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Stewart for all their help and guidance over the past few years. It has been an

education. I would also like to thank both of my examiners, Prof. Paulo Biscari

of Politecnico Di Milano and Prof. Nigel Mottram.

I also owe great thank to the three people who inspired and encouraged me

to study maths beyond school level - Mr Ian Love and Mr Martin Smith who

were teachers at Clyde Valley High School while I was there, and also Count

von Count from Sesame Street who taught me to count in the first place.

Finally, I must give great thanks to my mum and dad and the rest of my

family and friends and special thanks must go to Chris Logan for understanding

the stress and pressure I have been under over the past 4 years.

i



Abstract

In this thesis, we consider various liquids in different situations to determine

whether or not the geometry of the liquid is stable. The types of liquids discussed

here are an isotropic liquid, smectic C liquid crystal and nematic liquid crystals.

Smectic C liquid crystals are considered when they are in a concentric cir-

cular geometry in the presence of an azimuthal magnetic field. The stability of

the solutions for the orientation of the director are considered using variational

techniques. Planar layered smectic C liquid crystals are also considered in this

context.

A perturbed thin film of nematic liquid crystal is then considered to deter-

min whether the film will dewet. This is first done by considering the Stokes

equations and then the Ericksen–Leslie equations. The latter is then subject

to a perturbation of the perturbation to analyse the stability of the original

perturbation.

Finally, an isotropic fluid is considered when a free surface is acted upon by

van der Waal forces caused by an approaching blade. The profile of the free

surface rises to meet the blade and whether or not this distortion to the profile

changes depends on the distance of the blade, shape of the blade or curvature

of the blade, as will be discussed.
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Introduction 1

1 Introduction

1.1 States of matter

It is widely accepted that there are three states of matter: solid, liquid and

gaseous. There is in fact a fourth state of matter which exists between the

solid and liquid state for some substances. These substances have two “melting

points” between the solid crystalline state and the liquid state. At the first melt-

ing point, the crystal melts into a cloudy liquid then, at a higher temperature,

this cloudy liquid clears to form an isotropic liquid (see Fig. 1 below). This

Solid Crystal Liquid Crystal Isotropic Liquid

T

Melting Point Clearing Point

Figure 1: As the temperature is increased a solid crystal sample can “melt” once to
form a liquid crystal then “melt” again to form an isotropic liquid.

cloudy liquid is the liquid crystalline state.

Some substances do not form a liquid crystalline phase but those that are

more likely to form one tend to have similar physical properties within the chem-

ical structure of their molecules. Molecules of substances which form a liquid

crystal phase tend to be elongated “rod-like” molecules which align themselves

parallel to one another. They also tend to have flexible ends to their structure

with some rigidity in the centre.

Chapters 4, 5 and 6 in this thesis model Liquid Crystals. However, chapter 7

is concerned with isotropic fluids. An introduction will be given to this problem
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there.

1.2 History of liquid crystals

A liquid crystal phase was first observed over 150 years ago in the middle of

the 19th century by Virchow, Mettenheimer and Valentin [1] although they

did not know that that was what they were observing. Many other chemists,

biologist and physicists noticed that some materials behaved strangely close to

their melting points and that the optical properties of some substances changed

unexpectedly with temperature. It was not until 1888 that people began to

realise that it was a different phase of matter that they were observing.

In 1888, the Austrian botanist Friedrich Reinitzer was attempting to deter-

mine the precise melting point of cholesteryl benzoate. He noticed that it seemed

to have two melting points [2]: one at 145.5◦C where the solid crystal melted to

form a cloudy liquid, then another at 178.5◦C where this cloudy liquid cleared

to give a transparent liquid. During this transition, unusual optical behaviour

was also observed. Reinitzer then turned to Otto Lehmann, an expert in liquid

optics, for help. Lehmann had invented a heating microscope which allowed the

user to control the temperature of the sample. Lehmann and Reinitzer looked at

the sample under the microscope and noticed that the cloudy liquid seemed to

have some sort of order to it, while the clear liquid was isotropic. This was when

Reinitzer realised that this was another state of matter. It is Otto Lehmann who

is credited with coming up with the term “liquid crystal” [3].

In the early 20th century Vorländer discovered that a substance had to have

“rod-like” molecules in order to form a liquid crystal phase. This allowed math-

ematicians to make assumptions and model the substance. Wiener developed

the first optical theory for liquid crystals in 1904 and Oseen identified elastic

constants which allowed further development in the theory and mathematical

modelling of the substances. In the 1920s, a French scientist called George
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Friedel conducted experiments on liquid crystal samples which led to them be-

ing classified into 3 broad categories: nematic, smectic and cholesteric [4].

From the 1900s to the outbreak of World War II, theorists were very inter-

ested in the elastic properties of liquid crystal substances. Oseen derived a static

theory for nematic liquid crystals which was then developed further by Frank

in the 1950s. Towards the end of that decade liquid crystals were once again

being researched as their potential had been realised, and within 10 years the

first liquid crystal display had been made.

Until the late 19th century, all liquid crystal substances had been naturally

occurring but nowadays it is possible to produce liquid crystals with specific

predetermined material properties. Liquid crystals are now used for a whole

host of everyday things. They are used in medicine for simple things such a

thermometers right through to complex things such as medical lasers. They are

also used for screens in mobile phones, televisions and laptops as well as a lot

of other things.

1.3 Liquid crystals

Liquid crystals are partially ordered materials between the solid and liquid phase.

They are usually thought of as elongated rod like molecules and it is their shape

which encourages them to align in a certain direction. The chemical structure

of 4-pentyl-4′-cyanobiphenyl, also known as 5CB, is shown below in Fig. 2. This

C5H11 CN

Figure 2: The chemical structure of 4-pentyl-4′-cyanobiphenyl

liquid crystal molecule has a long rod like structure with a “tail” of five carbon
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atoms and eleven hydrogen atoms attached to a “centre” consisting of two cyclic

groups with a “head” of a carbon and a nitrogen atom.

There are many different liquid crystalline phases, so called mesophases. The

three main types are nematic, smectic and cholesteric.

1.3.1 Nematics

The nematic phase is the simplest liquid crystalline phase. Nematic liquid crys-

tals do not have any specific structures within a sample except that there is a

general direction to the molecules, which is taken to be the average direction in

which all the molecules are pointing as shown in Fig. 3. The direction in which

n

anisotropic

       axis

Figure 3: A typical sample of nematic liquid crystal

they are pointing is called the “anisotropic axis”. This direction is described by

a unit vector n, called the nematic director (see Section 2.1.1).

An example of a substance which has a nematic liquid crystalline phase is

the aforementioned 4-pentyl-4′-cyanobiphenyl (5CB). Its chemical structure is

shown above in Fig. 2. 5CB is nematic between 24◦C and 35.4◦C [5] and is often

used for testing twisted nematic displays since it is stable at room temperature.

It is well known that in a finite sample of liquid crystal there is a competition

between the alignment of the director n at the surface or boundary and the

orientation of n induced within the sample by an externally applied magnectic

or electric field [6, p.72]. It is also known that in a thin sample of nematic liquid

crystal which has, for example, magnetic anisotropy χa > 0, a magnetic field
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H may be in a position to attract the director n and cause it to begin to align

in the bulk to be parallel to H, and different from its initial sample alignment,

when H = |H| is greater than some critical value Hc, which is often, but not

always, greater than zero. In other words, the director alignment throughout the

sample will not be influenced by the magnetic field whenever 0 ≤ H < Hc but

will be influenced and begin to adjust its orientation to become more parallel

to H when H ≥ Hc. This change in director orientation after the magnitude of

the field increases through the value Hc is called the Freedericksz transition and

Hc is called the critical field strength of Freedericksz threshold.

Although not directly considered in this thesis, the reorientation of n may

occur through electric fields with domain walls which will be considered here in

Ch. 4. It is the Freedericksz transition that is important for display technologies

and solitons / domain walls are of interest in soliton switching of displays.

1.3.2 Cholesterics

When molecules are chiral, that is, they cannot be superimposed on their own

mirror image, and in the nematic phase, they tend to arrange themselves in a

twisted geometry: see Fig. 4 below. Cholesterics, also known as chiral nematics,

tend to reflect light in bright colours which are dependent on the temperature

of the substance. This makes them suitable for use in thermometers and other

temperature sensors.

Figure 4: A right handed cholesteric liquid crystal

Cholesterics can have a left or a right handed twist and the director rotates

with respect to this twist throughout the sample producing a helix.
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1.3.3 Smectics

Smectic liquid crystals still have the same general orientation as nematic liquid

crystals but they also align themselves in layers. Within these layers, the liquid

crystals move around freely and they tend to align themselves in the same di-

rection within these layers. Smectic A (SmA) molecules line up parallel to the

layer normal (on average) in each layer, while smectic C (SmC) line up parallel

to one another pointing at an angle θ, usually called the tilt angle, from the layer

normal within each layer. The typical structures within SmA and SmC samples

are shown below in Fig. 5. The tilt angle of the smectic C phase is temperature

n

n
(a) (b)

Figure 5: (a) Smectic A liquid crystal. (b) Smectic C liquid crystal

dependent.

One substance which has a smectic phase is terephthalbis-(4n)-butylaniline,

also known as TBBA. This substance is in the SmC phase between 144◦C and

170◦C (at 170◦C TBBA becomes SmA). The angle which the director makes

with the unit normal of this substance varies from approximately 65◦ to the

SmA phase of 0◦ over these temperatures [7].

Smectic C liquid crystals have the same tilt angle throughout all of their

layers at a certain temperature. If the director is not fixed uniformly in space,

but rather rotates around the surface of a fictitious “cone”, as shown below in

Fig. 6, then the liquid crystal is chiral smectic C, denoted SmC∗. The SmC∗

phase can occur if the molecules are chiral.
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na

Figure 6: Each layer of SmC∗ has a slightly different twist angle going from layer to
layer so the directors point in a slightly different direction, but are generally uniformly
aligned within layers.

1.3.4 Polymorphism

Some liquid crystal materials exhibit more than one mesophase. For example,

4-n-pentylphenyl 4′-n-decyloxythiobenzoate (1̄0S5) is solid up to 60◦C, has a

smectic C phase from 60◦C to 63◦C, a smectic A phase from 63◦C to 80◦C, then

a nematic phase from 80◦C to 86◦C when it becomes an isotropic liquid.

C5H21O

C5H11

C

O

S

Figure 7: The chemical structure of 1̄0S5
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1.4 Outline of thesis

Chapter 2 of this thesis will begin by briefly explaining the basic theory of

nematic and smectic liquid crystals which will be used later. It will then go on

to explain the basics of the calculus of variations, where a useful inequality is

highlighted, before applying these to the equations which arise when considering

an azimuthal magnetic field acting upon smectic C liquid crystals in a cylindrical

geometry, to consider the stability. This work is then carried on to the next

chapter where the same types of equations arise for smectic liquid crystal in a

planar layer geometry.

The fluctuation of a thin film of nematic liquid crystal is then discussed as to

whether the film wets or dewets. A brief introduction to wetting and dewetting

is given at the beginning of Chapter 6. The results of changing some of the

simplifications and variables in the problem are looked at as well as the stability

of perturbing the Ericksen–Leslie equations for different nematic liquid crystal

samples.

The thesis then concludes with some of the methods used in the previous

chapters being applied to the problem of a blade approaching a free surface of

isotropic liquid. This chapter begins by looking at a parabolic blade approaching

the free surface and considering the stability of the deformed surface as the blade

approaches from above. The model of the approaching blade is then changed to

a circular ended blade. This allows direct comparisons to be drawn between the

different models.
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2 Liquid Crystal Theory

In this chapter the basic mathematical theories of liquid crystals will be intro-

duced. These theories from [6] cover static and dynamic theory for both nematic

and smectic liquid crystals.

The continuum theory for liquid crystals was started by Oseen in 1925 and

contributed to by Zöcher, [8] and [9], from 1927 onwards. Oseen derived a static

version of the continuum theory for nematics [10] which is the basis for the

theories used today. In 1958, significant progress was made by Frank [11] who

came up with a more direct approach to the formulation of a static theory for

liquid crystals. Ericksen generalised this work in 1961 [12] to incorporate dy-

namics, culminating in the balance laws for the dynamic behaviour of nematics.

Ericksen’s work was then developed further by Leslie [13, 14] when the consti-

tutive equations for nematics and anisotropic fluids were derived which led to

the celebrated Ericksen-Leslie dynamic theory.

2.1 Notation and terminology

Throughout this thesis the Einstein summation convention is used. That is,

wherever there is an index repeated in the same term the term should be summed

over all values of the index, e.g.

b · c = bici = b1c1 + b2c2 + b3c3 ,

where b and c have three components.

The Kronecker delta will also be used within this thesis. The Kronecker

delta is

δij =

{

1 if i = j
0 if i 6= j .

(2.1)

Another notation which will be used here is the alternator ǫijk. The alterna-
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tor is defined to be

ǫijk =







1 if i, j and k are unequal and in cyclic order,
−1 if i, j and k are unequal and not in cyclic order,
0 if any two of i, j and k are equal.

(2.2)

The scalar, vector and scalar triple product will also be used. In cartesian

form, the scalar product of two vectors a and b is

a · b = aibi (2.3)

and the vector product is defined by

a × b = eiǫijkbjck , (2.4)

where ei is the unit vector in the i direction. The scalar triple product of three

vectors a, b and c is defined by

a · (b× c) = aiǫijkbjck . (2.5)

2.1.1 Director

The director of a liquid crystal is described by a unit vector which indicates the

general direction in which the molecules are aligned. This is found by taking

the average directions of all the molecules within the sample. The unit vector

for nematics can be parametrised as

n = (cos θ cosφ , cos θ sinφ , sin θ ) (2.6)

where θ and φ are as shown below in Fig. 8.

There are two choices for the direction of the director in every sample, up or

down, left or right etc., but these directions are equivalent. Also, the director

can point in any direction at all of its own accord, but it can be made to point

in a specific direction using anchoring (see Section 2.3). The director in a liquid

crystal sample is influenced by electric fields, magnetic fields and the presence

of a solid boundary. This will be discussed later.
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z

y

x

n

Figure 8: Parametrisation of the director in terms of the two angles θ and φ.

2.2 Nematic theory

2.2.1 Frank–Oseen elastic energy

The structure of liquid crystals is elastic. A sample can be distorted by exter-

nal forces but once those forces have been removed the sample returns to its

original undistorted state. For example, flow within a sample will cause elastic

distortions, as can squeezing a sample. These distortions cause the director of

the liquid crystal to change throughout the whole sample. These distortions can

be described in terms of the Frank elastic constants [15, 11]. It is assumed that

the liquid crystal sample is incompressible so the mass density of the sample

remains constant.

The Frank elastic constants are K1, K2, K3 and K4. The K1 constant is a

measure of how splayed the director structure if a sample of liquid crystal is,

K2 is a measure of how twisted it is and K3 tells how bent it is while K2 +

K4 is the saddle-splay constant. Fig. 9 shows graphical representations of the

deformations pertaining to Ki with i = 1, 2, 3.

The Frank-Oseen elastic energy, also known as the free energy density, for
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(a) Splay:  K1 (b) Twist:  K2 (c) Bend:  K3

Figure 9: The elastic constants

non-cholesteric nematics is given by

welast =
1

2

(

K1 (∇ · n)2 +K2 (n · ∇ × n)2 +

K3 (n×∇× n)2 + (K2 +K4)∇ · [(n · ∇)n− (∇ · n)n]
)

(2.7)

=
1

2

(

(K1 −K2 −K4) (ni,i)
2 +K2ni,jni,j

+K4ni,jnj,i + (K3 −K2)njni,jnkni,k) , (2.8)

from [6]. The saddle-splay term, K2 + K4, is often ignored as it does not con-

tribute to the bulk energy equations when there is strong anchoring. A full

derivation of this can be found in [6].

From (2.8), the Frank elastic constants must satisfy the following Ericksen

inequalities [11]:

K1 ≥ 0 , K2 ≥ 0 , K3 ≥ 0

K2 ≥ |K4| 2K1 ≥ K2 +K4 ≥ 0, (2.9)

since the elastic energy must be non-negative.

2.2.1.1 One-constant approximation

Sometimes, for example when the relative values of the Ki are unknown or when

the resulting equilibrium equations are complicated, the one-constant approxi-
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mation is made. This means that the Frank constants are set to be

K1 = K2 = K3 ≡ K and K4 = 0 . (2.10)

This allows the free energy to be simplified to become

wF =
1

2
K ‖ ▽n ‖2 (2.11)

=
1

2
Kni,jni,j . (2.12)

2.2.2 Magnetic and electric fields

It has been common practice from early research in liquid crystals to apply a

magnetic field to align samples of nematic or cholesteric liquid crystals. The

alignment so produced encourages the director to be parallel to the field for the

majority of nematics and perpendicular to the field in many cholesterics. Similar

effects can be produced by an electric field. These electric and magnetic fields

have corresponding energies in liquid crystals.

The magnetic energy density that will be used in Ch. 4 will be [6, p. 30]

wmag = − 1

2

∆χ

µ0
(n · B)2 , (2.13)

where ∆χ is the magnetic anisotropy, µ0 is the permeability of free space, n is

the director and B is the magnetic induction.

The electric potential is very similar in form to the magnetic potential. The

electric energy density which is normally used is [15, p. 134]

welec = −1

2
ε0εa (n ·E)2 , (2.14)

where ε0 is the permittivity of free space, εa is the dielectric anisotropy, n is

the director as before and E is the electric field. The sign of εa signals whether

the director wants to orient parallel or perpendicular to the electric field, see

Fig. 10. When εa > 0 the director wants to align itself parallel to the electric

field E and when εa < 0 it aligns perpendicular to the field.
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Figure 10: The sign of εa determines how the director aligns.

2.2.3 Bulk energy

The bulk energy density is defined as the sum of the elastic energy and the

magnetic (or electric) density such that

wF = welast + wmag . (2.15)

It is clear from this that in the absence of an electric or magnetic field the bulk

energy reduces to the elastic energy given by (2.12).

2.2.4 Ericksen–Leslie dynamic equations

The Ericksen–Leslie dynamic equations for nematic liquid crystals are derived

from the balances of linear and angular momentum and mass conservation [6].

There are two equations, one for linear momentum and one for angular momen-
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tum. The linear momentum equation is

ρv̇i = ρFi − (p+ wF ),i + g̃jnj,i +Gjnj,i + t̃ij,j , (2.16)

where ρ is the density of the liquid crystal, v̇i is the material time derivative of

the component of the velocity in the i direction, Fi is the external body force

per unit mass, p is the pressure, wF is the bulk energy density for nematic liquid

crystals given by (2.8), Gj is the generalised body force, nj is the component

of the director in the j direction and the vector g̃j and t̃ij, the dynamic stress

terms, are given by

t̃ij = α1nkAkpnpninj + α2Ninj + α3niNj

+ α4Aij + α5njAiknk + α6niAjknk (2.17)

g̃i = −γ1Ni − γ2Aipnp (2.18)

with

γ1 = α3 − α2 ≥ 0 (2.19)

γ2 = α3 + α2 (2.20)

Aij =
1

2
(vi,j + vj,i) (2.21)

Ni = ṅi −Wijnj (2.22)

Wij =
1

2
(vi,j − vj,i) , (2.23)

where αi are the Leslie viscosities, vi is the component of the velocity in the i

direction and ṅi is the material time derivative of the director.

The angular momentum equation is

(

∂wF
∂ni,j

)

,j

− ∂wF
∂ni

+ g̃i +Gi = λni (2.24)

where λ is a Lagrange multiplier coming from the n ·n = 1 condition which can

be determined by multiplying (2.24) with ni and summing over i.
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The Parodi relation is [16], based upon Onsager relations,

α3 + α2 = α6 − α5 . (2.25)

When this relation holds, then the viscous dissipation function is given by [6,

p. 147]

D = α1 (niAijnj)
2 + 2γ2NiAijnj + α4AijAij

+(α5 + α6)niAijAjknk + γ1NiNi ≥ 0 , (2.26)

by standard thermodynamic assumptions.

2.2.5 Leslie and Miesowicz viscosities

It is well known that the six Leslie viscosities must satisfy the following inequal-

ities for (2.26) to hold [6, p. 146]:

γ1 = α3 − α2 ≥ 0 , (2.27)

α4 ≥ 0 , (2.28)

2α4 + α5 + α6 ≥ 0 , (2.29)

2α1 + 3α4 + 2α5 + 2α6 ≥ 0 , (2.30)

4γ1(2α4 + α5 + α6) ≥ (α2 + α3 + γ2)
2 . (2.31)

It is not trivial to measure the Leslie viscosities individually but they are

measurable in combinations, known as the Miesowicz viscosities ηi. The viscosi-

ties η1, η2 and η3 are shear viscosities, γ1 is the director rotational viscosity and

η12 is important when the director is not aligned with an axis.

The viscosity η1 can be measured by having a shear flow, with the flow

velocity v parallel to the director , n, η2 can by measured by considering a flow

where n is parallel to ∇v, the gradient of the velocity, and η3 can be found by

considering a flow where n is orthogonal to both v and ∇v [17].
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Figure 11: These are the Miesowicz viscosities where a) is η1 where the director is
parallel to the velocity, b) is η2 where the director is parallel to the gradient of the
velocity and c) is η3 where the director is orthogonal to the velocity and the gradient
of the velocity.

In terms of the Leslie viscosities, the Miesowicz viscosities are

η1 =
1

2
(α3 + α4 + α6) =

1

2
(α2 + 2α3 + α4 + α5) , (2.32)

η2 =
1

2
(−α2 + α4 + α5) , (2.33)

η3 =
1

2
α4 , (2.34)

η12 = α1 , (2.35)

γ1 = α3 − α2 , (2.36)

γ2 = α6 − α5 = α3 + α2 . (2.37)

The Miesowicz viscosities can be measured by experiments and the values of

the αi can be found via the relationships given by

α1 = η12 , (2.38)

α2 =
1

2
(η1 − η2 − γ1) , (2.39)

α3 =
1

2
(η1 − η2 + γ1) , (2.40)

α4 = 2η3 , (2.41)

α5 =
1

2
(η1 + 3η2 − 4η3 − γ1) , (2.42)

α6 =
1

2
(3η1 + η2 − 4η3 − γ1) , (2.43)
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which can be written in terms of the splay, twist and bend viscosities:

ηsplay = γ1 −
(η1 − η2 + γ1)

2

4η1
= γ1 −

α2
3

η1
, (2.44)

ηtwist = γ1 = α3 − α2 , (2.45)

ηbend = γ1 −
(η1 − η2 − γ1)

2

4η2

= γ1 −
α2

2

η2

. (2.46)

The twist viscosity determines the relaxation rate of the director, and γ2 char-

acterises the contribution of torque due to a shear velocity gradient.

2.2.6 Equilibrium equations for nematics

The equilibrium equations which describe the linear and angular momentum

balance of a liquid crystal are
(

∂wF
∂ni,j

)

,j

− ∂wF
∂ni

+Gi = −λni , (2.47)

tij,j + ρFi = 0 , (2.48)

where wF is the total energy, ni is the component of the director n in the i

direction, G is the generalised body force, λ is a Lagrange multiplier, ρ is the

density, F is the body force per unit volume and the stress tensor tij is given by

tij = − ∂wF
∂nk,j

nk,i − pδij (2.49)

where p is an arbitrary pressure coming from the assumed incompressibility of

nematic liquid crystals.

A full derivation of these equations and relations can be found in [6].

2.2.7 Reformulated Ericksen–Leslie equations

If the director is represented in the form

n = f(θ1, θ2) where f · f = 1 (2.50)

and

wF = ŵF (θα , θα,i) α,i = 1, 2 (2.51)
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then the Ericksen–Leslie equations can be formulated in a more convenient way.

Here, θ1 and θ2 can be functions of space and time and an example of a possible

director which satisfies this is

n = (cos θ1(x, z, t) cos θ2(x, z, t) , cos θ1(x, z, t) sin θ2(x, z, t) , sin θ1(x, z, t)) .

(2.52)

When the Parodi relation applies then the dissipation function is linked to

the g̃i and t̃ij by the properties

g̃i = −1

2

∂D
∂ṅi

(2.53)

and

t̃ij =
1

2

∂D
∂vi,j

. (2.54)

If the potential, Ψ given by

ρFi =
∂Ψ

∂xi
, Gi =

∂Ψ

∂ni
(2.55)

can be reformulated such that

Ψ(ni, xi) = Ψ̂(θα, xi) , i = 1, 2, 3, α = 1, 2 (2.56)

and the dissapation can be reformulated such that

D(Aij, Ni, ni) = 2D̂(vi,j, θ̇α, θα) , i = 1, 2, 3, α = 1, 2 (2.57)

and the chain rule

ṅk =
∂fk
∂θα

θ̇α (2.58)

is used, eqs. (2.53) and (2.54) can be combined to give the result

∂D̂
∂θ̇α

=
1

2

∂D
∂ṅk

∂ṅk

∂θ̇α

= −g̃k
∂fk
∂θα

. (2.59)
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Using this result, along with

ni,j =
∂fi
∂θα

θα,j , (2.60)

the equation

g̃jnj,i = g̃j
∂fj
∂θα

θα,i

becomes

g̃jnj,i = − ∂D̂
∂θ̇α

θα,i . (2.61)

The Gi term can be expressed as

Gi =
∂Ψ

∂ni
. (2.62)

If this is used along with (2.56) then

∂Ψ̂

∂θα
=

∂Ψ

∂ni

∂fi
∂θα

= Gi
∂fi
∂θα

. (2.63)

Using eqs. (2.61) and (2.63) along with

(

∂ŵ

∂θαi

)

,i

− ∂ŵ

∂θα
=

[

(

∂w

∂nk,i

)

,i

− ∂w

∂nk

]

∂fk
∂θα

, (2.64)

which arises from the bulk equilibrium equations, the following equation is ob-

tained,

(

∂ŵF
∂θαi

)

,i

− ∂ŵF
∂θα

− ∂D̂
∂θ̇α

+
∂Ψ̂

∂θα
=

[

(

∂wF
∂nk,i

)

,i

− ∂wF
∂nk

+ g̃k +Gk

]

∂fk
∂θα

, (2.65)

and so by

ni
∂fi
∂θα

= 0 (2.66)

and by eq. (2.24), the reformulated angular momentum equation is given by

(

∂ŵF
∂θαi

)

,i

− ∂ŵF
∂θα

− ∂D̂
∂θ̇α

+
∂Ψ̂

∂θα
= 0 α = 1, 2. (2.67)



Liquid Crystal Theory 21

The linear momentum equation is given by

ρv̇i =

(

∂D̂
∂vi,j

)

,j

− ∂D̂
∂θ̇α

θα,i − p̃,i i = 1, 2, 3 (2.68)

where

p̃ = p + ŵF − Ψ̂ (2.69)

which is found by combining eqs. (2.54), (2.57) and (2.61).

2.3 Anchoring conditions

The energy equations can be modified to account for a surface energy which

depends on the alignment of the director at boundaries or interfaces. This can

be done by including a surface energy term in the free energy. The description

of the alignment of the director there is called anchoring.

There are three different types of anchoring which can be applied to a sample

of liquid crystal so that the director points in a certain direction. These are

strong, conical and weak anchoring.

2.3.1 Strong anchoring

At the boundary with a solid substrate a liquid crystal can be fixed such that

the director points in a certain direction and only that direction. This is called

strong anchoring. This can be achieved by rubbing the boundary in one direction

so that the liquid crystal wants to lie in that direction. Strong anchoring does

not require any additional terms in the free energy.

If the sample is between two solid boundaries and is aligned so that the

director lies along the boundaries then the director is said the have homoge-

neous alignment and if the director is perpendicular to the boundaries then the

alignment is said to be homeotropic.
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2.3.2 Conical anchoring

Conical anchoring is where the director n makes an angle ψ with the tangent

plane of the boundary. This means that the director has a cone of preferred

directions as shown in Fig. 12. The director at the surface satisfies the constraint

cone of
preferable
directions

solid boundary

n

v

Figure 12: The liquid crystal has a cone of preferable directions where the director
makes an angle ψ with the tangent plane of the boundary.

(n · ν)2 = sin2 ψ (2.70)

where ν is the outward unit normal of the boundary. It is usually assumed that

0 < ψ < π
2
. If ψ = π

2
then the conical anchoring becomes strong homeotropic

anchoring. Conical anchoring does not require any additional terms in the free

energy as the restriction can be applied as a boundary condition.

2.3.3 Weak anchoring

Weak anchoring occurs if the director has some freedom with the angle it makes

at the boundary. This means that the angle between the director and the bound-

ary or surface interface can vary under the influence of forces such as electric

or magnetic fields. An additional surface energy is needed. The Rapini and
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Papoular [18] surface energy density is the simplest such energy. This is

ws =
1

2
τ0
(

1 + ω(n · ν)2
)

, (2.71)

where τ0 > 0, ω > −1 and ν is the outward unit normal to the boundary or

interface as it was for conical anchoring. When −1 < ω < 0, the director will

prefer to align itself parallel to ν so the favoured orientation of n is homeotropic

since this will minimise the energy ws. If ω > 0, the energy will be minimised

when n is orthogonal to ν so the preferred orientation will be homogeneous.

The total energy for a sample Ω with surface S and with weak anchoring is

now given by

W =

∫

Ω

wFdΩ +

∫

S

wsdS , (2.72)

where wF is the bulk energy. In general, this leads to two coupled equilibrium

equations and boundary conditions, one in the bulk and one on the surface.

2.4 Smectic theory

The smectic theory for liquid crystals was developed in the early 1990s by Leslie,

Stewart and Nakagawa [19] and many of the results are analogous to those for

nematics, but with some clear smectic properties. Throughout this section it is

assumed that the smectic C liquid crystal is not chiral.

For smectic liquid crystals, the director is described by

n = a cos θ + c sin θ (2.73)

where a is a unit vector defining the layer normal, and c is the unit orthogonal

projection of n onto the smectic plane and θ. The layer normal n is shown below

in Fig. 13. The vectors a and c are subject to the constraints

a · a = 1 , c · c = 1 , a · c = 0 , ∇× a = 0 , (2.74)

this latter constraint being due to Oseen [20].
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n

Figure 13: The angle θ is the angle which the director makes with the layer normal.

2.4.1 Static smectic theory

This smectic energy is conveniently expressed in vector form in terms of b and

c [21] where

b = a× c . (2.75)

The energy can then be expressed as

w =
1

2
A12(b · ∇ × c)2 +

1

2
A21(c · ∇ × b)2 + A11(b · ∇ × c)(c · ∇ × b)

+
1

2
B1(∇ · b)2 +

1

2
B2(∇ · c)2 +

1

2
B3

[

1

2
(b · ∇ × b + c · ∇ × c)

]2

+B13(∇ · b)

[

1

2
(b · ∇ × b + c · ∇ × c)

]

+C1(∇ · c)(b · ∇ × c) + C2(∇ · c)(c · ∇ × b) . (2.76)

The smectic elastic constants above are related to the distortions of the

smectic layers. The constants A11, A12 and A11 are related to the bending of

the smectic layers and B1, B2, B3 and B13 are related to the reorientation of the

c-director within or across layers. The two remaining constants, C1 and C2, are

related to couplings of these deformations.

Fig. 14 shows the five basic distortions for a sample of smectic C liquid

crystal. The bold lines in parallel to the layers represent the c-director. Fig. 14

a) shows the layer with no distortions, b) shows the plane bent such that the

layer normal changes along the direction of the c-director. If the layer is bent

so that the layer normal changes perpendicular to the c-director then Fig. 14 c)

would result. The cases where the smectic layer is not bent but the c-director
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Figure 14: This diagram shows the five basic distortions where Ω is an arbitrary
small rotation of the smectic layers. Each distortion is related to an elastic constant.

rotates parallel or perpendicular to the original alignment of the c-director is

shown in Fig. 14 d) and e) respectively. The final distortion shown in Fig. 14

f) relates to the c-director remaining constant withing each layer but rotating

along the layer normal.

From [21], the smectic elastic constants must satisfy the following inequali-

ties.

A12 , A21 , B1 , B2 , B3 ≥ 0 , (2.77)

A12A21 − A2
11 ≥ 0 , (2.78)

B1B3 − B2
13 ≥ 0 , (2.79)

B2A12 − C2
1 ≥ 0 , (2.80)

B2A21 − C2
2 ≥ 0 . (2.81)

Inequality (2.78) implies that if A12 or A21 equals 0 then A11 must also be 0.

Similarly, if B1 or B3 is 0 then B13 = 0; if B2 or A12 equals 0 then C1 = 0; if

B2 = 0 or A21=0 then C2 = 0. More inequalities can be derived from the ones

above. For more details see [6].
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The energy density for SmC was given an alternative form by Leslie, Stewart,

Carlsson and Nakagawa [22] to be, ignoring surface contributions,

w =
1

2
K1(∇ · a)2 +

1

2
K2(∇ · c)2 +

1

2
K3(a · ∇ × c)2 +

1

2
K4(c · ∇ × c)2

+
1

2
K5(b · ∇ × c)2 +K6(∇ · a)(b · ∇ × c) +K7(a · ∇ × c)(c · ∇ × c)

+K8(∇ · c)(b · ∇ × c) +K9(∇ · a)(∇ · c) (2.82)

=
1

2
K1(ai,i)

2 +
1

2
(K2 −K4)(ci,i)

2 +
1

2
(K3 −K4)ci,jcjci,kck

+
1

2
K4ci,jci,j +

1

2
(K5 −K3)(ciai,jcj)

2 +K6ai,i(cjaj,kck)

−K7ci,jcjci,kak + (K8 −K7)ci,i(cjaj,kck) +K9ai,icj,j (2.83)

where b represents the vector given by

b = a× c (2.84)

and Ki are smectic elastic constants. The smectic elastic constants are given by

K1 = A21 (2.85)

K2 = B2 (2.86)

K3 = B1 (2.87)

K4 = B3 (2.88)

K5 = 2A11 + A12 + A21 +B3 (2.89)

K6 = −
(

A11 + A21 +
1

2
B3

)

(2.90)

K7 = −B13 (2.91)

K8 = C1 + C2 − B13 (2.92)

K9 = −C2 . (2.93)

where these Aij, Bi and Ci are constants. We note for completeness that the

Orsay group had the same notation except for A11 and C1 which are [23]

A11 = −1

2
AOrsay11 and C1 = −COrsay

1 . (2.94)
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2.4.2 The magnetic and electric energies

Often it is assumed that the magnetic and electric energy densities for smectic

C liquid crystals are the same as the nematic ones given by (2.13) and (2.14)

respectively.

2.4.3 Equilibrium Equations

There are three sets of equilibrium equations for smectic C liquid crystals.

The balance of forces is given by

tij,j + Fi = 0 (2.95)

where tij is the stress tensor given by

tij = −pδij + βpǫpjkak,i −
∂w

∂ak,j
ak,i −

∂w

∂ck,j
ck,i (2.96)

and Fi is the external body force, p is the pressure and βp is a Lagrange multiplier

that arises from the ∇× a = 0 constraint from (2.74).

The two equations

Πa
i +Ga

i + γai + µci + ǫijkβk,j = 0 (2.97)

Πc
i +Gc

i + τci + µai = 0 , (2.98)

where

Πa
i =

(

∂w

∂ai,j

)

,j

− ∂w

∂ai
(2.99)

Πc
i =

(

∂w

∂ci,j

)

,j

− ∂w

∂ci
, (2.100)

are equivalent to a balance of moments. Here, γ, µ and τ are the Lagrange

multipliers which arise from the first three constraints in (2.74).
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It is useful to note the vector form of Πc from [6] as this will be used later:

Πc = K2∇(∇ · c) −K3∇× {(a · ∇ × c)a}

−K4 [∇× {(c · ∇ × c)c} + (c · ∇ × c)(∇× c)]

+K5 [(b · ∇ × c)(a×∇× c) −∇× {(b · ∇ × c)b}]

+K6 [(∇ · a)(a ×∇× c) −∇× {(∇ · a)b}]

−K7 [∇× {(a · ∇ × c)c + (c · ∇ × c)a} + (a · ∇ × c)(∇× c)]

+K8 [∇(b · ∇ × c) −∇× {(∇ · c)b} + (∇ · c)(a×∇× c)]

+K9∇(∇ · a) +
∆χ

µ0
sin θ {(a · B) cos θ + (c · B) sin θ}B , (2.101)

where B is the magnetic field. There is a similar formulation for the Πa term

but it is not used within this thesis. For details, see [6].

2.4.4 Dynamic smectic theory

The governing dynamic equations for smectic C liquid crystals are

ρv̇i = ρFi − p̃,i +Ga
kak,i + Gc

kck,i + g̃akak,i + g̃ckck,i + t̃ij,j (2.102)

where

p̃ = p+ w (2.103)

and

Πa
i +Ga

i + g̃ai + γai + µci + ǫijkβk,j = 0 (2.104)

Πc
i +Gc

i + g̃ci + τci + µai = 0 , (2.105)

with γ, µ, τ and β as Lagrange multipliers. Fi is the external body force per

unit mass, t̃ij is the dynamic stress, Ga
i and Gc

i are the generalised body forces

per unit volume related to a and c respectively, p is the pressure and w within
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Πa
i and Πc

i is the elastic energy for smectic C liquid crystals and

g̃ai = −2
(

λ1D
a
i + λ3cicpD

a
p + λ4Ai + λ6cicpAp

+τ2D
c
i + τ3ciapD

a
p + τ4cicpD

c
p + τ5Ci

)

(2.106)

g̃ci = −2 (λ2D
c
i + λ5Ci + τ1D

a
i + τ5Ai) (2.107)

with

Da
i = Dijaj and Dc

i = Dijcj (2.108)

where

Dij =
1

2
(vi,j + vj,i) (2.109)

and where τi, i = 1..5 and λj , j = 1..6 are viscosities associated with the dynamic

stress. The dynamic stress term t̃ij is given by

t̃ij = t̃sij + t̃ssij (2.110)

where t̃sij and t̃ssij are the symmetric and skew-symmetric parts of the viscous

stress given by [6, p. 294]

t̃sij = µ0Dij + µ1apD
a
paiaj + µ2

(

Da
i aj +Da

j ai
)

+ µ3cpD
c
pcicj

+µ4

(

Dc
i cj +Dc

jci
)

+ µ5cpD
a
p (aicj + ajci)

+λ1 (Aiaj + Ajai) + λ2 (Cicj + Cjci) + λ3cpAp (aicj + ajci)

+κ1

(

Da
i cj +Da

j ci +Dc
iaj +Dc

jai
)

+κ2

[

a+ pDa
p (aicj + ajci) + 2apD

c
paiaj

]

+κ3

[

cpD
c
p (aicj + ajci) + 2apD

c
pcicj

]

+τ1 (Ciaj + Cjai) + τ2 (Aicj + Ajci)

+2τ3cpApaiaj + 2τ4cpApcicj , (2.111)

where µi and λi are the viscosity coefficients associated with contributions to

the dynamic stress which are even in the vector c while κi and τi are linked to
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term which are odd in the vector c, and

t̃ssij = λ1

(

Da
j ai −Da

i aj
)

+ λ2

(

Dc
jci −Dc

i cj
)

+ λ3cpD
a
p (aicj − ajci)

λ4 (Ajai − Aiaj) + λ5 (Cjci − Cicj) + λ6cpAp (aicj − ajci)

τ1
(

Da
j ci −Da

i cj
)

+ τ2
(

Dc
jai −Dc

isj
)

+ τ3apD
a
p (aicj − ajci)

τ4cpD
c
p (aicj − ajci) + τ5 (Ajci − Aicj + Cjai − Ciaj) . (2.112)

There are twenty viscosity co-efficients in (2.111) and (2.112). These viscosities

have been classified in [6, p. 296].

Equation (2.102) is the balance of linear momentum and (2.104) and (2.105)

are coupled equations for the angular momentum, commonly referred to as the

“a-equations” and “c-equations”, respectively.
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3 Calculus of Variations

In this chapter some of the theory and methods of calculus of variations will be

discussed. These methods will then be used in the following work. The chapter

closes with section 3.4 where an inequality for integrals, which was first derived

by Gartland [24], is introduced which will allow the application of the theory

and methods.

Throughout this thesis, there are problems whose solution y minimises func-

tionals J [y] of the form

J [y] =

∫ b

a

F (x, y, y′)dx . (3.1)

There are different methods that can be used to minimise such functionals. Here,

the second variation will be considered as well as the Rayleigh–Ritz method of

minimising functionals. The Rayleigh–Ritz method is a direct method in the

calculus of variations, since it does not use a differential equation to look at the

problem (3.1), but instead looks at the functional directly. This method allows

the eigenvalues and corresponding eigenvectors for the problem to be found, and

from these, we can consider the stability of the problem. The second variation

of the problem considers the derivatives of the integrand of the functional and

has necessary and sufficient conditions for both weak and strong minima.

3.1 The minimum of a functional

From Sagan [25, p. 46], a function y0(x) ∈ Σ is said to be a weak relative

minimum for J [y], where Σ is the space of competing functions, which for our

purposes is taken to be C1[a, b] which is the space of all real valued functions

with a continuous derivative on the interval [a, b], if

J [y] − J [y0] ≥ 0 (3.2)



Calculus of Variations 32

for all y ∈ Σ for which y ∈ N δ(y0), for some δ > 0, where from Sagan [25, p. 45]

the strong δ neighbourhood, N δ(y0), is the set

{(x, y, y′)|x ∈ [ a, b ], |y − y0(x)| < δ, |y′ − y′0(x)| < δ} . (3.3)

If y0(x) is a strong relative minimum, then (3.2) must be true for all y ∈ Σ

for which y ∈ N δ
ω(y0), for some δ, where N δ

ω(y0) from [25, p. 45], is a weak δ

neighbourhood, the set

{(x, y)|x ∈ [a, b], |y − y0(x)| < δ} . (3.4)

The subscript ω denotes the weak minimum, no subscript denotes strong.

3.2 Rayleigh–Ritz method

The Rayleigh–Ritz method allows the eigenvalues and corresponding eigenvec-

tors for the functional (3.1) to be found, and from these, the stability of the

solution y can be considered. These can be found by considering a perturbation

over an interval to a solution. This interval can be −∞ to ∞ but often it is

chosen to be a finite interval from −L to L or if y is even or odd then the in-

terval of 0 to L can be considered via symmetry. A symmetrical graph with the

interval of 0 to L perturbed is illustrated in Fig. 15 below.

This technique looks at functionals of the form

J [y] =

∫ b

a

[

p(x) {y′(x)}2 − q(x) {y(x)}2
]

dx (3.5)

defined on some space M of admissible functions, usually taken to be a normed

linear space for simplicity. It is assumed that there are functions in M such

that J [y] <∞ and that the infimum of the functional is a number greater than

−∞.

This method works by looking for the minimum of the functional of the

problem by choosing known functions, which make it easier to evaluate the
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z

L0 x

Figure 15: This shows a perturbation from 0 to L to a solution. The interval has been
chosen to be 0 to L because of the presumed symmetry of the solution, y(x) = y(−x).

integral, to be y. This is done by considering

φ1 , φ2 , φ3 , ... (3.6)

an infinite sequence of functions in M which satisfy the boundary conditions of

the problem, and Mn, the set of all linear combinations of the form

yn := α1φ1 + α2φ2 + α3φ3 + ... + αnφn , (3.7)

where the αn are real constants. If we let y be this linear combination then we

have

J [yn] = J [α1φ1 + ...+ αnφn] , (3.8)

which can be considered as a function of the n variables, αn. This is then

evaluated and the αn are chosen such that (3.8) is minimised. This minimised

value of (3.8) is the lowest eigenvalue for the problem for that value of n, denoted

µn,

µn := min
{α1,...αn}

J [α1φ1 + α2φ2 + ...+ αnφn] . (3.9)
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It is clear that the value of this eigenvalue cannot increase with n since any

linear combination of ψ1, .. , ψn is also a linear combination of ψ1, .. , ψn, ψn+1,

[26], so

µ1 ≥ µ2 ≥ µ3 ≥ ... . (3.10)

The following definition and theorem from [26] show that the sequence of the

µn converges to the infimum of J [y] on M.

Definition 1 The sequence (3.6) is complete if, given any y ∈ M and any

ǫ > 0, there is a linear combination yn of the form (3.7) such that ‖ yn− y ‖< ǫ

(where n depends on ǫ).

This definition is needed for:

Theorem 1 If the functional J [y] is continuous, and if the sequence (3.6) is

complete, then

lim
n→∞

µn = µ, (3.11)

where

µ = inf
y
J [y]. (3.12)

For proof of this theorem, see [26] p 196.

If this method is applied to a problem and any µn is found to be negative,

then the solution is unstable. If µn is positive then the series µ1, µ2, ... has to

be looked at to see whether or not µ, the limit of this series, is positive or null.

If the series is tending towards a positive value then the solution is stable, but

if µ = 0 then the problem needs to be looked at further. If the series becomes

negative at any point, then the solution y is unstable.

The eigensolution for the problem is given by (3.7) with the minimised αn.

For further details see [26].
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3.3 Second variation

The second variation is used to determine whether or not a function y0 is an

extremal function of a functional. If the functional does not attain a minimum

value then the function is not a minimum of the problem.

The first variation (Gâteaux variation) of

J [y] =

∫ b

a

F (x, y, y′)dx (3.13)

at y = y0 is defined as

δJ [h] =
d

dt
J(y0 + th)

∣

∣

t=0
(3.14)

provided the right-hand side exists for all h, where h = h(x) is an admissible

function which satisfies h(a) = h(b) = 0 and h(x) 6≡ 0. For J [y] to have a

minimum for a function y0 it is necessary that the first variation is zero and the

second variation must be greater than or equal to zero.

If the functional

J [y] =

∫ b

a

F (x, y, y′)dx, (3.15)

where F (x, y, y′) is a function with continuous partial derivatives up to third

order, is defined on an open subset Y of a normed linear space S and has a

second Gâteaux variation so that, for all y0 ∈ Y ,

J [y0 + h] − J [y0] = δJ [h] +
1

2
δ2J [h] + α[h] , (3.16)

for all h ∈ S for which ‖h‖ < δ for some δ > 0 and

lim
t→0

(

α[th]

t2

)

= 0 , (3.17)

then δ2J [h] is the second variation of the functional. The second variation is

given by

δ2J [h] =

∫ b

a

(

P {h′}2
+Qh2

)

dx, (3.18)

where

P ≡ P (x) =
1

2
Fy′y′ and Q ≡ Q(x) =

1

2

(

Fyy −
d

dx
Fyy′

)

. (3.19)
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3.3.1 Positive definiteness

A necessary condition for a functional J [y] to have a minimum is

δ2J [h] > 0 , (3.20)

for all admissible h ∈ S. This means that if the integral is positive definite then

the solution, y, is stable. If the integrand is positive definite, this forces the

integral to be positive definite. It is worth noting at this point that a positive

definite integrand guarantees a positive definite integral, however, it is not true

to say that a positive definite integral requires a positive definite integrand. An

example of this is

J =

∫ 1

0

{

(h′)2 − h2
}

dx . (3.21)

The integrand (h′)2 − h2 is, in matrix form,

[

h′ h
]

[

1 0
0 −1

] [

h′

h

]

. (3.22)

The eigenvalues for this problem are clearly λ = ±1. Since we have a negative

eigenvalue, it is not known for sure whether or not the integrand is positive

definite. However, using the Poincaré inequality [27]

∫ 1

0

{h′}2
dx ≥

∫ 1

0

πh2dx, (3.23)

with the conditions that h(x) vanishes at the ends points but is not identically

zero, we have

J =

∫ 1

0

{

h′2 − h2
}

dx,

≥
∫ 1

0

{

πh2 − h2
}

dx = (π − 1)

∫ 1

0

h2dx,

≥ 0 . (3.24)

This means that the integral is positive definite. This illustrates that an integral

can be positive definite without having a positive definite integrand.
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3.3.2 The Jacobi equation and conjugate points

A functional of the form of (3.1) has the second variation given by

δ2J [h] =

∫ b

a

(

Ph′2 +Qh2
)

dx, (3.25)

where h(x) satisfies h(a) = h(b) = 0 and h(x) 6≡ 0. The Jacobi equation is

defined to be the Euler–Lagrange equation of the second variation, i.e.

d

dx
(P (x)h′(x)) −Q(x)h(x) = 0. (3.26)

Since it is necessary that h(x) 6≡ 0, we can choose h′(a) = α where α 6= 0. For

more details see [26].

The point c (a < c < b) is said to be conjugate to a if the Jacobi equation

(3.26) has a solution which has a zero at x = a and x = c but is not identi-

cally zero. These conjugate points affect the positive definiteness of the integral

through the following theorem from [26]:

Theorem 2 If

P (x) > 0 (a ≤ x ≤ b) (3.27)

for all x ∈ [a, b] and the interval (a, b] contains no points conjugate to a, then

the quadratic functional
∫ b

a

(

P {h′}2
+Q {h}2

)

dx (3.28)

is positive definite for all h(x) such that h(a) = h(b) = 0.

From [25, p. 404], this leads to the following theorem.

Theorem 3 If P (x) > 0 for all x ∈ [a, b], the second variation is positive

definite if and only if (a, b] contains no point conjugate to a.

So, for a solution to be stable, there must be a solution to the Jacobi equation

(3.26) which never touches the x-axis. If a solution is found and it does cross

the axis then it must be unstable since the solution to the Jacobi equation is

unique by the existence and uniqueness theorem in [28].
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3.3.3 Necessary conditions

From [26] and [25], there are five necessary conditions for y = y0(x) to be a

minimum for J [y].

To guarantee that the extremal y0(x) is a weak relative minimum, both

the Euler–Lagrange equation, (3.29), and the Legendre condition(3.30) must be

satisfied. For a strong relative minimum, these must be satisfied as well as the

Jacobi condition, (3.40).

If y = y0(x) is a regular extremal (an extremal that consists of regular lineal

elements, i.e., elements (x0, y0, y
′
0) such that fy′y′ 6= 0), then for a strong rela-

tive minimum it must satisfy the Euler–Lagrange equation, (3.29), the Legendre

condition, (3.30), Weierstraß’ necessary condition, (3.32), and the Jacobi condi-

tion, (3.40). For a weak relative minimum it must satisfy the Euler–Lagrange

equation, (3.29), the strengthened Legendre condition, (3.31), and the Jacobi

condition, (3.40).

Euler–Lagrange equation

The functional J [y] to have y0(x) as a minimum must satisfy the Euler–Lagrange

equation. That is,

Fy(x, y0, y
′
0) −

d

dx
Fy′(x, y0, y

′
0) = 0. (3.29)

Legendre condition

Legendre’s Condition for y0(x) to be a relative minimum for a function J [y] is

Fy′y′(x, y0, y
′
0) ≥ 0 (3.30)

for a minimum ∀x ∈ [a, b].

Strengthened Legendre condition
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The strengthened Legendre Condition is

Fy′y′(x, y0, y
′
0) > 0 (3.31)

for a minimum ∀x ∈ [a, b].

Weierstraß’ necessary condition

If extremal y = y0(x) gives a strong relative minimum for J [y], it must satisfy

ε(x, y0(x), y
′
0(x), ω(x)) ≥ 0 (3.32)

for a minimum ∀x ∈ [a, b] and −∞ < ω(x) < ∞ where ε(x, y0, y
′
0, ω) is the

Weierstraß excess function, which is defined by

ε(x, y, y′, ω) = F (x, y, ω)− F (x, y, y′) + (y′ − ω)Fy′(x, y, y
′) (3.33)

for a functional given by

J [y] =

∫ b

a

F (x, y, y′)dx . (3.34)

Here ω(x) is the derivative with respect to x of an arbitrary function satisfying

the boundary conditions of the problem.

An example of applying the Weierstraß Necessary Condition, taken from [29,

p. 89], is the function

J [y] =

∫ 1

0

F (x, y, y′)dx (3.35)

where

F (x, y, y′) = F (y′) = (y′)2 + (y′)3. (3.36)

For this function, the Weierstraß excess function is

ε(x, y, y′, ω) = F (ω) − F (y′) − (w − y′)F ′(y′)

= (ω2 + ω3) − ((y)′2 + (y′)3) − (ω − y′)(2y′ + 3(y′)2)

= (ω − y′)2(1 + ω + 2y′). (3.37)
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For the endpoints (0, 0) and (1, 0), the extremal joining them is a straight line,

y′ = 0. So the Weierstraß excess function becomes

ε(x, y, 0, ω) = ω2(1 + ω). (3.38)

If ω < −1 then the excess function (3.38) is negative so it is not a strong

minimum. Legendre’s condition gives

F ′′(y′) = 2 + 6y′ = 2 ≥ 0, (3.39)

so Legendre’s condition is satisfied. This is not a contradiction since Weierstraß’s

condition and Legendre’s condition are both only necessary.

Jacobi condition

For y0(x) to yield a weak relative minimum for J [y]

(a, b) contains no point that is conjugate to a. (3.40)

Proof that these five conditions are necessary for minima of the functional

can be found in [25] and [29].

3.3.4 Sufficient conditions

There are three sufficient conditions for an extremal y0(x) to yield a minimum

to the functional J [y].

The extremal y0(x) is a strong relative minimum for J [y] if it satisfies the

Euler–Lagrange equation, (3.29) and the Weierstraß condition (3.42) and is ei-

ther embeddable in a field, (3.41), or satisfies the strengthened Jacobi condition

given by (3.43).

The extremal is a weak minimum if it satisfies the Euler–Lagrange equation,

(3.29), the strengthened Legendre condition, (3.31), and the strengthened Jacobi

condition, (3.43).
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Embeddable in a field

For the extremal y0(x) to be a minimum of J [y],

y0 must be embeddable in a field. (3.41)

From Sagan [25, p. 133], a field is defined as

Definition 2 (A field) Let A denote a bounded and simply connected domain

in the x, y plane. The vector function (1, φ(x, y)) is said to define a field F =

{(1, φ(x, y)) |(x, y) ∈ A} in A for J [y] if φx , φy ∈ C(A) and if every solution of

y′ = φ(x, y) in A is an extremal of J [y].

Definition 3 (Embeddable in a field) An extremal y0(x) of J [y] is said to

be embeddable in a field, F , if:� F is defined on a simply connected domain A that contains a weak delta

neighbourhood N δ
ω(y0), and� y = y0(x) is a solution on A of y′ = φ(x, y), where φ(x, y) defines the field.

Weierstraß condition

The Weierstraß condition states that if y0(x) is embeddable in a field and if

ε(x, y, y′, ω) ≥ 0 (3.42)

∀(x, y) ∈ N δ
ω(y0) and all − ∞ < y′ <∞ and −∞ < ω <∞

where ε(x, y, y′, ω) is given by (3.32), then y0(x) gives a strong minimum.

Strengthened Jacobi Condition

The strengthened Jacobi condition is

(a, b ] does not contain a conjugate point to a. (3.43)
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The difference between this and the Jacobi condition (3.40) is that b must not

be conjugate to a in the strengthened condition, but it can be in (3.40).

Proof that these conditions are sufficient for a minimum can be found in [25]

and [29].

3.4 Positivity criterion

Inequalities can be used to determine whether or not an integral is positive

definite. One such inequality is a positivity criterion due to Gartland, [24],

which will be reviewed in this section. First consider the functional

∫ 1

0

{

(φ′(x))
2
+ q(x)φ2(x)

}

dx, (3.44)

=

∫ 1

0

(φ′(x))
2
dx+

∫ 1

0

q(x)φ2(x)dx, (3.45)

where q(x) crosses the axis so that it has negative and positive parts and φ ∈ C1.

It is assumed that φ(0) = φ(1) = 0. The first integral is always ≥ 0 so only the

second one, which involves q(x), needs to be considered. Let the negative parts

of q(x) be q−(x) and the positive parts be q+(x) so

q−(x) =

{

q(x) for q(x) < 0,
0 for q(x) ≥ 0 ,

(3.46)

and

q+(x) =

{

0 for q(x) < 0,
q(x) for q(x) ≥ 0 .

(3.47)

Since q−(x) < 0,

0 ≤
∫ 1

0

−q−(x)φ2(x)dx =

∫ 1

0

|q−(x)|φ2(x)dx,

≤ ‖ φ ‖2
L∞(0,1)

∫ 1

0

|q−(x)|dx (3.48)

by Hölder’s inequality, where ‖ .. ‖L∞ is the supremum norm.
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Also, ‖ φ ‖L∞= |φ(x1)| for some x1 ∈ (0, 1) since φ ∈ C1, and so with

φ(0) = 0:

‖ φ ‖L∞ =

∣

∣

∣

∣

∫ x1

0

φ′(x)dx

∣

∣

∣

∣

since φ(0) = 0, (3.49)

≤
∫ x1

0

|φ′(x)|dx, (3.50)

≤
(
∫ x1

0

12dx

)
1

2

(
∫ x1

0

|φ′(x)|2dx
)

1

2

, (3.51)

using the Cauchy-Schwartz inequality. This is

‖ φ ‖L∞ ≤ √
x1

(
∫ x1

0

|φ′(x)|2dx
)

1

2

, (3.52)

≤ √
x1

(
∫ 1

0

|φ′(x)|2dx
)

1

2

, (3.53)

=
√
x1 ‖ φ′(x) ‖L2 . (3.54)

Similarly

‖ φ ‖L∞≤
√

1 − x1 ‖ φ′(x) ‖L2 (3.55)

since φ = 0 on both boundaries. Hence

‖ φ ‖2
L∞ ≤ min {x1, 1 − x1} .

(
∫ 1

0

φ′(x)2dx

)

, (3.56)

≤ 1

2

∫ 1

0

φ′(x)2dx. (3.57)

Hence, from (3.48),

−
∫ 1

0

q−(x)φ2(x)dx ≤ 1

2

∫ 1

0

|q−(x)|dx
∫ 1

0

φ′(x)2dx. (3.58)
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The integral (3.45) is now considered again, giving

∫ 1

0

(φ′(x))
2
dx+

∫ 1

0

q(x)φ2(x)dx (3.59)

=

∫ 1

0

(φ′(x))
2
dx+

∫ 1

0

q+(x)φ2(x)dx+

∫ 1

0

q−(x)φ2(x)dx, (3.60)

≥
∫ 1

0

(φ′(x))
2
dx+

∫ 1

0

q+(x)φ2(x)dx− 1

2

∫ 1

0

|q−(x)|dx.
∫ 1

0

(φ′)
2
dx,(3.61)

=

∫ 1

0

q+(x)φ2(x)dx+

∫ 1

0

(φ′(x))
2
dx

[

1 − 1

2

∫ 1

0

|q−(x)|dx
]

, (3.62)

≥ 0 provided

∫ 1

0

|q−(x)|dx ≤ 2. (3.63)

This condition,
∫ 1

0

|q−(x)|dx ≤ 2, (3.64)

will be referred to as the positivity criterion throughout this thesis. It is worth

noting that this criterion could still be valid even if the function was entirely

negative between the finite end points.

The above argument can easily be changed to an arbitrary domain. If the

domain of x is extended to x ∈ [0, a], then the positivity criterion (3.64) is given

by
∫ a

0

|q−(x)|dx ≤ 2

a
, (3.65)

since

min{x1, a− x1} ≤ a

2
for 0 < x1 < a . (3.66)

This is a generalised positivity criterion. This criterion is a sufficient but not

a necessary condition since, if the function q(x) does not satisfy it, then the

solution could still be stable. Another technique would need to be used to

determine its stability.
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4 Smectic C Domain Walls in a Cylinder

Atkin and Stewart considered the problem of the stability of solutions for the

orientation of smectic C liquid crystals molecules in a concentric circular geom-

etry in the presence of an azimuthal magnetic field. They found five different

solutions [30, 31] when they looked at an infinite sample of concentric circular

cylinders of smectic C liquid crystal with a fixed inner radius r0. Within this

chapter we will consider the stability of these solutions. Previously, only the

stability of one of these solutions had been looked at and only resolved with

constraints. Here we will resolve all five stability cases.

Because of the symmetry of the problem, cylindrical polar co-ordinates are

used with basis vectors r̂, α̂ and ẑ for convenience, where r measures the radial

distance (so r̂ = a), z is the axis of the cylinder and α is the polar angle. This is

shown below in Fig. 16. Here, φ is the orientation angle of c within the smectic

layers.

4.1 Atkin and Stewart’s solutions

The solutions which Atkin and Stewart found in [30, 31] were for φ = φ(r).

From Fig. 16

a = r̂ , (4.1)

c = α̂ sin φ + ẑ cosφ , (4.2)

n = a cos θ + c sin θ, (4.3)

= r̂ cos θ + α̂ sin θ sinφ + ẑ sin θ cosφ , (4.4)

and a new vector b can be introduced such that

b = a × c , (4.5)

= −α̂ cos φ + ẑ sinφ . (4.6)
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r

r0

B=Br0

r

z

c

n

a=r

Figure 16: A physical representation of the geometry of the problem and of the unit
vectors. Fig (a) shows the cylinder with inner radius r0 with equidistant cylindrical
layers of smectic C liquid crystals, and Fig (b) shows the director in relation to the
layer normal.

In [30, 32] the solutions to this problem were found by considering the total

energy of the system. From [6], the bulk energy density, wb, is given in terms of

b and c in (2.76) with B1, B2, C1 and C2 equal to zero. From (2.77-2.78), the

remaining elastic constants must satisfy

A12, A21, B3 > 0 and A12 + A21 ± 2A11 > 0 , (4.7)

since

(A12 ± A11)
2 = A2

12 + A2
11 ± 2A12A11 ≥ 0 (4.8)

and then adding (2.78) gives

A12 (A12 + A21 ± 2A11) ≥ 0 (4.9)

and since A12 > 0 then the second inequality in (4.7) arises.
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Since cylindrical polar co-ordinates are being used then the divergence and

curl of the vectors are not as straight forward as they would be if Cartesian co-

ordinates were being used. In cylindrical polars, from [6] and [33] the divergence

of a vector n given by

n = n1r̂ + n2α̂ + n3ẑ (4.10)

EPT FOR THE SPELLING M is

∇ · n =
1

r

∂

∂r
(rn1) +

1

r

∂n2

∂α
+
∂n3

∂z
. (4.11)

The curl of n in polars is

∇× n =
1

r

∣

∣

∣

∣

∣

∣

∣

r̂ rα̂ ẑ
∂

∂r

∂

∂α

∂

∂z
n1 rn2 n3

∣

∣

∣

∣

∣

∣

∣

. (4.12)

Using the above formulae, the bulk energy density becomes

wb =
1

2
A12

1

r2
sin4 φ+

1

2
A21

1

r2
cos4 φ

− A11
1

r2
cos2 φ sin2 φ+

1

2
B3

(

dφ

dr

)2

, (4.13)

=
1

2
r−2

[

(A12 + A11) sin4 φ+ (A21 + A11) cos4 φ− sin2 φ cos2 φA11

]

+
1

2
B3 [φ′(r)]

2
. (4.14)

If there is a magnetic field B such that

B = B
r0
r

α̂, (4.15)

where B is the field strength at r = r0, then the magnetic energy density is

given by

wmag = −1

2

∆χ

µ0

(n · B)2 , (4.16)

where ∆χ is the magnetic anisotropy of the smectic C liquid crystal and µ0 is

the permeability of free space. This gives

wmag = −1

2

∆χ

µ0

B2r2
0

r2
sin2 θ sin2 φ . (4.17)
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Now, the total energy is given by

W =

∫

Ω

(wb + wm) rdrdαdz (4.18)

=

∫

Ω

w̄drdαdz (4.19)

where Ω is the sample region and

w̄ = r (wb + wm) . (4.20)

The governing equation is found by considering the Euler–Lagrange equation

of the total energy, i.e.

∂

∂r

(

∂w̄

∂φr

)

+
∂

∂θ

(

∂w̄

∂φθ

)

− ∂w̄

∂φ
= 0. (4.21)

which gives

B3

[

r2d2φ

dr2
+ r

dφ

dr

]

− 2 (A12 + A21 + 2A11) sin3 φ cosφ

+

[

2 (A21 + A11) +
∆χ

µ0
B2r2

0 sin2 θ

]

sinφ cosφ = 0 . (4.22)

If the following new variables and constants, for ease, given by

s = ln

(

r

r0

)

, (4.23)

ψ = 2φ, (4.24)

a =
1

B3

(

A12 −A21 −
∆χ

µ0
B2r2

0 sin2 θ

)

, (4.25)

b =
1

2B3
(A12 + A21 + 2A11) , (b > 0 by (4.7) ) , (4.26)

are introduced, (4.22) can be rewritten as

d2ψ

ds2
= a sinψ − b sin 2ψ. (4.27)

If this is now multiplied by
dψ

ds
and integrated, (4.27) becomes

dψ

ds
= ±

√

b cos (2ψ) − 2a cosψ + c (4.28)
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where c is a constant of integration. This is a first order ordinary differential

equation (ODE) which depends upon a, b and the solution ψ. This ODE also

depends upon the parameter c and has a further constant of integration.

Atkin and Stewart [30, 31] looked at the phase portraits for this problem

with b > 0. From these, shown in Fig. 17, they found five possible explicit

solutions depending upon the constants a and b. These are:

ψ1 = −2nπ − 2 arctan

{

tanh
(η

2

)

tan

(
√

b

2
sinh (η) s

)}

, (4.29)

π(2n− 1)√
2b sinh η

< s <
π(2n+ 1)√

2b sinh η
, n = 0, 1, 2, .. , a > 2b,

ψ2 = 0 , a = 2b, (4.30)

ψ3 = 2 arctan

{

tan

(

ψ0

2

)

tanh

(
√

b

2
sin (ψ0) s

)}

, |a| < 2b, (4.31)

ψ4 = 2 arctan
(√

2b s
)

, a = −2b, (4.32)

ψ5 = 2 arctan

{√

a

a + 2b
sinh

(

√

− (a + 2b) s
)

}

, a < −2b, (4.33)

where

η = arccosh
( a

2b

)

, for a > 2b (4.34)

and

ψ0 = arccos
( a

2b

)

. (4.35)

These solutions can be found by considering the differential equation (4.28). This

equation is solved using boundary conditions chosen from the phase portraits

with the value of c chosen in terms of a and b in such a way that it completes

the square on the right hand side allowing the equation to be solved analytically.

Other values of c could be chosen but analysis would not be as straight forward.

The solutions could have 2nπ added to them and they would also be solution

to the differential equation but they would not satisfy the boundary conditions

chosen from our phase portrait.
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Introducing the parameter

k = − a

2b
, (4.36)

(4.34) and (4.35) become

η = arccosh (−k) , for |k| < 1

ψ0 = arccos (k) . (4.37)

Substituting this into (4.29-4.33) and reverting back to φ (ψ = 2φ) yields

φ1(k, s) = −nπ − arctan

{

√

k + 1

k − 1
tan

(
√

b

2

√
k2 − 1 s

)}

, (4.38)

with

π(2n− 1)
√

2b(k2 − 1)
< s <

π(2n+ 1)
√

2b(k2 − 1)
, n = 0, 1, 2, .. , k < −1,

φ2(k, s) = 0 , k = −1, (4.39)

φ3(k, s) = arctan

{

√

1 + k

1 − k
tanh

(
√

b

2

√
1 − k2 s

)}

, |k| < 1, (4.40)

φ4(k, s) = arctan
(√

2b s
)

, k = 1, (4.41)

φ5(k, s) = arctan

{

√

k

k − 1
sinh

(√
2b
√
k − 1 s

)

}

, k > 1. (4.42)

It is interesting to note here that the extrapolation length of ψ3(s) is proportional

to
√

(1 − k2) but as k increases such that k > 1, the extrapolation length

changes to be proportial to
√

(k − 1). If the phase diagrams for these solutions

are considered, then it can been seen that these five solutions connect together

continuously as k changes, that is why these five were selected by Atkin and

Stewart.

The graphs of ψ1(s), ψ3(s), ψ4(s) and ψ5(s) are shown below in Fig. 18. This

shows that as s tends to infinity, ψ3(s) tends to arctan

√
1 + k

1 − k
and φ4(s) and

φ5(s) both tend to π. The φ2 solution is omitted since it is simply the trival

zero solution.
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(a)

(b)

(c)

Figure 17: These are the phase portraits for (a) k < −1, (b) |k| < 1 and (c) k > 1.

The stability of these five solutions will be considered here. The energy of

the solutions may be compared for different cases, but this is beyond the scope

of the Thesis at present. Atkin and Stewart looked at the stability of (4.40) in

[34]. In that paper, they looked at the stability analytically and they found that

the solution was indeed stable with the restrictions that

b ≥ 1

40
and |a| ≤

√

2b(2b− 1). (4.43)

Here results will be achieved without any restrictions on the values of a or b for

four of the five solutions, and a result with some restrictions on the value of k
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(a) (b)

(c) (d)

Figure 18: These are the graphs of (a) ψ1, (b) ψ3 (c) ψ4 and (d) ψ5.

will be obtained for the φ1 solution.

4.2 Stability

The analysis of the stability of these solutions begins by looking at the Rayleigh–

Ritz method for computing eigenvalues. To apply this method to our problem,

we must cast it in the form of (3.5). To get the problem into the required form for

the method, the same method is used as Atkin and Stewart used in [34]; a time

dependence will be assumed. This is a commonly used technique in considering

the stability of static solutions and leads to the introduction of a dynamic term.

From the dynamic theory of smectic C liquid crystals, the governing dynamic
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equations are given by (2.102), (2.104) and (2.105). There is no flow involved

in this problem so equation (2.102) is gone and since there is no flow and a is

constant, the equation for the a-director (2.104) is also gone. For more details,

see [6, p. 303-304] and for an explicit example in cylindrical geometry, see [35].

The remaining equation is (2.105), which reduces to

Πc
i + g̃ci + τci + µai = 0 (4.44)

since we have no external body force. The dynamic contribution, g̃ci is reduced

to

g̃ci = −2λ5Ci , (4.45)

since there is no velocity, where

Ci = ċi −Wikck = ċi . (4.46)

For i = 1 the second angular momentum equation is given by

µa1 = 0 ⇒ µ = 0 (4.47)

since a1 = 1 and c1 = 0 from (4.1) and (4.2).

When i = 2 and i = 3, the remaining angular momentum equations are

Πc
2 − 2λ5ċ2 + τc2 = 0 for i = 2 , (4.48)

Πc
3 − 2λ5ċ3 + τc3 = 0 for i = 3 . (4.49)

These are

Πc
2 − 2λ5 cos φφ̇+ τ sin φ = 0 (4.50)

and

Πc
3 + 2λ5 sinφφ̇+ τ cosφ = 0 (4.51)

when the expressions for ci are inserted from (4.2). Eliminating the Lagrange

multiplier τ leaves the single equation

Πc
2 cos φ− Πc

3 sin φ− 2λ5φ̇ = 0 . (4.52)
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From [6], the Πc

i
term is given in general vector form in (2.101). The Ki

elastic constants from (2.83) that enter the model equations are

K1 = A21 , K4 = B3 , K5 = 2A11 + A12 + A21 +B3 (4.53)

K6 = −
(

A11 + A21 +
1

2
B3

)

. (4.54)

The other Ki are absent becasue of the geometry of the problem. The diver-

gence and curl of the terms in (4.52) are given by equations (4.11) and (4.12)

respectively and the gradient of a scalar function, p, is given by

∇p =
∂p

∂r
r̂ +

1

r

∂p

∂α
α̂ +

∂p

∂z
ẑ . (4.55)

After the non-trivial calculation of Πc and reverting back to the Orsay elastic

constants and rescaling time by setting

t̄ =
B3

2λ5
t , (4.56)

we get

r2∂
2ψ

∂r2
+ r

∂ψ

∂r
− r2∂ψ

∂t
= a sinψ − b sin 2ψ (4.57)

where the bar on t has been dropped for convenience and where

ψ = 2φ , (4.58)

and

a =
1

B3

(

A12 − A21 −
∆χ

µ0

B2r2
0 sin2 θ

)

(4.59)

b =
1

2B3
(A12 + A21 + 2A11) (4.60)

as before.

It is now convenient to rescale the problem. If the problem is first rescaled

via (4.23), as before, then a new variable ŝ is introduced such that

ŝ =

√

b

2
s ⇒ dŝ

ds
=

√

b

2
⇒ d2

ds2
=
b

2

d2

dŝ2
. (4.61)
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Eq. (4.27) becomes

d2ψ

dŝ2
= 2

a

b
sinψ − 2 sin 2ψ, (4.62)

= −4k sinψ − 2 sin 2ψ. (4.63)

The five solutions must also be rescaled using ŝ from (4.61). When we do this,

our solutions become

ψ1 = −2nπ − 2 arctan

{

√

k + 1

k − 1
tan
(√

k2 − 1 ŝ
)

}

, (4.64)

π(2n− 1)

2
√

(k2 − 1)
< ŝ <

π(2n+ 1)

2
√

(k2 − 1)
, n = 0, 1, 2, .. , k < −1,

ψ2 = 0 , k = −1, (4.65)

ψ3 = 2 arctan

{

√

1 + k

1 − k
tanh

(√
1 − k2 ŝ

)

}

, |k| < 1 (4.66)

ψ4 = 2 arctan (2ŝ) , k = 1, (4.67)

ψ5 = 2 arctan

{

√

k

k − 1
sinh

(

2
√
k − 1 ŝ

)

}

, k > 1. (4.68)

From now on, s will represent the rescaled ŝ.

It is known from (4.62) that

ψ′′(s) = −4k sinψ − 2 sin 2ψ. (4.69)

A dependence on time is now assumed so that ψ = ψ(s, t) giving

∂2ψ

∂s2
− ∂ψ

∂t
= −4k sinψ − 2 sin 2ψ. (4.70)

The time independent solutions still satisfy this since their partial derivative with

respect to time is 0. A time-dependent perturbation ε(s, t) is then considered,

where

ψ(s, t) = ψ̄(s) + ε(s, t), |ε| ≪ 1 , (4.71)

where ε(0, t) = ε(∞, t) = 0. Substituting (4.71) into (4.70) gives the linearised

perturbation equation

∂2ε

∂s2
− ∂ε

∂t
= (−4k cos (ψ(s)) − 4 cos (2ψ(s))) ε . (4.72)
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Setting

2ε(s, t) = ε̄e−λt, (4.73)

and substituting this into (4.72) gives the eigenvalue problem

∂2ε̄

∂s2
+ 4 {k cos (ψ(s)) + cos (2ψ(s))} ε̄ = −λε̄. (4.74)

Solutions to this problem will be stable whenever λ ≥ 0 (or Re(λ) ≥ 0). Equa-

tion (4.74) can be written as

λv(s) = −v′′(s) + q(s)v, (4.75)

where, for easier notation,

q(s) = −4 [k cosψ + cos(2ψ)] and v(s) = ε(s). (4.76)

Multiplying (4.75) by v(s) and using integration by parts, gives

λ

∫ ∞

0

v2ds =

∫ ∞

0

(v′)2ds+

∫ ∞

0

q(s)v2ds. (4.77)

It is clear from this that λ ≥ 0 if the right hand side of this equation is positive.

Therefore we consider the functional

J [v] :=

∫ ∞

0

{

(v′)
2
+ q(s)v2

}

ds, (4.78)

with

q(s) = −4 [k cosψ + cos(2ψ)] . (4.79)

The functional (4.78) is of the form (3.5) so the method outlined in section 3.2

can be applied.

4.2.1 Application of the Rayleigh–Ritz method

To apply the Rayleigh–Ritz method to the problem, a numerical program was

written, using Simpson’s numerical method to evaluate the integral (4.78). The

ψ3 solution (4.31) was considered first since a stability result from the Atkin and
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Stewart paper [34] was already known. If the program produced the same re-

sults as the paper, this would indicate whether or not the program was working

correctly. The Rayleigh–Ritz program produced positive eigenvalues for given

values of a and b which confirmed the result already known. Since there was

confidence in the routine, the ψ2, ψ4 and ψ5 solutions (4.65), (4.67) and (4.68)

were now looked at, all of which were found to have positive eigenvalues and

therefore to be stable. [The stability for these solutions were only found numer-

ically and only for certain k values, so this is not a complete picture for these

solutions.]

When the ψ1 solution, (4.38), was considered, the Rayleigh–Ritz program

could only find second, third and fourth eigenvalues, but not the first. This

means that some other method is needed to look at the stability of this solution.

4.2.2 Second variation

Since the Rayleigh–Ritz method failed for the ψ1 solution and does not give a

complete picture for the other solutions, the second variation of the problem

was considered. To consider the second variation of this problem, it has to be

in the form of (3.15), where F (s, φ, φ′) is given by the bulk energy (4.14) added

to the magnetic energy (4.16) in this case. This can be non-dimensionalised, as

was done previously, by introducing

s = ln

(

r

r0

)

, (4.80)

then F (s, φ, φ′) becomes

F (s, φ, φ′) =
1

2

{

(A12 + A11) sin4 φ+ (A21 + A11) cos4 φ (4.81)

−A11 +B3 (φ′)
2 − ∆χ

µ0
B2r2

0 sin2 θ sin2 φ

}

. (4.82)

This means that, for this problem,

δ2J [h] =
1

B3

∫ ψ(s)

0

[

p(s)

(

dh

ds

)2

+B3q(s)h(s)
2

]

ds (4.83)
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where

p(s) = 1 and q(s) =
a

2
cosψ − b cos 2ψ(s) +

2

B3

(A21 + A11) . (4.84)

From [31], the final term of this equation is

2

B3
(A21 + A11) > 0 (4.85)

so if this term is neglected and the second variation given by (4.83) with

q(s) =
a

2
cosψ − b cos 2ψ(s) (4.86)

is found to be positive definite then it will still be positive definite once this

term has been reinstated.

For the solutions to be stable, the functional by (3.15) must have a minimum.

From Section 3.3, a necessary condition for the functional to have a minimum is

δ2J [h] > 0 , (4.87)

for all admissible h. This does not mean that if the integral is positive definite

then the solutions are stable since it is only a necessary condition. From section

3.3.4, the sufficient conditions for a weak minimum are the Euler–Lagrange equa-

tion, (3.29), the strengthened Legendre condition, (3.31), and the strengthened

Jacobi condition, (3.43).

4.2.2.1 The Euler–Lagrange equation

The Euler–Lagrange equation is the governing equation used to find these solu-

tions, given by (4.22). The solutions automatically satisfy this condition.

4.2.2.2 The Strengthened Legendre condition

The strengthened Legendre condition from (3.31) is

Fφ′φ′(x, φ0, φ
′
0) ≥ 0. (4.88)



Smectic C Domain Walls in a Cylinder 59

In particular, here

Fφ′φ′ = B3 (4.89)

and B3 > 0 from (4.7), so the strengthened Legendre condition is satisfied by

all of our solutions.

4.2.2.3 Strengthened Jacobi condition

The theorem from Section 3.3.2, says that the solutions found by Atkin and

Stewart will have no conjugate points and, therefore, satisfy the strengthened

Jacobi Condition if the integrand is positive definite. For the integrand to be

positive definite, we need

p(s)h′(s)2 + q(ψi(s))h(s)
2 > 0 . (4.90)

For our solutions, p(s) = 1 so we have

h′(s)2 + q(ψi(s))h(s)
2 > 0, (4.91)

but since q depends on ψi, we have to look at q(ψi) for each of the solutions in

turn. If q ≥ 0 for a solution, then the integrand for that particular solution is

positive definite. For ψ2 we have q ≡ 0 and so this solution is stable with no

restrictions on the values of the constants a and b. The function q for ψi, where

i = 1, 3, 4, 5, changes sign so the integrand is not positive definite. This does not

rule out stability altogether since the integral might still be positive definite as

is the case with (3.21), so the integrand needs to be considered in more detail.

4.2.3 Positivity criterion

Before the positivity criterion, (3.65) from Section 3.4, is used to look at the

solutions, the point where q(ψi) crosses the horizontal s-axis needs to be found.

For the ψ3 to ψ5 solutions, the q(ψi) function only crosses the s-axis at one
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point, s = xci say, but for ψ1 the function q(ψ1) oscillates. The ψ1 solution will

be considered separately later, and for now ψ3 to ψ5 will be concentrated on.

The q function for an arbitrary solution ψi is given by

q(s) = −bk cosψi − 2b cos2 ψi + b (4.92)

so the point where this cuts the s-axis can be found by considering q(ψi(xci)) = 0

−bk cosψi(xci) − 2b cos2 ψi(xci) + b = 0, (4.93)

2 cos2 ψi(xci) + k cosψi(xci) − 1 = 0, (4.94)

2

[

cosψi(xci) +
k

4

]2

− k2

8
= 1, (4.95)

cosψi(xci) +
k

4
=

√

8 + k2

16
. (4.96)

Looking at each of the ψi in turn, the following xc values are found

ψ3 : xc3 =

√

2

b(1 − k2)
arctanh

(
√

(1 − k)

(1 + k)

(

4 + k −
√

8 + k2
)

(

4 − k +
√

8 + k2
)

)

,(4.97)

ψ4 : xc4 =

√

1

6b
, (4.98)

ψ5 : xc5 =
1

√

2b(k − 1)
arcsinh

(
√

(k − 1)

k

(

4 + k −
√

8 + k2
)

(

4 − k +
√

8 + k2
)

)

.(4.99)

These xci values will be the upper limit for the integral that will be considered

with the generalised positivity criterion. For s > xci , q(ψi(s)) > 0, so only

the integral from 0 to xci needs to be considered. This will make the integrand

negative over the whole domain. If the positivity criterion gives stability in this

range of s, then we have stability over the whole of s > 0. Since only the region

up to xc is being considered, the generalised positivity criterion (3.65) becomes

∫ xci

0

|q−(s)|ds ≤ 2

xc
. (4.100)

The next thing to be considered is the integral of q(s). To simplify, the
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integration variable can be changed. This gives
∫ xci

0

|q(s)|ds = −
∫ xci

0

q(s)ds,

= −
∫ ψ(xci

)

0

q(ψ)
ds

dψ
dψ,

= −
∫ ψ(xci

)

0

q(ψ)
1

ψ′(s)
dψ. (4.101)

From (4.28), it is known that

dψ

ds
= ±

√

b cos (2ψ) − 2a cosψ + c, c = const. of int.,

= ±
√

b cos (2ψ) + 4bk cosψ + c k = − a

2b
, (4.102)

but the value of the integration constant c has to be specified for each solution.

For each of the solutions, the constant of integration was chosen so that it

completes the square in (4.102) to simplify the problem. For this to happen,

c = b− a2

2b
. (4.103)

Substituting (4.103) into (4.102)

−
∫ ψi(xc)

0

(−bk cosψ − 2b cos2 ψ + b)√
2b(cosψ + k)

dψ

= −
[

√
2bk

ψi(xc)

2
− 2

√
2b

tan ψi(xc)
2

tan2 ψi(xc)
2

+ 1

+

√
2b

√

(1 − k)(1 + k)
(1 − k2) arctan

{

(k − 1) tan ψi(xc)
2

√

(1 − k)(1 + k)

}]

. (4.104)

This evaluated integral will be called I(b, k) from now on.

Looking at the
ψi(xci)

2
term for the ψi solutions, the following results are

obtained after simplification

ψ3(xc3)

2
= arctan

{

(

4 + k −
√

8 + k2
)

(

4 − k +
√

8 + k2
)

}

, (4.105)

ψ4(xc4)

2
= arctan

{

1√
3

}

=
π

6
, (4.106)

ψ5(xc5)

2
= arctan

{

(

4 + k −
√

8 + k2
)

(

4 − k +
√

8 + k2
)

}

. (4.107)
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Notice that (4.105) is the same as (4.107) even though their xc values are differ-

ent. These values of ψi(xci)/2 were then substituted back into (4.104) for each

ψi.

To allow the behaviour of the integral (4.104), in relation to the positivity

criterion, to be considered easily, we can consider the function, given by

fi(b, k) =
2

xci
− I(b, k) . (4.108)

If fi(b, k) > 0 ∀b > 0 and ∀k in the range for the specific solution, then our

positivity criterion is satisfied and our solution is stable.

Straight away this can be used to look at the ψ4 solution, (4.32), which is

ψ4 = 2 arctan
(√

2b s
)

, a = −2b i.e., k = 1 . (4.109)

The value of our integral for this solution is

I(b) = −
[√

2b√
3

− 2
√

2b√
3(1

3
+ 1)

]

,

= −
[√

2b√
3

−
√

3b√
2

]

, (4.110)

=

√
b√
6
> 0 ∀b > 0. (4.111)

It is known that the xc4 value for this solution, given by (4.98), is

xc4 =

√

1

6b
, (4.112)

so

f4(b, k) = f4(b) = 2
√

6b−
√
b√
6
, (4.113)

=
11
√
b√

6
, (4.114)

> 0 ∀b > 0. (4.115)
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This means that the ψ4 solution satisfies the generalised positivity criterion

(3.65) and since this is satisfied, it means that the integral is positive definite

and the solution is stable ∀b > 0.

For the ψ3 and ψ5 solutions, the analysis is not so straightforward. These

solutions are valid for different ranges of k so using polar co-ordinates simplifies

the problem. For this, it has to be remembered that, from (4.36),

k =
−a
2b
, (4.116)

so k depends on a and b. If we set

a = r cosα (4.117)

and

b = r sinα, (4.118)

and substitute these into (4.105), (4.107) and (4.104) we can look at the bound-

ing curve for each of the solutions given by (4.108) with r ranging from 0 to ∞
and the α range depending on the solution.

For the ψ3 solution, f3(b, k) is given by

f3(b, k) =
2

xc3
− I(b, k(a, b)) . (4.119)

Substituting (4.117) and (4.118) into this gives

f3(r, α) =

√

r tan(α/2)

1 + tan2(α/2)









√

4 − 1

tan2(α)

arctanh

(

1 + 2 tan(α)

2 tan(α)
g(α)

) +
arctan

(

√

g(α)
)

tanα

+
4
√

g(α)

g(α) + 1
+

arctan
(

√

−1 − 2 tan(α)
√

g(α)
)

√

(

1 − 1

2 tanα

)( −1

2 tanα
− 1

)

(

−2 +
1

2 tan2 α

)













, (4.120)
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f3(r, α) :=
√
r h3(α), (4.121)

where

g(α) =
4 − 1

2 tanα
−
√

8 +
1

4 tan2 α

4 +
1

2 tanα
+

√

8 +
1

4 tan2 α

. (4.122)

For this solution, the α variable has the range arctan
(

1
2

)

< α < π − arctan
(

1
2

)

since |a| < 2b for the solution to be valid. Only the function h3(α) needs to be

considered to determine whether or not this solution is stable since r is always

positive. If this function is plotted for an arbitrary r then the following graph

in Fig. 19 is obtained. This graph shows that h3(α) is never less than 0 within

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5  1  1.5  2  2.5

h(
al

ph
a)

alpha

Figure 19: The graph never touches 0 so h3(α) > 0 for all arctan
(

1
2

)

< α < π −
arctan

(

1
2

)

since |a| < 2b

the specified range of α. The limit of h3(α) as α approaches arctan
(

1
2

)

is

lim
α→arctan(1

2)
h3(α) = 0 , (4.123)
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and as α → π − arctan
(

1
2

)

the limit of h3(α) is

lim
α→π−arctan( 1

2)
h3(α) ≈ 2.952297924 . (4.124)

This means that the function f3(b, k), given by (4.108), never crosses the s-axis

within the α range for this solution, so the positivity criterion holds for this

solution ∀b > 0 and ∀k such that |k| < 1 and so the ψ3 solution is stable.

For the ψ5 solution, the range of α for which the solution is valid is π −
arctan

(

1
2

)

< α < π. This covers all k values greater than 1. (The k = 1 case

is the ψ4 solution). The analysis of this solution carries through in exactly the

same way and f(b, k) is of the form

f5(r, α) =
√
r h5(α), (4.125)

as before. The graph of h5(α) in the interval
[

π − arctan
(

1
2

)

, π
]

is shown below

in Fig. 20. As was the case with the ψ3 solution, the ψ5 solution is stable since
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Figure 20: The graph never touches 0 so h5(α) > 0 for all π − arctan
(

1
2

)

< α < π

it satisfies the generalised positivity criterion given by (3.65). For this solution,
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the limits of h5(α) as α tends towards the limits of its range are

lim
α→π−arctan( 1

2)
h5(α) ≈ 2.952297924 , (4.126)

which agrees with the limit for the ψ3 solution, and

lim
α→π

h5(α) ≈ 2.269185314 . (4.127)

This only leaves the ψ1 with its stability unknown. To look at this we are

going to have to use a different method as our positivity criterion is not satisfied

for this solution because of its oscillatory periodic behaviour. We will try to use

the Jacobi equation of the functional (3.15) for this.

4.2.4 The Jacobi equation

From section 3.3.2, the Jacobi equation can be used to determine whether or

not the second variation of a functional is positive. If the Jacobi equation has

a solution which crosses the x-axis within the x range of the problem, then the

solution is not stable.

Before beginning to look for a solution to the Jacobi equation (3.26), we need

to establish whether or not a solution exists to this equation for the ψ1 solution.

For this solution, the Jacobi equation is

u′′ − q(x)u = 0, (4.128)

where q(x) is given by (4.79). If we let v = u′, we have

u′ = v,

v′ = qu.

This gives the system

[

u
v

]′

=

[

0 1
q(s) 0

] [

u
v

]

+

[

0
0

]

, (4.129)
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which is of the form

y′ = My + f , (4.130)

where M is a square matrix and f is a continuous vector. The existence of a

unique solution is guaranteed [28] since the system is of the correct form and

the initial values are
[

u(0)
v(0)

]

=

[

u(0)
u′(0)

]

=

[

0
α

]

, (4.131)

where α is any number, see [26]. If this solution is found, then for the problem

to be stable, it must never touch the x-axis for x > 0 or it will have conjugate

points.

In the general case, this system is very difficult to solve. The behaviour of

the solution with k large and negative was looked at. Since k =
−a
2b

this is the

same as taking a positive and very large compared to b. When k is very large

and negative
√

k + 1

k − 1
≃ 1

and

√
k2 − 1 ≃ −k, (4.132)

so the ψ1 solution becomes

ψ(s) = −2nπ + 2

√

b

2
ks, (4.133)

= −2nπ +
√

2b ks. (4.134)

If this is substituted into the q(s) given by (4.79) we get

q(s) = −bk cos(
√

2b ks) − 2b cos2(
√

2b ks) + b. (4.135)

For k ≫ b, this behaves like

q(s) = −bk cos(
√

2b ks). (4.136)
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Now substituting (4.136) into the Jacobi equation (4.128) and setting u(0) = 0

and u′(0) = 1 and solving gives the solution

u(s) =
2√
b k

MathieuS

(

0,
1

−k ,
√
b

2
ks

)

, (4.137)

where

MathieuS

(

0,
−1

k
,

√
b

2
ks

)

(4.138)

is the odd solution to the Mathieu equation

y′′(x) + (a− q cos(2x)) y = 0 (4.139)

with a = 0 and q = − 1
k
. This solution u(s) oscillates and crosses the s-axis

many times so, for k sufficiently large in relation to b, the Jacobi equation has

conjugate points so the ψ1 solution is unstable.

4.3 Conclusions

In this chapter, the stability of the five solutions to the equations arising from

considering smectic C domain walls in a cylindrical geometry, found by Atkin

and Stewart (4.29)-(4.33), has been analysed. This analysis began by looking at

the Rayleigh–Ritz method for finding eigenvalues. This found that, for specific

values of k and b, the ψ2, ψ3, ψ4 and ψ5 solutions were stable but it was unable

to determine whether or not the ψ1 case was stable.

The second variation of the problem was then considered. The solutions

automatically satisfied the Euler–Lagrange equations and the strengthened Leg-

endre condition was satisfied so only the Jacobi condition was left to be satisfied

to guarantee stability. The functional (3.15) with P (s) and Q(s) given by (4.84)

had a positive definite integrand for ψ2 meaning that there were no conjugate

points and so the strengthened Jacobi condition was satisfied and the solution

was stable. The positivity criterion from section 3.4 was used to prove that the
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ψ3, ψ4 and ψ5 solutions were also stable with no restrictions on the values of a

and b.

The ψ1 case proved to be more complicated. The Jacobi equation (4.128)

was used to prove that, for k sufficiently large and negative, the ψ1 solution is

unstable. Unfortunately, the case for k approaching −1 from below could not

be tackled in the same way. This means that there is still more work to be done

on this solution to determine whether or not it is unstable for all b > 0 and all

k < −1.

The same governing equation (4.28) would arise if an electric field was applied

to an infinite sample of planar layers of smectic C liquid crystals. Instead of a

magnetic energy, there would be an electric energy, and the bulk energy would

differ, but equation (4.27) still comes out as the governing equilibrium equation.

This means the same analysis of the phase diagrams could be done and we would

have the same solutions, with different a and b values. These bulk and electric

energies are given by Atkin and Stewart in [36]. This will be considered in the

following chapter.
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5 Smectic C Domain Walls in Planar Layers

As mentioned in the previous chapter, the equation (4.27) occurs if an electric

field was applied to an infinite sample of planar layers of smectic C liquid crystals.

In this chapter new solutions will be found to this equation and the stability

of these will be briefly considered for the case which may occur within this set

up where the term b is negative. Here, no influence of the director on the field

was taken into account, as is normal practice in the first approaches to specific

liquid crystal problems.

Suppose that an electric field is applied to a sample at an angle α where α

is the angle between the electric field and the plane of the layers, and the x-axis

is chosen such that the electric field is in the (x, z)-plane, and

0 < α <
π

2
. (5.1)

If the layers are parallel to the xy plane and the layer normal is parallel to the

z axis then the vectors a and c are given by

a = (0, 0, 1) (5.2)

and

c = (cosφ(z) , sinφ(z) , 0) , (5.3)

and the electric field is given by

E = E0 (cosα , 0, sinα ) , (5.4)

where E0 is the strength of the electric field. The set up is shown below in

Fig. 21.

From [36], the bulk and electric energies for this problem are given by

wb =
1

2
B3 [φ′(z)]

2
(5.5)
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a

E

c

n

Figure 21: A physical representation of the geometry of the problem.

and

we = − 1

2
ǫ0ǫaE

2
0 (n · E)2 (5.6)

= − 1

2
ǫ0ǫaE

2
0 (sinα cos θ + cosα sin θ cosφ)2 (5.7)

respectively, where ǫ0 is the permittivity of free space (and ǫ0 > 0) and ǫa is the

dielectric anisotropy of the liquid crystal and n is given by

n = (cosφ sin θ , sinφ sin θ , cos θ) . (5.8)

As before, the governing equilibrium equation reduces to (4.27), namely

d2ψ

ds2
= a sinψ − b sin 2ψ , (5.9)

but, from [36], the values of a and b are now given by

a =
1

B3

(

ǫ0ǫaE
2
0 sinα cosα sin θ cos θ

)

(5.10)

and

b = − 1

2B3

(

ǫ0ǫaE
2
0 cos2 α sin2 θ

)

. (5.11)

This means that if ǫa > 0 then a > 0 but b < 0 (and so k > 0), whereas with

the cylindrical case b > 0.

The phase portraits for the b < 0 case can be seen below in Fig. 22 where k

is defined as before in (4.36). Comparing these with Fig. 17, the phase portraits
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for the b > 0 case, it can be seen that the phase portrait for b = 1 with k = −2

is the same as b = −1 with k = 2 and similarly b = 1 with k = 2 is the same as

b = −1 with k = −2. However, the phase portraits for b = 1 with k = 1
2

and is

different from those for b = −1 with k = −1
2

and k = 1
2
. The phase portrait for

k = −1
2

will be looked at in more detail.

(a)

(b)

(c)

(d)

Figure 22: These are the phase portraits for (a) k < −1, (b) −1 < k < 0, (c)
0 < k < 1 and (d) k > 1.

From the types of solutions shown on the phase portrait, it is physcially

reasonable for us to expect the homoclinic and heteroclinic orbits to be related
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to travelling waves. We expect the periodic phase portraits to be energetically

unfavourable.

5.1 Solutions

From above, it is known that

dψ

ds
= ±

√

b cos 2ψ − 2a cosψ + c (5.12)

and taking the positive square root for convenience, gives

dψ

ds
=
√

2b cos2 ψ + 4bk cosψ + c− b , (5.13)

where c is an arbitrary constant. This leads to the equation
∫

dψ
√

2b cos2 ψ + 4bk cosψ + c− b
=

∫

ds . (5.14)

The following substitutions can be made to the left hand side of the equation

cosψ =
1 − t2

1 + t2
(5.15)

and
dψ

dt
=

2

1 + t2
(5.16)

where

t = tan

(

ψ

2

)

. (5.17)

After this substitution the equation becomes
∫

2 dt
√

t4(b+ c− 4bk) + t2(−6b+ 2c) + (b+ c+ 4bk)
=

∫

ds (5.18)

∫

2 dt√
t4a1 + t2b1 + c1

=

∫

ds (5.19)

where

a1 = b+ c− 4bk (5.20)

b1 = −6b+ 2c (5.21)

and c1 = b+ c+ 4bk . (5.22)
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This is the full solution for the problem. The value of c can be chosen to find

specific solutions as it is this value which dictates where the solution starts in

the phase portrait.

From (5.19), a1 can be taken outside the left hand side integral to give

∫

2 dt√
t4a1 + t2b1 + c1

=
1√
a1

∫

2 dt
√

t4 + t2 b1
a1

+ c1
a1

(5.23)

If the substitution

x = t2 with dt =
dx

2
√
x

(5.24)

is made then (5.19) becomes

1√
a1

∫

dx
√

x3 + x2
b1
a1

+ x
c1
a1

=

∫

ds (5.25)

1√
a1

∫

dx
√

x(x−A)(x− B)
=

∫

ds (5.26)

where

A =
−b1
2a1

+
1

2

√

b21
a2

1

− 4
c1
a1

=
3b− c

b+ c− 4bk
+

1

2(b+ c− 4bk)

√

(−6b+ 2c)2 − 4(b+ c+ 4bk)(b+ c− 4bk)

=
3b− c

b+ c− 4bk
+

2
√

2

(b+ c− 4bk)

√
b2 − bc + 2b2k2 , (5.27)

and similarly

B =
3b− c

b+ c− 4bk
− 2

√
2

(b+ c− 4bk)

√
b2 − bc + 2b2k2 . (5.28)

The denominator in 5.26 has three roots, namely 0, A andB. From Gradstein

and Ryshik [37], the integral

∫

dx
√

x(x− A)(x− B)
(5.29)

depends on the relative sizes of the roots, r1, r2 and r3. If the roots are ordered

in size such that r1 > r2 > r3 (where r1, r2 and r3 are either 0, A or B) then
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there are 8 different possible solutions depending on where the variable u (the

solution, in this case) lies. Here only one of these solutions is explained in detail.

For the remaining seven solutions, please see the Appendix A.

Case 1: r1 > r2 > r3 ≥ u

If it is the case that all three roots are greater than u or the final root is equal

to u then the integral gives a solution of the form of

∫ u

−∞

dx
√

(r1 − x)(r2 − x)(r3 − x)
=

2√
r1 − r3

F (α, p) (5.30)

where

α = arcsin

(
√

r1 − r3
r1 − u

)

(5.31)

and

p =

√

r1 − r2
r1 − r3

. (5.32)

The function F is the elliptic integral of the first kind (from [37]) which is

F (ϕ, k) =

∫ ϕ

0

dα
√

1 − k2 sin2 α

=

∫ sinϕ

0

dx
√

(1 − x2)(1 − k2x2)
. (5.33)

For this scenario, the full equation becomes

2√
r1 − r3

F

(

arcsin

(
√

r1 − r3
r1 − u

)

,

√

r1 − r2
r1 − r3

)

=
√
a1 s

⇒ F

(

arcsin

(
√

r1 − r3
r1 − u

)

,

√

r1 − r2
r1 − r3

)

=

√
r1 − r3

2

√
a1 s . (5.34)

This solution has to be rearranged in terms of u. To do this, the inverse of the

elliptic function has to be taken. From Gradstein and Ryshik [37], the inverse

of the elliptic function F (ϕ, k) is the amplitude function, so that

am(F (ϕ, k), k) = ϕ . (5.35)
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The amplitude function can be is represented by a power series as

amu = u− k2

3!
u3 +

k2(4 + k2)

5!
u5 − k2(16 + 44k2 + k4)

7!
u7

+
k2(64 + 912k2 + 408k4 + k6)

9!
u9 − ... (5.36)

for

|u| < |K′| (5.37)

where u has a period of 4K′i where K is the elliptic integral with K
(√

1 − k2
)

=

K′ = K(k′).

Applying the amplitude function to both sides, (5.34) becomes

arcsin

(
√

r1 − r3
r1 − u

)

= am

(√
r1 − r3

2

√
a1 s,

√

r1 − r2
r1 − r3

)

(5.38)

Rearranging this for u gives

u = r1 − (r1 − r3) csc2

(

am

(√
r1 − r3

2

√
a1 s ,

√

r1 − r2
r1 − r3

))

(5.39)

The variable u here is a dummy for t2 so

t2 = r1 − (r1 − r3) csc2

(

am

(√
r1 − r3

2
s ,

√

r1 − r2
r1 − r3

))

(5.40)

tan2 ψ

2
= r1 − (r1 − r3) csc2

(

am

(√
r1 − r3

2

√
a1 s ,

√

r1 − r2
r1 − r3

))

(5.41)

so rearranging this for ψ gives

ψ = 2 arctan





√

r1 − (r1 − r3) csc2

(

am

(√
r1 − r3

2

√
a1 s ,

√

r1 − r2
r1 − r3

))



 .(5.42)

This is the solution for the differential equation when tan2 ψ
2

is less than or equal

to the lowest of the roots 0, A and B.

5.2 Specific solutions

If k is chosen to be 1
2

and b to be −1, all the solutions within the phase plane can

be found. There are five qualitativly different solutions. These are shown below
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in Fig. 23 where one of each type of solution has been coloured differently to

allow easy distinction between them. Starting from the top most solution and

working towards zero, the first two solutions are 2π periodic with the second

one being a separatrix. The third solution is a heteroclinic orbit, the fourth is a

homoclinic orbit and the fifth is periodic.

Figure 23: These are the phase portraits for k =
1

2
with b = −1.

Starting from the outside of the phase portrait and working towards the ψ

axis, the first solution (which has been plotted in green) is given by

ψ1(s) = 2 arctan

(
√

17(J1(s)
2 − 1)

(4
√

2 − 7)J1(s)2 + 7 + 4
√

2

)

(5.43)

where

J1(s) = am

(

1

4
i

√

7 + 4
√

2 s ,

√
17

7 + 4
√

2

)

. (5.44)
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The khaki coloured solution is given by

ψ2(s) = 2 arctan (cosh(s)) . (5.45)

This solution, in general terms is given by

ψ2(s) = 2 arctan
(

cosh(
√
−b s)

)

(5.46)

and only occurs when k = 1
2
.

The next solution to be considered is the pink one. This is given by

ψ3(s) = 2 arctan





√

8
√

2 − (5 + 4
√

2)J3(s)
2

J3(s)2



 (5.47)

where

J3(s) = am

(

2
1

4 s ,
2

1

4

4

√

5 + 4
√

2

)

. (5.48)

The fourth type of solution within the phase plane is the homoclinic orbit

shown in blue. This solution is given by

ψ4(s) = 2 arctan

(

√
3

√

1

cosh2
(√

3 s
)

− 1
.

)

(5.49)

The final type of solution within this phase plane is the orbit shown in brown.

This is given by

ψ5(s) = 2 arctan

(

√

7 + 2
√

11s

√

1 − J5(s)
2

J5(s)2

)

(5.50)

with

J5(s) = sn

(

1

2

√

7 + 2
√

11 s ,
√

2 i

)

. (5.51)

5.3 Stability of the solutions

The stability of each of the five solutions above will be considered in turn. The

analysis of the second variation is the same for the planar case as it is for the
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cylindrical case so the q function is the same as previously, given by (4.92),

namely

q(x) = −bk cosψi − 2b cos2 ψi + b . (5.52)

All five of the solutions were first of all considered using the Rayleigh–Ritz

stability method over the range of s = 0 to s = 1. For this range of s the

solutions were all found to be stable. However, this changed as the interval was

increased and the stability results from this for ψ1(s), ψ3(s) and ψ5(s) changed

over a short range s = 0 to s = π.

To consider the stability further, the second variation along with the posi-

tivity criterion from Section 3.4 was considered as in the previous chapter. This

requires that
∫ xcb

0

|q−(x)|dx ≤ 2

xc
, (5.53)

where xc is the point where q(x) cuts the x axis. For ψ1(s), ψ3(s) and ψ5(s)

the q(ψ(s)) function crossed the axis multiple times, so the positivity criterion

failed. However, for the other two solutions the graph had the same qualitative

behaviour as the stable solutions from the preceeding chapter. In the case of

ψ4(s) the positivity criterion held, and so we have stability for this solution.

However, the positivity criterion failed for the ψ2(s) case. In this case the

negative area was only slightly greater than required for stability. It is probable

that the solution is stable but further analysis is required.

The next step which should be followed is to look at the Jacobi equation

for the remaining four solutions to determine if there are any conjugate points

within the second variation. As noted before, if a conjugate point arises then we

have instability. This would be the next step but unfortunately time constraints

have no allowed us to complete the story with these solutions.
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5.4 Conclusions

Within this chapter we have found five new solutions to the differential equation

(4.27). The stability of these five solutions was considered using the Rayleigh–

Ritz method, and the positivity criterion due to Gartland [24] was used to try

to determine whether or not the integrand of the second variation was positive

definite. The only case which was conclusively found to be stable was the case

for ψ4(s), further analysis on the other cases is needed.

The work in this and the preceding chapter may have implications for ex-

perimentalists. From [36], the motivation for this work is that it is hoped that

the solutions may lead to experiments which can determine the unknown elastic

constants Aij as there is very little experimental data on these constants.
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6 Fluctuations of a Thin Nematic Film

Dewetting is the term used to describe when a thin fluid ruptures on a substrate

to create droplets. The opposite of this, when the thin film spreads out, is

called wetting. Wetting is important for many applications including coating

and lubrication and dewetting is unwanted as it ruins the thin film applied. The

dewetting may occur because of dust on the substrate or defects within it or it

may be caused by fluctuations of the free surface. Dewetting caused by these

fluctuations is called spinodal dewetting.

The problem of nematic liquid crystal dewetting was looked at in [38] by

Vandenbrouck et al. with a linear director profile with a fixed director angle

at the surface to find out more information about when dewetting occurs. The

work in that paper is covered within the following work but is done in a more

rigorous mathematical fashion. Some of the approximations and simplifications

are then removed which allows comparisons between the methods, and finally

the director angle is given more freedom to see what can be achieved.

In this chapter, the problem being considered is a thin film of nematic liquid

crystal of a depth h0 which has its surface perturbed. Using the resultant equa-

tions, the velocities in the x and z directions can be obtained, and from these

the stability of the film can be assessed as to whether or not the film will dewet

(stability or instability).

This chapter begins with a review of the work carried out by Vandenbrouck et

al. [38] and then the problem is developed further by introducing non-isotropic

viscosities. The chapter concludes by considering the model with different liquid

crystal materials to see which materials it is valid for, and which ones it is not.
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6.1 Physical setup

The original undisturbed level of the surface is h0 and this is perturbed to give

a free surface described by

h(x, t) = h0 + ξ0(t) sin(qx) , (6.1)

where q is the wave vector of the fluctuation caused by the perturbation and it

is assumed that ξ0 ≪ h0. This is illustrated below in Fig. 24.

z

x

h

h(x,t)=h + (t)sin(qx)

0

00

Figure 24: The set up of the problem.

It is assumed that the director has a linear profile in z where the director

angle is 0 at z = 0 and θ, a fixed constant, at z = h(x, t), the surface of the

thin film given by (6.1), as shown in Fig. 25. This means that the angle of the

director is given by

f(x, z, t) =
θ

h(x, t)
z , (6.2)

where h(x, t) is given by (6.1).

The director for the sample of liquid crystal is

n = (cos(f(x, z, t)), 0, sin(f(x, z, t))) (6.3)

where f(x, z, t) is assumed to be small. This means that the director for this

problem is given by

n ≈ (1, 0, f(x, z, t)) . (6.4)
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z=0

z=h

z

x

n

n

Figure 25: The director has a linear profile in z from θ0 = 0 at z = 0 to θ1 = θ at
z = h.

The free-energy functional fit to describe the equilibrium properties of the

fluid can now be constructed from the nematic energy (2.12) and the dispersion

potential for a wetting liquid [39]. From (2.12)

wF =
1

2
K

(

(

∂f

∂x

)2

+

(

∂f

∂z

)2
)

+
A

6πh3
. (6.5)

The lubrication approximation that the length scale in the x direction is much

greater than in the z direction will be assumed so the x derivative can be ignored

and so

wF =
1

2
K

(

∂f

∂z

)2

+
A

6πh3
(6.6)

=
1

2

Kθ2

h2
+

A

6πh3
. (6.7)

The free surface energy density of the problem is given by

F (h) =

∫

wFdh (6.8)

=
1

2

Kθ2

h
− A

12πh2
+ C (6.9)

where the constant term would contain the surface tensions between the solid

boundary and the liquid crystal film and the surface tension between the air and

the film. This means that the free energy per unit surface can be written as

F (h) = γsl + γlv +
1

2

Kθ2

h
− A

12πh2
(6.10)
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where γsl is the surface tension between the solid and the liquid and γlv is the

surface tension between the liquid and air.

This problem is only considered in 2D so there are only velocities in the x

and z direction, so

v = (u(x, z, t), 0, v(x, z, t)) . (6.11)

These will be found from the equations for the problem.

The fluid is assumed to be incompressible and it is also a requirement that

mass is conserved, so it is required that

∇ · v = 0 i.e., ux + vz = 0 . (6.12)

6.2 Isotropic viscosity

If the assumption is made that the viscosity of the liquid crystal is isotropic then

the equations to be solved become a lot simpler. For an isotropic viscosity it is

assumed that the dynamic viscosity is given by

η = η3 =
1

2
α4 (6.13)

while

αi = 0 for i 6= 4 . (6.14)

Using this assumption, the t̃ij term in the Ericksen–Leslie equations simply

becomes

t̃ij = η (vi,ii + vi,jj) (6.15)

which means that they are reduced to the Navier–Stokes equations.

6.2.1 Navier–Stokes equation

The Navier–Stokes equations, from [40], are

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v + g (6.16)

∇ · v = 0 (6.17)
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where ν is the viscosity and ∇2 is the Laplace operator.

For this problem, the left hand side of (6.16) is assumed to be 0 and the

gravity term g is neglected so these become Stokes equations. The p term in

(6.16) is replaced by p̃ which is

p̃ = p + wF , (6.18)

where wF is as before.

The viscosity being used is the dynamic viscosity so ν =
η

ρ
and eq. (6.16)

becomes

−p̃,i + t̃ij,j = 0 (6.19)

where

t̃ij = η(vi,ii + vi,jj) . (6.20)

So the governing Stokes equations for this problem are

−p̃x + η (uxx + uzz) = 0 , (6.21)

−p̃z + η (vxx + vzz) = 0 , (6.22)

and ux + vz = 0 , (6.23)

where the third equation (6.23) is the incompressibility condition.

These equations can be non-dimensionalised by setting

x = Lx̂ z = Mẑ p̃ = P p̂ (6.24)

u = Uû v = V v̂ .

The lubrication approximation [40] is assumed which means that the length scale

in the x direction is much greater than it is in the z direction, so

∣

∣

∣

∣

M

L

∣

∣

∣

∣

≪ 1 (6.25)
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and eq. (6.23) becomes

U

L

∂û

∂x̂
+
V

M

∂v̂

∂ẑ
= 0 . (6.26)

This means that

V =
M

L
U (6.27)

is a scale relation to give the normalised relation

∂û

∂x̂
+
∂v̂

∂ẑ
= 0 . (6.28)

If the scalings from (6.24) are substituted into eq. (6.21), they give

−P
L

∂p̂

∂x̂
+ η

[

U

L2

∂2û

∂x̂2
+

U

M2

∂2û

∂ẑ2

]

= 0 (6.29)

⇒ −P
L

∂p̂

∂x̂
+ η

U

M2

[

M2

L2

∂2û

∂x̂2
+
∂2û

∂ẑ2

]

= 0 (6.30)

⇒ −P
L

∂p̂

∂x̂
+ η

U

M2

[

∂2û

∂ẑ2
+ O

(

(

M

L

)2
)]

= 0 (6.31)

⇒ −P
L

∂p̂

∂x̂
+ η

U

M2

∂2û

∂ẑ2
= 0 (6.32)

from the assumption (6.25) above. This suggests that the scale P should be

P = η
UL

M2
. (6.33)

If (6.33) is now inserted into eq. (6.22) along with (6.24) eq. (6.22) becomes

−UL
M3

∂p̂

∂ẑ
+ η

[

V

L2

∂2v̂

∂x̂2
+

V

M2

∂2v̂

∂ẑ2

]

= 0 . (6.34)

The scaling for V is known from (6.27) so this becomes

UL

M3

∂p̂

∂ẑ
+ η

[

MU

L3

∂2v̂

∂x̂2
+

U

ML

∂2v̂

∂ẑ2

]

= 0 + O

(

(

M

L

)2
)

, (6.35)

which becomes

−∂p̂
∂ẑ

+ O

(

(

M

L

)2
)

= 0 (6.36)

⇒ −∂p̂
∂ẑ

≈ 0 (6.37)
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by (6.25) above. This means that p̃ = p+ wF in the lubrication approximation

is not a function of z so

p = p(x, t) (6.38)

in the original variables, and wF is already known not to be a function of z.

6.2.2 Laplace’s formula

To find the pressure for this problem, Laplace’s formula has to be considered.

From Landau and Lifshitz [41], Laplace’s formula says that the surface pressure

between two different fluids is given by

p1 − p2 = α

(

1

R1
+

1

R2

)

(6.39)

where R1 and R2 are the radii of curvature of the surface and α is the surface

tension between the two media. For h(x, y) sufficiently small,

1

R1
+

1

R2
= −

(

∂2h

∂x2
+
∂2h

∂y2

)

(6.40)

so the change in pressure is given by

p1 − p2 = α

(

∂2h

∂x2
+
∂2h

∂y2

)

. (6.41)

For this problem, α is replaced by γlv, the surface tension between the solid

and liquid, and h(x, y) = h(x), so with h(x) given by (6.1) the pressure is given

by

p(x, t) = p0 − γlv

(

∂2h

∂x2

)

(6.42)

= p0 + γlvξ0(t)q
2 sin(qx) . (6.43)

6.2.3 Surface conditions

There are two surface conditions which all fluids must satisfy. These are the

Kelvin condition and the continuity of the velocity across a boundary.
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The Kelvin condition states that the surface of the fluid that is described by

F (x, y, z, t) = 0 (6.44)

must always satisfy
DF

Dt
= 0 , (6.45)

from [42] and [43, p. 7]. In this case, the surface is described by

F (x, z, t) = z − h(x, t) . (6.46)

The normal and tangential components of the velocity must be continuous

also from Batchelor [42]. The difference in the stress on surface elements parallel

to the boundary and on either side of it is a normal force due wholly to surface

tension so the full stress tensor is needed to look at the condition. Also, from

Landau and Lifshitz [41] (p233/4 and 7) for the dynamic equation

nkσ2,ik − nkσ1,ik = α

(

1

R1

+
1

R2

)

ni (6.47)

which, also along the tangent τ , gives

nkσ2,ikτi = nkσ1,ikτi (6.48)

and

nkσ2,ikτi − nkσ1,ikτi = α

(

1

R1

+
1

R2

)

(6.49)

where σij = −pδij + σ′
ij is the stress tensor and σ′

ij is the viscous stress tensor.

For the current problem, the Kelvin condition (6.45) gives the surface con-

dition

uz|z=h0
= 0 (6.50)

where the subscript z denotes derivative with respect to z, and the continuity

of the velocity across a boundary gives

u|z=0 = 0 (6.51)

from above, which is the standard no slip condition.



Fluctuations of a thin nematic film 89

6.2.4 Solving the equations

The two equations to be solved are

(p+ wF ),i = t̃ij,j (6.52)

and

ux + vz = 0 . (6.53)

These are the Stokes equation and the incompressibility condition. If the solu-

tion for u(x, z) is found via eq. (6.52) then v(x, z) can be found via (6.53). This

means that eq. (6.52) only needs to be considered with i = 1. From eq. (6.32),

the Navier–Stokes equation to be solved is

(p+ wF )x = ηuzz . (6.54)

From Laplace’s formula, the pressure is given by eq. (6.43) and we know from

the formulation of the problem that

(p+ wF )x = γlvξ0(t)q
3 cos(qx) +

Kθ2

h(x, t)3

dh

dx
− A

2πh(x, t)4

dh

dx
(6.55)

= γlvξ0(t)q
3 cos(qx) + Kθ2 ξ0(t)q cos(qx)

(h0 + ξ0(t) sin(qx))3

− A

2π

ξ0(t)q cos(qx)

(h0 + ξ0(t) sin(qx))4 (6.56)

but since ξ0(t) ≪ h0 this is approximated by

(p+ wF )x = γlvξ0(t)q
3 cos(qx) +

Kθ2

h3
0

ξ0(t)q cos(qx)

− A

2πh4
0

ξ0(t)q cos(qx) (6.57)

= ξ0(t)q cos(qx)

(

γlvq
2 +

Kθ2

h3
0

− A

2πh4
0

)

(6.58)

= f(x, t) . (6.59)

This means that (6.54) becomes

ηuzz = f(x, t) . (6.60)
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This can be integrated once with respect to z to get

ηuz = f(x, t)z + c1 , (6.61)

where c1 can be found by applying the boundary condition given by (6.50) which

gives c1 such that

ηuz = f(x, t) (z − h0) . (6.62)

Eq. (6.62) can be integrating again to find the velocity in the x direction, u(x, z),

as

u(x, z, t) =
f(x)

η

(

z2

2
− h0z

)

(6.63)

=
ξ0(t)h0

2η
α(q)

(

z

h0
− 2

)

qz cos(qx) (6.64)

after applying the second boundary condition (6.51), where

α(q) =

(

γlvq
2 +

Kθ2

h3
0

− A

2πh4
0

)

. (6.65)

Since u(x, z, t) is now know, v(x, z, t) can easily be found via eq. (6.53). The

velocity in the z direction is found to be

v(x, z, t) =
ξ0(t)h0

6η
α(q)

(

z

h0
− 3

)

(qz)2 sin(qx) + c3 . (6.66)

There is no slip on the lower boundary of the liquid crystal film so

v(x, 0, t) = 0 (6.67)

which means c3 = 0 so the final expression for the velocity in the z direction is

v(x, z, t) =
ξ0h0

6η
α(q)

(

z

h0
− 3

)

(qz)2 sin(qx) , (6.68)

with α(q) given by (6.65).
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6.2.5 Fluctuations

The boundary condition at the free interface is

∂h

∂t
= v|z=h0

(6.69)

since there is no z component of velocity on the surface. This gives us

dξ0
dt

sin(qx) =
−2ξ0h

3
0

6η
α(q)q2 sin(qx) (6.70)

⇒ dξ0
dt

+ s(q)ξ0 = 0 (6.71)

where

s(q) =
h3

0

3η
q2α(q) . (6.72)

The fluctuations will grow exponentially if s(q) < 0 and will decay exponentially

if s(q) > 0. The spinodal dewetting of a nematic film may be initiated for long

wavelength fluctuations (i.e., q → 0) and if the Hamaker constant is positive. If

this is the case the term in α(q)

Kθ2

h3
0

− A

2πh4
0

(6.73)

is negative, i.e., h0 < h∗ where h∗ is found by setting h0 = h∗ in (6.73) and

setting (6.73) equal to zero. This gives

h∗ =
A

2πKθ2
. (6.74)

If we define an effective Hamaker constant, Aeff , as

Aeff = A

(

1 − h0

h∗

)

(6.75)

then instability will develop if Aeff < 0.

The critical wave vector, qc, below which fluctuations grow and lead to the

rupture of the film can now be expressed as a function of Aeff . If we look at

α(qc) = 0 and rearrange we get

qc =

√

Aeff
2πγlvh4

0

(6.76)
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where the positive square root is used since q > 0 physically.

To find the fastest growing mode we have to look at the minimum of s(q).

The function s(q) can be restated as

s(q) =
h3

0

3η
γlv
[

q4 − q2
cq

2
]

(6.77)

so

s′(q) =
h3

0

3η
γlv
[

4q3 − 2qq2
c

]

. (6.78)

There are three solutions to s′(q)=0. Of these three solutions, the minimum oc-

curs when s′(qm) = 0 and s′′(qm) = 0. This qm is the wave vector corresponding

to the fastest growing mode and is found to be

qm =
1√
2
qc . (6.79)

The fastest growing mode is then given by

λm =
2π

qm
(6.80)

=

√

16π3γlvh
4
0

Aeff
. (6.81)

A solution to the differential equation (6.71) would be of the form

ξ0(t) = Ae−s(q)t (6.82)

so we can find an associated time constant by considering −s(q). The associated

time constant for the fastest growing mode would be given by

1

τ
= −s(qm) (6.83)

which gives us

τ =
48π2h5

0ηγlv
A2
eff

. (6.84)
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6.2.6 Typical values

If the thin nematic film is a 30nm thick film of 5CB and η = 0.01Pa s with

Aeff = 10−20 J and the surface tension between air and the liquid crystal being

γlv = 30 mN m−1 then the fastest growing mode corresponds to

λm ≈ 34.7µm , (6.85)

and

τ ≈ 34.5 s . (6.86)

At 25◦C, a 20nm thick film of 5CB does not dewet but a 17nm thick film

does. This means that 20nm can be taken as an approximate value for h∗ and

the angle θ at the surface can be calculated. If K = 10−11 N and A = 10−20 J

then θ comes out to be approximately 0.089 radians.

6.3 Thin film with Leslie viscosities

The isotropic dynamic viscosity, η, can be replaced with the full viscosity for

liquid crystals by using

t̃ij = α1nkAkpnpninj + α2Ninj + α3niNj +

α4Aij + α5njAiknk + α6niAjknk (6.87)

where

Aij =
1

2
(vi,j + vj,i) (6.88)

and

Ni = ṅi −Wijnj where Wij =
1

2
(vi,j − vj,i) . (6.89)

For this problem, the director would be

n = (1, 0, f(x, z, t)) (6.90)

where f(x, z, t) is given by (6.2).
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6.3.1 Ericksen-Leslie equations

The equation for linear momentum from the Ericksen–Leslie equations is given

by

ρv̇i = ρFi − (p+ wF ),i + g̃jnj,i +Gjnj,i + t̃ij,j (6.91)

from section 2.2.4, where wF here represents eP (h). For this problem, there is

no external body force, no generalised body force, the material time derivative

of the velocity is ignored and g̃ = 0 so the linear momentum equation becomes

(p+ wF ),i = t̃ij,j . (6.92)

From the lubrication approximation, the linear momentum equation for i = 1 is

(p+ wF ),1 = t̃13,3 (6.93)

and the equation for i = 3 gives

(p+ wF ),3 = t̃33,3 (6.94)

0 = t̃33,3. (6.95)

Since we have the condition

uz + vx = 0 , (6.96)

only the i = 1 case has to be considered as this will give u(x, z), and v(x, z) can

be found by 6.96.

For this problem, the non-zero components of the matrix A, given by (2.21),

which is used in t̃ij are

A11 =
∂u

∂x
A33 =

∂v

∂z
(6.97)

A13 = A31 =
1

2

(

∂u

∂z
+
∂v

∂x

)

(6.98)
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but since the lubrication approximation is being assumed, the terms involving

v are discarded along with any x derivatives leaving

A13 = A31 =
1

2

∂u

∂z
. (6.99)

For the same reasons, the only non-zero components of the matrix W , (2.23) are

W13 = −W31 =
1

2

∂u

∂z
. (6.100)

The terms in Ni are

N1 = −1

2

∂u

∂z
f(x, z, t) , (6.101)

N2 = 0 , (6.102)

N3 =
1

2

∂u

∂z
. (6.103)

This means that t̃13 is given by

t̃13 = α1 [A13n3 + n3A31]n3 + α2N1n3

+ α3N3 + α4A13 + α5n3A13n3 + α6A21 (6.104)

= α1

[

∂u

∂z
f(x, z, t)

]

f(x, z, t) − α2
1

2

∂u

∂z
f 2(x, z, t) + α3

1

2

∂u

∂z

+ α4
1

2

∂u

∂z
+ α5

1

2

∂u

∂z
f 2(x, z, t) + α6

1

2

∂u

∂z
, (6.105)

but since

f(x, z, t) =
θ

h
z (6.106)

and θ is assumed small, this becomes

t̃13 =
1

2

∂u

∂z
(α3 + α4 + α6) (6.107)

= η1
∂u

∂z
, (6.108)

where η1 is a Miesowicz viscosity. Differentiating this with respect to z then

gives

t̃13,3 = η1
∂2u

∂z2
. (6.109)
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The p+ wF term is given by

p+ wF = p0 + γlvξ0(t)q
2 sin(qx) − 1

2

Kθ2

h2
+

A

6πh3
, (6.110)

from (6.43) and (??). This gives

(p+ wF ),1 = γlvξ0(t)q
3 cos(qx) +

Kθ2

h3

∂h

∂x
− A

2πh4

∂h

∂x
(6.111)

= γlvξ0(t)q
3 cos(qx) +

Kθ2

h3
0

ξ0(t)q cos(qx)

− A

2πh4
0

ξ0(t)q cos(qx) , (6.112)

since ξ0 ≪ h0 and h(x, t) is given by (6.1). This can be tidied up to give

(p+ wF ),1 = ξ0(t)q cos(qx)

[

γlvq
2 +

Kθ2

h3
0

− A

2πh4
0

]

(6.113)

= ξ0(t)q cos(qx)α(q) (6.114)

where

α(q) = γlvq
2 +

Kθ2

h3
0

− A

2πh4
0

(6.115)

for convenience.

This means that the Ericksen–Leslie linear momentum equation for i = 1

becomes

(p+ wF ),1 = t̃13,3 (6.116)

∂2u

∂z2
=

1

η1
ξ0(t)q cos(qx)α(q) . (6.117)

This can easily be integrated twice with respect to z, using the boundary con-

ditions

η1

(

∂u

∂z

)

z=h0

= 0 and u(x, 0) = 0 (6.118)

to give

u(x, z, t) =
ξ0(t)h0

2η1

α(q)

(

z

h0

− 2

)

qz cos(qx) , (6.119)

which is the same as the velocity in the x direction for the isotropic viscosity

assumption except η = η3 has been replaced with η1.
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Similarly, the velocity in the z direction is given by

v(x, z, t) =
ξ0(t)h0

6η1
α(q)

(

z

h0
− 3

)

(qz)2 sin(qx) . (6.120)

6.3.2 Fluctuations

When the same analysis is applied as was done for the isotropic viscosity in

Section 6.2.5, it is found that all the analysis of the equations and the fluctuation

carry through as before but η is replaced by η1. The value of θ which was used

is still the value of θ here because the equation used to find θ did not use the

viscosity.

To find the fastest growing mode and the time constant for 5CB at 25◦C as

before, the value of η1 is needed. It has to be calculated, and this requires the

values of the Leslie viscosities. These are given in the table below for 5CB at

25◦C from [6].

αi Viscosity (Pa s)
α1 -0.0060
α2 -0.0812
α3 -0.0036
α4 0.0652
α5 0.0640
α6 -0.0208

For these values, η1 = 0.0408 Pa s. With this η1 and with the h0, γlv and Aeff

values the same as before, the fastest growing mode and the time constant come

out to be

λm ≈ 34.7µm , (6.121)

since the η value does not come into the equation for λm, and

τ ≈ 140.9, (6.122)

respectively. This value of τ is almost 4 times higher than the previous value.
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6.4 Leslie viscosities with more director freedom

The next logical progression in the problem was to remove the approximation

on f(x, z, t) that it was small so that the director is now represented by

n = (cos(f(x, z, t)) , 0 , sin(f(x, z, t))) . (6.123)

6.4.1 Ericksen-Leslie equations

As before, the only non-zero components of the matrix A, given by (2.21), after

applying the lubrication approximation are

A13 = A31 =
1

2

∂u

∂z
, (6.124)

and the only non-zero components of the matrix W , (2.23) are

W13 = −W31 =
1

2

∂u

∂z
. (6.125)

For this different director, the Ni terms change. They are now

N1 = −1

2

∂u

∂z
sin f(x, z, t) , (6.126)

N2 = 0 , (6.127)

N3 =
1

2

∂u

∂z
cos f(x, z, t) . (6.128)

The t̃13 term is now

t̃13 = α1 [cos(f)A13 sin(f) + sin(f)A31 cos(f)] sin(f) cos(f)

+ α2N1 sin(f) + α3 cos(f)N3 + α4A13 +

+ α5 sin(f)A13 sin(f) + α6 cos(f)A31 cos(f) . (6.129)

After inserting the values of A13, A31 and Ni simplifying, this becomes

t̃13 =
∂u

∂z

[

1

4
α1 sin2(2f) − γ2 sin2(f) + η1

]

(6.130)

=
∂u

∂z
Υ(x, z, t) . (6.131)
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The (p + wF ),1 term is the same as before, so it is only a function of x and t.

The Ericksen–Leslie linear momentum equation for this problem is
(

∂u

∂z
Υ(x, z, t)

)

z

= (p+ wF )x , (6.132)

where the subscripts denote differentiation with respect to that variable. Since

the right hand side of this equation is only a function of x and t, the whole

equation can be integrated with respect to z to give

∂u

∂z
Υ(x, z, t) = z(p+ wF )x + C , (6.133)

were C is an arbitrary function of x and t. From the Kelvin condition, (6.50),

the boundary condition
∂u

∂z

∣

∣

∣

∣

z=h0

= 0 (6.134)

allows C to be calculated and the resultant equation comes out to be

∂u

∂z
Υ(x, z, t) = (p+ wF )x (z − h0) . (6.135)

This means that
∂u

∂z
=

1

Υ(x, z, t)
(p+ wF )x (z − h0) . (6.136)

This equation can only be integrated numerically.

This gives the velocity in x direction to be

u(x, z, t) = ξ0(t)q cos(qx)α(q)Y (x, z, t) (6.137)

where

α(q) = γlvq
2 +

Kθ2

h3
0

− A

2πh4
0

(6.138)

as before.

From the incompressibility condition and (6.136), the velocity in the z direc-

tion can be calculated via

∂v

∂x
=

−1

Υ(x, z, t)
((p+ wF )x (z − h0) , (6.139)

=
−1

Υ(x, z, t)
ξ0(t)q cos(qx)α(q) (z − h0) . (6.140)

This integration of this equation also has to be done numerically.
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6.5 A perturbation to the known solution

If it is assumed that the Ericksen–Leslie equations are satisfied by some veloc-

ities, u1 and v1, then perturbations to these solutions can be considered. The

solutions are perturbed in x, z and t such that

u = u1 + ū exp (τt+ i (q.x)) and (6.141)

v = v1 + v̄ exp (τt+ i (q.x)) , (6.142)

where ū, v̄ ≪ 1 and where

q =





qx
0
qz



 . (6.143)

If the director is considered to be of the form

n = (1, 0, θ1) (6.144)

where

θ1 :=
θ0z

h
, (6.145)

with θ0 the same as the θ used in the previous sections, then we can also perturb

the director such that

θ = θ1 + θ̄ exp (τt+ i (q.x)) (6.146)

where θ̄ ≪ 1.

We are assuming that the height and the pressure are not perturbed.

By perturbing the u, v and θ quantities we also perturb terms in the Ericksen–

Leslie equations. The Ericksen-Leslie equations for our problem reduce to

−(p + wF ),i +g̃jnj,i + t̃ij,j = 0 (6.147)

and

(

∂wF
∂ni,j

)

,j

− ∂wF
∂ni

+ g̃i = λni , (6.148)



Fluctuations of a thin nematic film 101

so if these are perturbed via the above expressions then the perturbed terms are

t̃ij,j, g̃j , wF and nj . These are perturbed such that

t̃ij,j = tij,j + t̄ij,j , (6.149)

g̃j = gj + ḡj , (6.150)

wF = w1F + w̄F , (6.151)

nj = n1j + n̄ , (6.152)

where the first term in each is the original term and the expressions with a

bar over them indicate the associated perturbation. This means that our linear

momentum equation now becomes

0 = −(p + w1F + w̄F ),i + (gj + ḡ, j)(n1j + n̄j, i) + tij,j + t̃ij,j . (6.153)

Since the unperturbed solutions automatically satisfy the equations, we have

0 = −w̄F,i + gjn̄j,i + ḡjnj,i + t̄ij,j . (6.154)

From before, we know that

t̃ij = α1nkAkpnpninj + α2Ninj + α3niNj +

α4Aij + α5njAiknk + α6niAjknk (6.155)

but now the Aij , Ni are also perturbed. The matrix Aij is given by

A =











ux 0
1

2
(uz + vx)

0 0 0
1

2
(vx + uz) 0 vz











(6.156)

=





ux + iqxū exp(P ) 0 1
2
(uz + vx + (qzū+ qxv̄)i exp(P ))

0 0 0
1
2
(vx + uz + (qxv̄ + qzū)i exp(P )) 0 vz + iqz v̄ exp(P )





(6.157)

where

P := τt+ i (q.x) (6.158)
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for convenience.

Also,

Ni = ṅi −Wijnj (6.159)

where

Wij =
1

2
(vi,j − vj,i) (6.160)

as before, is perturbed. These result in the terms

Ni = N1i + N̄i . (6.161)

Similarly, the t̃ij terms are of the form

t̃ij = tij + t̄ij . (6.162)

If we assume that the original solutions are linearised (which they are) then

any products involving the solutions or perturbations can be neglected.

This means that our linear momentum equations are now

t̄11,1 + t̄13,3 = 0 (6.163)

t̄31,1 + t̄33,3 = 0 . (6.164)

From (2.17),

t̃ij = α1nkAkpnpninj + α2Ninj + α3niNj +

α4Aij + α5njAiknk + α6niAjknk . (6.165)

The Ni values here are

N̄1 = 0 and N̄3 = θ̄τ exp(P ) (6.166)

and the t̄ij, the perturbed term in the t̃ij , are

t̄11 = iqxū [α1 + α4 + α5 + α6] exp(P ) (6.167)

t̄13 =

[

α3θ̄τ +
1

2
(α4 + α6) (iqxv̄ + iqzū)

]

exp(P ) (6.168)

t̄31 =

[

α2θ̄τ +
1

2
(α4 + α5) (iqxv̄ + iqzū)

]

exp(P ) (6.169)

t̄33 = α4iqz v̄ exp(P ) (6.170)
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meaning that the t̄ij,j terms are

t̄11,1 = −q2
xū [α1 + α4 + α5 + α6] exp(P ) (6.171)

t̄13,3 =

[

iqzα3θ̄τ +
1

2
(α4 + α6)

(

−qxqz v̄q2
z ū
)

]

exp(P ) (6.172)

t̄31,1 =

[

iqxα2θ̄τ +
1

2
(α4 + α5)

(

−q2
xv̄ − qxqzū

)

]

exp(P ) (6.173)

t̄33,3 = −α4q
2
z v̄ exp(P ) . (6.174)

Putting these together gives us the linear momentum equations. The exp(P )

term can be cancelled out since it is in all terms so the linear momentum equation

for i = 1 is

−q2
xū [α1 + +α4 + α5 + α6] + iqzα3θ̄τ +

1

2
(α4 + α6)

(

−qxqz v̄q2
z ū
)

= 0 (6.175)

and for i = 3 we have

−α4q
2
z v̄ + iqxα2θ̄τ +

1

2
(α4 + α5)

(

−q2
xv̄ − qxqzū

)

= 0 . (6.176)

The angular momentum equation, from (2.24), is given by
(

∂wF
∂ni,j

)

,j

− ∂wF
∂ni

+ g̃i +Gi = λni . (6.177)

If we consider only the perturbed linearised equations then the equation for i = 1

is simply

ḡ1 = λ . (6.178)

The i = 3 angular momentum equation is

ḡ3 = λn3 , (6.179)

so substituting the λ value from (6.178) and linearising leaves us simply with

ḡ3 = 0 (6.180)

which is

−γ1θ̄τ −
γ2

2
(iqxv̄ + iqzū) = 0 . (6.181)
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If we take the two linear momentum equations and the angular momentum

equation and write them in matrix form we have




u1 v1 θ1
u2 v2 θ2
u3 v3 θ3









ū
v̄
θ̄



 =





0
0
0



 (6.182)

where

u1 = −q2
x (α1 + α4 + α5 + α6) −

q2
z

2
(α4 + α6) − ρτ , (6.183)

v1 = −qxqz
2

(α4 + α6) , (6.184)

θ1 = iqzα3τ , (6.185)

u2 = −−q2
z

2
(α4 + α6) , (6.186)

v2 = −q2
zα4 −

qxqz
2

(α4 + α6) − ρτ , (6.187)

θ2 = iqxα4τ , (6.188)

u3 = −γ2

2
iqz , (6.189)

v3 = −γ2

2
iqx , (6.190)

θ3 = −γ1τ . (6.191)

We are interested in the stability of the solutions subject to the perturbations

as introduced above, so now we must consider the determinant of of the 3x3

matrix in (6.182). The determinant of this matrix gives a cubic equation in τ
∣

∣

∣

∣

∣

∣

u1 v1 θ1
u2 v2 θ2
u3 v3 θ3

∣

∣

∣

∣

∣

∣

= Aτ 3 +Bτ 2 + Cτ (6.192)

where

A = −γ1ρ
2 (6.193)

B =
q2
zρ

2
(γ2α1 − 3γ1α4 − γ1α6) +

q2
xρ

2
(γ2α4 − 2γ1 (α1 + α4 + α5 + α6))

−qxqzρ
2

γ1 (α4 + α6) (6.194)

C =
q4
x

2
γ2α4 (α1 + α4 + α5 + α6) −

q3
xqz
2
γ1 (α4 + α6) (α1 + α4 + α5 + α6)

−q2
xq

2
zγ1α4 (α1 + α4 + α5 + α6) +

q4
z

2
α4 (γ2α1 − γ1(α6 + α4)) . (6.195)
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A τ can be taken out as a common factor so that only the sign of the quadratic

f(τ) := Aτ 2 +Bτ + C (6.196)

needs to be considered for stability. If the function f(τ) is always negative then

the solutions subject to the perturbations of the Ericksen–Leslie equations are

always stable.

The solution τ = 0 is also a solution to the determinant of the matrix.

However, this would correspond to no perturbation in time, so we can neglect

this solution.

The value of the constant A is always negative but B and C depend on the

values of qx and qz as well as combinations of the Leslie viscosities. The values

of the viscosities will change for each different nematic liquid crystal.

6.5.1 Different nematic liquid crystals

As mentioned previously, A is always negative for all nematic liquid crystal

materials but the signs of B and C need to be considered more carefully. In

this section we will look at different nematic materials and determine whether

or not the solution subject to the perturbation is stable.

6.5.1.1 5CB

The frst liquid crystal we consider in this section is 5CB. The Leslie viscosities

for 5CB are:

αi Viscosity (Pa s)
α1 −0.0060
α2 −0.0812
α3 −0.0036
α4 0.0652
α5 0.0640
α6 −0.0208
γ1 0.0777
γ2 −0.0848
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Substituting these values into A, B and C and using the value ρ = 1 kg m−3

for simplicity produces

A = −0.0777 (6.197)

B = −0.00654q2
z − 0.0107q2

x − 0.00173qxqz (6.198)

C = −0.000283q4
x − 0.000096q4

z

− 0.000519q2
xq

2
z − 0.000177q3

xqz . (6.199)

If the roots of the quadratic f(τ) are now plotted in terms of qx and qz then

if both roots are always negative for all values of qx and qz then the solution

subject to the perturbation is stable since the τ will always be negative meaning

the the perturbation will decay in time. The roots of the quadratic were found

using the quadratic formula with τ1 denoting the root with the square root added

and τ2 denoting the root with the square root subtracted.

The graph of τ1 is shown in Fig. 26 and τ2 is shown in Fig. 27. It is clear

from both these graphs that τ1 and τ2 reach their maximum values at qx, qz = 0.

At this point

f(τ) = −0.0777τ 2 (6.200)

so the roots of the equation would be τ1 = τ2 = 0. This means that there would

be no perturbation at all since τ , qx and qz would all be 0.

6.5.1.2 MBBA

The nematic liquid crystal MBBA is relatively stable at room temperature. The

viscosities for this material are given below in the table.
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Figure 26: The graph of τ1 as a function of z = qz and x = qx for 5CB close to the
origin

αi Viscosity (Pa s)
α1 −0.0181
α2 −0.1104
α3 −0.001104
α4 0.0826
α5 0.0779
α6 −0.0336
γ1 0.1093
γ2 −0.1121

When these viscosities are substituted into the values for A, B and C then

the graphs of τ1 and τ2 are given by Fig. 28 and Fig. 29 respectively.

As was the case with 5CB the maximum values of τ1 and τ2 are attained.

This means that the solution subject to the perturbation above is stable for this

particular sample of nematic liquid crystal.
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Figure 27: The graph of τ2 as a function of z = qz and x = qx for 5CB close to the
origin

6.5.1.3 DDA9

The nematic liquid crystal poly(4,4’-dioxy-2,2’-dimethylazoxybenzene-dodecanediyl),

also known as DDA9 is a main-chain thermotropic nematic polymer. This sam-

ple has much higher viscosity values than the previously considered samples, as

shown below in the table.

αi Viscosity (Pa s)
α1 −1.620 × 102

α2 −1.700 × 102

α3 −2.000
α4 1.601 × 101

α5 1.620 × 102

α6 −1.001 × 101

γ1 1.680 × 102

γ2 −1.720 × 102

Substituting these values into A, B and C and using the value ρ = 1kg m−3



Fluctuations of a thin nematic film 109

-100 -50

z

0 50 100-100-50

x

050100

-1,700

-1,200

-700

-200

Figure 28: The graph of τ1 as a function of z = qz and x = qx for MBBA

as before gives

A = −168.0 (6.201)

B = 10740q2
z − 2380q2

x − 504qxqz (6.202)

C = −8260q4
x + 0.00005qxq

3
z + 215000q4

z

− 16100q2
xq

2
z − 3020q3

xqz . (6.203)

For this nematic liquid crystal, the graphs of τ1 and τ2, given in Fig. 30 and

Fig. 31 respectively. The graph for τ1 is negative in the range but it is not as

smooth as the graphs for the 5CB and MBBA even though the range of qx and

qz is reduced. Where the graph appears to become jagged is where τ1 and τ2

become imaginary. If τ2 turned out to be the same then more analysis would be

needed to determine whether or not the solution subject to the perturbation is

stable.
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Figure 29: The graph of τ2 as a function of z = qz and x = qx for MBBA

The graph for τ2 clearly shows that this root is always positive when it is

real. This is enough to know that perturbing the sample of DDA9 would cause

dewetting.

The next step is to compare the viscosities of a nematic which is stable after

being perturbed, 5CB for example, and this unstable sample. To compare the

viscosities of 5CB and DDA9, the Miesowicz viscosities are used since these are

the observable viscosities which can be measured by experiments.

Viscosity (Pa S) 5CB DDA9
η1 0.0204 2
η2 0.1052 174
η3 0.0326 8
η12 -0.0060 -162

It is easily seen that the viscosities for DDA9 are much larger than those for

5CB. This is due to the molecular structure of the liquid crystals.
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Figure 30: The graph of τ1 as a function of z = qz and x = qx for DDA9

To try to determine which of the viscosities is driving the instability, we

wanted to use a simple approximation of one viscosity value, α, but this still

had to satisfy the Parodi relation. The approximation was made that

−α1 = −α2 = α5 = α (> 0) (6.204)

and

α3 = α4 = α6 = 0 . (6.205)

This time the determinant of the equation gives a quadratic in the form
∣

∣

∣

∣

∣

∣

u1 v1 θ1
u2 v2 θ2
u3 v3 θ3

∣

∣

∣

∣

∣

∣

= Aτ 3 +Bτ 2 (6.206)

= τ 2(Aτ +B) , (6.207)

where

A = −αρ2 < 0 (6.208)



Fluctuations of a thin nematic film 112

Figure 31: The graph of τ2 as a function of z = qz and x = qx for DDA9

and

B =
1

2
α2q2

zρ > 0 . (6.209)

This means that the non zero root of this equation is given by

τ =
−B
A

> 0 (6.210)

so the perturbed solution is still unstable if you make that approximation.

6.6 Conclusions

Within this chapter, the work of Valignat, Vandenbrouck and Cazabat, [38],

has been verified in a mathematical way. This work has then been extended

by removing the assumption by Valignat et al. that the director angle θ is

fixed at the surface and allowing it to vary and then considering the Ericksen–

Leslie equations rather than the Navier–Stokes equations for the problem. The
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Ericksen–Leslie equations were then considered with a perturbation to the known

solutions for different nematic liquid crystals (5CB, MBBA and DDA9). While

doing this, it was discovered that for DDA9 a perturbed solution was not stable

and therefore some of the Leslie viscosities were ignored in an attempt to discover

what was causing the instability.
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7 A Blade Approaching a Free Surface

When an object approaches the free surface of a fluid, the fluid will spontaneously

jump up to meet the approaching object. This is investigated by researchers

by using the Wilhelmy plate technique to measure properties of the fluid-air

interface. The Wilhelmy plate experiment involves the approaching edge-on

emersion of a metal plate into the fluid. The surface initially rises up and

eventually jumps to capture the blade. This is caused by van der Waals surface

forces. From [44], these are weak non-chemical short range bonds that hold

neutral molecules together because of their induced dipoles. As the distance

between the blade and the original level of the fluid decreases, the fluid rises

more and more until, at some height above the undisturbed level of the fluid,

the fluid can no longer remain in its distorted shape and so the fluid is captured

by the blade. Essentially, the fluid jumps up to meet the blade.

Within this chapter we will consider the work done by Miklavcic [45] where he

considers a parabolic blade, and we extend this work by considering a different

shape of blade. This allows us to draw comparisons between blade shapes,

curvatures and heights.

7.1 Blade models

In the paper [45], Miklavcic looks at this problem with water as the fluid. The

model for this problem is shown below in Fig. 32. This problem is in 2D only.

The blade is assumed to be infinite in the y direction, as is the water. It is also

assumed that the water sample is infinite in x and depth. In Fig. 32, zp(x) is

the equation for the cross section of the blade, z(x) is the profile of the fluid,

and D(x) is the shortest distance from the fluid at x to the blade.

The deformation to the free surface has an associated change in free energy.

It is this that Miklavcic uses to look at the equilibrium stability of the problem.
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zp(x)

Solid blade

Water-air interface

D0

D(x)

x

zp0

z(x)

Figure 32: As the parabolic blade approaches the free surface, the surface rises up to
meet the blade.

This change is caused by some of the fluid rising above the rest changing the

gravitational potential, and by the increased surface area of the fluid, changing

the surface tension. From [45], the change in free energy in F is given by

F = γAΛ +G

∫ ∫ ∫

∆VΛ

zdV +

∫ ∫

Λ

σdS . (7.1)

In (7.1), γ is the interfacial tension given to be 72.8 mN m−1, G = g∆ρ

where g is the acceleration due to gravity (taken to be 9.81 ms−2), ∆ρ is the

density difference between the air and the fluid taken to be 1 kg m−3, and σ is

the surface energy density. It was supposed by Miklavcic that σ has continuous

partial derivatives up to order k, where k ≥ 2. The deformed interface is denoted

by Λ so the AΛ means the area of the deformed fluid. This means that the three

terms in (7.1) are the surface energy associated with the change in surface area,

the gravitational potential energy and the interaction term, respectively. The

change in free energy, (7.1), defines a functional over the space Ωx, the set of all
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possible profiles z(x) of the interface.

Since we are only dealing with a two dimensional problem, the free energy

change, (7.1), reduces to the one dimensional integral

F = γ

∫ ∞

−∞

W (z̄x) dx+
1

2
G

∫ ∞

−∞

z̄2dx+

∫ ∞

−∞

W (z̄x)σ (x, z̄) dx , (7.2)

=

∫ ∞

−∞

{

Wz̄xh(x, z̄) +
1

2
Gz̄2

}

dx , (7.3)

=

∫ ∞

−∞

f(x, z̄(x), z̄x(x))dx , (7.4)

where W (z̄x) = (1 + z̄2
x)

1

2 , and h(x, z̄) := γ + σ.

From [45], the profile z(x) that we are looking for should be even due to

symmetry and it should be integrable, and it should also have continuous second-

order derivatives, which should be square integrable. So z(x) should be in Ωx

where

Ωx =
{

η : η(k) ∈ C(R) ∩ L2(R), k = 0, 1, 2; η(x) = η(−x)
}

. (7.5)

From this, all functions in this set need to satisfy

ηx(0) = 0. (7.6)

The unique function, z(x), which is a member of Ωx and is an extremal of (7.4),

will be assumed to exist and shall be called the equilibrium profile.

In [45], the Euler–Lagrange equation of f(x, z̄(x), z̄x(x)) in (7.4) is found to

be
(

h(x, z)zx
W (zx)

)

x

= Gz + hz(x, z)W (zx), (7.7)

which is satisfied by z(x), the equilibrium solution.

The van der Waals interaction is simplified in [45] by using the surface stress,

π, to obtain the van der Waals surface energy density, σ since calculating the

actual van der Waals interaction is very complicated. The surface stress is given

by

π(D) = −CH
D3

, (7.8)
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which arises from considering the van der Waals pressure acting between two in-

finite parallel planar surfaces separated by a distance D. The Hamaker constant

for the problem is denoted CH and here, CH = 1021 J. This Hamaker constant

is constant used for describing the van der Waals force. The magnitude of the

Hamaker constant reflects the strength of the forces between the blade, air and

the surface. It is a parameter which depends upon the three different materials

in the problem: the blade, the air and the water. Integrating (7.8) gives σ(D),

σ(D) = −
∫ D

−∞

π(τ)dτ, (7.9)

= − CH
2D2

. (7.10)

This theory can be used for blades of different shapes, but the function for

the shortest distance between the blade and the surface must be continuously

differentiable so the blade cannot have corners.

7.1.1 Parabolic blade

The blade shape considered in [45] is parabolic. The blade profile is described

by the curve

zp(xp) = zp0 + λx2
p , (7.11)

where a point on the blade has co-ordinates (xp, zp). The zp0 value is the height

above the free surface that the blade is at for the solution, and λ > 0 is the

curvature of the blade.

For this blade, the shortest distance between a point on the fluid (x, z(x))

and the blade (xp, zp), is given by

D(x, z(x)) =
√

(x− xp)2 + (z(x) − zp)2 . (7.12)

The points (x, z(x)) and (xp, zp) are related by

(

∂

∂xp
,
∂

∂zp

)

(zp0 + λx2
p − zp) = α(x− xp, z(x) − zp) , (7.13)
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which is a vector equation from [45]. Eliminating α and solving the resulting

cubic equation, gives us only one real solution, namely

xp(x) = R − 1 + 2λ(zp0 − z(x))

6λ2R
, (7.14)

where

R =

[

x

4λ2
+

√

x2

16λ4
+

(1 + 2λ(zp0 − z(x)))3

216λ6

]

. (7.15)

This means that the distance D(x, z(x)) depends upon x and the profile of the

solution z(x).

As was done in [45], a numerical routine was used to find the profiles z(x)

for specified zp0 values. The boundary conditions were found by considering the

physical problem. Far away from the blade, the van der Waals interaction will

have a negligible effect. If we use this along with |zx| ≪ 1, the Euler–Lagrange

equation (7.7) becomes

γzxx = Gz , (7.16)

which has the solution

z(x) = Ce
− |x|

lG with |x| ≫ 1 , (7.17)

where lG =
√

γ/G. The value of C is chosen to match the solution far away from

the blade. A positive C value is chosen for an attractive interaction between the

blade and the free surface. The boundary conditions used to find the solution

were

zx(0) = 0 and z(x∞) = Ce
−x∞

lG . (7.18)

The solutions were found numerically with x∞ = 0.1m, and graphs of the

profiles for λ = 0.1 m−1 are shown below in Fig. 33. These solutions are in

agreement with those found by Miklavcic in [45].

The value of the highest point in the profiles, z(0), is useful for comparisons

between different blades and zp0 values. For the three profiles shown above in

Fig. 33, the z(0) values were
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Figure 33: Profiles of the solutions for the parabolic blade for zp0 values of 4000nm,
2400nm and 2265nm with λ = 0.1m−1.

zp0 (nm) z(0) (nm)
4000 69.8
2400 363
2265 598

for λ = 0.1.

The value of λ can be changed to represent blades of different curvature.

If we increase λ, the blade becomes narrower, and if we decrease λ, the blade

becomes wider. If λ is varied, the z(0) values change. For zp0=4000 nm, the

z(0) values obtained for different λ values are shown below.

λ (m−1) z(0) (nm)
0.005 335.1
0.01 229
0.05 99.3
0.1 69.9
0.5 30.7
1 21.6
5 9.5
10 6.59

It is clear from these that as the curvature of the blade increases, the surface

below is affected less. This is as expected because the blade is more pointed and

so less of the blade is close to the surface so the surface reacts less.
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7.1.2 Circular ended blade

Solutions in (7.5) can exist only if the blade is smooth in the sense that the

equation for the shortest distance between the surface and blade of the blade has

to have continuous first derivatives. The next step was to change the parabolic

blade to a blade with a circular end. This is a simpler profile than the parabolic

blade and is more realistic. The profile of this circular blade is given by

zp0 =
(√

R2 − x2 + (zp0 +R) )( 1 −H(x− r)
)

(7.19)

where R is the radius of the circular end, zp0 is the lowest point of the blade and

H(x − r) is the Heaviside function. The centre of the circle on the end of the

blade is the point (0, zp0 +R). Fig. 34 shows the geometry of the problem. The

R

zp0

D(x,z)z(0)
zp0

Figure 34: This is the basic geometry for the circular blade approaching the free
surface of fluid.

distance function for this model can be written explicitly as a function of z(x)

and x, since the closest distance from any x on the free surface is a straight line

to the centre of the circle with the size of the radius subtracted, i.e.,

D(x, z(x)) =
√

x2 + (z(x) − (zp0 + R))2 − R . (7.20)
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This makes the problem less complicated than it was for the parabolic blade as

the distance function is only a function of x and z(x).

The profile solutions for the free surface were found in the same way as they

were for the parabolic blade, but this time the peaks of the profiles were slightly

lower. With the radius, R, set to be 5, the values for z(0) were

zp0 (nm) z(0) (nm)
4000 58.1
2400 273
2265 358

and the plots of these solutions are shown below in Fig. 35.
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Figure 35: Profiles of the solutions for the circular ended blade for zp0 values of
4000nm, 2400nm and 2265nm.

The value of R can be changed to represent blades of different curvature, as

was done previously for λ. If we increase R, the blade becomes wider, and if

we decrease R, the blade becomes narrower. If R is varied, the z(0) values for

zp0 = 4000nm change.
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R (m) z(0) (nm)
0.001 0.791
0.01 2.541
0.1 8.11
0.5 18.21
1 25.51
5 57.81
10 82.31
20 117.51
30 144.91
50 189.41
100 274.81

The larger R becomes, the higher the free surface raises. This is to be expected

since there would be more surface area of the blade interacting with the free

surface. The size of the radius could be increased to 636 m which gives a z(0)

height of 1131.1 nm but if this is increased to 637 m then no solution for the

free surface can be obtained. When the value of R is plotted against the z(0)

value, the graph in Fig. 36 is obtained. As the value of the radius R reaches its

Figure 36: The graph of the radius of the blade against the height the free
surface rises shows that as the blade increases in radius, the surface rises more.

critical value the height that the free surface rises to begins to increase quicker

than before. This is not what we expected. As the radius of the blade increases,

we expected the z(0) value to asymptote to a value because as R increases we
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are approximating bringing a plate to the surface. The reason our results does

not give this is unknown, it may be down to numerical error within our system.

7.1.3 Comparison of blade shapes

To compare the two different blade shapes fairly for the same zp0, blades with

the same curvature at x = 0 were considered. The curvature of the circle ended

blade is given by

kc =
1

R
(7.21)

For the parabolic blade, the curvature is calculated from the equation for the

parabola. The curvature of a twice differentiable function y is given by [46,

p. 890]

k =
|y′′|

(1 + (y′)2)3/2
. (7.22)

For the parabolic blade

y = λx2
p + zp0 , (7.23)

so the curvature is given by

kp =
2λ

(1 + (2λxp)2)3/2
. (7.24)

When x = 0, xp = 0 so the comparable curvature for the parabolic blade is

kp = 2λ , (7.25)

so for comparison

λ =
1

2R
. (7.26)

This means that when λ = 0.1 m−1, the circular ended blade which it should be

compared with had radius R = 5 m.

The following table shows the comparable values for the different blades at

a zp0 value of 4000nm.
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λ (m−1) R (m) zλ(0) (nm) zR(0) (nm) zλ(0) − zR(0) (nm)
1000 0.0005 0.380 0.551 -0.171
100 0.005 1.867 1.791 0.076
10 0.05 6.59 5.721 0.869
1 0.5 21.6 18.21 3.39

0.1 5 69.875 57.81 12.065
0.01 50 229.0 189.41 39.59

As the curvature decreases, it can be seen that the parabolic blade causes the

free surface to rise more than the circle ended blade.

Two blades with the same curvature were considered for varying zp0 values.

The curvature for both blades was set to be 0.1 m−1.

zp0 (nm) Parabolic z(0) (nm) Circular z(0) (nm)
4000 69.8 58.1
2400 363 273
2265 598 358

It is clear from this table that the parabolic blade causes the free surface to rise

more at the peak than the circle ended blade.

7.2 Stability of the profiles

Miklavcic [45] gives two sufficient conditions with regards to the stability of the

solutions for the deformed surface.

Condition 1: Stability

Let z ∈ Ωx be the solution of the Euler–Lagrange equation (7.7) for the equilib-

rium profile of the fluid interface subject to a local van der Waals stress. Fur-

thermore, let z(x) satisfy the constraint that Φ = Φ (x, z(x)) remains bounded

for all x ∈ R such that
{

L < Φ < U ∀ x ∈ R
Φ → U as |x| → ∞ . (7.27)

Then, there exists a positive constant E∗ such that if

Φ(x) ≥
1 − E exp

(

−
(

x
lG

)2
)

l2G
∀x ∈ R (7.28)
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for some E ≤ E∗ then the equilibrium profile will be stable to arbitrary infinites-

imal perturbations ν ∈ Ωx.

Miklavcic calculated the value of E∗ to be 5.

Condition 2: Instability

Let z ∈ Ωx be the solution of the Euler–Lagrange equation (7.7) for the equilib-

rium profile of the fluid interface subject to a local van der Waals stress. Fur-

thermore, let z(x) satisfy the constraint that Φ = Φ (x, z(x)) remain bounded

for all x ∈ R as described above in Condition 1. Then there exists a positive

constant E∗ such that if

Φ(x) ≤
1 − E exp

(

−
(

x
lG

)2
)

l2G
∀x ∈ R (7.29)

for some E > E∗ > 5

(

3

2

)3/2

, then the equilibrium profile will not be stable to

arbitrary perturbations ν ∈ Ωx.

These conditions are proved in the appendix of [45] where Miklavcic considers

the second variation of the problem then applies the Rayleigh–Ritz method.

These conditions are based upon a lot of inequalities so they are not the optimal

stability conditions.

These conditions do not take into account the shape of the blade and it would

be expected that the shape of the blade would play some part in the stability.

Here the stability of both blade shapes is considered using the second variation

and Rayleigh–Ritz method applied to numerical solutions obtained. Since these

solutions are known, they are also known to be stable but the comparison of the

eigenvalues of the two different blades allows comparisons to be drawn.

7.2.1 Second Variation

The second variation for this problem (regardless of blade shape) is given by

δ2F =

∫ ∞

−∞

[

v2
x + Φ(x)v2

]

dx (7.30)
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where

Φ(x) =
1

2

(

(fpp)x
fpp

)

x

+

[

(fpp)x
]2

4f 2
pp

+
(fzz − (fzzx

)x)

fpp
(7.31)

and p = zx. Each term in Φ(x) can be expressed as

1

2

(

(fpp)x
fpp

)

x

=
1

2

[

6z2
xz

2
xx

W (zx)4
− 3 (z2

xx + zxzxxx)

W (zx)2
− (hzzx + hz)

2

h2

+
(hxx + 2zxzx + hzzz

2
x + hzzxx)

h

]

, (7.32)

[

(fpp)x
]2

4f 2
pp

=
1

4

[

1

h
(hzzx + hz) −

3zxzxx
W (zx)2

]2

, (7.33)

(fzz − (fzzx
)x)

fpp
=

1

h

[

GW (zx)
3 − hzzxx − (hzxzx + hzz)W (zx)

2
]

. (7.34)

As before, if the integrand is positive definite then the integral is positive definite

meaning that the solution for the deformation of the z(x) is stable. Unfortu-

nately, Φ(x) changes sign so it cannot be guaranteed that the integral is positive

definite.

The second variation here is an integral from −∞ to ∞ but, since the problem

is assumed to be symmetric around the z axis, we can consider double the

integral from 0 to ∞

δ2F = 2

∫ ∞

0

[

v2
x + Φ(x)v2

]

dx . (7.35)

Since it is the sign of the integral and not the value of the integral which is of

interest, the factor two can be ignored. Since the surface far from the centre

of the sample would be undisturbed by the presence of the blade, this integral

can be considered over a finite domain only and then stitched together with a

function which is zero from the finite end point to infinity. If the finite end point

is set to be x = 1 then the integral becomes
∫ 1

0

[

v2
x + Φ(x)v2

]

dx . (7.36)

The Poincaré inequality [27] says
∫ 1

0

[

v2
x

]

dx ≥ π

∫ 1

0

[

v2
]

dx (7.37)
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so

∫ 1

0

[

v2
x + Φ(x)v2

]

dx ≥
∫ 1

0

[

(π + Φ(x)) v2
]

dx . (7.38)

From this, if

π + Φ(x) > 0 (7.39)

then the second variation is positive and therefore the solution is stable, i.e. for

stability

Φ(x) > −π . (7.40)

This result does not improve upon the results in the Miklavcic paper [45].

As in the Atkin–Stewart Equations chapter, the positivity criterion from

Section 3.4 was applied to the second variation of the problem for the solutions

which are known. The positivity criterion confirmed that the solutions which

we already have are stable but it could not be applied to solutions we had not

obtained so this did not progress the stability argument.

7.2.2 Rayleigh–Ritz method

The Rayleigh Ritz method was applied to the solutions for both blade shapes.

The eigenvalues given by the method were noted for different heights of zp0.

For the circular ended blade the following eigenvalues, µ, were found for

R = 5 m.

zp0 (nm) µ
4000 112.1632437
2400 112.1335002
2265 112.1216989
2200 112.1165040
2151 112.0881887

As the zp0 value is decreased, the eigenvalue also decreases. However, when

zp0 was lowered beyond 2151 nm, the first eigenvalue for the solution could no

longer be found. This could be because the solutions become unstable and so
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the imposed initial condition of z′(0) = 0 may fail or it could be the limitations

of the program. We would have expected the value of µ to change sign near the

instability.

The parabolic blade used had λ = 0.1 m−1.

zp0 (nm) µ
4000 112.1631827
2400 112.1292251
2265 112.1021386
2264 112.1001536
2263 112.0996178

These eigenvalues also reduce but they are slightly lower than the eigenvalues

for the circular ended blade. A first eigenvalue cannot be found for 2262 nm

which is a higher limit than the circular ended blade. These different eigenvalues

mean that the shape of the blade must have an impact upon the stability of the

raised surface. This means that the work by Miklavcic can be improved.

7.3 Conclusions

Having compared the two different blade shapes, it has been seen that they affect

the free surface differently. The circular ended blade is closer to the surface over

a wider x range and so the surface does not rise by as much in the middle than

the parabolic blade. It also appears that the circular ended blade can be taken

closer to the surface before any instabilities may occur than the parabolic one

(2151 nm compared with 2262 nm).

It was also noticed that the shape of the blade had some effect on the stability

of the profile (as would be expected). The degree to which the shape of the blade

affects the stability of the solution is something which could be looked at in a

lot more depth.
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8 Conclusions and Outlook

This thesis looks at the stability of different fluids using a range of perturbation

methods from the calculus of variations.

In chapter 1 the history of liquid crystals are introduced along with a basic

description of the liquid crystal phases: nematic, smectic and cholesteric. Al-

though cholesteric liquid crystals are not used within the thesis, the information

is given here for completeness.

Chapter 2 then gives a brief description of three important mathematical

theories for the dynamics of liquid crystals. The Ericksen–Leslie dynamic theory

for nematic liquid crystals is described first and then the theory of smectic liquid

crystals in introduced. The smectic theory is based upon the Leslie, Stewart and

Nakagawa (LSN) theory. This is used in Chapters 4 and 5 while the nematic

theory is used in Chapter 6.

Some methods in the calculus of variations are introduced in chapter 3. These

methods are applied in later chapters using the new inequality from section 3.4.

These methods are used within the chapters which followed. The inequality

that was introduced from [24] was used to prove the stability for two different

solutions without the need for further investigation (one solution from Chapter

4 and one from Chapter 5). Without this useful inequality, a lot more work

would have been needed to solve the Jacobi equation for the solution. With

a little further work, this inequality proved stability for another 3 cases in the

cylindrical geometry.

Five solutions to a differential equation which arises from considering a mag-

netic field to a sample of smectic liquid crystals are looked at in terms of stability

in chapter 4. These five Atkin–Stewart equations were found by Atkin and Stew-

art a stability condition was known for one of them. The full stability is now

known for 4 of the 5 solutions and the final solution was shown to be unstable un-
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der certain conditions. The work within Chapter 4 is extended to the case when

a planar layer of smectic liquid crystals have an electric field applied in chapter

5. The resulting equation produced a qualitatively different phase portrait to

those found in the previous chapter. All of the solutions within this different

phase plane were found for specific values of the variables b and k. the stability

of these solutions were considered briefly but only one solution has a complete

stability story. The work in these chapters is motivated by the little experimen-

tal data on the elastic constants Aij . It is hoped that the solutions may lead to

experiments which can determine these values or give us more information.

Within Chapter 6, the work of Valignat, Vandenbrouck and Cazabat looking

at the wetting and dewetting of thin nematic films of liquid crystals is considered

and then extended. Valignat et al. considered the stability of a perturbation

using the Navier–Stokes equation. Here, the Ericksen–Leslie equations were

considered as an extension of the Navier–Stokes equation by introducing some

freedom to the director angle at the free surface and by considering the leslie

viscosities rather than an isotropic viscosity. The stability of the Ericksen–Leslie

equations is considered by introducing a small perturbation to the terms. This

chapter concludes with different smectic materials being considered to compare

stabilities. The work in this chapter is important for coating processes. Depend-

ing on whether you want wetting or dewetting, the nematic liquid crystal would

have to be chosen carefully.

A blade approaching a free surface of fluid is considered within Chapter 7.

The work of Miklavcic is followed for his original parabolic blade and then with

the blade model changed to a circular ended blade. The results for both sets of

blades were compared and the stability was looked at using the second variation

methods.

The stability work in this thesis could be extended to consider different types

of stability. Here the stability work focused on the stability of small perturbation
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to the solutions. Instead of this, energy stability methods could have been used.

Also, here it was only the linear stability that was considered. This could be

extended to consider non-linear effects. There are also potential applications

of the work within the thesis including applying the work to other phases of

liquid crystals as well as non-Newtonian fluids such as Oldroyd-B [47]. The

work within chapter 6 has already been extended by Miklavcic and Cortat in

[48] and [49]. Within this work they have found results for the original parabolic

shaped blade for blade heights, zp0, much less than we were able to compute.



A Solutions to the Planar Layer Integral

In Section 5.1, the solution to the integral equation
∫

dψ
√

2b cos2 ψ + 4bk cosψ + c− b
=

∫

ds (A.1)

was considered. This problem was rearranged using substitutions into the form

of (5.29) where denominator has three roots. From [37] here are eight solutions

to this problem. In Section 5.1, case 1 is given where the roots of (5.29) are such

that r1 > r2 > r3 ≥ u. For completeness, the remaining seven solutions u to the

integral equation given by (5.29) are given below.

Case 2: r1 > r2 > r3 > u

If u is strictly less than the three distinct roots then
∫ r3

u

dx
√

(r1 − x)(r2 − x)(r3 − x)
=

2√
r1 − r3

F (β, p) (A.2)

where F is the elliptic integral of the first kind (from [37]) which is

F (ϕ, k) =

∫ ϕ

0

dα
√

1 − k2 sin2 α

=

∫ sinϕ

0

dx
√

(1 − x2)(1 − k2x2)
, (A.3)

and

β = arcsin

(
√

r3 − u

r2 − u

)

(A.4)

and p is given by

p =

√

r1 − r2
r1 − r3

. (A.5)

In this case, after substituting back in for the original variables, the solution

for the differential equation (A.1) turns out to be

ψ = 2 arctan

(

√

−r3 sec2 (z(s)) − r2 tan2 (z(s))

)

(A.6)

where

z(s) := am

(√
r1 − r3

2

√
a1 s ,

√

r1 − r2
r1 − r3

)

(A.7)

for ease. Here am(u) is the amplitude funtion.
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Case 3: r1 > r2 ≥ u > r3

If the solution lies in the range where is is greater than the least root of the

polynomial, r3 but is less than or equal to r2 then
∫ u

r3

dx
√

(r1 − x)(r2 − x)(x− r3)
=

2√
r1 − r3

F (γ, q) (A.8)

with F being the elliptic function of the first kind (A.3),

γ = arcsin

(
√

u− r3
r2 − r3

)

(A.9)

and

q =

√

r2 − r3
r1 − r3

. (A.10)

In this case the solution is given by

ψ = 2 arctan





√

r3 + (r2 − r3) sin2

(

am

(√
r1 − r3

2

√
a1 s ,

√

r2 − r3
r1 − r3

))



 .(A.11)

Case 4: r1 > r2 > u ≥ r3

If u is strictly less than r2 but greater than r3 then
∫ r2

u

dx
√

(r1 − x)(r2 − x)(x− r3)
=

2√
r1 − r3

F (δ, q) (A.12)

where F is the elliptic function of the first kind as before,

δ = arcsin

(
√

(r1 − r3)(r2 − u)

(r2 − r3)(r1 − u)

)

(A.13)

and q is given by (A.10).

For this case, the solution ψ is given by

ψ = 2 arctan











√

√

√

√

√

√

√

(

r1
(r2 − r3)

(r1 − r3)
sin2 (z(s)) − r2

)

(

(r2 − r3)

(r1 − r3)
sin2 (z(s)) − 1

)











(A.14)

with

z(s) := am

(√
r1 − r3

2

√
a1 s ,

√

r2 − r3
r1 − r3

)

. (A.15)
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Case 5: r1 ≥ u > r2 > r3

If the solution u lies in the range such that it is less than or equal to the greatest

of the roots r1 but greater than the lower two roots then

∫ u

r2

dx
√

(r1 − x)(x− r2)(x− r3)
=

2√
r1 − r3

F (χ, p) (A.16)

where F is the standard elliptic function of the first kind given by (A.3),

χ = arcsin

(
√

(r1 − r3)(u− r2)

(r1 − r2)(u− r3)

)

(A.17)

and p is give by (A.5).

In this case, ψ is given by

ψ = 2 arctan











√

√

√

√

√

√

√

(

−r3
(r1 − r2)

(r1 − r3)
sin2 (z(s)) + b

)

(

1 − (r1 − r2)

(r1 − r3)
sin2 (z(s))

)











(A.18)

with

z(s) := am

(√
r1 − r3

2

√
a1 s ,

√

r1 − r2
r1 − r3

)

. (A.19)

Case 6: r1 > u ≥ r2 > r3

If u is strictly less than r1 but greater than r2 and r3 then

∫ r1

u

dx
√

(r1 − x)(x− r2)(x− r3)
=

2√
r1 − r3

F (λ, p) (A.20)

with F as in (A.3),

λ = arcsin

(
√

r1 − u

r1 − r2

)

(A.21)

and p is give by (A.5).

For this range, the solution ψ is given by

ψ = 2 arctan





√

r1 − (r1 − r2) sin2

(

am

(√
r1 − r3

2

√
a1 s ,

√

r1 − r2
r1 − r3

))



(A.22)
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Case 7: u > r1 > r2 > r3

If u is strictly greater than all of the roots then

∫ u

r1

dx
√

(x− r1)(x− r2)(x− r3)
=

2√
r1 − r3

F (µ, q) (A.23)

with F representing the elliptic function of the first kind (A.3),

µ = arcsin

(
√

u− r1
u− r2

)

(A.24)

and q given by (A.10).

In this case, the solution is given by

ψ = 2 arctan

(

√

−r2 tan2 (z(s)) + r1 sec2 (z(s))

)

(A.25)

where

z(s) := am

(√
r1 − r3

2

√
a1 s ,

√

r2 − r3
r1 − r3

)

(A.26)

Case 8: u ≥ r1 > r2 > r3

If u is greater than or equal to the largest of the roots then

∫ ∞

u

dx
√

(x− r1)(x− r2)(x− r3)
=

2√
r1 − r3

F (ν, q) (A.27)

where F is the elliptic function of the first kind (A.3),

ν = arcsin

(
√

r1 − r3
u− r3

)

(A.28)

and q given by (A.10).

In this case, the solution is given by

ψ = 2 arctan





√

(a− c) csc2

(

am

(√
r1 − r3

2

√
a1 s ,

√

r2 − r3
r1 − r3

))

+ r3



 .(A.29)
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[8] H. Zöcher. Über die Einwirkung magnetischer, elektrischer und mechanis-
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