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Abstract

Increasingly, automated systems are being incorporated in collaborative environ-

ments where they are used to alleviate the cognitive load of human operators while

increasing task performance. Automated agents are present in a variety of domains,

from safety critical environments to leisure-oriented activities, and more and more,

they are being considered as a virtual teammate rather than simple decision-aid

tools.

Trust is a key factor that will determine how much a human operator is willing to

take into account or rely on the help provided by an automated agent. Past research

on trust in automation highlights key elements that will influence its development,

such as how the automated agent is perceived, how reliable the agent appears to

be and how transparent its actions are. However, most related work make use of

turn-based tasks where trust is measured post-hoc, which does not entirely capture

the evolving aspect of trust.

This thesis presents the development and use of a real-time collaborative game

where human operators can choose the extent to which they rely on the help of

automated agents displaying different behaviours and various levels of performance.

We used different levels of task difficulty as well as survey instruments and the

logging of task-specific behavioural information to elicit and measure variables that

are important to understand the human-agent relationship such as trust, reliance,

task performance, cognitive load or situational awareness.

We ran four user-studies using this apparatus. The first study tested the effects of

different levels of agent reliability and predictability on the human-agent relationship

while the second study experimented with different types of agent errors. The

third study tested the impact of different types of environmental uncertainty on the

human-agent relationship while the fourth and final study measured the benefits of

different kinds of visualisation-based decision-aid systems.

Overall, this work sheds lights on under-investigated issues in Human-Agent Collab-

oration scenarios by providing insights on factors that are most likely to harm the

human-agent relationship and underline how the behaviour of agents as well as the

context of interaction can drastically alter a person’s attitude toward an automated

agent.
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Introduction, Background and
Methodology
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Chapter 1

Introduction

1.1 Motivation

The idea of human operators and automated agents working together to solve problems has

been theorised and studied since the very early days of computer science [111]. Thanks to

technological advances in computer sciences and a better understanding of user behaviours,

we are starting to shift from perceiving automation as simple decision-aid tools to virtual

teammates actively collaborating with users. Human-agent collaborative scenarios now involve

tasks where duties and responsibilities are shared between agents and human operators [16,97].

To fulfil the potential of human-agent interaction, not only are automated agents required to

be reliable and trustworthy, human operators also have to be willing to rely on their decisions

and trust the agents they are interacting with. A significant amount of work has examined

how trust in agents is affected over the course of both human(s)-human(s) [197] and human(s)-

agent(s) [103] interactions. Less work, however, has gone into the study of trust during real-time

collaboration, and how specific types of agent error and visual attributes influence human-agent

teaming.

This thesis seeks to better our understanding of the properties in either (a) the agents

or (b) the context of interaction that are influencing users’ propensity to trust and rely

on automated agents. In particular, we are focusing on how the way agents make errors and

uncertainty or added information in the environment of interaction affects the human-agent

relationship. To answer our research questions, we designed a collaborative aiming-game in

which human operators have to cooperate with agents in tasks of various difficulty and visual

uncertainty. We chose an aiming task to craft a real-time human-agent collaboration scenario,

as opposed to past HAI work which mostly made use of turn-based tasks. We used both

validated survey instruments and behavioural information to measure, infer and study changes

in the human-agent relationship. The ecological validity and real-world relevance of this task

are discussed in Section 8.7.
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1.2 Context

In this thesis, we focus on human-agent interaction in a real-time goal-oriented task where

users and agents have explicit goals and responsibilities. The framework we developed in our

work, which is described in Chapter 3, allows for the study of the human-agent relationship

via validated pre- and post-hoc survey instruments, as well as task-specific behavioural metrics

logged during the study.

While the focus of our work is on trust, we also study other important variables related to

the human-agent relationship such as: reliance, task performance (studied via behavioural

metrics), cognitive load (as reported by users) and situational awareness (when relevant).

Every study was conducted using the same framework. The first two (about agent predictability

in Chapter 4 and errors in Chapter 5) took place in a controlled lab-environment while the

last two (about visual uncertainty in Chapter 6 and visual aid in Chapter 7) were conducted

remotely.

1.3 Research Questions

This thesis focuses on how (a) the behaviour of automated agents and (b) the envi-

ronment of interaction impact the human-agent relationship in a real-time, goal-oriented

scenario. More specifically, we seek to answer the following sub research questions:

RQ1 How do changes in agent predictability (how easy it is to guess its next actions)

and reliability (how good the agent is at the task) impact the human-agent

relationship?

RQ2 How do different types of agent errors defined from previous related work

such as slips, mistakes and lapses affect the human-agent relationship?

RQ3 How do different types of environmental conditions (static or moving), which

impair vision and induce uncertainty, affect the human-agent relationship?

RQ4 How do different types of visual help (designed to elicit different levels of

situational awareness) influence the human-agent relationship?

1.4 Contribution

The main contributions of this thesis are based on empirical findings gathered throughout

four studies using an interactive human-agent collaborative framework. We show how agents

behaviours, visual changes in environment and added transparency about agents’ actions impact

the human-agent relationship. More specifically, this work:
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• Details changes in user behaviour during a collaborative human-agent interactive task

using quantitative data captured during the interaction.

• Provides insights on the different ways users perceive collaborative agents from a qualita-

tive point of view in terms of trust in the system, cognitive load and situational awareness.

• Investigates the impact of different types of error-prone agents, as well as the implications

for the design of future, more trustworthy systems (Chapters 4 and 5).

• Investigates how adverse visual conditions in the environment of interaction can impact

upon the human-agent relationship (Chapter 6).

• Details the process that unfolds when decision-making in human-agent collaboration is

supported through different levels of visual help (Chapter 7).

• Provides an empirically tested framework that allows for the manipulation of variables

important for most HCI work (task difficulty, agent performance, behaviour and trans-

parency) and that can be used to get insights on a wide range of issues relevant to real-time

human-agent collaboration.

1.5 Thesis Summary

The work presented here is organised as follows: Chapter 1 - Introduction: Presents the

motivation, challenges and main contributions of the thesis.

Chapter 2 - Background: This section discusses the key elements in understanding the

motivation for this research, and relevant related work pertaining to the study of trust in

automated systems. More precisely, this section:

1. Presents a brief overview of the field of HCI and the context in which collaborative systems

were created as well as the challenges they face.

2. Discusses related work on trust in automation and how most studies measure it.

3. Goes into details about which elements have the most impact on the development of trust,

including the systems’ performance and uncertainty in the context of interaction.

4. Summarises the research goals of this thesis in relation to previous work and gaps in

literature.

Chapter 3 - Methodology: Presents the interactive game framework used in all stud-

ies presented in this thesis. This section details the motivation for using such a framework,

including related studies employing similar means. This section also presents technical details

about the inner working of the game, including how agents are designed, what information
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the framework records and how relevant metrics such as task performance and reliance are

computed.

Chapter 4: Agent Reliability & Predictability: Presents the initial study focused on

how different levels of agent predictability (how easy it is to guess the agent’s next actions) and

reliability (how good the agent is) affect human-agent collaboration.

Chapter 5: Agents’ Errors: Presents the second study focused on the way agents make

errors (according to previously defined frameworks of error types) and how agent behaviours

affect users differently, at the same level of agent reliability.

Chapter 6: Visual Environmental Uncertainty: This third study investigates how

different types of uncertainty that impair vision in various ways (static or moving) affect the

human-user relationship, including situational awareness.

Chapter 7: Visual Help: This fourth and final study investigates how different types of

visualisations of the agent’s reasoning process affect the human-agent relationship.

Chapter 8 - Discussion: In this chapter, a summary of our findings is presented for each

independent variable investigated in our studies. In addition, recommendations are made for

the design of future interactive agents.

Chapter 9 - Conclusion: This chapter provides answers to our main research questions

and conclude the thesis.

1.6 Publications

Most of the work presented in this thesis was previously published at the following peer-reviewed

conferences or journals:

1. Daronnat, S., Azzopardi, L., Halvey, M., and Dubiel, M. Human-agent collabo-

rations: trust in negotiating control. CHI 2019 (2019) [39]

2. Daronnat, S., Azzopardi, L., Halvey, M., and Dubiel, M. Impact of agent relia-

bility and predictability on trust in real time human-agent collaboration. In Proceedings

of the 8th International Conference on Human-Agent Interaction (2020), pp. 131–139 [40]

3. Daronnat, S., Azzopardi, L., and Halvey, M. Impact of agents’ errors on per-

formance, reliance and trust in human-agent collaboration. In Human Factors and Er-

gonomics Society Annual Meeting (2020), pp. 1–5 [37] (Recipient of the 2020 CSTG

Mark Resnick Best Paper Award)

4. Daronnat, S. Human-agent trust relationships in a real-time collaborative game. In

Extended Abstracts of the 2020 Annual Symposium on Computer-Human Interaction in

Play (2020), pp. 18–20 [36]
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5. Daronnat, S., Azzopardi, L., Halvey, M., and Dubiel, M. Inferring trust from

users behaviours; agents’ predictability positively affects trust, task performance and cog-

nitive load in human-agent real-time collaboration. Frontiers in Robotics and AI 8 (2021),

194 [41]

6. Daronnat, S., Azzopardi, L., and Halvey, M. Investigating the impact of visual

environmental uncertainty on human-agent teaming. In Proceedings of the Human Factors

and Ergonomics Society Annual Meeting (2021), vol. 65, SAGE Publications Sage CA:

Los Angeles, CA, pp. 1185–1189 [38]
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Chapter 2

Background

Computer systems are implemented to make work easier for users. Automated systems are

implemented in various domains and environments, from optimising the management of a nu-

clear power-plant with multi-agent systems [80] to booking holiday trips using a virtual assis-

tant [176]. Studies focusing on the interactions between users and computer systems feature

different implementations of computerised systems, from embodied robotic systems to disem-

bodied software-based agents that act for the benefit of users or on behalf of them. Depending

on the context of interaction, users can either interact with one or multiple systems in tasks

where decisions have to be made continuously, over time. In the Human-Computer Interac-

tion literature, different terms have been employed to describe the type of automated systems

users are interacting with, going from “Machine” [13], to “Computer” [177, 196] and later,

“Agents” [109]. The use of these terms is always influenced by their context of interaction and

reflects the evolution in the way automation is perceived by both researchers and end-users.

In this Chapter, we look at different domains of interaction and paradigms in which human-

agent interaction takes place. We then present relevant work that explores these concepts and

highlight gaps in knowledge. At the end of this Chapter, we introduce the research goals that

motivated our research questions (presented in Section 1.3) leading, subsequently, to our user

studies presented in Chapters 4, 5, 6 and 7.

2.0.1 Human-Computer Interaction

Human-Computer Interaction (HCI) encompasses all scenarios where automated systems pro-

vide support to users via software (virtual) and/or hardware capabilities (robots). Human-

Computer Interaction and its potential benefits for task performance and increased safety have

been theorised since before the inception of personal computing, and is described in the work of

Licklider [111] in 1959 as a being somewhere between a “mechanically extended man” and “Ar-

tificial Intelligence”, where computer systems, “if introduced effectively [...] would improved

or facilitate human thinking and problem solving in an important way” [111]. This notion

of symbiotic interaction between humans and machines was further developed in the 1970s,
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with companies like Xerox pioneering innovations such as the “Desktop metaphor” or “Direct

Manipulation Interfaces” which allowed non-expert users to interact more seamlessly with com-

puterised systems. Extensive reviews of studies in the the fields of mobile HCI [96] or HCI

game research [19] offer insights regarding the most commonly used research methods to study

users’ interaction with systems. In general, HCI studies focused on user-system interactions

are conducted either in a “natural” (field studies) or artificial (simulation) environment where

users interact with one or more systems. The purpose of these studies, as described in the work

of Kjeldskov et al. [96], can be described as the following:

• understand phenomena through data analysis,

• engineer new solutions or improve existing systems,

• evaluate the benefit or impact of a theory on users,

• or describe desirable properties that a system should have.

These research paradigms are helpful if we are to understand the motivation of a specific type of

research, and will inform our choice of experimental design. Within HCI research, automated

systems can take many forms depending on the context of interaction and type of studies

undertaken. There is a key distinction between studies involving physical, embodied robots

(Human Robot Interaction - HRI) and virtual, disembodied virtual agents (Human Agent

Interaction - HAI). A study by Kramer et al [100] compared theories and empirical results

derived from interactions with robots, agents or other humans. In their work, Kramer et al.

explain that while HRI and HAI studies are both concerned with understanding users’ feelings,

thoughts and motivations when interacting with systems, HRI studies tend to be better at

creating studies focused on affect and emotions due to the wider range of anthropomorphic acts

possible for a physical robot.

As this thesis does not take place in settings with physical, embodied agents, our focus

is mostly on HAI research literature, while also incorporating ideas and findings emanating

from broader HCI or HRI studies. Furthermore, this thesis focuses on evaluating methods to

study human-agent collaboration and describing negative and positive properties that facilitate

interactions with collaborative systems. Human-Agent Collaboration (HAC) or Human-Agent

Teaming (HAT) is a subset of HCI and HAI research that focuses on scenarios and environments

where decision-making is shared between systems and users. In these scenarios, humans and

systems constitute a team where parties collaborate to solve issues together.

2.0.2 Human-Agent Collaboration

The benefit of Human-Agent collaboration resides in combining the inherent strengths of both

humans and automated agents while making up for their individual shortcomings. Nowadays,
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the availability of computer processing power and sensors often leads to situations where it is

impossible for users alone to make sense of available data and complete their tasks efficiently

and effectively. A solution to this information-overload problem is often found in the use of

collaborative or fully-automated agents [5, 35] which human operators can rely on in order to

complete tasks successfully. Automated agents are often designed as a way to reduce cognitive

load on human operators, help maintain a certain level of performance and allow for clearly

defined roles and responsibilities between users and agents. This has led to automated agents

being implemented in a number of environments, from disaster response scenarios where agents

help with time-constrained decision making [143] to scenarios involving scheduling [187] and

monitoring problems [142].

2.0.3 Challenges of Human-Agent Collaboration

A number of challenges have to be overcome before decision-aid systems can evolve from au-

tomated tools to intelligent collaborative agents [98]. The introduction of collaborative agents

led to important changes in the way human operators complete tasks in scenarios supported by

automation. For instance, early work on the impact of industrial robots on users elicited bene-

fits in human productivity and decision-making while also outlining concerns about complacent

behaviours due to the increase in general downtime [8]. Complacency, defined by Moray et

al. [126] as “self-satisfaction which may result in non-vigilance based on an unjustified assump-

tion of satisfactory system state”, has become an ever-present problem in scenarios involving

automated aid. These problems became apparent in safety critical environments where catas-

trophic complacency-induced accidents occurred, a fact which motivated numerous studies on

the topic of complacency and reliability [132,137].

In addition to complacency, the implementation of more decision-support systems made ap-

parent issues related to disuses (under-utilisation), misuses (over-reliance) and abuses (no regard

for consequences). Parasuraman’s seminal work [134] detailed how these 3 types of wrongful

use of automation could be mitigated via, for instance, appropriate training, but also required

system-makers to focus on system transparency and clearly delimiting the responsibilities and

capabilities of humans and automated systems in collaborative environments [134].

While the aforementioned issues are linked to how users perceive automated systems, other

key problems have to do with the actual capabilities of systems. Users’ mental models of

automated systems and the way users interact with them change over time [103]. As early

as the 1980s [127], research on the usage of automated systems found reported trust to be an

important variable regarding how effective human-agent interaction could be. The work of Muir

et al. stressed that “a decision aid (system), no matter how sophisticated or ‘intelligent’ it may

be, may be rejected by a decision maker who does not trust it” [127]. Based on past work

in HCI and particularly HAI, we elicited specific elements that are of particular importance

regarding the quality of an interaction between a system and a user, namely:
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• Trust in automation. The explicitly reported trust in a system by a user.

• Reliance on the agent. As operationalised given a task and captured via a context-

specific proxy.

• Performance and Reliability. As assessed via explicit task goals clearly defined in the

context of interaction. Performance is often used to describe users’ success at a task while

reliability is used to describe the system’s capabilities or perception thereof by users.

• Uncertainty. This concept can be used to describe either the lack of transparency

regarding a system’s actions or a lack of information regarding the context of interaction.

In the next Sections, we present the construct listed above with relevant studies that assessed

their importance in HCI, and particularly HAC research.

2.1 Trust

Trust is defined as an important factor for understanding how and why humans are willing to

interact with other people [168] or computerised systems [85]. The development and evolution

of trust is influenced by numerous factors such as experience, self-confidence and a general

propensity to rely on another party [103,133,167]. While defining trust depends on the domain

of interaction, application and task, it is generally accepted that trust represents a willingness

to act based on the decisions, words or actions of “another” [106]. This other can either be a

system, automated agent or human operator. The similarity between trust in automation and

people is reflected in the work of Lee and See, and in particular their proposed definition of

trust:

“the attitude that an agent will help achieve an individual’s goals in a situation

characterised by uncertainty and vulnerability [...] an agent can either be an au-

tomated system or another person that actively interacts with the environment on

behalf of the person” Lee and See. [103, p. 2].

This above definition and the rest of the work by Lee and See are of particular interest as

they highlight that trust:

1. Neither differs between team members nor differentiates between humans and automated

systems.

2. Involves collaboration and cooperation between team members.

3. is task dependent.

4. Evolves over time and through interactions.
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Past research has found that trust is a key component for effective human-human and

human-agent collaboration in a wide range of domains and scenarios. In the following sec-

tions, we present studies about interpersonal trust and trust in automation that explored the

development, evolution, loss and repair of trust in a variety of scenarios.

2.1.1 Interpersonal Trust

Most studies on interpersonal trust have focused on how trust is developed, maintained and

lost between individuals or groups of individuals in the fields of Psychology and Organisational

Studies. For instance, the work of Six et al. [168] examined organisations that explicitly favoured

the development of interpersonal trust via internal policies compared to similar organisations

that did not. To conduct their work, the authors relied on Eisenhardt’s method to build theory

based on case-studies [47], which involved looking at both theories and empirical findings. In

their findings, they present four effective policies that help develop interpersonal trust:

1. Promoting a culture in which building relationships and showing care are valued.

2. Facilitating relational signalling (communication) between colleagues, no matter their

rank in the company.

3. Socialising newcomers to teach them which values the company favours.

4. Actively managing and developing employees’ skills and competencies.

From their recommendations, we can notice how important transparency and communication

are in the development and calibration of trust over time, and how people have to understand

their roles and responsibilities to maintain a positive trust relationship towards a company and

its employees.

The development of trust in organisational studies has often been investigated alongside

methods to best maintain trust, or repair trust in the likely event of a trust-damaging violation.

While studies on trust repair are relatively recent in human-agent interaction, they were more

thoroughly investigated in organisational studies and help us to understand what can negatively

affect trust and how it can be regained. The work of Lewicki and Bunker [105], for instance,

presents a series of recommendations to repair trust, consisting of

1. Acknowledging that a violation has occurred.

2. Determining the cause of the violation.

3. Admitting that the action was destructive.

4. Accepting responsibility.
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Again, it is clear that transparent communication and a clear delineation of roles and respon-

sibilities play an important part in regaining trust. In a related study, Gillespie et al. [66]

investigated how trust repair is attempted after an organisational failure. They designed a

framework of how internal factors (within the company) and external factors (outside of the

company) influence employees’ perception of the company’s trustworthiness. This framework

include lists of actions that can contain the development of distrust, such as imposing sanctions

for individuals that breached trust, and other actions aim at favouring the development of trust,

such as trust-enhancing communications of new regulations, or the diagnosis of previously found

problems.

As we have seen, interpersonal trust is a complex construct that is impacted by many

factors; some positive such as transparency and clear communication, and some negative such

as violation acts that instil distrust and loss of confidence. Trust relationships between people

or within organisations will fluctuate over time, and must therefore be maintained, repaired

when needed, and explicitly valued in order to create good environments of interaction for all

parties involved.

2.1.2 Trust in Automation

While interpersonal trust and trust in automation share similarities, for instance in the way

transparency and clear communication positively affect their development, they also differ in key

areas. To understand how interpersonal trust and trust in automation differ from one another,

one can consult the work of Hoff et al. [85], in which the authors present a framework based

on numerous prior studies on trust in automation. The framework describes some of the most

important components that influence the evolution of trust prior to, and during interactions

with automated agents. The model highlights how a system’s features as well as users’ cultural

backgrounds can determine whether a user will trust the decisions of an automated system. In

this work, trust is divided into three main categories: “dispositional trust, situational trust,

and learned trust” [85]. All components of trust are subject to change, not only during the

interaction but also outside of it. As a whole, the work of Hoff et al. emphasises that despite the

complexity of the interplay of components influencing the evolution of trust, it is nevertheless

meaningful to focus on single elements, and evaluate how they affect the trust relationship over

time.

Some studies have attempted to isolate and study how specific users’ attitudes affect their

trust in automation. In the work of Singh et al. [167], an aviation monitoring task was under-

taken by non-expert users to investigate the impact of complacent behaviours on task perfor-

mance. Their results show that it is hard to predict complacency behaviours based on individual

characteristics alone, and that “other individual and social factors may play a role, particularly

in work environments” [167, p. 17].
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Trust in automation is difficult to assess, monitor and measure. This difficulty is elicited

in an article by Hoffman et al. [86] where challenges related to trust in automation in modern

systems are presented [86]. The work by Hoffman et al. underlines that there is more than one

way of measuring trust, and that each method has to take into account its context of interaction

to allow for the meaningful capture of trust-related components. Most methods of studying

trust and the evolution of its components consist in survey instruments administered before or

after a task, such as the “Checklist for Trust between People and Automation” by Jian et al. [90]

which was designed to assess both trusting and distrusting behaviours in order to get a single

score reflecting participants’ attitude toward automation. These methods of assessing trust,

while non-context dependent, fail to take into account the ever-evolving nature of trust, as they

require participants to divert their attention from a task and reflect on their past interactions.

This modality of trust assessment can prove problematic, for instance, in fast-paced scenarios

that require the constant monitoring of multiple systems, or when operators must remain alert

in a safety critical environment.

Understanding, measuring and monitoring trust is, however, important to appreciate how

human operators are willing to cooperate with automated agents, as it sheds light on the

evolution of the human-agent relationship itself. The work of Merritt et al. [125] focused on the

issue of “Trust Calibration”, with a task requiring participants to look at luggage X-rays and

decide whether they are suspicious and require further investigation or not. In their experiment,

participants were helped by automated agents that provided recommendations regarding which

decision to take, as well as information regarding the accuracy of the agent’s recommendations.

Task performance was evaluated as the number of correct decisions taken at each turn while

trust was operationalised by looking at participants’ perceptual accuracy, sensitivity and trust

sensitivity. In their findings, the authors found that giving information regarding an agent’s

performance was highly correlated with positive reported trust in the agent and helped reduce

the development of complacent or distrustful behaviours. The combined operationalisations of

trust calibration, however, was found to be poorly correlated with task performance, indicating

that there is more work to be done on the role of trust in human-agent relationships. In

addition, while factors likely to predict trust may be inferred from individual user capabilities

and informed by prior related work, they can ultimately prove to be bad predictors of actual

reported trust in the system.

As we have seen in the work of Merritt et al. [125], the study of reported trust is paramount

to help reduce the likelihood of complacent and distrusting user behaviours. In the context

of human-agent interaction, many factors can lead to incidents with potentially extremely

negative implications in safety-critical environments. For instance, the catastrophic accident

related to the Boeing 737 MCAS system [161] was caused by software giving pilots wrong

instructions after having suffered sensor malfunctions. In this situation, pilots followed the
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system’s recommendations based on their past experience and training, but were given an

erroneous mental model of the situation. Subsequent attempts to override the system ultimately

failed, which led to the incident.

In past work, most studies looked at the effects of an agent’s reliability on users. For instance,

the work of Fan et al [57] investigated how different levels of agent reliability affects users’

reliance and trust in an agent during a simulated battlefield command-and-control scenario. In

their findings, the authors indicate that while higher agent reliability leads to higher reliance on

the agent, users’ individual skills heavily influence their attitude toward the system, with expert

users remaining more cautious and less prone to complacent behaviours that novice users. In a

related study about agent reliability, Hussein et al. [87] investigated how participants relied on

agents in a dispatching/foraging scenario. Their findings highlight that while increasing agents’

accuracy leads to lower completion times and better overall performance, it also leads to a

significant decrease in users’ ability to reject agents’ decisions correctly, further emphasising

the need to understand how to manage nascent complacent behaviours.

While the relationship between agent reliability, trust and reliance is not straightforwarded

but dynamic and heavily context-dependent as highlighted by the work of Fan et al. [57] or Hus-

sein et al. [87], recent work has focused on other factors influencing the human-agent relation-

ship. A study by Jensen et al. [89], for instance, investigated how users’ emotional experience

relate to trust in agents, whereas the study of Correia et al. [34] focused on the impact that

added transparency in the agent’s actions can have on the user after experiencing automation

failure.

As we have seen in this Section, reported levels of trust in an agent are never static, and

evolve over time and through interactions [125]. Most past work on trust in automation has

focused on turn-based tasks where the users and agent interact asynchronously and where

reported trust in agents is measured with pre and/or post-hoc instruments. As trust is dynamic

and context-dependent, more work is needed that investigates both its measurements (which

methods to employ) and purpose (how does trust relate to other elements in human-agent

interaction). This thesis seeks to further our understanding of trust in agents by studying how

different kinds of agent behaviours (see Chapters 4 and 5), environments of interaction (see

Chapters 6) and information regarding the agent (see Chapter 7) can positively or negatively

affect users’ reported trust in agents. The relevant literature motivating our research focus is

presented in each chapter detailing our empirical studies (see Chapters 4, 5, 6 and 7).

2.2 Reliance

In HAI research, reliance is a purely behavioural construct defined by Ross et al. as a “tendency

to employ automation to replace manual control” [148]. In Human-Agent studies, the concept

of reliance usually describes the voluntary act of following the recommendations of an agent or
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not. In the influential work on trust in automation by Lee and See [103], the authors describe

reliance as “a discrete process of engaging or disengaging [on automation]”, and acknowledge

that this definition is a simplification to explain certain relationships with trust more clearly.

In their work, Lee and See further noted that “trust guides but does not completely determine

reliance,” [103]. And indeed, the mixed findings from many related studies in human-agent

scenarios such as the ones presented in Section 2.1 by Jensen et al. [87] or Fan et al. [57] would

seem to bear this out. For instance, while both the Fan and Jensen studies highlight that high

agent reliability induces better task performance and higher reliance on the agent, Jensen’s

study [89] reports a greater failure to correct false positive errors as agent reliability increases.

Due to the relationship between trust and reliance, most work has investigated both in parallel,

seeking to study how reliance develops under various levels of system transparency or system

reliability.

Reliance on automation and the overall propensity for users to rely on an agent are affected

by many factors coming from either the users themselves or the environment of interaction. A

study by Sanchez et al. [151] investigated elements likely to have an important impact on reliance

on automation such as experience, age (users) or error type and error distribution (agents). In

their studies, the authors employed a framework requiring participants to confirm or reject an

agent’s decision in an agricultural setting. The automated aid suffered from different types of

errors and participants were grouped according to their age and experience with agricultural

engines. In their findings, Sanchez et al. found that older participants took longer than younger

participants to adapt and properly respond to the system when needed. Older participants,

however, continued to check alarms more consistently than younger participants, and were

therefore better able to respond to sudden automation failure. As we can see, individual factors

pertaining to either users (age, experience) or the system (error types) will influences attitudes

toward reliance. While these characteristics are important, they are not sufficient to explain

how reliance evolves over time. In their conclusion, the authors noted that all participants, no

matter their age or experience, tried to adjust their behaviours to collaborate more effectively

with the automated aid, as they grew more used to interacting with the system. The findings

of Sanchez et al. are reminiscent of the concept of “appropriate reliance”, presented in the

work of Lee and See [103], which describes the link between a system’s capabilities and users’

perception of them.

In a related study by Dzindolet et al. [46] on the role of trust in automation reliance,

the authors focused on how explaining an agent’s behaviour affects reliance in a human-agent

setting. The authors found that giving reason as to why an agent might fail tends to lead to

higher reliance on the agent, even when compared to scenarios including less reliable agents,

and that the type of error experienced by participants (false negative or false positive) did not

significantly change their attitudes toward the system. These findings are different from the
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ones presented by Sanchez et al, and indicate that the context of interaction is of paramount

importance in understanding reliance, as its measurement is purely behavioural.

As we have seen so far, reliance on automated systems can be studied in a number of ways,

but no matter the modality, understanding users’ roles, experience and the context of interaction

is important to operationalise reliance and measure it in a meaningful way. For instance, when

the agent provides help in the form of explicit feedback, reliance can be studied in terms of the

likelihood of users adopting the agent’s help in their decision-making process. When the user

and agent have similar decision-making capabilities, reliance can be studied as the amount of

corrections the user issues, with fewer corrections indicating more reliance on the agent. Most

studies relied on the manipulation of automation failures (error types and distribution [46,151])

to understand how users interact and adapt to automation in various domains of interaction.

In an important work about reliance on automation, Parasuraman and Riley [134] detailed

the different types of attitudes toward reliance, and categorised them as follows:

• Misuses: over-reliance on automation.

• Disuses: under-utilisation of automation.

• Abuses: “inappropriate” application of automation, from a system designer perspective.

This categorisation is useful if we are to understand the intent behind different types of

inappropriate reliance on a system. Like trust, reliance is calibrated over time and through

interaction, and for an appropriate reliance to develop, systems must be designed to help users

while not leading to complacent attitudes.

The work of Garnick et al [65] sought to study reliance by inciting users to take into account

an agent’s recommendations. Their experiment took place in a controlled game-like environment

where reliance was measured as a behavioural factor (how many times participants followed the

agent’s advice), and where agent and user performance could be compared or aggregated into

one measure of team performance. In their results, the authors underlined the importance of

designing frameworks and controlled environments to study a construct as context-specific as

reliance. Changes in agent reliability, error type or mission goal can have a major impact on the

development of reliance over time. The use of controlled game-like environments also allows

us to quantify and model reliance via task-specific metrics, as demonstrated by the work of

Boubin et al. [14] which uses the framework of Garnick et al. [65] to model users’ interaction

and understand appropriate reliance and trust calibrations.

As we have seen throughout this section, reliance is a behavioural factor that is linked to

trust but does not necessarily share a straightforward, linear relationship with it. The study

of reliance is context-specific, and most studies investigated relationships between reliance and

other constructs by varying agents’ errors [151] or the degree of information given to users about

the system [46]. Interactive frameworks such as the one found in the study of Garnick et al. [65]
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and Boubin et al. [14] constitute a good, albeit abstract, avenue to contextualise, measure and

study reliance on agents. In a similar fashion, this thesis measures reliance within a game-based

environment, where corrections issued by the participants are recorded and operationalised as

our main measure of reliance.

2.3 Task Performance and Agent Reliability

According to the work of Wiebe et al. [190], performance is generally understood as the measure

of an outcome in cognitive tasks. Similarly to reliance, performance is a context-specific con-

struct. In HAI studies, performance is often understood as how well the human-agent team can

succeed at a task presenting clearly defined goals, given different levels of human expertise and

agent reliability. In an article by Lewis [109] on “Designing for Human-Agent Interaction”, the

author shows that most studies vary the level of information and feedback about the system’s

actions and reliability to see resulting changes in users’ task performance, reliance and trust.

In HAI studies, while task performance represents how good the users and/or agent are at

meeting specific goals, agent reliability represents the accuracy of the help given by the agent.

In general, it is assumed that agent reliability is key to understanding how human operators

perform and calibrate their trust in agents. In a work by Hoc et al. [83], the authors present a

framework where both agents and users are considered as separate agents pursuing their own

goals in a driving task. In their framework, the impact of both the user’s performance and the

agent’s level of reliability can be evaluated individually or collectively, as tasks require users to

act on their own or rely on inputs given by the agent. For maintaining high task performance

in a safety-critical scenario, the authors recommend that agents should be designed to support

users, not replace them, and that the responsibilities of both users and agents should be clearly

defined.

The relationship between users’ performance and agents’ reliability is, however, not always

straightforward. In human-agent collaborative scenarios where user(s) and agent(s) form a

team, performance is often evaluated as a single construct, which makes it harder to study the

impact that either the user or agent has on overall team performance. The work of Fan et

al. [57], outlined in Section 2.1, studies team performance in an experiment focusing on agent

reliability and user expertise. The authors found that an increased knowledge of the agent’s

reliability level help mitigate the chances of false positive errors. Similarly, Chavaillaz et al., [24]

tested the impact of different levels of agent reliability on trust, reliance and task performance in

a turn-based X-ray scanning scenario. Their results showed that a decrease in agent reliability

resulted in a decreases in users’ reported trust in the agents. Furthermore, Chavaillaz et al.

found that users’ perception of the reliability of agents was more accurate when interacting with

low performing agents, which led to complacent behaviours. As we can see from both Fan and

Chavaillas’ studies, added transparency regarding the agent’s level of reliability significantly
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influences the way users trust and rely on the agent’s input, which, in turn, positively affect

overall team performance. In addition to studies focusing on different degrees of agent reliability

in assessment tasks, the work of Shirado et al. [166] explored turn-based coordination problems,

in a colour-selection game. In their work, the authors found that error-prone agents (up to 30%

loss in accuracy) can be beneficial to collaborative task performance as they reduce the chance

of users being complacent while interacting with the agent.

Given the evidence of past research, it is clear that agent reliability is one of the major

factors that will influences both team performance and a user’s propensity to trust and rely on

the agent. Most studies manipulated the way agents made errors by having different levels of

agent reliability, but other methods have been employed to vary the way an agent performs and

makes errors. While some studies (as described in Section 2.1) introduced false-alarms (Merritt

et al. [125]) or systematic biases (Fan et al. [58]), other studies focused on the way agents make

errors, rather than on testing different levels of agent reliability. For instance, some studies

experimented with agents that suddenly stop working, such as presented in the work of Correia

et al. [34] that involves a robot and a user playing a collaborative card game. In their study, the

robot would explain (or not) its faults to the user. With their findings, Correia et al. showed

that minor faulty behaviours that are harmful to trust and task performance can be mitigated

by simply having the robot acknowledge its own shortcomings. More serious loss in the robot’s

reliability, however, still resulted in inferior team performance, no matter the justification used

by the robot.

In most cases, prior work delving into agent reliability has showed that participants react

differently to various types of automation failures, and report higher trust in systems that

can justify their behaviours. This represents a new avenue to not only understand how team

performance can be degraded, but also mended back to suitable level.

Any type of agent failure can be loosely described as an“error”. “Errors”, however, is a

term that fails to explain the detailed nuances of how an agent can stray towards undesirable

outcomes. The work of Marinaccio et al. [118] presents 4 unique types of errors: mistakes, lapses,

slips and violations. All of which are derived from human-human interactions studies [145]

and are presented in table 2.1. These definitions of errors all come from studies focusing on

human errors, where they were also conceptualised in the context of human-human interaction

in healthcare in a study by Kim et al. [94] that investigated these types of errors alongside

different repair mechanisms on individual and groups of people. In their findings, Marinaccio

et al. explain how more work should be done to analyse how the particular features of a system

and the way in which it errs influence human-agent relationships.

Overall, a number of studies empirically tested the effect of trust-damaging acts in both

human-human and human-agent settings by manipulating the nature of an agent’s violation.

The work of Baker et al [11, 125] presents a comprehensive review of past research in the field
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of human-robot interaction with ideas for future research on maintaining and repairing trust

in robotic agents. Among the 6 avenues for future research mentioned by the authors, one

is of particular relevance for human-agent collaboration: “Adapt existing trust research to

investigate how robot features affect trust” [11, p. 20]. As we have seen in previous work on

agent reliability [118], one of the most important features of future research should be the way

in which agent make errors: how to categorise them and how users perceive them.

In this section, we have looked at past work on human-agent interaction to understand

how agent reliability is defined and varied to study its resulting impact on users’ trust and

performance. We have seen that task performance in HAI scenarios is often measured with task-

dependent metrics related to the success of one particular activity, whereas agent performance

(how good at the task the agent is), is controlled in terms of reliability [14, 58, 65]. However,

as we have seen when looking at trust in Section 2.1, system reliability is only one factor that

influences trust in agents and the overall human-agent relationship. In this thesis, in addition

to reliability, we study the impact of different agents’ behaviours in terms of predictability and

intent, and their resulting impact on participants.

Table 2.1: Different types of errors presented in the work of Marinaccio et al. [118] and inspired
by the work of Reasons [145].

Error Type
(Reason, 1990)

Examples
Violation Type

(Kim et al. 2013)
Effective Repair
(Kim et al. 2013)

Slips - Errors of commission -
when an intended action is
wrongly executed

Flipping the wrong switch
on an IV pump

Integrity-based Denial

Lapses - Errors of omission -
resulting in failure to carry
out the action

Forgetting to administer
medication

Competence-based if due to
memory failure, integrity-based
if attention failure

Context-dependent

Mistakes - Errors of planning
or judgment

Prescribing an incorrect
dosage

Competence-based Apology

Violations - Intentional commission
of an error

Prescribing an inappropriate
medication because of
sponsor loyalty

Integrity-based Denial

2.4 Uncertainty

Uncertainty is a subjective construct that involves risk and opportunities, as defined by Rachev

et al. in their work on uncertainty in the financial domain [140]. Uncertainty is most studied

in the field of economics for risk management purposes, in order to predict potential negative

outcomes or lessen their impact. In HAI research, uncertainty is inherent to most environments

of interaction, and it is often the role of an automated agent to lessen uncertainty by processing

data and anticipating potential outcomes. Uncertainty is harmful to any collaborative settings,

whether they include only people [188] or people with agents [101], the latter being the focus of a

number of important human-agent teaming studies assessing uncertainty in high-risk domains

such as driving [101] or aviation [167]. As uncertainty comes from aspects either within or
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outside of the human-agent relationship, the following subsections will present prior work that

studied uncertainty related both to agents and the environment of interaction.

2.4.1 Uncertainty in Agent Reasoning

In the work of Wu et al. [198], the authors proposed frameworks to manage uncertainty be-

tween entities (humans or automated agents). The constituents of the agents’ reasoning are

represented using the BDI (Belief, Desire and Intention) attributes where each agent is pro-

grammed with “beliefs” (what the agent knows),“goals” (desired outcome) and “plans” (how

to achieve the desired outcome, step by step). This framework allows for reducing uncertainty

by making evident what the agent knows or doesn’t know, and by openly sharing its intentions

with other agents or users. From the work of Wu et al., we see that both assigning clear roles

and enforcing transparent intent in the decision-making process of all entities are paramount to

reduce risk and uncertainty. In HAI studies, the concepts of “trust calibration” or “appropriate

reliance” (described respectively in Sections 2.1 and 2.2) are commonly found and employed in

an effort to increase transparency and reduce uncertainty. During calibration, by increasing the

transparency of the agent’s actions (in terms of how its inner reasoning is presented), users can

judge the capability levels of the agent in order to adapt their trust and reliance accordingly.

The work of Kunze et al [101] investigated how to best communicate uncertainty in an

HAI context. Their findings show that while displaying some degree of information about

the agent’s reasoning helps improve performance, prolonged attention and monitoring induce

a higher cognitive load, which in turns leads to users not being willing to interact with the

system. As demonstrated by Kunze’s study, transparency may be helpful to reduce uncertainty

but it comes at a cost, especially given the primary function of agents is to reduce rather

than increase cognitive load. Related work from Sacha et al. [149] thoroughly reviewed prior

studies that researched how to best communicate uncertainty and improve trust with visual

analytic tools. In their findings, they highlight what they call “traps” concerning uncertainty,

such as being clear about exactly what is meant by agent uncertainty, and having a system

that overloads users with information that is not of immediate relevance. Such an information

overload could even lead users to create erroneous mental models of the agent’s inner workings,

which in turns provokes more uncertainty. For instance, the study by Wang et al [186] created

a framework for automated agents to automatically come up with an explanation for their

reasoning for particular actions. As transparency is a key element in reducing uncertainty,

the authors found that explanations did indeed lead to higher trust in the agent and better

team performance. A side-effect, however, was that the added confidence in the system led

participants to believe that they fully understood the robot’s decision-making process, whereas

the explanations provided by the system were not sufficient to make such claims [186].
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No matter the context, we have seen throughout this section that uncertainty in the agent’s

decision-making process can be reduced by increasing transparency. This added clarity, how-

ever, comes at a cost: users increase their attention levels, which in turn affects cognitive load.

To mitigate such problems, researchers have experimented with various visualisation techniques

and issued some recommendations, such as:

• Reducing the attention required or the amount of information provided by the sys-

tem [101].

• Taking into account the context of interaction and being clear about the kind of uncer-

tainty that the system should manage [149].

• Not over-simplifying the information communicated, so as to prevent users from having

erroneous mental models of the system’s capabilities [186].

2.4.2 Uncertainty in the Environment

A major factor in the development of uncertainty is the context of interaction itself. In this

Section, we will use the terms “environment” and “context of interaction” interchangeably.

In HAI settings, uncertainty can manifest itself differently depending on the task and context

of interaction. In these situations, Game Theory offers relevant frameworks and techniques to

study and assess uncertainty, as it often involve optimisation problems and minimising risk. For

instance, in a game scenario where information is incomplete, a common strategy for a player

who seeks security would be to work towards a “secure equilibrium”, which is a state of action

that would lessen the impact of the worst predicted outcome [179]. In an HAI task, however,

this secure equilibrium can be hard to define, as dynamic changes in the environment can

alter the decision-making process of both users and agents in real-time, which makes planning

difficult. A number of studies have focused on the visual (un)availability of information in the

environment of interaction and its impact on users’ decision-making in HAI settings.

Uncertainty coming from the environment of interaction is especially an issue in situations

where task-sensitive information used to inform decisions is limited or unavailable. To help

understand and mitigate this type of uncertainty, a study by Sarter et al [152] focused on the

impact of different display aids for pilots in uncertain and time-sensitive scenarios, especially

in the aviation domain. In their findings, the authors show that the type of display and the

accuracy of the information were the most important components related to task performance.

In addition, environmental uncertainty has been found to be mitigated by agents capable of

giving information that lessens the impact of uncertainty. Such findings are presented in the

work of Kunze et al. [101] where different types of visualisations and behavioural metrics were

used to adapt and present information to users while not overloading them with data. While

agents can help mitigate uncertainty, paying prolonged attention to explanations, however,
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could lead to lowered situational awareness and even missing real-time changes in uncertainty

displays [101]. Beyond the unavailability of data, uncertainty comes into play in scenarios

where predictions are being made based on the assessment of existing information. In these

situations, prior information and the way it is constructed, shared and understood is crucial to

how future decisions are made. A study by Herdener et al. [81] demonstrates that providing

information about potential outcomes, with a sense of variability, does indeed have an impact

on decision-making and cognitive load.

Most work in the field of Human-Agent interactions has focused on the uncertainty inherent

to the decision-making capabilities and transparency of automated agents. As we have seen

in Section 2.4.2, uncertainty can also come from the environment of interaction, and there

is currently a knowledge gap regarding how users’ behaviour evolves during a human-agent

task in an uncertain environment. As a means of responding to this gap in knowledge, the

current thesis will present work related to human-agent collaboration under visual uncertainty

in Chapters 6 and 7.

2.5 Measuring behavioural information

Behavioural data are information captured during human-agent interactions that act as a proxy

for some of the concepts detailed in this Chapter, such as reliance (see Section 2.2) or perfor-

mance (see Section 2.3). These measures are all context-specific and are often collected by

systems sensors and operationalised according to the explicit goal of the task, such as task per-

formance and reliance. Every study conducted during this thesis and presented from Chapters 4

to 7 records and analyses behavioural data to understand and model user behaviour.

2.5.1 Task Performance

In human-agent collaborative scenarios, the outcome of a task is often measured in order to

assess the quality of interaction, as detailed in Section 2.3. As performance is an important

variable in any kind of goal-oriented task, it is important to measure it via adequate methods

that are in accordance with the goal of the task. The work of Lebas [102] in the field of

organisational sciences defines performance as “contextual both in terms of users and in terms

of purpose.” [102, p. 2]

Some studies, focusing on the acceptance of automated aid, report performance as the

number of times participants relied on the agent when the agent was providing reliable inputs.

Examples of these studies include the work of Fan et al. [57] or Hussein et al [87] presented

in Section 2.3. Other researchers measured team performance as a whole (human and agent

combined), which is only possible during collaborative scenarios where users and agents have

similar capabilities and levels of agency, such as is shown in the work of Shirado et al. [166]
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One of the most common metrics used to measure performance (notably in the field of Infor-

mation Retrieval and Natural Language Processing) are Recall, Precision and F1 [136], which

are based on the notion of false or true positives and negatives, and can be easily adapted to

most goal-oriented tasks where agents provide help that can vary in terms of reliability. For the

studies presented in this thesis, we will mostly rely on Recall, Precision and F1 for the assess-

ment of individual and team performance. These metrics are further detailed in Section 3.4.3.1.

It is also worth noting that we do not measure the rapidity at which participants complete the

task as every session is timed and speed is not considered as a proxy for performance in our

studies.

2.5.2 Reliance

Reliance and trust are often studied together in HAI and Human Factors studies [46, 120], as

they share an evident, albeit complex, relationship as described in Sections 2.1 and 2.2.

In terms of behavioural measurement, reliance is often studied in conjunction with compli-

ance, as elicited by the work of Chancey et al: “The operator responding when a signal is issued

is referred to as compliance. The operator refraining from a response when the system is silent,

or indicating normal operation, is referred to as reliance” [21, p. 1]. In HAI studies where the

agent not only guides the user but also interacts on its own or on the behalf of the user, reliance

is often studied as the amount of corrections the user issues, with fewer corrections indicating

a greater reliance on the agent. An example of such a behavioural measure can be found in

the work of Hussein et al. [87] where users’ acceptance of the agent’s recommendations can be

recorded by the number of time they followed said recommendations.

While there is no consensus on which behavioural or physiological metric best represents a

robust proxy for the measure of trust in automation, a few other physiological variables have

been explored, such as Heart rate [101], post-neuronal activity (EEG [3]), gaze and electroder-

mal activity [185]. While the usefulness of some of these variables might be highly affected by

the context of interaction, they still represent potential avenues for monitoring reliance in a

context-free manner.

In this thesis, reliance will be measured using a context-specific variable: “user control

time”, or the amount of time for which users took over control from the agent. This variable is

presented in Section 3.4.

2.6 Measurement of reported information

In user studies, reported information is often recorded as ratings given to either statements or

questions on likert-scale instruments administered before, during and/or after a task. Survey

instruments are commonly used to assess subjective concepts such as trust, cognitive work-

load or situational awareness that are otherwise hard or impossible to record using behavioural
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measurements. Every study presented in this thesis (from Chapters 4 to 7) relies on validated

survey instruments to understand how users perceived automated agents, and how their per-

ceptions relate to their behaviours while interacting with agents. Most of the original survey

instruments used in this thesis are presented in Appendix E.

2.6.1 Trust

Trust is often measured using rating scales where users have to indicate how they agree with

one or more statements, eliciting either an overall attitude toward the system or evaluating sub

components linked to the development of trust.

2.6.1.1 Multi-item Instruments

One of the most widely used self-reporting scales is the “Checklist for Trust between People

and Automation” by Jian et al. [90] which consists of 12 statements that participants have to

rate on a 7-point Likert scale (with higher scores indicating greater agreements). The purpose

of each statement is to elicit different attitudes toward the system linked to trust (reliability,

honesty...) or distrust (suspicion, deception...). This instrument can be used before or after an

experiment in order to measure how trust and distrust evolve. This 12-item instrument has

been widely used in a wide range of studies owing to its context-free nature, from Satterfield’s

work involving UAVs [153], to Erebak’s study on robots in the field of elderly care [55].

2.6.1.2 Single-item and Analogue Instruments

Multi-item survey instruments are best used to assess sub-components of multi-dimensional

concepts, such as distrust in the work of Jian et al [90]. In many scenarios, however, multi-

item survey instruments can prove too cognitively taxing to use, reducing the quality of the

answers provided, since many studies not only assess trust but other relevant metrics such as

cognitive load [2] or situational awareness [70]. As a result, many studies have resorted to the

use of short and quick-to-deploy instruments for the measurement of trust in a system. Some

are made and tailored to the need of particular studies, such as the one used by Wiczorek et

al. [189] consisting of an analogue trust scale with verbal anchors ranging from “my trust is

very strong” to “I barely trust the system” [189, p.7], where participants’ answers are then

transformed using a scale from 0 to 100.

2.6.2 Cognitive Workload

While Cognitive Load theory is a concept that attempts to understand how people make deci-

sions based on evolutionary theory [171], Cognitive Workload is a concept that has been most

studied in human-machine interface research, and refers to the study of the “cost of accom-

plishing mission requirements for the human operator.” [75]
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By far, the most common way of assessing Cognitive Load is via a pre- or post-hoc 6-item

survey instrument named NASA Task Load Index (TLX) [76] that has been used and tested

by numerous studies since its inception in 1988, including in an important meta-article by its

original authors that analyses 20 years worth of studies that relied on the instrument. [75] In

this thesis, cognitive load is measured in all studies using NASA TLX, and its score is usually

reported using the Raw TLX technique [17].

2.6.3 Situational Awareness

As alluded to in Section 2.4.2, an important concept in understanding how users make decisions

is Situational Awareness (SA). SA can be described as the capacity to locate and remember

important information in order to make predictions about future outcomes [48]. There are

three commonly used methods to measure situational awareness, namely “SAGAT”, “SART”

and “SPAM”:

• SAGAT [49] (Situation Awareness Global Assessment Technique) consists in designing

a set of SA related queries related to a specific task. During the experiment, the task

is frozen, giving time for participants to answer the queries. A numerical value is then

derived from each question and aggregated into an overall score evaluating participants’

overall SA.

• SPAM [45] (Situation Present Assessment Method) is similar to SAGAT but puts an

emphasis on quick questions focused on locating information in the environment. The

response time is taken into account as an indication of SA.

• SART [173] (Situation Awareness Rating Technique) consists of a pre-determined set of

general queries related to Situational Awareness.

All methods have pros and cons. While some require freezing of the current task (SAGAT),

others require multi-tasking (SPAM), or the completion of a post-hoc survey (SART). A recent

comparison of all these methods [52] found the SAGAT method was the least intrusive and least

harmful in terms of users’ task completion performance. The SART method, however, offers a

post-hoc context-free survey instrument that could potentially be adapted to any scenario. In

this thesis, Chapters 6 and 7 investigate the impact of different visual conditions on situational

awareness and make use of the SAGAT and SART methods.

2.7 Research Goals

The work of Baker et al. [11] discusses important challenges for studies on trust in automated

systems and robots, and makes recommendations on which issues are important to tackle in

future work. Of the 6 recommendations elicited, 2 are of particular significance for human-

agent collaboration: “Adapt existing trust research to investigate how robot features affect
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trust” and “Develop & validate measures of human-robot trust”. Following on from these

recommendations, and based on previous work in the field of human-agent interaction, this

thesis seeks to contribute to our understanding of trust in collaborative automated agents during

real-time scenarios, both through self-reported survey instruments and behavioural information

directly captured from human-agent interactions. More specifically, this work seeks to address

the following gaps in the HAI literature by:

1. Experimenting with new ways to elicit and record human-agent interactions.

2. Assessing both reported subjective metrics and recorded behavioural information related

to the human-agent interaction.

3. Studying how trust in automated agents develops and which elements influence it the

most.

4. Experimenting with different types of agent behaviours and environments of interaction.

While our focus is on the development of trust in automated agents, we sought to study the

development of related elements based on previous relevant work. In the study we conducted,

we are measuring the following dependent variables:

1. Trust. With self-reported metrics.

2. Reliance. By recording and analysing task-specific variables.

3. Performance. According to the tasks’ goals and performance metrics.

4. Cognitive Load. Via validated self-reported questionnaires, such as Cognitive Load.

5. Situational Awareness. Via different validated methods including validated surveys and

task-specific prompts.

By taking into account the gap in knowledge identified in this section, and the research goal

elicited above, we present the following research questions, also presented in Section 1.3:

RQ1 How do changes in agent predictability (how easy it is to guess its next actions) and

reliability (how good the agent is at the task) impact the human-agent relationship?

RQ2 How do different types of agent errors defined from previous related work such as slips,

mistakes and lapses affect the human-agent relationship?

RQ3 How do different types of environmental conditions (static or moving), which impair vision

and induce uncertainty, affect the human-agent relationship?

RQ4 How do different types of visual help (designed to elicit different levels of situational

awareness) influence the human-agent relationship?
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Chapter 3

Methodology

3.1 Motivation

Past human-agent interaction studies assessing trust, reliance and cognitive load often consist

of either competitive (user VS agent(s)) [128] or collaborative (user AND agent(s)) [34, 91]

scenarios where users interact with one [169] or multiple agent(s) [147]. In these studies,

agent(s) either provide information aimed at helping users make a decision [27] or directly

interact with the task as another autonomous entity [135]. In most HAI studies, the human-

agent relationship is assessed via validated, general-purpose survey instruments which focus on

different reported variables, such as trust [90], cognitive load [76], situational awareness [49] or

system usability [108].

To answer our Research Questions presented in Section 1.3, we needed a human-agent

collaborative framework that meets the following requirements:

1. Provides a collaborative scenario where human and agents have to work together in a

real-time task.

2. Can record information related to the human-agent interaction task itself, such

as performance or reliance on the agent.

3. Allows the usage of standardised survey instruments to measure reported measures

such as trust, situational awareness or cognitive load.

4. Can allow the modification of both the agent’s attributes (behaviours, reliability) and

the task’s features (difficulty, information provided or excluded).

Finding a framework that allows for the elicitation and collection of meaningful information

while keeping participants engaged is an on-going problem in many research domains. For more

than two decades [20, 200], HCI studies have reliably used commercially available games (such

as “Minecraft” [32]) as well as purpose-made games (Atomic Orchid by Fischer et al. [61]) in

order to study participants’ behaviours in controlled environments. Based on our needs and

after carefully reviewing relevant work, we decided to use a well-known and simple arcade game
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named “Missile Command” [10] and adapt its gameplay to a human-agent teaming scenario.

We chose this particular game as its gameplay requires users to make quick decisions in time-

limited scenarios where the difficulty of the tasks and reliability of a collaborative agent can be

easily controlled. In comparison to other popular and accessible arcade games such as Space

Invader or Pac-Man, Missile Command offers more flexibility regarding the addition of an agent,

as our tasks strive to elicit fast decision-making, rather than focus on decision-planning. Other

games were considered, such as DOTA 2 or Counter-Strike due to their anteriority and presence

in related research [12, 141]. However, their inherent complexity, learning-curve and limited

flexibility for custom-made agents meant that they failed to meet our study requirements.

Carter and collaborators [20] argue that games in HCI studies can be understood within 4

distinct research paradigms: “Operative”, “Epistemological”, “Practice” and “Ontological”. In

the context of our work, we are interested in the Epistemological paradigm, as our research

seeks to use a game-like activity to generate insights on a broader topic, namely how humans

trust and collaborate with an automated system.. We also focus on the Ontological paradigm,

as our work strives to inform the design of future interactive systems by focusing on the elements

that make up the game’s interface or mechanics.

In order to satisfy all our requirements, we created an interactive human-agent collaborative

task in the form of a 2D collaborative game. In this game, the user and agent have to cooperate

to protect assets by destroying a series of incoming missiles. The agent can aim automatically,

however only the user has the ability to fire projectiles. This framework offers the following

advantages:

• It offers a real-time task where important behavioural constructs can be operationalised

and recorded, such as task performance (number of missiles hit or shot fired) and reliance

on the agent (amount of times the user corrected the agent).

• The task can be easily divided into blocks of various difficulty levels where survey instru-

ments can be deployed to measure pre- and post-hoc concepts such as trust, cognitive

load or situational awareness.

• It can be deployed either in a lab environment (with gamepad or keyboard controls) or

exported online as a web-app where participants go automatically through all stages of

the study.

• Flexibility, as elements such as the agent’s accuracy, the availability of information or the

complexity of the task can be controlled and monitored to design immersive scenarios.

• The task is user-friendly and requires no prior knowledge. Controls are easy to learn, and

the goal of the task is straightforward.
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Using commercially-available games can be a quick and effective way to have participants

engage in immersive tasks, especially when involving a multitude of users. For instance, the

work of Schaekermann et al. [156] used the game “Destiny” to understand what motivates player

and how this relates to their own personality. Results from such studies, while insightful, are

heavily context-specific, and commercially available games are often not flexible enough to

incorporate custom-made AI agents or the logging of specific behavioural information. In

addition to commercial games, frameworks used in previous work often occurred in either

domain-specific [57, 60, 61] or turn-based scenarios [157] where the human-agent relationship

evolves asynchronously. Trust, as described in Section 2.1, evolves over-time and designing

frameworks that allow for the study of its interactions with other elements would benefit our

understanding of trust in automation. More recently, an increasing number of studies have

used arcade-like games to study human-agent relationships, as noted in the work of Rapp

et al. [144] who describe arcade games as being “inspiring” thanks to their “simplicity and

immediateness” [144, p. 4].

3.2 Missile-Command Framework

In this section, we present the overview of our framework, mostly inspired by the 1980 “Missile

Command” arcade game [10]. The goal of our real-time interactive task consists in aiming

at and destroying missiles appearing from the top of the screen in order to protect 4 cities

situated at the bottom of the screen. To achieve this goal, participants can move a crosshair

across the screen and fire projectiles in the direction of their choosing. In our studies,

agents help participants by moving the crosshair automatically. At any moment,

however, participants can choose to override the agents’ input and manually move

the crosshair. In all scenarios, only participants can fire projectiles to destroy incoming

missiles. As in related studies where reliance is defined as “the tendency to employ automation

to replace manual control” [148], we decided to ensure that there was a way for participants

to correct the agent’s decision by taking over the controls and confirm theirs or the agent’s

actions by assigning firing capabilities to participants. This design decision also ensures that

participants have to keep on monitoring the situation, in order to keep a maintain the necessary

level of engagement with the task.
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Figure 3.1: Screen-capture of the latest version of the missile command game framework (as
used in Chapter 7), where elements of interest are annotated and described below, in Section 3.2.

Figure 3.1 shows our interactive game in action, where the main elements are numbered and

described as follows:

1. Gun-turret: controlled by either the participant or the agent in order to aim and target

incoming missiles. All projectiles are fired from the turret.

2. Projectile: fired by the participant, it travels at a fixed speed (1250 pixels/second) until

it explodes in a small circular area. If a missile lies within this area, it is destroyed. The

speed of the Projectile was constant and hard-coded for each study after initial informal

pilots were conducted to tailor the different elements in the game.

3. Crosshair: provides a visual indication of where the participant or agent is aiming. The

crosshair changes colour depending on who is controlling it: yellow for the participant,

white for the agent, and dark-grey for neither. Crosshair colours were selected to be easily

distinguishable depending on whether the user or the agent was controlling the crosshair.

In addition, we ensured that each colour (white and yellow) represented a significant

contrast to the dark blue background of the game for increased accessibility. The speed

at which the agents or the users can move the crosshair was the same throughout each

study (800 pixels / second).

4. Red Indicator Area: appears when a projectile is fired to show participants the area

where the projectile will explode.

5. Projectile’s explosion/halo: In order to be destroyed, missiles have to enter the radius

of such an explosion.
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6. City: Assets that the participants are tasked with protecting.

7. Missile Impact: when a missile reaches a city, it produces an orange/red explosion with

smoke emanating from the city.

8. User and Agent panels: The participant’s panel (on the bottom left of the screen) and

the agent’s panel (on the bottom right) light up in green when one of them is moving the

crosshair.

9. Enemy missile: progresses at a fixed speed and angle depending on the task difficulty.

At the end of a session (with or without an agent), participants are shown how many

missiles they hit and/or missed. All missiles missed eventually hit a city. Depending on

the study, the number of missiles appearing (spawning) and their individual speed was

varied in order to test different levels of task complexity.

3.2.1 Godot Engine

After conducting a review of the different tools dedicated to the creation of interactive soft-

ware, we decided to use a game engine [110] as game engine specialise in the prototyping and

deployment of highly interactive software while taking into account hardware constraints and

the need for speed of execution, all of which are paramount to the success of seamless, real-time

and immersive human-agent interactions. Multiple engines were considered, such as Unity [74],

Unreal [54] and Godot [69]. All of these engines have been used in HCI studies, for instance

to simulate visual impairments via Virtual Reality [107] or to promote e-learning [31]. After

carefully examining the pros and cons of each game engine, we decided to choose the newer

Godot Engine to create our interactive game as it is:

• A highly mature 2D engine with a very simple Python-like programming language called

Godot Script, which makes prototyping much easier that with, say, Unity which uses

C++. This drastically cut-down the learning curve associated with designing prototypes.

• Much lighter than Unity or Unreal, which reduces hardware requirements for both devel-

opers and end-users.

• Completely open-source, which could facilitates the reproduction of results and dissemi-

nation of the game.

• Easily exportable to WebGL and HTML, which was important to conduct online studies

running on different types of hardware via web browsers. Such exports are possible under

the Unity or Unreal Engine, but have an impact on the performance of 2D games (as of

2021).
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All studies presented in this thesis were designed using the aforementioned Godot Engine in

its versions 3.0 (for the study presented in Chapter 4) and 3.2 (for the studies presented in

Chapters 5, 6 and 7).

3.2.2 Interaction & game controls

For participants to play the game, they have to assume control of the gun tower located at

the bottom of the screen to fire at incoming missiles (see element 1 in Figure 3.1). In our

lab-based studies, presented in Chapters 4 and 5, participants were interacting with the game

via an Xbox360 controller using the analog stick to move and the (A) button to fire projectiles.

Subsequent studies presented in Chapters 6 and 7 were conducted entirely online, where partic-

ipants interacted with the game using their keyboard’s directional arrows to move the crosshair

and space bar to fire projectiles. The controls used in all studies are displayed in Figures 3.2

and 3.3.

Figure 3.2: Controls used in our studies. For lab-based experiments, a controller was used,
whereas online studies relied on keyboard inputs.

In all studies, participants alone were able to fire projectiles, which fact we used as a way of

measuring the extent to which participants were explicitly confirming agents’ actions. When a

projectile is fired, the following events happen:

1. A red target/cross is placed at the location where the crosshair is located. This red

target indicates where the projectile is heading and will remain there until a projectile

has reached it.

2. A projectile is travelling from the gun-tower to the red target at a fixed speed hard-coded

into the game. The speed of the projectile was calibrated after initial pilots to adjust

game elements.

3. Upon reaching the previously spawned red target, the projectile will disappear and spawn

in the same location an “explosion” in the form of a blinking circle with a fixed radius.

The blinking circle will remain in place for a set duration.
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During sessions with the agents, participants could decide to let the agent guide the crosshair,

or take over the controls and correct the agent manually. We recorded the number of times

participants took control and the duration of each takeover as a way of measuring explicit

reliance on the agents.

Figure 3.3: Experimental setup used in our lab-based studies presented in Chapters 4 and 5

3.2.3 Interface

While the majority of the elements in our game remained unchanged throughout our studies,

some visual changes and improvements were incorporated by making use of participants’ feed-

back. The most noticeable changes were brought to the game interface (see Figure 3.4 used in

the first study, and 3.5 used in all subsequent studies) where we decided to simplify three items:

1. The “lines” indicating the agent or the user was controlling the crosshair. We decided to

make them bigger and use colours (yellow for users and white for agents) depending on

which one was in charge of aiming.

2. Names and textbox messages. In the first study (see Figure 3.4), we used simple messages

when certain actions were conducted (for instance “get ready...” when the task was about

to start, “fire now!” when the agent was in position). We decided to remove them for sub-

sequent studies as the message could have distracted participants and anthropomorphised

agents in ways that would be hard to assess and control.
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3. Labels AIMING HELP (agent aiming automatically) and VISUAL HELP (agent provid-

ing visual information). These only appeared in the study presented in Chapter 7.

Figure 3.4: Early interface located at the bottom of the screen and used for our first study
focusing on agent reliability and predictability.

Figure 3.5: Most up-to-date interface located at the bottom of the screen and used in studies
2, 3 and 4.

3.2.4 Task Difficulty

In our game, we controlled the task difficulty by modifying the following variables, also presented

in Figure 3.6:

• Spawning rate of missiles (how often missiles appear from the top of the screen).

• Speed of each missile (in pixel/seconds, with faster speed requiring quicker decision-

making to destroy).

• Type of missile (threat or non-threat), which was only added for our last study presented

in Chapter 7. When describing missiles’ types, we use the term “Threat” to indicate when

a missile is heading toward a city and “Non-Threat” when it is not.

As our game is inspired by the 1980 arcade game “Missile Command” [10], we decided to

use equivalent features to control the pace and difficulty of the task. Our decision to incorpo-

rate different difficulty levels was motivated by previous HCI studies that demonstrated how

different levels of task difficulty can affect dependant variables such as cognitive load or task

performance [1]. In our game, the difficulty of each level is defined by the delay between each

missile spawning (spawn-rate) as well as their individual speed. A lower spawn-rate and faster

missiles lead to a higher degree of difficulty. For consistency reasons, the delay mentioned above

was not altered within a single round, but rather between studies in order to craft immersive

and challenging scenarios. While these changes don’t allow for between-studies comparisons in

terms of difficulty levels, we always included a “no agent” (as in, user-only, without any agent)

session in order to judge users’ skills on their own. This assessment allowed us to monitor the

individual level of performance of each user without the help of a collaborative agent, which in

turn provided information about the perceived difficulty of the task. In the studies presented

from Chapter 4 to Chapter 7, we often qualify each level of difficulty as “easy”, “medium” or

“hard” in order to compare results more easily.
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Figure 3.6: Main variables controlling the task difficulty. Each variable can be modified to
induce different levels of task complexity.

3.3 Collaborative Agents

3.3.1 Purpose & Interaction

In our experiments, we tested the impact of collaborative agents that varied in terms of their

reliability and behaviour in an explicit human-agent collaborative task. Agents helped with

the decision-making process by either guiding the crosshair towards targets (see Chapters 4, 5

and 6 and 7) or by providing visual information regarding the agent’s reasoning and/or the

environment of interaction (see Chapter 7).

We developed a series of agents each displaying different behaviours in order to study the

resulting impact on the human-agent relationship and performance. As our studies focus ex-

clusively on agents’ behaviours through their in-game decisions, we decided not to include

anthropomorphic elements such as human-like avatars or voice-enabled agents. Furthermore,

findings from studies with anthropomorphic systems are usually “highly sensitive to the human

individual in the loop” [p. 7] [59], which makes generalisation based on the results harder in

studies with a limited amount of participants. Table 3.1 presents a summary of all different

agents used in our studies. Depending on the individual study and its respective focus, variables

were modified to affect one or more of the following elements:

1. The Agent’s accuracy (how reliable it is, see Section 3.3.2).

2. The Agent’s error pattern (how easy it is to anticipate its next errors, see Section 3.3.2).

3. The Agent’s behaviour (the kind of overall behaviour that affects its capacity to detect

and target missiles, see Section 3.3.3 ).
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4. The Agent’s error types (the amount of False Positive and False Negative errors the agent

makes) (only used in the study presented in Chapter 7, see Section 3.3.3).

Table 3.1: Summary of all agents used in our different studies with their associated levels of
reliability and differences in the way they behaved and made errors.

Study
Agent

Codenames
Baseline

Reliability
Error

Pattern
Temporary Error

Behaviour
Balanced

Type 1&2 Errors

Agent 1.a 70% Systematic Biases None False
Agent 1.b 30% Systematic Biases None False
Agent 1.c 70% Random Biases None False
Agent 1.d 30% Random Biases None False

1

Agent 1.e 100% None None False

Agent 2.a 70% Random Biases Lapses False
Agent 2.b 70% Random Biases Slips False
Agent 2.c 70% Random Biases Mistakes False

2

Agent 2.d 70% Random Biases None False

3 Agent 3.a 80% Random Biases None False

4 Agent 4.a 80% Random Biases None True

3.3.2 Aiming & accuracy

Despite their differences in terms of reliability and behaviours, the process that each agent

went through in order to acquire targets and aim at them was kept the same throughout all

studies. The agent aiming accuracy or behaviour was modified depending on the research focus

of each experiment, for instance by introducing different levels of reliability and predictability

in Chapter 4 or varying the way the agents make errors in Chapter 5. This section presents

the targeting process of each agent. The following steps take place when an agent registers a

target:

1. Retrieves information about the target including its position and speed.

2. Retrieves information about the gun-tower’s position and its projectiles’ speed.

Information regarding positions are taken as 2D Vectors (with X and Y values), whereas infor-

mation regarding speed are computed as integers (speed of missiles as pixels per second). Using

the aforementioned information, the agent will then compute where best to aim in order to hit

the target. A pseudo-script presented in Algorithm 1 details the procedure.

Algorithm 1 How an agent computes an optimal targeting position. The algorithmn is largely
based on Pythagoras’ theorem, as calculations are done in a 2D space.

1: procedure getOptimalAimingPosition(target,targetSpeed,projSpeed,projRotation,delta)
2: Get the future position of the target at the next delta using its speed and rotation.
3: Get the distance to the future position of the target.
4: Compute the travel time for a projectile to hit the target given the distance to the future

position of the target and the speed of the projectile.
5: Return the position to move the crosshair to hit the target given the future position of

the target and the travel time of the projectile.
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Once the optimal target to hit a specific missile has been computed, a fixed bias can be

applied in order to skew the agent’s aiming in a random or biased direction, which in turn

controls the agent’s performance in targeting accuracy. This variance in the agent’s performance

was calculated using a random Gaussian distribution. Using a Gaussian distribution (also called

normal distribution) ensures that the accuracy of the agent is controlled throughout the task

in a consistent fashion. When computing new coordinates for the agent to move to, a fixed

σ (randomly determined using a Gaussian distribution) is used to determine the level of the

agent’s performance. The greater the variance/σ, the less accurate the agent’s aim is, resulting

in lower aiming accuracy. Figure 3.7 illustrates these changes.

Figure 3.7: Simplified representation of how different sigma values (noted σ) skew the agent’s
error margin, resulting in different levels of accuracy. The greater the value, the lower the
agent’s performance.

3.3.3 Target Awareness & Prioritisation

In addition to an agent’s aiming accuracy, another key component of the agent’s performance is

its ability to register and assign priorities to targets of importance. For studies where

all targets represented a threat (see Chapters 4, 5 and 6), the agents’ errors were manufactured

by varying the accuracy of each agent, but not their capacity to detect targets. In our final study

(see Chapter 7), we introduced False Positive and False Negative errors, where the agent would

register targets as non-threats when they were threats (False Negative error) and threats when

they were non-threats (False Positive error). Figure 3.8 shows how these types of errors are

distributed given a probability of 80% of missiles spawning as threats and 20% as non-threats.

Assigning priorities to targets is the other critical component of the agent’s targeting system,

and directly influences how reliable and predictable the agent is perceived to be by users. The
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first study (see Chapter 4) was designed with a simple priority system where the agent would

target the oldest targets as each missile spawned one at a time, travelled at the same speed and

was always aimed at a single city within one round. While this simple prioritisation system

worked for the first study, it had to be modified in subsequent studies to take into account the

presence of multiple missiles with varying speed.

For other studies (see Chapters 5, 6 and 7), multiple missiles spawned at the same time with

varying speed, which called for changes in the way the agent prioritised targets. At this point,

we implemented an algorithm that would assign priorities to targets based on their distance

from the crosshair and their distances from the cities.

For the final study (presented in Chapter 7), we introduced false positive (missiles that

do not hit cities). We decided to introduce an option to control how frequently (or not) the

agent would aim at a false positive target. More details are available in Chapter 7. Below is a

summary of all options that influenced the targeting awareness and prioritisation strategies of

the agent, along with the Chapter where these options were present.

• Multiple missiles spawning at once (see Chapters 5, 6 and 7).

• Semi-randomised missiles’ speed and targets (see Chapters 6 and 7).

• Non-threatening missile (i.e. not heading toward a city, to add False Positives to the task)

(see Chapter 7).

Figure 3.8: Distribution of agent’s errors per missile when manually inputting a target number
of False Positive and False Negative errors. Here, the examples shows a balanced distribution
of 50% False Negative and 50% False Positive errors.
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3.4 Evaluation

3.4.1 Experimental Procedure

In this thesis, we used different dependent metrics to assess human-agent collaborative scenarios

in real-time by modifying the difficulty of the task(s) and the behaviours of agents. We also

defined dependent variables to monitor and record changes in the human-agent relationship

via log-based metrics (recorded during the task) or survey instruments. Figure 3.9 presents an

overall diagram of the procedure used for all studies presented in this thesis. In all our studies

(presented in Chapters 4, 5, 6 and 7), participants were briefed on the experiment and asked

to provide consent prior to undertaking study. After completing a demographic questionnaire

and questions related to their gaming experience and trust in automation, participants were

first given a short tutorial on how to play the game. In all studies, participants were instructed

that their goal was to protect cities by destroying all incoming missiles and that agents were

there to assist with aiming. Participants were informed that they could always correct the

agents’ aim if they so desired. To reduce the learning effect, the sequence in which participants

interacted with each agent was randomised using a William Square design [193] in order to

ensure consistency in all studies. At the end of the study, participants were compensated for

their time with either a shopping voucher for lab-based studies or online payment for remote

studies.
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Figure 3.9: Experimental procedure using this framework. Both survey instruments (in blue)
and the logging of behavioural metrics (orange) were used to assess the human-agent relationship
at different points in the study.
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3.4.2 Survey-based assessment

Most reported measures designed to assess the quality of the human-agent relationship were

collected using an integrated survey system. Figure 3.10 provides an example of a question

displayed during a task. The template can be modified and adapted to fit any other rating-

scale based instrument. More details on the nature of analogue scale instruments are available

in Section 2.6.1.2.

3.4.2.1 Trust

To measure reported trust in agents in our studies, we mostly relied on the questions designed

by Jian et al. [90], available in Appendix E.2. In this survey, a series of statements has to be

rated by participants in order to elicit different attitudes relating to trust in automation. In

our work, we used either parts of Jian’s scale (see Chapter 4 and 5) or a single item scale (see

Chapter 6 and 7). In all studies, statements were presented at the end of tasks and required

participants to report their trust on Likert scales with verbal anchors that denoted a “complete

distrust in the agent” at worst (left) and a “total trust in the agent” at best (right).

Figure 3.10: Example of the in-game prompt used for self-reported measures (in the example:
trust). When prompted, questions are displayed (one at a time) and participants have to rate
statements according to verbal anchors. Numbers and extra labels can be added when needed.
The pointer has to have been clicked at least once before the user can click on Continue.

3.4.2.2 Cognitive Workload

To evaluate cognitive workload, we used the validated NASA TLX survey instrument, available

in Appendix E.3, which consists of 6 individual rating scales relating to Mental Demand, Phys-

ical Demand, Temporal Demand, Performance, Effort and Frustration. Each scale can be rated

from 0 (low) to 21 (high). This method is the most widely used means of measuring cognitive

workload [75]. In all studies, we focused on reporting the “RAW TLX” score, which consist

of aggregated Nasa TLX transposed on a 100 point scale. This technique was shown to be as

useful as weighted scores in a meta-review article by Cao et al. [18].
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3.4.2.3 Situational Awareness

Situational Awareness can be described as the capacity to locate and remember important

information to carry out a task and make predictions about future outcomes [48]. There are

three commonly used methods to measure situational awareness, namely:

1. SAGAT (Situation Global Assessment Technique) [48],

2. SART (Situation Rating Technique) [173]

3. SPAM (Situation Present Assessment Method) [45].

All methods have pros and cons. While some require freezing the task (SAGAT), others require

multi-tasking (SPAM), or the completion of a post-hoc survey (SART). A recent comparison

of all these methods [52] found the SAGAT method to be the least intrusive, and least harmful

in terms of users’ task completion performance. In this thesis, we used the SAGAT method in

Chapter 6 and SPAM method in Chapter 7. More details are presented in the relevant Chapters

(6 and 7) regarding their choice and implementation.

SAGAT [49] consists in designing a set of SA related queries related to a specific task.

During the experiment, the task is frozen, giving participants time to answer the queries.

A numerical value is then derived from each question and aggregated into an overall score

evaluating participants’ overall SA. Figure 3.11 shows the SAGAT instrument as used in our

framework.

SART [173] consists in administering a pre or post-hoc survey designed by Taylor et al. [173].

An example of the survey is available in Appendix E.4. The survey is composed of 10 questions

spread across three domains: “Attentional demand” (3 questions), “Attentional supply” (4

questions) and “Understanding” (3 questions). Participants have to rate each statement on a

7-point Likert scale from “Low” to “High”. There is also a 3-item version of SART called “3D

SART” which comprises a single statement for each of the three dimensions.

42



Figure 3.11: Implementation of the SAGAT survey instruments to evaluate Situational Aware-
ness at the first level (perception of data). When prompted, the task is immediately frozen and
hidden in the background.

3.4.3 Behavioural metrics

3.4.3.1 Performance

During gameplay, various game-specific variables are monitored to record task-performance,

both during sessions with an agent (team performance) and without (user-only performance).

The variables we are interested in are computed with the amount of shots fired, missiles de-

stroyed and shots missed. These variables are directly linked to the success of the task, with

more missiles hit leading to a greater overall performance. Below are the metrics used to study

performance with Recall, Precision and F1.

Precision =
#MssesDestroyed

#ShotsFred
(3.1)

Recall =
#MssesDestroyed

#ncomngMsses
(3.2)

F1 = 2∗
Precson∗ Rec

Precson + Rec
(3.3)

Higher precision indicates greater accuracy (fewer attempts to hit a target), while higher

recall indicates greater task performance (less damage being sustained by the cities). F1 is

the harmonic means of precision and recall and provides a combined measure of performance.

The user control time was computed as the number of seconds participants were controlling the

crosshair during each round (a greater user control time indicates less reliance on the agent).
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3.4.3.2 Reliance

In our framework, reliance is measured via user control time, which is the amount of time for

which the user controlled the crosshair in a scenario where an agent was present. The greater

the time, the lower the reliance on the agent. Similar ways of measuring reliance have been

used in other human-automation and human factors studies [14].

3.4.4 Data Visualisation and Statistical Testing

This section discusses the methodology and choices for the visualisation of quantitative data and

statistical analysis performed in all of our experimental studies. Analysis was conducted using

the Python 3 programming language [181] and several statistical libraries such as statsmodel [158],

Scipy [184] and Pingouin [178].

Throughout our experimental studies, from Chapter 4 to 7, figures and tables were used

to present quantitative results. In order to make data visualisation easier, boxplots were used

to present quantitative results as they excel at clearly showing differences between experimen-

tal conditions [195]. An example of a boxplot with added explanations of its components is

presented on Figure 3.12.

Figure 3.12: Example of a boxplot with a description of each of its components.
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The remainder of this section presents the statistical methods used to compare experimental

conditions. Before conducting any statistical comparisons, the Shapiro-Wilk test was used [162]

to test the null hypothesis that samples came from a normally distributed population with a

threshold for significance set at p = 0.05.

In the case of a normally distributed population, the following tests are conducted depend-

ing on the design of the study. For a between-groups design, a Levene’s test [104] is used to

determine whether the population is homoscedastic (equal variance) or not. If the homoscedas-

ticity test is positive, an ANOVA [67] test is performed with follow-up pairwise Tukey-HSD

tests [175], whereas if the homoscedasticity test is negative, a Welch ANOVA test [112] is

conducted with follow-up pairwise Games-Howell [64] comparisons. For Within-group studies,

repeated-measures ANOVAs [67] are used with follow-up pairwise T-tests. For mixed design

studies (within and between groups), Mixed ANOVAs [67] are used with follow-up pairwise

T-tests [199].

In the case of a non-normally distributed population, the following tests are conducted

depending on the study design employed. For comparisons involving 2 groups, Wilcoxon signed-

rank [192] tests are used in the case of repeated measures, and Mann-Whitney U tests [123] in

the case of non-repeated measures. For comparisons involving more than 2 groups, Friedman

tests [164] were employed for repeated-measures, and Kruskal-Wallis tests [122] for non-repeated

measures. In both cases, follow-up pairwise comparisons were realised using Wilcoxon signed-

rank tests for paired samples [199].

Regardless of how studies were designed, subsequent pairwise comparisons were only con-

ducted when statistically significant results were found during previous statistical modelling.

When statistically significant results are reported, Bonferroni corrections [9] were always ap-

plied. In addition, effect sizes were always reported using The Common Language Effect Size

(CLES) for both parametric and non-parametric comparisons [121].

3.4.5 Coding

During most of our user studies (see Chapters 5, 6 and 7), we asked participants for feedback at

the end of the experiment. We collected this feedback in accordance with the Critical Incident

Technique [62] where participants were asked to describe one or more positive and negative

aspects of their interaction in the study. Participants’ written feedback was then given to three

different PhD researchers to perform coding analysis on. For each coding task, specific codes

were created by the lead researcher in accordance with the research questions and focus set for

the study. When presenting results of coding analysis, Kappa scores [183] were used to assess

the internal agreement between coders.
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3.5 Study Modalities

3.5.1 Lab-based

Lab-based studies were conducted in the University of Strathclyde’s CIS department, and in-

volved one-on-one meetings with participants in offices equipped with computers to run the

framework on, and xbox360-type controllers to permit interaction with the framework. Studies

presented in Chapters 4 and 5 were conducted in a lab. For lab-based studies, a researcher was

present to verbally explain and respond to any questions a participant might have, in addition

to indicating when they had to answer certain post-hoc survey instruments.

3.5.2 Online

Online studies were conducted due to the worldwide COVID19 pandemic and our ensuing in-

ability to conduct lab-based studies. Online studies involved participants recruited on the online

crowd-sourcing Prolific© platform [33]. The Prolific platform was chosen thanks to its large

participant pool and strict regulations to promote high quality data collection and attention to

the task. Every online study was designed to be taking place without the need for a researcher

to be present. For these studies, the game was exported to WebGL which most modern browsers

can load and execute locally (via HTML5 and Javascript) by connecting to an executable of

our study apparatus located on the Strathclyde’s CIS servers. Contrary to lab-based stud-

ies where the same hardware was used for all participants, online-based studies dictated that

participants’ use their own computers, which led us to implement hardware checks to ensure

consistent experimental conditions between all participants. A one minute benchmark-test was

provided for free before advising participants to take part in the study. Only participants who

experienced more than 24 frames per seconds (FPS) at a resolution of 720p (1280 x 720 pixels)

or above were kept for further data analysis in our online studies. The frame-rate threshold

was set based on audiovisual standards [191] while the resolution cap was set based on the first

draft of the framework (see Chapter 4), which was designed at a signal format of 720p.

Compared to the lab-based studies, the online version required a more streamlined process

where participants could easily navigate between the different steps of the experiment, as re-

searchers were not present to assistant participants in tackling the study. Most of the time, the

duration of experiments was shortened in order to foster better quality of data, and a benchmark

was added to allow participants to test whether their machine could run the game properly,

before taking part in the study. In addition, in-game performance was recorded to make sure

that all participants experienced the game in comparable settings. Table 3.2 describes the main

differences between the lab-based and online-version of our study.
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Table 3.2: Comparison of the lab-based and online modalities of the framework.

Feature Lab-based Online

Access to pre,post-hoc and in-game survey YES YES
Access to the same game scenario YES YES
Logging of in-game performance YES YES
Benchmarking tool NO YES
Online logging of participants data NO YES
Researcher available to answer question(s) YES NO
Semi-structured interviews YES NO
Xbox controls YES NO
Keyboard controls NO YES
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Part II

Investigating Collaborative
Human-Agent relationships
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Chapter 4

Agent Reliability and
Predictability

4.1 Motivation

In this chapter, we explore how different levels of agent predictability and reliability influence

users in a real-time task. As we have seen in Section 2.1, many features influence the propen-

sity of a human operator to trust and rely on an automated agent. Past work has shown

that an agent’s performance (in terms of reliability) as well as an agent’s behaviour (in terms

of predictability) are positively correlated with trust [42, 129]. However, such studies have

largely been conducted in turn-based settings [34, 131] where operators and agents interact

asynchronously. Human-agent teams often work together in real-time scenarios where the trust

relationship evolves over time and is affected by various factors such as task performance and

agent behaviours [85]. Currently, there is a limited amount of work exploring the relationship

between performance, predictability and trust when agents and humans work together in real-

time collaborative settings. The study presented in this chapter answers our first Research

Question, formulated in Section 1.3: How do changes in agent predictability (how easy

it is to guess its next actions) and reliability (how good the agent is at the task)

impact the human-agent relationship? Specifically, this work seeks to address the follow-

ing sub research questions: How, at the same level of agent reliability, do changes in

the agent’s predictability affect:

• RQ1.a: the users’ task performance when interacting with agents?

• RQ1.b: the users’ reliance on the agent?

• RQ1.c: the users’ cognitive workload when interacting with the agent?

• RQ1.d: the users’ reported trust in the agent?

The work presented in this chapter is based on a previously published article entitled Inferring

Trust From Users’ Behaviours; Agents’ Predictability Positively Affects Trust, Task Perfor-

mance and Cognitive Load in Human-Agent Real-Time Collaboration [41].
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Using the collaborative framework detailed in Chapter 3, we conducted a lab-based 5

(agents) x 3 (levels of difficulty) within-subjects study with 30 participants who interacted

with five agents exhibiting different levels of reliability (more or less reliable) and predictability

(more or less predictable) in tasks of varying difficulty (easy, medium and hard). We found

that, at the same level of agent reliability, the more predictably the agent makes errors, the

greater the reported trust and task performance, and the lower the cognitive load.

4.2 Related Work

This Section presents relevant past work that has studied systems biases and trust in automated

systems. An extensive number of studies have explored ways of measuring trust in systems (see

the work of Schaefer et al. [155] for a comprehensive review). As we have seen in Section 2.1

and 2.3, most prior work has focused on assessing trust in relation to the agent’s reliability. Less

attention, however, has been paid to examining the effects of agent reliability and predictability

in real-time human-agent collaborative tasks.

In HAC scenarios, agents are generally introduced to reduce users’ cognitive workload, while

trying to improve users’ situational awareness and overall task performance [44, 56, 92, 170].

Past work has shown that an agent’s reliability and its task performance heavily influence users’

willingness to trust and rely on it. In their seminal work on the trustworthiness of command and

control systems, Sheridan et al. [165] posit that the “effectiveness” (and subsequent reliability)

of a system will influence how the operator perceives and trust a systems, and that it is possible

to quantitatively measure the development of trust. The work of Robinette et al [146] showed

that, in the case of human-robot coordination tasks, even a single error from a robot can

strongly impact the development of a person’s trust, regardless of how the robot fails at the

task. A different study by Hoc et al. [84] on human-agent cooperation in a driving task showed

that the type of automation error as well as its timing will have the most impact on how likely

operators are to understand, trust and subsequently rely on the system. In their study, Hoc

et al stress the importance of understanding the cognitive process involved in cooperating with

automation, and how a system’s failure can alter it.

In another command and control task focused on threat assessment, Fan et al. [57] tested

different levels of agent variability (using systematic biases). They found that informing par-

ticipants about the agent errors helped users to calibrate their trust accordingly, which led

to higher task performance. However, too much information related to the agent’s errors can

quickly overload users. In a related work, Chavaillaz et al. [24] investigated different levels of

agent reliability on trust, reliance and overall task performance in a turn-based X-ray scan-

ning scenario. Their results showed that, as agent reliability decreased, so too did trust in

agents. Furthermore, they found that perceived reliability (how much a person is willing to

rely on an agent’s input) is also affected by the capabilities of the automated system. In their
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studies, users’ perception of the reliability of agents was more accurate when interacting with

low-performing agents, compared to high-performing ones. In addition to studies focusing on

different degrees of reliability, the work of Shirado et al. [166] explored turn-based coordination

problems and found that error-prone agents (up to 30% loss in accuracy) could be beneficial to

collaborative performance as their presence reduced the probability of a complacent attitude

developing towards the agent.

Given the evidence of past research, it is clear that the performance of an agent (its relia-

bility) as well as the agent’s behaviour (its predictability) impact trust, but it is unclear how

precisely both of these concepts influence it. Past work in human-agent interaction [24, 57]

linked higher predictability and agent reliability to higher reported trust in the agent. In this

Chapter, based on these previous insights, we are going to study how human-agent collaboration

evolves based on the following working hypotheses:

1. H1 At the same level of agent reliability (performance), agents exhibiting systematically

biased behaviours (errors committed in a more predictable and consistent fashion) will be

trusted more than agents exhibiting randomly varied behaviours (errors that are unpre-

dictable and committed in an inconsistent way).

2. H2 As seen in previous HAI work, we hypothesise that it is possible to use behavioural

data from human-agent interactions to model and infer users’ perceived trust in agents.

The main contribution of our work lies in testing the impact of different degrees of agent

reliability on the human-agent trust relationship in real-time scenarios. We use interaction

data to model and determine how accurately reliance, agent reliability and performance can

help us predict trust in automation.

4.3 Method

To study agent reliability and predictability, we used our interactive human-agent framework

described in Chapter 3 in a lab-based study the modality of which is outlined in Section 3.5.1.

As the focus of this study is on the explicit impact of predictability and reliability, we designed

five different agents that each varied in their targeting behaviours. These behaviours were

controlled to create different levels of reliability and predictability. The resulting experiment

is a 2x2 within subjects design with 2 levels of agent reliability (low and high) and 2 levels

of agent predictability (more or less predictable). We also included “no agent” and “perfect”

agent conditions serving respectively as the baseline (no support from an agent) and upper

bound (highest agent reliability) for the experiment.
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4.3.1 Agent Reliability

Agents were designed with different level of reliability, which directly affected how good they

were at hitting targets. All agents had a certain degree of variance in their aiming accuracy

such that, for a given target, a certain degree of error would be applied to the targeting. This

variance in the agent’s performance was calculated using a random Gaussian distribution with

a fixed σ (sigma) for each level of the agent’s performance. The greater the variance (and thus

the σ), the less accurate the agent’s aim, leading to worse reliability and task performance (see

Figure 4.1).

4.3.2 Agent Predictability

In addition to variance, some agents had their aim systematically biased towards a particular

direction: (i) always above and to the right of their target, (ii) always below and to the left,

(iii) always above and to the left, (iv) always below and to the right. The direction of the

systematic bias was randomly selected for each participant at the beginning of the experiment

and kept constant during the session. By randomly selecting the direction of the bias for each

participant, we ensured that our findings were not constrained by a specific type of systematic

bias. By setting specific fixed biases, participants could learn to anticipate the error committed

by the agents. This systematic bias impacted the agents’ targeting behaviours, but not their

performance, which were only impacted by random variance.

Agent performance was calibrated using simulations where agents completed the task by

themselves (e.g. the same task without users). In these simulations, we calculated the agent’s

performance based on the Recall scores described in Section 3.4.3.1. We then used T-tests to

ensure that the performance of agents with a similar level of reliability were not significantly

different. This was to make sure that high or low degrees of predictability would not impact

agents’ reliability, thus allowing comparisons. While comparing the Recall scores of agents

Alpha and Gamma (low performing agents), a t-test yielded p > 0.05. Similarly, t-tests

performed using the Recall scores of agents Beta and Delta also yielded p > 0.05. Agents

Beta and Delta were tuned to be high performance (approx. 0.7 Recall scores or 70% of the

targets being hit), while agents Alpha and Gamma were tuned to be low performance (approx.

0.3 Recall scores, or 30% of the target beings hit).
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Figure 4.1: Visualisation of the different biases applied to the agents in the study (not to scale).
The greater the bias, the lower the accuracy of the agent. For the systematic bias, a quadrant
is randomly chosen for each participant at the beginning of a session. Low systematic bias
and low random variance or high systematic bias and high random variance result in the same
performance output.

4.3.3 Agent configurations

Using different combinations of levels of agent reliability (low and high) and predictability (more

or less predictable), we designed five different agents. Agent names were introduced to make it

easier for participants to refer to a particular agent. Agents Alpha and Beta were designed to be

more predictable with respectively a high (Alpha) and low (Beta) level of performance. Agents

Gamma and Delta were designed to be less predictable with respectively a high (Gamma) and

low (Delta) level of performance. In addition to the aforementioned agents, we also included a

perfect agent: “Epsilon” which exhibited no bias and no variance – and thus had the highest

reliability and predictability out of all of the agents.

Figure 4.2 shows the different combinations of agents used, which we refer to as: Alpha, Beta,

Gamma, Delta and Epsilon (A,B,C,D,E). Here is a summary list of the agent configurations

used in this study:
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• No Agent.

• Agent Alpha: high performance, low predictability.

• Agent Beta: low performance, low predictability.

• Agent Gamma: high performance, high predictability.

• Agent Delta: low performance, high predictability.

• Agent Epsilon: Highest performance and predictability.

Figure 4.2: Simplified representation of all agents used in this study and their respective aiming
patterns. Both agents displaying either HIGH or LOW performance are programmed with the
same accuracy, regardless of their aiming patterns.

4.3.4 Task Difficulty

During each interaction with an agent, participants went through three rounds which lasted for

90 seconds each. This duration was set so that participants had enough time to familiarise them-

selves and adapt to the agents, while ensuring that the experiment could be completed within

an hour (reducing participants’ fatigue). Each round increased in difficulty (going through
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“Easy”, “Medium” and “Hard” levels of difficulty). Here are the details about task difficulty

in this study:

• In the “Easy” level, missiles spawned every 4 seconds at a speed of 100 pixels per second

for a total of 22 missiles.

• In the “Medium” difficulty level, missiles spawned every 2 seconds with a speed of 150

pixels per second for a total of 45 missiles.

• In the “Hard” difficulty level, missiles spawned every second with a speed of 200 pixels

per second for a total of 90 missiles.

The speed and number of missiles in each level were calibrated during pilot testing with 10

participants, to make sure that changes in difficulty were noticeable without completely over-

whelming participants (see Section 4.3.5 for a more detailed description of the pilot study).

4.3.5 Piloting

Before conducting the main study, a formal pilot experiment was carried out. Ten participants

were recruited from our local Computer Sciences department. This pilot experiment focused

on calibrating the single player (no agent) experience, as well as core gameplay elements such

as the controls, visuals and overall difficulty of the game.

To evaluate participants’ performance, we used F1 scores. F1 is a metric related to partici-

pants’ overall task performance and is computed using the number of missiles participants hit,

the number of shots fired and the total number of missiles present in each level. For more infor-

mation, all of the performance metrics are detailed in Section 3.4.3.1. F1 scores varied between

0.88 for the “Easy”, 0.77 for the “Medium” and 0.46 for the “Hard” difficulty levels. As the

difference in terms of participants’ performance between the “Easy” and “Medium” levels was

low (a loss of 0.11 for F1 scores), we decided to increase the speed of missiles in the “Medium”

difficulty level to intensify its difficulty.

4.3.6 Independent and dependent variables

In this section, we summarise the independent and dependent variables used in this study and

as motivated by our experimental method and research questions.

Our independent variables are the following:

• Task difficulty, as defined by the amount and speed of missiles in each level.

• Aiming agent reliability, how accurate the agent is in its predictions (low, high or near-

perfect reliability).

• Aiming agent predictability, how predictable the agent’s actions are (low or high).
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Our dependent variables are the following:

• Task Performance, in terms of missiles hit, shots fired and missile missed.

• Reliance, expressed by the duration for which participants relied on the aiming agent’s

help.

• Trust, as reported by participants.

• Cognitive Workload, as reported by participants.

4.3.7 Experimental Procedure

Ethics approval for this study was obtained from the University of Strathclyde’s Department of

Computer and Information Sciences (Approval No. 793). The study took place in a lab located

in the University of Strathclyde Computer Sciences Department. The experimental procedure

is outlined in Section 3 and in Figure 3.9. The study lasted for approximately an hour, and

participants were compensated for their time with a shopping voucher worth £10. After being

briefed on the experiment and asked to provide consent, participants went through the following

steps:

1. Demographic questionnaire and pre-hoc surveys. (5 minutes).

2. Tutorial with and without an agent. (2 minutes)

3. Session without an agent, to record individual performance. (4 minutes 30 seconds).

4. One session with each agent (Alpha, Beta, Gamma, Delta, Epsilon). (4 minutes 30 seconds

each).

5. Post-hoc surveys. (5 minutes).

The sequence in which participants interacted with each agent was randomised using a William

Square design in order to mitigate learning effects [193]. During each session, participants

played through three rounds of low to medium and high levels of difficulty. At the end of each

round, participants were asked to rate their trust in the agents using a subset of the “Checklist

for trust in Automation” created by Jian et al [90]. At the end of each session, participants were

asked to complete the NASA Task Load Index (TLX) questionnaire [75]. Survey instruments

are present in more detail in Section 3.4.2.
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4.3.8 Demographics

Participants were recruited through mailing lists and flyers posted on our university campus.

We recruited a total of 30 participants (14M, 16F) with ages ranging from 19 to 38 years

old (M = 27 ± 5.19). Most participants were enrolled as postgraduate students. When

asked how often they played video-games on a 6 point Likert scale from 0 (never) to 6 (Very

Frequently), participants scored on average 3.63 (±1.85), indicating that they played “occa-

sionally”. Ratings from the Complacency Potential Rating Scale (CPRS) [167] were used to

evaluate general attitudes toward automation. CPRS scores ranged between 55.57 and 90.84

(M = 72.55 ± 9.3) which indicates that our sample consisted of participants who were more

likely to rely on automation than not [167]. Overall, the distribution of scores was homogeneous

enough that our sample could not be divided into different groups representing distinct atti-

tudes toward automation. The pre- and post-hoc survey instruments presented to participants

on the Qualtrics platform are available in Appendix A.

4.4 Results

In this section, we present results regarding task performance, users’ reliance on agents, reported

trust in agents and cognitive workload. We used the overall scores participants obtained at the

end of each session, across all levels of difficulty. More details on the inclusion of different

difficulty levels are available in Section 3.2.4. The statistical methods we used to compare and

report results are detailed in Section 3.4.4.

Table 4.1: Metrics related to performance (Recall, Precision and F1, higher scores = better
performance) and reliance (User control time (in seconds) higher = less reliance on the agent).
Superscript letters next to the results indicate which agents yielded significantly worse scores
(p < 0.05). Highest values are highlighted in bold.

No Agent
Agent Alpha
rel+/pred+

Agent Beta
rel-/pred+

Agent Gamma
rel+/pred-

Agent Delta
rel-/pred-

Agent Epsilon
highest reliability

Recall 0.64 ± 0.03 0.82 ± 0.02 0.60 ± 0.03 0.72 ± 0.02 0.58 ± 0.03 0.98 ± 0.01
Precision 0.57 ± 0.02 0.60 ± 0.02 0.50 ± 0.03 0.53 ± 0.02 0.47 ± 0.02 0.86 ± 0.01
F1 0.60 ± 0.02 0.68 ± 0.02 0.54 ± 0.03 0.60 ± 0.02 0.51 ± 0.03 0.91 ± 0.01
User Ctrl Time 25.12 ± 0.96 5.34 ± 0.83 24.18 ± 1.16 10.61 ± 1.09 27.68 ± 1.29 1.02 ± 0.43

4.4.1 Performance

To measure task performance, we computed Recall, Precision and F1 scores based on the num-

ber of shots fired, missiles hit and total missiles present in each level of our experiment. Recall,

Precision and F1 scores are detailed in Section 3.4.3.1. Table 4.1 and Figures 4.3, 4.4 and 4.5

show the average task performance achieved by participants with each individual agent. These

scores are averaged over all three levels of difficulty. If we consult Table 4.1, we can see that

participants achieved better Recall scores while interacting with high reliability agents (Alpha

and Gamma) than on their own (without an agent). Participants performing poorly in the no
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agent session benefited the most from this increase in performance. As expected, participants

performed the best with agent Epsilon (highest reliability and predictability) than with any

other agents, across all measures. When interacting with Alpha (high reliability, high pre-

dictability) and Gamma (high reliability, low predictability), participants were able to achieve

higher precision scores than on their own (no agent), but performed worse with Beta (low relia-

bility, high predictability) and Delta (low reliability, low predictability) across all performance

measures, yielding lower Recall, Precision and F1 scores. A repeated-measure ANOVA yielded

significant results for Recall scores (p < 0.0001, F = 51.26, np2 = 0.64), Precision scores

(p < 0.0001, F = 60.67, np2 = 0.68) and F1 (p < 0.0001, F = 59.01, np2 = 0.67).

Follow-up pairwise comparisons using pairwise T-tests yielded significant results between Alpha

(high reliability, high predictability) and Gamma (high reliability, low predictability) for Recall

(p < 0.0001, T = 6.36, CLES = 0.72), Precision (p < 0.0001, T = 4.63, CLES = 0.64)

and F1 (p < 0.0001, T = 5.42, CLES = 0.67).

Figure 4.3: Recall scores for each session. A higher score indicates a better performance. Recall
scores give a measure of how many missiles participants and agents hit. We can see that agent
Alpha (high predictability and reliability) led participants to achieve higher median Recall
scores than agent Gamma (low predictability and high reliability).
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Figure 4.4: Precision scores for each session. A higher score indicates a better performance.
Precision scores give a measure of how effective, in terms of shots fired per missile hit, partici-
pants were at the task. Overall, precision scores are higher for more predictable agents.

Figure 4.5: F1 scores for each session. A higher score indicates a better performance. F1
is a harmonised mean of Recall and Precision scores. Overall, F1 scores are higher for high
predictability agents.

4.4.2 Reliance

To measure to what extent participants relied on an agent, we computed the duration for which

each participant controlled the crosshair. Participants controlling the crosshair for a longer

period of time suggested that they relied on the agents less (and vice versa). Table 4.1 and

Figure 4.6 show the average amount of time (in seconds) participants spent in control of the

crosshair (denoted as User Ctrl Time). As expected, we observed that participants spent less
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time controlling the crosshair when working with Epsilon (highest reliability and predictability)

compared to any of the other conditions, with or without agents. In addition, participants spent

more time controlling the crosshair when collaborating with low reliability agents (Beta and

Delta) compared to high performance agents (Alpha and Gamma). A Friedman test yielded

significant results (p < 0.0001, W = 0.85) when comparing the overall user control time

between sessions. Follow-up non parametric pairwise T-tests indicated that participants relied

on the agent significantly more when interacting with agent Alpha (high reliability, high pre-

dictability) than with agent Gamma (high reliability, low predictability) with p < 0.0001,

U = 250, CLES = 0.28.

Figure 4.6: Amount of time each participant spent correcting the agents. A longer duration
indicates less reliance on the agents. At at high level of agent reliability, participants corrected
the more predictable agent (Alpha) less than the less predictable agent (Gamma).

4.4.3 Trust

To measure trust, we asked participants to rate their perceived trust in the agent with a series

of trust-related questions graded on a scale of 1 to 11, with a lower score indicating a lower

reported trust in the agent. While multiple elements were used, we focused our analysis of trust

on the ratings associated with the statement “I can trust the agent” presented in Table 4.2

and Figure 4.7. On consulting the results we notice that, on average, participants trusted

agent Epsilon (highest reliability and predictability) more than any of the other agents, which

was expected as its reliability was the highest. In addition, trust ratings of agents with low

reliability (Beta and Delta) were on average much lower than agents with high reliability (Alpha

and Gamma). When comparing answers pertaining to the reported trustworthiness of agents, a

Friedman test yielded significant results (p < 0.0001, W = 0.90). While performing follow-

up comparisons using Wilcoxon signed-rank tests, we found that participants rated Alpha
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(high reliability, high predictability) significantly higher than Gamma (high reliability, low

predictability) with p < 0.0001, U = 650, CLES = 0.72. However, no significant results

were found when comparing Beta (low reliability, high predictability) with Delta (low reliability,

low predictability). These results indicate that, at the same high level of agent reliability,

participants were more trustful of an agent with high predictability (Alpha) than an agent with

low predictability (Gamma).

Figure 4.7: Average reported trust in the agents. Higher scores indicate greater trust in the
agents. At a high level of agent reliability, participants reported a higher trust in the more
predictable agent (Alpha) than the less predictable one (Gamma).

Table 4.2: Metrics related to reported trust and cognitive load. Higher scores indicate greater
agreement with the statements. Highest values are highlighted in bold.

Question Bot Alpha Bot Beta Bot Gamma Bot Delta Bot Epsilon

I can trust the system 4.80 ± 0.26 1.27 ± 0.10 3.57 ± 0.27 1.47 ± 0.16 6.70 ± 0.13
I enjoy interacting with the system 5.20 ± 0.26 1.87 ± 0.22 4.53 ± 0.29 2.03 ± 0.26 6.13 ± 0.27
I am suspicious of the systems intent, action
or outputs

3.37 ± 0.32 5.13 ± 0.37 3.83 ± 0.33 5.67 ± 0.35 2.30 ± 0.42

The system’s actions will have a negative outcome 3.13 ± 0.28 5.70 ± 0.32 4.00 ± 0.27 6.20 ± 0.19 1.90 ± 0.34
The system provides security 4.30 ± 0.24 1.37 ± 0.13 3.80 ± 0.28 1.53 ± 0.16 6.37 ± 0.24
The system is reliable 4.13 ± 0.30 1.33 ± 0.11 3.47 ± 0.30 1.70 ± 0.23 6.67 ± 0.14
The system is very unpredictable, I never know
how it’s going to act from one moment to another

3.33 ± 0.33 5.80 ± 0.34 4.17 ± 0.30 5.53 ± 0.36 2.07 ± 0.35

How mentally demanding was the task? 51.90 ± 4.43 71.27 ± 3.99 62.86 ± 3.68 79.05 ± 2.81 23.02 ± 3.24
How hurried or rushed was the pace of the task? 51.43 ± 3.95 73.02 ± 2.77 60.32 ± 3.05 78.25 ± 2.36 34.44 ± 4.78
How successful were you in accomplishing
what you were asked to do?

65.56 ± 3.50 44.29 ± 5.26 57.46 ± 4.08 41.11 ± 4.95 92.38 ± 2.59

How hard did you have to work to accomplish
your level of performance?

52.38 ± 3.65 76.83 ± 3.25 62.06 ± 2.73 80.79 ± 2.31 24.60 ± 4.10

How insecure, discouraged, irritated,
stressed and annoyed were you?

34.60 ± 3.68 66.51 ± 5.22 42.86 ± 4.80 66.67 ± 5.29 19.52 ± 4.51

Overall RAW TLX score 51.17 ± 2.37 66.38 ± 2.15 57.11 ± 2.22 69.17 ± 1.99 38.79 ± 2.67
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4.4.4 Cognitive Load

To measure Cognitive load, we used the Nasa TLX survey instrument detailed in Section 3.4.2.2.

Higher scores indicate a greater reported workload. As presented in Table 4.8 and Figure 4.2,

we observed that participants reported a much lower cognitive load (NASA TLX scores) when

interacting with agent Epsilon (highest reliability and predictability) than with any of the other

agents. Furthermore, participants reported a much higher cognitive load when interacting with

low reliability agents (Beta and Delta) than with high reliability ones (Alpha and Gamma).

When comparing overall Raw Nasa TLX scores, a repeated-measure ANOVA yielded significant

results (p < 0.0001, F = 85, np2 = 0.75). While performing pairwise T-test comparisons,

we found that participants perceived the high reliability, high predictability agent (Alpha) as

significantly less cognitively taxing than the high reliability, low predictability agent (Gamma)

with p < 0.0001, T = −2.96, CLES = 0.40. In addition, participants found the agent with

low reliability and low predictability (Delta) to be significantly more cognitively taxing than

the agent with low reliability and high predictability (Beta) with p < 0.0001, T = −2.07,

CLES = 0.40.

Figure 4.8: Raw NASA TLX ratings for each session with agents. Higher scores indicate
greater cognitive loads. Raw TLX scores are lower for participants that interacted with the
high reliability and high predictability agent (Alpha) compared to the high reliability and low
predictability agent (Gamma).

4.4.5 Predicting Trust

In our Research Questions presented in Section 4.1, we sought to understand how different vari-

ables influenced reported trust. According to our working hypothesis presented in Section 4.2

which posited that trust can be predicted using behavioural information, we analysed corre-

lations between trust ratings, task difficulty, the reliance metric (user control time), cognitive
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workload (NASA TLX scores) and performance metrics (Precision, Recall and F1 scores). From

Table 4.4, we can see that participants’ reliance on the agents (as measured by user control

time) led to the highest correlation (ρ = −0.801, p < 0.001) followed by Cognitive Load

(Raw TLX scores) with ρ = −0.730, p < 0.001, whereas performance metrics (Recall, F1

and Precision) resulted in lower correlations ranging from 0.50 to 0.61.

In addition to analysing correlations between our main variables, we created multiple linear

regression models to determine which combinations of factors led to the best predictions of

users’ trust ratings. The selection criteria for the variables used in our models were based on

the work of Hoff et al. [85], where elements related to the development of trust are categorised

according to their impact on trust prior or during the interaction with an agent. Table 4.3 shows

the combination of factors, mean square error, and adjusted correlation coefficients for each

models. Our results show that the best performance for predicting trust ratings (R2 = 0.915)

were achieved by combining measures related to reliance (user control time), performance (the

number of shots fired, missiles destroyed and misses), task complexity and information related

to the participants’ age and reported gender. These results corroborate the findings from [85]

where elements captured during the interaction (such as performance and reliance related to

“Dynamic Learned Trust” [85]) coupled with elements captured prior to the interaction (such as

age and gender related to “Dispositional Trust” [85]) help us understand and be more accurate

in our prediction of reported trust in the agent, even though each variable does not contribute

equally to the overall quality of the predictive models.

Table 4.3: Linear regression results when predicting participants’ trust ratings by using contex-
tual (difficulty) and behavioural measures (performance and reliance). Only the most important
results are presented. A higher R2 value indicates more accurate predictions.

Parameters Total Mean Square Error Adjusted R2

User Ctrl Time, Precision, Recall, F1
Difficulty, Raw TLX, Gender, Age

2491.9 0.915

User Ctrl Time, Precision, Recall, F1,
Difficulty, Raw TLX

3244.1 0.894

User Ctrl Time, Precision, Recall, F1,
Difficulty

3890.0 0.893

User Ctrl Time, Precision, Recall, F1 4717.9 0.867
Recall 17253.2 0.793
F1 16994.9 0.781
Precision 16666.6 0.766
Age 14927.5 0.686
Gender 13634.2 0.626
Difficulty 12517.2 0.575
Raw TLX 7796.8 0.357
User Ctrl Time 1830.2 0.082
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Table 4.4: Spearman’s correlation tests between behavioural or reported metrics and trust
ratings. A higher ρ scores indicates greater correlation.

Parameter 1 Parameter 2 ρ p-value

User Control Time Trust ratings -0.801 <0.001
Raw TLX Trust ratings -0.730 <0.001
Recall Trust ratings 0.614 <0.001
F1 Trust ratings 0.553 <0.001
Precision Trust ratings 0.501 <0.001
Age Trust ratings 0.080 0.092
Difficulty Trust ratings -0.079 0.094
Gender Trust ratings -0.018 0.698
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4.5 Discussion

In this study, we have explored how agent predictability and reliability influence users’ per-

ception of agents in terms of cognitive workload and trust, as well the implications on task

performance. By conducting this study, we have provided a better understanding of the respec-

tive roles of agent reliability and predictability in human-agent collaboration and we have added

to past work that mostly focused on testing different levels of systems reliability in collaborative

tasks. This work helps us to answer our first Research Question: How do changes in agent

predictability (how easy it is to guess its next actions) and reliability (how good the

agent is at the task) impact the human-agent relationship? from the overall research

questions elicited in Section 1.3. We sought to answer the sub-research questions presented in

Section 4.1: How, at the same level of agent’s reliability, do changes in the agent’s

predictability affect:

• RQ1.a: the users’ task performance when interacting with agents?

• RQ1.b: the users’ reliance on the agent?

• RQ1.c: the users’ cognitive workload when interacting with the agent?

• RQ1.d: the users’ reported trust in the agent?

With this work, we have found that interacting with more predictable agents at a high

level of agent reliability positively contributes to the human-agent relationship in terms of task

performance, reliance on the agent, reported trust in the agent and cognitive load. Additionally,

we have also explored how different metrics correlate with reported trust in the agent. The next

sections discuss the implications of our findings related to the sub-research questions outlined

in Section 4.1.

4.5.1 Predictability in the agent’s actions

We hypothesised that, at the same level of agent reliability, more predictable agents would be

perceived as more trustworthy than less predictable ones. We found this hypothesis to be true,

but only for agents with high levels of reliability. When looking at task performance, we found

that interacting with a nearly perfect agent (agent Epsilon) led participants to achieve higher

performance and to view the agent more positively in a general sense, which was to be expected

from a highly reliable agent. When comparing the rest of the agents, however, clear differences

in users’ behaviours and perceptions were found.

With our sub-research questions presented in Section 4.1, we set out to explore how agent

predictability impacted performance, reliance, workload and trust. When comparing the agents,

we noticed that participants interacting with low reliability agents (Beta and Delta) yielded

poor overall task performance, even worse than when participants carried on with the task
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without any agent (which informs RQ1.a). These results were the lowest across all performance

indicators: F1, Recall and Precision (see Table 4.1). Moreover, participants had to compen-

sate more for the agents’ inaccuracy, as is evidenced by higher user control times, greater

reported workload and lower trust ratings (which informs RQ1.b and RQ1.d). Nevertheless,

when comparing agent Beta (low reliability, high predictability) to agent Delta (low reliability,

low predictability), we found that participants performed slightly better with agent Beta, in

addition to spending slightly less time correcting the agent and reporting significantly lower

cognitive workloads (which informs RQ1.c), even-though this was not statistically significant.

This suggests that when an agent makes errors in a systematic, predictable way, participants

are able to compensate for its inaccuracy better.

When comparing agent Alpha (high reliability, high predictability) to agent Gamma (high

reliability, low predictability), we found that participants achieved significantly higher perfor-

mance with Alpha. They also corrected agent Alpha significantly less and reported signifi-

cantly lower workload. These results further suggest that when an agent’s behaviour is more

predictable, participants could not only better compensate for the agents’ imprecision, but also

adapt and work with the agent better, resulting in an overall better task performance.

Overall these findings suggest that, in the case of imperfect automation, predictability in the

way an agent makes errors is important. That is to say, even if it makes a number of errors, an

agent with high predictability allows users to adapt better and quicker to its behaviour, which

results in higher reported trust in the agent, as well as better task performance and reduced

cognitive load.

4.5.2 Factors influencing trust

We further hypothesised that it is possible to infer trust in an agent using information collected

during human-agent interactions. To investigate this area, we first sought to determine which

factors were the most important to predict participants’ perceived trust in agents. Table 4.4

shows correlations between trust ratings and other variables monitored in our study. While

previous work hypothesised that performance is the most important predictive factor regarding

users’ trust in agents [85], our results show that the different performance indicators used in our

study (F1, Recall and Precision) correlate only moderately with trust ratings. Moreover, our

findings reveal that reliance, expressed by the amount of time users spent correcting the agents,

was the metric most correlated with trust, which is in line with previous work [46,103]. However,

we found that cognitive load (in the form of Raw Nasa TLX scores) was more strongly correlated

with users’ reported trust in the agents than task performance. This finding is consistent with

other work that focused on predictive decision-making, where cognitive load was found to be

affected by trust, reliance and the overall difficulty of the task [6, 201]. To further explore

which combinations of factors could predict trust ratings best, we performed several multi-

linear regressions. We achieved the best results (see Table 4.3) by using data related to users’
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reliance on the agents, performance scores and the difficultly of the task. These findings suggest

that it is important to consider both performance and reliance metrics in order to infer users’

trust in an agent more effectively. Moreover, we demonstrated that it is possible to predict

users’ trust ratings with a high degree of accuracy.

4.6 Conclusion

In this study, we set out to explore the relationship between trust, agent predictability and

agent reliability in a real-time collaborative scenario. To achieve this, we designed a within-

groups study where participants completed a series of aiming tasks with the help of different

collaborative agents. Our findings were aimed at answering our first Research Question: “How

do changes in agent predictability (how easy it is to guess its next actions) and reliability (how

good the agent is at the task) impact the human-agent relationship?”

We found that, at the same level of performance, participants reported higher levels of trust

in agents that were more predictable than less predictable agents. However, as the agents’

reliability decreased, participants were less trusting of them, regardless of their predictability.

In addition, participants achieved better performance and reported lower cognitive load with

systematically biased agents compared to agents with more variance, especially when agents’

performance level was high.

These findings further highlight the importance of predictability and consistency in the

design of potentially error-prone agents, and how it impacts human-agent collaboration in real-

time. Furthermore, our study investigated whether it was possible to infer trust ratings based on

participants’ interactions. Our findings show that while performance indicators are important,

in the context of real-time collaboration, participants’ reliance on agents is a better predictor

of trust. These findings suggest that it is possible to develop methods that can monitor trust

in automation over time, and that such methods could be used by agents to better adapt to

individual users. However, to develop trust-aware agents, we need to find ways of recording

real-time operationalised metrics of reliance, and explore what other factors, beyond system

reliability, affect users’ perceptions of agents.
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Chapter 5

Agent Errors and Behaviours

5.1 Motivation

In this Chapter, we are focusing on how different types of agent errors can influence human-agent

collaboration. We designed a study where participants interacted with different automated

agents that performed similarly, but made errors in different ways. We then analysed how

different types of agent errors, at the same level of agent reliability, influence the human-agent

partnership.

Our understanding of imperfect agent behaviours and its impact on trust is limited. As we

have seen in Chapter 4, the behaviour of an agent and in particular the predictability of its

actions can greatly influence how users will perceive and be willing to engage with it. When

studying agent behaviours, most past work has focused on agent reliability and its impact on

task performance, but less on the different ways in which an agent can fail at a task. The

work of Marinaccio et al. [118] defined different error types, describing how each was identified

and investigated in past work, and how best to mitigate their negative effect on users. Largely

inspired by their taxonomy, we decided to run a follow-up study to the work presented in

Chapter 4 and explore how different agent behaviours impact the human-agent relationship

within our human-agent collaborative framework. More details on our usage of their taxonomy

is available in Section 5.3.1.

With this work, we address our second Research Question, presented in section 1.3: How

do different types of agent errors defined from previous related work such as slips,

mistakes and lapses affect the human-agent relationship? As in our study on agent

reliability and predictability in Chapter 4, we sought to investigate how different types of agent

errors influence:

• RQ2.a: the users’ task performance when interacting with agents?

• RQ2.b: the users’ reliance on the agent?

• RQ2.c: the users’ cognitive workload when interacting with the agent?
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• RQ2.d: the users’ reported trust in the agent?

The work presented in this chapter is an extension of the paper entitled Impact of Agents’

Errors on Performance, Reliance and Trust in Human-Agent Collaboration [37].

We conducted a lab-based 4 (types of agent errors - no error, slips, mistakes and lapses)

x 2 (difficulty levels - easy or hard) within-subjects experiment with 24 participants. The

main contribution of this work lies in testing whether, at the same level of agent reliability,

different types of agent errors have a noticeable impact on users. Our results show that, when

agents perform the same, agent errors are perceived differently and change the way participants

interact with agents. For instance, slips and mistakes are more harmful to performance than

lapses while slips are more harmful to reliance than mistakes.

5.2 Related Work

5.2.1 Agent Reliability and Errors in HAI studies

This Section presents relevant past work that has studied trust in agents and, in particular, how

to categorise the way automated systems can fail at a task. In most human-agent collaboration

scenarios, particularly safety-critical scenarios, it is assumed that agent reliability is one of the

most important factors that will contribute to an individual’s propensity to trust and rely on

an agent, alongside other factors such as “stress levels” or “task complexity”, as described by

Grawbowski et al. [73]. The work of Hoc et al. [84], investigated agent support in a driving

scenario and stated that “if human–machine interference is perceived as costly, without gain in

terms of performance, the driver may unconsciously by-pass automation” [82]. The relationship

between agent performance and trust has been investigated by manipulating agent behaviours

in several ways. For instance, while Correia et al. experimented with an agent that suddenly

stop working in a collaborative game assignment [34], other studies experimented with false-

alarms errors in a human-agent collaborative X-ray scanning task [125], or introduced systematic

biases in an agent’s decision-making capabilities during a collaborative control-and-command

scenario. [57]. Despite taking place in different environments with dissimilar populations, both

the aforementioned studies discussed the idea of “trust aware” agents, where transparency goes

both ways and where the user and agent calibrate their expectations iteratively, over time.

However, little attention was brought to specific types of agent failure, and how they impact

the human-agent team decision-making process.

5.2.2 Defining errors

Any flaw in the decision-making capabilities of an agent that results in loss of performance

can be understood as an “error”. The work of Salem et al. [150] found that the type of error

an agent makes (breach of privacy, violations etc.) has an impact on the way users perceive
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the agent, and will affect the extent to which users are willing to rely on it in subsequent

interactions. In the context of Human-Agent interactions, “error” is a broad term as agents

can err in different ways and for different reasons. The work of Marinaccio et al. proposes four

distinct types of errors: mistakes, lapses, slips and violations [118] (see Table 2.1) derived from

human-human interactions studies [145] in which different types of errors are defined by the

violation they represent. While these errors all stem from studies focusing on human-human

interactions, they were also conceptualised in the context of human-agent interactions, notably

in healthcare by Kim et al. [94]. The framework proposed by Marinaccio et al. [118] is an

important step towards a better understanding of users’ relationships with automation systems

for the following reasons:

• It provides definitions and examples of known automation failures based on prior work in

both human-human and human-agent settings.

• It defines automation error in a context-specific manner, which provides researchers with

a template for defining other agent-related incidents in different domains.

• It lists potential effective trust “repair techniques” to prevent further damage caused

by automation failures. Each repair technique is justified by prior work, such as the

healthcare study by Kim et al. [94].

In the HAI literature, a number of studies have empirically tested the effect of automation

errors on human participants in an effort to try and understand how to best define and prevent

their failures. The work of Baker et al. [11] provides a comprehensive review of the potential

future avenues in HRI and HAI, and makes use of the framework by Marinaccio et al. [118] to

highlight the necessity of studying context-specific definitions of automation errors and effective

repair mechanisms. In their article, Baker et al. make relevant recommendations for future

research, including “Adapting existing trust research to investigate how robots features affect

trust” [11, p. 20]. Following on from this recommendation, we believe that more research should

look at the explicit impact of different kinds of agent errors on the human-agent relationship,

and how users react and adapt to these errors, over time. Our work seeks to investigate this

area by using a framework that allows us to manipulate agent errors and monitor changes in

reliance and performance during human-agent collaborative tasks.

Given evidence from past work that defined and assessed different kinds of agent errors as

well as methods to repair their damage [118, 145], we expect error types to have an influence

on users’ behaviour and perception of the agent despite comparable levels of agent reliability.

More precisely, we are going to study human-agent partnership under the following working

hypotheses:

1. H1 Agent errors will always have a negative impact on task performance, no matter their

type.
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2. H2 Agent errors that are harder to detect (mistakes) will have a greater impact on task

performance and reliance than agent errors that are easier to anticipate (lapses).

The main contribution of our work lies in testing different types of agent errors and assessing

their influence on human-agent collaboration in terms of behavioural changes and perception

of the agents.

5.3 Method

As with all studies conducted in this thesis, we used the human-agent collaborative framework

presented in Section 3 in its lab-based form, as described in Section 3.5.1 where we modified

and created new agent behaviours and errors to answer our research questions. In this iteration

of our framework, each participant interacted with 4 different agents (within-groups study) in

2 levels of difficulty, where each agent displayed one particular type of erroneous behaviour

defined as slips, lapses, mistakes or none. More information about agent errors is available in

Section 5.3.1).

Figure 5.1: Abstract representation of the different errors each agent made. Mistakes are errors
of priority, Lapses result in no response from the agent and Slips are experienced as an extreme
loss of accuracy.

5.3.1 Agent Errors

The focus of this study is in testing the effect of agents displaying different behaviours and mak-

ing different errors defined as “slips”, “mistakes” and “lapses”, all derived from the taxonomy of

errors provided in Table 2.1, which is inspired by the work of Marinaccio et al. [118]. As further

detailed in Section 5.2, we rely on the taxonomy of agent error by Marinaccio et al. which

consists of 4 main error types: “Slips”, “Lapses”, “Mistakes” and “Violations”. We decided
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against creating a “violation” type of error, as our task takes place in an explicit human-agent

collaborative scenario, where the agent is assumed to be acting in the best interests of the user.

All agents created for this study were derived from a baseline agent named “Gamma” that

did not display any specific errors, and achieved an average of 80% Recall on the overall task.

The 20% loss in Recall was achieved by adding random biases in its aim, as presented in

Section 3.3.2. For the rest of the error-prone agents presented below (agents Delta, Epsilon

and Zeta), errors were triggered once every two rounds for a total duration of 30 seconds (half

the duration of a level) so that they would be noticeable. To ensure consistency, all agents

triggered their errors at the same time, for each participant. We verified that the types of

error each agent displayed did not result in changes in reliability by ensuring that they did

not significantly affect agents’ Recall scores during simulations. During comparisons of Recall

scores, an ANOVA yielded p = 0.68 when comparing the performance of all error-prone agents

in the Easy difficulty, and p = 0.15 in the Hard difficulty levels, indicating that there was no

significant difference between error types in terms of agent reliability. A simplified diagram of

the different types of agent behaviour is available in Figure 5.1.

5.3.1.1 Mistakes - Agent Delta

To test the effect of mistakes, we designed agent “Delta”. When the behaviour of this agent

is triggered, the agent becomes incapable of focusing on one target at a time and instead

“bounces” back and forth between available targets while never completely reaching them.

This behaviour was created to simulate an explicit error of “planning”, most commonly defined

as “mistakes” [118,145].

5.3.1.2 Lapses - Agent Epsilon

To test the effect of lapses; we designed agent “Epsilon”. When the behaviour of this agent is

triggered, the agent simply becomes unresponsive and stops working, showing no sign of activity

at all. This behaviour simulates an error of “omission”, commonly linked to “lapses” [118,145].

5.3.1.3 Slips - Agent Zeta

To test the effect of slips; we designed agent “Zeta”. When the behaviour of this agent is

triggered, this agent becomes extremely inaccurate, barely capable of hitting any target as its

aim would always be too far off. This behaviour simulates an error of “commission”, commonly

linked to “slips” [118,145].

5.3.2 Task Difficulty

Each participant played with all agents (within-groups study) in sessions lasting for 60 seconds

per level. Task difficulty in terms of the number of missiles to hit and their speed was fixed for

the “Easy” and “Hard” levels across all sessions, with or without agents. In all of the sessions,
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the first levels (1 and 2) were set to have an “Easy” difficulty while levels 3 and 4 were set to

have a “Hard” difficulty (with a total of 2 minutes per difficulty level). Here are details about

the difficulty settings used in this study:

• In the “Easy” level, 2 missiles spawned every 6 seconds at a speed of 60 pixels per second

for a total of 30 missiles.

• In the “Hard” level, 2 missiles spawned every 3 seconds with a speed of 120 pixels per

second for a total of 60 missiles.

Each error-prone agent triggered their respective erroneous behaviour (slips, lapses or mistakes)

during one of the “Easy” and “Hard” levels from T=30s to T=60s. In order to mitigate the

learning effect, a William Square design [193] was used to control the order in which participants

interacted with the agents.

5.3.3 Independent and dependent variables

In this section, we summarise the independent and dependent variables used in this study and

as motivated by our experimental method and research questions.

Our independent variables are the following:

• Task difficulty, as defined by the amount and speed of missiles in each level.

• Aiming agent reliability, which remained high (80% accuracy) for each agent when no

error was triggered.

• Aiming agent error types, which were all triggered at the same time and were defined as

“slips”, “mistakes” and “lapses”.

Our dependent variables are the following:

• Task Performance, in terms of missiles hit, shots fired and missiles missed.

• Reliance, expressed by the duration for which participants relied on the aiming agent’s

help.

• Trust, as reported by participants.

• Cognitive Workload, as reported by participants.

5.3.4 Experimental Procedure

The study was approved by the University of Strathclyde Computer and Information Sciences

Departmental Ethics Committee (Ethics Application No. 1029). The experiment took place in a

lab, located in the University of Strathclyde’s Computer and Information Sciences Department.

We used a lab-based 4 (types of agent errors - no specific error (baseline 80% accuracy), slips,
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mistakes and lapses) x 2 (difficulty levels - easy or hard) within-subjects design including

2 baseline conditions: (1) no agent (individual performance), and (2) agent with constant

performance (upper bound). The general experimental procedure is outlined in Section 3 and

in Figure 3.9. At the end of the study, participants received a £10 shopping voucher. After

consenting to take part in the study, participants went through the following steps:

1. Pre-hoc surveys and demographic questionnaire. (5 minutes) (see Appendix B).

2. Tutorial with and without an agent. The agent purposely stopped working so participants

could understand that they might need to watch out for errors and take control when

required (2 minutes).

3. One session without any agent (4 minutes).

4. One session with each agent (4 minutes each).

5. Post-hoc surveys (5 minutes) (see Appendix B).

After each level, participants were presented with a subset from the Checklist for Trust be-

tween People and Automation questionnaire [90] which contained questions pertaining to trust,

dependability, reliability, deceptiveness, wariness, confidence and security. In addition, after

each session, participants had to complete NASA TLX rating scales [76]. More details about

each survey instrument can be found in Section 3.4.2. Prior to the experiment, participants

were told that each agent had different behaviours, but no further detail was provided in order

to avoid biases. The information sheet can be consulted in Appendix B.

5.3.5 Demographics

24 participants (13 M, 11 F) took part in our lab-based study, with ages ranging from 18 to 40

years old (M = 26± 5.01). Most participants (13) had completed a bachelor’s degree, while 6

had obtained a Master’s degree and the remaining 5 were high school graduate or equivalent.

When asked about how often participants played video-games on a 6 points Likert scale from 0

(never) to 6 (Very Frequently), participants scored on average 4 (±1.82, indicating that they

played “occasionally”. The pre and post-hoc survey instruments presented to participants on

the Qualtrics platform are available in Appendix B.

5.4 Results

In this section, we present results regarding task performance, users’ reliance on agents, reported

trust in the agents and cognitive workload. We used the overall scores participants obtained at

the end of each session, across all levels of difficulty. More details on the inclusion of different

difficulty levels are available in Section 3.2.4. The statistical methods we used to compare and

report results is detailed in Section 3.4.4.
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Table 5.1: Metrics related to task performance and reliance on the agents. Higher Recall,
Precision and F1 scores indicate a better performance while higher User Control Time indicate
less reliance on the agent. Highest values are highlighted in bold for each element.

No Agent
Gamma
(baseline)

Delta
Mistakes

Epsilon
Lapses

Zeta
Slips

Recall 0.79 ± 0.02 0.89 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.86 ± 0.01
Precision 0.63 ± 0.01 0.60 ± 0.01 0.60 ± 0.01 0.64 ± 0.01 0.61 ± 0.01
F1 0.69 ± 0.02 0.71 ± 0.01 0.70 ± 0.01 0.73 ± 0.01 0.71 ± 0.01
User Control Time 24.88 ± 0.61 10.40 ± 1.04 15.25 ± 0.91 13.15 ± 0.78 13.44 ± 0.85

5.4.1 Performance

Figures 5.2, 5.3, 5.4 and Table 5.1 present summary statistics for each session, where Recall,

Precision and F1 scores were used to assess the performance of the participants and agents

during each session as described in Section 3.4.3.1. Looking at Figure 5.2 and Table 5.1, we

can see that participants performed better while interacting with agents than when completing

the task themselves, a fact made especially apparent with Recall scores. In addition, Recall

scores are noticeably higher for sessions with an agent not displaying any particular type of

error, but these differences are not significant. A Friedman test yielded significant results

for Recall (p < 0.0001,W = 0.34) scores, but further comparisons using Wilcoxon signed-

rank tests did not yield any significant results. When performing a repeated measure ANOVA

test on F1 scores, significant results were found (p < 0.0001, F = 3.917, np2 = 0.08).

Subsequent pairwise T-test comparisons indicated that F1 scores with agent Gamma (mistakes)

were significantly lower than Epsilon (lapses) with p = 0.0479, T = 2.08, CLES = 0.63,

while F1 scores with agent Delta (mistakes) were also found to be significantly lower than with

agent Epsilon (lapses) with p = 0.044, T = −2.12, CLES = 0.37. Tests on Precision scores

are not included as they did not yield important information that tests on Recall or F1 scores

do not already provide.
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Figure 5.2: Recall scores for each session with or without agents. A higher score indicates
better performance. Overall, participants benefited from the addition of an agent, regardless
of its error type.

Figure 5.3: Precision scores for each session with or without agents. A higher score indicates
better performance. Overall, the presence or absence of an agent, regardless of its error type,
did not affect participants’ Precision scores in any important way.
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Figure 5.4: F1 scores for each session with or without agents. A higher score indicates a better
performance. Participants interacting with agent Epsilon (lapses) managed to achieve higher
performance than in any other condition.

5.4.2 Reliance

Participant control times were compared, that is, the amount of time participants chose to

control the crosshair themselves instead of leaving the agents in charge of aiming, correcting

the agents’ inputs. The longer the participant control time, the lower the reliance on the agents.

From consulting Figure 5.5 and Table 5.1, we notice that participants, unsurprisingly, controlled

the crosshair much less when interacting with agents than without, no matter whether the agent

displayed errors or not. Furthermore, agent Gamma (no error) was corrected less than any other

erroneous agent, with agent Delta (mistake) being corrected more than agent Epsilon (lapses)

and agent Zeta (slips). When analysing User Control Times, a repeated-measure ANOVA test

yielded significant results (p < 0.0001, F = 61.63, np2 = 0.74). Follow-up pairwise T-tests

indicated that participants relied on agent Delta (mistakes) significantly less than they did on

agent Gamma (no error type) with p < 0.0001,T = 5.52,CLES = 0.71, Epsilon (lapses)

with p =,U =,CLES = or Zeta (slips) with p < 0.0001,T = 2.22,CLES = 0.61. In addition,

participants relied on agent Zeta (slips) significantly less than they did on agent Gamma (no

error type) with p < 0.0001,T = −4.32,CLES = 0.33.
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Figure 5.5: User Control Time for each session with or without agents. A higher score indicates
lower reliance on the agent. As expected, the agent without any error type (Gamma) induced
more reliance on its inputs than any other agent.

Table 5.2: Ratings given to statement related to cognitive load and reported trust in agents.
Higher values indicate greater agreement with the statement or higher reported rating for
questions. Highest values are highlighted in bold.

Question No Agent
Gamma
(baseline)

Delta
Mistakes

Epsilon
Lapses

Zeta
Slips

I can trust the agent n/a 64.15 ± 2.35 44.65 ± 2.72 44.19 ± 2.69 46.67 ± 2.47
The agent is deceptive n/a 44.96 ± 4.58 48.50 ± 5.74 58.96 ± 5.06 47.46 ± 4.17
I am wary of the agent n/a 53.42 ± 5.03 59.04 ± 5.58 61.17 ± 5.54 60.88 ± 4.90
I am confident in the agent n/a 52.92 ± 4.67 34.62 ± 4.36 32.96 ± 3.06 37.54 ± 4.02
The agent provides security n/a 55.71 ± 4.31 40.38 ± 5.30 36.50 ± 4.35 42.21 ± 5.16
The agent is dependable n/a 61.29 ± 3.13 40.27 ± 3.51 40.35 ± 3.21 44.96 ± 3.43
The agent is reliable n/a 63.00 ± 3.26 40.33 ± 3.49 44.06 ± 3.46 43.79 ± 3.41

How mentally demanding was the task? 62.90 ± 4.70 54.96 ± 5.20 57.34 ± 6.12 52.98 ± 5.83 51.19 ± 5.02
How physically demanding was the task? 45.83 ± 6.12 41.27 ± 6.36 47.42 ± 6.37 44.05 ± 6.21 41.87 ± 6.31
How hurried or rushed was the task? 74.60 ± 4.81 55.16 ± 5.13 61.90 ± 5.59 56.55 ± 5.47 62.30 ± 5.18
How successful were you in
accomplishing your level
of performance?

64.29 ± 4.35 58.93 ± 3.84 71.63 ± 4.15 65.08 ± 4.05 63.10 ± 4.22

How hard did you have to
work to accomplish your
level of performance?

71.83 ± 3.76 56.55 ± 4.66 61.71 ± 4.77 59.72 ± 4.73 61.90 ± 4.05

How insecure, discouraged,
irritated stressed, and
annoyed were you?

48.81 ± 5.36 50.00 ± 5.02 58.93 ± 6.05 51.79 ± 6.10 55.16 ± 5.28

Overall RAW TLX score 61.38 ± 3.54 52.81 ± 3.72 59.82 ± 4.54 55.03 ± 4.40 55.92 ± 3.97

5.4.3 Trust

At the end of each session or level, participants had to rate the agents based on their perceived

trustworthiness, dependability, whether they provided security or if participants perceived the

agent as being deceptive. From looking at Figure 5.6 and Table 5.2 and the ratings given

to the statement “I can trust the agent”, we can clearly see that participants, on average,
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perceived agent Gamma (no error type) as more trustworthy than any of the other error-prone

agents. In addition, agent Zeta was rated as the most trustworthy of all error-prone agents.

When analysing the ratings given to the statement “I can trust the agent”, a Friedman test

yielded significant results (p < 0.0001,W = 0.30). Follow-up non parametric pairwise T-

tests indicate that participants perceived agent Gamma as significantly more trustworthy than

any other agents with p < 0.0001 yielded during each test. Table 5.3 presents correlations

between reported trust ratings and various other behavioural factors linked to reliance, task

performance or reported cognitive load. Overall, correlation scores are weak, with Recall scores

(measure of performance in terms of target hit) having the highest ρ value with 0.36 points. In

close second is Cognitive Workload, with a correlation to Raw TLX scores of -0.32 points.

Figure 5.6: Participant ratings for the statement “I can trust the agent” for each session with
agents. A higher score indicates greater trust in the agent. Participants trusted the agent
without any error type (Gamma) the most, followed by the agent with the “slips” error type
(Zeta).

5.4.4 Cognitive Load

At the end of each session, participants had to fill in a Nasa TLX workload questionnaire.

Raw NASA TLX scores are used in this study as they were proven to be as effective as their

weighted counter-part [75]. From consulting Figure 5.7 and Table 5.2, we can observe that,

on average, interacting with an agent was perceived to be less cognitively taxing than without

any agent at all, no matter the behaviour displayed by the agent. When comparing the agents

displaying erroneous behaviours, collaborating with agent Epsilon (lapses) seemed to result in

a comparatively low cognitive load, while collaborating with agent Gamma (no error) resulted

in the lowest cognitive load of all. When comparing Raw TLX scores, a repeated ANOVA

test yielded significant results with p = 0.01, F = 3.52, np2 = 0.13. Follow-up pairwise
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T-tests found that participants reported a significantly lower cognitive load when interacting

with agent Gamma (no error) than with agent Delta (mistakes) with p = 0.0194, T = 2.51,

CLES = 0.59.

Figure 5.7: Raw TLX score for each session. A higher score indicates a greater reported
cognitive load. Among the error-prone agents, the agent with the “mistakes” error type led to
the highest reported cognitive load.

Table 5.3: Spearman’s correlation tests between behavioural or reported metrics and trust
ratings. A higher ρ scores indicates a greater correlation.

Parameter 1 Parameter 2 ρ p-value

Recall Trust ratings 0.3638 <0.001
RAW TLX Trust ratings -0.3247 0.0012
F1 Trust ratings 0.2715 <0.001
Task Difficulty Trust ratings -0.2604 <0.001
User Control Time Trust ratings -0.2515 <0.001
Precision Trust ratings 0.1758 <0.001
Age Trust ratings -0.1514 0.0029
Gender Trust ratings -0.0361 0.4808

5.4.5 Participants’ Feedback

At the end of each session, in accordance with the Critical Incident Technique [62], partici-

pants were asked to write about the positive and negative aspects of each agent, and what

improvement(s) they would suggest. We then performed qualitative coding to understand how

agent errors were perceived by participants. More details about coding analysis are available in

Section 3.4.5. After being presented with definitions of “lapses”, “mistakes” and “slips”, three

PhD students in Strathclyde Computer Sciences department were recruited and given the task

of coding the “positive”, “negative” and “improvement” feedback given by each participant
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regarding agents. Internal agreement scores (Kappa scores [183]) were used to interpret partic-

ipants’ feedback in relation to agent behaviour. The Kappa score obtained for coding feedback

related to “mistakes” was 0.5243 (perceived as “Moderate” [183]), with an internal agreement of

78.73%. The agent most frequently associated with mistakes was, correctly so, Delta, with the

most common occurrences being “target(s)” (91 occurrences), “prioritise” (24 occurrences), “fo-

cus” (23 occurrences), “confused” (21 occurrences) or “struggle” (14 occurrences). The Kappa

score obtained for “lapses” was 0.5493 (perceived as “Moderate”), with an internal agreement

of 91.84%. The agent most frequently associated with lapses was, correctly so, Epsilon with

the most common occurrences being “sometimes stops” (37 occurrences), “not working” (17

occurrences) or “stopped” (10 occurrences). The Kappa score obtained for “mistakes” was

0.2109 (perceived as “fair”), with an internal agreement of 77.34%. The agent most frequently

associated with slips was, correctly so, Zeta, with the most common occurrences being “aim”

(23 occurrences), “accurate” (21 occurrences) or “accuracy” (18 occurrences). Overall, these

results indicate that participants clearly and correctly recognised the “lapses” and “mistakes”

error types while “slips” was harder to differentiate from the rest.

5.5 Discussion

In this study, we examined the effect of different erroneous agent behaviours designed using

past work in human-human and human-automation research [118, 145]. This study sought to

answer our second Research Question presented in Section 1.3: How do different types of

agent errors defined from previous related work such as slips, mistakes and lapses

affect the human-agent relationship?. We sought to answer the sub-research questions

presented in Section 5.1, namely how different types of agent errors influence:

• RQ2.a: the users’ task performance when interacting with agents?

• RQ2.b: the users’ reliance on the agent?

• RQ2.c: the users’ cognitive workload when interacting with the agent?

• RQ2.d: the users’ reported trust in the agent?

Our analysis of the results showed that, at the same high level of agent reliability, different

types of errors (namely: “slips”, “lapses” and “mistakes”) affected users’ reliance on the agents,

as well as task performance, cognitive workload and trust in different ways. From looking at

the results presented in Section 5.4, it is clear that participants preferred to interact with agent

Gamma (no error), as Gamma was deemed more trustworthy than any other agent in terms of

reported trust (which informs RQ2.d) while resulting in a lower cognitive workload than any of

the error-prone agents. These results were to be expected, as the agent maintained a constant

and predictable level of performance throughout the whole study. Error-prone agents, however,

influenced the human-agent relationship in more varied ways.
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5.5.1 Lapses, Errors of omission

We expected that agent errors that were harder to detect (mistakes) would have a greater im-

pact on task performance and reliance than agent errors were easier to anticipate (lapses). This

hypothesis was correct, as lapses led to most changes in reliance and performance compared to

the slips and mistakes error types. When looking at the results, it is apparent that participants’

interactions with the agent displaying lapses (error of omissions) led to the biggest changes in

the human-agent relationship. While agent Gamma (no error) led participants to achieve the

best task Recall scores (see Figure 5.2), participants interacting with agent Epsilon (lapses)

managed to achieve higher Precision (see Figure 5.3) and F1 scores (see Figure 5.4) on average,

indicating that they performed with higher accuracy and needed fewer attempt to hit targets

when interacting with an agent making errors of omission (which informs RQ2.a). In addition,

we also observed that participants corrected agent Epsilon (lapses) less frequently than Gamma

(no error) in terms of individual user corrections (see Table 5.1), thus relying more on agent

Epsilon (which informs RQ2.b). However, on average, participants corrected agent Epsilon

(lapses) for significantly longer periods of time than they did agent Gamma (see Figure 5.5)

(which informs RQ2.b). We hypothesise that, in order to match Gamma’s performance (no

error), participants had to involve themselves more in the aiming process. This increased in-

volvement resulted in fewer corrections (see Table 5.1) than with the baseline agent Gamma (no

error), but for longer periods of time (see Figure 5.5), as the errors caused by Epsilon (lapses)

were easier to spot and, in turn, fix. As a result, participants actually managed to perform bet-

ter with Epsilon than with Gamma (no error). However, while doing so, participants reported

a significantly higher cognitive workload (see Figure 5.7) due to the higher number of actions

they were obliged to carry out. Participants’ overall perception of Epsilon (lapses) was also

significantly more negative in all of the reported measures (see Section 5.4.5), which informs

RQ2.c. Agent Epsilon (lapses) was still perceived as being helpful, as participants reported

significantly lower cognitive workload when interacting with it, compared to sessions without

any agent. This result could indicate that participants were more tolerant of an agent commit-

ting lapses, as this type of error seems to be easier to notice. When looking at participants’

feedback for each of the agents, we can also observe that the agent most frequently associated

with “lapses” is agent Epsilon (lapses), with many references to its tendency to “stop” or to

suddenly “stop working”.

5.5.2 Slips and Mistakes, Error of commission and intention

We expected agent errors to have a negative impact on task performance, no matter their type.

This hypothesis was proved incorrect for the “slips” type of agent error. Among the other

error-prone agents, noticeable differences were found when studying participants’ reactions to

agent Delta (mistakes) and agent Zeta (slips). In terms of performance, Delta’s F1 score (see
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Figure 5.4), the lowest among all the agents, is significantly lower than Epsilon’s F1 score (which

address RQ2.a). This decrease in performance goes with a decrease in reliance, as participants

corrected agent Delta (mistakes) for significantly longer periods of time (see Figure 5.5) than

any of the other agents; error-prone or not (which informs RQ2.b). These findings indicate that

an agent making mistakes is harder for participants to correct than an agent having lapses.

Interactions with agent Delta resulted in the worst performance and reliance scores, which

in turn led to higher cognitive workloads (see Figure 5.7, the highest among all agents and

sessions), with a statistically significant difference when compared to the cognitive workload

associated with agent Gamma (no error) (which informs RQ2.c).

5.5.3 Perception of the agents

From the qualitative coding (see Section 5.4.5), most of the negative descriptions associated

with agent Delta were adequately coded as resulting from “mistakes”, with recurring terms

such as “confused”, “targets” or “prioritise”, highlighting how indecisive the aim of the agents

was perceived to be. These observations suggest that participants were well aware of how and

when Delta was making mistakes, which led them to rely on it less, and to rate it as less

dependable and less reliable than any of the other error-prone agents. The scores obtained

by participants interacting with agent Zeta (slips) seem to place it in the middle of the other

error-prone agents in terms of performance (F1 scores, see Figure 5.4) and participant reliance

(user control time, see Figure 5.5). Nonetheless, the number of participant corrections for

agent Zeta (slips) was both the highest among all the agents and significantly higher than for

Epsilon (lapses). Participant control time was also found to be significantly lower than for Delta

(mistakes) and higher than for Gamma (no error).

5.6 Conclusion

In this study, we explored the impact of different types of agent errors and behaviours on users

in a real-time collaborative scenario. To do so, we designed different kinds of agent errors

based on a taxonomy from the work of Marinaccio et al. [118], namely: “lapses” (errors of

omission), “slips” (errors of commission) and “mistakes” (errors of prioritisation). Our findings

were aimed at answering our second Research Question: “How do different types of agent errors

defined from previous related work such as slips, mistakes and lapses affect the human-agent

relationship?”

While all error types adversely affected the way users interacted with agents, each had a

different impact on the dependant variables we examined. For instance, “lapses” made partic-

ipants more alert and even led them to perform better than the baseline agent, while “slips”

were perceived as harder to correct, and “mistakes” had the overall worst impact on both per-

ception of the agent and task performance. These results indicate that participants felt the
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need to correct the agent making slips (Zeta) more than any other agent, however these cor-

rections were shorter than those for the agent making mistakes (Delta). Overall, the increase

in user corrections for Zeta (slips) came with an increase in cognitive workload, as Zeta was

found to be the most cognitively taxing agent. Nonetheless, the slips displayed by Zeta were

still perceived as less cognitively taxing than the mistakes displayed by Delta. When looking at

participants’ feedback, agent Zeta was most often coded as displaying “slips”, albeit with the

lowest Kappa score (0.21) of all the other agent errors. Participants still perceived differences

in the way agent Zeta behaved, mainly mentioning issues in the “accuracy” displayed by the

agent. In order to make up for Zeta’s accuracy, participants had to constantly adjust the aim

themselves. However, out of all the error-prone agents, Zeta was rated as the most dependable,

as providing the most security and as being the most trustworthy agent.

Our findings suggest that clearly defining the type of error made by an agent can be useful

in anticipating the impact it can have on users. As a result, we posit that when designing

collaborative agents likely to give imperfect input, it is best to avoid indecisiveness, and that,

in most circumstances, a total lack of input is preferable to indecisive or inaccurate information.
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Chapter 6

Visual Uncertainty

6.1 Motivation

In this chapter, we focus on the environment of interaction and its impact on human-agent col-

laboration. More specifically, we investigate whether limiting the amount of visual information

required to successfully complete a task can have an effect on the human-agent partnership.

As we have seen in Chapters 4 and 5, the behaviour and reliability of an agent largely affect

how users are willing to interact with the system. However, the environment of interaction

also plays an important role on the effectiveness of the human-agent collaboration, as restricted

access to information can directly affect the outcome of a task, which may be disruptive to the

human-agent partnership as well.

Previous research on the topic of trustworthy automation has often focused on the design

of the agents themselves, by studying the effect of their reliability on users [57] or by adding

more information about their actions and reasoning [93, 124], as an attempt to help mitigate

adoption issues. In a study about human-agent teamwork, Van et al. [182] suggest that task

complexity changes users’ attitudes towards agents in terms of trust and fairness of judgement.

As we have seen in Section 2.1, many elements influence how users perceive an agent. While

most studies have researched how agent features influence the perceived trustworthiness of a

system and how to reduce the uncertainty inherent in interacting with an agent [174,198], fewer

works have researched how uncertainty stemming from the environment of interaction affects

the development of trust, over time.

This study seeks to answer our third Research Question presented in Section 1.3: How do

different types of environmental conditions (static or moving), which impair vision

and induce uncertainty, affect the human-agent relationship? Specifically, we sought

to answer the following sub-research questions: how Visual Environmental Uncertainty that

restricts, occludes or hides visual information from the user influences:

• RQ3.a: how well the human-agent team performs on a task.

• RQ3.b: how much the user trusts and relies on the agent.
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• RQ3.c: situational awareness in relation to the users’ trust in the agent.

The work presented in this chapter is an extension of the paper entitled Investigating the Impact

of Visual Environmental Uncertainty on Human-Agent Teaming [38].

Using the collaborative framework detailed in Chapter 3, we conducted an online-based 4

(types of visual uncertainty) x 2 (levels of difficulty) mixed-design experiment with 96 partici-

pants. In this study, four different types of visual environmental uncertainty covering the screen

and hiding information (within-subjects) were used as conditions, between two different levels

of task complexity (between-subjects). Participants interacted with the same agent throughout

the experiment to complete a goal-oriented task in our interactive human-agent framework.

Our findings indicate that human-agent collaboration can be greatly influenced by different

types of visual uncertainty. For instance, participants trusted the agent more and relied on it

more when visual uncertainty was at its highest, despite a loss in task performance. On the

contrary, some visual uncertainty that reduced the amount of time participants had to react

actually increased task performance.

6.2 Related Work

In HAI, uncertainty is often studied in terms of the transparency of an agent’s actions [198],

but uncertainty can also arise from the environment in which the human-agent interaction takes

place. As previously discussed in Section 2.4.2, uncertainty refers to a lack of certainty about a

piece of information or a result. As evidenced by a study on trust under visual clutter by Sacha

et al. [149], while a significant amount of work has gone into evaluating different techniques to

manage visual uncertainty [160], very few studies have focused on how visual impairments, in

terms of visual clutter or occlusions, affect users’ attitude towards automated systems [101].

To understand and define visual uncertainty, it is useful to look at other disciplines. For

instance, past work in Geographical studies has thoroughly defined and researched artefacts that

impede users’ vision, such as “blurry surfaces” or “dark patterns”, as defined by MachEachren

et al. [116]. All these patterns, lead, in turn, to the creation of visual occlusions. These

occlusions are composed of a shape and a position the combination of which can, in turn,

create “occlusions” as defined by VanLier et al. [180]. The resulting occlusions create a “virtual

structure” when two or more shapes merge together [180], effectively preventing vision in a

particular part of the visual space. Occlusions and the overall masking of visual information can

have different effects on people. For instance, an occlusion that restricts peripheral awareness in

such a way that attention is only focused on a specific area is called tunnel vision [79,115,172].

Tunnel vision, as explained in the work of Ma et al. [115], reduces information input and

increases the amount of effort required to gain information, as people affected by tunnel vision

have to scan the visual space while being impaired by a narrower field of view. Tunnel vision

is a phenomenon that can either be artificially produced by occluding the field of view, as seen
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in a study by Ma et al. [115] or Mackworth et al. [115, 117], or be the result of deteriorating

cognitive or physical capabilities [194].

HAI can occur in many different scenarios of various task complexity where information

required to perform the task successfully can be unavailable or partially missing. Such settings

often consist of search-and-rescue or monitoring tasks, often involving multiple agents such as

UAV survey assignments [4, 29]. In these contexts, visual uncertainty can take many forms,

whether it stems from a lack of information or the obstruction of visual information. The

concept of Situational Awareness (SA), as described in Section 2.6.3, is useful in evaluating how

well users can perceive information to inform their decisions. Situational Awareness is used to

evaluate how much information users understand, and how well they can use this information

to anticipate future outcomes [49] and carry out their task. Ideally, an effective collaborative

agent should increase reported SA by increasing users’ task knowledge while not increasing

their cognitive workload [26]. In HAI, evaluating SA represents a good way of studying how

visual uncertainty derived from occlusions can affect users and their attitude towards an agent.

As little work has investigated the impact of visual uncertainty in a human-agent collabora-

tive task, we would like to address this gap by employing an interactive human-agent framework

in which different types of visual uncertainty are present, and study the resulting impact on

the human-agent relationship. Given the evidence of past research, it is likely that visual im-

pairments will heavily impact on user performance. It is less clear, however, how the same

impairments will influence trust and reliance on an agent. In this Chapter, we look at how

human-agent collaboration evolves in the context of visual uncertainty with the following work-

ing hypotheses:

• H1 According to past work in trust on automation and transparency, visual uncertainty

will negatively affect users’ trust in the agent.

• H2 The types of visual uncertainty that hide the most amount of information will have

the most significant impact on situational awareness and trust.

• H3 Participants will rely and trust the agent more when a type of visual uncertainty

forces them to react more quickly.

The main contribution of our work lies in testing the impact of different types of visual uncer-

tainty on the human-agent relationship in a real-time scenario.

6.3 Method

This study was conducted using our interactive human-agent collaborative framework described

in Section 3. As opposed to studies presented in Chapters 4 and 5, this study was conducted

online. Modalities for online-based experiments are presented in Section 3.5.2.
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6.3.1 Visual Uncertainty

We designed four types of visual uncertainty (one visual uncertainty type per condition). Every

type of visual uncertainty obstructs visibility and visual information in a different way. Each

impairment lasted for the same amount of time (half the duration of one level) and all were

triggered at the same time, for each participant. Figure 6.1 presents an abstract representation

of the visual uncertainty used in our study while Figure 6.2 showcases the actual implementation

as seen in our framework. We named these visual occlusions as follows:

• Top Disruption: 50% of the upper part of the screen is hidden (see Figure 6.2c). This

type of uncertainty is static, and was designed to place participants in a situation where

waiting to see the missiles that had recently spawned would reduce the amount of time

they had to react.

• Bottom Disruption: 50% of the lower part of the screen is hidden (see Figure 6.2d).

This static type of uncertainty was designed to force participants into memorising and

making predictions on the future position of missiles based on where they spawned and

at which speed.

• Moving Clouds: the bottom and top of the screen are alternatively hidden in a con-

tinuous manner. Both of the clouds present in Figure 6.2a move across the sky from left

to right, always hiding 25% of the top and 25% of the bottom of the screen (i.e. 50% in

total). This type of uncertainty is more dynamic in nature, and users were able to achieve

a higher level of situational awareness if they decided to wait in order to obtain better

visibility.

• Darkness: the totality of the screen is obscured (see Figure 6.2b), and only a specific area

around the cross-hair is made visible to give users a minimum amount of feedback on their

actions. This type of dynamic uncertainty was designed to constrain the user’s focus on

one single spot on the screen, creating a “tunnel vision” effect. This condition was designed

to test whether participants would completely rely on what the agent was showing them

or would try to scan the area manually to increase their situational awareness.
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Figure 6.1: Abstract representation of the different types of visual obstruction used in this
study. Each obstruction results in occlusions that are either near-complete or partial and static
or fixed.

(a) (b)

(c) (d)

Figure 6.2: All of the different types of visual uncertainties used in this study. (a) “Top
Disruption” and (b) “Bottom Disruption” occlude, respectively, the upper and bottom-most
parts of the screen while (c) “Clouds” occludes the top and bottom alternatively and (d)
“Darkness” obscures the totality of the screen except for the immediate proximity of the cross-
hair, producing tunnel-vision.
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6.3.2 Task Difficulty and Complexity

Two groups were recruited for this study. The first group experienced a “low” level of task

complexity (fewer and slower missiles over both difficulty levels) while the second experienced a

“high” level of task complexity (more and faster missiles in both difficulty levels). We chose to

include these two levels of complexity as past studies have shown that situational awareness is

affected by the number of elements that need to be monitored [49,52]. Each participant played

through all four visual uncertainty conditions in sessions lasting for 90 seconds per difficulty

level (defined as “easy” and “high” - relative to the task complexity participants were recruited

for). Similarly to previous studies, participants were able to adjust the crosshair themselves

and were responsible for firing projectiles. Within each group (low or high complexity), we

controlled the difficulty of the task based on 2 variables: (1) the speed of each missile and

(2) the delay between the spawning of each missile. Here are more details about the difficulty

settings used in this study for both task complexity groups:

1. Low task complexity group:

(a) In the “Easy” levels, 1 missile spawned every 6 seconds at a speed of 60 pixels per

second (15 missiles in total).

(b) In the “Hard” difficulty levels, 1 missile spawned every 3 seconds with a speed of

140 pixels per second (22.5 missiles in total).

1. High task complexity group:

(a) In the “Easy” levels, 3 missiles spawned every 5 seconds at a speed of either 30 or

50 pixels per second (random selection) for a total of 54 missiles.

(b) In the “Hard” difficulty levels, 3 missiles spawned every 4 seconds with a speed of

either 60 or 80 pixels per second (random selection) for a total of 67 missiles.

The number of missiles spawning at once as well as their speed was calibrated using pilot

studies, in order to make sure that the task was perceived as “easier” or “harder” depending

on the level of task complexity and difficulty. In addition, the performance of the agent was

calibrated through test simulations where the agent played by itself to ensure that, no matter

the level of complexity, it would always get an average Recall score of 0.7 over the “easy” and

“hard” levels of difficulty. Each level (either difficulty) lasted for 90 seconds. This duration was

set so that participants had enough time to interact with the agent in each condition, while

ensuring that the entirety of the experiment could be completed in about 45 minutes, thus

reducing participants’ fatigue and fostering higher attention levels throughout the online-based

study.
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6.3.3 Agent Performance

The exact same agent was used in all conditions where an agent was present, no

matter the type of uncertainty, level of difficulty or complexity of the task. The

agent’s level of reliability was set to an average accuracy of 80%, similar to the agent used in

Chapter 5.

6.3.4 Independent and dependent variables

In this section, we summarise the independent and dependent variables used in this study and

as motivated by our experimental method and research questions.

Our independent variables are the following:

• Task difficulty, as defined by the amount and speed of missiles in each level.

• Task Complexity, which was mainly defined by the amount of missiles spawning at once

during a level. We divided the recruitment of participants into two groups, one experi-

encing a lower and the other a higher level of task complexity.

• Aiming agent reliability, which remained high during all conditions.

• Visual uncertainty, which were occluding visual information and were divided into four

different entities referred to as “clouds”, “darkness”, “top disruption” and “bottom dis-

ruption”.

Our dependent variables are the following:

• Task Performance, in terms of missiles hit, shots fired and missile missed.

• Reliance, expressed by the duration for which participants relied on the aiming agent’s

help.

• Trust, as reported by participants.

• Cognitive Workload, as reported by participants.

• Situational Awareness, as inferred using participants’ attempts to remember how many

important elements (in this study, missiles) were present in the top and bottom half of

the screen before it was occluded (see Section 3.4.2.3 for more explanations).

6.3.5 Experimental Procedure

This study was approved by the University of Strathclyde Computer and Information Sciences

Departmental Ethics Committee (Ethics Application No. 1177). Recruitment was limited

to people residing in the UK, where our experimental apparatus was hosted. Limitations on

the minimum hardware required to take part in the study was put in place to ensure that
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participants experienced equivalent experimental conditions. Only data from participants that

experienced an average frame-rate above 24 frames per second with a resolution of at least

720p were kept in our dataset for further analysis (more details available in Section 3.5.2).

A one minute bench-marking test was provided before users consented to take part in the

study. This test was designed in order to filter out participants that did not meet hardware

requirements. Final recruitment was conducted online on the Prolific©web based experiment

platform, where participants received £5.50 for undertaking the experiment (45 minutes in

length). Once registered, each participant went thought the following steps:

1. Demographic and pre-hoc survey. (five minutes) (available in Appendix C).

2. Tutorial aimed at understanding the controls of the game and how to interact with the

agent. (two minutes).

3. Session with an agent. (three minutes).

4. Session without an agent. (three minutes).

5. Four sessions, with each one having a unique type of environmental visual uncertainty

(the order of which was randomised using a latin square design [15]) in which cognitive

workload, trust and situational awareness surveys were presented. (three minutes each).

6. Post-hoc survey collecting participants’ feedback. (five minutes) (available in Appendix C).

During the study, participants completed NASA TLX rating scales, which are 6-item survey

instruments extensively used to measure cognitive workload [75]. In this study, RAW TLX [18]

scores are reported. To measure trust in the agent, we used a single statement at the end of

each round: “I can trust the agent” graded on a 7 point Likert scale from 1 (complete distrust

in the agent) to 7 (total trust in the agent) adapted from the work of Jian et al. [90]. To

measure Situational Awareness, we used the Situation Awareness Global Assessment Technique

(SAGAT) [49], which involves freezing the task, hiding all elements present on the screen and

asking participants different questions related to the location of items of interest. Due to the

nature of the study, we chose to assess “Level 1” situational awareness only, which consists of

knowing where to find information [53]. In our study, we asked participants how many missiles

were present in the top- and bottom-most parts of the screen. More information about the

survey instruments detailed here can be found in Section 3.4.2.

6.3.6 Demographics

96 participants (53M, 41F, 2 Non-Binary) were recruited for this study, with ages ranging from

21 to 31 years old (M = 25±2.4). In terms of education levels, most participants (n = 44) held

at least a bachelor’s degree. When asked how often they played video-games, most participants

(n = 29) reported playing “Occasionally”.
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6.4 Results

In this Section, we present results regarding task performance, users’ reliance on agents, reported

trust in the agents, cognitive workload and situational awareness. We used the overall scores

participants obtained at the end of each session, across all levels of difficulty and across the two

level of task complexity. More details on the inclusion of different difficulty levels are available

in Section 3.2.4, while more explanations regarding the inclusion of different task complexity

levels can be found in Section 6.3.2. The statistical methods we used to compare and report

results is detailed in Section 3.4.4.

Table 6.1: Metrics related to performance and reliance recorded during the task. Higher recall,
precision and F1 scores indicate a better performance while a higher user control time indicates
lower reliance on the agent. Highest values are highlighted in bold.

No Agent Agent
Agent
Clouds

Agent
Darkness

Agent
Top Dis.

Agent
Bottom Dis.

Recall 0.75 ± 0.02 0.77 ± 0.01 0.74 ± 0.01 0.72 ± 0.02 0.79 ± 0.01 0.72 ± 0.02
Precision 0.65 ± 0.02 0.57 ± 0.01 0.50 ± 0.01 0.56 ± 0.02 0.57 ± 0.02 0.50 ± 0.02
F1 0.69 ± 0.02 0.64 ± 0.01 0.58 ± 0.01 0.62 ± 0.02 0.66 ± 0.01 0.58 ± 0.02
User Ctrl Time 34.47 ± 0.57 24.01 ± 0.87 23.71 ± 0.95 22.51 ± 0.88 25.13 ± 0.95 22.34 ± 0.94

6.4.1 Performance

To calculate performance, we used Recall, Precision and F1 scores which are all computed

using metrics related to the success of the task as described in section 3.4.3.1. Tables 6.1 and

Figure 6.3 present an overview of the performance scores recorded in the study. As we can

see from consulting Table 6.1 and Figure 6.3 participants performed better while interacting

with an agent in terms of Recall scores and slightly worse in terms of F1 scores. When visual

uncertainty was added, participants’ performance dropped slightly, with the exception of the

“Top Disruption” condition which actually saw an increase in performance.

A Mixed ANOVA test for Recall scores yielded significant results at all levels: complexity

(p < 0.0001, F = 7.11, np2 = 0.07), visual uncertainty type (p < 0.0001, F = 9.07,

np2 = 0.09) and interaction effect (p < 0.0001, F = 1.34, np2 = 0.01). Follow-up

pairwise T-tests showed that Recall scores during session with the “Top Disruption” were

significantly higher than during sessions featuring other types of visual uncertainty: “Bottom

Disruption” (p < 0.0001, T = −6.37, CLES = 0.38), “Clouds” (p < 0.0001, T = −6.23,

CLES = 0.39) and “Darkness” (p < 0.0001, T = −4.71, CLES = 0.41).

A Mixed ANOVA test for F1 scores yielded significant results at all levels: complexity (p <

0.0001, F = 0.77, np2 = 0.15), visual uncertainty type (p < 0.0001, F = 20.42, np2 =

0.78) and interaction effect (p < 0.0001, F = 2.66, np2 = 0.10). as with Recall scores,

Follow-up pairwise T-tests indicate that participants yielded significantly higher Precision scores

under “Top Disruption” than under any other type of visual uncertainty: “Bottom Disruption”
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(p < 0.0001, T = −6.49, CLES = 0.37), “Clouds” (p < 0.0001, T = −6.65, CLES =

0.39) and “Darkness” (p < 0.0001, T = −2.33, CLES = 0.45).

Figure 6.3: Recall scores for each session with or without agents. A higher score indicates better
performance and a higher number of missiles hit. While a higher complexity level led to worst
overall performance, participants in the “Top Disruption” condition performed better than in
any other condition with visual uncertainty.

Figure 6.4: Precision scores for each session with or without agents. A higher score indicates a
better performance and that fewer attempts were required to hit missiles. Similarly to Recall
scores, participants in the “Top Disruption” condition performed better than in any other
condition with visual uncertainty.
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Figure 6.5: F1 scores for each session with or without agents. A higher score indicates a better
performance. Overall, the presence of an agent actually led to overall worse performance in
terms of F1 scores compared to sessions without any agent.

6.4.2 Reliance

User control time was recorded as the amount of time for which participants corrected agents

for (in seconds). A higher user control time indicates lower reliance on the agent. Tables 6.1 and

Figure 6.6 present user control times for all sessions. As anticipated, participants controlled the

crosshair longer when no agent was present. In general, participants seem to have corrected the

agent for much longer periods of time when experiencing any kind of visual uncertainty, with a

peak being reached under the “Top Disruption” condition at a high level of task complexity.

A Mixed ANOVA test for user control times scores yielded significant results at all levels:

complexity (p < 0.0001, F = 9.78, np2 = 0.11), visual uncertainty type (p < 0.0001,

F = 35.24, np2 = 0.30) and interaction effect (p < 0.0001, F = 2.26, np2 = 0.03).

Follow-up pairwise T-tests showed that participants in the “Top Disruption” condition relied on

the agent significantly less than in the “Darkness” (p < 0.0001, T = −2.73, CLES = 0.42)

and “Bottom Disruption” (p < 0.0001, T = −2.38, CLES = 0.43) conditions.

95



Figure 6.6: User Control Time for each session. A higher score indicates lower reliance on the
agent. Among all of the sessions with an agent, participants relied on the agent the least in the
“Top Disruption” one.

Table 6.2: Average scores related to reported Trust and Cognitive Workload. Highest values
are highlighted in bold.

Question / Statement No Agent Agent
Agent
Clouds

Agent
Darkness

Agent
Top Dis.

Agent
Bottom Dis.

I can trust the agent n/a 3.49 ± 0.13 3.83 ± 0.12 4.11 ± 0.13 3.90 ± 0.13 3.64 ± 0.12

How mentally demanding was the task? 14.08 ± 0.46 14.02 ± 0.45 14.46 ± 0.48 14.67 ± 0.49 14.12 ± 0.48 14.48 ± 0.49
How physically demanding was the task? 45.24 ± 2.52 49.12 ± 2.72 54.46 ± 2.75 53.13 ± 2.72 50.15 ± 2.55 54.17 ± 2.82
How hurried or rushed was the task? 70.63 ± 2.06 71.33 ± 1.95 71.73 ± 2.10 69.97 ± 2.14 69.05 ± 2.09 71.13 ± 2.15
How successful were you in
accomplishing your level
of performance?

39.73 ± 2.57 42.96 ± 2.52 38.79 ± 2.48 35.84 ± 2.42 43.70 ± 2.71 36.51 ± 2.46

How hard did you have to work to
accomplish your level
of performance?

72.22 ± 1.69 66.52 ± 2.16 68.60 ± 2.14 68.57 ± 2.09 67.41 ± 1.91 69.10 ± 2.00

How insecure, discouraged, irritated,
stressed and annoyed were you?

58.33 ± 2.78 61.95 ± 2.71 65.67 ± 2.68 62.41 ± 2.61 59.82 ± 2.67 64.53 ± 2.50

Overall Raw TLX score 57.23 ± 1.17 58.38 ± 1.30 59.85 ± 1.36 57.98 ± 1.27 58.03 ± 1.17 59.09 ± 1.26

6.4.3 Trust

Between each level and after each session, participants were asked to indicate how much they

trusted the agent by rating statements graded from 0 (low trust) to 7 (high trust). These

statements and associated ratings are presented on Table 6.2. For the study of trust, we are

referring to ratings related to the following statement: “I can trust the agent”. Table 6.2 and

Figure 6.7 present ratings given to the agent for each session. We can see that trust in both low

and high levels of task complexity seems to be higher under visual uncertainty than without any

type of visual uncertainty. In addition, Table 6.3 presents correlations between trust ratings

(under the column“Parameter 2”) and other variables recorded in this study (under the column

“Parameter 1”). By consulting Table 6.3, we can observe that, overall, correlations between

dependant variables and trust ratings are low. The behavioural proxy for reliance (recorded as
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“user control time”) holds the best negative correlation score with trust ratings with a ρ score

of -0.30.

A mixed ANOVA yielded significant results for the following levels: visual uncertainty type

(p = 0.0004, F = 5.14, np2 = 0.004) and interaction effect (p = 0.0130, F = 3.20,

np2 = 0.05) but not for task complexity (p = 0.53, F = 0.38, np2 = 0.03). Follow-up

pairwise T-tests indicated that participants in the “Darkness” condition reported significantly

more trust in the agent than in the “Bottom Disruption” condition (p = 0.001, T = 3.37,

CLES = 0.58).

Figure 6.7: Reported Trust scores per session, where a higher score indicates greater reported
trust in the agent. Participants reported higher trust levels in the “Clouds” condition compared
to any other type of visual uncertainty.

6.4.4 Cognitive Workload

After each session, participants were asked to fill in a NASA TLX questionnaire [75] aimed at

understanding their cognitive workload. Tables 6.2 and Figure 6.8 present RAW TLX scores,

which are aggregated scores used to estimate the overall cognitive load a person reported after

completing a task. Looking at Figure 6.8 we can see that participants reported a higher cognitive

workload when interacting with an agent under visual uncertainty.

A mixed ANOVA yielded significant results for the following levels: task complexity (p =

0.0096, F = 6.99, np2 = 0.07), interaction effect (p = 0.0091, F = 3.10, np2 = 0.02)

but not the visual uncertainty type (p = 0.1807, F = 1.52, np2 = 0.03). No statistically

significant differences were found in follow-up pairwise comparisons.
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Figure 6.8: Reported Cognitive Load per session. A greater Raw TLX score indicates a more
cognitively taxing experience. Overall, the level of task complexity affected reported Raw TLX
scores the most.

6.4.5 Situational Awareness

To study situational awareness, we froze the task mid-way through and asked participants to

report how many missiles were present in each half of the screen. We then subtracted their

answers from the actual number of missiles present on the screen. Thus, a score of 0 means

that they guessed the exact number of missiles, while a score of -2 or +2 means that they,

respectively, underestimated or overestimated the missile count by 2. The total difference

between guesses and the actual number of missiles is presented in Figure 6.9. We can observe

that participants were more likely to make accurate guesses when interacting with an agent than

when playing without one. However, the type of error participants made was influenced by the

type of environmental uncertainty they encountered; for instance, participants operating under

the “Darkness” condition recorded the largest range of under or overestimations. Figure 6.9

presents situational awareness results related to the bottom half of the screen only. We can

observe that the “Bottom Disruption” and “Top Disruption” scores are very different, with the

“Top Disruption” leading to more overestimations than the “Bottom Disruption”, which led to

more under-estimations.

A mixed ANOVA test yielded significant results on the following levels: task complexity

(p = 0.0117, F = 6.59, np2 = 0.05), visual uncertainty type (p = 0.0068, F = 3.24,

np2 = 0.01) but nothing significant on interaction effect (p = 0.5571, F = 0.79, np2 =

0.01). Follow-up pairwise T-tests showed that participants underestimated the number of

missiles present in the bottom half of the screen significantly more when the bottom of the

screen was hidden under the “Bottom Disruption” (p = 0.0106, T = 2.60, CLES = 0.65)
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condition than when the top of the screen was hidden under the “Top Disruption” condition

(p = 0.0106, T = 2.60, CLES = 0.65).

Figure 6.9: Situational Awareness scores. The closer a score is to 0, the better the participants’
situational awareness is. The top-most plot presents overall situational awareness scores while
the bottom-most plot presents SA scores related to elements located in the bottom half of the
screen. The “Top Disruption” led to more under-estimations while the “Bottom Disruption”
led to more over-estimations.

Table 6.3: Spearman’s correlation tests between behavioural or reported metrics and trust
ratings. A higher ρ scores indicates greater correlation.

Parameter 1 Parameter 2 ρ p-value

User Control Time Trust ratings -0.3058 <0.001
F1 Trust ratings -0.1497 <0.001
Task Difficulty Trust ratings -0.1455 <0.001
Precision Trust ratings -0.1355 <0.001
Gender Trust ratings -0.1179 <0.001
Raw TLX Trust ratings -0.1003 0.0284
Age Trust ratings -0.096 0.007
Recall Trust ratings -0.0783 0.0153
SAGAT Total Difference Trust ratings -0.0773 0.0166

6.4.6 Participants’ Perceptions

At the end of the experiment, participants were presented with a description of each type of

visual uncertainty they encountered and were then asked to report how each condition affected

their “ability to play and rely on the agent”. Qualitative coding was performed on the result-

ing dataset by 3 independent coders with no previous involvement in the study. Codes were

created to look for particular changes in the way participants perceived their task performance

or reliance on the agent. More details on coding analysis are available in Section 3.4.5. The

codes used in this study were the following: “Increased Reliance on the agent”, “No Change to

Reliance”, “Decreased Reliance on the agent”, “Better Performance”, “No Change to Perfor-

mance” “Lower Performance”. Internal agreement scores (Kappa scores [63, 183]), agreement
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scores and the number of references used for each code per visual uncertainty condition are

presented in Table 6.4.

If we consult Table 6.4, we can observe that the “Increased Reliance on the agent” code

was the most commonly used, with the highest number of references across all conditions.

In addition, its associated kappa scores were always considered “fair to good”, as they were

found to be consistently above 0.41 [63]. This denotes that people were aware of being more

reliant on the agent to varying degrees for each visual uncertainty they faced. The other

code heavily employed is “Lower Performance”, with a much higher frequency than any other

code pertaining to performance (with “fair to good” Kappa scores), indicating that each visual

uncertainty heavily impacted participants’ perception of how successful they were at completing

the task. When comparing participants’ feedback for each session, we can observe differences in

terms of the codes most used. For instance, the “Clouds” type of visual uncertainty resulted in

the highest amount of references used than any other visual uncertainty type, denoting a more

varied reaction.

Table 6.4: Results from qualitative coding analysis on post-hoc surveys data asking participants
to report how each condition changed their reliance on the agent and ability to play. The highest
Kappa scores for each visual uncertainty type are in bold.

Visual Uncertainty Code References Agreement score Kappa score

Increased Reliance on agent 213 89.34% 0,54
Lower performance 118 91.15% 0,48
Better performance 31 94.59% 0.18
No change to reliance 22 95.89% 0.04
Decreased reliance on agent 27 96.39% 0.16

Darkness

No change to performance 12 95.89% 0.37
Increased Reliance on agent 153 87.86% 0.38
Lower performance 102 92.03% 0.51
Decreased reliance on agent 62 93.49% 0.29
Better performance 37 96.27% 0.24
No change to reliance 34 94.49% 0.02

Clouds

No change to performance 30 96.21% 0.16
Increased Reliance on agent 108 93.30% 0.41
Decreased reliance on agent 72 92.31% 0.34
Lower performance 68 93.73% 0.45
No change to reliance 49 95.19% 0.25
Better performance 43 95.63% 0.35

Top Disruption

No change to performance 36 96.31% 0.40
Increased Reliance on agent 147 88.20% 0.39
Lower performance 121 88.72% 0.44
No change to reliance 43 94.38% 0.15
Decreased reliance on agent 39 94.39% 0.07
Better performance 24 95.99% 0.25

Bottom Disruption

No change to performance 21 96.84% 0.46

6.5 Discussion

In this study, we explored how Visual Uncertainty was impacted users during an interactive

human-agent collaborative task. We designed an experiment comprising four different types
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of visual uncertainty, each occluding visual information in different ways, and tested their

impact on the human-agent relationship. This study sought to answer our third Research

Question: How do different types of environmental conditions (static or moving),

which impair vision and induce uncertainty, affect the human-agent relationship?

from our overall research questions highlighted in Section 1.3. With our sub-research questions,

we were concerned about the role of visual uncertainty regarding:

• RQ3.a: how well the human-agent team performs at a task.

• RQ3.b: how much the user trusts and relies on the agent.

• RQ3.c: situational awareness in relation to the users’ trust in the agent.

Our results indicate that visual uncertainty, in addition to having a negative impact on task per-

formance, can also alter the way users are willing to rely on and trust an agent in a collaborative

task.

6.5.1 Trust under Visual Uncertainty

By referring to prior work related to trust in automation and transparency, we anticipated

that uncertainty in the environment would have a negative effect on how participants trusted

the agent (see hypotheses presented in Section 6.2). We found evidence to suggest that this

is not the case in all situations. When comparing trust ratings (see Figure 6.7), we found

that participants reported significantly higher levels of trust in the agent under the “Darkness”

type of uncertainty than any other type of uncertainty (which informs RQ3.b). This finding

is surprising, as trust is a construct that is calibrated through interactions [43, 85], and should

benefit from the added transparency found in an environment with perfect visibility. We believe

that participants trusted the agent more in such conditions because of the extensive nature of the

“Darkness” type of uncertainty, which effectively covered all the whole screen except for a “halo”

around the crosshair. In a situation where participants wanted to obtain greater situational

awareness, they could have bypassed the agent’s aim completely and manually “scanned” the

screen for missiles. Instead they decided to rely, to a greater or lesser extent on what the agent

was showing them. In the end, lowering reliance on agents was shown to be an ineffective way

of dealing with this type of uncertainty, as performance (as demonstrated by recall scores) was

found to be significantly lower in ”dark” conditions than in any other context.

6.5.2 Situational Awareness under uncertainty

We posited that the types of uncertainty that hid the most information would have the most

significant impact on situational awareness and consequently reduce participants’ trust the

most (see hypotheses presented in Section 6.2). We found that to be the case for one type of

uncertainty (see Figure 4.7). In our study, two types of environmental uncertainty were designed
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to be dynamic and to obstruct the most on-screen elements: “Darkness”, where the whole

screen was hidden, and “Clouds” where the top and bottoms halves of the screen were hidden

dynamically at different points. We found that despite a tendency for participants to make

more erroneous guesses under the “Darkness” condition, there were no statistically significant

differences related to these “Darkness” and “Clouds” in terms of situational awareness (which

informs RQ3.c). However, we found that participants reported significantly higher trust ratings

under the “Darkness” condition than when faced with any other type of uncertainty. As the

“Darkness” condition hid the most elements from participants, our findings seem to indicate

that forcing participants to focus on a specific area could be enough for them to forget what

is happening elsewhere, in the same environment of interaction. This finding highlights how

easily complacency can set in when environmental visual uncertainty hides crucial information,

despite an agent’s performance and reliability remaining the same.

6.5.3 Adapting under uncertainty

With our third hypothesis (see Section 6.2), we expected participants to be more likely to rely

and trust agents when they were forced to react more quickly. We found that uncertainty types

negatively affected reliance, but not reported trust. In the design of our uncertainty conditions,

two types of uncertainty were similar in terms of size and shape but different in their locations

on the screen: the “Top” and “Bottom” disruptions, which hid, respectively, the top half and

the bottom half of the screen. We found that participants relied significantly less on the agent

when the top half of the screen was hidden than when the bottom half of the screen was hidden.

In this task, missiles spawn from the top of the screen, making that a very important area to

attend to, as it allows participants to assess incoming targets and predict their path using

their current bearings. It was surprising to see that despite a lack of visual feedback on this

crucial part of the screen, participants were actually significantly more likely to take control of

the agent’s aim. However, when comparing trust ratings, no significant differences were found

between the “Top Disruption” and “Bottom Disruption” conditions, which might indicate a

level of cognitive dissonance between how users felt about the agent (same level of trust) and

how they interacted with it (clear distrust in one set of conditions compared to the other).

6.6 Conclusion

In this Chapter, we examined the impact of different types of visual uncertainty on participants

in a human-agent interactive collaborative task. We used both interaction logs and survey

instruments to infer and study how and why participants changed their behaviours when con-

fronted with visual environmental uncertainty. We found that the type of uncertainty has a

direct impact on how likely participants are to rely on an agent, assuming the agent’s level

of performance remains the same. More precisely, we found that a high level of uncertainty
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(studied through the “Darkness” condition in this paper, producing a tunnel vision effect)

led participants to trust and rely significantly more on the agent compared to uncertainties

that were more static in nature, and only obscured parts of the screen (namely, our “Bottom”

and “Top Disruption” conditions). In addition, we found that this complacent behaviour led

participants to achieve a significantly lower performance, which was ultimately detrimental

to the human-agent collaboration. Nonetheless, some types of uncertainty actually mitigated

this complacency and kept users more focused on their tasks. We found that hiding the top

half of the screen (“Top Disruption” condition), where important information were shown, led

participants to perform significantly better than, even, in sessions without any type of visual

uncertainty. However, overall situational awareness remained fairly constant throughout the

study, albeit this could be explained by the inherent difficulty of the tasks, and not the type of

uncertainty experienced.

Our findings show that there is a need to understand exactly how users process information

in order to plan future actions and make decisions when this same information is missing, as

well as how an agent can help mitigate this environmental uncertainty.
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Chapter 7

Visual Explanation and Agent
Transparency

7.1 Motivation

In this chapter, we look at how visual agents that display information about the task or an

aiming agent’s actions can affect the human-agent partnership. We intended for the design

of each visual agent to enhance specific SA levels and assess their impact on trust, reliance,

task performance, cognitive load and situational awareness. This work was motivated by the

work of Chen et al. [26], who proposed the “Situation Awareness-based Agent Transparency

model” (SAT) which aims to support users’ SA via different visualisation levels intended to help

users understand a situation or system’s decisions, and prepare for the future outcomes of their

interactions. The framework defined three Situational Awareness levels. The first focused on

understanding “what” is happening, the second one focused on understanding “why” something

is happening and the third on understanding what will happen next.

This study seeks to answer the fourth Research Question defined in Section 1.3: How

do different types of visual help (designed to elicit different levels of situational

awareness) influence the human-agent relationship? More specifically, we aim to answer

the following research questions:

• RQ4.a: How beneficial is the introduction of visual agents when users are by themselves

(no aiming agent)?

• RQ4.b: How beneficial is the introduction of visual agents when users are supported by

an aiming agent?

• RQ4.c: Which visual agent provides the best overall support?

Using the interactive framework detailed in Chapter 3, we conducted an online-based 6

(types of visual explanations) x 2 (levels of difficulty) mixed-design study where 180 participants

interacted with an agent in tasks of various levels of difficulty (within-factor) with different
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types of visual agents (between-group factor) based on the SA framework by Chen et al. [26].

In addition to SA level, the design of each visual agent was intended to provide information in

a descriptive (highlighting important information) or prescriptive (“telling” users what to do)

manner. Our results indicate that participants did not significantly benefit from the addition of

visual agents in any of the metrics we recorded, with even lower differences in scenarios where

an aiming agent was introduced.

7.2 Related Work

7.2.1 Visualisation modalities

In the following paragraphs, we discuss some of the most common paradigms when it comes to

communicating information via visualisations in HAI and other domains. Different modalities

of providing relevant task-specific information have been designed and employed to provide

better decision-making support in a HCI scenario. In a study focused on the design of Head-

up Display (HUD), Charissis et al. state that “a successful human-centred interface should

enhance human actions [...] senses [...] and judgement [...]. Furthermore, it should guide the

user rather than constrain his/her [...] abilities” [23, p. 2]. While Charissis’ work was focused on

Human-Machine Interfaces (HMI) in an automotive environment (see Figure 7.1), guiding a user

without hindering their abilities is an obligation for successful HCI interactions, especially when

users are required to understand changes in the environment and respond to them appropriately

and in a timely manner. A range of visualisation techniques have been tested in various studies

to communicate information as quickly and efficiently as possible [23,138,163].

Alphanumeric (alphabetical and numerical) symbols are one of the oldest and most com-

monly used ways of presenting information to the user. In a work classifying different types

of visual representations, Lohse et al. [114] describe how employing numeric elements is often

perceived as “unattractive” when used to emphasise parts of a specific representation, and can

often lead to confusion by overloading the user [23]. As a more compact way of displaying

information, other systems rely on icons or symbols, which assign an unambiguous meaning to

a picture [163]. Icons are used when the meaning of the icon is apparent to the target audience;

for instance, signs with an exclamation mark “!” are commonly used to indicate a potentially

hazardous area or incoming danger. Icons were found to be interpreted much more quickly by

human operators in fast-changing scenarios, where “iconic displays led to response times three

times shorter than responses time with alphanumeric displays” [163, p. 5]. In fast-paced tasks,

icons can also be used as “attention indices” [138, 139], where symbols serve only as “pointers

to attention processes” so that users know what to focus their attention on.

Most visualisation techniques rely on “alphanumeric” symbols and/or “icons” to display

changes on an Human-Machine Interface. While these modalities remain the same, their im-

plementation can vary greatly depending on the task. For instance, some interaction scenarios
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will require the future state of one or more elements to be displayed. In these situations, a

technique named “Conformal Symbology” [68] can be useful, as it highlights elements of impor-

tance by overlapping them on the environment of interaction itself, providing a more seamless

integration of visual elements. In other, longer, surveillance tasks, attention does not have to

be sustained at all times but only in short bursts. In these scenarios, “dead reckoning” [163]

techniques are often used to provide navigational information by displaying headings (usually

in the form of arrows) above elements, hinting at their most likely future positions and letting

the user decide whether they deserve further investigation or not.

There are, in short, many different types of visualisation techniques, all of which can be

deployed in different ways, and all of which boast their own strengths and weaknesses. For in-

stance, while icons can provide information quickly, they lack the transparency of alphanumeric

information. And while alphanumeric symbols are an excellent means of accurately conveying

information, they lose in terms of cognitive workload demand and their potential for cognitive

capture. To better understand when and on which criteria a visualisation should be chosen,

one can refer to the literature related to situational awareness [26, 50, 51], where visualisations

are assessed based on the type of information displayed and requirements of the task.

Figure 7.1: Example of an Head-Up Display (HUD) interface from a study by Charissis et
al. [23]. A good HUD interface must manage to present task-specific information without
obstructing the user’s field of view.
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7.2.2 Visualisation & Situational Awareness

In a comprehensive report by Chen et al. [26], Situational Awareness-based agents are presented

as likely to have a positive impact on trust in agents, as they could improve trust development

by providing more information about the system’s inner workings in a simplified form, as hinted

by Lee and See’s work [103]. Situational Awareness is usually studied on 3 different levels [26]:

• SA level 1: “The what”: The agent conveys information about the current situation.

• SA level 2: “The why”: The agent shows its reasoning process and explains its con-

straints.

• SA level 3: “The what next”: The agent indicates what could happen next based on

current limitations and/or trends.

Previous work in situational awareness and visualisation techniques has either theorised

or empirically tested the benefits of numerous visualisation modalities that aim to present

information about an agent or the environment of interaction back to a user. However, finding

the “best” type of visualisation to display information is challenging, as it largely depends on

the type of task and broader context of interaction. In order to investigate the strengths and

weakness of different types of visualisation modalities, we make use of the SAT framework

formalised by Chen et al. [26] which classifies visualisation modalities based on the type of

support they provide.

Based on previous research related to visualisation and situational awareness, the study

presented in this chapter investigates the impact of different types of visual agents on the human-

agent relationship in a collaborative scenario. Each visual agent employs different visualisation

modalities and was both designed according to past studies related to Situational Awareness

levels [26] and informed by the empirical implementation of visualisations from past HAI and

Human Factor research. In addition to the SAT framework, we further divide our visualisations

into two categories: “descriptive” and “prescriptive”. Visualisations that are descriptive are

intended tp focus on highlighting important elements and letting the users make sense of the

information while prescriptive visualisations are intended to process more of the information

for the user.

In this Chapter, we study how human-agent collaboration evolves when supported by differ-

ent types of visual agents intended to provide different levels of Situational Awareness support.

Specifically, we are starting out with the following hypotheses:

• H1 As greater transparency is linked to better task performance [101], visual agents will

have a noticeable impact on the human-agent collaboration no matter whether aiming

agents are present or not.
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• H2 Visual agents that provide prescriptive information (telling the users “what to do”)

will have a more positive impact on reliance and task performance than agents that

provide descriptive information (highlighting important elements in the environment), as

they require less time to be processed.

The main contribution of this work lies in testing different types of visual agent (and subsequent

visualisations) on the human-agent partnership during a real-time task. Below we outline the

method used to design visual agents and conduct this study.

7.3 Method

This study was conducted using our interactive human-agent collaborative framework described

in Section 3. Like the study presented in Chapter 6, this experiment was conducted online.

Modalities for online studies are described in Section 3.5.2.

7.3.1 Visual Agents

Previous studies presented in this thesis (see Chapters 4, 5 and 6) used agents designed to help

users aim at targets. In the work presented in this chapter, we incorporated agents displaying

visualisations to users. Here, these agents are referred to as visual agents, as opposed to previous

agents (presented in Chapters 4, 5 and 6) that were only helping with the aiming process and will

consequently be referred to as Aiming Agents throughout this Chapter. We developed a total

of six different types of visual agent based on the situational awareness framework proposed by

Chen et al. [26]. Each visual agent is focused on giving the user more information about either

what the agent is doing (SA level 1), the agent’s reasoning and prioritising process (SA level 2),

or what the agent will do next (SA level 3). These 3 levels of Situational Awareness are further

detailed in Section 7.2. In addition, we intended for the design of each visual agent to be either

“prescriptive” (telling users what to do) or “descriptive” (letting the user make sense of the

information). To make all designs comparable, each visualisation only displayed information

about 5 targets at once. Below, we provide descriptions of the visual agents developed for this

study (please see Figure 7.2 for an abstract representation). Contrast between colours used

by visual agents (especially for the “Threat Shape” visual agent) were designed to be high

enough to account for users suffering from deuteranopia [71], the most common form of colour

blindness.

7.3.1.1 SA Level 1

• Threat Shapes, presented in Figure 7.2 and implemented as shown in Figure 7.3a. This

visualisation indicates which target(s) the agent recognises as threats (red triangle), or

non-threats (green polygon). This visualisation focuses on SA level 1: understanding

“what” is happening in the current situation. The visualisation was based on notes and
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implementations found in the work of Pylyshyn et al. [139], Shekkhar et al. [163] and

Mercado et al. [124]. This visualisation can be described as “prescriptive”, as the visual

agent processes most of the information for the user (which targets are important or not).

• Priority Numbers, as presented in Figure 7.2 and implemented as shown in Figure 7.3b.

This visualisation displays the results of the agent’s prioritisation process via numbers,

indicating which missiles the user is advised to focus on. This design was inspired by

descriptions and implementations found in the work of Lohse et al. [114] and Chen et

al. [26], and can be described as “descriptive”, as it describes the order in which the agent

should aim at targets.

7.3.1.2 SA Level 2

• Agent’s Prioritisation, presented in Figure 7.2 and implemented as shown in Fig-

ure 7.3c. This visualisation focuses on SA level 2 and understanding “why” certain actions

are being recommended to the user or undertaken by the agent. With this visualisation,

targets deemed as threats are highlighted with red squares of different sizes and opacity

(the bigger and more opaque, the more important the target, according to the agent)

to indicate the priority in which participants are recommended to deal with them. This

visualisation combines priority and threat assessment to communicate why users have to

deal with targets in a certain order. The design was mostly informed by the work of

Kilgore et al. [93] who empirically tested an interface where the size and transparency of

icons were changed to highlight specific elements. This type of visualisation can be de-

scribed as “prescriptive”, as it parses most of the information for the user (which targets

are important and in which order they should be hit).

• Missile paths, presented in Figure 7.2 and implemented as shown in Figure 7.3d. This

visualisation focuses on SA level 2 and understanding“why” the agent aims at certain

targets based on their current paths. This visualisation consists in displaying the paths

of missiles and their trajectories. This design was informed by the work of Iordanescu

et al. [88]. This visualisation can be described as “descriptive” at it display missiles’

trajectories.

7.3.1.3 SA level 3

• Agent’s Plan display, presented in Figure 7.2 and implemented as shown in Figure 7.3e.

This visualisation displays paths between targets in the order in which the agent is aiming

at them. This gives an explanation as to why the agent is heading in a particular direction.

The design was inspired by the work of Ramchurn et al. [143]. This visualisation can be

described as “prescriptive”, as it provides the user with a path that they can choose to

follow or not.
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• Performance Graph, presented in Figure 7.2 and implemented as shown in Figure 7.3f.

This visualisation support SA level 3 and gives more general information about the current

level of performance as well as the current trend (whether the team is getting better -

with a green arrow or worse - with a red arrow). This visualisation can be described

as “descriptive” as it displays information about the evolution of task performance over

time.

Figure 7.2: Abstract representation of the visual agents developed for this study. Each visuali-
sation supports a different level of Situational Awareness.

110



(a) (b)

(c) (d)

(e) (f)

Figure 7.3: All visual agents intended to support different SA levels: (a) represents SA1 Threat
Shape, (b) Priority Number, (c) Threat Prioritisation, (d) Agent Plan display, (e) Missiles’
paths and (f) Performance Graph.

7.3.2 Task Difficulty

Each participant, no matter whether an aiming agent and/or a visual agent was present, played

in sessions composed of two levels of difficulty and lasting for 120 seconds per level of difficulty.
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Task difficulty was considered in terms of the number of missiles to hit. Their speed was fixed for

the “Easy” and “Hard” levels across all sessions, with or without agents. The details regarding

difficulty settings are presented below:

• In the “Easy” level, 3 missiles spawned every 5 seconds at a speed of either 30 or 60 pixels

per second (random selection) for a total of 54 missiles. 30% (16 missiles) of the missiles

spawned were “False Positives” (not heading toward cities).

• In the “Hard” difficulty level, 3 missiles spawned every 4 seconds with a speed of either

60 or 80 pixels per second (random selection) for a total of 67 missiles. 30% (20 missiles)

of the missiles spawned were “False Positives” (not heading toward cities).

Contrary to previous studies presented in Chapters 4, 5 and 6, where participants were asked

to hit as many missiles as they could, the experiment presented in this chapter relies on testing

different visual agents, supporting different SA levels that should help to identify relevant and

non-relevant information. In our study, this difference is reflected by the introduction of True

Positive (missiles that are going to hit a city) and False Positive (missiles that are NOT going

to hit a city). As a result, 30% of all missiles spawned in each difficulty level (Easy and Hard)

were False Positives. For this particular study, therefore, our metrics for task performance

will be computed differently to take into account the inclusion of False Positives (missiles not

colliding with cities highlighted as a threat by the agent) and False Negatives (non-threatening

missiles highlighted as threats by the agent). The following equations detail these changes to

the original ones present in Section 3.4.3.1.

Threat Precision =
#ThretenngMssesDestroyed

#TMssesDestroyed + #NTMssesDestroyed
(7.1)

Threat Recall =
#ThretenngMssesDestroyed

#ThretenngMssesSpned
(7.2)

Threat F1 = 2∗
ThretPrecson∗ ThretRec

ThretPrecson + ThretRec
(7.3)

In addition, this study also makes use of “Relative metrics”, which are defined as the relative

gain or loss in a single session when compared to a reference one. As this experiment contains

a between-groups design, computing Relative metrics helps understand whether a visual agent

resulted in a relative improvement or loss. For instance, if participants scored a Recall of 0.6

by themselves and 0.8 with a visual agent, the relative gain would be 0.2. This process is

illustrated by Equation 7.4 below:

Relative Metric = ScoreSessonA − ScoreSessonReƒ (7.4)
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7.3.3 Agent Reliability

Contrary to previous studies (see Chapters 4, 5 and 6), the aiming agent’s reliability was not

determined by the accuracy of its aim, but by the type of error it made. For each level, as

in previous studies, the agent would have a reliability of exactly 80% with the difference from

previous studies being that the remaining 20% error-rate comprised only False Negatives (the

agent not aiming at a missile that is going to hit a city) and False Positives (the agent aiming

at a missile that is going off-screen, outside the viewport) errors.

7.3.4 Independent and dependent variables

In this section, we summarise the independent and dependent variables used in this study and

as motivated by our experimental method and research questions.

Our independent variables are the following:

• Task difficulty, as defined by the amount and speed of missiles in each level.

• Aiming agent reliability, which remained high during all conditions.

• Situational Awareness (SA) groups, where each visual agent was intended to provide

information regarding SA level 1, 2 or 3.

• Prescriptive or Descriptive visual agents, each visual agent, regardless of its SA group,

was designed to be either “prescriptive” (intended to guide users toward specific decisions)

or “descriptive” (intended to let users make sense out of the information presented).

Our dependent variables are the following:

• Task Performance, in terms of missiles hit, shots fired and missile missed.

• Reliance, expressed by the duration for which participants relied on the aiming agent’s

help.

• Trust, as reported by participants.

• Cognitive Workload, as reported by participants.

• Situational Awareness, as reported by participants.

7.3.5 Experimental Procedure

This online study was approved by the University of Strathclyde CIS Departmental Ethics

Committee (Ethics App. No. 1395). The study was completed entirely online using partici-

pants’ own hardware and via the Prolific platform (for more information about the platform,

see Section 3). The experimental procedure was similar to the one described in Section 3. Only

participants that experienced an average frame-rate above 24 frames per second were kept in
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our dataset for further analysis (to ensure “playable” experimental conditions). A minute long

bench-marking test was provided for free before participants consented to take part in the study

in order to filter out those whose hardware did not meet our requirements. Participants received

£5.50 for undertaking the experiment (approximate duration of 45 minutes). Once registered,

each participant went though the following steps:

1. Demographic and pre-hoc survey. (five minutes) (see Appendix D).

2. Tutorial aimed at understanding the controls of the game and getting used to interacting

with the agent. (two minutes).

3. Session with an agent. (four minutes).

4. Session without an agent. (four minutes).

5. Session with visual agent only. (four minutes).

6. Session with an agent and visual agent. (four minutes).

7. Post-hoc survey collecting participants’ feedback. (five minutes) (for further details, see

Appendix D).

The order of the sessions described above (see items 3 to 6) was randomised using a Latin

Square [15] to reduce the learning effect. A presentation of each visual agent was provided at the

beginning of sessions with examples in order for participants to understand how to make sense of

the information communicated to them. In terms of survey instruments, participants completed

NASA TLX rating scales, which are 6 item survey instruments widely used to measure cognitive

workload [75]. In this study, RAW TLX [18] scores are reported. To measure trust in the agent,

we used a single statement at the end of each round: “I can trust the agent” graded on a 7 point

Likert scale from 1 (complete distrust in the agent) to 7 (total trust in the agent) adapted from

the work of Jian et al. [90]. To measure Situational Awareness, we used the 3 item Situation

Awareness Rating Technique (SART) [159] also called “3D SART”, which comprises 3 questions

eliciting different elements related to SA such as “Attentional Demand”, “Attentional Supply”

and “Understanding”. Further details on the survey instruments used in this study are presented

in Section 3.4.2.

7.3.6 Demographics

180 participants (93M, 87F) participated in this study, where most people (n = 104) indicated

being aged from 18 to 24 years old while the remaining participants (n = 76) were aged 25 to 34

years old. In terms of level of education, most participants reported having a Bachelor’s degree

(n = 77) while the rest reported having a College degree (n = 33), High school diploma

(n = 32) or Master’s degree (n = 20), or other (n = 38). The “Confidence” dimension
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from the “Revised Computer Game Attitude Scale” [22] was used to evaluate how confident

participants felt about their video-game skills with self reported rating scales ranging from 0

(denoting low confidence) to 5 (denoting high confidence). Participants’ average rating was

3.85 ± 0.9, denoting a population used to playing games and confident in its abilities.

7.4 Results

In this section, we present results pertaining to task performance, users’ reliance on aiming

agent, reported trust in the aiming agent, cognitive workload and situational awareness. We

report results obtained by participants at the end of each session, across all levels of difficulty.

More details on the inclusion of different difficulty levels are available in Section 3.2.4. The

statistical methods we used to compare and report results is detailed in Section 3.4.4. We

are using different metrics from those employed in Chapters 4, 5 and 6 to obtain insights on

how users performed with and without an aiming agent or visual agent. These changes are

explained in Section 7.3.2. When describing results, we distinguish between scores obtained

during sessions without aiming agents and sessions with aiming agents. This distinction helps

us to focus on the influence of a visual agent on the human-agent collaboration with and without

the assistance of an aiming agent.

7.4.1 Relative Performance

Figures 7.4, 7.5 and Tables 7.1, 7.2 and 7.3 present scores related to performance and relative

performance. Overall, participants scored higher for all performance metrics in sessions where

an aiming agent was present, compared to sessions where participants were only assisted by a

visual agent, regardless of its SA level. Relative Threat Recall and Relative Threat Precision

scores provide insights into the number of important targets (true positive - missiles heading

toward cities) that participants hit during the tasks.

7.4.1.1 Visual Agent without Aiming Agent

Overall, participants’ performance was lower when no aiming agent was present. Looking at

the Relative Threat Recall scores on Figure 7.4, we can observe that participants benefited

from having the support of a visual agent in all groups except “Threat Shape” (SA1) and

“Agent Plan” (SA3), which display the most variance in Relative Threat Recall scores. Threat

Precision scores, however, exhibit more significant differences when compared to all other per-

formance indicators. Across all six groups, participants scored high Threat Precision scores

when no aiming agent was present compared to sessions with an aiming agent. This difference

is particularly important for Relative Threat Precision scores in the “Priority Number” group

(SA1) and “Missile Path” group (SA2).
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While performing between-groups comparisons on sessions with a visual agent and with-

out an aiming agent, a Welch ANOVA yielded significant results for Relative Threat Recall

scores (F = 11.78, p < 0.0001, np2 = 0.14). Further pairwise comparisons using Games-

Howell tests indicated that participants in the “Agent Plan” (SA3) group performed signifi-

cantly worse than participants in the “Priority Number” (SA1) group (T = 5.56, p = 0.001,

CLES = 0.76), “Missile Path” (SA2) group (T = 5.21, p = 0.001, CLES = 0.75), “Threat

Prioritisation” (SA2) group (T = 7.16, p = 0.001, CLES = 0.82) and “Performance Graph”

(SA3) group (T = −93, p = 0.0021, CLES = 0.31). In addition, participants in the “Perfor-

mance Graph” (SA3) group scored significantly lower in terms of Relative Threat Recall than

participants in the “Threat Prioritisation” (SA2) group (T = 4.3, p = 0.001, CLES = 0.71).

While performing between-groups comparisons on sessions with a visual agent and without

an aiming agent, an ANOVA yielded significant results for Relative Threat Precision scores

(F = 8.41, p < 0.0001, np2 = 0.11). Further pairwise comparisons using Tukey tests

indicated that participants in the “Priority Number” (SA1) group performed significantly better

than participants in the “Threat Shape” (SA1) group (T = 4.65, p = 0.001, CLES =

0.73), “Agent Plan” (SA3) group (T = 4.59, p = 0.001, CLES = 0.72) and “Threat

Prioritisation” (SA2) group (T = 3.65, p = 0.004, CLES = 0.68). In addition, participants

scored significantly higher Relative Threat Precision scores in the “Missile Path” (SA2) group

compared to participants in the “Threat Shape” (SA1) group (T = −4.28, p = 0.001,

CLES = 0.29) and in the “Missile Path” (SA2) group compared to participants in the “Agent

Plan” (SA3) group (T = 4.22, p = 0.001, CLES = 0.71).

7.4.1.2 Visual Agent and Aiming Agent

Overall, participants scored higher Relative Threat Recall scores in sessions where an aiming

agent was present (with or without visual agent) compared to sessions with only a visual agent

and no aiming agent. Looking at Relative Threat Recall scores (see Figure 7.4) we can observe

increases in sessions with an aiming agent and a visual agent compared to sessions with only an

aiming agent for the “Priority Number” and “Threat Shape” (SA1) visual agents groups. All

other groups (SA2 and SA3) present lower Relative Threat Recall scores when a visual agent

and an aiming agent are present, compared to sessions with only an aiming agent. For Relative

Threat Precision scores (see Figure 7.5), participants in sessions with an aiming agent and

visual agent scored higher than in sessions with only an aiming agent for the “Threat Shape”

(SA1) group.

While performing between-groups comparisons on sessions with a visual agent and an aiming

agent, a Welch ANOVA test on Relative Threat Recall (F = 2.49, p = 0.0334, np2 =

0.04) yielded significant results, but no further significant results were found during pairwise

comparisons.
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While performing between-groups comparisons on sessions with an aiming agent and a visual

agent, an ANOVA test on Relative Threat Precision (F = 7.85, p < 0.0001, np2 = 0.10)

yielded significant results while pairwise comparisons using Tukey tests indicate that partic-

ipants in the “Threat Shape” (SA1) group performed significantly worse in terms of Rel-

ative Threat Precision than participants in the “Missile Path” (SA2) group (T = −5.0,

p = 0.001, CLES = 0.26), “Threat Prioritisation” (SA2) group (T = −4.57, p = 0.001,

CLES = 0.27), “Agent Plan” (SA3) group (T = −4.38, p = 0.001, CLES = 0.28), “Perfor-

mance Graph” (SA3) group (T = −5.54, p = 0.001, CLES = 0.23) and “Priority Number”

(SA1) group (T = 3.93, p = 0.0014, CLES = 0.69).

Figure 7.4: Relative Threat Recall scores for each visualisation, organised by Situational Aware-
ness (SA) levels. A positive Relative Threat Recall score indicate a better performance in terms
of Threat missiles hit (True Positive) compared to the baseline session without the help of any
agent or visualisations. Overall, the addition of an aiming agent was the main reason for in-
creases in Relative Threat Recall scores.
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Figure 7.5: Relative Threat Precision scores for each visualisation, organised by Situational
Awareness (SA) levels. A positive Relative Threat Precision score indicates a more efficient
ratio of missiles hit (True Positive) to shots fired compared to the baseline session without the
help of any agent or visualisations. As opposed to Relative Threat Recall scores, the addition
of an aiming agent led to comparatively poorer Relative Threat Precision scores.

7.4.2 Reliance

Figures 7.6 and Tables 7.1, 7.2 and 7.3 present scores related to user control time, which are

used as a proxy for measuring reliance on the aiming agent. User control time is measured as

the duration for which participants manually controlled the crosshair. When an aiming agent

is present, a higher user control time indicates lower reliance on the agent. As user control time

is a useful means of understanding reliance on the aiming agent, following description of results

will focus on conditions where an aiming agent was present.

7.4.2.1 Visual Agent and Aiming Agent

From consulting Figure 7.6, we can observe that participants controlled the crosshair less when

aided by an aiming agent, with or without a visual agent. Nonetheless, differences in reliance

were observed when comparing groups in sessions where an aiming agent was present. For

instance, participants relied on the aiming agent more in sessions with a visual agent for the

“Priority Number” (SA1) and “Agent Plan” (SA2) groups. All other visual agents (from SA1

to SA3), however, induced a lower reliance on the aiming agent.

While performing between-groups comparisons on sessions with an aiming agent and a visual

agent, a Kruskal Wallis tests yielded significant results for user control time (H = 21.99,

p = 0.0005). Further pairwise comparisons using paired T-TESTS indicate that participants

relied on the aiming agent significantly more in the “Agent Plan” (SA3) group than in the

“Threat Shape” (SA1) group (U = 2246, p = 0.0004, CLES = 0.69), “Missile Path” (SA2)

group (U = 2113, p = 0.0015, CLES = 0.67) and “Threat Prioritisation” (SA2) group

(U = 2030, p = 0.0039, CLES = 0.66). In addition, participants relied on the aiming
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agent significantly more in the “Performance Graph” (SA3) group than in the “Threat Shape”

(SA1) group (U = 2120, p = 0.0026, CLES = 0.66).

Figure 7.6: Amount of time spent controlling the crosshair during each session, organised by
Situational Awareness (SA) levels. Positive scores indicate more manual control and lower
reliance on the agent. Unsurprisingly, the addition of an aiming agent led to overall lower user
control times.

Table 7.1: Average scores for Performance and Reliance metrics yielded by participants in each
group related to Situational Awareness level 1. Scores are presented for each session with or
without an aiming agent and/or with or without a visual agent (noted as “VA” in the table).
Higher scores indicate a better performance or lower reliance on the agent.

No Visual Agent Threat Shape (SA Level 1) Priority Number (SA Level 1)

User Only User + AA User + VA
User + AA
+ VA

User + VA
User + AA
+ VA

Recall 0.56 ± 0.02 0.73 ± 0.01 0.55 ± 0.02 0.73 ± 0.01 0.57 ± 0.02 0.77 ± 0.01
Precision 0.64 ± 0.01 0.74 ± 0.01 0.67 ± 0.03 0.77 ± 0.02 0.60 ± 0.01 0.75 ± 0.01
F1 0.60 ± 0.01 0.73 ± 0.01 0.60 ± 0.02 0.74 ± 0.01 0.58 ± 0.02 0.76 ± 0.01
Relative Recall 0.00 ± 0.00 0.17 ± 0.01 -0.01 ± 0.02 0.17 ± 0.02 0.01 ± 0.01 0.21 ± 0.02
Relative Precision 0.00 ± 0.00 0.11 ± 0.01 0.02 ± 0.03 0.12 ± 0.03 -0.03 ± 0.01 0.13 ± 0.01
Relative F1 0.00 ± 0.00 0.13 ± 0.01 -0.02 ± 0.02 0.12 ± 0.02 -0.01 ± 0.01 0.18 ± 0.01
Threat Recall 0.71 ± 0.02 0.85 ± 0.01 0.72 ± 0.03 0.85 ± 0.01 0.72 ± 0.02 0.88 ± 0.01
Threat Precision 0.89 ± 0.01 0.82 ± 0.00 0.92 ± 0.01 0.83 ± 0.01 0.90 ± 0.01 0.80 ± 0.00
Threat F1 0.78 ± 0.01 0.83 ± 0.01 0.79 ± 0.02 0.83 ± 0.01 0.78 ± 0.02 0.84 ± 0.00
Relative Threat Recall 0.00 ± 0.00 0.14 ± 0.02 -0.01 ± 0.03 0.11 ± 0.03 0.04 ± 0.01 0.20 ± 0.02
Relative Threat Precision 0.00 ± 0.00 -0.07 ± 0.01 -0.01 ± 0.01 -0.10 ± 0.01 0.05 ± 0.01 -0.05 ± 0.01
Relative Threat F1 0.00 ± 0.00 0.05 ± 0.01 -0.04 ± 0.02 0.01 ± 0.02 0.05 ± 0.01 0.10 ± 0.02
User Control Time 45.62 ± 1.13 22.42 ± 1.46 43.22 ± 1.61 23.81 ± 1.87 45.42 ± 1.68 19.61 ± 2.13
Relative User Control Time 0.00 ± 0.00 -23.97 ± 1.30 -0.24 ± 1.31 -20.27 ± 1.65 -1.70 ± 1.15 -28.96 ± 1.58
User Correction n/a 11.12 ± 0.63 n/a 12.87 ± 0.77 n/a 8.72 ± 0.84
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Table 7.2: Average scores for Performance and Reliance metrics yielded by participants in each
group related to Situational Awareness level 2. Scores are presented for each session with or
without an aiming agent and/or with or without a visual agent (noted as “VA” in the table).
Higher scores indicate a better performance or lower reliance on the agent.

No Visual Agent Threat Prioritisation (SA Level 2) Missile Path (SA Level 2)

User Only User + AA User + VA
User + AA
+ VA

User + VA
User + AA
+ VA

Recall 0.54 ± 0.02 0.78 ± 0.01 0.62 ± 0.02 0.78 ± 0.01 0.53 ± 0.02 0.73 ± 0.01
Precision 0.60 ± 0.01 0.76 ± 0.01 0.64 ± 0.02 0.78 ± 0.01 0.65 ± 0.02 0.75 ± 0.02
F1 0.56 ± 0.01 0.76 ± 0.01 0.62 ± 0.02 0.78 ± 0.01 0.57 ± 0.02 0.73 ± 0.01
Relative Recall 0.00 ± 0.00 0.23 ± 0.01 0.05 ± 0.01 0.21 ± 0.02 0.00 ± 0.01 0.21 ± 0.02
Relative Precision 0.00 ± 0.00 0.16 ± 0.01 0.05 ± 0.02 0.19 ± 0.02 0.05 ± 0.02 0.15 ± 0.02
Relative F1 0.00 ± 0.00 0.20 ± 0.01 0.05 ± 0.01 0.20 ± 0.02 0.02 ± 0.01 0.18 ± 0.02
Threat Recall 0.65 ± 0.02 0.87 ± 0.01 0.74 ± 0.02 0.88 ± 0.01 0.67 ± 0.03 0.84 ± 0.01
Threat Precision 0.85 ± 0.00 0.79 ± 0.00 0.84 ± 0.01 0.80 ± 0.01 0.90 ± 0.01 0.82 ± 0.01
Threat F1 0.72 ± 0.01 0.83 ± 0.00 0.77 ± 0.02 0.83 ± 0.00 0.75 ± 0.02 0.83 ± 0.01
Relative Threat Recall 0.00 ± 0.00 0.23 ± 0.01 0.07 ± 0.01 0.22 ± 0.02 0.03 ± 0.01 0.21 ± 0.02
Relative Threat Precision 0.00 ± 0.00 -0.05 ± 0.00 0.01 ± 0.01 -0.04 ± 0.01 0.05 ± 0.01 -0.04 ± 0.01
Relative Threat F1 0.00 ± 0.00 0.11 ± 0.01 0.04 ± 0.01 0.11 ± 0.01 0.04 ± 0.01 0.12 ± 0.02
User Control Time 48.57 ± 1.04 19.55 ± 1.22 47.48 ± 1.41 23.78 ± 2.05 42.67 ± 1.62 22.73 ± 1.76
Relative User Control Time 0.00 ± 0.00 -29.55 ± 1.14 -2.81 ± 1.18 -28.04 ± 1.86 -4.17 ± 1.07 -25.20 ± 1.87
User Correction n/a 10.97 ± 0.58 n/a 11.57 ± 0.94 n/a 12.92 ± 0.86

Table 7.3: Average Scores for Performance and Reliance metrics yielded by participants in each
group related to Situational Awareness level 3. Scores are presented for each session with or
without an aiming agent and/or with or without a visual agent (noted as “VA” in the table).
Higher scores indicate a better performance or lower reliance on the agent.

No Visual Agent Agent Path (SA Level 3) Performance Graph (SA Level 3)

User Only User + AA User + VA
User + AA
+ VA

User + VA
User + AA
+ VA

Recall 0.58 ± 0.02 0.77 ± 0.01 0.49 ± 0.03 0.74 ± 0.01 0.58 ± 0.02 0.77 ± 0.01
Precision 0.63 ± 0.01 0.70 ± 0.01 0.49 ± 0.02 0.68 ± 0.02 0.69 ± 0.02 0.76 ± 0.01
F1 0.59 ± 0.01 0.73 ± 0.01 0.49 ± 0.02 0.71 ± 0.01 0.62 ± 0.02 0.76 ± 0.01
Relative Recall 0.00 ± 0.00 0.19 ± 0.01 -0.08 ± 0.02 0.17 ± 0.02 -0.00 ± 0.01 0.19 ± 0.02
Relative Precision 0.00 ± 0.00 0.08 ± 0.01 -0.11 ± 0.02 0.08 ± 0.02 0.04 ± 0.02 0.11 ± 0.02
Relative F1 0.00 ± 0.00 0.14 ± 0.01 -0.09 ± 0.02 0.13 ± 0.02 0.01 ± 0.01 0.16 ± 0.02
Threat Recall 0.68 ± 0.02 0.86 ± 0.01 0.59 ± 0.03 0.84 ± 0.01 0.68 ± 0.03 0.87 ± 0.01
Threat Precision 0.83 ± 0.01 0.80 ± 0.00 0.84 ± 0.01 0.80 ± 0.00 0.84 ± 0.01 0.79 ± 0.00
Threat F1 0.73 ± 0.01 0.83 ± 0.00 0.66 ± 0.02 0.81 ± 0.01 0.73 ± 0.02 0.82 ± 0.00
Relative Threat Recall 0.00 ± 0.00 0.19 ± 0.01 -0.09 ± 0.02 0.16 ± 0.02 -0.00 ± 0.01 0.19 ± 0.02
Relative Threat Precision 0.00 ± 0.00 -0.03 ± 0.01 -0.01 ± 0.01 -0.04 ± 0.01 0.02 ± 0.01 -0.03 ± 0.01
Relative Threat F1 0.00 ± 0.00 0.10 ± 0.01 -0.08 ± 0.02 0.08 ± 0.01 0.01 ± 0.01 0.10 ± 0.02
User Control Time 49.83 ± 1.01 16.99 ± 1.31 46.12 ± 1.45 16.67 ± 2.01 47.02 ± 1.49 16.66 ± 1.69
Relative User Control Time 0.00 ± 0.00 -33.34 ± 1.32 -4.23 ± 1.29 -33.97 ± 1.73 -2.28 ± 1.04 -32.76 ± 1.74
User Switch n/a 8.97 ± 0.55 n/a 8.75 ± 0.79 n/a 9.10 ± 0.82

7.4.3 Relative Reported Trust

Figure 7.7 and Tables 7.4, 7.5 and 7.6 present relative ratings regarding the statement “I can

trust the agent” which was presented at the end of every session. The ratings reflect the

reported trust in the aiming agent in every session. The relative trust scores presented here

were computed by taking the trust ratings from the sessions with an aiming agent and a visual

agent and subtracting them from the trust ratings from sessions with the aiming agent and no

visual agent. Positive relative trust ratings indicate that the visual agent had a positive impact

on the user-aiming agent interaction.
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7.4.3.1 Visual Agent and Aiming Agent

If we consult the results, we can observe that participants’ trust levels in visual agents changed

the most in sessions where an aiming agent was present. In general, the “Priority Number”

(SA1), “Threat Prioritisation” (SA2) and “Performance Graph” (SA3) groups did not report

widely different levels of trust in the aiming agent when a visual agent was added. Nonetheless,

the addition of a visual agent actually reduced Relative Trust levels for the “Threat Shape”

(SA1) and “Missile Path” (SA2) groups, and slightly increased Relative Trust levels for the

“Agent Plan” group (SA3). In addition to relative trust scores, table 7.7 shows correlations

between reported trust and various behavioural and reported metrics such as task performance,

reliance and cognitive load. Looking at the results, we can see that, overall, most independent

variables have a low correlation with reported trust scores. Surprisingly, Overall 3D SART -

our measure of general situational awareness in this study - has a slightly higher correlation

with trust (ρ of 0.262) than Recall - a measure of performance (ρ of 0.257).

While performing between-groups comparisons on sessions with an aiming agent and a visual

agent, a Kruskal Wallis tests yielded significant result for Relative Trust scores (H = 12.31,

p = 0.03). Further pairwise comparisons indicate that participants in the “Threat Shape”

(SA1) group trusted the aiming agent significantly less than in the “Agent Plan” (SA3) group

(U = 1263, p = 0.0039, CLES = 0.35).

Figure 7.7: Relative ratings reported by participants based on the following statement: “I can
trust the agent”. Scores are organised by Situational Awareness levels. Higher scores indicate
a higher reported trust in the agent. Overall, reported trust levels were the most inconsistent
for the “Threat Shape” visual agent.

7.4.4 Relative Cognitive Workload

Figure 7.8 and Tables 7.4, 7.5 and 7.6 present relative Raw TLX scores for each session. Overall

TLX scores represent the perceived cognitive workload of a session as perceived by participants.
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Higher scores indicate higher relative cognitive workload for a given session, when compared to

the baseline session which took place without an aiming or visual agent.

7.4.4.1 Visual Agent without Aiming Agent

As evidenced by Figure 7.8, participants reported slightly lower cognitive workload while sup-

ported by a visual agent when compared to baseline sessions without a visual or aiming agent

in most groups, but this difference is not statistically significant. However, participants in the

“Performance Graph” group (SA3) reported a higher relative workload with a visual agent and

no aiming agent, but this difference is not statistically significant.

To further investigate differences in Relative Cognitive load between each group, we per-

formed between-groups comparisons for Relative Overall Raw TLX scores. While performing

between-groups comparisons on sessions with a visual agent and without an aiming agent,

an ANOVA test on Relative Overall Raw TLX scores did not yield any significant results

(F = 0.43, p = 0.82, np2 = 0.01).

7.4.4.2 Visual Agent and Aiming Agent

If we consult Figure 7.8, we can see the addition of an aiming agent, no matter whether a

visual agent was present or not, reduces reported relative cognitive load in all groups. When

comparing relative Raw TLX scores in sessions where an aiming agent and a visual agent were

both present, relative TLX scores decrease, particularly in the “Threat Prioritisation” (SA2)

and “Performance Graph” (SA3) groups, but this difference is not statistically significant.

To further investigate differences in Relative Cognitive load between each group, we per-

formed between-groups comparisons for Relative Overall Raw TLX scores. While performing

between-groups comparisons on sessions with an aiming agent and a visual agent, an ANOVA

test on Relative Overall Raw TLX scores did not yield any significant results (F = 1.66,

p = 0.14, np2 = 0.04).
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Figure 7.8: Relative scores calculated from the participants’ ratings of the the NASA TLX sur-
vey to evaluate cognitive load. Relative overall Raw TLX scores are reported here, organised by
Situational Awareness (SA) levels. Higher scores indicate a more cognitively taxing experience.
Overall, reported Raw TLX scores were lower when an aiming agent was present. The “Threat
Shape” (SA1) and “Performance Graph” (SA3) conditions saw the most variance in reported
cognitive workload scores.

7.4.5 Relative Situational Awareness

Figure 7.9 and Tables 7.4, 7.5 and 7.6 present Relative 3D SART scores for each session.

Positive scores indicate a better reported situational awareness when compared to baseline

sessions (without an aiming agent or a visual agent), while negative scores indicate a lower

reported situational awareness.

7.4.5.1 Visual Agent without Aiming Agent

Looking at Figure 7.9, we can observe that reported situational awareness varied widely between

sessions and SA groups. Without the presence of an aiming agent, the introduction of a visual

agent did not affect participants’ reported SA in any major way.

To further compare reported overall relative situational awareness scores in each group, we

performed between-groups comparisons on Relative Overall 3D SART scores. While performing

between-groups comparisons on sessions with a visual agent and without an aiming agent, a

Kruskal Wallis test on Overall 3D SART scores did not yield any significant results (H = 6.51,

p = 0.26).

7.4.5.2 Visual Agent and Aiming Agent

For most groups, the addition of an aiming agent improved reported situational awareness. This

is true for all groups except “Performance Graph” which actually saw a reduction in reported

SA following the addition of an aiming agent (without visual agent). For “Priority Number”

(SA1), “Threat Prioritisation” (SA2) and “Performance Graph” (SA3) groups, the addition
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of a visual agent and an aiming agent increased participants’ reported SA when compared to

sessions with only an aiming agent, but this difference is not statistically significant. For the

“Threat Shape” (SA1), “Missile Path” (SA2) and “Agent Plan” (SA3) groups, however, visual

agents actually reduced reported SA, most noticeably for the “Threat Shape” group, but this

difference is not statistically significant.

To further compare reported overall situational awareness in each group, we performed

between-groups comparisons on Relative Overall 3D SART scores. While performing between-

groups comparisons on sessions with an aiming agent and a visual agent, a Kruskal Wallis test

on Relative Overall 3D SART scores did not yield any significant results (H = 9.64, p = 0.08).

Figure 7.9: Relative ratings collected using the 3D SART survey to evaluate situational aware-
ness. Relative ratings are organised by visualisations intended to support specific Situational
Awareness (SA) levels. Higher scores indicate a better sense of situational awareness, as re-
ported by participants. Overall, the addition of an aiming agent and/or a visual agent did not
change reported SA scores in any significant way.
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Table 7.4: Average ratings or scores reported by participants for every session in the Situational
Awareness level 1 groups. Scores are presented for each session with or without an aiming
agent and/or with or without a visual agent (noted as “VA” in the table). Depending on the
dimensions, a lower or higher score indicates a better or worse experience.

No Visual Agent Threat Shape (SA Level 1) Prioritisation Number (SA Level 1)

Question / Statement User Only User + AA User + VA
User + AA
+ VA

User + VA
User + AA
+ VA

I can trust the agent n/a 4.46 ± 0.14 3.25 ± 0.21 3.88 ± 0.22 3.72 ± 0.23 4.45 ± 0.22
I can trust the agent (relative) n/a 0.00 ± 0.00 -1.15 ± 0.27 -0.52 ± 0.25 -0.80 ± 0.28 -0.07 ± 0.24
How mentally demanding was the task? 17.05 ± 0.45 14.60 ± 0.49 15.37 ± 0.95 14.23 ± 0.83 17.07 ± 0.57 14.20 ± 0.79
How physically demanding was the task? 11.02 ± 0.80 8.57 ± 0.67 11.40 ± 0.90 10.50 ± 0.89 9.87 ± 1.23 7.33 ± 0.92
How hurried or rushed was the task? 17.14 ± 0.50 15.03 ± 0.47 15.63 ± 0.78 14.87 ± 0.65 17.23 ± 0.64 15.90 ± 0.71
How successful were you in accomplishing
your level of performance?

14.14 ± 0.60 12.85 ± 0.56 12.43 ± 0.92 13.13 ± 0.89 14.77 ± 0.82 13.33 ± 0.83

How hard did you have to work to accomplish
your level of performance?

15.90 ± 0.49 13.63 ± 0.54 15.00 ± 0.68 13.90 ± 0.76 15.93 ± 0.68 14.70 ± 0.82

How insecure, discouraged, irritated,
stressed and annoyed were you?

13.02 ± 0.83 11.87 ± 0.64 14.40 ± 0.88 12.77 ± 0.89 12.67 ± 1.20 10.57 ± 1.15

Overall Raw TLX 56.51 ± 1.55 49.17 ± 1.44 54.66 ± 2.36 51.72 ± 2.03 55.93 ± 2.78 49.07 ± 2.41
Overall Raw TLX (relative) 0.00 ± 0.00 -7.65 ± 1.72 -1.23 ± 2.77 -4.05 ± 2.73 -1.56 ± 1.60 -8.41 ± 1.86
3D SART - Demand 70.57 ± 1.95 66.15 ± 2.01 65.33 ± 2.93 68.62 ± 2.53 72.93 ± 2.37 67.05 ± 2.73
3D SART - Supply 73.73 ± 1.66 74.17 ± 1.78 70.22 ± 2.96 72.88 ± 2.21 79.05 ± 1.84 73.28 ± 2.64
3D SART - Understanding 74.17 ± 1.75 75.47 ± 1.59 72.90 ± 2.40 72.62 ± 2.44 74.57 ± 2.59 78.72 ± 2.00
OVERALL 3D SART 77.33 ± 3.48 83.48 ± 3.23 77.78 ± 5.18 76.88 ± 4.36 80.68 ± 4.19 84.95 ± 4.62
OVERALL 3D SART (relative) 0.00 ± 0.00 6.29 ± 3.39 -1.86 ± 4.50 -3.25 ± 4.27 5.48 ± 4.52 9.75 ± 4.76
I know what the agent is trying to do n/a 4.83 ± 0.14 4.00 ± 0.22 4.40 ± 0.20 4.28 ± 0.23 5.25 ± 0.20
I know why the agent is doing what it does n/a 4.62 ± 0.15 3.83 ± 0.22 4.15 ± 0.20 4.30 ± 0.22 4.75 ± 0.21
I know what the agent is going to do next n/a 3.79 ± 0.15 3.00 ± 0.18 3.25 ± 0.19 3.47 ± 0.22 4.10 ± 0.23

Table 7.5: Average ratings or scores reported by participants for every session in the Situational
Awareness level 2 groups. Scores are presented for each session with or without an aiming
agent and/or with or without a visual agent (noted as “VA” in the table). Depending on the
dimensions, a lower or higher score indicates a better or worse experience.

No Visual Agent Threat Prioritisation (SA Level 2) Missile Path (SA Level 2)

Question / Statement User Only User + AA User + VA
User + AA
+ VA

User + VA
User + AA
+ VA

I can trust the agent n/a 4.90 ± 0.13 4.27 ± 0.22 4.87 ± 0.20 4.75 ± 0.19 4.67 ± 0.18
I can trust the agent (relative) n/a 0.00 ± 0.00 -0.67 ± 0.23 -0.07 ± 0.19 -0.12 ± 0.24 -0.20 ± 0.19
How mentally demanding was the task? 17.15 ± 0.42 14.53 ± 0.58 17.13 ± 0.56 14.57 ± 0.88 17.20 ± 0.55 15.83 ± 0.58
How physically demanding was the task? 11.97 ± 0.76 9.47 ± 0.76 11.13 ± 1.07 10.00 ± 1.00 11.63 ± 0.99 11.60 ± 1.03
How hurried or rushed was the task? 17.33 ± 0.46 15.55 ± 0.53 17.00 ± 0.52 14.53 ± 1.01 17.40 ± 0.70 17.07 ± 0.65
How successful were you in accomplishing
your level of performance?

13.87 ± 0.66 12.25 ± 0.61 13.80 ± 0.93 11.20 ± 0.79 12.63 ± 0.94 12.63 ± 0.81

How hard did you have to work to accomplish
your level of performance?

16.73 ± 0.38 14.33 ± 0.50 16.43 ± 0.61 14.83 ± 0.85 16.57 ± 0.51 14.07 ± 0.61

How insecure, discouraged, irritated,
stressed and annoyed were you?

14.35 ± 0.57 12.18 ± 0.71 14.43 ± 0.89 12.23 ± 0.79 14.90 ± 0.96 13.37 ± 0.94

Overall Raw TLX 58.93 ± 1.36 50.62 ± 1.70 57.78 ± 1.86 49.84 ± 2.20 58.04 ± 2.22 54.55 ± 1.99
Overall Raw TLX (relative) 0.00 ± 0.00 -8.31 ± 1.63 -1.51 ± 1.63 -9.44 ± 1.95 -0.53 ± 1.32 -4.02 ± 1.65
3D SART - Demand 74.01 ± 1.76 69.33 ± 1.69 71.98 ± 2.22 65.42 ± 2.98 73.08 ± 2.52 76.25 ± 2.17
3D SART - Supply 76.80 ± 1.69 77.71 ± 1.38 74.67 ± 2.93 74.65 ± 2.62 74.37 ± 2.21 78.12 ± 1.95
3D SART - Understanding 74.48 ± 1.73 77.50 ± 1.42 73.02 ± 2.33 77.48 ± 1.97 74.20 ± 2.34 78.68 ± 2.05
OVERALL 3D SART 77.28 ± 3.28 85.88 ± 2.58 75.70 ± 4.37 86.72 ± 3.47 75.48 ± 4.21 80.55 ± 3.80
OVERALL 3D SART (relative) 0.00 ± 0.00 8.60 ± 3.17 -2.87 ± 4.65 8.15 ± 5.11 -0.50 ± 4.22 4.57 ± 4.17
I know what the agent is trying to do n/a 5.42 ± 0.12 4.62 ± 0.22 5.48 ± 0.19 5.20 ± 0.20 5.03 ± 0.19
I know why the agent is doing what it does n/a 5.16 ± 0.14 4.27 ± 0.25 5.17 ± 0.20 5.15 ± 0.19 4.70 ± 0.20
I know what the agent is going to do next n/a 4.30 ± 0.15 3.75 ± 0.21 4.58 ± 0.21 4.23 ± 0.21 3.73 ± 0.18

125



Table 7.6: Average ratings reported by participants on questions related to Trust, Cognitive
Load (NASA TLX) and Situational Awareness (SART) in Situational Awareness level 3 groups.
Higher trust ratings indicate greater trust in the agent, higher Raw TLX scores a more cogni-
tively taxing experience and higher SART scores a better overall situational awareness.

No Visual Agent Agent Path (SA Level 3) Performance Graph (SA Level 3)

Question / Statement User Only User + AA User + VA
User + AA
+ VA

User + VA
User + AA
+ VA

I can trust the agent n/a 4.62 ± 0.15 4.05 ± 0.21 5.07 ± 0.18 4.30 ± 0.24 4.85 ± 0.22
I can trust the agent (relative) n/a 0.00 ± 0.00 -0.63 ± 0.22 0.38 ± 0.20 -0.27 ± 0.31 0.29 ± 0.23
How mentally demanding was the task? 16.30 ± 0.53 14.17 ± 0.61 17.97 ± 0.49 14.07 ± 0.74 14.87 ± 0.80 12.60 ± 0.96
How physically demanding was the task? 10.38 ± 0.71 8.24 ± 0.77 10.83 ± 1.05 9.00 ± 0.96 8.83 ± 1.24 7.30 ± 0.89
How hurried or rushed was the task? 16.25 ± 0.56 14.32 ± 0.62 17.03 ± 0.65 14.67 ± 0.80 15.63 ± 0.77 13.37 ± 0.92
How successful were you in accomplishing
your level of performance?

13.75 ± 0.59 13.00 ± 0.58 13.40 ± 0.90 11.70 ± 0.72 16.20 ± 0.57 12.83 ± 1.00

How hard did you have to work to accomplish
your level of performance?

16.53 ± 0.36 13.03 ± 0.60 16.80 ± 0.43 14.27 ± 0.63 15.23 ± 0.80 11.37 ± 0.88

How insecure, discouraged, irritated,
stressed and annoyed were you?

12.97 ± 0.77 10.54 ± 0.77 14.67 ± 0.88 13.07 ± 1.15 11.73 ± 1.19 9.33 ± 1.07

Overall Raw TLX 55.46 ± 1.37 46.93 ± 1.75 57.72 ± 1.40 49.76 ± 2.00 53.68 ± 2.02 43.02 ± 2.47
Overall Raw TLX (relative) 0.00 ± 0.00 -8.57 ± 1.67 -0.26 ± 1.38 -8.23 ± 2.12 0.74 ± 1.13 -9.92 ± 1.94
3D SART - Demand 73.35 ± 1.80 66.01 ± 2.00 74.23 ± 2.38 69.85 ± 2.53 64.25 ± 2.92 62.12 ± 3.26
3D SART - Supply 80.31 ± 1.64 75.54 ± 1.91 82.48 ± 1.97 80.67 ± 1.88 73.95 ± 2.92 75.65 ± 2.58
3D SART - Understanding 80.30 ± 1.70 78.63 ± 1.59 71.63 ± 3.04 78.67 ± 2.30 72.32 ± 2.90 78.07 ± 2.23
OVERALL 3D SART 87.26 ± 3.08 88.16 ± 2.89 79.88 ± 5.21 89.48 ± 4.37 82.02 ± 4.40 91.60 ± 4.89
OVERALL 3D SART (relative) 0.00 ± 0.00 0.50 ± 2.92 -10.15 ± 3.85 -0.55 ± 4.14 -2.47 ± 4.40 7.12 ± 3.76
I know what the agent is trying to do n/a 5.24 ± 0.14 4.35 ± 0.24 5.22 ± 0.18 4.05 ± 0.25 5.40 ± 0.18
I know why the agent is doing what it does n/a 4.75 ± 0.15 4.32 ± 0.23 4.85 ± 0.20 4.15 ± 0.25 5.23 ± 0.20
I know what the agent is going to do next n/a 3.87 ± 0.15 3.63 ± 0.21 4.67 ± 0.20 3.67 ± 0.24 4.07 ± 0.24

Table 7.7: Spearman’s correlation tests between behavioural or reported metrics and trust
ratings. A higher ρ scores indicates a greater correlation.

Parameter 1 Parameter 2 ρ p-value

Overall 3D SART I can trust the agent 0.262 <0.001
Recall I can trust the agent 0.2569 <0.001
Raw TLX I can trust the agent -0.2292 <0.001
F1 I can trust the agent 0.2258 <0.001
Threat Recall I can trust the agent 0.2221 <0.001
Threat Precision I can trust the agent -0.2204 <0.001
Relative F1 I can trust the agent 0.2091 <0.001
Relative Precision I can trust the agent 0.1994 <0.001
Relative Recall I can trust the agent 0.1965 <0.001
Relative Threat Recall I can trust the agent 0.1842 <0.001
Task Difficulty I can trust the agent -0.1744 <0.001
User Control Time I can trust the agent -0.1633 <0.001
Precision I can trust the agent 0.1626 <0.001
Relative Threat F1 I can trust the agent 0.1234 <0.001
Threat F1 I can trust the agent 0.1089 <0.001
Extended Gamemode I can trust the agent 0.0897 0.0032
Relative Threat Precision I can trust the agent -0.0852 0.0052
Gender I can trust the agent 0.0257 0.4141
Age I can trust the agent 0.0216 0.493

7.4.6 Participants’ Feedback

At the end of each session, the “Critical Incident” Technique [62] was used, where participants

were asked to write about the positive and negative aspects of each type of visual agent they

interacted with. The resulting dataset was given to 3 independent coders who had no prior

involvement with the study. More details about coding analysis are available in Section 3.4.5.
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Coders were presented with the definition of Chen et al.’s levels of Situational Awareness [26]

where level 1 is related to understanding what the system is doing, level 2 to “why” the system

is acting in a specific way and level 3 to what is going to happen next. These codes were

summarised as “What”, “Why” and “Projection” and were used to code the comments left by

all participants. Qualitative coding results are presented in Table 7.8.

Looking by Table 7.8, we can observe that the code “What” (SA level 1) was the most widely

used for every type of visualisation, with more than 200 references for each visual agent. This

finding is interesting, as even visual agents in the SA level 2 and 3 groups were coded as being

helpful to understand “what” was happening, which is supposed to be a dimension supported

by SA level 1 visual agents. Despite this anomaly, all visual agents also helped participants

understand important elements regarding the current state of the task. However, the associated

Kappa scores of the “what” code (SA level 1) were by far the lowest among all codes, which

denotes a lack of agreement between coders.

Code “Why” had the second highest number of references throughout the dataset, with

more than 100 for each visual agent group. In addition, its associated Kappa scores were found

to be consistent around 0.36, which denotes a lack of agreement between coders.

Code “Projection” was the least used throughout the dataset, with around 50 references

per visual agent group. Its associated Kappa scores, however, were found to be the highest in

the visual agent Group “SA1 Priority Number”. Interestingly, the visualisations intended to

support SA level 3 (future states) were coded less frequently with the “Projection” code than

SA level 1 visual agent groups.

Table 7.8: Results from qualitative coding analysis on post-hoc survey data asking participants
to report one positive and one negative thing about each visual agent they encountered. 3
independent researchers then assigned relevant comments to individual SA levels (codes) as
described in the framework by Chen et al. (“What”, “Why”, and “Projection”).

visual agent Group Code References Agreement score Kappa score

What 227 57.48 0.05
Why 127 84.41 0.36SA1 Priority Number
Projection 50 87.4 0.67
What 221 59.53 0.07
Why 133 83.85 0.36SA 1 Threat Shape
Projection 52 87.18 0.47
What 226 57.80 0.05
Why 130 84.09 0.36SA 2 Missile Path
Projection 49 87.15 0.04
What 224 59.91 0.05
Why 132 84.05 0.36SA 2 Threat Prioritisation
Projection 44 88.65 0.07
What 224 59.13 0.06
Why 135 84.16 0.37SA 3 Agent Plan
Projection 50 87.42 0.08
What 219 59.95 0.06
Why 132 84.40 0.37SA 3 Performance Graph
Projection 47 87.78 0.05
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7.5 Discussion

In this study, we created different visual agents intended to provide better transparency re-

garding the environment of interaction or an aiming agent’s actions during a collaborative

Human-Agent task. Each visualisation was intended to support a specific situational awareness

level (1,2 or 3, see the work of Chen et al. [26] for more details) and was informed by previous

work in Human Factors and HAI studies [124,139,163]. We analysed and compared the influence

of each visual agent on task performance, reliance, trust, cognitive workload and situational

awareness. This study sought to answer our fourth Research Question: How do different

types of visual help (designed to elicit different levels of situational awareness) in-

fluence the human-agent relationship? and more specifically the following sub-research

questions:

• RQ4.a: How beneficial is the introduction of visual agents when users are by themselves

(no aiming agent)?

• RQ4.b: How beneficial is the introduction of visual agents when users are supported by

an aiming agent?

• RQ4.c: Which visual agent provides the best overall support?

Our results indicate that different types of visual agent can reduce the uncertainty related to

the agent’s actions or the task itself, but also overload users and lead to sub-optimal behaviours.

7.5.1 Task Performance and Visual Agent

In this study we introduced new metrics that we named “Threat Recall, Threat Precision and

Threat F1” to take into account changes related to the presence of False Positives (hitting

missiles that are not going to hit a city) and False Negatives (not hitting missiles that are going

to hit cities). In addition, we focused our analysis on “Relative metrics”, which represent the

relative gain or loss of points for a score in one session when compared against a baseline one

(usually, the session without an aiming agent or visual agent).

Overall, changes following the introduction of a visual agent were mostly observed in sessions

without an aiming agent, as the introduction of an aiming agent resulted in a clear improvement

in most performance metrics throughout all groups, with or without the presence of a visual

agent, which goes against our first hypothesis, and informs RQ4.b. However, visual agents

resulted in some changes in users’ performance and behaviours throughout most groups. We

posited that visual agents intended to provide more prescriptive visualisations (instructing the

user “what to do”) would have a more positive impact on behavioural metrics, such as task

performance. We found that the opposite may be true true for some visual agents. Overall,

we found the most interesting results when analysing Relative Threat Precision scores (see
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Figure 7.5), which was to be expected, as Precision scores measure how efficient the user is at

a task, and our visual agents were all developed to help participants understand the agent’s

actions and, in particular, select relevant targets (threat VS non-threats). In terms of Relative

Threat Precision scores, participants supported by a visual agent scored the highest in the

“Priority Number” (SA1) group. These findings are interesting, as other types of visualisations

processing more of the data for the participants (prescriptive visualisations - for instance, the

“Threat Shape” (SA1) or “Threat Prioritisation” (SA2) visual agents) did not lead to a sig-

nificant increase in Relative Threat Precision scores (which informs RQ4.a). It is important

to note, however, than we did not check whether prescriptive or descriptive visualisations were

perceived as such, which is important to bear in mind while interpreting our results. These

findings are, surprisingly, at odds with our hypothesis as visual agents intended to help partic-

ipants understand “what” was happening likely led participants to spend more time processing

information and making decisions (for instance, “Priority Number” at SA1 and “Missile path”

at SA2) which, in turn, led to increased performance when compared to other visualisations that

presented information that was easier to act on (for instance, “Threat Prioritisation” at SA1 or

“Agent Plan” at SA3). Nonetheless, descriptive visualisations led participants to gain a better

understanding of targets which resulted in fewer false positive errors (higher Relative Threat

Precision scores). Other visualisations that focused on processing more data for participants

(“Threat Shape” at SA1 and “Threat Prioritisation” at SA2) gave more information regarding

the agent’s reasoning which induced better performance in terms of missiles hit (higher Relative

Threat Recall scores) but made it harder for participants to distinguish between true and false

positives (lower Threat Precision scores).

Overall, it seems that visualisations that encouraged participants to make their own decisions

(“Missile Path”, “Priority Number”) as opposed to letting the agent process most of the data,

led participants to obtain a more complete understanding of the task and thus perform better

at it (which informs RQ4.c). The type of situational awareness level initially associated with

each visual agent, however, did not seem to match the actual impact they had on participants,

as the “Priority Number” (SA1) and “Missile Path” (SA2) visual agent groups mostly affected

participants’ understanding of what target to aim at, which appears to be linked to the SA

level 1 from the work of Chen et al. [26].

7.5.2 Reliance, Trust and Visual Agent

We measured reliance as the duration for which participants corrected the agent, while trust

was measured with rating scales indicating participants’ self-reported propensity to trust an

agent.

Overall, participants clearly relied on the aiming agent when its help was available, across

all conditions, which could be the sign of a more complacent attitude toward the aiming agent

where participants were often more likely to rely on its help than trying to improve on its
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decision-making capabilities. These results are congruent with past work describing complacent

behaviours when interacting with automation [154]. In general, reliance did not change in any

important way during sessions without an aiming agent, no matter whether visual agent were

present or not. However, in sessions with agents, clearer differences could be noticed. In the

“Missile Path” (SA2) group, participants relied less on the agent when they could see the

trajectory of the targets, which indicates a better awareness of the situation as these changes

led to significant increases in performance in terms of Relative Precision scores. The group

“Priority Number” (SA1) witnessed the opposite change, with reliance increasing when priority

numbers were displayed on each target, which also resulted in better overall Relative Precision

scores. These clear changes in Reliance did not translate to changes in Trust when an aiming

agent was added, as trust scores in the “Priority Number” and “Missile Path” groups remained

constant across most conditions, except for a noticeable decrease in reported trust for the

“Priority Number” group when only a visual agent was supporting participants. Overall, these

changes show how different types of visualisations influence users’ propensity to rely on the

system, with a more descriptive visual agent (in our study, the one displaying the paths of

missiles) leading to reduced reliance on the aiming agent. However, this decrease in reliance did

not seem to alter participants’ reported trust in the aiming agent. This difference in trust and

reliance could be due to how trust ratings were collected in the study, with no differentiation

between trust in the visual help or the agent when both were present, which could explain our

inconclusive results.

7.5.3 Overloading Users

In this study, Cognitive Workload and Situational Awareness were measured via post-task

survey instruments such as NASA TLX and the 3 item SART instruments. These metrics help

us understand how complex the situation was perceived to be by participants, and how much

they understood about it. Compared to metrics collected directly during the task (reliance and

performance scores), no significant results were found when analysing reported ratings for any

of the visual help groups. Nonetheless, these results still indicate different attitudes towards

automation when supported by various types of visual agent.

Overall scores for Cognitive Workload did not undergo significant changes between groups,

and noticeable differences were only seen between sessions with and sessions without an aiming

agent, with or without visual agents. This was, however, expected as an aiming agent provided

the most assistance with the task, as demonstrated in our previous studies (see Chapters 4, 5

and 6). Analysis of reported situational awareness on the other hand, while not yielding any

significant results, highlighted more interesting changes. Overall, participants in the “Threat

Shape” group reported better situational awareness (higher SART scores) when they were

interacting with an aiming agent and without a visual agent, despite not being statistically

significant. The same was true for the “Missile Path” group. These findings are surprising, as
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visualisations were intended to support different levels of situational awareness, and not harm

them. In the case of the “Threat Shape” group, it is even more surprising as participants

reported a lower overall cognitive load and a higher situational awareness in a session that

did not include a visual agent despite, once again, not resulting in a statistically significant

difference.

By performing qualitative coding, it became clear that most of the participants’ descrip-

tions of the visual agents did not match the situational awareness levels they were intended to

support as represented in Chen et al. framework [26]. These results could indicate flaws in the

conception of the visual agents, despite having informed their design from relevant past work

assessing situational awareness. In addition, agreement scores were low for a lot of visual agents,

particularly with the code concerning descriptions associated with “what” was happening on

the screen. Our results could indicate than Chen’s framework may not most suitable to assess

SA in non-safety critical scenarios with a general, non-expert audience, as opposed to past SA

work that mostly made use of military-oriented scenarios [26].

7.6 Conclusion

For the purpose of this study, we designed six visualisations based on previous work on situa-

tional awareness (SA) and tested their effect on human-agent relationships. Each visualisation

was intended to be either descriptive (letting users make sense of the information) or prescrip-

tive (telling users what to do) while supporting different levels of situational awareness (SA

level 1,2 or 3) regarding the agent’s actions or context of interaction.

When analysing findings, we found that descriptive visualisations (in our study, “Missile

Path” and “Priority Number”), led participants to perform significantly better when no agent

was present in terms of hitting true positive targets, compared to sessions where no visual

or aiming agent was present. Another more prescriptive visualisation (in our study, “Threat

Prioritisation”) led participants to hit a significantly higher number of targets. Moreover,

different types of visualisations led to significant differences in reliance, where a descriptive

visual agent (in our study, “Priority Number”) induced more reliance on the aiming agent and

a prescriptive visual agent (in our study, “Missile Path”) led to less reliance on the aiming

agent.

In terms of reported trust, cognitive load and situational awareness, differences were ob-

served between visualisation groups. Often, participants in sessions without aiming agents but

supported by a visual agent reported having a lower situational awareness than in sessions with-

out an aiming or visual agent. These findings are surprising, as the addition of a visual agent

significantly improved performance in some groups (“Missile Path” and “Priority Number”

groups for instance) but ultimately resulted in lower SA. However, no significant differences

were found when analysing any reported metrics, indicating that participants’ perception of
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the aiming agent or task itself did not dramatically change with the addition of different kinds

of visualisation.

Overall, our findings indicate that users react differently to various visualisations intended

to give them more information about a real-time human-agent collaborative task. We found

that better performance can be achieved by presenting participants with visualisations that

clearly describe a situation, without instructing users what to do. However, no clear differences

were found when analysing participants’ perception of the agents via survey instruments or

qualitative coding, which suggest that the way we designed each visualisation did not result

in improvements on areas that they were designed to support. Furthermore, these findings

indicate that longer interactions might be required for participants to be aware of their changing

behaviours towards an agent, and that there is a mismatch between participants’ interactions

within a task and their reported perception of it.
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Part III

Final Discussion and Conclusion
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Chapter 8

Discussion

In this chapter, we summarise and discuss the implications of our study findings and present

a series of recommendations to support future HAI research and agent designers. As we have

seen in Chapter 2, collaborative agents are being used more and more often in environments

where users and automated agents have to make quick decisions under various levels of un-

certainty [143, 149]. This increased use of agents calls for more research on the elements most

likely to influence the development of human-agent collaboration. Some of these features have

to do with either the agent itself (its level of reliability, behaviour) or the context of interaction

(adversarial conditions, transparency of the agent’s actions).

In this thesis, four user studies (presented in Chapters 4, 5, 6 and 7) were conducted using

a collaborative human-agent aiming framework detailed in Chapter 3. In our framework, we

varied agents’ reliability, error patterns and visual elements to understand their effects on users’

perception, behaviours and team performance. While the focus of this thesis was on the study

of trust in agents, we also looked at behavioural metrics such as reliance and task performance,

as well as other reported metrics such as cognitive workload and situational awareness.

8.1 Trust in agents

One of the key focuses of this thesis is the study of reported trust in agents and, in particular,

how trust evolves when users interact with agents that display different levels of reliability or

behaviours in environments with perfect or sub-optimal access to information. In all studies

presented in Chapters 4, 5, 6 and 7, trust was measured via survey instruments composed of

either multiple items (Chapters 4 and 5) or a single-item (Chapters 6 and 7). While using

multiple-items surveys such as the “Checklist for Trust in Automation” by Jian et al. [90] is

useful in understanding specific elements related to trust (such as perceived deceptiveness or

reliability), we mostly relied on single-item instruments in order to reduce task interruption and

provide a more seamless experience. In particular, we relied on a single-item rating scale derived

from the work of Jian et al. [90] (the statement “I can trust the agent”) which participants could

rate from 1 (low trust) to 7 (high trust).
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8.1.1 With regards to Agent Reliability and Error Types

In all studies in this thesis, we ensured that agent reliability (how “good” the agent is at the

task) was controlled and maintained at fixed levels in terms of Recall (capacity to hit targets)

or False Positive rate (capacity to hit relevant targets - which is only applicable for the study

presented in Chapter 7). Unsurprisingly, we found that reported trust in an aiming agent was

higher when the agent’s reliability was high. This finding was apparent from our first user study

(see Chapter 4) where high agent reliability with high agent predictability led participants to

trust it significantly more than similarly performing but less predictable agents. These results

imply that repetitive automation failures can give a sense of consistency to users, and allow

them to better prepare for upcoming errors, which is similar to findings from the work of Fan

et al. [58] who experimented with systematic errors in a multi-agent environment. In addition,

reported trust scores were found to have a higher correlation with reported cognitive load than

any of our performance metrics, indicating that the mental load of a task can be a better

predictor of trust than even task performance, which tend to support previous work who found

a high inverse correlation between reported trust and cognitive workload [2].

For our follow-up studies (see Chapter 5 onward), we chose to stop integrating “low reliabil-

ity” agents. These, we reasoned, do not represent realistic use-cases for studying human-agent

interaction as they are likely to be underused by users anyway (see results in Chapter 4). In

our second user study (see Chapter 5), we tested the impact of different types of agent errors or

“behaviours” and the way in which they changed users’ willingness to trust an agent and rely

on its help. We found that agents making aiming errors (defined as errors of “slips” - errors

of commission) were perceived as more trustworthy than agents “forgetting” to aim at targets

(defined as “lapses” - errors of omission) or agents that aimed at the wrong targets (defined

as “mistakes” - errors of intention). Of course, all-error prone agents were perceived as being

less trustworthy than the baseline 80% accuracy agent. These findings imply that users find

an agent more trustworthy when the agent takes the initiative and clearly shows that it knows

what to do (i.e. which target to aim at) even if it is ultimately unsuccessful at the task. Our

findings seem to indicate that ascribing intent to an automated agent is something that users

tend to do naturally when engaging with automation, even in a goal-oriented task where agents

display no anthropomorphic indication of their motivations. Furthermore, our results add to a

growing body of studies attempting to explain and/or leverage anthropomorphic features [95],

often to favour a continuously calibrated level of trust in the agent, where users’ expectations

match the actual capabilities of the agent, as described in the work of Merritt et al. [125].

8.1.2 With regards to visual uncertainty and agent transparency

In the studies presented in Chapter 6 and Chapter 7, we tested different types of adversarial

visual conditions on users. In both studies, aiming agents were set to have a 80% accuracy.
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We designed adversarial conditions to induce uncertainty in the task by preventing users from

clearly seeing targets. This was achieved by including either dynamic or static occlusions

that were partial (part of the screen) or near-total (nearly the entire screen). We found that

users trusted an agent the most when the occlusion was total, which was to be expected as the

agent continued to function no matter the kind of visual uncertainty present. A more surprising

finding, however, was that participants preferred to “blindly” trust the agent’s recommendation

under the highest levels of uncertainty, even though it led to poorer task performance. This

finding was particularly interesting as users could, at any moment, correct the agent and get

a better understanding of the situation before making a decision. Our results underline the

need to promote visualisations that enhance agent transparency by informing about “mistaken

uncertainties” (when an agent is misunderstood) and “unaware uncertainties” (when users are

missing an important information), as presented in the work on uncertainty and trust in visual

analytics by Sacha et al. [149].

In the study presented in Chapter 7, we added different types of “visual agent” which were

intended to explain the aiming agent’s actions through visualisations highlighting either the task

(which elements are important) or the aiming agent’s actions (why the agent is doing some-

thing). Each visualisations was inspired from past SA-related work and based on the framework

by Chen et al. [26]. As this study used a between-groups design where every participant experi-

enced one of six potential types of visual agent, we focused on “relative metrics” which describe

the relative gain (or loss) that visual agents were responsible for during the human-agent in-

teraction. Overall, we found that reported trust in the agent did not change when participants

were supported by a visual agent. Nonetheless, we found that displaying the “path” of an agent

(i.e. the agent’s future plan of action) improved users’ trust the most, while displaying which

targets the agents thought were relevant or not actually reduced trust the most, however these

results were not statistically significant. These findings are surprising, as more information and

transparency about an agent’s reasoning process should improve reported trust in it, or at least

help users to better calibrate it, which contrasts with past work on automation transparency

and uncertainty communication in HAI [101]. These results could be explained by the type of

transparency provided to users, as participants tended to trust and rely on visualisations that

presented information intended to be more transparent (“descriptive” visualisations) more than

visualisations that were intended to simply tell users what to do (“prescriptive” visualisations).

However, during analysis of qualitative feedback from participants, we found that most visual-

isations were not perceived as supporting their intended SA level as defined by the framework

of Chen et al. [26], which could also indicate a flaw in the design of our visual agents, despite

being based on previous HAI work.
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8.2 Reliance on agents

Reliance, in addition to trust, is an important metric in understanding how users perceive

automated agents. Where reported trust measures users’ subjective perception of an agent,

reliance, studied via a behavioural proxy, represents users’ actual interaction with an agent [103].

In all our studies presented in this thesis, we studied reliance by recording the amount of time

(in seconds) for which participants assumed responsibility for the controls when interacting

with an aiming agent. This measure, that we call “User Control Time”, is a direct behavioural

proxy that gives an estimate of how much users actually relied on the aiming agents, where a

higher user control time represents lower reliance on the agent, and vice-versa.

In our first study investigating the effect of agent reliability and predictability on users (see

Chapter 4), we found that reliance was positively affected by more reliable and predictable

agents. We observed that participants relied significantly more on agents with high levels of

reliability and high levels of predictability than agents with high levels of reliability but low

levels of predictability. These findings showed that greater reliance on an agent can indeed be

correlated with higher trust, as seen in Section 8.1. It also means that when users can more

easily predict the actions of an agent, they tend to correct it more efficiently as well as being

more willing to rely on its future input, as they know how to anticipate its potential failures.

These results are largely coherent with past work that linked a higher ability to predict an

agent’s actions with a better calibration of users’ reliance [130].

In our follow-up study (see Chapter 5), we designed different types of agent behaviours

and tested their impact on users’ reliance. We found that errors types, much like levels of

predictability, did have an important influence on reliance. Through our results, we learned

that participants relied significantly less on agents that were committing errors of judgement

(defined as “mistakes” in our study) and commission (defined as “slips”) than agents committing

errors of omission (defined as “lapses”). These results indicate that, as with trust, users ascribe

intents to agents, and notice patterns in the way they make errors. In return, these differences

influence the way participants rely on agents. For instance, we found that users were more likely

to rely on agents that chose not to take any action (“lapses”) than those that took a decision and

made an error (“slips” or “mistakes”). This finding represents an interesting avenue to pursue

if we are to understand reliance on faulty automation, since errors of omission seem to have

a less destructive impact on users’ perception of agents, and might be more easily salvageable

than other kind of agent errors. Our findings seem to be in line with past work, such as a study

by Sanchez et al. [151] which found that a high amount of “false alarms” (which is similar to

the “slips” and “mistakes” error types in our experiment) is linked with decreases in reliance

compared to other error types.

In the study presented in Chapter 6, we experimented with different types of “visual uncer-

tainty” that occluded information from users to see how reliance on agents would be affected.
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We observed that users tended to rely less on agents when crucial parts of the environment of

interaction were occluded (in our study, the top of the screen, where targets appear from). This

finding indicates that the introduction of an agent does not necessarily makes users more com-

placent, and that some kind of adversarial visual condition could even lead to improvements,

as users performed better while relying less on the agent (in the session where the top of screen

was hidden, for example). Conversely, other conditions where most elements were occluded

did lead to changes in reliance albeit to the detriment of task performance, which underlines

that calibrated reliance is just as important as calibrated trust in an agent is important for

effective human-agent collaboration. These results add to past work that found reliance to be

better calibrated in situations with visual uncertainty compared to situations with more readily

available visual information [101].

In the study presented in Chapter 7 (and as opposed to the study presented in Chapter 6)

we evaluated different types of visualisation intended to provide more transparency regarding

the agent’s actions or detailing important elements in the environment of interaction. Inter-

estingly, while trust and performance were affected by the type of visualisation used, reliance

evolved differently depending on the kind of visual agent present. For instance, participants

that interacted with descriptive visual agents (intended to show more information about the

task) tended to rely more on the aiming agent while the use of prescriptive visual agents (in-

tended to tell participants “what to do”) resulted in lower reliance on the agent. These findings

could further highlight the situational and contextual nature of reliance, as reliance is heavily

influenced by both the amount of information available during the task (used to make informed

decisions) and the knowledge gained about the agent and its usefulness in a given situation.

While further work is required to discuss the merits of specific visualisation types regarding

reliance on an agent, our study contrast findings from previous work that found visualisations

to significantly change (either positively or negatively) the way users rely on automation [101].

8.3 Task Performance

All of the lab-based and online user studies presented in this thesis were conducted using the

framework described in Chapter 3. Despite differences in research questions and study goals, all

studies were comprised of the same goal-oriented scenarios where participants had to protect

cities from missiles that appeared at the top of the screen. As the task was goal oriented,

we designed a set of metrics to evaluate participants’ success in terms of performance. More

precisely, we used the amount of shots fired, missiles hit and shots missed to compute Recall,

Precision and F1 scores (more details in Section 3.4.3.1).

In our first experiment (see Chapter 4), we studied how agent reliability and predictability

affect performance. Overall performance (in terms of missiles hit - Recall and ratio of shots

fired to missile hit - Precision) was significantly better with more predictable agents, operating
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at a high level of reliability. Our findings indicate that an agent perceived as being more

trustworthy and reliable was also linked to higher task performance. While it is hard to say

precisely what influenced participants’ perception of agents the most, higher task performance

may have been a result of agents being easier to correct thanks to more predictable error

patterns. When comparing correlations with performance metrics, Recall scores yielded a higher

positive correlation with trust ratings than Precision score. Overall, these findings indicate

that participants were perhaps more sensitive to the number of missiles hit (expressed with

Recall scores) than the ratio of missiles hit to shots fired (expressed with Precision scores).

These results are in line with past work that noted a strong correlation between trust and

performance [25]. Nonetheless, in our experiment, we found that reported cognitive workload

was more strongly correlated with trust ratings than any performance metrics.

In our second experiment (see Chapter 5), we compared the impact of different agent error

types on participants. Of all the error-prone agents, we found that errors of omission (defined

as “lapses” - where the agent simply does not do anything) actually had a positive impact

on participants’ performance in terms of Precision and F1 scores when compared against all

other sessions, with error-prone agents or not. These results are surprising, as we expected

errors to be a hindrance to participants, no matter their type or the way we designed them.

Instead, it seems that errors of omission can lead users to be more focused on a task, as a

closer monitoring of the agent’s inaction is required. As a result, these lapses might have been

more readily spotted and participants managed to react in a more timely manner which led

to increased performance, especially in terms of accuracy with higher precision and F1 scores.

Our findings add to a growing body of work on automation errors across a wide range of

domains, such as Human-Robot Interaction where erratic automation errors (for instance, an

unusual request or behaviour) has been shown to make users more careful with their future

agent interactions [150].

In our third experiment, different types of visual uncertainties were designed and tested

on human-agent collaboration (see Chapter 6). Unsurprisingly, we found that the higher the

uncertainty (where most of the screen is occluded), the worse participants’ performance. In

general, hiding the top of the screen (which reduced participants’ time to detect, aim at and

hit targets) significantly improved performance. These results might indicate that, as we have

seen in the context of users interacting with agents prone to errors of omission, better task

performance can be fostered by reducing the amount of time users have to react and make

decisions, which can in turn help maintain good attention levels and, as a result, lead to higher

task performance. Our findings contrast with past work that has shown automation uncertainty

or sensor-related uncertainty to always negatively affect task performance [78,149].

In our fourth experiment (see Chapter 7) we designed and experimented with different visual

agents displaying task-related information. We found that visualisations intended to be more
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descriptive (highlighting important elements) led to significant improvements in terms of rela-

tive performance (when compared to baseline sessions, without visualisation). These findings

indicate that participants are likely to perform better while supported by visualisations intended

to focus on increasing task transparency than while supported by visualisations intended to “tell

them what to do”. As with visual uncertainty, this kind of information transparency could be

leveraged to foster increased levels of attention from users, while allowing them to perform bet-

ter thanks to an added understanding of which elements require monitoring. These results add

to an ever increasing body of work on visual analytics, where different solutions are proposed

to support HAC in high-workload scenario where maintaining a high level of task performance

is paramount [101].

8.4 Cognitive Workload

In all studies conducted and presented in this thesis, we used the NASA TLX rating scales [77]

to evaluate reported cognitive workload. This survey instrument is the most widely used [75]

method to evaluate cognitive workload thanks to its non context-specific nature and ease of

administration. The higher the score reported, the more cognitively taxing the task is perceived

to be. In all our studies, we focused on reporting Raw TLX which consists of an aggregate

score (from 0 to 100) denoting the overall cognitive cost of a task.

In our first and second user studies (see Chapter 4 and 5), we tested different types of agent

behaviour in terms of reliability, predictability (Chapter 4) and error types (Chapter 5). As

expected, we found that higher agent reliability led to a significantly lower cognitive workload,

and that the same was true for agent predictability, due to the ease with which users could

predict errors and make adjustments accordingly. In addition, we found that reported cognitive

workload tended to be higher when an agent makes a wrong decision (defined as “slips”) than

when it made no decision at all (defined as “lapses”). These results indicate that, assuming

a high level of agent reliability, being able to better predict the actions of an agent will likely

lead to a lower reported cognitive workload. Interestingly, in one of our studies (presented in

Chapter 4), cognitive workload had the highest correlation with reported trust ratings, even

higher than the task performance metrics (Recall, Precision F1). These findings highlight

how important task complexity and the perceived complexity of interacting with an agent are

regarding the development of cognitive workload, which is in line with past work that found a

lack of agent transparency to have a negative impact on the development of cognitive workload,

regardless even of task complexity [26].

In the third and fourth user studies presented in, respectively, Chapter 6 and 7, we tested dif-

ferent types of visual uncertainties on users and evaluated the benefits of visualisation displaying

information about either the agent’s actions or environment of interaction. More precisely, in

our third user study, presented in Chapter 6, we tested different modalities of visual occlusions
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(dynamic, static, partial or total). Overall, we did not find any significant differences between

them in terms of reported cognitive workload. These findings could be explained by the inherent

complexity of the task, which led to high levels of reported cognitive workload even in sessions

without any type of visual uncertainty. Similarly, in our fourth user study (see Chapter 7), we

found that our different types of visualisation did not influence participants’ reported cognitive

workload. These findings were consistent throughout the study despite changes in either the

intended type of visual agent (descriptive or prescriptive) or nature of visualisation used (see

summary of the visual agents used in Section 7.3.1). Overall, and as with our study focusing

on visual uncertainty (see Chapter 6), one could argue that participants’ cognitive workload

was most affected by task difficulty, and that visualisations did not significantly affect reported

cognitive workload, despite other improvements in terms of reliance on the agent, trust or task

performance.

8.5 Situational Awareness

In our studies, Situational Awareness (SA) represents the amount of information that a user

can assimilate about what a system is doing (SA level 1), why it is acting in a specific way (SA

level 2), and what it will likely do next (SA level 3) [26]. SA is an important concept in HCI

studies as it allows for the measurement of users’ understanding about a situation or an agent,

and can be used to help understand the development of other related constructs such as task

performance, reliance or reported trust. Situational Awareness was only assessed in two studies

(see Chapter 4 and Chapter 5) and via two survey instruments: SAGAT and SART [53], which

limits comparability between studies.

In our third user study (see Chapter 6), we used SAGAT to evaluate SA level 1 (“what”

the user understands about a situation) by asking participants to report the number of missiles

present in either the top or bottom half of the screen, and compare this to the actual number

of missiles present. We found that there was no major discrepancy between conditions in terms

of over- or underestimations, and that obscuring the bottom and top half of the screen led,

respectively, to more under- and over estimations. Overall, these findings were not particularly

insightful as regards to their relationship with other metrics (no clear correlations between

SA and other behavioural or reported metrics were found). However, our findings served as

a reminder that task complexity coupled with reduced access to important information will

likely reduce situational awareness, no matter the kind of obstacle faced. Our findings seem

to support past work that found limited access to information and high task complexity to

negatively affect SA the most [135].

In our fourth study (see Chapter 6), we designed and experimented with different visual

agents whose intended goal was to display more information about either the task or the aiming

agent’s actions. No matter the visualisations tested, we expected improvement in SA no matter
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what visualisations we tested, as task transparency is key to higher levels of reported SA [72].

We did not find any significant differences in terms of SART scores between sessions. Our

results might indicate that visual agents were not perceived as being helpful by participants,

even less so when an aiming agent was present, and that the addition of a visual agent could

even be distracting and harmful to task completion. Additionally, our findings could reflect

the downside of studying a concept often investigated in safety-critical environments (SART,

SAGAT), which may not apply to a different domain of interaction (here, a game-based task).

In our studies, we found that SART scores were ineffective at capturing (often small) differences

in information gains between conditions. Our findings should serve as motivation to develop a

greater range of non-context-specific methods to analyse the development of SA in more details.

8.6 Lab-based and Asynchronous Online Studies

Due to disruptions caused by the COVID19 pandemic throughout 2020 and 2021, we decided

to switch from using a lab-based framework (as seen in studies presented in Chapters 4 and 5)

to an asynchronous online framework (see Chapters 6 and 7) where participants took part in

the experiment using their own computers. While the task remained the same, we would like to

discuss the implications of switching from one framework to another for our results and future

HCI work in general.

First, the quantity and quality of post-hoc qualitative feedback given by participants tended

to be better during lab-based studies, which could have been the result of participants being

able to ask questions directly to the lead researcher and referring more easily to particular

moments during the experiments, compared to writing feedback on a post-hoc survey form.

Secondly, while asynchronous online studies make it easier to reach a higher number of peo-

ple, we noticed that lab-based studies require less attention to details during the creation of

the experimental flow and interface, as a researcher can be present to guide users throughout

the experiment and assist them if needed. This added development time for online studies

should be taken into account when weighting the pros and cons of remote and lab-based experi-

ments, as more pilot testing is required to ensure that the flow of an online experiment remains

straightforward enough for all participants to complete in time, as well as potentially designing

attention checks.

Finally, we recommend for the network and performance of participants’ computers to be

assessed during and, equally importantly, before they take part in the study. To this end,

we recommend creating a simple, scaled-down version of the experimental framework to test

communication to servers (checking participants’ ping to the experiment’s servers could be

useful) as well as a benchmarking tool (similarly to the one used in all of our online studies) to

let prospective participants know if their machines are fit to complete the study or not. This

is especially important when the framework is being ran directly from participants’ computers.
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This benchmark tool can be as simple as a short script using the same framework as the

experiment and running a high workload where certain performance thresholds have to be met

in order to allow prospective participants to take part in the study.

8.7 Limitations

8.7.1 Experimental Constraints

It should be noted that our work is not without limitations. In the studies presented in Chap-

ters 4 an 5, we explored agent’s behaviours and their influence on trust, reliance, task perfor-

mance, cognitive workload and situational awareness in a goal-oriented, collaborative aiming

task. While the selection criteria for the recruitment of participants were similar for all studies,

our samples mostly consisted of students between the age of 18 and 30 and might not generalise

to other, older, user groups. In addition, in order to ensure that studies could be completed

within an hour for lab-based studies and 45 minutes for online studies, a number of constraints

were set. We had to design our experiments with either four or five conditions, depending on

the focus of each study (for instance, four different agents or types of visual occlusion). The

duration for which participants interacted with each condition also had to be constrained. In

most of our studies, participants spent between three and six minutes on each condition, which

could have limited the amount of time participants had in order to get used to and adapt to

different experimental conditions. In particular, it is possible that more time spent interacting

with the agents could have helped participants calibrate their trust over time, which could

coincided with changes in reliance and task performance. On the other hand, interactions that

were too lengthy could have lead to complacency or complete distrust.

Additionally, of the four user studies conducted in this thesis, two took place in a lab

environment (see Chapters 4 and 5) while two others were conducted online and asynchronously

(see Chapters 6 and 7) due to disruptions caused by the COVID19 pandemic throughout 2020

and 2021. While we used the same framework for all studies, participants in remote online

experiments took part using their own computers and keyboards as opposed to a controller in

a lab-based environment. While participants’ task performance in all studies was found to be

comparable, we would like to acknowledge this as a limitation for the inter-comparability of our

lab-based and remote studies. Furthermore, while we recorded software-related details about

participants’ machines such as frame-rate or screen resolution, hardware-level information were

beyond the scope of our logging system. Screen-size, among other elements such as screen refresh

rate, could be a relevant information to record as it has the potential to affect participants’

ability to notice on-screen items and can change the way they perform during the task.

Longitudinal studies could be an interesting avenue that we left to future work. Such

studies could focus on different aspects of the human-agent collaboration. For instance, when

studying the impact of agent behaviours on users, such studies could assess the amount of
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time needed for users to feel comfortable enough with an agent, and how long it takes before

potentially complacent attitudes set in. Findings from such experiments could further our

understanding of the nature of trust calibration by linking it to the evolution of performance

levels, reliance and/or reported trust. Furthermore, longitudinal studies including adverse

environmental conditions would also be beneficial to the field of HAI. Such experiments could

test a wide variety of adversarial conditions affecting the accuracy of the agent’s help and/or the

knowledge available to users. These studies could be easily contextualised by using scenarios

most commonly affected by changes in the weather, terrain or location. While remaining

relatively rare, these studies would prove useful to understand the impact of external factors

on HAC, which have, for now, mostly been studied in war-oriented scenarios [99].

8.7.2 Domain-specific Constraints

Our framework was designed to assess human-agent collaboration in a task characterised by

the following elements:

• A fast-paced task where participants had to rely on their reflexes to perform well.

• Multiple targets to monitor and track at once.

• A task divided into short sessions, the lengths of which depended on the constraints of

each study.

We acknowledge that our findings may not generalise to different contexts of interaction, espe-

cially those where decisions will have an immediate or long-lasting impact on either the user

interacting with the agent or other parties (for instance, civilians involved in the decisions of a

bomb-seeking task [143] or practitioners in the medical domain [72]). Nonetheless, our findings

and research framework could prove useful to other scientific fields concerned with collaborative

decision-making such as autonomous vehicles where challenges involving uncertainty, appropri-

ate reliance and explainability have been long-standing issues, as presented in the meta review

of trust-related studies involving autonomous vehicles by Lockey et al. [113]. Indeed, our studies

provided some insights regarding how, for instance, specific visualisations could support HAC.

Our results could serve as the basis for follow-up studies where the validity of our findings and

experimental design are put to the test in more realistic environments.

In addition, participants interacted with agents in tasks for which they had received little

training, and which were necessarily short in nature to reduce fatigue. A completely different

environment (for instance an asset tracking task [143]) where users’ attention has to be sustained

during hours, or even days (e.g. a submarine tracking task [28]) could yield different results.

Longer interactions could allow users to have a better mental model of the agent and its decision-

making, but could also increase the chance of complacent behaviours developing. Participants’

expertise is another area that was under-explored in this thesis. While participants’ skills and
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individual levels of performance were controlled by having them complete the task without the

help of an agent first, our framework was new to all participants and previous expertise in

related tasks was not assessed prior to undertaking the experiment. In more expert settings,

the attitude users displayed towards the agent would likely be very different, as new tasks would

require users to rethink their methods which could be, in turn, result in under-reliance on the

agent, depending on the context of interaction.

We would like to note that the limitations mentioned above do not undermine the main

findings of our studies, but we acknowledge that additional investigations are required to un-

derstand more precisely the relationship between the different variables linked to trust in agents,

as well as how other types of tasks influence this relationship. We leave these avenues open for

future work.
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8.8 Recommendations

Based on the results gathered from studies conducted in this thesis along with past work in

HAI and Human Factors, we present a series of four recommendations for the research and

development of future collaborative agents. A summary of the areas we covered in this work as

well as future research opportunities is provided in Figure 8.1.

Figure 8.1: Venn diagram representing interactions between a user, agent, environment of
interaction and type of task. Blue areas indicate which combination this work studied while
orange areas are avenues left for future work.

8.8.1 Agent transparency and consistency can be prioritised over re-
liability

Regarding agent transparency and consistency, our recommendations can be summarised as

follows:

• Beyond a certain level of agent reliability, system makers should prioritise

more predictable and easy to understand agent behaviours, rather than max-

imising reliability at all costs.

• Increasing transparency regarding the agent’s actions and providing a better

on-boarding process should result in better calibration of users’ reliance and

trust in the agent.
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Evidently, agent reliability is one of the core factors in users’ adoption of any system, and this

applies to human-agent collaboration: the agent must be reliable “enough” to carry a task

successfully and be perceived as helpful [57, 103]. Quantifying how reliable the agent should

be in order to be perceived as “good” is, however, difficult, as it largely depends on users’

own expertise and the context of interaction, including the likely consequences of any decisions

taken. In previous HAI studies, the threshold for acceptable performance was usually set at

around 80% accuracy [21, 57], as we found that users tend to ascribe a high reliability to any

agent whose input are correct (true positives) between 90 and 70% of the time. While high

reliability is essential, we argue that beyond a certain threshold, further increases in reliability

can yield diminishing returns, and even harm the Human-Agent team. These side effects could

occur if they imply sacrifices in the transparency of the agent’s actions or the consistency of

its behaviours. As evidenced by our findings in Chapters 5 and 7, assuming agents’ levels

of reliability are the same, users tend to prefer more predictable. This preference for higher

predictability and consistency is evidenced by higher reported trust in agents that would choose

not to do anything (false negative error) rather than acting and failing in a situation where

the likelihood of agent errors was high. We posit that increased agent consistency makes it

not only easier to anticipate an agent’s actions but also allows for more flexibility in the case

of sudden changes in mission goals or the environment of interaction. More transparent and

predictable agent actions would likely further reduce users’ cognitive workload by allowing for

a more calibrated mental model of the agent’s reasoning process. Increasing predictability

could also help mitigate adoption and on-boarding issues, as we found that users ascribe fewer

negative intents to agents that are more consistent in their behaviours.

While high agent reliability, transparency and consistency are important, there is no alter-

native to a well calibrated, informed understanding of an agent’s capabilities. Making users

aware of the weaknesses of an agent, through repeated training and/or by displaying real-time

information, is paramount to achieving effective human-agent collaboration and will foster more

informed reliance on the agent.

8.8.2 Agent behaviours should be clearly categorised and defined

Regarding agent behaviours, our recommendations can be summarised as follows:

• The perceived behaviour of an agent in terms of its reasoning process and

perceived intent should be clearly elicited and defined in order to anticipate

the impact on users’ perception of the agent.

• A framework of agent behaviours, errors and likely consequences should be

created. In particular, this framework should vary the context of interaction

to incorporate a wide range of domain-specific findings.
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The type of support and level of autonomy of an agent will influence the way users develop a

mental model of the inner workings of the agent [119]. While anthropomorphised agents will

be more likely to have intents ascribed to them [7], intent will also be ascribed to agents that

don’t display human characteristics (such as speech, or a form of physical embodiment). This

tendency for users to anthropomorphise systems should be taken into account, if not leveraged,

by system makers. Wrongfully ascribing a specific intent to an agent (for instance, about the

perception of its “real” intentions) could have harmful consequences. As an example, users

could believe that a system is actually working against them which could likely lead to under-

reliance issues and defeat the whole purpose of designing a collaborative agent. On the contrary,

not being transparent about the limitations of an agent’s decision-making process could lead

to dangerous over-reliance in situations of high uncertainty.

In our studies, we mostly documented participants’ impressions of agents’ capabilities via

trust-related ratings scales or open-ended post-hoc interviews. We found that not only does

the type of agent behaviour have a clear impact on users’ perception of the agents, it also

influences the way users perform and rely on the agent. These differences are important to take

into account, as our studies showed that certain types of error are perceived as being less harmful

than others, while not resulting in improved task performance. The work of Marinaccio [118] and

Reason [145] pioneered the elicitation and categorisation of agent errors and their consequences

for interpersonal or human-agent interactions. We recommend that more work should focus

on testing newly defined and existing automation errors in a variety of contexts, from general

non-expert scenarios to safety-critical settings requiring expert knowledge. More information

on potential differences and similarities of users’ perceptions of errors across different domains

could allow system makers to better anticipate and mitigate adoption issues, with a selection

of repair mechanisms designed to account for an agent’s shortcomings.

8.8.3 Taking into account the environment of interaction to better
anticipate changes in human-agent collaboration

Regarding the environment in which HAC takes places, we summarise our recommendations as

follows:

• In future HAC studies, the environment of interaction and its features should

be clearly controlled and accounted for independently of the task.

• As with agent behaviours, a framework of different types of environment of

interaction and their features (availability of required information, noise, un-

certainty) should be created to compare their influence across a wide range

of HAC tasks.

As we have seen with the behaviour of virtual agents, the environment of interaction is an

often under-studied aspect of HAI experiments. In our studies, we found that the environment
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of interaction also impacts users in a significant way, regardless of the actual capabilities of

the agent. For instance, in environments with high levels of uncertainty, users are likely to

trust an agent more irrespective of its reliability, which subsequently induces more reliance on

the agent’s input. Additionally, we found that restricting the amount of information required

to make informed decisions led participants to react more quickly and, as a result, perform

better. We believe that human-agent training could benefit from such findings. In simulated

environments, uncertainty and sub-optimal access to important information could be artificially

induced in order to train participants to prioritise tasks more effectively and be more critical

of the help provided by an agent.

As with past studies investigating and classifying different types of agent errors and their

impact on users [118], there is, to the best of our knowledge, no work focused on assessing how

different types of tasks, constraints, and environments of interaction in general affect human-

agent collaboration. Such a framework could detail how the features of different environments

of interaction (such as availability of information, noise or uncertainty level) would affect the

outcome of a task as well as the general attitude of a user towards an agent. This work

should also carefully account for the risks and consequences of each interaction scenario, as the

outcome of a task (in safety critical environments for instance) are likely to influence users’

decision-making and risk-taking potential.

8.8.4 Creating a framework to categorise transparent interface ele-
ments and their impact on situational awareness

Regarding the communication of an agent’s intent and decision-making process, we recommend

the following:

• More reproduction studies on past SAT-based work.

• The development of more general SA assessment tools for use in non safety-

critical contexts.

Situational awareness (SA) and the related SAT framework are often used as a basis for

qualifying and designing interfaces that support increased agent transparency. Most SA studies

have been conducted in defence-oriented, military-focused environments where task require

users to assess situations over extended periods of time (asset tracking, dispatch missions etc.).

While insights from SA studies are a useful way to categorise the impact of different visual aids

on SA in high-risk situations, they are less helpful when it comes to selecting specific types

of visualisations for a given task. We recommend that Human Factors and HCI researchers

reproduce past SA-based designs and develop new ones in order to test their effectiveness in more

varied scenarios. In particular, we recommend that more studies are conducted in non safety-

critical environments. This would allow for a better understanding of which characteristics
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inherent to visual aids impact SA the most, and which contexts of interaction make it most

relevant to assess SA in the first place.

As a follow-up study, and using results from reproduction studies, we recommend that

research efforts are centred around designing more context-free assessment tools for SA. Current

SA assessment tools are either deployed in a context-specific manner (SAGAT [53]) or as a

series of rating-scale instruments (SART [53]). Most tools have been designed and calibrated in

safety-critical environments. However, and line with the results of our non-safety critical user

studies, findings from previously designed SA assessment tools may not prove conclusive in tasks

designed to be accessible to non-expert users. For instance, the question wording in the SART

tool clearly refers to concept from aviation, where it was originally designed. These instruments

may not resonate with a general audience. If SA is to be an important factor in assessing and

monitoring a wide range of scenarios, a more general means of assessment is needed, one that

(like NASA TLX [76] for cognitive workload, for instance) could be easily administered in a

wide range of scenarios. These results could help create a framework where likely drawbacks

and advantages of specific visualisations are presented, along with their relationship to different

types of task.

We hope that these recommendations will speak to designers of human-agent systems and be

tested in a wide range of interaction scenarios. For future work on trust in collaborative agents,

we recommend that studies focus on the development of trust-aware agents, which includes the

design of systems capable of detecting loss of trust in real-time and repairing trust via a series

of mechanisms depending on the type of error committed and the context of interaction. The

notion of “trust-aware agents” is most commonly found in multi-agents environments where

trust is often operationalised as a score based on system’s performance and used to plan future

decisions, such as in the context of AI-supported transportation systems [30]. It would be

insightful for future work to extend the concept of trust awareness to agents involved in more

social interactions where the detection and assessment of trust is usually more complex. These

studies could then deploy new or previously studied [145] trust-repair mechanisms and assess

their relevance in a variety of scenarios and tasks.
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Chapter 9

Conclusion

Collaboration between human and automated agents is now commonplace in many applied

settings, from safety environments to more casual, everyday activities. Due to the complex

interplay between users, agents and the environment of interaction, it is important to study

specific factors that are likely to influence how users trust an agent, as well as the implications

for task performance, reliance and other reported metrics. In this thesis, we have presented

four user-studies designed to test the impact of different agent behaviours and visualisations on

users. To perform all of our experiments, we designed a game-like human-agent framework (see

Chapter 3) where users and agents collaborated to complete goal-oriented tasks with various

levels of difficulty. Using this framework, we were able to record behavioural metrics to assess

task performance and reliance, as well as reported constructs with the use of verified survey

instruments. We would like our results to inform the design of collaborative agents and motivate

future research into key components of the human-agent partnership.

In this Section, we summarise our answers to the overall research questions defined in

Section 1.3. Our first research questions was defined as follows: How do changes in agent

predictability (how easy it is to guess its next actions) and reliability (how good

the agent is at the task) impact the human-agent relationship? With our lab-based

user study presented in Chapter 4, we showed that, when agent reliability is high, added

predictability increases task performance, reliance on the agent, trust and reduces cognitive

load.

Our second research question was defined as follows: How do different types of agent

errors defined from previous related work such as slips, mistakes and lapses affect

the human-agent relationship? With our lab-based user study presented in Chapter 5, we

demonstrated that, when agent reliability is high, the type of error committed by an agent

affects the way users interact with it. Errors of omission (defined as “lapses”) are the easiest

to correct and can even improve task performance in terms of Precision by reducing the chance

of users engaging in complacent behaviours. Errors of intention (“mistakes”) and commission
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(“slips”) were harder for users to correct, and resulted in the worst task performance as well as

higher reported cognitive load.

Our third research question was defined as follows: How do different types of environ-

mental conditions (static or moving), which impair vision and induce uncertainty,

affect the human-agent relationship?. With our remote online user study presented in

Chapter 6, we showed that conditions impairing vision and inducing visual uncertainty can

affect the way users perform and rely on an agent. Near-total visual uncertainty led to higher

reported trust and increased reliance on the agent while negatively affecting task performance.

Visual occlusions that forced participants to react more quickly led to higher task performance,

despite also resulting in a higher reported cognitive load.

Our fourth and final research question was defined as follows: How do different types of

visual help (designed to elicit different levels of situational awareness) influence the

human-agent relationship? With our remote online user study presented in Chapter 7, we

showed that the type of visualisation used in a human-agent collaborative task has important

implications for human-agent collaboration. Visualisations that are descriptive in nature (high-

lighting important elements) were perceived as more helpful and led to higher task performance

than visualisations that were prescriptive in nature (telling the user “what to do”). Overall,

visualisations designed to support SA level 1 and 2 had a more positive influence on users while

an SA level 3 visualisation led to lower task performance and a higher cognitive load.
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Page 1 of 8

Start of Block: General Questions
Q0 Thank you for participating in this study. Please answer the questions below.

Q1Please enter your participant ID:
________________________________________________________________

Q2 What is your age?
________________________________________________________________

Q3What is your gender?oMale (1)o Female (2)o Non-Binary (3)o Self-Defined (4)o Prefer not to say (5)

A.A Pre-Hoc Survey
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Q9 What is your current status?o Student (1)o Employed (2)o Unemployed (3)oOther (4)o Prefer not to say (5)

Q4 Are you a native English Speaker?o Yes (1)o No (2)

Q5 How would you rate your English comprehension skills?
Very Poor(1) Poor (2) Average(3) Good (4) Very Good(5) I'm a nativespeaker (6)

Make yourselection:(1) o o o o o o
Q6 How often do you play video-games?

Never (1) Once ayear (2)
Once inSeveralMonths (3)

Once aMonth (4)
Severaltimes amonth (5)

Everyday(6)
Make yourselection:(1) o o o o o o
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Q7 What kind of games do you usually play (example: 3D shooters, 2D plateformers, shortmobiles games etc...) if you selected "never" on the last question, you can skip this one.
________________________________________________________________

End of Block: General Questions
Start of Block: Please read and rate the following statements
Q0 Please rate the following statements.

Q8 Manually sorting through card catalogues is more reliable than computer-aidedsearches forfinding items in a library.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q10 If I need to have a tumor in my body removed, I would choose to undergo computer-aided surgery using laser technology because computerized surgery is more reliableand safer than manual surgery.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q11 People save time by using automatic teller machines (ATMs) rather than a bank tellerin making transactions.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
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Select ananswer: (1) o o o o o
Q51 I do not trust automated devices such as ATMs and computerized airline reservations.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q12 People who work frequently with automated devices have lower job satisfactionbecause they feel less involved in their job than those who work manually.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q13 I feel safer depositing my money at an ATM than with a human teller.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q14 I have to tape an important TV program for a class assignment. To ensure that thecorrect program is recorded, I would use the automatic programming facility on myrecorder rather than manual taping.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
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Select ananswer: (1) o o o o o
Q15 People whose jobs require them to work with automated systems are lonelier thanpeople who do not work with such devices.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q16 Automated systems used in modern aircraft, such as the automatic landing system,have made air journey safer.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q17 ATMs provide safeguard against the inappropriate use of an individual's bank accountby dishonest people.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q18 Automated devices used in aviation and banking have made work easier for bothemployees and customers.
Strongly Disagree (2) Neutral (3) Agree (4) Strongly
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Disagree (1) Agree (5)
Select ananswer: (1) o o o o o

Q19 I often use automated devices.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q20 People who work with automated devices have greater job satisfaction because theyfeel more involved than those who work manually.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q21 Automated devices in medicine save time and money in the diagnosis and treatment ofdiseases.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q22 Even though the automatic cruise control in my car is set at a speed below the speedlimit, I worry when I pass a police radar speed-trap in case the automatic control is notworking properly.
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StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q23 Bank transactions have become safer with the introduction of computer technology forthe transfer of funds.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q24 I would rather purchase an item using a computer than have to deal with a salesrepresentative on the phone because my order is more likely to be correct using thecomputer.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q25 Work has become more difficult with the increase of automation in aviation andbanking.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
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Q27 I do not like to use ATMs because I feel that they are sometimes unreliable.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q28 I think that automated devices used in medicine, such as CAT-scans and ultrasound,provide very reliable medical diagnosis.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

End of Block: Please read and rate the following statements
Start of Block: Block 2
Q37 Thank your for answering this preliminary set of questions.
You can now begin to play the game.

When you're done, please click on the "next" button to answer a final short set of questions.

End of Block: Block 2
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Start of Block: Block 3
Q41 All of the following statements are referring to the game you just played.Please rate them according to your own personal experience.

Q40 I thought it was fun
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q42 I was fully occupied with the game

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q43 I thought about other things
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q44 I found it tiresome

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

A.B Post-Hoc Survey
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Select ananswer: (1) o o o o o
Q45 I felt competent

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q46 I thought it was hard
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q47 I felt frustrated

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q48 I felt time pressure
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
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Q49 I felt successful
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
End of Block: Block 3
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Start of Block: General Questions
Q0Thank you for participating in this study. Please answer the questions below.Please note that all of your answers will be anonymized.

Q1Please enter the ID given to you by the researcher in charge of study:
________________________________________________________________

Q2 Please enter your age:
________________________________________________________________

Q3What is your gender?oMale (1)o Female (2)o Non-Binary (3)o Self-Defined (4)o Prefer not to say (5)

B.A Pre-Hoc Survey

185



Page 2 of 5

Q4 Education: What is the highest degree or level of school you have completed? If currentlyenrolled, highest degree received.o No schooling completed (1)o Nursery school to 8th grade (2)o Some high school, no diploma (3)o High school graduate, diploma or equivalent (4)o Some college credit, no degree (5)o Trade/technical/vocational training (6)o Associate degree (7)o Bachelor’s degree (8)oMaster’s degree (9)o Professional degree (10)o Doctorate degree (12)o Prefer not to say (13)

Q5 In which field are you currently employed? (e.g "automotive industry", "medical" etc... )If you are studying or on the lookout for a job, which field is your main focus?
________________________________________________________________

End of Block: General Questions
Start of Block: Block 5
Q6 How often do you play video-games?

Never (1) VeryRarely (2) Rarely (7) Occasionally(8) Frequently(9)
VeryFrequently(10)



Page 3 of 5

Make yourselection:(1) o o o o o o
Q7 What kind of games do you usually play (example: 3D first person shooters, 2Dplateformers, small mobiles games etc...) if you selected "never" on the last question, you canskip this one.

________________________________________________________________
End of Block: Block 5
Start of Block: Block 3
Q8 Please rate the following statements

Never (1) Rarely (2) Sometimes(6) Very Often(7) Constantly(8)
When I havea lot to do, itmakes senseto delegate atask toautomation.(1)

o o o o o
If life werebusy, I wouldlet anautomatedsystemhandle sometasks for me.(2)

o o o o o
Automationshould beused to easepeople’sworkload. (3)

o o o o o
Ifautomation isavailable tohelp me with o o o o o
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something, itmakes sensefor me to paymoreattention tomy othertasks. (4)
Even if anautomatedaid can helpme with atask, I shouldpay attentionto itsperformance.(5)

o o o o o
Distractionsandinterruptionsare less of aproblem forme when Ihave anautomatedsystem tocover someof the work.(6)

o o o o o
Constantlymonitoring anautomatedsystem’sperformanceis a waste oftime. (7)

o o o o o
Even when Ihave a lot todo, I am likelyto watchautomationcarefully forerrors. (8)

o o o o o
It’s notusuallynecessary topay much o o o o o
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attention toautomationwhen it isrunning. (9)
Carefullywatchingautomationtakes timeaway frommoreimportant orinterestingthings. (10)

o o o o o
End of Block: Block 3
Start of Block: Block 2
Q9 Thank your for answering this preliminary set of questions.
You can now begin to play the game.

After you're done playing, please click on the button below to answer a final short set ofquestions.
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Start of Block: Block 3
Q10 All of the following statements are referring to the game you just played.Please rate them according to your own personal experience.

Q11 I forgot about my immediate surroundings while playing this game.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q12 I was so involved in this game that I ignored everything around me.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q13 I lost myself in this game.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q14 I was so involved in this game that I lost track of time.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

B.B Post-Hoc Survey

190



Page 2 of 3

Select ananswer: (1) o o o o o
Q15 I blocked out things around me when I was playing this game.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q16 When I was playing this game, I lost track of the world around me.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q18 The time I spent playing this game just slipped away.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q19 I was absorbed in this game.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
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Q20 During this game I let myself go.
Stronglyagree (1) Disagree (6) Neutral (7) Agree (8) StronglyAgree (9)

Click to writeStatement 1(1) o o o o o
End of Block: Block 3
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Start of Block: General Questions
Q0Thank you for participating in this study. Please answer the questions below.Please note that all of your answers will be anonymized.

Q1Please enter the ID given to you by the researcher in charge of study:
________________________________________________________________

Q2 Please enter your age:
________________________________________________________________

Q3What is your gender?oMale (1)o Female (2)o Non-Binary (3)o Self-Defined (4)o Prefer not to say (5)

C.A Pre-Hoc Survey
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Q7What is your gender?oMale (1)o Female (2)o Non-Binary (3)o Self-Defined (4)o Prefer not to say (5)

Q8 What is your country of origin?o Please enter your country of origin below: (1)________________________________________________o Prefer not to say (2)
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Q9 Education: What is the highest degree or level of school you have completed? If currentlyenrolled, highest degree received.o No formal education (1)o High school diploma (2)o College degree (3)o Vocational training (14)o Bachelor's degree (15)oMaster's degree (16)o Professional degree (17)o Doctorate degree (18)o Prefer not to say (13)

Q10 In which field are you currently employed? (e.g "automotive industry", "medical" etc... )If you are studying or on the lookout for a job, which field is your main focus?
________________________________________________________________

End of Block: Demographic Survey
Start of Block: Gaming-related Questions
Q11 How often do you play video-games?

Never (1) VeryRarely (2) Rarely (7) Occasionally(8) Frequently(9)
VeryFrequently(10)

Make yourselection:(1) o o o o o o



Page 4 of 4

Q12 What kind of games do you usually play (example: 3D first person shooters, 2Dplatformers, casual mobiles games etc...). If you selected "never" on the last question, you canskip answering this one.
________________________________________________________________

Q13 How old is the computer that you are using for this study?
________________________________________________________________

Q14Please indicate below the name of the CPU and/or GPU that your computer is currently using.If you do not know it, simply write the brand/name of your computer (ex: "HP Laptop", "AppleMacbook Air" etc...)
________________________________________________________________

End of Block: Gaming-related Questions
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Start of Block: Block 3
Q10 All of the following statements are referring to the game you just played.Please rate them according to your own personal experience.

Q11 I forgot about my immediate surroundings while playing this game.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q12 I was so involved in this game that I ignored everything around me.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q13 I lost myself in this game.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q14 I was so involved in this game that I lost track of time.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

C.B Post-Hoc Survey
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Q8 During one of the session, a "disruption" (static-like effect) hid the TOP of the screen.How did that affected your ability to play and your reliance on the agent?
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________

Q10 During one of the session, a "disruption" (static-like effect) hid the BOTTOM of thescreen. How did that affected your ability to play and reliance on the agent?
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________

Q13Please rate the difficulty of each conditions from 0 (very easy) to 100 (very hard):Easy Medium Hard
0 10 20 30 40 50 60 70 80 90 100

Darkness & Spotlight ()
Clouds ()

Disruption (top of the screen) ()
Disruption (bottom of the screen) ()
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Q15 Please give us some feedback or recommendations about the study below:
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________

End of Block: Default Question Block
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Start of Block: General Questions
Q0Thank you for participating in this study. Please answer the questions below.Please note that all of your answers will be anonymized.

Q1Please enter the ID given to you by the researcher in charge of study:
________________________________________________________________

Q2 Please enter your age:
________________________________________________________________

Q3What is your gender?oMale (1)o Female (2)o Non-Binary (3)o Self-Defined (4)o Prefer not to say (5)

D.A Pre-Hoc Survey
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Q7Gender: How do you identify?

o Female (1)oMale (2)o Non-Binary (3)o Self-Defined: (4) ________________________________________________o Prefer not to say (5)

Q19 Origins: Where are you from?
▼ Afghanistan (1) ... Zimbabwe (1357)
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Q9 Education: What is the highest degree or level of school you have completed? If currentlyenrolled, highest degree received.o No formal education (1)o High school diploma (2)o College degree (3)o Vocational training (14)o Bachelor's degree (15)oMaster's degree (16)o Professional degree (17)o Doctorate degree (18)o Prefer not to say (13)
End of Block: Demographic Survey
Start of Block: Gaming-related Questions
Q11 Please read and rate the following statements.

1StronglyDisagree (12)
2SomewhatDisagree (13)

3Neitherdisagree oragree (14)
4SomewhatAgree (15)

5StronglyAgree (16)
I am good atplayingcomputergames. (2) o o o o o
Playingcomputergames iseasy for me.(3)

o o o o o
I understandand playcomputergames well. o o o o o
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(4)
I am skilled atplayingcomputergames (5) o o o o o
End of Block: Gaming-related Questions
Start of Block: Block 4
Q18 Please read and rate the following statements.

1 Stronglydisagree (18) 2 Somewhatdisagree (19)
3 Neitheragree nordisagree (20)

4 Somewhatagree (21) 5 Stronglyagree (22)
When I havea lot to do, itmakes senseto delegate atask toautomation.(1)

o o o o o
If life werebusy, I wouldlet anautomatedsystemhandle sometasks for me.(2)

o o o o o
Automationshould beused to easepeople’sworkload. (3)

o o o o o
If automationis available tohelp me withsomething, itmakes sensefor me to paymoreattention tomy othertasks. (4)

o o o o o
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Even if anautomatedaid can helpme with atask, I shouldpay attentionto itsperformance.(5)

o o o o o
Distractionsandinterruptionsare less of aproblem forme when Ihave anautomatedsystem tocover someof the work.(6)

o o o o o
Constantlymonitoring anautomatedsystem’sperformanceis a waste oftime. (7)

o o o o o
Even when Ihave a lot todo, I am likelyto watchautomationcarefully forerrors. (8)

o o o o o
It’s notusuallynecessary topay muchattention toautomationwhen it isrunning. (9)

o o o o o
Carefullywatchingautomationtakes time o o o o o
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away frommoreimportant orinterestingthings. (10)

End of Block: Block 4
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Start of Block: Block 3
Q10 All of the following statements are referring to the game you just played.Please rate them according to your own personal experience.

Q11 I forgot about my immediate surroundings while playing this game.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q12 I was so involved in this game that I ignored everything around me.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)
Select ananswer: (1) o o o o o

Q13 I lost myself in this game.
StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

Select ananswer: (1) o o o o o
Q14 I was so involved in this game that I lost track of time.

StronglyDisagree (1) Disagree (2) Neutral (3) Agree (4) StronglyAgree (5)

D.B Post-Hoc Survey
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Q12 You can use the textbox below to give us some additional feedback about the study:
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________
________________________________________________________________

End of Block: Last questions
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E.A Complacency Potential Questionnaire

Figure E.1: Complacency Potential Questionnaire by Singh et al. [167]
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E.B Checklist for Trust between People and Automation

Figure E.2: Checklist for Trust Between People and Automation by Jian et al. [90].
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E.C NASA Task Load Index (TLX)

Figure E.3: NASA TLX Cognitive Workload survey designed by Hart et al. [76]
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E.D Situational Awareness Rating Technique (SART)

Figure E.4: Situational Awareness Rating Technique designed by Taylor et al. [173]
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