heterogeneity of Sharing

Rate

Numerical simulation has become a useful part of mathematical modelling of infec-

tious disease. Thus, computer simulations are taken here, using the package Berkeley

Madonna version 8.3.18 (Macey & Oster, 2001) to assess the effects of heterogeneity

between different groups of the population of drug users and different shooting gal-

leries where the addicts share injecting equipment. Berkeley Madonna software was

used to numerically solve the ordinary differential equations system of our models.

The simulation results are conducted to estimate the impact of HCV during the time

interval of 70 years (occasionally 100 years). The model parameters are estimated

to produce HCV prevalence simulation results over time. In the this chapter, we

assume that the model is homogeneous in shooting galleries which means that the

addict groups share their needles in one shooting gallery (q = 1). We use this assump-

tion for simplicity then we will discuss the heterogeneous cases of shooting galleries

in Chapter Five. Under the assumption of homogeneity of shooting galleries, the
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simulation results are performed to illustrate the prevalence of HCV among different

groups of drug users. Alongside with our assumption of homogeneity of shooting gal-

leries, we assume that the model parameters are all homogeneous except the needle

sharing rates.

4.1 Sharing Rates in Glasgow Data Sets

Glasgow has one of the highest numbers of sharing injecting drug addicts in Europe

with approximately 9,000 drug addicts (NESI, 2012). Our aim is to discuss the effect

of heterogeneity on the prevalence of HCV in a population of drug users and shooting

galleries. The data of the survey of drug users in Glasgow presents the rate of sharing

borrowed needles that were previously used by another drug addict. To illustrate

the prevalence of HCV among drug users in Glasgow, four different sets of data are

applied to present the behaviour of the disease against time, with the first calculation

of sharing rates using the data of sharing borrowed needles in 1990 and the second

calculation of sharing rates using the data of sharing borrowed needles in 1993 where

the disease takes off in both cases as the basic reproductive number R0 > 1. These

data give us that R0 > 1, so to study the behaviour of the disease where R0 ≤ 1

we use the third set a hypothetical dataset which is related to the data of 1993.

We expect that when R0 ≤ 1 the disease can die out. The three sets are obtained

by using survey data collected by Health Protection Scotland, HPS, (Hutchinson

et al., 2000). To compare the results for HCV spread with the results of Greenhalgh

(1997) for HIV/AIDS amongst injecting drug users we use the fourth set of data

which is collected by Goldberg et al., during the past six months amongst a sample

of 503 injecting drug users in Glasgow in 1990 (Goldberg et al., 1996). To start our
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simulation, we assume that the rest of the model parameters are homogeneous. Now,

we will discuss the numerical estimations of these parameters.

4.2 Parameter Identification

In this section the numerical estimations of the parameters of the models are pre-

sented. Some of these parameter estimates are used in the model of Corson et al.

(2012) and we also use them along with other parameters to study the effects of

heterogeneity of HCV prevalence among different groups of addicts. Now we briefly

discuss how the parameters are estimated.

4.2.1 Probability of Successful Needle Cleaning (ϕij)

The Harm ReductionWorks website has a documentary (National Treatment Agency)

presented by the research team who presented laboratory experiments on HIV and

cleaning practices (NTA, 2009). This documentary suggests that cleaning needles

and syringes with soaps, water or alcohol was successful in approximately 85% of

needles, however cleaning them with water and bleach will kill all blood-borne in-

fections in more than 99% of needles. Therefore it was assumed that the techniques

used to successfully disinfect a needle and syringe contaminated with HIV will also

disinfect one contaminated with HCV.

Corson et al. (2012) used survey data on addicts collected by HPS (Hutchin-

son et al. 2000) during the early 1990s to estimate needle cleaning probabilities.

From a total of 2,058 addicts surveyed in Glasgow during 1990-1993, 1,379 reported

that they had not injected with a used needle and syringe given, rented, or sold to
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them by someone else in the previous six months. On the other hand, the majority

(91%, 620/679) of the remaining 679 addicts reported that they always cleaned their

needles before use, 24 mostly cleaned their needles before use, eight cleaned about

half the time, 11 cleaned occasionally, 14 never cleaned and the remaining two said

they did not know (Corson et al., 2012). Corson et al. estimate that 173 of 679

(25.5%) addicts who reported sharing needles and syringes would have cleaned their

needles successfully the last time they injected, providing an estimate for ϕij of 0.255

for group type i of addicts and shooting gallery j.

4.2.2 Needle Turnover Rate (τj)

A model by Kaplan and O’Keefe (1993) assumed that when there is no needle ex-

change present, the needles will circulate forever. However, this is not realistic as a

needle has a limited working lifetime. On the other hand, Kaplan (1995) estimates

that the natural working lifetime of a needle is 23.50 days resulting in a natural

needle turnover rate of τ = 365/23.5 = 15.53 per year (Kaplan & O’Keefe, 1993).

Corson et al. (2012) estimated that there were a total of 213,964 injecting events

from a survey of 362 current addicts in the Greater Glasgow and Clyde area, gener-

ating an average of 591 injections per addicts per year. King et al. (2009) estimated

that there were 7,918 addicts in the Glasgow area in 2003. Assuming that these 7,918

Glasgow addicts inject with needles at the same rate as those surveyed in 2007, then

there were an estimated 4,679,538 injections in 2003. Corson et al. (2012) assumed

that the distribution of needles was the same in 2003, they estimated that each

needle was used approximately 4.46 times before it was exchanged. Moreover, they
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assumed that addicts in 2003 inject on average at the same rate as those surveyed in

2007 (591 times per year), then addicts inject on average 1.62 times per day. Hence,

if each needle is used approximately 4.46 times, with an average injection frequency

of 1.62 per day then the working life of a single needle is approximately 2.75 days.

This working life implies a total average needle turnover rate of 133 per year in each

shooting gallery.

4.2.3 Duration of Acute HCV Infection (1/σ)

In their model, Vickerman et al. (2007) assumed that the duration of the acute phase

ranges between six and 24 weeks in their modelling of HCV transmission in London.

Two years after, Vickerman et al. (2009) estimated that the duration of the acute

phase ranges from 3-24 months in their attempt to incorporate these individuals into

their Pakistan HIV and HCV model. This estimation was used by Corson et al.

(2012) and we use it in our simulation.

4.2.4 Rate that Addicts Leave the Population (µ)

Kaplan and O’Keefe (1993) estimate that the average incubation time of HIV is

approximately ten years giving a rate for µ of 0.1 per addict per year. Greenhalgh

and Hay (1997) use a value of µ = 0.25 per addict per year in their modelling work

on HIV in addicts. The authors assume that each addict will leave the population for

non-HIV related reasons at rate 0.125 per year and each addict will also will leave the

population due to AIDS related factors at rate 0.125 per year. Corson et al. (2012)

assume that addicts will cease their sharing, injecting behaviour at the same rate in

HCV models as they do in HIV models, provided that the HIV model estimate does
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not incorporate disease specific factors. However, the authors estimated µ = 0.17

addicts per year based on modelled estimates from Hutchinson et al. (2006) which

applied to Glasgow addicts between 2000 and 2009 and accommodated mortality

and cessation of injecting drug use.

4.2.5 Proportion of Addicts that Develop Immunity to HCV

Re-infection (α)

This parameter is hard to estimate due to the large uncertainty associated with

the level of immunity gained from previous infection with HCV. Some studies have

modelled the disease considering the immune state. One of these is the model of

Vickerman et al. (2007) which assumes that a proportion of addicts, ranging from

18% to 50%, are able to resolve their initial HCV infection and after a period of acute

HCV infection all of these become immune for life. Later, Vickerman et al. (2009)

assume that only a proportion of those that resolve their initial HCV infection go

on to become immune with the remaining addicts becoming susceptible again. They

estimate that the proportion of addicts who become immune ranges from 0 to 100%,

for the reason that there is large uncertainty in estimating this parameter.

A fraction α (0.25) of the acutely infected addicts that did not spontaneously

resolve HCV infection or leave the sharing injecting population developed immunity

on resolving their HCV infection was assumed by Corson et al. (2012). According

to some studies all of these addicts become immune for life (Micallef et al., 2006;

Aitken et al., 2008).
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4.2.6 Acute and Chronic Transmission Probabilities (αh, αy)

These are two of the biological parameters which were estimated by Corson et al.

(2012). Their model was based on a model by Vickerman et al. (2007) who assumed

a different probability for disease transmission for chronic and acute HCV while

modelling the spread of HCV amongst addicts in London, UK. Initial transmission

probability estimates for chronic HCV infection ranged from 0.84 - 10% with a mul-

tiplier factor for the transmission probability of HCV during the acute phase given

by 1 - 10%. They used a numerical algorithm to determine possible model fits to

London prevalence data. In their estimation Corson et al. (2012) consider the four

best model fits which contained a transmission probability per sharing event in the

chronic phase of either 4.1%, 1.8%, 4.3%, or 1.6%, with a factor increase during the

acute phase of 1, 1, 1, and 2.7 respectively. This results in acute HCV transmission

probability estimates of 4.1%, 1.8%, 4.3%, and 4.32% respectively.

4.2.7 Proportion of Addicts that Spontaneously Resolve HCV

Infection (δ)

Hutchinson et al. (2006) assume that the rate of spontaneous resolution of acute

HCV infections is in the range 15 - 40%, with a similar estimate of 18 - 50% used

by Vickerman et al. (2007). In their simulation Corson et al. (2012) take δ = 0.26,

this was taken from a systematic review of longitudinal studies involving 675 subjects

which suggests that 26% of individuals will spontaneously resolve their HCV infection

(Micallef et al., 2006). This rate estimation also has been used in many recent

studies, for example Vickerman et al. (2009) used it in their most recent modelling
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work on HCV and HIV in Pakistan.

4.2.8 Rate of Sharing Needles and Syringes (λi)

The only heterogeneity parameter of our model in our simulation in this chapter is

the sharing rate. Thus we will discuss this parameter in more detail and explain

how to estimate the different rate for each different group in our simulation. For

simplicity, many studies assumed homogeneous sharing rates although this is in con-

trast to what has been observed in the addict population (Kaplan & O’Keefe, 1993;

Corson et al., 2012). In studies of HIV transmission amongst injecting drug addicts,

Goldberg et al. (1996) assumed a mean shared injection rate for Glasgow addicts of

72.48 events per year. Later, Greenhalgh (1997) used the data from Goldberg et al.

(1996) and restricting them to those addicts that share, gave an average number of

shared injections λ = 171 per year. Corson et al. (2012) obtained λ from survey

data of addicts from Glasgow during 1990-1993 and 2007, it was 103 per year.

In this simulation, we focus on the heterogeneity of the rate of sharing needles

among addicts in different groups i, for i = 1, 2, . . . p. Our aim is to discuss the effect

of the heterogeneity on the prevalence of HCV in a population of drug users and

shooting galleries. The data of a survey of drug users in Glasgow collected by HPS

(Hutchinson et al., 2000) present the probability of sharing borrowed needles that

were previously used by another drug addict. Table 4.1 shows these sharing rates

of borrowed used needles which were collected by HPS during 1990 - 1993 detailing

sharing over the past six months. In the attempt to compare a variety of sets of data

in sharing needles rates, we also simulate data of sharing rates among drug users
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in Glasgow collected by Goldberg et al. during the period of six months amongst a

sample of 503 drug users in 1990 (Goldberg et al., 1996).

Frequency of Injecting 1990 1993

1-3 times per month 43 25

1 per day 7 4

1 per week 24 14

2-3 times per day 15 6

2-3 times per week 19 12

4 or more times per day 9 1

4-6 times per week 8 5

<1 per month 88 97

don’t know 1 1

never 283 339

Table 4.1: The data from 1990 and 1993 of sharing of borrowed used needles taken
from another addict in the previous six month period from a survey of drug users in
Glasgow which was taken by HPS (Hutchinson et al. 2000).

Note that this questionnaire asks about the number of used needles borrowed

from another addict in the last six months whereas in our model addicts borrow

both exchanged unused needles and used needles. From scaling the rates in the table

we can deduce the annual rate at which addicts in group i borrow used needles. We

denote this by λ∗i . However our model uses a different sharing rate. In our model

λi denotes the annual rate at which those addicts in group i borrow both used and
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unused needles. We shall now derive a formula which gives λi in terms of λ∗i .

λ∗i = λi × P (a borrowed needle is a used needle rather than an exchanged needle).

But each needle is exchanged at rate τ and used by addicts at rate λγ where

λ =
1

n

p∑
i=1

niλi,

is the average rate at which addicts share needles and γ = n/m. Hence

λ∗i = λi
λγ

λγ + τ
.

So writing

λ
∗

=
1

n

p∑
i=1

niλ
∗
i ,

λ
∗

= λ
λγ

λγ + τ
.

Solving this equation for λ we deduce that:

λ =
1

2

(
λ
∗
+

√
λ
∗2
+ 4λ

∗
τ̂

)
,

where τ̂ = τ/γ. In our model simulation, we calculate the sharing rates λi using the

sharing rates λ∗i of borrowed used needles which are found by the survey taken of

addicts from Glasgow by HPS in 1990 and 1993 (Hutchinson et al. 2000). Tables

4.2 and 4.7 present these data and groups of addicts and their sharing rates in six

different stages. We start with data from 1990, first we assume that the model is

homogeneous. Then, we divide the addicts population into two groups according
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to their sharing rates. This is followed by three groups with three different sharing

rates, then five groups and five sharing rates. As we are interested in models with a

greater number of groups because this may more accurately reflect the true degree

of heterogeneity in the population, the population is then divided into seven groups

with seven sharing rates and nine groups with nine sharing rates.

Later we display the simulation results of data from 1993, where we again divide

the population into groups. First of all we assume that the model is homogeneous

in the one group model. Then we separate the addicts population into two groups

according to their sharing rates. This is followed by three groups with three dif-

ferent sharing rates, then four groups and four sharing rates. Then the population

is divided into six groups with six sharing rates and nine groups with nine sharing

rates.

4.3 Simulation Results using Data from 1990

(Hutchinson et al., 2000)

We start our simulation with different sharing rates of different groups using data

from Glasgow drug users in 1990. The population size is made up of 9,000 drug

addicts that mix heterogeneously. We first divide the population into groups and

explore the behaviour of the disease in each different group. In the first group, we

estimate the sharing rate λ in the whole population of drug users, it is found to be

λ = 167.39 per year. This is followed by simulation for the two groups model where

the first group consists of those who never share syringes (λ1 = 0 per year), and the
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rest of the drug users are in the second group. Table 4.2 illustrates the values of

different sharing rates in each different group and the number of drug users.

Parameter Definition Estimate

ϕij Probability that an addict in group i cleans a needle

in shooting gallery j before use, i = 1, 2, ...9, j = 1. 0.255

λi Needle and syringe sharing rate in group i, i = 1, 2, ...9. Tables 4.2, 4.7,

and 4.12

τj Needle turnover rate in shooting gallery j, j = 1. 133 per year

µ Per capita rate at which addicts leave the sharing,

injecting population. 0.17 per year

αh Acute HCV transmission probability. 0.0432

αy Chronic HCV transmission probability. 0.016

1/σ Average duration of the acute stage. 0.5 years

δ Proportion of acutely infected addicts who resolve

HCV infection. 0.26

α The proportion of those addicts spontaneously

resolving HCV infection who become immune. 0.25

Pij The probability that an addict in group i chooses

shooting gallery j to share a needle. 1

mj Number of needles in shooting gallery j, j = 1. 8,982

Table 4.3: Table of parameter estimates used in our simulations.

The results of the model simulation are presented to demonstrate the effect of

heterogeneity of the prevalence of HCV among p groups of drug users. We calculated

the model graphs using the above parameter values for the model for p = 1, 2, 3, 5, 7

and 9 and q = 1 shooting gallery. The group sizes and sharing rates for each group
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were taken as mentioned earlier from a survey of addicts in Glasgow in 1990, where

the rest of the model parameter estimates are taken from the model by Corson et al.

(2012). Table 4.3 shows the set of parameter estimations and their definitions.

As j = 1 we assume that every addict in group i will choose a needle in shooting

gallery j, so Pij = 1 for simplicity in this stage of discussion. Moreover, the number

of addicts in Glasgow was taken as n = 9, 000, and the number of needles is esti-

mated to be m = 8, 932.03. The figure for the number of needles is taken from the

model of Corson et al. (2012) who take γ = 1.002 as the ratio of addicts to needles

(Griesbach et al., 2006; King et al., 2009). Then we estimate Λij, the arrival rate

of a single addict in group i at a needle in shooting gallery j:

Λij =
λini

mj

i = 1, 2, ...9, j = 1.

4.3.1 Estimation of the Basic Reproductive Number (R0)

The estimation of reproductive numbers is typically an indirect process because some

of the parameters on which these numbers depend are difficult, if not impossible, to

quantify directly. This parameter determines a threshold: whenever R0 > 1, a

typical infective gives rise, on average, to more than one secondary infection, leading

to an epidemic. In order to explore the disease behaviour we need to estimate this

threshold. We estimate R0 using Table 4.3 and Table 4.2 and our expression of this

number, which is:

R0 = ξ

∑p
k=1 λ

2
knk(1− ϕ)

m
(∑p

l=1
λlnl

m
+ τ
) , (4.1)
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where ξ = (αyσ(1− δ) +αhµ)/µ(µ+ σ) as given in equation (2.22). In each stage of

our simulation, we estimate R0 using the sharing rates in the different groups.

Now we present the simulation results of each model. In each model simula-

tion we calculate R0, and equilibrium solutions for both addicts and needles. The

overall proportions of infectious addicts, needles and HCV antibody positive addicts

are plotted against time for seventy years. Table 4.4 summaries these results for all

the six models.

Model R0 Infectious addicts Infectious needles Antibody positive

One group 5.8 76% 42% 85%

Two group 13.5 36% 47% 40%

Three group 35 34% 48% 37%

Five group 45.7 28% 48% 32%

Seven group 48.11 28% 48% 32%

Nine group 48.3 27% 48% 30%

Table 4.4: Comparing the six models in the basic reproductive number and equilib-
rium percentage of proportion of infectious addicts, needles and antibody positive
addicts using data from 1990.

Note that the values of R0 calculated are much higher than those normally ob-

served for homogeneous models. However, the interpretation of R0 is different for

models with heterogeneity so this does not necessarily indicate a problem with these

values. The simulation results present in Table 4.4 indicate that as the number of

group increases, R0 values increases too and the overall prevalence of HCV among

addicts decreases. The increasing of the value of R0 because we take the average

value of all R0’s for all groups so as the number of groups increased the number of
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R0’s increased too. This is because as we have differen groups with different values of

sharing rates according to this we have more R0’s according to each group of addicts.

Moreover, there is a large amount of addicts whom never share needles, which implies

a large number of non-infected addicts comparing with a small amount of addicts

who highly sharing needles, which implies that these small number of addicts will be

infected (see table 4.2). Thus, we have the overall of proportion of infectious addicts

and antibody positive addicts come down, as in the most heterogeneity models (for

example the nine group model) there are groups of addicts can not be reached.

4.3.2 One Group Model
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Figure 4.1: The proportions of addicts and needles in Glasgow when R0 = 5.8 in the
one group model using data from 1990.

A simulation is performed for HCV prevalence for p = q = 1. Using the set of
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parameters given in Table 4.3 we estimate that R0 = 5.8 > 1. We assume that

at time t = 0, πx1(0) = 0.99 (so 99% of addicts were not infected with HCV),

πx11(0) = 0, πh11(0) = 0.01 (so 1% of addicts were in the acute h1 stage) and πh21(0) =

πy1(0) = πz1(0) = 0. Similarly, for the fractions of infectious needles at time t = 0,

βh11(0) = βh21(0) = βy1(0) = 0 (so no needles are infected with HCV). One of the

most important aspects of disease modelling is the number of infectious addicts at any

given time, therefore the fraction of infected addicts (πh11 + πh21 + πy1) against time

is displayed in Figure 4.1. We notice that the fraction of needles and addicts infected

with the disease reaches a steady endemic states. The long-term prevalence of HCV

in addicts is over 70% as can be seen in Figure 4.1. The estimated steady state values

are (π∗
x1, π

∗
x11
π∗
h11
, π∗

h21
, π∗

y1, π
∗
z1) = (0.1447, 0.0262, 0.0585, 0.0205, 0.6893, 0.0605). For

needles at each stage of infectivity (β∗
h11
, β∗

h21
, β∗

y1)= (0.0326, 0.0114, 0.3844). These

values are consistent with formulae for equilibrium values given in equations (3.1) -

(3.4) if the relevant parameters values are substituted.

4.3.3 Two Group Model

The central aim of this model is to study the effect of heterogeneity on the spread

of HCV amongst addicts. Thus, we divide the population of addicts into two main

groups. One group is addicts who never share needles and syringes and the other

group is addicts who are sharing injecting equipment. We can see from Figure 4.2

that although this sharing rate is higher than the sharing rate in the homogeneous

case, we notice that the overall long-term equilibrium infectious proportion of HCV

infected addicts in Glasgow is lower than in the homogeneous case. This is because

we take the average of prevalence for both groups, first who never share which has
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Figure 4.2: The proportions of addicts and needles in Glasgow when R0 = 13.5 in
the two group model using data from 1990.

the largest number of addict (non-infected) and second group who sharing with lower

number of addicts (infected). As initial proportions of infection we assume that at

time t = 0, for i = 1, 2, πxi(0) = 0.99 (so in each group 99% of addicts were

not infected with HCV), πh1i(0) = 0.01 and πx1i(0) = πh2i(0) = πyi(0) = πzi(0) =

0. Similarly, for infectious needle fractions at time t = 0, βh11(0) = βh21(0) =

βy1(0) = 0 (so no needles are infected with HCV). R0 was estimated to be 13.5

using the set of parameters in Table 4.3 and the formula (4.1). We can see that the

disease reaches a steady endemic solution. The overall estimated steady state values

are (π∗
x, π

∗
x1
π∗
h1
, π∗

h2
, π∗

y, π
∗
z) = (0.5969, 0.0053, 0.0281, 0.0098, 0.3306, 0.0290). For p
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groups of addicts, these are calculated using the following formula:

π∗
s =

∑p
i=1 ni × π∗

si∑p
i=1 ni

, s = x, x1, h1, h2, y, z, p = 2.

For needles in each state of infectivity, we deduce that the approximate steady state

values are (β∗
h1
, β∗

h2
, β∗

y) = (0.0364, 0.0128, 0.4287).

4.3.4 Three Group Model
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Figure 4.3: The proportions of addicts and needles in Glasgow when R0 = 35 in the
three group model using data from 1990.

The simulation in this stage includes three groups of addicts p = 1, 2 and 3, where

one group consists of addicts who never share needles λ1 = 0 per year, the second

group consists of addicts sharing needles at a low rate where λ2 = 152.44 per year and

the third group consists of addicts who share needles at a high rate λ3 = 1, 440.25
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per year. We calculate R0 = 35 > 1. At time t = 0 for i = 1, 2, 3, πxi(0) =

0.99, πx1i(0) = 0, πh1i(0) = 0.01 πh2i(0) = πyi(0) = πzi(0) = 0. Similarly, for

infectious needle fractions at time t = 0, βh11(0) = βh21(0) = βy1(0) = 0. Figure

4.3 shows that the overall equilibrium prevalence of HCV in needles and syringes

is higher than the prevalence of HCV among addicts. Moreover, we can see that

the overall equilibrium prevalence of HCV amongst addicts is lower in the three

groups model than in the one group model and the two groups model. In the three

groups model the overall equilibrium prevalence is about 28% and it is achieved

after around ten years. The overall average equilibrium prevalence in addicts is

(π∗
x, π

∗
x1
π∗
h1
, π∗

h2
, π∗

y, π
∗
z) = (0.6217, 0.0094, 0.0260, 0.0091, 0.3067, 0.0269). For needles

at each stage of infectivity, we deduce that the approximate steady state values are

(β∗
h11
, β∗

h21
, β∗

y1)= (0.0366, 0.0128, 0.4314). Moreover, we simulated the four group

model where the results are not displayed, as the behaviour of the four group model

and the three group model are very similar.

4.3.5 Five Group Model

To illustrate the heterogeneity effects in the spread of HCV, we discuss and frame

a five groups model where the five groups have different sharing rates λi for i =

1, 2, 3, 4, 5. We set the groups according to their sharing rate where the first group

has the lowest rate λ1 = 0.0 per year and group five has the highest rate with

λ5 = 1, 996.09 per year. Figure 4.4 presents the behaviour of HCV in the heteroge-

neously mixing groups. As mentioned earlier, based on the parameters in Table 4.3,

an estimation of the basic reproductive number is made, R0 = 45.7 > 1. Further-

more, we are assuming that at time t = 0, πxi(0) = 0.99 πx1i(0) = 0, πh1i(0) = 0.01,
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Figure 4.4: The proportions of addicts and needles in Glasgow when R0 = 45.7 in
the five group model using data from 1990.

and πh2i(0) = πyi(0) = πzi(0) = 0 for all i. Similarly, for infectious needle frac-

tions at time t = 0, βh11(0) = βh21(0) = βy1(0) = 0. We notice that the frac-

tion of addicts and needles infected with the disease reach a steady endemic solu-

tion. The estimated steady state values for addicts are (π∗
x, π

∗
x1
π∗
h1
, π∗

h2
, π∗

y, π
∗
z) =

(0.6745, 0.0130, 0.0221, 0.0077, 0.2597, 0.0228). For needles at each stage of infec-

tivity, we deduce that the approximate steady state values are (β∗
h11
, β∗

h21
, β∗

y1)=

(0.0371, 0.0130, 0.4365). Moreover, we simulated the six group model where the re-

sults are not displayed, as the behaviour of the six group model and the five group

model are very similar.

185



0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

Seven Group Model

Time (years)

P
ro

po
rt

io
n 

of
 in

fe
ct

io
us

 a
dd

ic
ts

 a
nd

 n
ee

dl
es

Addicts
Needles

Figure 4.5: The total infected proportions of addicts and needles in Glasgow when
R0 = 48.11 in the seven group model using data from 1990.

4.3.6 Seven Group Model

We can see that the prevalence of HCV may decrease with the increasing of the

number of groups in each different model. Now we present a simulation for p = 7,

along with seven different sharing rates λi for i = 1, 2, 3, 4, 5, 6, 7. These groups are

arranged according to their sharing where the first group has the lowest λ1 = 0.0 per

year and the seventh group has the highest where λ7 = 2, 607.14 per year. In this

simulation we follow similar initial proportions for the model variable as previously,

then we find that R0 = 48.11 > 1 which leads us to believe that the disease will

persist in this model. Figure 4.5 displays the model equilibrium prevalence with the

overall steady state equilibrium prevalence in addicts being (π∗
x, π

∗
x1
π∗
h1
, π∗

h2
, π∗

y , π
∗
z) =

(0.6746, 0.0130, 0.0220, 0.0077, 0.2596, 0.0228). Needles steady states values are (β∗
h11
,
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β∗
h21
, β∗

y1)=(0.0371, 0.0130, 0.4365).

4.3.7 Nine Group Model
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Figure 4.6: The proportions of addicts and needles in Glasgow when R0 = 48.3 in
the nine group model using data from 1990.

A simulation for nine groups of drug addicts was performed to predict the be-

haviour of the disease. Figure 4.6 emphasises the fact that in the nine group model

the overall long-term prevalence of HCV is the lowest comparing with other models

including the homogeneous model. As we mention this because a large number of

addicts in this model never share needle which implies large number of non-infected

addicts and a small number of infected addicts whom are sharing needles at high

rate, thus the overall average of HCV precleaned among addicts in this model is the

lowest. Nine groups of addicts are included and one shooting gallery. As in previous

187



simulations we start at time t = 0 for i = 1, 2, . . . , 9, πxi(0) = 0.99 πx1i(0) = 0,

πh1i(0) = 0.01 πh2i(0) = πyi(0) = πzi(0) = 0 also, for infectious needle fractions at

time t = 0, βh11(0) = βh21(0) = βy1(0) = 0. We also use the parameter estimation

presented in Table 4.3 to calculate R0 = 48.3 > 1.

We clearly can see from Figure 4.6 that after nearly ten years the total pro-

portion of infectious addicts reaches a steady equilibrium state with the following

values (π∗
x, π

∗
x1
π∗
h1
, π∗

h2
, π∗

y, π
∗
z) = (0.6907, 0.0123, 0.0209, 0.0073, 0.2468, 0.0216). For

needles in each stage of infectivity, we deduce that the approximate steady state

values are (β∗
h11
, β∗

h21
, β∗

y1)=(0.0372, 0.0130, 0.4379).

4.4 Comparison of Models with Different Num-

bers of Groups

4.4.1 Infectious Addicts

We aim to incorporate the total proportions of infected addicts for all six models.

Figure 4.7 shows the plots of these proportions of infected addicts in Glasgow using

data from 1990 (Hutchinson et al., 2000). Clearly, we can see the highest equilibrium

proportion of infectious addicts happened in the one group model (homogeneous

model) where it is nearly 76%, whilst the nine group model (heterogeneity model)

has the lowest overall average of equilibrium prevalence of 27%. This indicates that

for this observed data increasing the heterogeneity of the addicts population may

reduce the overall endemic equilibrium level of disease amongst addicts. The reason

for this is that the observed distribution of needle sharing rates is very skew. As the
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heterogeneity increases the prevalences in the smaller groups gets higher and in the

larger groups lower so the overall endemic prevalence decreases.
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Figure 4.7: The total proportion of infectious addicts in all models in Glasgow using
data from 1990.

Moreover, the behaviour of infectious addicts in the five and seven group models

in Figure 4.7 shows that these models behave similarly, also this can be seen from

the the total proportion of infectious addicts in Table 4.4. As the number of groups

increases the initial speed of increase of the epidemic (which is related to R0) in-

creases. So our simulations are consistent with our theoretical results which show

that in this situation the homogeneous model has the lowest value of R0. Table 4.4

presents the basic reproductive number for each model and we can see that the seven

and nine group models have the highest numbers for R0.

Moreover, Table 4.5 compares the number of groups and the endemic equilibrium
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prevalence values in each stage: susceptible, acute, chronic and immune. Therefore,

we can see that as the number of groups increases the endemic equilibrium prevalence

of infectious addicts decreases. This indicates that increasing the heterogeneity in

the addicts population may reduce the long term endemic equilibrium proportion of

HCV among this population.

We also did simulations for the four group model (where results are not pre-

sented), we found that the results for four, five, seven and nine group models were

very close.

Models π∗
x π∗

x1
π∗
h1

π∗
h2

π∗
y π∗

z

One group 0.1447 0.0262 0.0585 0.0205 0.6892 0.0326

Two group 0.5969 0.0053 0.0281 0.0098 0.3306 0.0290

Three group 0.6217 0.0093 0.0260 0.0091 0.3067 0.0269

Five group 0.6745 0.0130 0.0220 0.0077 0.2597 0.0228

Seven group 0.6746 0.0130 0.0220 0.0077 0.2596 0.0228

Nine group 0.6907 0.0123 0.0209 0.0073 0.2468 0.0216

Table 4.5: Comparing the endemic equilibrium proportions of infectious addicts for
all six models using data from 1990.

4.4.2 Infectious Needles

We have assumed that the all addicts groups are sharing needles and syringes in

one shooting gallery, Figure 4.8 shows the total proportions of infectious needles

and syringes in this shooting gallery in all six models with different numbers of

addicts. Again we note that the more groups there are, the greater the degree of

heterogeneity, the bigger R0 is, and the faster the disease initially takes off. However,
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when we consider the equilibrium prevalence we find that in contrast to the total

proportion of infectious addicts, the one group model has highest endemic equilibrium

proportion of infectious needles and infectious addicts. Table 4.6 displays the endemic

equilibrium proportions of needles for all the models.
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(a) The total proportion of infected needles
in all models in Glasgow using data from
1990.
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(b) Clarification of the curves of models
two, three, five, seven and nine where the
y axis is (0.47, 0.49).

Figure 4.8: Infectious needles proportion.

Models β∗
h1

β∗
h2

β∗
y

One group 0.0326 0.0114 0.3844

Two group 0.0364 0.0128 0.4287

Three group 0.0366 0.0128 0.4314

Five group 0.0371 0.0130 0.4365

Seven group 0.0371 0.0130 0.4365

Nine group 0.0372 0.0130 0.4379

Table 4.6: Comparing the endemic equilibrium proportions of infectious needles for
all six models using data from 1990.
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As the number of groups increases the model becomes increasingly heterogeneous

and in general the endemic equilibrium proportion of infectious needles increases.

However, note that this endemic equilibrium proportion is similar for the five, seven

and nine group models. Again we found that the four group model (not presented) is

similar to the three group model. Also, the endemic equilibrium proportions of the

four, five, seven and nine group models are very similar, and we can see this clearly

from Table 4.6 and Figure 4.8.

4.4.3 Antibody Positive Addicts
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Figure 4.9: The total proportion of antibody positive addicts in all models in Glasgow
using data from 1990.

As HPS collects data on HCV antibody positive addicts it is useful to consider

the total proportion of HCV antibody positive addicts against time. In our model

the antibody positive classes are the resolved susceptibles πx1i, acutely infected πh1i
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and πh2i, chronically infected πyi and immune πzi for i = 1, 2, . . . , p. The results are

displayed in Figure 4.9. We see that the pattern is similar to the total proportion

of infected addicts. The disease takes off fastest in the most heterogeneous models

but the endemic equilibrium proportion antibody positive is lowest in the more het-

erogeneous models. Moreover, it is clear that the five, seven and nine group models

display very similar behaviour. Again, we simulate the antibody positive addicts in

the four group model where the graph is not presented, we found that this model

behaves similarly to the five and seven group models.

4.5 Simulation Results Using Data of 1993

(Hutchinson et al., 2000)

The survey of sharing borrowed needles from other addicts in the period of six months

in Glasgow in 1993 that yields λ∗i (Hutchinson et al., 2000) was used to calculate the

total sharing needles rates λi. There seems to have been a substantial drop in the

level of self-reported sharing amongst injecting intravenous drug users in Glasgow

between 1990 and 1993 (Hutchinson et al., 2000). Data on sharing rates in 1993 were

used to investigate the effect of this drop. We use the same formula that have been

used for the data in 1990, to calculate the sharing rates λi for i = 1, 2, . . . p. We find

that in both sets of data, the basic reproductive numbers are above one, thus the

solution will approach the endemic equilibrium over seventy years.

We will briefly discuss and present some graphs of the plots of the models. Table

4.7 presents the sharing rates for each group in the five different models. As before we
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assume initially that 1% of addicts are in the acute infectious h1 class, the remaining

99% are in the susceptible x class and no needles are infected. First we consider the

homogeneous case where p = q = 1, the sharing rate is 94.34 per year. Then we

divide the population into two groups, one for those who never share needles and

the second group who share needles. This is followed by the three and four group

models where they behave similarly to each other as can be seen from Figure 4.10.

Finally, the most heterogeneity model with nine group with nine different sharing

rates. These five models are shown in Figure 4.10, which display the overall of preva-

lence of HCV in addicts and needles in each model. It can be seen, as the number

of groups increases the initial speed of increase of the epidemic (which is related to

R0) increases. So our simulations are consistent with our theoretical results which

show that in this situation the homogeneous model has the lowest value of R0.

Models R0 Infectious Infectious Antibody

addicts needles positive addicts

One group 2.37 53% 22% 62%

Two group 7.28 26% 32% 28%

Three group 21.43 24% 33% 26%

Four group 24.64 18% 34% 21%

Nine group 32.08 17% 34% 20%

Table 4.8: Comparing the five models in the basic reproductive number and equilib-
rium of proportion of infectious addicts, needles and antibody positive addicts using
data from 1993.

Table 4.8 presents the basic reproductive number for each model, percentage of

proportion of infectious addicts, needles and antibody positive addicts. We simulate
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Figure 4.10: The total proportions of infectious addicts and needles in Glasgow in
the five models using data from 1993.
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the five and the six group models (which are not presented), these models behave

similarly to the four group model. The nine group model has the highest value of R0

and the lowest equilibrium proportions of infectious addicts, needles and antibody

positive addicts. Although the data set of 1993 is different than data set of 1990,

we notice the results are similar as R0 > 1 in both cases. Also, the biological

interpretation of heterogeneity on the HCV spread that heterogeneity may reduce

the overall proportions of infectious of HCV among addicts population although the

value of R0 is high (as we explained earlier the reason of increasing in R0 values with

the increasing of the number of groups).
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Figure 4.11: Comparing all the proportions of infectious addicts for all models in
Glasgow using data from 1993.
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4.6 Comparison of Models with Different Num-

bers of Groups

4.6.1 Infectious Addicts

To compare the behaviour of all five models, we present the plots of the proportions

of infectious addicts against time. Figure 4.11 shows the effects of heterogeneity of

the prevalence of HCV among drug addicts. We can see that the one group model has

the highest rate of infectious addicts whereas the nine group model has the lowest.

Clearly, it appears from Figure 4.11 that after about ten years the fraction of addicts

and needles infected with the disease reach steady endemic solutions. The overall

average endemic equilibrium prevalence in addicts is presented in Table 4.9 and the

overall average endemic equilibrium prevalence in needles is presented in Table 4.10.

For the one group model this endemic equilibrium is reached after about twenty

years.

Models π∗
x π∗

x1
π∗
h1

π∗
h2

π∗
y π∗

z

One group 0.3737 0.0474 0.0409 0.0143 0.4812 0.0422

Two group 0.7117 0.0071 0.0198 0.0068 0.2338 0.0205

Three group 0.7312 0.0097 0.0183 0.0064 0.2153 0.0189

Four group 0.7840 0.0120 0.0144 0.0050 0.1695 0.0148

Nine group 0.7954 0.0114 0.0136 0.0047 0.1605 0.0140

Table 4.9: Comparing the endemic equilibrium proportions of infectious addicts for
all five models using data from 1993.
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4.6.2 Infectious Needles

Note that although we consider one shooting gallery where all the groups of drug

users share the needles and syringes, there is a significant difference between the

prevalence of HCV in the needles. Figure 4.12 illustrates that two group model has

the highest proportion of infectious needles which is nearly 23%. On the other hand,

the one group model has a lower equilibrium proportion of infectious needles than the

two group model. Also, Figure 4.20 shows that the behaviour of the three and four

group models are indistinguishable, also we can say the same about the behaviour of

the six and nine group models. Table 4.10 displays the endemic equilibrium solutions

of the five different models in the h1, h2 acute stage and y chronic stage. From this

table we can see that as the number of groups of the models increases, the endemic

equilibrium solutions decrease for all six models.
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Figure 4.12: Comparing all the proportions of infectious needles for all models in
Glasgow using data from 1993.
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Models β∗
h1

β∗
h2

β∗
y

One group 0.0167 0.0058 0.1974

Two group 0.0250 0.0087 0.2943

Three group 0.0253 0.0089 0.2986

Four group 0.0262 0.0092 0.3087

Nine group 0.0264 0.0092 0.3106

Table 4.10: Comparing the endemic equilibrium proportions of infectious needles for
all five models using data from 1993.
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Figure 4.13: Comparing all the proportions of antibody positive addicts for all models
in Glasgow using data from 1993.

4.6.3 Antibody Positive Addicts

Table 4.8 displays the equilibrium proportion of the antibody positive addicts in

our simulations for data from 1993. As for earlier simulations, the antibody positive
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classes are the susceptible x1i, acutely infected h1i and h2i, chronically infected yi and

immune zi for i = 1, 2, ..., p. The results are displayed in Figure 4.13, where we can see

that the models with lower number of groups (the more homogeneous models), have

the highest proportion of antibody positive addicts. Again, the pattern is similar to

the total proportion of infected addicts using data from 1993.

4.7 Simulation Results using Data from 1990

(Goldberg et al., 1996)

Now we present the simulation results using data of sharing rates among drug users

in Glasgow collected by Goldberg et al., during the past six months amongst a sam-

ple of 503 injecting drug users in Glasgow in 1990 (Goldberg et al., 1996). We scale

the size of the sample to the currently number of injecting drug users in Glasgow

(which is 9,000). These data were used without adjustment by Greenhalgh (1997)

in his model of the spread of HIV/AIDS among injecting drug users. It would be

more realistic to adjust these sharing rates for the effect of needle exchange in the

same way as for the above datasets which were collected by HPS in 1990 and 1993.

However to obtain a broad spectrum of simulated situations and to compare the

results for hepatitis C with the results of Greenhalgh (1997) for HIV/AIDS amongst

injecting drug users we use unadjusted rates.

Table 4.11 displays the five models where addicts are sharing needles in one

shooting gallery. Similar initial conditions are used by assuming initially that 1% of

addicts are in the acute infectious h1 class, the remaining 99% are in the susceptible x
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class and no needles are infected. In the homogeneous model where p = q = 1 we find

that the sharing rate is λ = 72.48 per year. This give us that R0 = 1.6 > 1, thus we

expect the disease will take off in both addicts and needles. After nearly 30 years we

can see from Figure 4.14 (first left plot), the model achieves a steady equilibrium solu-

tion with the following values (π∗
x, π

∗
x1
, π∗

h1
, π∗

h2
, π∗

y, π
∗
z) =(0.5774,0.0475,0.0265,0.0093,

0.3117, 0.0273). The steady equilibrium solutions for the needles are (β∗
h1
, β∗

h2
, β∗

y) =

(0.0093, 0.0032, 0.1101). To investigate the impact of heterogeneity we divide the

addicts’ population into different groups and study the behaviour of HCV in both

addicts classes and needles. Next, we take the two group model where the first

group consists of those who never share, λ1 = 0 per year, and the second group has

λ2 = 171.1 per year. We find R0 = 3.7 > 1 and the equilibrium total proportion of

infectious addicts is nearly 28% and of infectious needles is nearly 24%. The model

reaches equilibrium steady state after about 10 years. More models are discussed

later, we consider the three group model where the sharing rates are presented in

Table 4.11, we find that R0 = 9 > 1 and the equilibrium total proportion of infectious

addicts is nearly 17% and of infectious needles is nearly 28%. Then, we simulate the

four group model with four different sharing rates (see Table 4.11). R0 = 15 > 1 and

the equilibrium total proportion of infectious addicts is nearly 16% and of infectious

needles is nearly 28%.

Moreover, we attempt to simulate five, six and seven group models, we find these

models behave very similarly to the four group model thus we did not present them

here. As R0 is increasing with an increasing of the number of groups in models, we

compute R0 in the nine group model and find it to be 22.37. Also, this model has
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Figure 4.14: The total proportion of infectious addicts and needles in one, two, three,
four and nine group models using sharing rates based on data from 1990 (Goldberg
et al., 1996).
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the lowest total proportions of infectious addicts which is nearly 15% and achieves

a steady equilibrium solution with the following values (π∗
x, π

∗
x1
, π∗

h1
, π∗

h2
, π∗

y, π
∗
z) =

(0.8208, 0.0123, 0.0117, 0.0041, 0.1386, 0.0121). For the needles, at each stage of in-

fectivity, (β∗
h1
, β∗

h2
, β∗

y)=(0.0220,0.0077,0.2590). Figure 4.14 displays the total pro-

portion of infectious addicts and needles in the three, four and nine group models,

where we can see that the disease takes off in these models and also achieves a steady

equilibrium solution in each model for both addicts and needles.

4.8 Comparing all Models
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Figure 4.15: Comparing all the proportions of infectious addicts for all models using
sharing rates of data from 1990 (Goldberg et al., 1996).
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4.8.1 Infectious Addicts

As we did in each different set of data, we compare the infectious addicts together

in one graph to understand the real impact of heterogeneity on the spread of HCV

amongst drug users. Clearly we can see from Figure 4.15 that the homogeneous

model has the highest endemic equilibrium prevalence of infectious addicts and the

most heterogeneous model (the nine group model) has the lowest. Also, as the

number of groups increased the basic reproductive number in each model increased

too. Therefore, these simulation results are consistent with our theoretical results

which show that in this situation the homogeneous model has the lowest value of R0.
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Figure 4.16: Comparing all the proportions of infectious needles for all models using
sharing rates of data from 1990 (Goldberg et al., 1996).
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4.8.2 Infectious Needles

As in earlier simulation results, we assume that the addicts share their needles in

one shooting gallery, Figure 4.16 shows the total proportions of infectious needles in

all five different models. Clearly, we can see from this figure that the more groups

there are, the bigger R0 is, and the higher the endemic equilibrium proportions of

infectious needles are. The homogeneous model has the lowest endemic equilibrium

proportion at about 12% and the nine group model has the highest at about 28%.

We also find that the three, four, five, six, seven and nine group models (five, six

and seven not presented) are similar to each other with nearly 28% of total endemic

equilibrium proportions of infectious needles.
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Figure 4.17: Comparing all the proportions of antibody positive addicts for all models
using sharing rates of data from 1990 (Goldberg et al., 1996).
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4.8.3 Antibody Positive Addicts

Now we aim to discuss briefly the antibody positive addicts in all five models. For

this data from 1990 we find that the pattern is similar to the total proportion of

infected addicts. Figure 4.17 shows that the disease takes off fastest in the nine

group model, however this model has the lowest endemic equilibrium proportion

antibody positive of nearly 17%. The homogeneous model has the highest endemic

equilibrium proportions with 42%. Again, we can see from Figure 4.17 that the four

and nine group models behave similarly.

4.9 Hypothetical Sharing Rates

We have simulated the mathematical models of the prevalence of HCV among drug

addicts using the sharing rates which are calculated from a survey in Glasgow in

1990 and 1993 (Hutchinson et al., 2000). The simulation results demonstrate that

the disease will take off in both cases as R0 was always above unity. Now we attempt

to simulate our model according to similar conditions and parameters estimations

as above, however, R0 is under unity. The approach is similar to what we have

done for the data for the six months periods from 1990 and 1993, however we assume

hypothetical sharing rates λi which ensure that in the homogeneous case R0 ≤ 1. We

shall illustrate that it is possible for the disease to die out in the homogeneous model

and tends to the disease-free equilibrium. However, in the heterogeneous models,

R0 > 1 and the disease tends to the unique endemic equilibrium. For this purpose

we use the data of sharing borrowed used needle rates λ∗i in the six month period

which was taken in 1993 (Hutchinson et al., 2000) in place of λi without increasing
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them to include the effect of sharing unused needles. Table 4.12 presents the sharing

rates of each of the models.

4.9.1 One Group Model

First we simulate the homogeneous case using our hypothetical sharing rates. The

sharing rate is estimated from data for 1993, to be λ = 39.2 per year. We estimate

R0 = 0.55 < 1 using the other model parameters as in Table 4.3. The results are

displayed in Figure 4.18. As before we assume that initially 1% of addicts are in the

acute infectious h1 class, the remaining 99% are in the susceptible x class and no

needles are infected. From Figure 4.18 we can see that the disease dies out. This

agrees with our earlier analytical results and the results of Corson et al. (2012) which

predict that if R0 ≤ 1 then the disease will die out in addicts and needles. In this

model, the overall proportions of infected addicts and needles tend to disease-free

equilibrium, these are presented in Tables 4.14 and Table 4.15. Thus, the simulation

results are compatible with the theoretical results where if R0 ≤ 1 the model has a

disease-free equilibrium.

4.9.2 Two Groups Model

Next we discuss the impact of heterogeneity of our model by generating two groups

of addicts according to their sharing rates and using the hypothetical sharing rates

using data of drug users in Glasgow for 1993. The first group never share needles,

λ1 = 0 per year and the second group share needles and syringes at rate λ2 = 120.2

per year. As earlier we assume that initially 99% of addicts in each group are in

the x-susceptible class and the remaining 1% are h1-infected addicts. There are no
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other infected addicts or needles. Using the parameter estimates in Table 4.3 we

estimate that R0 = 1.7 > 1, so unlike the one group model the disease does not

die out. We can see from Figure 4.18 that the disease persists in both addicts and

needles. Moreover, the overall steady state values of infectious addicts and needles

are presented in Table 4.14 and Table 4.15.

Model R0 Infectious addicts Infectious needles Antibody positive

One group 0.55 0% 0% 0%

Two group 1.71 12% 8% 15%

Three group 4.7 11% 12% 14%

Four group 6.05 11% 12% 13%

Six group 6.82 9% 14% 11%

Nine group 7.06 9% 14% 11%

Table 4.13: Comparing the six models in the basic reproductive numbers and equi-
librium percentage of proportions of infectious addicts, needles and antibody positive
addicts using hypothetical sharing rates of data from 1993.

4.9.3 Three and Four Groups Models

Now we divide the population into three and four groups and examine the behaviour

of the disease among drug addicts. In the three groups model and using the param-

eters in Table 4.3 and for p = 3, λ1 = 0, λ2 = 62.6, and λ3 = 605.65 per year, we

deduce that R0 = 4.7 > 1. As earlier we assume that at time t = 0, for i = 1, 2, 3, 4,

πxi(0) = 0.99, πx1i(0) = 0, πh1i(0) = 0.01, πh2i(0) = πyi(0) = πzi(0) = 0. Similarly,

for infectious needle fractions at time t = 0, βh11(0) = βh21(0) = βy1(0) = 0. We can

see from Figure 4.18 that the three group model is similar to the four group model in

both infectious addicts and needles. These models also achieve a steady state where
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Figure 4.18: The total proportion of infectious addicts and needles in Glasgow using
hypothetical sharing rates based on data from 1993.
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the values are displayed in Tables 4.14 and Table 4.15. The basic reproductive

numbers of these models are shown in Table 4.13.

4.9.4 Six and Nine Groups Models

More simulation models are designed to predict the disease spread in a six groups

model and nine groups model using data from survey of drug addicts in Glasgow in

1993 (Hutchinson et al., 2000). In the six group model, six different sharing rates

are used as follows: λ1 = 0, λ2 = 10.95, λ3 = 87.33, λ4 = 237.25, λ5 = 306.16

and λ6 = 990.7 per year. The set of parameter estimates in Table 4.3 are used to

calculate R0 = 6.82 > 1.

On the other hand, in the nine groups model, nine different sharing rates are

used as follows λ1 = 0, λ2 = 10.95, λ3 = 51.1, λ4 = 129.6, λ5 = 237.25, λ6 =

259.1, λ7 = 365, λ8 = 912.5 and λ9 = 1, 460 per year. With these sharing rates

and the set of parameter estimates in Table 4.3 we calculate R0 = 7.066 > 1. In

both models, the disease reaches a steady equilibrium solution after ten years. The

equilibrium solution for the six groups model is displayed in Tables 4.14 and 4.15.

From Figure 4.18 we can see the proportions of infectious addicts and needles at

each stage of infectivity achieve a steady equilibrium stage after ten years in both six

and nine group models. These two models appear to behave similarly to each other.

Table 4.15 displays the endemic equilibrium solutions of the six different models in

the h1 and h2 acute and the chronic y stages. From this table we can see that as

the number of groups of models increases, the endemic equilibrium solutions increase

too.
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Models π∗
x π∗

x1
π∗
h1

π∗
h2

π∗
y π∗

z

One group 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Two group 0.8481 0.0159 0.0096 0.0033 0.1130 0.0099

Three group 0.8597 0.0142 0.0089 0.0031 0.1047 0.0092

Four group 0.8601 0.01441 0.0088 0.0031 0.1043 0.0091

Six group 0.8865 0.0090 0.0073 0.0025 0.0861 0.0076

Nine group 0.8876 0.0089 0.0073 0.0025 0.0859 0.0075

Table 4.14: Comparing the endemic equilibrium proportions of infectious addicts for
all models using hypothetical sharing rates of data from 1993.

Models β∗
h1

β∗
h2

β∗
y

One group 0.0000 0.0000 0.0000

Two group 0.0067 0.0023 0.0790

Three group 0.0092 0.0032 0.1084

Four group 0.0093 0.0032 0.1095

Six group 0.0113 0.0039 0.1331

Nine group 0.0114 0.0040 0.1341

Table 4.15: Comparing the endemic equilibrium proportions of infectious needles for
all models using hypothetical sharing rates of data from 1993.
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4.10 Comparison of Models with Different Num-

bers of Groups

4.10.1 Infectious Addicts

Simulations of data of the survey of Glasgow drug users in 1993 are displayed for

all six models together (one, two, three, four, six and nine group models). We shall

apply these data to present the cases where the disease dies out in the homogeneous

case, and takes off in the heterogeneous cases.
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Figure 4.19: Comparing all the proportions of infectious addicts for all models using
hypothetical sharing rates of data from 1993.

It is observed from Figure 4.19 and Table 4.13 that the highest overall proportion

of prevalence of HCV is in the two group model which is nearly 12%, whilst the

lowest proportion is in the homogeneous case which is nearly zero. Again we can
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see that as the number of groups increases the initial speed of increase of the epi-

demic (which is related to R0) increases. So our simulations are consistent with our

theoretical results which show that in this situation the homogeneous model has the

lowest value of R0 where the disease dies out. It can be seen from Table 4.13 that the

basic reproductive numbers are increased with the increasing of number of groups

in each model. We can see that the nine group model has the highest value of R0,

whilst the two group model has the highest rate of prevalence of HCV among addicts.

Beyond the similarity of the HCV prevalence between the three and four group

model. Figure 4.19 shows that heterogeneity is effective in increasing the initial speed

of the increase of disease among drug users. Also, we notice that the six and nine

group models are similar. On the other hand, increasing the number of groups in-

creases the basic reproductive number. Conversely, increasing the number of groups

(from the two group to the nine group models) reduces the equilibrium prevalence

of HCV among drug users as can be seen clearly in Figure 4.19. Table 4.13 indicates

the total proportions of infectious addicts, infectious needles and HCV antibody pos-

itive addicts after seventy years. The endemic equilibrium prevalence for all models

in each stage, x and x1 susceptible, h1 and h2 acute, chronic y and immune z are

presented in Table 4.14.

4.10.2 Infectious Needles

Again we consider one shooting gallery where all the groups of drug users share the

needles and syringes, however there is a significant difference between the prevalence

of HCV in the needles. Figure 4.20 illustrates that both the six and nine group
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models have the highest equilibrium proportions of infectious needles which is nearly

14%.
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Figure 4.20: Comparing all the proportions of infectious needles for all models using
hypothetical sharing rates of data from 1993.

On the other hand, the one group model has the lowest equilibrium proportion

of infectious needles. We can see from Figure 4.20 that the three and four group

models behave similarly, and the six and nine groups models are similar. In these

simulation results, we can see that increasing the number of groups increases the

total proportions of infectious needles. Also, in the one group model where R0 < 1,

it appears that the disease dies out in the needles and as R0 > 1 in the rest of the

five models the disease takes off in the needles in the shooting gallery.
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Figure 4.21: Comparing all the proportions of antibody positive addicts for all models
using hypothetical sharing rates of data from 1993.

4.10.3 Antibody Positive Addicts

Now, we shows the simulation results of the long term proportions of the antibody

positive addicts. Table 4.13 represents these proportions using the hypothetical

sharing rates of data from 1993 (Hutchinson et al., 2000). As in earlier simulations,

the antibody positive classes are the susceptible x1i, acutely infected h1i and h2i,

chronically infected yi and immune zi, for i = 1, 2, ..., p. The results are displayed in

Figure 4.21, where we can see that the homogeneous model has the lowest equilibrium

proportion of antibody positive addicts. Again, the pattern is similar to the total

proportion of infected addicts using the hypothetical sharing rates of data from 1993.
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4.11 Conclusion

In this chapter, we have performed numerical simulation on the system (2.1) - (2.9)

describing the spread of hepatitis C amongst injecting drug users. We started off

with a literature review to identify values for the relevant parameters. Then we pre-

sented some simulation results using data from a survey of injecting drug users in

1990. The reported rates at which addicts said that they used a needle previously

used by someone else had to be converted into the rates at which addicts shared

both used and unused needles. The simulations were repeated dividing the addicts

into different groups according to the sharing rate with the number of groups varying

from one to nine. In each case the overall average needle sharing rate was kept the

same. We calculated the basic reproductive number for each scenario and presented

simulations comparing the total proportion of infected addicts, the total proportion

of infected needles and the total proportion of antibody positive addicts. The disease

took off in each model. Then we repeated this analysis using data from a second

survey of injecting drug users taken in 1993.

To widen our simulation scenario we then used results from a second survey

of drug users in 1990 (Goldberg et al., 1996) to compare the results with those of

Greenhalgh (1997) for HIV/AIDS amongst drug users and to obtain a broader spec-

trum of theoretical simulation results we did not correct the sharing rates. Although

it would have been more realistic to do this if we had done it the results would have

been very similar to our previous results. Then we repeated the exercise for the

simulation using the data of 1993 for HCV without this correction. This produces a
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(theoretical) situation where R0 is less than one for the homogeneous model but as

the number of groups increases R0 exceeds one.

In this chapter we have assumed that there is one shooting gallery where all ad-

dicts share needles. We divide the addict population into different numbers of groups

with different sharing rates. As the number of groups increased R0 also increased.

The initial rate of increase of the level of disease also increased with the number of

groups as did the endemic equilibrium prevalence of HCV amongst needles. However,

both the endemic equilibrium proportion of HCV amongst addicts and the endemic

equilibrium number of HCV antibody positive addicts shows the opposite pattern.

There as the number of groups increased the endemic prevalence of HCV amongst

addicts and the endemic equilibrium number of HCV antibody positive addicts de-

creased as the number of groups increased. These results are qualitatively similar to

those obtained by Greenhalgh (1997) for the spread of HIV/AIDS amongst injecting

drug users.

In the next chapter we shall look at the effects of heterogeneity of probability

of visiting shooting galleries. For simplicity we assume that there is one group of

addicts and two shooting galleries. We perform a numerical simulation for three

models. Each model has two different visiting probabilities P1 and P2 and is simu-

lated for both cases where R0 exceeds and is beneath unity. Then we look at a more

complicated case, as we assume that there are two groups of addicts who visit two

shooting galleries. We show the numerical simulation results, and confirm that R0

is a sharp threshold which determines whether the disease takes off or dies out.
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Chapter 5
Simulations on Heterogeneity of Visiting

Shooting Galleries

In this chapter we continue to present more numerical simulation results. We shall

focus on the effects of heterogeneity of visiting shooting galleries. In Chapter Four

we have assumed that this parameter is homogeneous where addicts share needles

in one shooting gallery. Now we shall discuss the impact of heterogeneity of visiting

shooting galleries on the behaviour of HCV among addicts and needles. Before we

start our analysis of the simulation where there is more than one shooting gallery,

we should remind ourselves of the definition of a shooting gallery. This is a place

where addicts meet to inject and share drugs. Kimber & Dolan (2007) say that one

example of a shooting gallery is an illegal off-street space near to drug markets used

for drug injection.

The first section discusses the simulation results of the heterogeneity effect of

one group of addicts visiting two shooting galleries at different probabilities. Then
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we move to the more complicated case where there are two groups of addicts visiting

two shooting galleries with different probabilities.

Parameter Definition Estimate

ϕij Probability that an addict in group i cleans a needle

in shooting gallery j before use, i = 1, j = 1, 2. 0.255

λi Needle and syringe sharing rate in group i, i = 1. 167.39 per year

τj Needle turnover rate in shooting gallery j, j = 1, 2. 133 per year

µ Per capita rate at which addicts leave the sharing,

injecting population. 0.17 per year

αh Acute HCV transmission probability per injection. 0.0432

αy Chronic HCV transmission probability per injection. 0.016

1/σ Average duration of the acute stage. 0.5 years

δ Proportion of acutely infected addicts who resolve

HCV infection. 0.26

α The proportion of those addicts spontaneously

resolving HCV infection who become immune. 0.25

mj Number of needles in shooting gallery j, j = 1, 2. 4,491

Table 5.1: Table of parameter estimates used in our simulations.

5.1 One Group of Addicts and Two Shooting Gal-

leries

Due to the lack of data in this area and for simplicity, we are assuming that we

have two shooting galleries and one group of addicts. Thus, addicts visit shooting

gallery one with the probability P1, similarly addicts choose shooting gallery two
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with probability P2. Then, we will study the effects of heterogeneity in both sharing

rate and probability of visiting of shooting gallery. We will examine the simulation

results where R0 > 1 and where R0 ≤ 1 to compare the results of our model in each

different case.

5.1.1 Simulation Results

In the last chapter we calculated the sharing rates λ which are found by the survey

taken of addicts from Glasgow by HPS in 1990 (Hutchinson et al. (2000)). As we

are assuming that the addicts are homogeneous in sharing needles rate, we found

that λ = 167.39 per year. The total number of current addicts in Glasgow is approx-

imately 9,000 (NESI, 2010). Thus, using γ = 1.002 we find that the total number

of needles in all shooting galleries is m = 8, 982. We are assuming that we have

two shooting galleries, and shooting gallery one has m1 = m/2 = 4, 491 needles and

shooting gallery two has m2 = m/2 = 4, 491 needles. Table 5.1 presents the esti-

mated parameters of our model which we used in the last chapter.

In each model simulation, we assume that at time t = 0, πx(0) = 0.99, πx1(0) =

πh2(0) = πy(0) = πz(0) = 0 and πh1(0) = 0.01. So 99% of addicts were not infected

while 1% of addicts were in the acute h1 stage. Similarly for the fractions of infectious

needles at time t = 0, βh11(0) = βh21(0) = βy1(0) = βh12(0) = βh22(0) = βy2(0) = 0.

Thus, all the needles in shooting gallery one and shooting gallery two are disease-free.
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Figure 5.1: The total proportions of infectious addicts and needles where P1 = 0.01
and P2 = 0.99.

5.1.2 Model One

A simulation is performed for HCV prevalence for q = 2 shooting galleries. In

model one, we have assumed that the probability of visiting shooting gallery one is

P1 = 0.01 and the probability of visiting shooting gallery two is P2 = 0.99. Using the

estimation of parameters in Table 4.3 we estimate R0 = 7.1872, using the formulae

(2.19) and (2.20). As we have two shooting galleries visited by one group of addicts,

thus from equation (2.23):

R0 = ξ

(
nλ2

P 2
1

m1
(1− ϕ)

nλP1

m1
+ τ

+
nλ2

P 2
2

m2
(1− ϕ)

nλP2

m2
+ τ

)
. (5.1)

In this model the fraction of infected addicts (πh1 + πh2 + πy) is approximately

80%, which implies that the total proportion of infectious addicts at equilibrium is
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high. Figure 5.1 shows that the total endemic equilibrium proportion of infectious

needles in model one is nearly 29%. The model has reached an equilibrium state after

about 3 - 4 years and the estimated steady state values are (π∗
x, π

∗
x1
, π∗

h1
, π∗

h2
, π∗

y , π
∗
z) =

(0.1133, 0.0214, 0.0611, 0.0214, 0.7193, 0.0631). For needles at each stage of infectivity

(β∗
h1
, β∗

h2
, β∗

y) = (0.0225, 0.0079, 0.2656).

5.1.3 Model Two
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Figure 5.2: The total proportions of infectious addicts and needles where P1 = 0.25
and P2 = 0.75.

Then, we performed a simulation in model two where we are assuming that P1 =

0.25 and P2 = 0.75 for shooting gallery one and two respectively. R0 is estimated

to be 5.9038 using formula (5.1). Also, similar values of other parameters are used

to simulate our model. Figure 5.2 displayed the simulation results of total infectious

addicts and needles in this case. Clearly, we can see that total equilibrium infectious

225



proportion of addicts is nearly 77%. Moreover, the total equilibrium proportion of in-

fectious needles in all shooting galleries is about 40%. The steady state values of this

model are (π∗
x, π

∗
x1
, π∗

h1
, π∗

h2
, π∗

y, π
∗
z) = (0.1371, 0.0251, 0.0592, 0.0208, 0.6964, 0.0611).

For needles at each stage of infectivity (β∗
h1
, β∗

h2
, β∗

y) = (0.0308, 0.0108, 0.3624).

5.1.4 Model Three
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Figure 5.3: The total proportions of infectious addicts and needles where P1 = 0.40
and P2 = 0.60.

Finally, we simulate our model assuming that addicts visit shooting gallery one with

probability P1 = 0.4, and visit shooting gallery two with probability P2 = 0.6. In

this case, we estimate R0 = 5.62 using formula (5.1) and as can be seen from Figure

5.3 the total equilibrium proportion of infectious addicts is about 76% while the total

equilibrium proportion of infectious needles is approximately 42%. Again, we can

see that the model has an equilibrium state where the addict steady state values
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are (π∗
x, π

∗
x1
, π∗

h1
, π∗

h2
, π∗

y, π
∗
z) = (0.1435, 0.0261, 0.0586, 0.0206, 0.6904, 0.0606), for the

needles the steady state values are (β∗
h1
, β∗

h2
, β∗

y) = (0.0324, 0.0113, 0.3812).

5.2 Comparison of the Three Models

5.2.1 Infectious Addicts
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Figure 5.4: The total proportions of infectious addicts in the three models.

This section describes the different behaviour of the three models with three different

probabilities of the addicts visiting shooting galleries. Figure 5.4 shows the plots of

these proportions. The main goal of this work is to analyze the effects of heterogeneity

of visiting shooting galleries. In model one where the difference between the visiting

probabilities for the two shooting galleries is the biggest, we found that the value of

R0 is the biggest. However, as we examine different probabilities of visiting shooting
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galleries (1% and 99%, 25% and 75%, 40% and 60%), there is no significant difference

between the three models. In all models, we find R0 > 1. Thus we can see that the

disease takes off in all models, and tends to an equilibrium steady state with time.

5.2.2 Infectious Needles
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Figure 5.5: The total proportions of infectious needles in the three models.

To analyze the effects of heterogeneity of visiting shooting galleries, three models

were compared in Figure 5.5. For simplicity, we assume that we have two shooting

galleries where the addicts share needles and syringes. Then, we assume that there

are three different sets of probabilities of visiting these galleries (1% and 99%, 25%

and 75%, 40% and 60%). Figure 5.5 shows the total proportions of infectious needles

in shooting gallery one and two together. Clearly, we can see as the difference between

P1 and P2 decreases the value of R0 decreases and the equilibrium proportions of
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infectious needles increase. Again, as R0 > 1, we expect the disease to be present in

all shooting galleries. For these simulations the model with the more heterogeneity

in visiting shooting galleries (model one), has the lowest equilibrium proportion of

infectious needles (29%).

5.2.3 Antibody Positive Addicts
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Figure 5.6: The total proportions of antibody positive addicts in the three models.

Although the prevalence of HCV amongst addicts population is a statistic of inter-

est, Health Protection Scotland collects data on the proportion of antibody positive

addicts. Hence it is important to look at the level of antibody positive addicts in the

three models. We remind the reader that the HCV antibody classes are the suscepti-

ble πx1 , acutely infected πh1 and πh2 , chronically infected πy and immune πz classes.

The results of the simulations of the proportions of antibody positive addicts in the
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three models are displayed in Figure 5.6. We can see that although the three models

have three very different sets of shooting galleries visiting probabilities, these models

behave similarly. The highest equilibrium proportion of antibody positive addicts is

in model one (88%) and the lowest is in model three (85%).

5.3 Two Groups of Addicts Visiting Two Shooting

Galleries

Our aim in this section is to demonstrate numerically the analytical results found

previously, that is if R0 < 1 then the disease dies out and if R0 ≥ 1 then the disease

takes off. In the previous section we demonstrated that this was the case for one

group of addicts visiting two shooting galleries. Each group shares needles at a

different rate so we choose λ1 = 65 per year and λ2 = 10 per year. We alter the

probabilities Pij to give R0 ≤ 1 for the first set of parameters and R0 > 1 for the

second set of parameters. We keep the estimates for the other parameters as in the

above simulation.

5.3.1 Simulation when R0 ≤ 1

As stated above we assume that the sharing rate for the first group of addicts is

λ1 = 65 per year and for the second group of addicts λ2 = 10 per year. We assume

that group one of addicts visit shooting gallery one with probability P11 = 0.45

and shooting gallery two with probability P12 = 0.55 and that addicts in group two

visit shooting gallery one with probability P21 = 0.85 and shooting gallery two with
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Figure 5.7: The total proportions of infectious addicts, needles and antibody positive
addicts for parameter values where R0 = 0.8.

probability P22 = 0.15. In this case recall that R0 is the spectral radius of the matrix:

Q =

 Q11 Q12

Q21 Q22

 ,
where for i, k = 1, 2

Qik = ξ(1− ϕ)
2∑

j=1

λiPijΛkj

Λ1j + Λ2j + τ
,

= ξ(1− ϕ)λiλknk

(
Pi1Pk1

m1(l1 + τ)
+

Pi2Pk2

m2(l2 + τ)

)
,

where l1 = n1λ1P11

m1
+ n2λ2P21

m1
and l2 = n1λ1P12

m2
+ n2λ2P22

m2
. The characteristic equation

of this matrix is:

(Q11 − ω)(Q22 − ω)−Q12Q21 = 0,
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and its spectral radius is

R0 =
1

2

(
Q11 +Q22 +

√
(Q11 −Q22)2 + 4Q12Q21

)
. (5.2)

Then we find that R0 = 0.8 < 1 which implies that whatever the starting values the

disease dies out in all addicts groups and needles in shooting galleries.

The simulations were repeated with a variety of starting values and parameters

which gave R0 < 1 and in each case the disease ultimately dies out in addicts and nee-

dles. A typical simulation is shown in Figure 5.7. As earlier we assume that at time

t = 0, πxi(0) = 0.99, πx1i(0) = 0, πh1i(0) = 0.01, πh2i(0) = πyi(0) = πzi(0) = 0 for

i = 1, 2. Similarly, for infectious needle fractions at time t = 0, βh1j(0) = βh2j(0) =

βyj(0) = 0 for j = 1, 2. The simulation is performed over a hundred and fifty year

time period so that we can clearly see that the disease dies out and the system tends

to the disease-free equilibrium where (π∗
x, π

∗
x1
, π∗

h1
, π∗

h2
, π∗

y, π
∗
z) = (1, 0, 0, 0, 0, 0), and

the needles steady-state values are (β∗
h1
, β∗

h2
, β∗

y) = (0, 0, 0). In the next section we

will look at the simulation results when R0 exceeds unity.

5.3.2 Simulation when R0 > 1

To examine the behaviour of HCV in the case where there are two groups of addicts

and two shooting galleries when R0 > 1, we keep the same needle sharing rates for

the two groups; also we keep the probabilities of group two visiting the two shooting

galleries. However, we assume that the addicts in group one visit the shooting

galleries with probabilities P11 = 0.99 and P12 = 0.01 respectively. All of the other

parameters and the initial starting values are the same as in the simulation above.
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Figure 5.8: The total proportions of infectious addicts, needles and antibody positive
addicts for parameter values where R0 = 1.28.

From Figure 5.8 we can see that the disease persists in addicts, needles in shooting

galleries and antibody positive addicts. We can see clearly that the model has an

equilibrium state where the addicts steady state values are (π∗
x, π

∗
x1
, π∗

h1
, π∗

h2
, π∗

y , π
∗
z) =

(0.8533, 0.0214, 0.0089, 0.0031, 0.1039, 0.0091), and the needles steady state values are

(β∗
h1
, β∗

h2
, β∗

y) = (0.0025, 0.0009, 0.0291).

5.4 Conclusion

In this chapter we have considered the heterogeneity of visiting shooting galleries.

Numerical simulations were used to describe the spread of HCV among addicts in

different groups and needles in different shooting galleries. In the light of the lack of

data of the shooting galleries’ visiting probabilities, we estimated these parameters.

First, the simplest case discussed is where we assumed that we have a homogeneous
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society of addicts and two shooting galleries. An explicit expression of R0 is given,

and it exceeds unity in the three models. These models are set up with three different

sets of visiting probabilities.

The probabilities in model one, two and three are respectively P1 = 0.01, P2 =

0.99, P1 = 0.25, P2 = 0.75 and P1 = 0.4, P2 = 0.6. In each model we presented a

figure of total proportions of infectious addicts and needles. Then a general compar-

ison of these models is given of the total proportions of infectious addicts, needles

and the antibody positive addicts in the three models. These figures showed that

although the three models have three very different sets of shooting galleries visiting

probabilities, these models behave similarly. Also a comparison of infectious needles

is displayed and discussed. Nevertheless here we noticed that the heterogeneity of

visiting probabilities may decrease the equilibrium level of infectious needles. The

most heterogeneity is in model one where we can seen that model one has the lowest

level of infectious needles.

For more understanding of the heterogeneity of Pij, we simulated the total pro-

portions of two groups of addicts visiting two shooting galleries. In this case, the

sharing rates of the first group are estimated as λ1 = 65 per year and for the second

group λ2 = 10 per year. Then, we kept these parameters and changed the probabili-

ties of visiting of shooting galleries, Pij. It was shown that the first set of assumptions

gave R0 < 1 and in each case the disease ultimately dies out in addicts and needles.

This result showed that the disease dies out and the system tends to the disease-free

equilibrium and the addicts and needles steady-state values are obtained. On the
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other hand, the second set of assumptions gave that R0 > 1. We have displayed that

the disease persists in addicts, needles in shooting galleries and antibody positive

addicts. Also, our simulation showed that the model has an equilibrium state and

we obtained the addicts and needles steady state values. In the next chapter we will

be concerned with the numerical demonstration of the analytical results obtained

earlier in Chapter Two.
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Chapter 6
Numerical Results on Optimal Epidemic

Control

Earlier in Chapter Two we have shown that the basic reproductive number R0 can be

controlled (and thus the progress of the disease can be controlled) under some special

scenarios. Thus we attempt to discuss some of these theoretical results numerically

and present numerical simulations in each case. Recall that the basic reproductive

number can be defined as the expected number of secondary cases caused by a single

newly infectious case entering a disease-free population at equilibrium. One of the

main results that we proved earlier states that if R0 is less than or equal to unity

then HCV will die out in both addicts groups and shooting galleries. For this reason,

it is important to control the disease by making R0 as small as it can be.

6.1 Special Scenarios

We have discussed in Chapter Two some special cases that minimise R0 under a set of

particular assumptions. Here, we shall discuss numerical illustrations of these special
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cases followed by some plots to illustrate the relationship between the parameters and

R0. The first was the effect of variability in shooting gallery visiting rates on R0 where

we showed that, under the assumption that Pij = Pj, independent of i, all addicts

visiting shooting galleries at the same rate, minimises R0. Then we shall consider

the assumption where all addicts visit shooting galleries at the same rate λ. We will

start by looking at the case where we assume that all addicts are sharing needles

in shooting galleries at random. First of all we discuss the effect of heterogeneity

in shooting gallery visiting rates to minimise R0, after which we will present the

numerical result of how to optimally allocate needle exchange effort if the total

amount of needle exchange effort available is τ . Finally, we finish with a discussion

of the effect of the allocation of needle cleaning probability ϕij to minimise R0 if

the total amount of needle cleaning kits available is fixed. We follow the theoretical

results with a figure showing how R0 varies with the needle cleaning probability ϕij.

6.2 Numerical Results of Addicts Visiting Shoot-

ing Galleries at Different Rates

Let us consider the model where addicts choose needles at random. Recall that there

are mj needles in shooting gallery j and m needles together, so Pij = mj/m. For

simplicity we assume that there are two shooting galleries visited by two groups of

addicts. Our theoretical results show that the basic reproductive number R0 is equal

to the spectral radius of the matrix Q where it is defined by (2.17):

Qik = ξ

q∑
j=1

λiPijΛkj(1− ϕkj)∑p
e=1 Λej + τj

.
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Figure 6.1: Plot presents the relationship between λ1 and R0 under the assumption
that Pij = mj/m, ϕij = ϕ. In this graph λ1 and λ2 are chosen to keep λ̄ fixed as λ1
varies from 0 to nλ̄/n1.

In the case where the probability Pkj that an addict in group k visits shooting gallery

j depends only on j:

Qik = ξ

q∑
j=1

(
λiPjλkPj

nk

mj
(1− ϕkj)∑p

e=1 Λej + τj

)
.

Thus if we have Pj = mj/m for j = 1, 2, ϕkj = ϕ for j = 1, 2 and τj = τ for j = 1, 2:

Qik =
ξλiλknk(1− ϕ)

∑2
j=1mj/m

2

λ1n1

m
+ λ2n2

m
+ τ

,

so

R0 = ρ(QQQ).
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From Lemma 2.4.1:

=
2∑

i=1

Qii,

=
ξ(1− ϕ)

(
n1λ2

1

m
+

n2λ2
2

m

)
n1λ1

m
+ n2λ2

m
+ τ

. (6.1)

The choice of the set of sharing rates λi for i = 1, 2 to include in the numerical

calculations is estimated to illustrate our theoretical results. In the first case we

assume that λ1 = 65 per year and λ2 = 10 per year. Moreover, for simplicity

we suppose that addicts’ groups and shooting galleries are homogeneous in needle

cleaning probability ϕij = ϕ = 0.255 where i, j = 1, 2 and needle exchange rate

τj = τ = 133 per year, j = 1, 2. The rest of the parameters are as we used in

Chapter Three, m1 = m2 = 4, 491 needles and n1 = n2 = 4, 500 addicts. Thus the

basic reproduction number R0 is:

R0 = ρ(Q) = 0.7949.

Figure 6.1 illustrates the results of section 2.4 in that if the average shooting

gallery visiting rate is held constant then each shooting gallery visiting rate equal to

the average minimises R0. For exterem values λ1 = 0 or λ1 = nλ̄/n1, the values of

R0 are the highest but as we move towards the minimum λ1 = λ̄ = 37.5, the value of

R0 decreases, thus validating the original results in section 2.4. On the other hand,

we will demonstrate the truth of our theoretical results by calculating R0 under the
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assumption that the sharing rate is λ̄ where:

λ̄ =
n1λ1 + n2λ2 + · · ·+ npλp

n1 + n2 + · · ·+ np

.

In our case we find that λ̄ = 37.5 per year. Replacing λ1 and λ2 by λ̄ and using

formula (6.1) gives us that:

R0 = 0.5169.

These results are compatible with our theoretical results as they have shown that

assuming that all addicts using shooting galleries at the same rate minimises R0.
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Figure 6.2: Plot presents the relationship between τ1 and R0 under the assumption
that

∑2
j=1 τj ≤ τ .
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6.3 Numerical Results on Needle Exchange Rate

Needle exchange programmes are one of the main harm reduction measures that

aim to curb the spread of blood-borne viruses such as HCV. Thus we would like to

allocate a given amount of needle exchange effort to have the maximum effect. It

seems reasonable to assume that this will have the most effect when R0 is as small as

possible. In order to minimise R0, we used the Lagrange multiplier in our theoretical

results by choosing τ1, τ2, ..., τq > 0 subject to
∑q

j=1 τj ≤ τ .

We first dealt with the situation where the needle cleaning probability ϕij does

not depend on group of addicts i or the shooting gallery j so ϕij = ϕ and addicts

choose needles at random so that Pij = mj/m. The needle exchange rate τj depends

on the shooting gallery j. The estimated parameters are λ1 = 65 per year, λ2 = 10

per year, τ = 133 per year, ϕ = 0.225, γ = 1.002, n1 = n2 = 4, 500 addicts and

m1 = m2 = 4, 491 needles.

The expression of R0 under these assumptions was found as in formula (2.29),

where Figure 6.2 shows the pattern of howR0 appears under the expression
∑q

j=1 τj ≤

τ . Using the theoretical results in Chapter Two we find that in general R0 is min-

imised when the τj’s are not equal (i.e. τ1 ̸= τ2) when

R0 =
ξ

(τ + qλγ)

p∑
k=1

λ2knk

m

[ q∑
j=1

√
mj

m
(1− ϕ)

]2
.

If τ1 = 100 per year and τ2 = 33 per year, so τ1 + τ2 = 133 per year we found

that R0 = 1.455 using formula (2.31) which agrees with the graph. Figure 6.3 shows
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a three dimensional plot to illustrate the graph of R0 against τ1 and τ2 under the

assumption τ1 + τ2 ≤ τ . It confirms that R0 is minimised at τ1 = τ2 = 66.5 per year.
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Figure 6.3: 3D plot presents the relationship between τ1, τ2 and R0 under the as-
sumption that

∑2
j=1 τj ≤ τ . This plot was generated using persp in R.

6.4 Numerical Results on Needle Cleaning Prob-

ability

As part of our numerical results, we shall discuss the needle cleaning effort to curb

the spread of HCV among drug users. Needle cleaning emerged as a solution for

reducing the spread of HCV and other diseases amongst addicts. As we wish to

control the disease by minimising the key threshold value we assume that the total
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amount of needle cleaning effort available is Φ so that:

p∑
i=1

q∑
j=1

ϕij ≤ Φ.

Moreover, we assume that addicts choose needles at random, so Pij = mj/m, and

for simplicity we also assume that the addict population is homogeneous in needle

exchange rate which implies that τj = τ for j = 1, 2. As we assumed that p = q = 2,

our theoretical results state that under these assumptions the expression of R0 is:

R0 =
2∑

j=1

mj

∑2
k=1 λ

2
k
nk

m2 ξ(1− ϕkj)

τ +
∑p

l=1 λl
nl

m

,

=
2∑

j=1

2∑
i=1

ai bj ξ(1− ϕij), (6.2)

where:

ai =
λ2ini

m2
and bj =

mj

τ +
∑p

l=1 λl
nl

m

.

To calculate R0 and to be more biologically realistic, we assume that m1 ̸= m2

and m1 + m2 = m, we take m1 = 3, 000 needles and m2 = 5, 982 needles. In our

simulation we estimate ϕ = 0.255, so we choose Φ = 4 × ϕ = 4 × 0.255 = 1.02, to

make the resource greater than unity, Φ ≥ 1 and in this case we should use the value

of the pair (i, j) which makes aibj the largest then apply the maximum ϕij to reduce

the value of R0. The parameters used to calculate R0 are estimated as: λ1 = 65 per

year, λ2 = 10 per year, τ = 133 per year and n1 = n2 = 4, 500 addicts. Then we
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compute the values of ai and bj:

a1 = 0.2357 a2 = 0.0056 b1 = 17.588 b2 = 35.070.

Thus we find that:

a1b1 = 4.1454 a1b2 = 8.2659 a2b1 = 0.0984 a2b2 = 0.1963.
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Figure 6.4: The relationship between ϕ11, ϕ12 and R0.

Clearly, we obtain a1b2 as the largest value with 8.2623 which made this pair the

maximum. In order to reduce the value of R0, we should choose the maximum value

of the ϕij’s to apply in formula (6.2). To achieve this goal we choose that ϕ11 = 0.02,
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ϕ12 = 1 and ϕ21 = ϕ22 = 0. Hence, we calculate R0 as:

R0 = ξ
[
a1b1(1− ϕ11) + a1b2(1− ϕ12) + a2b1(1− ϕ21) + a2b2(1− ϕ22)

]
. (6.3)

This gives us R0 = 0.3432, which makes it the minimum value of the basic repro-

ductive number under the effort of needle cleaning probability. The second case that

we aim to discuss is that of choosing ϕij subject to
∑p

i=1

∑q
j=1 ϕij ≤ 1. To illustrate

that the chosen values of ϕ do indeed minimise R0 we choose ϕ11 = ϕ12 = 0.45 and

ϕ21 = ϕ22 = 0.05. Then we use equation (6.3) to calculate R0 gives that R0 = 0.5976.

We conclude our discussion by presenting a three dimensional plot to express the re-

lationship of ϕ11, ϕ12 and R0 in Figure 6.4.

6.5 Conclusion

This chapter was concerned with the numerical and simulations results of the special

scenarios of R0 which have been proved theoretically in Chapter Two. In particular,

three special cases were presented:

• The effect on R0 of addicts in different groups visiting shooting galleries at

different rates.

• Optimal allocation of limited needle exchange effort between different shooting

galleries.

• Optimal allocation of limited needle cleaning effort between different groups of

addicts and shooting galleries.
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The chapter started with the effect of variability in shooting gallery visiting rates on

R0 where we showed numerically that under the assumption that Pij = Pj, indepen-

dent of i, all addicts visiting shooting galleries at the same rate minimised R0. These

results were supported with graphs showed the relationship between R0 and sharing

rates. Then we moved to the second special scenario where we consider the optimal

allocation of needle exchange as this is one of the main harm reduction measures in

curbing the spread of HCV. Our numerical results showed that the calculated values

of needle exchange rates to minimise the value of the basic reproductive number

actually did minimise R0.

Finally, the optimal allocation of needle cleaning effort has been discussed numer-

ically under the assumption that the total amount of needle cleaning effort available

is Φ. In this discussion, we chose the value of the pair (i, j) that makes the term aibj

in the expression for R0, the largest then apply the maximum possible needle clean-

ing effort to group i addicts using shooting gallery j to reduce the value of R0. These

values of ϕij minimised R0. Our results were illustrated with a graph showing the

relationship between R0 and needle cleaning probabilities. This chapter concludes

our study of the basic model of the impact of heterogeneity in the spread of HCV.

We shall extend this model in next chapter by consider a more realistic assumption,

as we will assume that addicts can move in and out of groups and how this will affect

the spread of the disease amongst addicts and needles.
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Chapter 7
Extended Model: Addicts Move In and

Out of Groups

In the basic mathematical model we have assumed that the number of addicts in

each group ni for i = 1, 2 . . . p is constant. However in practice this assumption is

not realistic as data shows that over time addicts change the rate at which they

share needles. Hence, we wish to change our assumption to make our model more

realistic. The objective of this chapter is to assess the spread of HCV among people

who share drugs in shooting galleries and are allowed to move from group to group.

Moreover, we keep all the other assumptions despite the number of addicts in each

group changing. Then, we derive an expression for the basic reproductive number

R0. This is followed by analytical study of the equilibria and dynamics. We also

present numerical results in the case of two groups of addicts and one shooting gallery.

Numerical simulations are presented when R0 ≤ 1 and R0 > 1.

247



7.1 Governing Extended Model Equations

We assume that we have p groups of addicts i = 1, 2 . . . p and that the transition

rate from group i to group k is ωik ≥ 0. Define

ωii = −
p∑

i=1
k ̸=i

ωik = −ωi•.

Now we present the differential equation system which describes the number of ad-

dicts in each group:

dn1

dt
= ω21n2 + ω31n3 + ω41n4 + · · ·+ ωp1np

− (ω12 + ω13 + ω14 + · · ·+ ω1p)n1,

dn2

dt
= ω12n1 + ω32n3 + ω42n4 + · · ·+ ωp2np

− (ω21 + ω23 + ω24 + · · ·+ ω2p)n2, (7.1)

...
...

...
...

dnp

dt
= ω1pn1 + ω2pn2 + ω3pn3 + · · ·+ ωp−1pnp−1

− (ωp1 + ωp2 + ωp3 + · · ·+ ωpp−1)np.

Then let Sxi, Sx1i, H1i, H2i, Yi and Zi denote respectively the total number of first-time

susceptible individuals in group i, second and subsequent time susceptibles in group i,

acutely infected h1-class individuals in group i, acutely infected h2-class individuals

in group i, chronically infected individuals in group i and immune individuals in

group i. Similarly let BH1j denote the number of needles in shooting gallery j last

used by acutely infected h1-class individuals, BH2j the number of needles in shooting
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gallery j last used by acutely infected h2-class individuals and BY j the number of

needles in shooting gallery j last used by chronically infected individuals. Notice that

while BH1j refers to the number of h1 acute infectious needles in shooting gallery j,

βh1j refers to the fractions of h1 acute infectious needles in shooting gallery j. Thus,

βlj =
Bej

mj

l = h1, h2, y and e = H1, H2, Y.

The number of group one x1-susceptible addicts at time t+∆t:

= The number of group one x1-susceptible addicts at time t

+ the number of group one x1-susceptible addicts recruited to share intravenous

injecting equipments in [t, t+∆t)

+ the number of group two x2-susceptible addicts who move from group two to

group one in [t, t+∆t)

+ the number of group three x3-susceptible addicts who move from group three to

group one in [t, t+∆t)

+ . . .

− the number of group one x1-susceptible addicts who leave group one to

other groups in [t, t+∆t)

− the number of group one x1-susceptible addicts who develop acute HCV

infection as group one addicts choosing shooting gallery j in [t, t+∆t)

− the number of group one x1-susceptible addicts who leave the population due

cessation of injecting drug use or death in [t, t+∆t).
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Using a similar process as in the derivation of the basic model equations (2.1) - (2.9),

we deduce:

dSx1

dt
= µn1 + ω21Sx2 + ω31Sx3 + · · ·+ ωp1Sxp − (ω12 + ω13 + · · ·+ ω1p)Sx1

− µSx1 − Sx1

q∑
j=1

λ1P1j(1− ϕ1j)(αh(βh1j + βh2j) + αyβyj). (7.2)

It is straightforward to derive the differential equations satisfied by the quantities

Sxi, Sx1i, H1i, H2i, Yi and Zi. The right hand side of this equation is the rate of change

of first time susceptible addicts in group one. The first three terms on the left hand

side are the rate at which first time susceptible addicts enter group one plus the

rate at which first time susceptible addicts migrate to other groups minus the rate

at which first time susceptible addicts in group one migrate to other groups. The

next term corresponds to the rate at which first time susceptible addicts in group one

die and the last term corresponds to the rate at which these addicts become infected.

Thus in general and for i = 1, 2, . . . p the following differential equations de-

pict the spread of HCV under the new assumption of allowing addicts to move in

and out of groups:

dSxi

dt
= µni +

p∑
k=1
k ̸=i

ωkiSxk −
p∑

k=1
k ̸=i

ωikSxi − µSxi

− Sxi

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
, (7.3)
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dSx1i

dt
=

p∑
k=1
k ̸=i

ωkiSx1k −
p∑

k=1
k ̸=i

ωikSx1i − µSx1i + σ(1− α)H2i

− Sx1i

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
, (7.4)

dH1i

dt
=

p∑
k=1
k ̸=i

ωkiH1k −
p∑

k=1
k ̸=i

ωikH1i − (µ+ σ)H1i

+

q∑
j=1

(1− δ)(Sxi + Sx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
, (7.5)

dH2i

dt
=

p∑
k=1
k ̸=i

ωkiH2k −
p∑

k=1
k ̸=i

ωikH2i − (µ+ σ)H2i

+

q∑
j=1

δ(Sxi + Sx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
, (7.6)

dYi
dt

=

p∑
k=1
k ̸=i

ωkiYk −
p∑

k=1
k ̸=i

ωikYi + σH1i − µYi, (7.7)

dZi

dt
=

p∑
k=1
k ̸=i

ωkiZk −
p∑

k=1
k ̸=i

ωikZi + σαH2i − µZi, (7.8)

dBH1j

dt
=

p∑
i=1

λiH1iPij(1− βH1j)− βH1j

p∑
i=1

λi(ni −H1i)Pij − τjBH1j, (7.9)

dBH2j

dt
=

p∑
i=1

λiH2iPij(1− βH2j)− βH2j

p∑
i=1

λi(ni −H2i)Pij − τjBH2j, (7.10)

dBY j

dt
=

p∑
i=1

λiYiPij(1− βY j)− βY j

p∑
i=1

λi(ni − Yi)Pij − τjBY j. (7.11)

Let πxi denote the fraction of first time susceptible addicts of type i at time t. Thus,

πxi =
Sxi

ni

,
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hence we have:

dπxi
dt

=
Ṡxini − Sxiṅi

n2
i

,

=
1

ni

(
µni +

p∑
k=1
k ̸=i

ωkiSxk −
p∑

k=1
k ̸=i

ωikSxi − µSxi

)
− Sxi

nini

(
p∑

k=1
k ̸=i

ωkink −
p∑

k=1
k ̸=i

ωikni

)

− Sxi

ni

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
,

= µ+

p∑
k=1
k ̸=i

ωkiπxk
nk

ni

−
p∑

k=1
k ̸=i

ωkiπxi
nk

ni

− µπxi

− πxi

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
. (7.12)

dπx1i

dt
= σ(1− α)πh2i +

p∑
k=1
k ̸=i

ωkiπx1k
nk

ni

−
p∑

k=1
k ̸=i

ωkiπx1i
nk

ni

− µπx1i

− πx1i

q∑
j=1

λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
, (7.13)

dπh1i

dt
=

q∑
j=1

(1− δ)(πxi + πx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh1i +

p∑
k=1
k ̸=i

ωkiπh1k
nk

ni

−
p∑

k=1
k ̸=i

ωkiπh1i
nk

ni

, (7.14)

dπh2i

dt
=

q∑
j=1

δ(πxi + πx1i)λiPij(1− ϕij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh2i +

p∑
k=1
k ̸=i

ωkiπh2k
nk

ni

−
p∑

k=1
k ̸=i

ωkiπh2i
nk

ni

, (7.15)

dπyi
dt

= σπh1i − µπyi +

p∑
k=1
k ̸=i

ωkiπyk
nk

ni

−
p∑

k=1
k ̸=i

ωkiπyi
nk

ni

, (7.16)

dπzi
dt

= ασπh2i − µπzi +

p∑
k=1
k ̸=i

ωkiπzk
nk

ni

−
p∑

k=1
k ̸=i

ωkiπzi
nk

ni

, (7.17)

dβh1j

dt
=

p∑
i=1

Λijπh1i(1− βh1j)− βh1j

p∑
i=1

Λij(1− πh1i)− τjβh1j, (7.18)
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dβh2j

dt
=

p∑
i=1

Λijπh2i(1− βh2j)− βh2j

p∑
i=1

Λij(1− πh2i)− τjβh2j, (7.19)

dβyj
dt

=

p∑
i=1

Λijπyi(1− βyj)− βyj

p∑
i=1

Λij(1− πyi)− τjβyj, (7.20)

with the similar suitable initial conditions: πxi(0), πx1i(0), πh1i(0), πh2i(0), πyi(0), πzi(0),

βh1j(0), βh2j(0) and βyj(0) ≥ 0 and πxi(0)+πx1i(0)+πh1i(0)+πh2i(0)+πyi(0)+πzi(0) =

1. Correspondingly, βh1j(0) + βh2j(0) + βyj(0) ≤ 1. Next, we will discuss the basic

reproductive number R0 and give the formula which it can be calculated from.

7.2 The Basic Reproductive Number R0

Let us recall that this number can be defined as a central quantity in the investigation

and management of infectious disease (Dietz, 1993). Note that both the basic model

and the extended model have the same disease-free equilibrium (DFE), namely πxi =

1 for i = 1, 2, . . . p and πx1i = πh1i = πh2i = πyi = πzi = 0 for i = 1, 2, . . . p and

βh1j = βh2j = βyj = 0 for j = 1, 2, . . . q. Hence to derive R0 in the extended model,

the infection scenario can be divided into two stages:

1. The infected addict passes the infection to uninfected needles.

2. The newly infected needles then infect susceptible addicts.

We start with the simplest case to understand and derive R0 for the two groups case

(p = 2). Then we move to more general case where we have p groups of addicts.

Under the assumption that addicts move in and out of groups we shall present an

expression of R0, which determines the general behaviour of the extended model.
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Derivation of R0 in the 2× 2 Case

Assume that we have only two groups where addicts can move between groups.

As infected addict in one group passes the infection to uninfected needles in one of

the shooting galleries, then the newly infected needles (at any stage of infectivity)

infect susceptible addicts in both groups.

Now we consider a single newly infected addict in group one entering a disease-

free population containing only susceptible addicts and needles. This newly infected

addict enters the acute h11 stage with probability (1 − δ). By our assumption all

rates are constant, this means that the expected duration (time) of infection is the

inverse of the removal rate. Thus, each infected addict in group one shares injecting

needles from group one for an average 1/(µ + σ + ω12) time units before the next

event. During this time he or she uses needles at rate λ1 and chooses the shooting

gallery j with probability P1j. They then progress to the chronic stage of infection

with probability σ/(µ + σ + ω12) where they remain for an average 1/µ time units.

In the chronic stage of infection, the addicts may jump from group one to two or

from group two to one many times before they leave the population. The second

possibility is that at the end of the period of injecting in group one the addict stops

sharing. This happens with probability µ/(µ+ σ + ω12).

The third possibility is that after the end of this period of injecting in group

one, the group one h11 addict moves to group two with probability ω12/(µ+σ+ω12).

For the purposes of calculation of the basic reproductive number we regard this as
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producing a newly infected h11 addict in group two (directly without any needles

being infected).

On initial infection our group one infected addict can also move into the acute

stage h21 with probability δ. They remain there for an average 1/(µ + σ + ω12)

time units until the next event happens. After, there are two stages which addicts

can progress to, the immune stage with probability σα/(µ + σ + ω12) and they re-

main for an average 1/µ time units, or the x11-susceptible stage with probability

σ(1− α)/(µ+ σ + ω12) where they remain for an average 1/µ time units, otherwise

they leave the population or switch group.

An h21 addict who enters either the immune class or the x11-susceptible class

produces no more infected needles. At the end of the first period of injecting in

group one the h21 infected addict may also switch to group two with probability

ω12/(µ+σ+ω12) and as in the h11 case we regard this as directly producing a newly

infected h21 addict in group two. Hence, in total a single newly infected addict in

group one causes on average:

λ1P1j(1− δ)

µ+ σ + ω12

acute h1j infectious needles,

and
λ1P1jδ

µ+ σ + ω12

acute h2j infectious needles.

We shall next find the total number of infectious needles in stage yj (j = 1, 2, . . . q),

caused by this addict. Immediately after entering state y the addict is still in group

one. The next event (either leaving the population or switching groups) occurs after
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time 1/(µ+ ω12) and during this time the addict infects:

σ

(µ+ σ + ω12)

λ1P1j(1− δ)

(µ+ ω12)
,

state y needles in group j. If the next event is leaving the sharing injecting population

no more needles are infected. However with probability ω12/(µ+ω12) the next event

is that the addict switches to group two when the expected number of state y needles

in shooting gallery j between the first and second events is:

σ

(µ+ σ + ω12)

ω12

(µ+ ω12)

λ2P2j(1− δ)

(µ+ ω21)
.

The third event can then be either leaving the sharing, injecting population or jump-

ing back to group one. The latter occurs with probability ω21/(µ + ω21) and after

this before the next event the addict will infect an expected number

σ

(µ+ σ + ω12)

ω12ω21

(µ+ ω12)(µ+ ω21)

λ1P1j(1− δ)

(µ+ ω12)
,

more state y needles in shooting gallery j. The addict can jump between the groups

many times before leaving the sharing injecting population. So the total number

state y shooting gallery j infected needles is:

σ

µ+ σ + ω12

λ1P1j(1− δ)

µ+ ω12

(
1 +

ω12ω21

(µ+ ω12)(µ+ ω21)
+

ω2
12ω

2
21

(µ+ ω12)2(µ+ ω21)2
+ . . .

)

+
ω12

(µ+ ω12)

λ2P2j(1− δ)

µ+ ω21

(
1 +

ω12ω21

(µ+ ω12)(µ+ ω21)
+ . . .

).
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Using the definition of the geometric series, we rewrite this as:

=
σ

(µ+ σ + ω12)

λ1P1j(1− δ)

(µ+ ω12)

1(
1− ω12ω21

(µ+ω12)(µ+ω21)

)

+
ω12

(µ+ ω12)

λ2P2j(1− δ)

(µ+ ω21)

1(
1− ω12ω21

(µ+ω12)(µ+ω21)

)
,

=
σ

µ+ σ + ω12

λ1P1j(1− δ)(µ+ ω21)

µ(µ+ ω12 + ω21)
+

λ2P2j(1− δ)ω12

µ(µ+ ω12 + ω21)

,

=
σ(1− δ)

[
λ1P1j(µ+ ω21) + λ2P2jω12

]
µ(µ+ σ + ω12)(µ+ ω12 + ω21)

. (7.21)

We have thus derived the number of each type of infected needle caused by the

original group one infected addict in shooting gallery j. We assume that these newly

infected needles will be used by uninfected addicts in the two groups. Thus, we aim

to derive the expected number of these addicts in group k infected by these newly

infected needles. Note that needles are not assumed to move from one shooting

gallery to another, thus we use a similar argument as in our basic model to derive

the expected number of addicts that are infected by acute h1j needles until they are

not infectious and obtain that the acute h1j needle is infected for 1/(
∑p

k=1 Λkj + τj)

time units. During this time it infects:

Λkj(1− ϕkj)αh

(
∑p

k=1 Λkj + τj)
addicts in group k. (7.22)
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Similarly, a single needle last used and infected by an addict in class h2j entering a

disease-free population at equilibrium infects:

Λkj(1− ϕkj)αh

(
∑p

k=1 Λkj + τj)
addicts in group k, (7.23)

and a single needle last used and infected by an addict in class yj entering a disease-

free population at equilibrium infects:

Λkj(1− ϕkj)αy

(
∑p

k=1 Λkj + τj)
addicts in group k. (7.24)

Thus, Q11, the total expected number of secondary addicts in group one left infected

by a single newly infected addict entering group one is the sum of those infected

by h1j needles plus the sum of those infected by h2j needles plus the sum of those

infected via yj needles. In the expression for Q12 there is an extra term corresponding

to the first event being the original h11 or h21 infected addict jumping directly to

group two. So:

Q1k =

q∑
j=1

Λkj(1− ϕkj)∑p
k=1 Λkj + τj

 αhλ1P1j

µ+ σ + ω12

+
αy(1− δ)σ

µ+ σ + ω12

[
λ1P1j(µ+ ω21)

µ(µ+ ω12 + ω21)

+
λ2P2jω12

µ(µ+ ω12 + ω21)

]+ I(k = 2)
ω12

µ+ σ + ω12

, (7.25)

where

I(k = 2) =

 1 if k = 2,

0 otherwise.
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Similarly, Q2k, the total expected number of secondary addicts in group k left infected

by a single newly infected addict entering group two is:

Q2k =

q∑
j=1

Λkj(1− ϕkj)∑p
k=1 Λkj + τj

 αhλ2P2j

µ+ σ + ω21

+
αy(1− δ)σ

µ+ σ + ω21

[
λ2P2j(µ+ ω12)

µ(µ+ ω12 + ω21)

+
λ1P1jω21

µ(µ+ ω12 + ω21)

]+ I(k = 1)
ω21

µ+ σ + ω21

. (7.26)

Thus R0 is the spectral radius of the matrix QQQ. In next section, we shall look at the

more general case where we have more than two groups.

Derivation of R0 in the p× p Case

Now if we have p groups where addicts move between groups, how do we derive

R0 in this case? Let us consider a single newly infected addict of group i enter-

ing a disease-free equilibrium population. Following a similar argument we find the

number of newly infected needles in shooting gallery j are:

λiPij(1− δ)

µ+ σ +
∑p

k1=1
k1 ̸=i

ωik1

acute h1j infectious needles,

λiPijδ

µ+ σ +
∑p

k1=1
k1 ̸=i

ωik1

acute h2j infectious needles.
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Similarly we find the number of infectious needles in stage yj caused by a single

newly infected addict entering group i is:

σ(1− δ)(
µ+ σ +

∑p
k1=1
k1 ̸=i

ωik1

)
 λiPij(

µ+
∑p

k2=1
k2 ̸=i

ωik2

) +

p∑
l2=1
l2 ̸=i

ωil2λl2Pl2j(
µ+

∑p
k2=1
k2 ̸=i

ωik2

)(
µ+

∑p
k3=1
k3 ̸=l2

ωl2k3

)

+

p∑
l2=1
l2 ̸=i

p∑
l3=1
l3 ̸=k2

ωil2ωl2l3λl3Pl3j(
µ+

∑p
k2=1
k2 ̸=i

ωik2

)(
µ+

∑p
k3=1
k3 ̸=l2

ωl2k3

)(
µ+

∑p
k4=1
k4 ̸=l3

ωl3k4

) + . . .

.

Thus, the total expected number of secondary addicts in group k caused by a single

newly infected addict of group i entering the population at equilibrium is:

Qik =

q∑
j=1

Λkj(1− ϕkj)∑p
k=1 Λkj + τj

 αhλiPij

µ+ σ +
∑p

k1=1
k1 ̸=i

ωik1

+
αyσ(1− δ)

µ+ σ +
∑p

k1=1
k1 ̸=i

ωik1

[
λiPij

µ+
∑p

k2=1
k2 ̸=i

ωik2

+

p∑
l2=1
l2 ̸=i

ωil2λl2Pl2j(
µ+

∑p
k2=1
k2 ̸=i

ωik2

)(
µ+

∑p
k3=1
k3 ̸=l2

ωl2k3

)

+

p∑
l2=1
l2 ̸=i

p∑
l3=1
l3 ̸=l2

ωil2ωl2l3λl3Pl3j(
µ+

∑p
k2=1
k2 ̸=i

ωik2

)(
µ+

∑p
k3=1
k3 ̸=l2

ωl2k3

)(
µ+

∑p
k4=1
k4 ̸=l3

ωl3k4

) + . . .

]
+

ωik

µ+ σ +
∑p

k1=1
k1 ̸=i

ωik1

I(k ̸= i). (7.27)

Here

I(k ̸= i) =

 1 if k ̸= i,

0 if k = i.

Note that R0 is the spectral radius of the p × p matrix Q. We now examine the

behaviour of the model analytically and dynamically. In particular, we are interested

in the conditions that allow HCV to die out or persist in the population.
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7.3 Analysis of Group Size Dynamics

We are interested in analysing the dynamical system of differential equations which

describe the spread of the disease amongst addicts who move in and out of groups,

but before we do this we need to understand the dynamics of the groups themselves.

Please note that the equations which describe how addicts move in and out of groups

are described by the system (7.1):

dn1

dt
= ω21n2 + ω31n3 + ω41n4 + · · ·+ ωp1np − (ω12 + ω13 + ω14 + · · ·+ ω1p)n1,

dn2

dt
= ω12n1 + ω32n3 + ω42n4 + · · ·+ ωp2np − (ω21 + ω23 + ω24 + · · ·+ ω2p)n2,

dn3

dt
= ω13n1 + ω23n3 + ω43n4 + · · ·+ ωp3np − (ω31 + ω32 + ω34 + · · ·+ ω3p)n3,

...
...

...
...

dnp

dt
= ω1pn1 + ω2pn2 + ω3pn3 + · · ·+ ωp−1pnp−1

− (ωp1 + ωp2 + ωp3 + · · ·+ ωpp−1)np,

with suitable initial conditions. Our main result in this section is proving that the

above system of differential equations has a unique globally stable equilibrium.

The result is split into two halves. The first theorem will show that there is

a unique positive equilibrium distribution and the second that the system of group

size dynamic interaction (7.1) tends to that unique equilibrium distribution.
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In order to analyse our dynamical group size system, we use continuous time

Markov Chain (CTMC) processes. These processes can be described as probabilistic

models for describing data with a sequential structure, where the state evolves over

time (Gardiner, 1985). In this work, we consider Markov processes that are homo-

geneous in time and have a finite state space. This will enable us to use established

theorems on convergence of ergodic Markov Chains to their equilibrium distributions

without proving the results ourselves. The dynamics of the process are described by

the initial conditions and by a rate matrix Q = (ωik), whose off-diagonal entries ωik

are exponential rate intensities for transition from state i to state k.

Let us consider a p-dimensional Markov process with transition rate from state

i to state k, being ωik. In our extended model, addicts are assumed to move from

group i to group k with rate ωik. If i ̸= k then ωik > 0 and if i = k:

ωii = −
p∑

k=1
k ̸=i

ωik = −ωi•.

We denote the p× p matrix of moving rates by Q = (ωik). Let X(t) be the random

variable describing the state of the process at time t, and also assume that the

process is in state (i.e. group) i at time t0. The dynamics of a continuous-time

Markov process are fully determined by the Markov transition function:

Pik(t) = Pr(X(t) = k|X(t0) = i). (7.28)
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The matrix P(t) with entries Pik(t) satisfies the matrix differential equation

dP

dt
= P(t)Q, (7.29)

in other words

dPik

dt
=

p∑
m=1

Pim(t) Qmk, i, k = 1, 2, . . . p, (7.30)

with initial condition P(0) = I, where I is the p × p identity matrix. The general

solution for the equation (7.30) is given by:

P(t) = eQt, (7.31)

where eQt is the matrix exponential defined by the Taylor series :

eQt =
∞∑
k=0

(Qt)k

k!
. (7.32)

If the Markov process is representing a single individual in state i, where i = 1, 2, . . . p,

then consequently if initially we have a collection of n1(0) + n2(0) + · · · + np(0)

individuals whose distribution between the groups is (n1(0), n2(0), . . . , np(0)), then

the number of addicts in group k at time t is:

nk(t) = n1(0)P1k(t) + n2(0)P2k(t) + · · ·+ np(0)Ppk(t),
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=
(
P1k(t), P2k(t), . . . , Ppk(t)

)
×



n1(0)

n2(0)

...

np(0)


,

using (7.31):



n1

n2

...

np


= eQ

T t



n1(0)

n2(0)

...

np(0)


.

So differentiating with respect to t :

d

dt



n1

n2

...

np


= QT



n1

n2

...

np


,

=



−ω1• ω21 . . . ωp1

ω12 −ω2• . . . ωp2

...
...

. . .
...

ω1p ω2p . . . −ωp•


×



n1

n2

...

np


. (7.33)

We will start addressing the task by assuming that we have p groups of addicts

i = 1, 2, . . . p and that the transition rate from group i to group k is ωik ≥ 0 for

each i and k, and that, for M a sufficiently large constant, the matrix (Q +MI)
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is irreducible. Now, we can present the differential equations system which describe

the number of addicts in each group:

dn1

dt
= ω21n2 + ω31n3 + ω41n4 + · · ·+ ωp1np − (ω12 + ω13 + ω14 + · · ·+ ω1p)n1,

dn2

dt
= ω12n1 + ω32n3 + ω42n4 + · · ·+ ωp2np − (ω21 + ω23 + ω24 + · · ·+ ω2p)n2,

dn3

dt
= ω13n1 + ω23n2 + ω43n4 + · · ·+ ωp3np − (ω31 + ω32 + ω34 + · · ·+ ω3p)n3,

...
...

...
... (7.34)

dnp

dt
= ω1pn1 + ω2pn2 + ω3pn3 + · · ·+ ωp−1np−1

− (ωp1 + ωp2 + ωp3 + · · ·+ ωpp−1)np,

which are the same equations that we described above (equations 7.33). We will use

the probability that an addict is in group k at time t, so that:

P̄k =
nk

n
, (7.35)

P̄k(t) =

p∑
i=1

P̄i(0)Pik(t).

Then by differentiating equation (7.35) we deduce that:

dP̄1

dt
= ω21P̄2 + ω31P̄3 + ω41P̄4 + · · ·+ ωp1P̄p − (ω12 + ω13 + ω14 + · · ·+ ω1p)P̄1,

dP̄2

dt
= ω12P̄1 + ω32P̄3 + ω42P̄4 + · · ·+ ωp2P̄p − (ω21 + ω23 + ω24 + · · ·+ ω2p)P̄2,

dP̄3

dt
= ω13P̄1 + ω23P̄2 + ω43P̄4 + · · ·+ ωp3P̄p − (ω31 + ω32 + ω34 + · · ·+ ω3p)P̄3,

...
...

...
... (7.36)
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dP̄p

dt
= ω1pP̄1 + ω2pP̄2 + ω3pP̄3 + · · ·+ ωp−1P̄p−1

− (ωp1 + ωp2 + ωp3 + · · ·+ ωpp−1)P̄p.

Obviously, from equation (7.30) and P̄k(t) =
∑p

i=1 P̄i(0)Pik(t) we can rewrite (7.36)

as:

dP̄k

dt
=

p∑
m=1

P̄m(t)Qmk.

This completes our mathematical preliminaries giving the background to the prob-

lem. We have shown how the system of differential equations (7.34) describing the

number of addicts in each group can be regarded as an aggregate of individual pro-

cesses representing individuals (or addicts) whose dynamics are given by the Markov

transition function Pik(t). We shall use this more basic interpretation of the model

to prove our two main results of this section.

The first principal result of this section is the following theorem:

Theorem 7.3.1. There is a unique positive equilibrium solution to equation (7.34)

for the addict group sizes.

Proof. We begin by observing that the p-dimensional vector 1 = (1, 1, . . . , 1)T is

obviously a right eigenvector of the matrix Q with the eigenvalue λ = 0. Thus, if M

is large enough, then (Q +MI) is a matrix with strictly positive entries and M is

an eigenvalue of the matrix with positive eigenvector 1.

Since (Q + MI) is an irreducible matrix (with positive off-diagonal elements),
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the Perron-Frobenius theorem for irreducible matrices (Lancaster & Tismenetsky,

1969) implies that M is a simple eigenvalue of the matrix (Q+MI) and equal to its

spectral radius. Hence λ = 0 is a simple eigenvalue of the matrix Q and all other

eigenvalues have strictly negative real parts. Moreover, M is also a simple eigenvalue

of the matrix (QT +MI) with strictly positive right eigenvector πT where:

πT = (π1, π2, . . . , πp)
T πi > 0 for i = 1, 2, . . . , p,

and without loss of generality we may assume that:

π1 + π2 + · · ·+ πp = 1. (7.37)

It follows that λ = 0 is a simple eigenvalue of the matrix QT with right eigenvector

(π1, π2, . . . , πp)
T . Thus, π can be regarded as an equilibrium probability distribution

for the state of an individual addict and considering equation (7.33):

n′ = n(π1, π2, . . . , πp)
T , (7.38)

is an equilibrium distribution for n.

To examine the uniqueness of the equilibrium distribution n′ suppose that we

have another equilibrium distribution ñ which is defined as:

ñ = (ñ1, ñ2, . . . , ñp)
T , (7.39)
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where
∑p

i=1 ñi =
∑p

i=1 ni(0) = n. Define the vector π̃ by:

π̃ = (π̃1, π̃2, . . . , π̃p),

where:

π̃i =
ñi

n
for i = 1, 2, . . . p.

Note that
∑p

i=1 π̃i = 1, and also:

QT π̃T = 0.

We deduce that π̃T is a right eigenvector of the matrix QT with eigenvalue λ = 0.

It follows that:

π̃T = KπT ,

since the corresponding eigenspace has one dimension. However, we assumed that

the sum of the components of π̃ equals unity in the formula (7.37) which leads to:

p∑
i=1

π̃i =

p∑
i=1

πi = 1,

which implies that K = 1, and therefore π̃ = π. Thus π, the equilibrium proba-

bility distribution for the state of a single addict, is unique, consequently nπ which

represents the equilibrium solution of group sizes in our group size dynamic model

(7.34) is also unique and these results proved this theorem.

So far we have answered an important question of whether the equilibrium size

distribution of our addict group size dynamic model is unique, which means that no
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multiple equilibria are possible. This leads us to another important point about the

development of our group dynamic model over time. The following theorem states

and discusses this point.

Theorem 7.3.2. The system of our addict group size dynamic model (7.34) ap-

proaches the unique equilibrium as time becomes large.

Proof. The dynamics of a CTMC process are fully determined by the Markov transi-

tion function (7.28). In order to prove this theorem, we consider the CTMC process

and two cases shall be considered:

• Case one is of size 2× 2.

• Case two is of size p× p.

(i) The 2× 2 Case:

For simplicity we shall start with the first case where p = 2. The Q matrix can be

expressed as:

Q =

 −α α

β −β

 (7.40)

with eigenvalues λ1 = 0 and λ2 = −(α+β). We have that the left eigenvector of the

matrix Q corresponding to the eigenvalue λ1 = 0 is:

e1 =
( β

α + β
,

α

α + β

)
,

and we have assumed that e11+e12 = 1. Moreover, the left eigenvector of the matrix

Q corresponding to the eigenvalue λ2 = −(α + β) is e2 = (1,−1) with a negative

component. Suppose that E is a matrix with rows consisting of these 2 independent
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eigenvectors e of the matrix Q:

E =

 e1

e2

 .
Thus we have:

E =

 e11 e12

e21 e22

 =

 β
α+β

α
α+β

1 −1

 .
Since all vectors ei are linearly independent, the matrix E is non-singular and

E Q E−1 = J.

The Jordan normal form of a square p×pmatrixQ with unique eigenvalues λ1, λ2, . . . , λp

is the square p× p diagonal matrix J where:

J =



λ1 0 . . . 0

0 λ2
...

...
. . .

...

0 . . . 0 λp


.

Thus here:

J =

 0 0

0 −(α + β)

 .
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It is easy to check that:

E−1 =

 1 α
α+β

1 − β
α+β

 .
Now, we shall compute the matrix EQE−1:

EQE−1 =

 β
α+β

α
α+β

1 −1


 −α α

β −β


 1 α

α+β

1 − β
α+β

 ,

=

 β
α+β

α
α+β

1 −1


 0 −α

0 β

 ,

=

 0 0

0 −(α + β)

 .
Hence we have checked that EQE−1 = J, and therefore we deduce that:

Q = E−1JE.

Using this expression Q = E−1JE and from formula (7.32) we can write:

eQt =
∞∑
k=0

(Qt)k

k!
,

=
∞∑
k=0

1

k!

(
E−1JtE

)k
,

= E−1

(
∞∑
k=0

(Jt)k

k!

)
E,

= E−1eJtE.

271



Thus we deduce that:

eQt = E−1

 eλ1t 0

0 eλ2t

E,

= E−1

 1 0

0 e−(α+β)t

E,

=

 1 α
α+β

1 − β
α+β


 1 0

0 e−(α+β)t


 β

α+β
α

α+β

1 −1

 ,

=

 1 α
α+β

1 − β
α+β


 β

α+β
α

α+β

e−(α+β)t −e−(α+β)t

 ,

=

 β
α+β

+ α
α+β

e−(α+β)t α
α+β

− α
α+β

e−(α+β)t

β
α+β

− β
α+β

e−(α+β)t α
α+β

+ β
α+β

e−(α+β)t

 .
This is the general solution of the two-state process, and from equation (7.31) we

deduce that:

P(t) =

 β
α+β

+ α
α+β

e−(α+β)t α
α+β

− α
α+β

e−(α+β)t

β
α+β

− β
α+β

e−(α+β)t α
α+β

+ β
α+β

e−(α+β)t

 .
This simple case is mentioned in the Wikipedia website (Wikipedia, 2014). Recall

that:

nj(t) =

p∑
k=1

nk(0)Pkj(t),
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so therefore

lim
t→∞

nj(t) =

p∑
k=1

lim
t→∞

nk(0)Pkj(t),

= lim
t→∞

n1(0)P1j(t) + lim
t→∞

n2(0)P2j(t) + · · ·+ lim
t→∞

np(0)Ppj(t).

In the 2× 2 case and for j = 1:

lim
t→∞

n1(t) = lim
t→∞

n1(0)P11(t) + lim
t→∞

n2(0)P21(t),

=
β

α + β
n1(0) +

β

α + β
n2(0),

=
βn

α + β
.

Similarly for j = 2:

lim
t→∞

n2(t) =
αn

α+ β
.

This implies that when time becomes large then our system approaches a unique

equilibrium solution.

(ii) The p× p Case:

Next, we investigate the existence and uniqueness of the equilibrium when time

goes to infinity in the case that the matrix Q is of size p×p. We follow the same ap-

proach and construct a matrix E with rows consisting of p independent eigenvectors
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e of the matrix Q:

E =



e11 e12 . . . e1p

e21 e22 . . . e2p

...
. . .

...

ep1 ep2 . . . epp


.

The eigenvector (e11, e12, . . . , e1p) corresponds to the eigenvalue λ = 0, with
∑p

i=1 e1i =

1, and e1i > 0 for i = 1, 2, . . . p. Suppose that the inverse of the matrix E is:

E−1 =



f11 f12 . . . f1p

f21 f22 . . . f2p

...
. . .

...

fp1 fp2 . . . fpp


.

The Jordan normal form of the p× p matrix QQQ is given by the block diagonal matrix

J:

J = EQE−1 =


0 . . . . . . 0

...
. . .

...

0
. . .

 .

Hence:

J =



0 0 0 . . . 0

0 J1 . . . 0

0 0 J2 . . . 0

...
...

. . .
...

0 0 . . . . . . Jk


,

where J1,J2, . . . Jk are square matrices of size p× p, with the eigenvalues λ on the
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diagonal and 1 on the diagonal above and zero everywhere else:

Jl =



λ 1 . . . . . .

0 λ 1 . . .

...
...

. . . 1

0 . . . . . . λ


,

where l = 1, 2, . . . k and the real parts of the eigenvalues are non-positive such that

Re(λ) < 0. Now we shall present the following lemma to complete the proof of

Theorem 7.3.2.

Lemma 7.3.3. We assert that

eJlt =



eλt . . .

0 eλt . . .

...
...

. . .
...

0 . . . . . . eλt


,

with entries above the diagonal powers of t multiplied by eλt, and those under the

diagonal are zero.

Proof. Let consider the power of matrix (Jl)
i with positive integer powers i where

i = 1, 2, . . . k. Thus, for i = 1 we deduce that:

Jl =



λ 1 . . . . . .

0 λ 1 . . .

...
...

. . . 1

0 . . . . . . λ


,
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and for i = 2:

J2
l =



λ2 2λ 1 . . . 0

0 λ2 2λ 1
...

...
...

. . . 2λ

0 . . . . . . λ2


.

Similarly for i = 3:

J3
l =



λ3 3λ2 3λ 1 . . . 0

0 λ3 3λ2 3λ 1
...

...
...

. . .
... 3λ2

0 . . . . . . . . . λ3


.

Finally when i = k, we deduce that:

Jk
l =



λk ( k
1 )λ

k−1 ( k
2 )λ

k−2 . . . 1 0 . . . 0

0 λk ( k
1 )λ

k−1 ( k
2 )λ

k−2 . . .
...

...

...
...

...
. . .

... λk ( k
1 )λ

k−1

0 0 . . . . . . . . . 0 λk


. (7.41)

In this matrix we obtain that the main diagonal is λk, the one above it ( k
1 )λ

k−1. More-

over, the one above that is ( k
2 )λ

k−2, and so on until we either reach 1, (k ≤ p − 1)

or ( k
p−1 )λ

k−p+1 (k ≥ p− 1).

We shall prove the expression of (7.41) by mathematical induction. The hy-

potheses of mathematical induction are satisfied for k = 1, 2, 3, and clearly we can

see that the elements of the leading diagonal are all λk and the elements of the second
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upper diagonal are of the form ( k
1 )λ

k−1. Let suppose that the result is true for k− 1

and we want to prove that if is true for k. Consider the s th upper diagonal where

s≥ 3. By using the definition of matrix multiplication it is clear that:

Jk
l = Jk−1

l Jl.

Hence:

Jk
l =



λk−1 ( k−1
1 )λk−2 ( k−1

2 )λk−3 . . . 1 0 . . . 0

0 λk−1 ( k−1
1 )λk−2 ( k−1

2 )λk−3 . . .
...

...

...
...

...
. . .

... ( k
1 )λ

k−1

0 . . . . . . . . . . . . λk−1



×



λ 1 . . . . . . 0 . . .

0 λ 1 . . . 0 . . .

. . .
... . . .

...
...

... λ 1 . . .

. . . . . . . . . . . . λ . . .


.

Now we shall find the element of the sth upper diagonal (Jk
l ), where (1 ≤ s ≤ p− 1).

If s > k + 1, (Jk
l )1s = 0.

If s = k + 1, (Jk
l )1s = 1 = ( k

s−1 )λ
k−s+1.

If s = k, (Jk
l )1s = ( k−1

k−2 )λ
k−(k−1) + λ× 1,

= kλ = 1× ( k
s−1 )λ

k−s+1,
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If s = k − 1, (Jk
l )1s = 1× ( k−1

k−3 )λ
k−(k−2) + λ( k−1

k−2 )λ
k−(k−1),

= λ2
[
( k−1
k−3 ) + ( k−1

k−2 )
]
,

= λ2

[
1

2
(k − 1)(k − 2) + (k − 1)

]
,

=
1

2
k(k − 1)λ2,

= ( k
s−1 )λ

k−(k−2).

Finally if s = k − t and 2 ≤ t ≤ k − 1 we deduce that:

( k−1
k−t−2 )λ

k−(k−t−1) + λ( k−1
k−t−1 )λ

k−(k−t) = λt+1
[
( k−1
k−t−2 ) + ( k−1

k−t−1 )
]
,

= λt+1
[ (k − 1)!

(k − t− 2)!(t+ 1)!
+

(k − 1)!

(k − t− 1)!t!

]
,

= λt+1 (k − 1)!

(k − t− 1)!(t+ 1)!

[
k − t− 1 + t+ 1

]
,

= λt+1 k!

(k − t− 1)!(t+ 1)!
,

= λt+1( k
k−t−1 ),

= ( k
s−1 )λ

k−s+1.

Thus we have shown that mathematical induction implies that the statement is true

for all k. Hence in Jk
l the terms in the s th upper diagonal are of the form:

( k
s−1 )λ

k−s+1 where 1 ≤ s ≤ k + 1,

and

zero where s > k + 1.
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Thus we obtained that:

eJlt =
∞∑
k=0

(Jk
l t)

k

k!
,

the entries in the lower diagonals are zero. The entries in the s th upper diagonal are:

∞∑
k=s−1

tk

k!
( k
s−1 )λ

k−s+1 =
∞∑

k=s−1

tk

(s− 1)!(k − s+ 1)!
λk−s+1,

=
∞∑

m=0

tm+s−1

(s− 1)!m!
λm,

=
ts−1

(s− 1)!
eλt,

in other words we can see that a power of t multiplied by eλt which proves Lemma

7.3.3.

The second part, as we have,

eQt = E−1eJt E,

then that as t→ ∞, eQt approaches:

E−1



1 0 . . . 0

0
. . . . . . 0

...
. . . 0

0 . . . 0


E
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=



f11 f12 . . . f1p

...
. . .

...

...
. . .

...

fp1 fp2 . . . fpp





1 0 . . . 0

0
. . .

...

...
. . .

...

0 . . . . . . 0





e11 e12 . . . e1p

...
. . .

...

...
. . .

...

ep1 ep2 . . . epp


,

=



f11 f12 . . . f1p

...
. . .

...

...
. . .

...

fp1 fp2 . . . fpp





e11 e12 . . . e1p

0
. . . 0

...
. . .

...

0 0 . . . 0


,

=



f11e11 f11e12 . . . f11e1p

f21e11 f21e12 . . . f21e1p

...
. . .

...

fp1e11 fp1e12 . . . fp1e1p


.

However, we have shown earlier that:

J = EQE−1,

hence we deduce the following:

QE−1 = E−1J,
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=



f11 f12 . . . f1p

...
. . .

...

...
. . .

...

fp1 fp2 . . . fpp





0 0 . . . 0

...
. . .

...

... not zero
...

0 . . . . . . . . .


,

=


0 . . .

... not zero

0 . . .

 .

Clearly we can see that the first column of the matrix QE−1 is zero, whilst the first

column of the matrix QE−1 has ith element, which can be expressed as:

(
ith row of the matrix Q

)


f11

f21

...

fp1


= 0.

This leads us to the fact that the vector



f11

f21

...

fp1


is a right eigenvector of the matrix

Q with the eigenvalue λ = 0. Note that the corresponding eigenspace has dimension
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one. Recall, that we find zero is a simple eigenvalue of Q and the eigenvector

1 =



1

1

...

1


,

is another vector in it. Therefore:



f11

f21

...

fp1


= k



1

1

...

1


, for some constant k.

From the definition of EE−1 = I, we deduce that:

(
e11 e12 . . . e1p

)


f11

f21

...

fp1


= 1,

= k(e11 + e12 + · · ·+ e1p),

= k,

from our previous assumption e11 + e12 + · · · + e1p = 1. This leads to the following
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results:

k = 1,



f11

f21

...

fp1


=



1

1

...

1


,

and

E−1

 1 0

0 0

E =



e11 e12 . . . e1p

e11 e12 . . . e1p

...
. . .

...

e11 e12 . . . e1p


,

consequently we prove that Pik → e1k as time goes to infinity. In conclusion, we

deduce that:

nk(t) = n1(0)P1k(t) + n2(0)P2k(t) + · · ·+ np(0)Ppk(t),

as t→ ∞:

(n1(0) + n2(0) + · · ·+ np(0))e1k = ne1k.

This completes our proof by showing that our system approaches the unique equi-

librium distribution as time becomes large.

The next section shall discuss the local and global stability of the extended model.

We will show that when R0 ≤ 1 our model has only the disease-free equilibrium which

is globally asymptotically stable, this implies that HCV dies out eventually in addicts

groups and shooting galleries.
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7.4 Stability Analysis

The stability of the equilibrium solutions is important in the study of mathematical

models. In this section, we present the results of stability analysis of the equilibrium

points. The extended model has two non-negative equilibrium points namely:

• The disease-free equilibrium.

• The endemic equilibrium.

In the next theorem we will show that the disease-free equilibrium solution is the

only solution if R0 ≤ 1. Moreover, we prove that under the condition that R0 ≤

1 the disease-free equilibrium is globally asymptotically stable, which means that

eventually the disease will die out.

Theorem 7.4.1. Suppose that for each pair of groups i and k of addicts there exists

a shooting gallery j0 with Pij0(1 − ϕij0)Λkj0 > 0. Then, if R0 ≤ 1 the model system

(7.12)-(7.20) has a unique disease-free equilibrium which is globally asymptotically

stable.

Proof. To prove this theorem, we aim to prove several results that give upper bounds

on the limit supremum of each group i of addicts and shooting gallery j in terms

of π∞
h1i

or π∞
h2i

. From equation (7.14) and equation (7.15) we can express the link

between π∞
h1i

and π∞
h2i

. We write π∞
h1i

for lim supt→∞ πh1i(t). Similarly, we define:

π∞
h2i

= lim sup
t→∞

πh2i(t),

π∞
yi = lim sup

t→∞
πyi(t),

π∞
zi = lim sup

t→∞
πzi(t).
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Again for the needle system, we have:

β∞
h1j

= lim sup
t→∞

βh1j(t),

β∞
h2j

= lim sup
t→∞

βh2j(t),

β∞
yj = lim sup

t→∞
βyj(t).

This theorem needs some preliminary results to prove first.

Lemma 7.4.2.

π∞
yi ≤

σπ∞
h1i

+
∑p

k=1
k ̸=i

ωki
n∗
k

n∗
i
π∞
yk

µ+
∑p

k=1
k ̸=i

ωik

.

Proof. We use a similar technique as in the proof of Lemma 3.1.5 with equation

(7.16), the fact that ni −→ n∗
i and nk −→ n∗

k as t −→ ∞ and the equilibrium group

size equations.

Using a similar argument it is straightforward to show:

π∞
zi ≤

ασπ∞
h2i

+
∑p

k=1
k ̸=i

ωki
n∗
k

n∗
i
π∞
zk

µ+
∑p

k=1
k ̸=i

ωik

, (7.42)

β∞
h1j

≤
∑p

i=1 Λijπ
∞
h1i∑p

l=1 Λlj + τj
, (7.43)

β∞
h2j

≤
∑p

i=1 Λijπ
∞
h2i∑p

l=1 Λlj + τj
, (7.44)

β∞
yj ≤

∑p
i=1 Λijπ

∞
yi∑p

l=1 Λlj + τj
. (7.45)

The next lemma will state the relationship between π∞
h1i

and π∞
h2i

by using equations

(7.14) and (7.15).
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Lemma 7.4.3.

π∞
h1i

1− δ
=
π∞
h2i

δ
.

Proof. Let ξi =
πh1i

1−δ
− πh2i

δ
. Subtracting equation (7.15) divided by 1−δ from equation

(7.14) divided by δ gives:

dξi
dt

= −(µ+ σ)ξi +

p∑
k=1
k ̸=i

ωkiξk
nk

ni

−
p∑

k=1
k ̸=i

ωkiξi
nk

ni

.

Denote ξ∞k = lim supt→∞ ξk(t), and assume that supk=1,2,...p ξ
∞
k > 0, and let ξ∞k0 =

supk=1,2,...p ξ
∞
k . If we have ξ∞k0 > 0 then for a given ϵ > 0 there exists t0 such that for

t ≥ t0:

dξk0
dt

≤ −(µ+ σ)ξk0 +

p∑
k=1
k ̸=k0

ωkk0ξ
∞
k

n∗
k

n∗
k0

−
p∑

k=1
k ̸=k0

ωkk0ξk0
n∗
k

n∗
k0

+ ϵ.

Using the equilibrium solution of the system (7.1) gives:

p∑
k=1
k ̸=k0

ωkk0

n∗
k

n∗
k0

=

p∑
k=1
k ̸=k0

ωk0k.

Thus:

dξk0
dt

≤ −(µ+ σ)ξk0 +

p∑
k=1
k ̸=k0

ωkk0ξ
∞
k

n∗
k

n∗
k0

−
p∑

k=1
k ̸=k0

ωk0kξk0 + ϵ.

Thus for t ≥ t0(ϵ) we deduce that:

d

dt

(
ξk0 exp

[
µ+ σ +

p∑
k=1
k ̸=k0

ωk0k

]
t

)
≤

(
p∑

k=1
k ̸=k0

ωkk0ξ
∞
k

n∗
k

n∗
k0

+ ϵ

)
exp

[(
µ+ σ +

p∑
k=1
k ̸=k0

ωk0k

)
t

]
.
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Integrating over [t0(ϵ), t) gives:

ξk0 exp


[
µ+ σ +

p∑
k=1
k ̸=k0

ωk0k

]
t

 ≤ ξk0(t0(ϵ))

+

∑p
k=1
k ̸=k0

ωkk0ξ
∞
k

n∗
k

n∗
k0

+ ϵ

µ+ σ +
∑p

k=1
k ̸=k0

ωk0k

 exp

([
µ+ σ +

p∑
k=1
k ̸=k0

ωk0k

]
t

)

− exp

([
µ+ σ +

p∑
k=1
k ̸=k0

ωk0k

]
t0(ϵ)

).

Dividing by exp

[(
µ+σ+

∑p
k=1
k ̸=k0

ωk0k

)
t

]
and taking the limsup and letting t −→ ∞,

ξ∞k0 ≤

∑p
k=1
k ̸=k0

ωkk0ξ
∞
k

n∗
k

n∗
k0

+ ϵ

µ+ σ +
∑p

k=1
k ̸=k0

ωk0k

.

Letting ϵ −→ 0 gives:

ξ∞k0 ≤

∑p
k=1
k ̸=k0

ωkk0ξ
∞
k0

n∗
k

n∗
k0

µ+ σ +
∑p

k=1
k ̸=k0

ωk0k

.

Dividing both sides by ξ∞k0 gives:

1 ≤

∑p
k=1
k ̸=k0

ωk0k

µ+ σ +
∑p

k=1
k ̸=k0

ωk0k

< 1. (7.46)

Thus we have a contradiction in (7.46) which implies that ξ∞k0 ≤ 0. Hence ξ∞k ≤ 0 for

k = 1, 2, . . . p. Similarly, let ηi =
πh2i

δ
− πh1i

1−δ
= −ξi, and denote η∞k = lim supt−→∞ ηk(t)
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and ηk,∞ = lim inft−→∞ ηk(t) and ξk,∞ = lim inft−→∞ ξk(t):

η∞k = −(−ηk,∞) = −(ξk,∞) ≤ 0 for k = 1, 2, . . . p.

By using a similar argument we can show that η∞k ≤ 0 for k = 1, 2, . . . p. Thus:

ξk,∞ ≥ 0.

Hence:

0 ≥ ξ∞k ≥ ξk,∞ ≥ 0.

ξ∞k = ξk,∞ = 0.

Thus ξk −→ 0 as t −→ ∞, for each k = 1, 2, . . . p. Lemma 7.4.3 follows.

Recall that we are proving the global stability of the disease-free steady state

under the condition R0 ≤ 1. Let πhi = πh1i + πh2i. It is sufficient to prove that

π∞
hi = 0. In order to do this suppose that π∞

h1i
> 0. From the proof of Lemma 7.4.3,

it is straightforward to prove:

π∞
hi =

π∞
h1i

1− δ
=
π∞
h2i

δ
. (7.47)

By Lemma 7.4.2:

π∞
yi ≤

σ(1− δ)π∞
hi +

∑p
k=1
k ̸=i

ωki
n∗
k

n∗
i
π∞
yk

µ+
∑p

k=1
k ̸=i

ωik

. (7.48)

Adding equations (7.14) and (7.15) together and using the inequalities (7.43) - (7.45),
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the fact that ni −→ n∗
i and nk −→ n∗

k as t −→ ∞ and the equilibrium group size

equations we deduce that given ϵ > 0 there exists t0 such that for t ≥ t0

dπhi
dt

≤ (1− πhi − πyi − πzi)

q∑
j=1

λiPij(1− ϕij)

[
αh

∑p
k=1 Λkjπ

∞
hk + αy

∑p
k=1 Λkjπ

∞
yk∑p

l=1 Λlj + τj

]

−(µ+ σ)πhi +

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

π∞
hk −

p∑
k=1
k ̸=i

ωikπhi + ϵ,

≤ (1− πhi)

q∑
j=1

λiPij(1− ϕij)

[
αh

∑p
k=1 Λkjπ

∞
hk + αy

∑p
k=1 Λkjπ

∞
yk∑p

l=1 Λlj + τj

]

−(µ+ σ)πhi +

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

π∞
hk −

p∑
k=1
k ̸=i

ωikπhi + ϵ.

Arguing as earlier, it is easy to show that:

π∞
hi ≤

∑q
j=1 λiPij(1− ϕij)

(
αh

∑p
k=1 Λkjπ

∞
hk+αy

∑p
k=1 Λkjπ

∞
yk∑p

l=1 Λlj+τj

)
+
∑p

k=1
k ̸=i

ωki
n∗
k

n∗
i
π∞
hk

µ+ σ +
∑p

k=1
k ̸=i

ωik +
∑q

j=1 λiPij(1− ϕij)

(
αh

∑p
k=1 Λkjπ

∞
hk+αy

∑p
k=1 Λkjπ

∞
yk∑p

l=1 Λlj+τj

) .

Now we want to obtain an upper bound for π∞
hi in terms of π∞

hk only. Thus, we ignore

the last term in the sum in the denominator and reapply the inequality (7.48) many

times to replace π∞
yk with terms involving sums of π∞

hk:

≤ 1

µ+ σ +
∑p

k=1
k ̸=i

ωik

 q∑
j=1

λiPij(1− ϕij)

αh

∑p
k=1 Λkjπ

∞
hk∑p

l=1 Λlj + τj

+
σ(1− δ)αy

∑p
k=1 Λkj∑p

l=1 Λlj + τj

 π∞
hk

µ+
∑p

k1=1
k1 ̸=k

ωkk1

+

∑p
l2=1
l2 ̸=k

ωl2k

n∗
l2

n∗
k
π∞
hl2(

µ+
∑p

k1=1
k1 ̸=k

ωkk1

)(
µ+

∑p
k2=1
k2 ̸=l2

ωl2k2

)
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+

∑p
l2=1
l2 ̸=k

∑p
l3=1
l3 ̸=l2

ωl3l2ωl2k

n∗
l3

n∗
k
π∞
hl3(

µ+
∑p

k1=1
k1 ̸=k

ωkk1

)(
µ+

∑p
k2=1
k2 ̸=l2

ωl2k2

)(
µ+

∑p
k3=1
k3 ̸=l3

ωl3k3

) + . . .




+

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

π∞
hk

,
π∞
hi ≤

p∑
k=1

Q∗
ikπ

∞
hk, (7.49)

where

Q∗
ik =

1

µ+ σ +
∑p

k=1
k ̸=i

ωik

 q∑
j=1

λiPij(1− ϕij)

 αhΛkj∑p
l=1 Λlj + τj

+
σ(1− δ)αy∑p
l=1 Λlj + τj

 Λkj(
µ+

∑p
k1=1
k1 ̸=k

ωkk1

) +

∑p
l2=1
l2 ̸=k

Λl2jωkl2
n∗
k

n∗
l2(

µ+
∑p

k1=1
k1 ̸=k

ωkk1

)(
µ+

∑p
k2=1
k2 ̸=k

ωkk2

)

+

∑p
l2=1
l2 ̸=k

∑p
l3=1
l3 ̸=l2

Λl3j ωkl2ωl2l3
n∗
k

n∗
l3(

µ+
∑p

k1=1
k1 ̸=k

ωkk1

)(
µ+

∑p
k2=1
k2 ̸=k

ωkk2

)(
µ+

∑p
k3=1
k3 ̸=l2

ωl2k3

) + . . .




+ I(k ̸= i)ωki
n∗
k

n∗
i

. (7.50)

It is clear that the disease-free equilibrium π∗
x1i

= 1 and π∗
x1i

= π∗
h1i

= π∗
h2i

= π∗
yi =

π∗
zi = 0, also β∗

h1j
= β∗

h2j
= β∗

yj = 0 is always a solution to the differential equations

system (7.12) – (7.20). We need to show that if R0 ≤ 1 then there is no other

equilibrium solution. To show that we need the following lemma:
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Lemma 7.4.4. The matrix Q∗ is defined in the formula (7.50) and the matrix QT ,

where QT is the transpose of the matrix Qik defined in the formula (7.27) satisfy

QT
ik = Qki,

so they have the same eigenvalues and spectral radius.

Proof. Using a similar argument as in the proof of Lemma 3.1.2 in our basic model

we deduce:

QT
ik = Q∗

ik

(
µ+ σ +

∑p
k1=1
k1 ̸=i

ωik1

)
n∗
i(

µ+ σ +
∑p

k1=1
k1 ̸=k

ωkk1

)
n∗
k

. (7.51)

The result is obtained, similarly to the proof of Lemma 3.1.2.

To complete the proof of the global asymptotic stability (hence uniqueness) of

the disease-free equilibrium if R0 ≤ 1, we recall that for each pair of groups i and k

of addicts there exists a shooting gallery j0 with:

Pij0(1− ϕij0)Λkj0 > 0,

this means that transmission of the disease to each group of addicts is possible.

Let R0 ≤ 1 and suppose that πhk0 = supk=1,2,...p π
∞
hk > 0. A straightforward

examination of the derivation of equation (7.49) shows that in fact:

π∞
hi ≤

∑p
k=1Q

∗
ikπ

∞
hk

1 +
∑p

k=1R
∗
ikπ

∞
hk

.
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Here

R∗
ik =

1

µ+ σ +
∑p

k=1
k ̸=i

ωik

q∑
j=1

λiPij(1− ϕij)αhΛkj∑p
l=1 Λlj + τj

,

so
∑p

k=1R
∗
ikπ

∞
hk > 0, thus:

π∞
hi <

p∑
k=1

Q∗
ikπ

∞
hk, for i = 1, 2, . . . p, (7.52)

so there exists an ϵ2 such that:

πππ∞
h (1 + ϵ2) < QQQ∗πππ∞

h ,

where πππ∞
h = (π∞

h1, π
∞
h2, . . . , π

∞
hp) ̸= 0. Arguing as at the end of the proof of Theorem

3.1.4 we deduce a contradiction and that π∞
hi = 0 for i = 1, 2, . . . p. Hence from

the inequality (7.48) each π∞
yi = 0 (otherwise we obtain a contradiction similarly to

(7.46)). Similarly each π∞
zi = 0. Also from (7.43) - (7.45) we obtain that β∞

h1j
=

β∞
h2j

= β∞
yj = 0. This completes the proof of Theorem 7.4.1

Now we are interested to predict the behaviour of the extended model when R0

exceeds unity. In next theorem we shall prove the existence of the non-zero endemic

equilibrium solution if R0 > 1. However, before we start our discussion we need to

present an important result about π∗
hi, π

∗
h1i

and π∗
h2i

.

Lemma 7.4.5. For any equilibrium values of (7.12) – (7.20) and for i = 1, 2, . . . p:

π∗
hi =

π∗
h1i

1− δ
=
π∗
h2i

δ
.
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Proof. Suppose that:

π∗
h1k0

1− δ
−
π∗
h2k0

δ
= sup

i=1,2,...p

(
π∗
h1i

1− δ
−
π∗
h2i

δ

)
> 0.

Then by dividing the equilibrium version of equation (7.14) with i = k0 by 1 − δ

and the equilibrium version of equation (7.15) with i = k0 by δ and subtracting we

deduce that:

(
µ+ σ +

p∑
k=1
k ̸=k0

ωkk0

n∗
k

n∗
k0

)(
π∗
h1k0

1− δ
−
π∗
h2k0

δ

)
=

p∑
k=1
k ̸=k0

(
π∗
h1k

1− δ
−
π∗
h2k

δ

)
ωkk0

n∗
k

n∗
k0

,

≤

(
π∗
h1k0

1− δ
−
π∗
h2k0

δ

)
p∑

k=1
k ̸=k0

ωkk0

n∗
k

n∗
k0

.

Hence

µ+ σ +

p∑
k=1
k ̸=k0

ωkk0

n∗
k

n∗
k0

≤
p∑

k=1
k ̸=k0

ωkk0

n∗
k

n∗
k0

,

which is a contradiction, so:

sup
i=1,2,...p

(
π∗
h1i

1− δ
−
π∗
h2i

δ

)
≤ 0.

Similarly

0 ≥ sup
i=1,2,...p

(
π∗
h2i

δ
−

π∗
h1i

1− δ

)
= − inf

i=1,2,...p

(
π∗
h1i

1− δ
−
π∗
h2i

δ

)
.

Thus

0 ≥ sup
i=1,2,...p

(
π∗
h1i

1− δ
−
π∗
h2i

δ

)
≥ inf

i=1,2,...p

(
π∗
h1i

1− δ
−
π∗
h2i

δ

)
≥ 0,
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so

sup
i=1,2,...p

(
π∗
h1i

1− δ
−
π∗
h2i

δ

)
= inf

i=1,2,...p

(
π∗
h1i

1− δ
−
π∗
h2i

δ

)
= 0,

and

π∗
h1i

1− δ
=
π∗
h2i

δ
for i = 1, 2, . . . p.

As π∗
hi = π∗

h1i
+ π∗

h2i
the results of Lemma 7.4.5 holds.

Theorem 7.4.6. If R0 > 1, there is a non-zero endemic equilibrium solution to the

system (7.12) - (7.20).

Proof. The proof is similar to the proof of Theorem 3.1.8. We begin our proof by

finding the equilibrium point of π∗
yi expressed in terms of π∗

hi as follows:

π∗
yi =

σπ∗
h1i

µ+
∑p

k=1
k ̸=i

ωki
n∗
k

n∗
i

+

∑p
k=1
k ̸=i

ωki
n∗
k

n∗
i
π∗
yk

µ+
∑p

k=1
k ̸=i

ωki
n∗
k

n∗
i

. (7.53)

From Lemma 7.4.5 and successively reapplying the equation (7.53) we can write the

above as:

π∗
yi =

σ(1− δ)π∗
hi

µ+
∑p

k=1
k ̸=i

ωik

+

∑p
k=1
k ̸=i

σ(1− δ)ωki
n∗
k

n∗
i
π∗
hk(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p
l=1
l ̸=k

ωkl

)

+

∑p
k1=1
k1 ̸=i

∑p
l=1
l ̸=k1

σ(1− δ)ωk1iωlk1
n∗
l

n∗
i
π∗
hl(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p
k2=1
k2 ̸=k1

ωk1k2

)(
µ+

∑p
k3=1
k3 ̸=l

ωlk3

)

+

∑p
k1=1
k1 ̸=i

∑p
l=1
l ̸=k1

∑p
k2=1
k2 ̸=l

σ(1− δ)ωk1iωlk1ωk2l

n∗
k2

n∗
i
π∗
hk2(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p

k2=1
k2 ̸=k1

ωk1k2

)(
µ+

∑p
k3=1
k3 ̸=l

ωlk3

)(
µ+

∑p
k4=1
k4 ̸=k2

ωk2k4

)
+ . . . . (7.54)
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Lastly re-labeling the dummy suffices so that the suffix of πh in all terms except the

first is k we obtain the following:

π∗
yi =

σ(1− δ)π∗
hi

µ+
∑p

k=1
k ̸=i

ωik

+

∑p
k=1
k ̸=i

σ(1− δ)ωki
n∗
k

n∗
i
π∗
hk(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p
l=1
l ̸=k

ωkl

)

+

∑p
k=1

∑p
k1=1
k1 ̸=k,i

σ(1− δ)ωk1iωkk1
n∗
k

n∗
i
π∗
hk(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p
k2=1
k2 ̸=k1

ωk1k2

)(
µ+

∑p
k3=1
k3 ̸=k

ωkk3

)

+

∑p
k=1

∑p
k1=1
k1 ̸=i

∑p
l=1

l ̸=k1,k2

σ(1− δ)ωk1iωlk1ωkl
n∗
k

n∗
i
π∗
hk(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p

k2=1
k2 ̸=k1

ωk1k2

)(
µ+

∑p
k3=1
k3 ̸=l

ωlk3

)(
µ+

∑p
k4=1
k4 ̸=k

ωkk4

)
+ . . . . (7.55)

Equation (7.55) can be expressed in a matrix format as:

πππ∗
y = σ(1− δ)Aπππ∗

h, (7.56)

where

Aik =
I(i = k)

µ+
∑p

k=1
k ̸=i

ωki
n∗
k

n∗
i

+
ωki

n∗
k

n∗
i
I(i ̸= k)(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p
l=1
l ̸=k

ωkl

)

+

∑p
k1=1
k1 ̸=k,i

ωk1iωkk1
n∗
k

n∗
i(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p
k2=1
k2 ̸=k1

ωk1k2

)(
µ+

∑p
k3=1
k3 ̸=k

ωkk3

)

+

∑p
k1=1
k1 ̸=i

∑p
l=1

l ̸=k1,k2

ωk1iωlk1ωkl
n∗
k

n∗
i(

µ+
∑p

k1=1
k1 ̸=i

ωik1

)(
µ+

∑p

k2=1
k2 ̸=k1

ωk1k2

)(
µ+

∑p
k3=1
k3 ̸=l

ωlk3

)(
µ+

∑p
k4=1
k4 ̸=k

ωkk4

)
+ . . . .
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Similarly we obtain that:

πππ∗
z = σαδAπππ∗

h. (7.57)

Then we aim to find π∗
hi as a sum of π∗

h1i
and π∗

h2i
:

π∗
hi = π∗

h1i
+ π∗

h2i
,

=
1

µ+ σ +
∑p

k=1
k ̸=i

ωik

[
(1− π∗

hi − π∗
yi − π∗

zi)

(
q∑

j=1

λiPij(1− ϕij)

(αh(β
∗
h1j

+ β∗
h2j

) + αyβ
∗
yj)

)
+

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

π∗
hk

]
.

Substituting π∗
yi and π

∗
zi by equations (7.56) and (7.57) and substituting for β∗

h1j
, β∗

h2j

and β∗
yj gives:

π∗
hi =

1

µ+ σ +
∑p

k=1
k ̸=i

ωik


[
1−

(
p∑

k=1

(
III + (σ(1− δ) + σαδ)AAA

)
ik
π∗
hk

)]

q∑
j=1

λiPij(1− ϕij)

∑p
k=1 Λkj(αhπ

∗
hk + αyπ

∗
yk)∑p

k=1 Λkj + τj
+

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

π∗
hk

,
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where III denotes the identity matrix. Using equation (7.56) to substitute for π∗
yk we

obtain:

π∗
hi =

1

µ+ σ +
∑p

k=1
k ̸=i

ωik


[
1−

[(
III + (σ(1− δ) + σαδ)AAA

)
πππh

]
i

]

q∑
j=1

λiPij(1− ϕij)

∑p
k=1 Λkj∑p

k=1 Λkj + τj

[
αhπ

∗
hk + αyσ(1− δ)

(
AAAπππ∗

h

)
k

]

+

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

π∗
hk

,

=
1

µ+ σ +
∑p

k=1
k ̸=i

ωik


[
1−

[(
III + (σ(1− δ) + σαδ)AAA

)
πππh

]
i

]


q∑

j=1

λiPij(1− ϕij)

αh

∑p
k=1 Λkjπ

∗
hk∑p

k=1 Λkj + τj
+

αyσ(1− δ)∑p
k=1 Λkj + τj

 ∑p
k=1 Λkjπ

∗
hk

µ+
∑p

k1=1
k1 ̸=k

ωkk1

+

∑p
l2=1
l2 ̸=k

Λl2jωkl2
n∗
k

n∗
l2

π∗
hk(

µ+
∑p

k1=1
k1 ̸=k

ωkk1

)(
µ+

∑p
k2=1
k2 ̸=k

ωkk2

)

+

∑p
l2=1
l2 ̸=k

∑p
l3=1
l3 ̸=l2

Λl3jωkl2ωl2l3
n∗
k

n∗
l3

π∗
hk(

µ+
∑p

k1=1
k1 ̸=k

ωkk1

)(
µ+

∑p
k2=1
k2 ̸=k

ωkk2

)(
µ+

∑p
k3=1
k3 ̸=l3

ωl3k3

) + . . .


+

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

π∗
hk

.

Thus, if we define the p× p matrix M as:

MMM = III + (σ(1− δ) + σαδ)AAA, (7.58)
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this implies that:

π∗
hi =

[
1− (MMMπππ∗

h)i
] p∑
k=1

Q∗
ikπ

∗
hk

=
[
1− (MMMπππ∗

h)i
](
QQQ∗πππ∗

h

)
i
, (7.59)

where πππ∗
h = (π∗

h1
, π∗

h2
, . . . , π∗

hp
).

Now we are in position to complete our proof and show that if R0 > 1 there

is at least one positive equilibrium solution. We can rewrite the equation (7.59) in

the form:

xi = [1− (MMMxxx)i](QQQ
∗xxx)i i = 1, 2, . . . p. (7.60)

Here xxx = πππ∗
h. This is considered as the key defining equation. We follow a similar

argument as in the proof of Theorem 3.1.8.

Theorem 7.4.7. Assume that R0 > 1. Then the equation (7.60) has at least one

positive non-zero solution corresponding to an equilibrium.

Proof. Let us denote C to represent the cone of positive vectors:

C = {xxx = (x1, x2, . . . , xp) : x1 ≥ 0, x2 ≥ 0, . . . , xp ≥ 0}.

C is clearly a cone: if xxx ∈ C then αxxx ∈ C for all α > 0.

We use Theorem 1.6 of Gatica & Smith (1977) applied to the operator T : C −→
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C given by the equation:

Ti(xxx) =


[
1− (MMMxxx)i

](
QQQ∗xxx

)
i
exp

(
−
∑p

k=1max (xk − 1, 0)
)

if (MMMxxx)i ≤ 1,

0 otherwise, for i = 1, 2, . . . p.

(7.61)

We need to introduce the factor:

exp

(
−

p∑
k=1

max(xk − 1, 0)

)
,

to ensure that T (xxx) is compact. Theorem 1.6 of Gatica & Smith (1977) states:

Theorem 7.4.8. Let T : C −→ C be a compact continuous operator acting on a

Banach space, such that T (0) = 0 and T is Fréchet differentiable at xxx=000 in the

direction of the cone. Assume that T satisfies:

(a) T ′(000), the Fréchet derivative of T at xxx=0, has an eigenvector xxx ∈ C corre-

sponding to an eigenvalue ω0 > 1 and 1 is not an eigenvalue of T ′(000) with

corresponding eigenvector in C; and

(b) there exists an R > 0 such that if xxx ∈ C with |xxx| = R and T (xxx) = µxxx then

µ ≤ 1.

Then T has a non-zero fixed point xxx0 ∈ C with |xxx0| ≤ R.

In order to apply this theorem we need to prove the following:

(a) T : C −→ C is a continuous compact operator;

(b) T ′(000) has an eigenvector xxx ∈ C corresponding to an eigenvalue ω0 > 1 and 1 is

not an eigenvalue of T ′(000) with corresponding eigenvector in C; and
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(c) there exists an R > 0 such that if xxx ∈ C with |xxx| = R and T (xxx) = µxxx then

µ ≤ 1.

Proof. We start our proof by showing that T (xxx) : C −→ C is a continuous compact

operator. Clearly T (xxx) is continuous. To show compactness note that as |xxx| −→ ∞

some component xl of xxx must tend to infinity, hence maxl=1,2,...p |xl| −→ ∞. For

maxl=1,2,...p |xl| > 1, we deduce that for i = 1, 2, . . . p

0 ≤ Ti(xxx) ≤
p∑

j=1

QQQ∗
ijxj e

−
∑p

k=1 max (xk−1,0),

≤
p∑

j=1

QQQ∗
ijemax

l
|xl| e−maxl=1,...p |xl|

−→ 0, as max
l=1,...p

|xl| −→ ∞.

Thus for given ϵ > 0, there exists R such that for |xxx| > R:

|T (xxx)|2 =
p∑

i=1

Ti(xxx)
2 ≤ ϵ.

Choosing ϵ = 1 gives:

∃ R1 such that if |xxx| ≥ R1, |T (xxx)| ≤ 1.

Hence T (xxx) is bounded outside the region |xxx| ≤ R1. But |xxx| ≤ R1 is bounded. Hence

T (xxx) is bounded for all xxx ∈ C. Thus T (xxx) is a compact operator.

To prove the second condition (b) note that in a small neighbourhood of xxx = 000:

Ti(xxx) =
[
1− (MMMxxx)i

](
QQQ∗xxx

)
i

for i = 1, 2, . . . p.
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So T (xxx) is differentiable at xxx = 000 with derivative:

T ′(000) =
∂Ti
∂xj

∣∣∣∣∣
xxx=000

= Q∗
ij,

(b) states that T ′(000) has an eigenvector xxx ∈ C corresponding to eigenvalue ω0 > 1

and 1 is not an eigenvalue of T ′(000) with corresponding eigenvector in C. The proof

follows the proof of Lemma 3.1.13.

The last condition we require is to show that there exists R > 0 such that if

xxx ∈ C with |xxx| = R and T (xxx) = µxxx, then µ ≤ 1. This follows by a similar argument

to the proof of Lemma 3.1.14.

Hence the operator T : C −→ C has a non-zero fixed point xxx0 ∈ C. As T (xxx0) = xxx0

if x0k > 1 for some k ∈ {1, 2, . . . p} then:

(
Mxxx0

)
k
≥ x0k > 1,

so Tk(xxx0) = 0 which contradicts Tk(xxx0) = x0k > 1. Hence 0 ≤ x0k ≤ 1

x0k = Tk(xxx0) =
[
1− (MMMxxx0)k

](
QQQ∗xxx0

)
k
,

for k = 1, 2, . . . p, so xxx0 satisfies (7.60) which also has at least one non-zero positive

equilibrium solution. This completes the proof of Theorem 7.4.7.

We attempted to show the uniqueness of the non-zero endemic equilibrium if

R0 > 1. However we could not show this. The attempt at proof goes as follows:
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Lemma 7.4.9. Suppose that π∗
hk̄
> 0 for some k̄ and for each i, k λi > 0 and ∃j0

with:

Pij0(1− ϕij0)Λkj0 > 0,

then for any biologically feasible solution to equations (7.12) – (7.20) π∗
hi > 0 for

i = 1, 2, . . . p. Also

(QQQ∗πππ∗
h)i =

q∑
j=1

Q∗
ijπ

∗
hj > 0.

Proof. As π∗
hk > 0 from the equilibrium versions of equation (7.18) and (7.19) we

have:

β∗
hj0

=

∑p
i=1 Λij0π

∗
hi∑p

i=1 Λij0π
∗
hi + τj0

> 0.

But from the equilibrium version of equation (7.12) for each i = 1, 2, . . . p if π∗
xi = 0

then:

0 = µ+

p∑
k=1
k ̸=i

ωki
n∗
k

n∗
i

≥ µ > 0.

This is a contradiction so π∗
xi > 0. Hence from adding the equilibrium version of

equations (7.14) and (7.15) if π∗
hi = 0 then:

0 = (π∗
xi + π∗

x1i
)

q∑
j=1

λiPij(1− ϕij)(αhβ
∗
hj + αyβ

∗
yj) +

p∑
k=1
k ̸=i

ωkiπ
∗
hk

n∗
k

n∗
i

,

≥ π∗
xiλiPij0(1− ϕij0)αhβ

∗
hj0

> 0.
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This is a contradiction. Hence π∗
hi > 0. The fact that (QQQ∗πππ∗

h)i > 0 follows from:

(QQQ∗πππ∗
h)i =

∑q
j=1 λiPij(1− ϕij)

(
αh

∑p
k=1 Λkjπ

∗
hk+αy

∑p
k=1 Λkjπ

∗
yk∑p

l=1 Λlj+τj

)
+
∑p

k=1
k ̸=i

ωki
n∗
k

n∗
i
π∗
hk

µ+ σ +
∑p

k=1 ωik +
∑q

j=1 λiPij(1− ϕij)

(
αh

∑p
k=1 Λkjπ

∗
hk+αy

∑p
k=1 Λkjπ

∗
yk∑p

l=1 Λlj+τj

) ,

and
q∑

j=1

λiPij(1− ϕij)

(
αh

∑p
k=1 Λkjπ

∗
hk + αy

∑p
k=1 Λkjπ

∗
yk∑p

l=1 Λlj + τj

)
> 0.

Now the argument proceeds as in the proof of Lemma 3.1.15. let (π̃∗
h1, π̃

∗
h2, . . . , π̃

∗
hp)

and (π∗
h1, π

∗
h2, . . . , π

∗
hp) be two distinct non-zero equilibrium solutions. This implies

that π∗
hi0

̸= π̃∗
hi0

for some i0 ∈ 1, 2, . . . p. So, π̃∗
hi0
/π∗

hi0
̸= 1, thus either π̃∗

hi0
/π∗

hi0
> 1

or π̃∗
hi0
/π∗

hi0
< 1. If π̃∗

hi0
/π∗

hi0
< 1 then we can redefine our parameters to allow us to

assume without loss of generality that:

π̃∗
h1

π∗
h1

> 1,

and
π̃∗
h1

π∗
h1

>
π̃∗
hj

π∗
hj

∀ j = 2, 3, . . . p.

Then we have:

π∗
h1 =

[
1− (MMMπππ∗

h)1
]
(QQQ∗πππh)1.

0 = −π̃∗
h1 +

[
1− (MMMπ̃̃π̃π∗

h)1
]
(QQQ∗π̃ππh)1,

and

0 = −π∗
h1 +

[
1− (MMMπππ∗

h)1
]
(QQQ∗πππh)1.
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These equations imply that:

1 > (MMMπππ∗
h)1,

and

1 > (MMMπ̃̃π̃π∗
h)1.

Now multiply the sides of the first equation by π∗
h1/π̃

∗
h1 we deduce that:

0 = −π∗
h1 +

[
1− (MMMπ̃̃π̃π∗

h)1
] p∑
k=1

Q∗
1kπ̃hk

π∗
h1

π̃∗
h1

,

< −π∗
h1 +

[
1− (MMMπ̃̃π̃π∗

h)1
] p∑
k=1

Q∗
1kπ

∗
hk,

as π̃∗
hk

π∗
h1

π̃∗
h1
< π∗

hk for k = 2, 3, . . . p and

0 < 1− (MMMπ̃̃π̃π∗
h)i.

However the proof breaks down now as before we could deduce that:

0 < 1− Pπ̃∗
hi < 1− Pπ∗

hi,

but here we cannot deduce that:

1− (MMMπ̃̃π̃π∗
h)i < 1− (MMMπππ∗

h)i.

Thus we are not able to show the uniqueness of the non-zero endemic equilibrium

when R0 > 1.
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It is often thought it will be more effective mathematical modelling if we could

present some numerical simulations and numerical results with formulated and esti-

mated parameters, to support our theoretical results that we achieved earlier. Thus,

we shall display these results in the next section with some simulation of the total

proportions of infected addicts, needles and antibody positive addicts in both cases

where R0 ≤ 1 and R0 > 1.

7.5 Numerical Results and Simulations

Theoretical models improved our understanding of the general behaviour of HCV

under more realistic assumptions where addicts are allowed to move from one state

to others. This assumption makes some of our previous parameters variable over

time. One of these is the number of addicts in different groups. In our simulations

for simplicity, we assume that we have two groups of addicts, the first one has num-

ber of addicts n1 and the second has number of addicts n2. The rate that addicts in

group 1 move to group 2 is assumed to be ω12, and similarly the rate that addicts

move from group 2 to group 1 is assumed to be ω21.

In the survey of NESI (2012), it has been found that the percentage of respon-

dents who injected in the last six months but not in the last month in 2010 is 5%.

Hence 1% per month injected with a needle that had previously been used by some-

one else. So per year this percentage will be 12% of addicts used a needle that has

been used by another addict. Recall that we suppose that the total number of ad-

dicts in Glasgow is about n = 9, 000, thus we choose arbitrarily that the number of

addicts in group one is n1 = 7, 000 where in group two it is n2 = 2, 000. Moreover,
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we assume that ω12 = 0.12 per year and ω21 = 0.098 per year. Thus the following

system of differential equations describes the number of addicts in group 1 and group

2:

dn1

dt
= n2ω21 − n1ω12, (7.62)

dn2

dt
= n1ω12 − n2ω21. (7.63)

We assume that there is only one shooting gallery so Pi1 = 1 for i = 1, 2. In the

case where there are two groups of addicts p = 2 and the same numerical estimation

parameters in our previous simulation results we deduce that the basic reproductive

number is the spectral radius of the 2 × 2 matrix Q. From equations (7.25) and

(7.26) we have:

Q1k =

q∑
j=1

Λkj(1− ϕkj)∑p
k=1 Λkj + τj

 αhλ1P1j

µ+ σ + ω12

+
αy(1− δ)σ

µ+ σ + ω12

[
λ1P1j(µ+ ω21)

µ(µ+ ω12 + ω21)

+
λ2P2jω12

µ(µ+ ω12 + ω21)

]+ I(k = 2)
ω12

µ+ σ + ω12

, (7.64)

where

I(k = 2) =

 1 if k = 2 ,

0 otherwise.
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Also

Q2k =

q∑
j=1

Λkj(1− ϕkj)∑p
k=1 Λkj + τj

 αhλ2P2j

µ+ σ + ω21

+
αy(1− δ)σ

µ+ σ + ω21

[
λ2P2j(µ+ ω12)

µ(µ+ ω12 + ω21)

+
λ1P1jω21

µ(µ+ ω12 + ω21)

]+ I(k = 1)
ω21

µ+ σ + ω21

. (7.65)

Now recall that:

Q =

Q11 Q12

Q21 Q22

 .
By solving the quadratic equation (Q11 − λ)(Q22 − λ) − Q12Q21 = 0. In these nu-

merical results, the parameters are estimated as λ1 = 65 per year, λ2 = 10 per year,

ω21 = 0.12 per year, ω12 = 0.098 per year, ϕ = 0.255, τ = 133 per year, m = 8, 982,

n1 = 7, 000 and n2 = 2, 000. These values gives us that R0 = 0.873. At time

t = 0 and for i = 1, 2, πx1i(0) = 0.99, πxi(0) = πh2i(0) = πyi(0) = πzi(0) = 0 and

πh1i(0) = 0.01. So 99% of addicts were not infected while 1% of addicts were in the

acute h1 stage. Similarly for the fractions of infectious needles at time t = 0 for

j = 1, βh11(0) = βh21(0) = βy1(0) = 0. To simulate our extended model we use the

Berkeley Madonna package and the differential equation system (7.12) – (7.20), with

parameters estimated as above, λ1 = 65 per year, λ2 = 10 per year, ω21 = 0.12 per

year, ω12 = 0.098 per year gives us R0 = 0.9249 < 1.

Figure 7.1 shows simulation of the extended model under the assumption of ad-

dicts moving in and out of groups. Clearly we can see that the disease dies out in

both addicts and needles and the model tends to the equilibrium after nearly 70
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Figure 7.1: Total proportion of infectious addicts, needles and antibody positive
addicts who are allowed to move in and out of groups when R0 = 0.9249 < 1.

years where the simulation is performed over 100 years. As we mentioned in this

case we found that R0 < 1 which is compatible with our theoretical results which

we mentioned earlier. Next, we will simulate our extended model in the case where

R0 > 1.

One of the important aspects is to understand the model dynamic if R0 ex-

ceeds unity. Thus we keep the rate of moving from one group to another but we

increase the needle sharing rate between the two groups. This assumption is esti-

mated to be λ1 = 150 per year and λ2 = 50 per year, keeping all other parameters

estimated before including ω12 and ω21. The expression given by the spectral radius

of the matrix Q given in equations (7.25) and (7.26) with these values gives us that

R0 = 3.692 > 1. Our simulation presents this result in Figure 7.2 where the in-

fectious addicts and needles achieve the equilibrium state where the disease persists
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Figure 7.2: Total proportion of infectious addicts, needles and antibody positive
addicts who are allowed to move in and out of groups when R0 = 3.692 > 1.

as R0 > 1. Numerical simulations support the hypothesis that there is a unique

equilibrium for R0 > 1.

7.6 Conclusion

In our basic model of the spread of HCV among drug users where there are p groups

of addicts, we have assumed that the number of addicts in each group is constant.

In fact this assumption is made for simplicity, nevertheless to be more realistic we

developed our basic model to a model where addicts are allowed to move in and out

of groups. This chapter set out to investigate the heterogeneity of the spread of HCV

among addicts in different groups and needles in shooting galleries under the new

assumption, to analyse and understand the effects of the group size dynamics.
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First, we introduced the differential equation system (7.1) which describe the

number of addicts in each group. We also derived the differential equations of the

total number of susceptible, second and subsequent time susceptible, acutely infected

h1-class, acutely infected h2-class, chronically infected individuals and immune indi-

viduals in each group over time. These equations were used to obtain the extended

model equations system (7.12) - (7.20) with the suitable initial conditions.

Then, we defined the basic reproductive number R0 and gave an expression to

calculate this ratio. Both basic and extended models have the same disease-free

equilibrium. Moreover, R0 can be calculated as it is the largest eigenvalue of the

p× p matrix Q, where Qik is defined by the formula (7.27). We expect that the dis-

ease cannot invade the groups of addicts and shooting galleries if R0 < 1, whereas if

R0 > 1 the disease can invade the population and the number of infected individuals

grows.

The main purpose of this chapter was to determine the effect of group size dy-

namics on the spread of HCV. Thus, we analysed this model through two main

theorems, the first theorem stated that there is a unique positive equilibrium distri-

bution, and the second theorem the system of group size dynamic interaction (7.1)

tends to that unique equilibrium distribution. These theorems are proved by using

continuous time Markov Chain processes and considered a p-dimensional Markov

process representing the probability distribution at time t of a single individual who

starts in a given group. Considering a collection of n addicts starting in different

groups each following this Markov process gives the group size dynamic equations
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discussed earlier. For the second theorem we discussed the 2 × 2 case first followed

by the p× p case. We have also discussed the equilibrium and stability of the steady

states of our model. This model has at least two non-negative equilibrium points

namely: the disease-free equilibrium and a non-zero endemic equilibrium. The ex-

tended model has a unique disease-free equilibrium, which is globally asymptotically

stable and hence unique if R0 ≤ 1. Moreover, the model has at least one positive

non-zero endemic equilibrium if R0 > 1.

Later, we presented some numerical simulations and numerical results with formu-

lated and estimated parameters, to support our theoretical results that we achieved

earlier. Two groups of addicts 1 and 2 have been considered with addicts moving

in and out of groups at two different rates ω12 and ω21. Other parameters are es-

timated as in the basic model and used to compute R0. Two interesting graphs

of the extended model have been displayed, showing the total proportions of infec-

tious addicts, needles and antibody positive addicts. The first, Figure 7.1, was when

R0 < 1 and the second, Figure 7.2, was when R0 > 1. These simulations are based

on the differential equations describing group size dynamics and heterogeneity of

needle sharing between different groups. As expected the simulations confirm that

the disease dies out if R0 < 1 and takes off if R0 > 1.
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Chapter 8
Conclusions and Further Work

As pointed out earlier in this thesis, HCV is a global disease. Since Hepatitis C virus

was discovered, injecting drug users have been considered as being at the highest

risk of infection with HCV. Mathematical modelling techniques are being used by

health organisations worldwide to help understand the likely impact that interven-

tion strategies, treatment options and combinations of these have on the prevalence

and incidence of HCV in the drug addict population. Thus our thesis highlighted the

transmission of this disease among injecting drug users where they are sharing needles

in shooting galleries. We developed a deterministic, compartmental mathematical

model to approximate the spread of HCV in an injecting drug user population by

Corson et al. (2012). In particular, we were interested in the effect of heterogeneity

of the population of addicts who share injecting needles and syringes. In the follow-

ing sections, we outline briefly the work contained in this thesis.

A better understanding of the core epidemiologic concepts will help researchers to

identify and optimize prevention and control diseases. Hence we began our thesis by

a review of the epidemiology of HCV infection, its discovery and transmission routes.
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This was followed by a brief discussion about HCV treatment and global prevalence

of HCV. We also outlined the prevalence of HCV worldwide among injecting drug

users, as well as the model structure and discussed the basic reproductive number R0

as the fundamental parameter which determines the disease dynamic and behaviour.

As our thesis studies the impact of heterogeneity on the prevalence of HCV, we

discussed this concept and reviewed some examples of heterogeneity models of infec-

tious diseases. Moreover, we reviewed two models, which approximate the spread of

HCV, as they are the most relevant to our work. The first one is by Vickerman et

al. (2007), and the second one is by Corson et al. (2012).

8.1 Using a Heterogeneous Mathematical Model

for the Spread of HCV

In Chapter Two we developed accurate models of the spread of HCV and discussed

a mathematical model of the impact of heterogeneity on HCV prevalence among ad-

dicts and needles. A system of differential equations has been derived to describe the

progress of the disease among injecting drug users and needles in shooting galleries.

These equations were set up using clearly defined hypotheses and biological parame-

ters. The heterogeneity came from assuming that we had p of groups of addicts, who

shared needles in q shooting galleries according to different sharing rates, visiting

probabilities and the other parameters. Six epidemiological classes of infectivity are

studied, first time xi susceptible, x1i second time susceptible, h1i acutely infected, h2i

acutely infected, yi chronic and zi immune stages for i = 1, 2, . . . p. The differential

equations for the needles contained three different stages of infectivity h1j acutely

313



infected, h2j acutely infected and yj chronically infected for j = 1, 2, . . . q.

8.2 Estimation of the Basic Reproductive Num-

ber

For epidemiology models the basic reproduction numberR0 for an infectious disease is

defined as the expected number of secondary cases caused by a single newly infectious

case entering a disease-free population at equilibrium. In Chapters Two and Six we

discussed this important number as a key parameter which determined the general

progress of HCV among addicts and needles. We derived an expression for R0, then

we studied special scenarios that minimised R0. In particular, three special cases

were presented:

• The effect on R0 of addicts in different groups visiting shooting galleries at

different rates.

• Optimal allocation of limited needle exchange effort between different shooting

galleries.

• Optimal allocation of limited needle cleaning effort between different groups of

addicts and shooting galleries.

In Chapter Six we discussed numerical illustrations of these special cases followed

by some plots to illustrate the relationship between the parameters and R0. These

results revealed that it might be possible to control the disease by considering min-

imisation of R0.
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8.3 Analytical Results and Stability

In Chapter Three we conducted an extensive mathematical analysis of the model.

We found that the behaviour of our model was governed by R0, with R0 = 1 a

critical threshold for endemic HCV prevalence. We found that if R0 ≤ 1 and HCV

is initially present in addicts groups and needles, then the model tends towards a

globally stable disease-free equilibrium where HCV has been eliminated in all addicts

groups and shooting galleries. We also discussed persistence of the disease. If R0 > 1

and disease is initially present in at least one group of addicts or at least one shooting

gallery, then provided that an irreducibility condition is satisfied then disease will

ultimately persist in all groups of addicts and all needles. Moreover, the ultimate

lower bound for the level of HCV in infected needles and addicts depends only on the

model parameters not the initial conditions. Additionally if R0 > 1 and the same

irreducibility condition is satisfied then we showed that there was a unique endemic

equilibrium.

8.4 Simulation

Numerical simulations using the heterogeneity HCV transmission model, presented

in Chapters Four and Five were conducted to verify the analytical results and esti-

mate the level of intervention required to give R0 ≤ 1 and therefore eliminate HCV

from all addicts groups and needles. Extensive simulations were conducted and these

simulations confirmed our analytical results which were presented in Chapter Three.

We simulate the heterogeneity of sharing rates in Chapter Four, alongside with the

assumption that the model parameters are all homogeneous. The sharing rates were
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calculated using survey data collected by HPS (Hutchinson et al., 2000) during the

early 1990s for drug users in Glasgow, in particular we used the data from 1990 and

1993.

In Chapter Four we have assumed that there is one shooting gallery where all ad-

dicts share needles. We divide the addict population into different numbers of groups

with different sharing rates. As the number of groups increased R0 also increased.

The initial rate of increase of the level of disease also increased with the number of

groups as did the endemic equilibrium prevalence of HCV amongst needles. However,

both the endemic equilibrium proportion of HCV amongst addicts and the endemic

equilibrium number of HCV antibody positive addicts show the opposite pattern.

There as the number of groups increased the endemic prevalence of HCV amongst

addicts and the endemic equilibrium number of HCV antibody positive addicts de-

creases as the number of groups increased.

In Chapter Five we have considered the heterogeneity of visiting shooting gal-

leries. In the light of the lack of data of the probabilities of shooting galleries visiting

probabilities, we estimated these parameters. We started our discussion with the

assumption that we have a homogeneous society of addicts and two shooting gal-

leries. An explicit expression for R0 is given, and it exceeded one in each of the

three models considered. These models are set up with three different set of visiting

probabilities. In each model we presented a plot of total proportions of infectious

addicts and needles against time. Then a general comparison of these models is given

of the total proportions of infectious addicts and the antibody positive addicts in the
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three models. These figures showed that there although the three models have three

very different sets of shooting galleries visiting probabilities, these models behave

similarly.

8.5 Use of Extended Mathematical Model of HCV

Prevalence

Our next target was to extend our basic mathematical model by assuming that ad-

dicts are allowed to move in and out of groups. This assumption is more realistic

and makes the model substantially more complicated. In Chapter Seven, we cov-

ered the epidemiologic and dynamical concepts for preventing and controlling HCV

among injecting drug users, where we introduced the differential equation system

that describes the spread of HCV in the extended model with the suitable initial

conditions. Then, we defined the basic reproductive number R0. We expected that

the disease cannot invade the groups of addicts and shooting galleries if R0 ≤ 1,

whereas if R0 > 1 the disease can invade the population and the number of infected

individuals grows.

The main purpose of Chapter Seven, was to determine the effect of group size

dynamics on the spread of HCV. Thus, we analysed this model through two main the-

orems, the first theorem stated that there is a unique positive equilibrium distribution

for group sizes, and in the second theorem the system of group size dynamic interac-

tion (7.1) tends to that unique equilibrium distribution. These theorems are proved

by using continuous time Markov Chain processes and considered a p-dimensional
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Markov process representing the probability distribution at time t of a single individ-

ual who starts in a given group. Then, we looked at the stability of the equilibrium

solution of the extended model system. We proved that if R0 ≤ 1 then the extended

model system has a disease-free equilibrium solution which is a globally asymptoti-

cally stable. If R0 > 1 there is a non-zero equilibrium solution.

We concluded this discussion by presenting some numerical simulations and nu-

merical results with formulated and estimated parameters, to support our theoretical

results that we achieved earlier. These simulations were based on the differential

equations describing group size dynamics and heterogeneity of needle sharing be-

tween different groups. As expected the simulations confirmed that the disease dies

out if R0 ≤ 1 and takes off if R0 > 1.

8.6 Practical Use of Results in Disease Control

Policy

Throughout this thesis we have aimed to study reducing the spread of the disease

amongst injecting drug users. Recall that the basic reproduction rate R0, is used to

measure the transmission potential of a disease. It is defined as the expected number

of secondary infections produced by a typical case of a newly infected individual en-

tering a completely susceptible population at equilibrium (Dietz, 1993). One of the

main results that we proved earlier states that if R0 is less than or equal to one, then

HCV will die out in all addicts groups and all shooting galleries. For this reason, it

is important to control the disease by making R0 as small as it can be.
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The model can be used to evaluate the impact of control strategies on the spread

of the disease. Typical control strategies are needle exchange, needle cleaning and

educating addicts to reduce their needle sharing rates. We already discussed in Chap-

ter Four how to estimate realistic parameter values for the model. So for example:

if we estimated all other parameters we could plot R0 against the common needle

exchange rate τ (in all shooting galleries) and find the critical value that just elimi-

nated the disease or if we chose to apply different needle exchange rates in different

shooting galleries, we could calculate which combination of those needle exchange

rates reduce R0 to one and thus just eliminated disease.

Similarly we could use the results to determine policy on distribution of nee-

dle cleaning kits. If the needle cleaning probability was the same for all groups

of addicts in all shooting galleries, we could calculate the critical needle cleaning

probability that just eliminated the disease, or what combination of needle cleaning

probabilities would eliminate the disease. Similarly, we could look at the effect of

education of people who inject drugs to see what needle sharing in different shoot-

ing galleries or combination of different sharing rates in different shooting galleries

eliminated disease.

Alternatively we could look at combinations of needle exchange rates, needle

sharing rates and see what combination of those would eliminate disease. Another

possible application is to look at the effect on reduuction of endemic disease levels

when an intervention is not suffecicent to eliminate disease. For example: we could
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look at which of given reduction in needle sharing, a given increase in needle exchange

or a given increase in needle cleaning probabilities would reduce endemic disease lev-

els amongst addicts the most. Some examples of this for a simpler homogeneously

mixing model are given by Corson (2012).

The results on optimal allocation of control effort in Chapter Two can tell us

which shooting galleries it is most effective to target for needle exchange effort and

which groups of addicts and shooting galleries it is most effective to target to elimi-

nate disease. Some numerical illustrations of this were given in Chapter Six.

8.7 Recommendation for Further Work

Although the results presented here have demonstrated the significance of hetero-

geneity on the spread of HCV among addicts and needles, there are many possible

areas in which the work in this thesis could be developed further. One of these

recommendations is to improve the simulation results, through simulating the het-

erogeneity effects of the other parameters, for example the probability that an addict

cleans a needle before use and the rate of needle turnover.

Regarding the models of HCV dynamics and the impact of heterogeneity, it would

be interesting to investigate other characteristic parameters in social life such as the

gender of injecting drug users (male or female), and how that affects the dynamics

of the system in general, also paying attention to the age of addicts especially young

injecting drug users (less than 30 years old). It would also be of great interest to

investigate the basic reproductive number and the effective reproductive conditions
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of the transmission process.

Another very interesting question would be to investigate how the heterogeneity

of sharing of other injecting paraphernalia (as well as needles and syringes) would af-

fect the progress of HCV among injecting drug users. Although we mentioned earlier

that the increased risk of HCV is associated with sharing of contaminated needles

and syringes, a growing body of literature suggests that infected spoons, cotton fil-

ters, the water used to prepare the drugs and other paraphernalia also act as vectors

for HCV transmission (Mathëı et al., 2006). As no vaccine against HCV is currently

available, preventive measures like education, needle exchange and distribution of

other paraphernalia are major weapons currently to hand in the war against further

spread of HCV among injecting drug users.

The models discussed in this thesis assume that needles adopt the infectivity

characteristics of the last addict to use them. This is the simplest possible assump-

tion and made in other models of HIV/AIDS and hepatitis C (see for example Corson

et al. (2012) and Greenhalgh & Lewis (2000)). Greenhalgh and Lewis call this the

Optimistic Model Assumption. It is motivated by the assumption that the blood in

the syringe is replaced by the blood of the addict. However an alternative assumption

is that syringes get progressively more infectious over time as such an assumption

has previously been used to model the spread of HIV/AIDS amongst injecting drug

users (Lewis & Greenhalgh, 2001). This is called the Pessimistic Model Assumption.

An alternative assumption would be to incorporate this into our models.
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Over the past decade, treatment for HCV has been shown to be highly effec-

tive, achieving viral clearance rates (depending on genotype) of between 55 and 85%

(Grebely et al., 2008). Therefore, it may be worth considering treatment in the

modelling the heterogeneity of the spread of HCV. It would also be of great interest

how a combination of treatment of HCV and heterogeneity, for example in needle

sharing rates, may modify the spread of the disease among drug users. Also, it would

be interesting to extend the model to consider two main groups of addicts, one of

which is treated and the other of which is not, and investigate the dynamics of HCV

progress between these groups.
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D, Diago, M, Carosi, G, Dhumeaux, D, Antonio, C, Amy, L, Joseph, H, & Jian, Y.

2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection.

New England Journal of Medicine, 347(13), 975–982.

Fu, X., Small, M., & Chen, G. 2013. Propagation dynamics on complex networks:

models, methods and stability analysis. Wiley, West Sussex, UK.

Gallin, J, Fauci, A, Liang, T, & Hoofnagle, J. 2000. Hepatitis C. Biomedical Research

Reports. Academic Press, San Diego, USA.

Gardiner, C. 1985. Handbook of stochastic methods. Vol. 3. Springer, Berlin.

Garfein, R, Vlahov, D, Galai, N, Doherty, M, & Nelson, K. 1996. Viral infections

in short-term injection drug users: the prevalence of the hepatitis C, hepatitis B,

human immunodeficiency, and human T-lymphotropic viruses. American Journal

of Public Health, 86(5), 655–661.

Gatica, J, & Smith, H. 1977. Fixed point techniques in a cone with applications.

Journal of Mathematical Analysis and Applications, 61(1), 58–71.

326



Ghany, M, Strader, D, Thomas, D, & Seeff, L. 2009. Diagnosis, management, and

treatment of hepatitis C: an update. Hepatology, 49(4), 1335–1374.

Goldberg, D., Frischer, M, Green, S, Taylor, S, & McKeganey, N. 1996. Proba-

bility of HIV transmission among injecting drug users in Glasgow. Unpublished

Manuscript.

Grebely, J, & Dore, G. 2014. Can hepatitis C virus infection be eradicated in people

who inject drugs? Antiviral Research, 104, 62–72.

Grebely, J, Genoway, K A, Raffa, D, Dhadwal, G, Rajan, T, Showler, G, Kalousek,

K, Duncan, F, Tyndall, M, & Fraser, C. 2008. Barriers associated with the treat-

ment of hepatitis C virus infection among illicit drug users. Drug and Alcohol

Dependence, 93(1), 141–147.

Greenhalgh, D. 1990. Vaccination campaigns for common childhood diseases.

Mathematical Biosciences, 100(2), 201–240.

Greenhalgh, D. 1993. Existence, threshold and stability results for an age-structured

epidemic model with vaccination and a non-separable transmission coefficient.

International Journal of Systems Science, 24(4), 641–668.

Greenhalgh, D. 1996. Effects of heterogeneity on the spread of HIV/AIDS among

intravenous drug users in shooting galleries. Mathematical Biosciences, 136(2),

141–186.

Greenhalgh, D, & Hay, G. 1997. Mathematical modelling of the spread of HIV/AIDS

amongst injecting drug users. Mathematical Medicine and Biology, 14(1), 11–38.

Greenhalgh, D, & Lewis, F. 2000. Three stage AIDS incubation period: a best case

scenario using addict-needle interaction assumptions. Mathematical Medicine and

Biology, 17(2), 95–118.

327



Griesbach, D, Abdulrahim, D, & Dowell, K. 2006. Needle exchange provision in

Scotland-a report of the national needle exchange survey: summary. Scottish

Executive, Edinburgh, UK.

Habbema, J, de Vlas, S, Plaisier, A, & van Oortmarssen, O. 1996. The microsim-

ulation approach to epidemiologic modeling of helminthic infections, with spe-

cial reference to schistosomiasis. The American Journal of Tropical Medicine and

Hygiene, 55(5 Suppl), 165–169.

Hagan, H, & des Jarlais, D. 2000. HIV and HCV infection among injecting drug

users. Mount Sinai Journal of Medicine, 67(5-6), 423–428.

Hens, N, Shkedy, Z, Aerts, M, Faes, C, van Damme, P, & Beutels, P. 2012. Modeling

infectious disease parameters based on serological and social contact data: A

modern statistical perspective. Springer, New York, USA.

Hethcote, H. 1996. Modeling heterogeneous mixing in infectious disease dynamics

in: Models for infectious human diseases: Their structure and relation to data.

Cambridge University Press, Cambridge, UK.

Hutchinson, S, Taylor, A, Goldberg, D, & Gruer, L. 2000. Factors associated with

injecting risk behaviour among serial community-wide samples of injecting drug

users in Glasgow 1990–94: implications for control and prevention of blood-borne

viruses. Addiction, 95(6), 931–940.

Hutchinson, S, Roy, K, Wadd, S, Bird, S, Taylor, A, Anderson, E, Shaw, L, Codere,

G, & Goldberg, D. 2006. Hepatitis C virus infection in Scotland: epidemiological

review and public health challenges. Scottish Medical Journal, 51(2), 8–15.

Jafari, S, Copes, R, Baharlou, S, Etminan, M, & Buxton, J. 2010. Tattooing and

the risk of transmission of hepatitis C: a systematic review and meta-analysis.

328



International Journal of Infectious Diseases, 14(11), e928–e940.

Jordan, D, & Smith, P. 1987. Nonlinear ordinary differential equations. Clarendon

Press, Oxford, UK.

Kamal, S, & Nasser, I. 2008. Hepatitis C genotype 4: What we know and what we

don’t yet know. Hepatology, 47(4), 1371–1383.

Kaplan, E. 1989. Needles that kill: modeling human immunodeficiency virus trans-

mission via shared drug injection equipment in shooting galleries. Reviews of

Infectious Diseases, 11(2), 289–298.

Kaplan, E, & O’Keefe, E. 1993. Let the needles do the talking! Evaluating the New

Haven needle exchange. Interfaces, 23(1), 7–26.

Keeling, M, & Rohani, P. 2011. Modeling infectious diseases in humans and animals.

Princeton University Press, Princeton.

Kimber, J, & Dolan, K. 2007. Shooting gallery operation in the context of establishing

a medically supervised injecting center: Sydney, Australia. Journal of Urban

Health, 84(2), 255–266.

King, R, Bird, S, Hay, G, & Hutchinson, S. 2009. Estimating current injectors

in Scotland and their drug-related death rate by sex, region and age-group via

Bayesian capture–recapture methods. Statistical Methods in Medical Research,

18(4), 341–359.

Lajmanovich, A, & Yorke, J. 1976. A deterministic model for gonorrhea in a nonho-

mogeneous population. Mathematical Biosciences, 28(3), 221–236.

Lancaster, P, & Tismenetsky, M. 1969. Theory of matrices. Vol. 2. Academic Press,

New York.

Lavanchy, D. 2009. The global burden of hepatitis C. Liver International, 29(s1),

329



74–81.

Law, M, Dore, G, Bath, N, Thompson, S, Crofts, N, Dolan, K, Giles, W, Gow, P,

Kaldor, J, & Loveday, S. 2003. Modelling hepatitis C virus incidence, prevalence

and long-term sequelae in Australia, 2001. International Journal of Epidemiology,

32(5), 717–724.

Lenton, S, & Single, E. 1998. The definition of harm reduction. Drug and Alcohol

Review, 17(2), 213–220.

Lewis, F, & Greenhalgh, D. 2001. Three stage AIDS incubation period: a worst case

scenario using addict–needle interaction assumptions. Mathematical Biosciences,

169(1), 53–87.

Li, J, Blakeley, D, & Smith, R. 2011. The failure of R0. Computational and

Mathematical Methods in Medicine, 10(11), 527–610.

MacArthur, G, Velzen, E, Palmateer, N, Kimber, J, Pharris, A, Hope, V, Taylor,

A, Roy, K, Aspinall, E, Goldberg, D, Rhodes, T, Hedrich, D, Salminen, M, Hick-

man, M, & Hutchinson, S. 2014. Interventions to prevent HIV and hepatitis C in

people who inject drugs: A review of reviews to assess evidence of effectiveness.

International Journal of Drug Policy, 25(1), 34–52.

Macdonald, G. 1952. The analysis of equilibrium in malaria. Tropical Diseases

Bulletin, 49(9), 813–829.

Macey, R, & Oster, G. 2001. Berkeley Madonna: modeling and analysis of dynamic

systems. University of California, Berkeley, CA.

Maddrey, W. 2000. Conquering hepatitis C. Decker DTC, Hamilton, Ontario.

Mahtab, M. 2012. Liver: a complete book on hepato-pancreato-biliary diseases.

Elsevier Health Sciences, India.

330



Martin, N, Vickerman, P, Foster, G, Hutchinson, S, Goldberg, D, & Hickman, M.

2011. Can antiviral therapy for hepatitis C reduce the prevalence of HCV among

injecting drug user populations? A modeling analysis of its prevention utility.

Journal of Hepatology, 54(6), 1137–1144.
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