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Abstract 

An increased emphasis is being put on energy efficiency and reduction of carbon 

emissions. The importance of comfort and energy savings to building designers and 

occupants has driven the development of more efficient building technologies. This 

has led to building control engineers and researchers developing more advanced and 

efficient control strategies in attempts to maximize the potential of these technologies 

and improve the efficiency of existing technologies. The buildings industry has been 

slow to adopt these advanced control strategies however, due to complexity issues or 

increases in cost and commissioning time. In order to bridge the gap between 

advanced controller design and the buildings industry, it is necessary that the 

controller designs that are being developed remain low cost and simple to implement. 

Ultimately, the objective for the design of a controller for use in industry is a robust 

high performance controller that is easy to implement, requires minimal user input 

and has low implementation and installation costs i.e. does not require 

extra/excessive costly hardware. The research presented in this thesis is focused on 

this problem and delivers solutions that satisfy these criteria. 

This thesis considers the development of a robust high performance heating, 

ventilation and air-conditioning (HVAC) control strategy that is capable of dealing 

with the complexities associated with modern building control whilst being a low 

cost solution which is easy to implement. When designing a HVAC control system, a 

number of difficulties are encountered which the control system must be able to deal 

with in order to ensure accurate set-point tracking (thermal comfort) and efficient 

energy usage. These include dealing with time delay, parameter uncertainty, 

nonlinearity, interacting multi-input multi-output (MIMO) systems, unknown system 

parameters (identification) and tuning/re-tuning. Throughout this thesis a number of 

novel contributions to knowledge and controller design methodologies have been 

developed in order to deliver solutions which overcome these problems whilst 

remaining practical enough for use in industrial applications. The methods developed 

are based on a practical approach to inverse dynamics controller design and come 

together as two distinct main controller design methodologies. Firstly, a novel 

Genetic Algorithm (GA) based auto-tuning algorithm for the Robust Inverse 
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Dynamics Estimation (RIDE) controller design which accounts for modelling 

parameter uncertainty. Secondly, a novel robust system identification based inverse 

dynamics controller design which incorporates a novel dead-time compensation 

methodology within the inverse dynamics controller structure. This controller design 

is termed System Identification based Rate Compensated Inverse Dynamics (SI-

RCID). The SI-RCID controller algorithm is an advanced controller design which is 

relatively easy to implement, requiring a similar level of user input as the initial 

design procedure for the popular self-tuning proportional integral derivative (ST-

PID) controller designs. When applied to a nonlinear MIMO HVAC system, the SI-

RCID controller shows a significant performance improvement when compared to 

traditional ST-PID control and a more advanced controller design recently developed 

in the literature.  
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Nomenclature 

   =  Area (structure) (m
2
) 

    =  Area (internal mass) (m
2
) 

   =  Area (floor) (m
2
) 

   =  Area (roof) (m
2
) 

   =  Area (windows) (m
2
) 

   =  Specific Heat Capacity (air) (J/KgK) 

   =  Specific Heat Capacity (external wall structure) (J/KgK) 

          =  Specific Heat Capacity (internal mass i.e. building elements other than 

external wall structure) (J/KgK) 

   =  Overall thermal capacitance of the humidifier (J/K) 

    =  Overall thermal capacitance of the air-handling unit (AHU) (J/K) 

      =  Specific Heat Capacity (duct material) (J/KgK) 

     = Humidification rate of humidifier (kg/s) 

    = Heat transfer coefficient inside AHU duct (W/m
2
K) 

     = Heat transfer coefficient in the ambient (outside AHU duct) (W/m
2
K) 

   = Heat transfer coefficient of internal wall structure (W/m
2
K) 

   = Heat transfer coefficient of external wall structure (W/m
2
K) 

    =  Thermal Conductivity (internal structure) (W/mK) 

     =  Minimum heater power output (Case 1 actuator)  (W) 

     =  Minimum ventilation rate (kg/s) 

       =  Minimum heating coil power (W) 

      =  Minimum humidification rate (W) 

   =  Mass (air) (Kg) 

      =  Mass (duct) (Kg) 

    =  Mass (internal structure) (Kg) 

    =  Mass (external structure) (Kg) 

    =  Mass (internal mass) (Kg) 

 ̇  =  Mass flow rate (mechanical ventilation) (Kg/s) 

 ̇   =  Mass flow rate (natural ventilation) (Kg/s) 
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     =  Number of occupants 

   =  Density (air) (Kg/m
3
) 

     =  Evaporation rate of occupants (Kg/h) 

 ̇  =  Heat Transfer through Roof (W) 

 ̇  =  Heat Transfer through Windows (W) 

 ̇  =  Heat Transfer through Floor (W) 

 ̇     =  Heat Transfer from Free Heats (W) 

 ̇   =  Heat Transfer through internal structure (W) 

 ̇   =  Heat Transfer through external structure (W) 

 ̇   =  Heat Transfer from internal mass (W) 

 ̇  =  Heat added to zone from heater (W) 

 ̇     = Heat added to AHU supply air from heating coil (W) 

 ̇   =  Heat transferred through mechanical ventilation (W) 

 ̇   =  Heat transferred through natural ventilation (W) 

   =  Zone Air Temperature (K) 

      =  Air temperature inside AHU duct (K) 

   =  Air temperature inside AHU at humidifier (K) 

       =  Wall thickness (m) 

   =  Outside Air Temperature (K) 

   =  Air temperature inside mixing box (K) 

      =  Air temperature inside AHU at heating coil (K) 

      =  Heating coil time constant (s) 

   =  Heating system time constant (Case 1 actuator) (s) 

     =  Humidifier time constant (s) 

   =  Ventilation system time constant (Case 1 actuator) (s) 

    =  Ventilation system time constant (Case 2 actuator) (s) 

   =  Heat Transfer Coefficient of Floor (W/m
2
K) 

    =  Heat Transfer Coefficient of Internal Mass (W/m
2
K) 

   =  Heat Transfer Coefficient of Roof (W/m
2
K) 

   =  Heat Transfer Coefficient of Windows (W/m
2
K) 

         =  Humidifier demand (kg/s) 
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        =  Heating demand (W) 

       =  Ventilation demand (kg/s) 

     =  Overall thermal capacitance area factor of the AHU (J/sK) 

     =  Maximum heater power output (Case 1 actuator)  (W) 

     =  Maximum ventilation rate (kg/s) 

       =  Maximum heating coil power (W) 

      =  Maximum humidification rate (W) 

   =  Volume of humidifier (m
3
) 

    =  Volume of AHU (m
3
) 

   = Zone humidity (kg/kg) 

   = Humidity inside AHU at humidifier (kg/kg) 

      = Humidity inside AHU at heating coil (kg/kg) 

   = Humidity inside AHU mixing box (kg/kg) 

   = Outside humidity (kg/kg) 

 

   =  Overall transmittance area factor of the humidifier (J/sK) 

  = Ratio of outside air to internal zone air entering AHU 

 

Algorithm definitions 

max_stall  =  Maximum no. of stall generations allowed 

tol_fun =  Tolerance for variations of mean fitness between generations 

gen_max  =  Maximum number of generations allowed 

popsize  =  Population size 

elite_count  =  Number of elite children selected from population 

nvars  =  Number of variables requiring tuning 

crossover_fract =  Fraction of population to be selected for crossover children 

mut_prob  =  Probability of mutation occurring 

UB  =  Upper constraint for optimisation 

LB  =  Lower constraint for optimisation 

stall_num  =  Number of stall generations that have occurred 

mean_fit =  Mean fitness value for the population 
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1. Introduction 

Energy and climate change have become highly publicised and political issues 

around the world today. It has become common knowledge that the world‟s 

traditional energy resources, i.e. fossil fuels, are diminishing rapidly whilst carbon 

emissions are growing due to the high rate of global energy consumption. 

Consequently, fuel prices are on the rise causing further financial stress in an already 

poor economic climate. It is thought that energy consumption will continue to 

increase with the growth in population size and developing countries such as China 

and India experiencing dramatic economic growth (Perez-Lombard, Ortiz et al. 

2008). Broadly speaking, there are two sides to the energy predicament; supply and 

demand. In order to tackle the energy supply side of the problem, there has been, and 

continues to be, significant efforts directed towards the development of alternative 

energy sources, particularly clean renewable sources such as wind, solar and tidal. 

These efforts are aimed at decreasing the world‟s dependence on fossil fuels and 

eventually replacing them. Replacing the world‟s energy supply however, is a long 

term goal and renewable energy sources currently do not have the capacity or are 

stable enough to meet global energy demands. On the other side of the problem, 

researchers and technology manufacturers are working to improve the efficiency of 

current technologies and develop more energy efficient solutions in order to reduce 

global energy demand. One of the main contributors to global energy demand is 

buildings. Studies have shown that the consumption of energy from buildings, both 

residential and commercial, constitutes between 20% and 40% of global energy 

consumption in developed countries, and has exceeded the other major sectors: 

industrial and transportation (Perez-Lombard, Ortiz et al. 2008). In the United 

Kingdom, the built environment is thought to account for as much as 50% of its total 

energy requirement (Clarke, Johnstone et al. 2008). Buildings also contribute 

significantly to carbon emissions with the domestic sector alone in the United 

Kingdom being responsible for 27% of all UK carbon emissions (Yao and Steemers 

2005). This high consumption from buildings can be expected since people spend 

most of their time indoors be it at work, at home or shopping etc. The internal 

comfort conditions (indoor air quality, air temperature, lighting etc.) of these indoor 
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spaces therefore have to be controlled in order to ensure occupants comfort and 

health. People‟s demands for indoor thermal comfort, considered a luxury not long 

ago, have risen over the past few decades and a comfortable indoor environment has 

become a basic expectation, regardless of the outside environmental conditions 

(ASHRAE 2009). Indoor comfort conditions are largely dependent on these key 

factors; thermal conditions, indoor air quality, acoustic conditions and lighting 

conditions (Khalid 2011). In recent times, there has been increased interest in the 

development of more energy efficient and sophisticated technologies for climate 

adaptive buildings in order to achieve improved control of comfort and energy 

savings (Wang 2010). Some of the developed technologies are listed below (Khalid 

2011): 

• Passive stack ventilation 

• Chilled beams and Under-floor heating 

• Sun-shading /louvers  

• Waste heat and ground pump heat exchangers  

• Heat stores such as roof ponds and Michel-Trombe walls 

• Natural light shelves and automatic lighting  

• Phase change material walls 

With the advent of these new technologies, climate adaptive buildings have the 

ability to actively adapt to changes in the environmental conditions by changing their 

characteristics and properties accordingly, in order to maintain the desired comfort 

levels (Wigginton and Harris 2002). Despite this increased flexibility, many climate 

adaptive buildings fail to exploit the potential of their advanced systems, often 

underperforming with regard to improved comfort and energy savings. This 

underperformance can often be attributed to poor control of equipment and the 

development of faults (Salsbury 2005).  

Studies indicate that controlling indoor thermal comfort conditions proves to be 

the costliest and most energy consuming aspect of regulating indoor comfort levels, 

as heating, ventilation and air conditioning (HVAC) systems are the largest energy 

end use both in the residential and non-residential sectors (Perez-Lombard, Ortiz et 
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al. 2008). Energy consumption figures for different energy end uses in buildings are 

shown in the tables below: 

 

End uses in the residential sector (%) Spain EU USA UK 

Space conditioning 42 68 53 62 

Domestic hot water (DHW) 26 14 17 22 

Lighting and appliances 32 18 30 16 

Table 1-1: Energy consumption by end uses in the residential sector 

Year 2003. Source EIA, IDEA and BRE - cited by (Perez-Lombard, Ortiz et al. 2008) 

 

Energy end uses USA (%) UK (%) Spain (%) 

HVAC 48 55 52 

Lighting 22 17 33 

Equipment (appliances) 13 5 10 

DHW 4 10 - 

Food preparation 1 5 - 

Refrigeration 3 5 - 

Others 10 4 5 

Table 1-2: Energy consumption in offices by end use 

Sources: EIA, IDEA and BRE - cited by (Perez-Lombard, Ortiz et al. 2008) 

The consumption figures clearly indicate that HVAC systems are the largest 

consumers of energy in buildings; both domestic and non-domestic. In light of this, 

improving the efficiency of HVAC systems can be considered a logical step towards 

reducing overall energy demand. 

 

1.1 The HVAC Control Problem 

Designing an effective Building Energy Management System (BEMS) to 

achieve accurate and efficient control of the indoor conditions of a building is a 

complex task, particularly with the increasingly sophisticated designs, materials as 

well as advanced HVAC systems found in modern climate adaptive buildings. These 
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buildings are complex dynamic systems that are subjected to many disturbances and 

are uncertain in nature.  Adding to this complexity is the many systems within the 

buildings with differing time constants whose dynamics are strongly coupled. This 

means that changing one parameter can have unforeseen consequences on other 

parameters (Clarke 2001). This coupling effect makes it difficult to control the 

buildings indoor environment. The control problem is exacerbated by the improved 

air tightness and insulation of modern buildings which make the indoor comfort 

conditions even more dynamic and sensitive [(CIBSE 1998), (BRE-SAP 2005) Table 

S7, (EST 2004) cited by (Khalid 2011)]. Therefore, the indoor environment of these 

buildings must be controlled effectively, as poor control can lead to conditions that 

are unpleasant for occupants and which, in extreme cases, can be detrimental to their 

health [ (McMullan 2007), (Hanie and Aryan 2010)].  

The amount of energy used in the process of controlling internal thermal 

conditions is dependent on two factors: the efficiency of the HVAC delivery systems 

e.g. heater efficiency, under floor heating etc. and the efficiency/efficacy of the 

HVAC automation system i.e. control systems. The simple control systems which are 

still widely used in the buildings industry are often unable to cope with the 

aforementioned complex dynamics of buildings. A substantial amount of energy is 

wasted as a result of these poor control systems which cause unnecessary heating, 

fabric and ventilation losses. Furthermore, in addition to the obvious negative 

financial implication of the wasted energy caused by poor control, an uncomfortable 

or unpleasant indoor environment in the work place (attributed to poor control) has 

also been associated with reduced productivity of employees (Lomonaco and Miller 

1997). This means that poor control of the indoor environment can have a dual 

financial impact on a company. The control methods currently in use in the buildings 

industry are typically restricted in their design to Proportional-Integral-Derivative 

(PID) control, as in many other industrial applications. This strategy is commonly 

used in industry on account of its simplicity, ease of commissioning and relatively 

low capital cost. PID control produces satisfactory results in many cases where 

system complexity is limited and performance requirements are not too demanding 

(Åström and Hägglund 2001). However, due to the aforementioned complexity of 

HVAC systems, it is often difficult for traditional PID controllers to compensate 



5 

 

fully for load disturbances and to achieve accurate set point tracking in HVAC 

systems. Furthermore, finding the optimal gains for traditional PID designs can be 

difficult, time consuming and consequently be an expensive process particularly if 

re-tuning is required, as is often the case in large HVAC systems (Bi, Cai et al. 

2000). Even if the PID controller has been well tuned at its commissioning, the 

changes in operating conditions and structural degradation that occurs over time in 

buildings may cause the controller performance to deteriorate (Bai and Zhang 2007). 

Therefore, despite the relatively low initial investment required, the subsequent 

running costs which are incurred in the long term can be far greater than those 

associated with improved control strategies.  

In contrast to conventional energy reduction techniques e.g. the installation of 

new HVAC systems and insulation which can require a large investment, significant 

energy savings can be made with minimal additional cost by improving a building‟s 

control systems (Siroky, Oldewurtel et al. 2011). Consequently, there have been 

significant efforts in recent years to develop HVAC control strategies which improve 

energy efficiency and thermal comfort. A number of advanced controllers have been 

developed based on fuzzy logic [(Pal and Mudi 2008); (Soyguder and Alli 2009)], 

neural networks [(Guo, Song et al. 2007); (Soyguder and Alli 2009; Moon and Kim 

2010)], and model predictive control [(Huang, Wang et al. 2009); (Huang and Wang 

2008); (Hazyuk, Ghiaus et al. 2012)]. Despite these efforts however, the buildings 

industry has been slow to adopt advanced control strategies as replacements for PID 

(Salsbury 2005). There are a number of contributing factors to this; firstly, there is no 

explicit stability assessment criterion established for adaptive fuzzy logic methods; 

robustness can be difficult to guarantee, especially for the non-linear methods, when 

subjected to the parameter uncertainty and disturbances that can occur in building 

systems (Khalid 2011); methods that require the specification of additional 

parameters resulting in an increase in set-up time are considered impractical in 

industry; some of the advanced methods that have been developed can be too 

computationally intensive for the type of low-cost hardware used in buildings; 

finally, the buildings industry is generally reluctant to adopt methods that may have 

to be treated as 'black box' as they are difficult to guarantee stability with and don‟t 
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always behave well when faced with actuator saturation (Khalid 2011). Therefore, 

PID controllers are still widely used in the buildings industry.  

1.2 Problem Summary 

The increased emphasis that is being put on energy efficiency and reduction of 

carbon emissions and increased importance of comfort and energy savings to 

building designers and occupants has driven the development of more efficient 

building technologies. This has led to building control engineers and researchers 

developing more advanced and efficient control strategies in attempts to maximize 

the potential of these technologies and improve the efficiency of existing 

technologies. The buildings industry has been slow to adopt these advanced control 

strategies however, due to complexity issues or increases in cost and commissioning 

time. In light of the discussion in the previous section, it is clear that in order to 

bridge the gap between advanced controller design and the buildings industry, the 

controller designs should remain low cost and simple to implement. It can be said 

then that, ultimately, the objective for the design of a HVAC controller is a robust 

high performance controller that is easy to implement, requires minimal user input 

and has low implementation and installation costs i.e. does not require 

extra/excessive costly hardware. The research presented in this thesis is focused on 

this problem and delivers solutions that satisfy these criteria. 

 

1.3 Research Objectives 

The objective of the research undertaken during this PhD project, as mentioned in the 

previous section, was to design a robust high performance HVAC control strategy 

that is capable of dealing with the complexities associated with modern building 

control whilst being a low cost solution which is easy to implement. This is a very 

broad aim which can be broken down into a number of more specific objectives. 

When designing a HVAC control system, a number of difficulties are encountered 

which the control system must be able to deal with in order to ensure accurate set-

point tracking (thermal comfort) and efficient energy usage. These issues are: 
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- Parameter uncertainty – It is often difficult to determine certain building 

parameters exactly e.g. heat transfer coefficients, air mass and surface areas 

etc. These parameters may also change over time due to factors such as 

building fabric degradation and changes in room layout and uses. Therefore, 

control systems must be designed to be robust against these uncertainties. 

- Nonlinearity – If a plant is nonlinear i.e. the response characteristics change 

with operating conditions, the control system must be able to account for 

these changes and maintain accurate and stable tracking. 

- Tuning/Re-tuning – Finding the optimal gains for a control system can be a 

difficult and tedious process in practice and it has been the subject of a great 

deal of research in HVAC systems. Some control systems may also have to 

be re-tuned in certain circumstances, such as seasonal climate changes. This 

can prove costly as re-tuning fees accrue over time. 

- Disturbance rejection – Buildings are subjected to many disturbances such 

as heat gains from occupants and IT equipment, or opening and closing of 

doors etc. Control systems must be able to reject these disturbances 

effectively in order to maintain adequate thermal comfort for occupants 

- Actuator power limitations – When an actuator reaches its maximum or 

minimum power limit, poorly designed control systems can damage the 

actuation system either by driving the actuator further such that it is locked on 

its limit for prolonged periods of time or entering into a state known as a limit 

cycle. This is when the control system causes the actuator to repeatedly 

oscillate between its upper and lower limits. 

- Decoupling of MIMO systems – As mentioned earlier, buildings are 

complex systems with multiple inputs and outputs with strongly coupled 

dynamics. This coupling can cause severe degradation in controller 

performance if not dealt with correctly. Many single-input-single-output 

(SISO) controller designs currently employed in industry fail to account for 

coupled dynamics and can result in poor thermal comfort and inefficient 

energy usage. 

- Time delay – Buildings often have large transport lag as a result of the time 

taken for energy to be transferred and its effects to be recognized by the 
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measurement sensors. Time delays in systems can cause severe degradation 

in controller performance if not dealt with properly and are often one of the 

reasons for poor controller performance in many practical systems.  

From a practical standpoint, the control system must be able to deal with the 

abovementioned issues while at the same time remaining simple to use and 

implement i.e. no additional user input and extra commissioning time required. 

Furthermore, the control algorithm should not be computationally intensive so as to 

allow for implementation on the low cost hardware that is currently being used in 

industry. 

 

1.4 Thesis Outline and Methodology 

A detailed review of the literature pertaining to the research in this thesis is 

given in chapter 2 of this thesis. The literature review sets the applicability and 

context of this research by assessing the relevant control techniques developed in the 

literature and highlighting their advantages and disadvantages.  

Details of the mathematical model of the zone and air-handling unit that were 

developed and used for the testing of all of the control strategies developed in this 

thesis are given in chapter 3.  

A description of the fundamentals of the robust high performance control theory, 

Robust Inverse Dynamics Estimation (RIDE), which provides the basis of many of 

the algorithms developed in this thesis, is given in Chapter 4. The fundamentals of 

this algorithm are used extensively in this research and therefore it is imperative that 

the reader is familiarized with its key properties in order to clarify the developments 

and contributions of this thesis.  

Chapter 5 then goes on to explain the development of a high performance 

MIMO HVAC controller for temperature and humidity regulation, which is robust 

against parameter uncertainty, using a novel auto-tuning algorithm for the RIDE 

controller. This method is applied to a zone model with a fast acting direct heater and 

mechanical ventilation.  
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A novel Nonlinear Inverse Dynamics (NID) controller design for temperature 

and humidity regulation of a zone with an air-handling unit (AHU) actuation system 

is demonstrated in Chapter 6. This includes the development of a novel system 

identification method for the NID controller and its application to the zone and AHU, 

a novel dead-time compensation method for the NID controller and a novel 

commutation law for governing the behaviour of the system at actuator power limits.  

Finally, chapter 7 details the conclusions drawn from the presented research and 

suggestions for future research directions are made. 

 

1.5 Main Novelties/Contributions 

The main contributions of the research presented in this thesis can be summarized as 

follows: 

- Development of a mathematical model of a building with a full AHU 

actuation system using models developed in (Murphy 2012) and (Tashtoush, 

Molhim et al. 2005). 

 

- Development of a novel auto-tuning algorithm for the RIDE controller with 

robustness for parameter uncertainty using Genetic Algorithm optimization. 

 

- Novel use of the RIDE algorithm in a two loop control structure for building 

zone control with AHU inner control loop. 

 

- Novel system identification based NID controller strategy using system 

identification from step response for inverse dynamics estimation and 

transport lag compensation. 

 

- Development of a novel improved commutation law for governing the 

behaviour of equivalent control based controllers SI-RCID and RIDE. 
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- Contribution of knowledge providing valuable insight and explanation of the 

effects of large time delays on equivalent control based controller designs. 

 

- Design of a novel transport lag/dead time compensation method for an 

equivalent control based NID controller using modified smith‟s predictor 

principle. 

 

- Presentation of a full methodology for designing a low cost controller which 

is simple to implement and is capable of dealing with time delay, parameter 

uncertainty, nonlinearity, interacting MIMO systems, unknown system 

parameters (identification) and tuning/re-tuning.  

 

- Novel application of inverse dynamics to HVAC systems using a practical 

approach for designing full HVAC system and zone control. 

 

1.6 Dissemination of Research Contributions 

Throughout this research an effort has been made by the author in order to help 

convey the ideas and methodologies proposed in this thesis to a variety of different 

audiences through both peer reviewed publications and presentations. The 

publications made throughout the duration of the author‟s research are listed below: 

1.6.1 Publications 

Counsell J., Zaher O., Brindley J., and Murphy G. (2013), Robust Nonlinear HVAC 

Systems Control With Evolutionary Optimisation, Special Issue - Computational 

Methods in Engineering Design and Optimisation, J. of Engineering Computations 

 

Brindley, J., Counsell, J., Zaher, O., and Pearce, J. G. (2012), Design and simulation 

of a non-linear, discontinuous, flight control system using rate actuated inverse 

dynamics, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of 

Aerospace Engineering. ISSN 0954-4100 (In Press) 
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Zaher O., Counsell J., and Brindley J. (2011), Robust Control of Room Temperature 

and Relative Humidity using Advanced Nonlinear Inverse Dynamics and 

Evolutionary Optimisation, in Nineth International Eurogen Conference September 

2011, Capua, Italy. 

 

Counsell J. M., Zaher O., and Brindley J. (2010), Auto-Tuning for High Performance 

Autopilot Design Using Robust Inverse Dynamics Estimation, International Multi-

conference on Computing in the Global Information Technology, 10-17. 

 

Brindley, Joseph and Counsell, John and Zaher, Obadah Samir (2010), Design of a 
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Toronto, Canada. 
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2. Review of Works in the HVAC Controls Literature 

When regulating internal building thermal conditions, there are typically three 

parameters which are controlled: air temperature, relative humidity and CO2 

concentration. The development of automated control solutions for regulating these 

comfort parameters has been an on-going problem for a few decades now. Building 

control systems are often designed to regulate two of these parameters, most 

commonly zone air temperature and zone relative humidity. The regulation of these 

parameters can be considered as two processes: regulation of the HVAC systems and 

regulation of the zone thermal comfort, as shown in Figure 2.1. Ultimately, the aim is 

to regulate the zone thermal comfort and the regulation of the HVAC systems within 

is a means to achieving this. Firstly, let us consider the regulation of the zone thermal 

comfort. If the inputs and outputs of this process are considered, then the inputs to 

the process are the output conditions of the HVAC system supply air i.e. the heat and 

humidity transferred to the zone from the HVAC system. The outputs of the process 

are the zone air temperature and the relative humidity of the zone air. In order to 

achieve the desired zone thermal comfort, the outputs of the HVAC system i.e. the 

inputs to the zone control process must be controlled. The inputs to the HVAC 

system control process are typically the heating, fan or humidifier power etc. 

required to control the properties of the supply air.  

 

 

Figure 2.1: Thermal Comfort Regulation Process 

 

As mentioned in the previous chapter, both of these processes are typically complex 

nonlinear and multivariable processes with strongly coupled dynamics. The 

development of control solutions for the regulation of both of these processes has 

been the subject of significant research efforts for many years. Most methods found 

in the literature focus on tackling the control problem for one of these processes i.e. 

either HVAC control systems or zone control systems. The research presented in this 
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thesis addresses the control challenge presented by both the regulation of HVAC 

systems output and zone thermal comfort.  

 

2.1 Building Control Systems Overview 

The concept of automated building control systems was introduced with the 

aim of reducing energy consumption (Dounis and Caraiscos 2009). Initially, 

thermostats with only two states, on or off, were used to control air temperature in 

buildings. This type of control system is commonly referred to as bang-bang control. 

These thermostats however, gave rise to frequent alterations between the two states, 

consequently leading to the development of bang-bang thermostats with a dead zone 

in order to overcome this issue (Dounis and Caraiscos 2009). The bang-bang control 

scheme was observed to be inefficient however, with large overshoots occurring and 

poor set point tracking in general causing excessive energy consumption. Therefore, 

control systems designers began using PID controllers in an attempt to alleviate the 

issues encountered with bang-bang control [(Levermore 1992); (Dounis, Bruant et al. 

1996)]. Despite the improved performance that could be achieved with these 

controllers, the performance of fixed gain PID control systems was found to be very 

sensitive to the selection of the gain values. Poorly tuned PID controllers, could 

result in poor performance and potentially make the whole system unstable (Dounis 

and Caraiscos 2009). 

With the emphasis on energy efficiency increasing over time and occupants 

demands for thermal comfort rising, substantial research efforts have been directed 

towards the development of improved building automation strategies. Control 

engineers have made significant advancements with optimal, predictive, adaptive and 

intelligent control techniques. Generally speaking, the advancements in HVAC 

control strategies utilise four main techniques: Adaptive/Self-Tuning control, Fuzzy 

Logic Control (FLC), Artificial Neural Networks (ANNs) and Model Predictive 

Control (MPC). These techniques are often used to augment PID controllers. Some 

control strategies also utilise a combination of the techniques e.g. Neuro-Fuzzy 

controllers and adaptive Fuzzy controllers.  
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As mentioned previously, the control methods developed in this thesis focus 

on a method that is highly effective whilst being simple to use and implement and 

which would be low cost both financially and computationally. The subsequent 

sections in this chapter will provide an overview of the various methods that have 

been developed for designing building control systems. This review is by no means 

exhaustive however it provides a good indication of the research that has taken place 

in the literature, with an emphasis on the research that is most relevant to the 

methods presented in this thesis. 

 

2.2 Conventional Control Systems in Buildings 

PID controllers are used extensively in the buildings industry, as in many 

industrial applications, and can be considered to be the most common control 

method. The simple design and low cost associated with PID controllers as well as 

the numerous PID tuning methods available make them desirable in industry. At a 

given operating point, a PID controller can be tuned manually to achieve the desired 

closed loop response using prior knowledge of an AHU‟s characteristics. The 

Zeigler-Nichols tuning method is a well-known approach that was commonly used to 

tune the parameters of PID controllers. In reality, the operating conditions of most 

systems will vary with time due to changes in the environment. Manually tuned PID 

controllers with fixed gains are unable to deal with the complexities and variations in 

the dynamics of buildings and their HVAC systems, often leading to inadequate 

performance. Furthermore, the manual tuning process for PID controllers can be 

difficult and tedious for complex systems. This led to the developments of new 

tuning strategies and advancements for PID controllers in attempts to improve 

system performance.  

 

Geng and Geary (1993) investigated the effects of disturbances and process time 

delays on controller performance. Load disturbances were approximated by first 

order models with transport delays and the effects of these disturbances on the 

overshoot and settling time of the closed loop responses of the system were assessed. 

Through analysing the relationships between tuning rules based on open loop 
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parameters and those based on ultimate parameters, they found that the Zeigler-

Nichols rules based on ultimate parameters were more conservative than the latter. 

Based on the modified relationships between the normalised time delay and the 

ultimate parameters, the authors then generated an improved Zeigler-Nichols set of 

rules for the design of a PID controller for a HVAC system. The authors state that the 

refined Zeigler-Nichols tuning rules based on open loop parameters were valid for a 

small time delay. 

 

Nesler (1986) developed an adaptive PI control scheme. The self-tuning controller 

consists of five distinct blocks: an auto-tuning routine; an online parameter 

estimation step using a recursive least squares (RLS) estimator; a controller design 

block for calculating control parameters; a PI controller; and a performance monitor. 

The auto-tuning routine provides parameter estimates for a first order plus dead-time 

(FOPDT) model of the system based on open loop step response data using a batch 

least-squares algorithm. The RLS estimator provides estimates of the gain, time 

constant and dead-time of the process model. In order to avoid unnecessary 

computations and possible miss tuning of the controller due to continuous estimation 

of parameters, the RLS estimation is halted and reinitiated based on rule-based logic 

in the performance monitor. In this sense, the controller presented would be 

considered as a self-tuning controller as opposed to a fully adaptive controller. The 

results show that satisfactory control is achieved using the self-tuning controller 

however, when the system is subjected to an un-modelled disturbance, the RLS 

estimation algorithm diverges and can cause the controller to become unstable. An 

interesting point to note from this work is that it was observed by the author that 

HVAC process parameters generally change on a seasonal basis. Therefore, 

continuous estimation of the HVAC process parameters was considered unnecessary.  

 

Self-tuning and adaptive controllers for HVAC systems with various 

methodologies for tuning and adaption were researched and developed from a 

relatively early stage in the HVAC controls literature [(Dexter and Haves 1989); 

(Dexter, Geng et al. 1990); (Özsoy 1993); (Zhou and Liu 1998)]. The methodology 

of developing self-tuning and adaptive PID controllers using tuning rules based on 
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estimated parameters of a FOPDT model also became recognised as an effective and 

practical method with recent advancements being made with this method in the 

literature.  

 

Bi, Cai et al. (2000) developed an advanced PID auto-tuning algorithm using the 

tuning laws developed by (Wang, Hang et al. 1997) and (Wang, Hang et al. 2000) 

with process identification from step or relay plus step tests for SISO and MIMO 

processes. The identification method presented in (Bi, Cai et al. 1999) was used. The 

controller was applied for the control of a HVAC system in industry. The auto-tuner 

has three different settings; manual control; step or relay plus step test identification 

and gain calculation; and PID control. The gains are calculated based on the tuning 

law developed by (Wang, Hang et al. 2000) being applied to the identified process 

model. For MIMO processes, the identification methods are performed sequentially 

for each channel. The authors‟ present improved results using this auto-tuning PID 

controller compared to a modified Zeigler-Nichols tuning method. Implementation of 

the auto-tuner is simple and low cost which makes it useful in practice. A limitation 

of the traditional PID control method used however is that it does not have 

robustness measures for un-modelled dynamics and changes in plant operating 

condition over time. Furthermore, the traditional PID controller structure generally 

requires high gain values in order to reject disturbances effectively. The paper does 

not present any results showing the disturbance rejection capability of the controller. 

 

Bai and Zhang (2007) use a recursive least squares method with exponential 

forgetting combined with model matching of a zero frequency method to estimate the 

parameters of a first order plus dead time (FOPDT) model of the HVAC process. A 

simple tuning algorithm adjusts the controller gains for a PI controller based on the 

identified model parameters which are continuously updated using online estimation. 

The tuning rule however, guarantees stability based on the exact cancellation of the 

PI controllers zero and the HVAC systems pole using the identified model 

parameters. The method does not account for inaccuracies in the identification 

procedure however, which could lead to inexact cancellation. The paper also does 

not consider the effects that actuator saturation could have on the online 
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identification procedure which could cause further problems with the pole-zero 

cancellation. Results are presented comparing the adaptive PI controller developed in 

this work with a H∞ adaptive PI controller and a Z-N adaptive PI controller. The 

presented adaptive PI controller shows an improved response time and less overshoot 

and oscillations compared with the other methods. The controller shows a similar 

response to the H∞ adaptive PI controller when subjected to load disturbances. 

 

Bai, Wang et al. (2008) developed an adaptive Smith predictor-based self-tuning PI 

controller for an air-conditioning system in a test room. In this method, the 

parameters of the air conditioning process, including the time delay, are estimated 

online in the closed loop through the use of a recursive least squares algorithm 

combined with a z-domain fitting method. The estimated values are then used in two 

parts of the control system: an adaptive Smith predictor and a self-tuning PI 

controller. The Smith predictor, which uses a reference model, is constructed based 

on the estimated time delay in order to diminish the adverse effects of the time delay 

in the air-conditioning system. Providing the Smith predictor works correctly, such 

that it removes the effects of the time delay in the system, the self-tuning PI 

controller is then applied to the time delay free system. The self-tuning PI controller 

utilises the estimated process values and the predicted error from the Smith predictor 

in order to determine the control signal of the control loop using integral of time 

absolute error (ITAE) tuning rules. The authors applied their proposed controller 

design to a simulation model of an experimental HVAC system and compared its 

performance with the adaptive PI control strategy presented in (Wang, Lee et al. 

1999). The proposed controller produces smaller overshoots than the adaptive PI 

controller and has a shorter settling time when subjected to a step change and 

disturbances. The online identification algorithm used was able to identify the 

process parameters effectively however when the system was subjected to load 

disturbances, a mismatch between the identified reference model and the real HVAC 

process would arise.  

 

Qu and Zaheeruddin (2004) developed an adaptive PI control strategy using a 

recursive least squares method to update the parameters of a FOPDT model 
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describing the HVAC process. The H∞ PID tuning rules developed by (Tan, Liu et al. 

1998) are then used to update the parameters of the PI controller using the updated 

model parameters while the system is in closed loop. The authors transform the H∞ 

PID tuning rules for continuous-time systems to PI tuning rules for discrete-time 

systems using the equivalent transform method. The controller was applied to a 

discharge air temperature (DAT) control system. In the identification results, it is 

shown that the consideration of the input delay improves the identified model 

response however it is unclear how the input delay is identified as the authors‟ state 

that the delay is assumed to be fixed. A comparison of controller performance is 

made with an LQR optimal adaptive PI controller. The H∞ adaptive PI controller 

produces an improved response to set point changes, displaying slightly less 

oscillation and overshoot. Results are then shown with the system being subjected to 

noise and disturbances. The controller is able to reject the disturbances and maintains 

stable tracking. A limitation of the online identification method used is that it does 

not consider the effects that actuator saturation could have on the controller 

performance. The authors also do not show any stability assessment of the system in 

their methods. The same authors published a more recent article (Qu and 

Zaheeruddin 2010) showing an experimental study of the application of this method 

in a variable air volume (VAV) HVAC test facility. Results for several individual 

tests conducted using set point step changes while the system was subjected to 

different sets of disturbances are presented. The disturbances included changes in 

airflow rates, zone cooling loads and temperature of chilled water. The performance 

of the authors‟ proposed controller design was compared with a constant gain PI 

controller. The results show an improved response over the constant gain PI 

controller as the H∞ adaptive PI controller was able to stabilize an oscillatory output 

from the DAT system and steer it towards steady state. However, the results show 

that in order for the H∞ adaptive PI controller to achieve a good response, an accurate 

estimate of the dead time of the DAT system (within 10%) is required otherwise the 

response is highly oscillatory. 

 

The benefit of the adaptive/self-tuning methods mentioned above is that they 

are generally practical in their implementation and straightforward to use. The RLS 
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optimisation scheme commonly used for online parameter estimation however, 

suffers from the drawback that the estimator diverges when the control loop is 

subjected to un-modelled load disturbances. Furthermore, self-tuning control systems 

do not perform adequately when faced with actuator nonlinearities (Dounis and 

Caraiscos 2009). It is clear that these methods have the desirable characteristics of 

simplicity and practicality however they have flaws with regards to robustness and 

actuator nonlinearities. A method which could retain the simplicity and practicality 

offered by these methods whilst overcoming their drawbacks would be highly 

desirable.  

 

Robust control theory addresses the effects that discrepancies between the 

model and the physical system (model uncertainty) may have on the design and 

performance of (linear) feedback systems. Robust control provides a unified design 

approach under which the concepts of gain margin, phase margin, tracking, 

disturbance rejection and noise rejection are generalized into a single framework. In 

this method, nonlinearities are considered as uncertainties such that a linear uncertain 

model can be utilised instead of a nonlinear model. Typically, the uncertainties 

considered in robust control theory are bounded using norms. Many robust H∞ 

control methods have been developed for temperature control of air-handling units to 

deal with dynamic uncertainties. 

 

Al-Assadi, Patel et al. (2004) present a study on the use of H∞ performance measures 

for the design of robust decentralised output feedback control of a HVAC system. 

The robust decentralised controller is based on the work of Zaheeruddin 

(Zaheeruddin, Patel et al. 1993). The authors developed a seventh-order bilinear 

model of a HVAC system and linearized it about an operating point. The model was 

then expressed in state space format and the transmission zeros of the model 

determined in order to ensure the stability of the closed loop system. Performance 

specifications and robust stability for a robust decentralised servomechanism were 

incorporated within an H∞ optimisation criterion. The proposed controller design 

differs from conventional H∞ design in that it employs a servo-compensator and a 

constant gain feedback controller as opposed to the higher order controllers 
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associated with conventional H∞ designs. The MATLAB Optimisation Toolbox was 

used to solve the H∞ optimisation problem. Results show a comparison of the 

decentralised HVAC control system obtained by minimising a quadratic performance 

cost function and minimising the H∞ - norm of the sensitivity function. The H∞ 

solution generates a faster response in most cases and reduces the input energy used. 

The H∞ solution also achieves improved disturbance attenuation and robustness 

against model uncertainties.  

 

Anderson, Buehner et al. (2008) investigated the improvements in HVAC system 

performance that could be achieved using MIMO robust controllers. The authors 

present three different MIMO controller designs; a “minimal” MIMO robust 

controller; a “constrained” MIMO robust controller; and a “full” MIMO robust 

controller. These control systems were designed and tested on a simulation model of 

a HVAC system and then applied in practice to an experimental HVAC system. The 

HVAC system had five variables which could be regulated: water supply 

temperature, mass flow rate of water through the coil, air temperature entering the 

coil, air flow rate and temperature of the supply air. The “minimal” MIMO setup 

consisted of; a MIMO controller tracking two reference signals; a SISO PI controller; 

two free control variables. The “constrained” and “full” MIMO setups consist of a 

MIMO controller tracking four reference signals and one free control variable. The 

“full” MIMO controller differs from the others in that it requires a separate water 

supply for each discharge air system (DAS) as opposed to a shared supply. These 

three controllers are compared to a traditional SISO PI controller setup consisting of 

three SISO PI control loops tracking three reference signals. All three MIMO 

controllers were designed using a H∞ robust controller philosophy which required the 

experimental system model to be represented in canonical form. The results show 

that the “full” MIMO controller achieves the best controller performance however it 

would not economically feasible to have an independent water supply for each DAS. 

The “minimal” and “constrained” controllers achieve a significantly improved 

performance in settling times and disturbance rejection over the PI controller setup. 

In this work, the authors stress the importance of robust controller design for dealing 

with discrepancies between the model and the physical system due to approximation, 
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neglected or un-modelled dynamics, unknown parameters or even sensor and 

actuator imperfections. 

 

 The main challenge with H∞ robust control design is the selection of the 

control parameters, including model uncertainty weights and optimization criteria 

weights, which constitute the main part of the controller design. Although robust H∞ 

control deals with uncertainties directly, the associated constraints in the HVAC 

processes are not taken into account and could potentially lead to negative effects on 

the robustness and stability of the controlled system (Huang and Wang 2008). 

 

2.3 Model Predictive Control 

Important research has been conducted on model predictive controller (MPC) 

methods for HVAC control systems. MPC methods use a model of the process which 

includes a model for future disturbances in order to anticipate the behaviour of the 

building during a finite horizon and calculate the necessary control action 

accordingly. The control input is computed through the minimization of a cost 

function which is based on the model of the system. Typically, the cost function 

consists of two terms; one that includes the prediction error and another that includes 

the control effort. The anticipative effect of MPC methods is helpful in improving 

thermal comfort by reducing overheating and under-heating, particularly in the 

transitional periods between inoccupation and occupation (Morosan, Bourdais et al. 

2010). If the heating of a building at the beginning of the day is considered as an 

example, the dynamics of the heating system can be accounted for using the MPC 

method and the zone can be heated up to the desired temperature by the time the 

zone occupation begins as opposed to heating the zone after the zone occupation has 

already begun. This is illustrated in Figure 2.2. Many MPC methods have been 

applied to HVAC systems with various cost function designs modifications (Naidu 

and Rieger 2011). 
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Figure 2.2: Anticipative effect of MPC approach 

 

Huang, Wang et al. (2009) present a robust model predictive control (MPC) strategy 

for supply air temperature control of an air-handling unit. A FOPDT model with 

uncertain time delay and system gain is used to describe the process of the air-

handling unit. The uncertainties in the time delay and system gain are formulated 

using an uncertainty polytope and an offline LMI (linear matrix inequalities) based 

robust model predictive control algorithm is used to design a robust controller for the 

air-handling unit. The performance of the controller is evaluated on a simulated 

HVAC system in hot summer and cool winter conditions and its performance 

compared with a conventional PID control algorithm. In the hot summer conditions, 

the proposed controller shows less overshoot in its step response, however the 

response time is slower than that of the PID controller. In the winter conditions the 

proposed controller displays a faster response than the PID controller. In both cases, 

the PID controller and the proposed controller achieve accurate set point tracking. 

The proposed controller also demonstrates improved disturbance rejection over the 

PID controller. 

 

Morosan, Bourdais et al. (2010) proposed a model predictive control structure for 

temperature regulation in buildings. The authors show that a drawback of common 

MPC strategies is that, due to the requirement of a set point during periods of 

inoccupation, the comfort level may be decreased during the beginning and end of 

the occupation period. A new cost function for the model predictive controller which 
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incorporates the future occupation profile of the zone as the error weighting term is 

proposed in order to allow for the removal of the set point during inoccupation 

periods. The cost function also minimises the energy consumption. The MPC 

strategy was applied to a single-zone and multi-zone building model. Comparisons 

were made with a decentralized PI controller and a centralized MPC method. The 

results show a reduction in overshoot in comparison with the decentralised PI 

controller. The centralised MPC method produces a very similar response to the 

proposed distributed MPC method however the proposed method is less 

computationally demanding. The distributed MPC strategy also reduces the energy 

consumption over the simulation period in comparison to the other methods tested. A 

drawback of this method however, is that an accurate model of the system is required 

in order for the control law to be determined effectively. The control law is also 

reliant on knowledge of the future occupation profile.  

 

Siroky, Oldewurtel et al. (2011) developed a model predictive controller which uses 

weather predictions for a building heating system. The framework of the MPC 

controller consists of a finite horizon optimisation problem. The cost function 

accounts for stability and the performance targets, which are to minimise the energy 

cost while respecting comfort constraints. The comfort requirements are specified as 

a minimum desired temperature of 22°C during the day and 19°C at night and during 

the weekends. The authors deal with the minimum temperature requirement by 

penalising the displacement below the reference trajectory in the optimisation 

criterion. A linear model of the building is used to represent the building dynamics in 

the MPC controller. The proposed controller was tested for two months in a real 

building in Prague, Czech Republic. A cross comparison study is performed using 

the proposed controller and a heating curve controller on two similar building blocks 

for one week. The controllers are then switched round for another week. Another 

comparison was based on the use of heating degree days (HDD) for the 

normalisation of the building energy consumption.  HDD is a quantitative index 

designed to reflect the demand for energy needed to heat a building. The MPC 

strategy achieved a significant reduction in energy requirement peaks over the 

compared control method. The energy savings achieved using the MPC strategy was 
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in the range of 15-28% depending on various factors, mainly insulation level and 

outside temperature. It is interesting to note that the authors recognise that the 

implementation of the MPC strategy would be difficult in practice. However they 

believe that, due to the potential energy savings, the method could be adopted in the 

future.  

 

Hazyuk, Ghiaus et al. (2012) propose a MPC controller for temperature regulation of 

intermittently heated buildings. The controller is based on a new cost function which 

minimises the energy consumption whilst maintaining the thermal comfort in the 

building. In order to allow for the cost function to be solved by the linear 

programming method, the cost function is linear and subjected to linear constraints. 

These constraints bound the command input in the feasible range of the heating 

system. The authors state that, in their proposed controller, it is assumed that the 

maximal value of the command input is large enough to ensure the minimal comfort 

temperature. In reality, this is not always the case. A linear dynamic model of the 

nonlinear water-based heating system was obtained by considering the heat flux of 

the radiator as the controlled input and then, using a linearization method suggested 

by the authors, a linear model which is valid for the entire operating range is derived. 

This is achieved by representing the system as a linear dynamic model and a separate 

static nonlinearity. By passing the command calculated by the controller through the 

inverse function of the system nonlinearity, the nonlinearity of the model is 

compensated for and the controller performs as if the system were linear. Simulation 

results showing a comparison of the proposed MPC method against an MPC 

controller obtained using a conventional locally linearized building model are 

presented. On certain days, the proposed controller is able to achieve an improved 

performance due to the locally linearized method being outside of the validity range 

of the linearized model.  

 

 The main drawback of MPC methods is the potential model mismatch which 

can cause the predictive controller to produce an incorrect control signal. Many MPC 

methods also rely on accurate predictions of weather and disturbances which in 

reality may not be available. Robust MPC strategies aim to eliminate this drawback, 
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however, in order to ensure robust stability, extra constraints may be required 

(Mayne, Rawlings et al. 2000). These are not easy to determine and therefore may 

cause robust MPC strategies to be considered impractical in industry (Huang and 

Wang 2008). 

 

2.4 Artificial Intelligence Control Techniques in HVAC 

Systems 

Artificial intelligence (AI) techniques such as artificial neural networks (ANNs) and 

fuzzy logic control (FLC) possess attractive properties which have gained them 

significant interest as alternative methods for building control systems. ANNs have a 

strong ability to capture nonlinear models which can then be used as part of the 

controller design process. This makes them desirable for use with nonlinear HVAC 

control systems. FLC has become particularly popular in the HVAC research field 

due to its ability to deal with uncertainties in a straightforward manner. A number of 

control methods for buildings which utilise these AI techniques for building control 

systems can be found in the literature (Dounis and Caraiscos 2009).  Some methods 

also use an overlap of these techniques in order to incorporate the benefits of the 

different techniques. This section provides an overview of some of the AI control 

methods which have been developed for HVAC systems in the literature.  

 

2.4.1 Fuzzy Logic Control 

Fuzzy logic (FL) is based on human approximate classification and reasoning. It 

operates using a rule-based system that can rely on the practical experience of an 

operator. There are three main processes that comprise FL as illustrated in Figure 2.3 

(Moon, Jung et al. 2011):  

1) Fuzzification (input stage) where a crisp set of input data are gathered and 

converted to a fuzzy set using fuzzy linguistic variables, fuzzy linguistic 

terms and membership functions  
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2) Inference (processing stage) for generating inferred results based on 

previously fuzzified values and linguistic IF/THEN statements 

3) Defuzzification (output stage) for totalling the result using linguistic rules, 

then converting it to crisp output values.  

 

 

Figure 2.3: Fuzzy Logic Process 

 

FL systems are well suited to nonlinear and MIMO systems as well as systems that 

cannot be modelled easily by conventional means. Therefore, they have gained 

interest as an attractive alternative to conventional HVAC control systems and have 

been applied in various HVAC control problems. Many advanced control methods 

have been developed using fuzzy adaptive control and the combination of fuzzy logic 

with varying PID control structures. In the latter case, conventional PID controllers 

are used in conjunction with a set of fuzzy rules and a fuzzy reasoning mechanism to 

tune the PID gains online (Dounis and Caraiscos 2009). Typically, the fuzzy PI 

controller is an incremental controller which can be described by the following 

equation: 

 

                  (2.2) 

 

Where k is he sampling instance and du(k) is the incremental change in controller 

output determined by fuzzy rules. A diagram of the structure of a fuzzy PI controller 

is shown in Figure 2.4.  
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Figure 2.4: Fuzzy PI Controller Structure (Dounis and Caraiscos 2009) 

 

Fuzzy PD controllers also exist however they are only applicable to a limited class of 

systems (Qiao and Mizumoto 1996). They are typically not applicable when sudden 

load disturbances and measurement noise exist (Dounis and Caraiscos 2009). Fuzzy 

PID controllers are uncommon due to the associated difficulties in creating an 

efficient rule base and the large number of parameters that require tuning (Dounis 

and Caraiscos 2009). Therefore, fuzzy PI controllers are more commonly used. 

Guzelkaya, Eksin et al. (2003) proposed a new approach for tuning the coefficients 

of PID-type fuzzy logic controllers (FLCs). A self-organizing fuzzy controller which 

extends the rule based fuzzy controller with an additional learning capability has also 

been developed (Kazemian 2001). Woo, Chung et al. (2000) proposed a PID type 

fuzzy controller with self-tuning scaling factors. 

 

Hongli, Peiyong et al. (2008) proposed a fuzzy logic control strategy for a HVAC 

system which is designed based on PID gains. A nominal fuzzy controller is 

designed and the input and output variables of the fuzzy controller are normalized. 

The output of the fuzzy controller, i.e. the resulting control law, is then rearranged 

into a conventional PID format and the corresponding coefficients of the error, 

integral of error and error difference are considered as the proportional, integral and 

derivative gains respectively. From this relationship the normalized factors of the 

fuzzy controller can be determined from the PID gains. It is unclear however, which 

method the authors use for selecting the PID gains. Simulation results show that the 

authors‟ method is able to achieve an improved response over a wider operating 

range in comparison to a conventional fixed gain PID controller. The fuzzy controller 
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method was also applied to an experimental HVAC system. An improved response 

time and tracking performance is achieved with the fuzzy controller. A limitation of 

the method is that there appears to be no explicit stability assessment method for the 

controller. Furthermore, the fuzzy control law does not account for actuator 

saturation in that the control action might demand more power from the actuator 

when it has reached its power limit. 

 

Baek, Kim et al. (2008) developed an adaptive fuzzy output feedback control method 

for temperature and relative humidity regulation in a nonlinear HVAC system. The 

controller uses an observer to estimate the systems unknown state variables via 

which the fuzzy control scheme is formulated. An improved tracking performance is 

achieved with the proposed method when compared to a controller designed using a 

classical feedback linearization approach. 

 

Pal and Mudi (2008) developed a self-tuning Fuzzy PI (STFPI) controller for the 

supply air pressure loop of a HVAC system. The authors use a conventional PI type 

fuzzy controller in conjunction with a self-tuning mechanism which updates the 

output scaling factor online using a fuzzy rule base. The rule-base for tuning the 

output-scaling factor is based on the error and change of error in the controlled 

variable. The fuzzy controller uses a 7x7 if-then rule matrix for determining the 

control signal (u) as well as the updating factor for the output scaling factor (β). 

Triangular fuzzy membership functions were used in the controller. The rule 

matrices used for the determination of u and β are shown in  Table 2-1 and Table 2-2 

respectively. The authors chose to apply the self–tuning mechanism to the tuning of 

the output scaling factor due to its strong influence on the performance and stability 

of the system. 
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 e 

∆e 

 NB NM NS ZE PS PM PB 

NB NB NB NB NM NS NS ZE 

NM NB NM NM NM NS ZE PS 

NS NB NM NS NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PS PM PB 

PM NS ZE PS PM PM PM PB 

PB ZE PS PS PM PB PB PB 

Table 2-1: Fuzzy rules for computation of u in (Pal and Mudi 2008) 

 

 e 

∆e 

 NB NM NS ZE PS PM PB 

NB VB VB VB VB B MB SB 

NM VB VB VB B MB SB S 

NS VB VB B MB SB S VS 

ZE VB B MB SB S VS ZE 

PS B MB SB S VS ZE ZE 

PM MB SB S VS ZE ZE ZE 

PB SB S VS ZE ZE ZE ZE 

Table 2-2: Fuzzy rules for computation of β in (Pal and Mudi 2008) 

 

Where the contents of the tables are linguistic expressions of magnitude: NB 

(negative big), NM (negative medium), NS (negative small), ZE (zero), PS (positive 

small), PM (positive medium), PB (positive big). In Table 2-2 the expressions of 

magnitude are all positive where: VS (very small), S (small), SB (small big), MB 

(medium big), B (big), VB (very big). The HVAC system was modelled as a second 

order plus dead time (SOPDT) transfer function and simulation results showing the 

performance of the STFPI controller under process parameter variations were 

presented. Under normal operating conditions, the controller displays accurate set 

point tracking with no overshoot occurring. When the process parameters are varied 

however, changes in the response characteristics can be observed e.g. overshoots and 
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slower response times are produced. The process scaling factors used for the STFPI 

controller are changed for the different process parameter variations. These are 

determined based on prior knowledge of the process or trial and error. The proposed 

controller was compared to a PID controller and an adaptive Neuro-Fuzzy (ANF) 

controller. The STFPI controller shows an improvement over the other controllers 

tested with respect to peak overshoot and settling time. It would have been 

interesting however if the authors had presented results showing the controller 

applied to a nonlinear HVAC plant with actuation power limits. 

 

A self-tuning PID-type fuzzy adaptive controller for an expert HVAC system was 

presented by Soyguder, Karakose et al. (2009). The auto-adaptive controller is 

designed using an incremental fuzzy logic controller to tune the parameters of a PID 

controller. The controller uses the error and error change as inputs for three separate 

fuzzy rule bases which determine the proportional, integral and derivative gains for a 

PID controller. Each fuzzy rule base consists of 25 IF-THEN rules and gauss 

membership functions are used for all variables. The physical domain of the inputs 

and outputs are selected based on trial and error. The authors use a HVAC system 

model with two zones to evaluate the performance of their proposed controller 

design. A comparison is made with a conventional PID controller and a fuzzy-PD 

controller which uses FL directly to determine the required mass flow rate of cooled 

air entering the zone. Triangular membership functions are used for the fuzzy-PD 

controller. The simulation results indicate that the proposed self-tuning PID-type 

fuzzy adaptive controller outperforms the PID and fuzzy-PD controllers with regards 

to settling time and steady state error.  

 

Therese and Nair (2012) developed a simplified decoupled self-tuning fuzzy-PI 

controller in order to eliminate the interaction which occurs between the controlled 

parameters in MIMO HVAC systems. A decoupling matrix is multiplied by the 

system matrix in order to create a decoupled process matrix as shown in equation 

2.2. 
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The elements of the decoupling and decoupled process matrices are determined by 

performing the matrix multiplication, then rearranging and solving the resulting 

equations symbolically. The simplified decoupling process makes the system 

internally stable during process interactions by making the individual elements of the 

decoupling matrix stable. The controller is used to regulate the temperature of a room 

with two temperature sensors at either side of the room. The temperature of the room 

is controlled through manipulation of the positions of two dampers on the room 

ceiling which in turn adjust the rate of cold air entering the room. The system is 

coupled since altering the position of one damper will have an effect on both 

temperature sensors. The authors use the self-tuning fuzzy-PI (STFPI) controller 

proposed by (Pal and Mudi 2008) to control the decoupled HVAC process. A 

comparison is made between the STFPI controllers with and without decoupling. The 

presented results show that a significantly less coupled response is obtained with the 

decoupling controller when subjected to a step change in set point for one 

temperature sensor and observing the effect on the other temperature sensor. A 

drawback of this decoupling method however is that accurate knowledge of the 

process model is assumed as there appears to be no robustness measures in place for 

dealing with inaccuracies in the process model. Furthermore, one of the main 

arguments for the use of FL is the non-requirement of a process model, however the 

method presented here necessitates the use of a process model. 

 

It is clear that the linguistic nature and robustness properties of Fuzzy control 

make it an attractive method for use with HVAC control systems which can replace 

conventional PID controllers. However, despite the fact that Fuzzy controllers are 

typically more robust than conventional PID controllers, the lack of existence of a 

systematic way of generating control rules for FLCs is a drawback (Huang and Wang 

2008). Furthermore, they do not explicitly contain any objective knowledge about the 

system unless that knowledge can be expressed and/or incorporated into the fuzzy set 

framework (Yager and Filev 1994).  
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2.4.2 Artificial Neural Network Control 

The artificial neural network (ANN) is a biologically inspired technique which is 

based on the parallel architecture of the human brain. Analogous to the human brain, 

an ANN is comprised of a number of interconnected neurons, often referred to as 

perceptrons. Each neuron in the ANN is a mathematical relationship which aims to 

replicate the functionality of a biological neuron. The composition of an artificial 

neuron is illustrated in Figure 2.5. 

 

 

Figure 2.5: Artificial neuron composition 

 

In Figure 2.5, X1…Xn are the inputs to the neuron and w1…wn are the corresponding 

weights. Each input to the neuron is multiplied by its corresponding weight, which 

signifies the strength of the connection. The summation of the inputs modified by the 

weights is related to the neuron output by a transfer function, typically a sigmoid, tan 

sigmoid or pure linear relationship. The interconnection of all of the neurons in an 

ANN provides a powerful non-linear data-processing structure. With this structure, 

ANNs have the ability to somewhat replicate some functions of a biological neural 

network such as pattern matching and learning. These abilities prove to be very 

useful for modelling in applications where obtaining an algorithmic or mathematical 

model of the system is difficult, however there is access to large amounts of input 

output data which is representative of the system over a wide operating range. The 

neurons in an ANN are typically arranged into a number of layers consisting of an 
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input layer, output layer and any number of hidden layers in between, providing the 

link between the input and output layers. A typical structure for an ANN is illustrated 

in Figure 2.6. 

 

 

Figure 2.6: Typical ANN Structure 

 

The advanced nonlinear modelling capability of ANNs has been recognised as a 

useful tool for control systems design, particularly for highly nonlinear systems. In 

ANN based control systems, an ANN is used to capture the nonlinear dynamics of 

the system and then a control system based on the nonlinear model is created. These 

control systems are designed to use ANNs in various different setups and structures 

e.g. direct and indirect, adaptive, combined with PID etc. This section provides an 

overview of some of the works found in the literature which utilise ANN based 

control in buildings. 

 

Zaheeruddin and Tudoroiu (2004) explore the use of neural network (NN) based 

tuning and tracking functions for improving the performance of a PID controller 

applied to a discharge air temperature system. In this control strategy a three layer 

feed forward NN is trained on an input-output data set using the error back 

propagation algorithm. Once the NN is trained, the PID controller gains are output 

from the hidden layer. The training process can be initiated by arbitrarily assigning 

values for the PID gain parameters or by computing the gain values using another 

method such as the Zeigler-Nichols method. The authors state that the convergence 

of the algorithm is greatly improved if the Z-N method is used. It is also stated that, 

in order to improve the efficiency of the NN, one of the gain parameters are fixed 
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and when operating with a full PID controller, a target gain must be specified. A 

tracking control technique presented by (Anderson and Moore 1990) is adopted in 

order to eliminate large overshoots with the neuro-PID method. The results using this 

method show less overshoot, however, the response time is significantly slower with 

the controller taking more than double the time to reach the set point. This suggests 

that the gains have been reduced significantly. The extra parameters which must be 

specified in this method mean that it could be considered impractical for 

implementation in the buildings industry.  

 

Wang, Zhang et al. (2007) designed a hybrid neural network PID controller and 

conventional PID controller for the control of a variable frequency air-conditioning 

system. The NN-PID controller is trained using the back propagation algorithm on 

the predicted system output and is used for adapting the gains for the PID controller. 

A conventional PID controller is used to eliminate steady state error which occurs. 

This hybrid control strategy produces improved results over conventional PID 

controller alone with regard to changing model parameters due to its ability to adapt 

the PID gains. 

 

Guo, Song et al. (2007) developed a neural network assisted cascade control system 

for an air handling unit. The outer loop consists of a NN controller regulating the 

supply air temperature from the AHU. The inner loop regulates the flow rate of 

chilled water using a proportional controller. The NN is trained online using a 

simultaneous perturbation stochastic approximation (SPSA) based algorithm. The 

authors state that the SPSA based training algorithm guarantees the weight 

convergence of the NN and stability of the control system. The cascade control 

scheme was tested on an experimental HVAC system. A comparison of the authors' 

method was made with a traditional single loop PID controller and a cascade 

controller with a PI inner loop and PID outer loop controller. The tests show 

improved results with the NN cascade controller over a traditional single loop PID 

controller for temperature set point tracking and disturbance rejection for the chilled 

water flow rate. 
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Guo and Song (2009) present a neural network assisted PI (NNAPI) control strategy 

aimed at improving the performance of the air pressure control in a variable air 

volume (VAV) system. The neural network is trained online using an adaptive dead 

zone training algorithm which eliminates the requirement of a bounded regression 

signal to the system and aims to alleviate the problems normally associated with 

disturbances in the neural network training process. The conic sector theory is used 

to guarantee stability of the neural network control scheme. The authors apply the 

proposed method to an experimental VAV air-conditioning system in order to 

evaluate its performance and compare it to a conventional PI controller. A series of 

experiments were run with various disturbances and set point changes. The NNAPI 

controller displays improved disturbance rejection over the PI controller as well as 

better set point tracking. 

 

An advanced ANN based thermal control method for indoor thermal comfort 

regulation in residential buildings was proposed by Moon and Kim (2010). The 

authors developed a control logic framework consisting of four component control 

logics suing MATLAB and its NN toolbox. This included two predictive and 

adaptive logics using ANN models to predict future thermal conditions of air 

temperature, humidity, and predicted mean vote (PMV). The structure of the ANNs 

used is shown in Figure 2.7. 
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Figure 2.7: Structure of ANN models used in (Moon and Kim 2010) 

 

The models were designed to reduce overshoot and undershoot of the controlled 

variable using the ANN-based predictive and adaptive control as well as achieve 

indoor thermal comfort by taking into account air temperature, humidity and PMV. 

The training data sets for the ANNs were obtained in a test chamber and a sliding 

window method was used for the training algorithm such that the new training data 

set would be added to the other training data sets and the oldest data set would be 

removed. The authors modelled a two story single family home in the U.S. by 

incorporating International Building Physics Toolbox (IBPT) and MATLAB in order 

to test the performance of their proposed thermal control method. Four different 

control logics were tested: temperature and humidity control without ANNs; 

temperature and humidity control with ANNs; PMV control without ANNs; and 

PMV control with ANNs. The ANN-based predictive and adaptive control logics 

were able to create more comfortable thermal conditions than the control logics 

without the ANNs, displaying reduced overshoot and undershoot and increased 

comfort periods of air temperature, humidity and PMV. 

 

The efficacy of ANNs at modelling nonlinear systems makes them a valuable 

tool for nonlinear control systems design. The main drawback of neural network 
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control however, is that gaining information over the full operating range of an AHU 

necessitates the collection of a large amount of training data, which cannot always be 

easily obtained in practice. Furthermore, the learning algorithms which must be 

employed are often complex making the on-line identification process time 

consuming. Consequently, ANN based controllers can often be considered 

impractical in industry (Naidu and Rieger 2011). 

2.4.3 Neuro-Fuzzy Control 

Recently, control methods that incorporate FL with ANNs have been introduced in 

order to overcome the difficulties associated with developing optimal fuzzy rules 

whilst maintaining the desirable robustness of FL controllers. The Adaptive Neuro-

Fuzzy Inference System (ANFIS) is one of the Neuro-Fuzzy approaches. In order to 

enable the Fuzzy inference system to track given input/output data, the membership 

function parameters are tuned using neuro-adaptive learning techniques. The tuning 

process of membership function parameters is similar to the process of training 

ANNs i.e. the utilisation of training data sets, which are comprised of input/output 

data, and a training algorithm such as back propagation. Through this tuning process, 

the ANFIS aims to obtain the best parameters to produce an optimal response to the 

given environment. In addition, through the iterative retuning process for adaptation, 

a global solution is obtainable [(Dounis and Caraiscos 2009); (Krarti 2003)]. A 

number of Neuro-Fuzzy controllers have been developed for HVAC systems control 

in the literature. Wu and Cai (2000) designed an Adaptive Neuro-Fuzzy (ANF) 

controller for the supply air pressure control loop in an HVAC system. A Neuro-

Fuzzy Controller (NFC) was designed with the aim of using a smaller number of 

fuzzy rules leading to savings in computational time by Pal (2008). 

 

Ertunc and Hosoz (2008) performed a comparative study between ANN and ANFIS 

techniques for the prediction of the performance of an evaporative condenser. An 

experimental evaporative condenser setup consisting of a copper tube condensing 

coil with air and water circuit elements was equipped with temperature, pressure and 

flow rate measurement instrumentation. Experimental data was gathered and used for 

training the ANN and ANFIS models. The models were then used to predict the 
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condenser heat rejection rate, refrigerant temperature leaving the condenser as well 

as the dry and wet bulb temperatures of the leaving air stream. The prediction 

performances of both modelling techniques were measured in terms of correlation 

coefficient, mean relative error, root mean square error and absolute fraction of 

variance. The prediction accuracy of the ANFIS models were observed to be 

marginally better than those of ANN ones, however the predictions of ANN models 

also yielded a good statistical performance. The improvement in performance 

achieved using the ANFIS model can be attributed to the fact that ANFIS combines 

the learning capabilities of a neural network and reasoning capabilities of fuzzy logic 

thus improving its prediction capability compared to ANN and FL techniques. 

 

Soyguder and Alli (2009) present an expert system for temperature and humidity 

control in a HVAC system using Adaptive Neural Fuzzy Interface System (ANFIS) 

and optimization with a fuzzy modelling approach. A dynamic fuzzy logic control 

method is used to determine and adapt the gain values for a classical PID controller. 

The control method was tested on an experimental HVAC system. Input-output data 

sets for the system were then stored and used to obtain the intelligent model based on 

the ANFIS approach. This model is used to predict the systems damper gap rates. 

The ANFIS method uses a multi-layer feed forward network where each node 

performs a particular function on incoming signals. The adaptive learning parameters 

of the network are updated using gradient learning rules. The control system is able 

to track the temperature and relative humidity set points accurately although no 

comparison is made with an alternative method. Results showing the prediction of 

the ANFIS model indicate that the authors‟ approach is able to model the 

experimental HVAC system well and produce an accurate prediction. 

 

A comparative study between fuzzy, ANFIS and ANN based building thermal 

control methods was presented by Moon, Jung et al. (2011). The ANFIS and ANN 

based controllers developed were adaptive methods utilising an iterative self-tuning 

process during system operation, however the fuzzy–based controller was non-

adaptive. A Fuzzy model with two input variables (error and error change) and one 

output variable (control signal) was developed using the MATLAB Fuzzy Logic 
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toolbox. Membership functions of variables were organized based on the heuristic 

tuning process. Trapezoidal and triangular membership functions were used for the 

fuzzy logic controller. The MATLAB FL toolbox was also used to develop the 

Sugeno-type ANFIS model. The ANFIS-based logic generates variable output for the 

control system, similar to the fuzzy logic controller. The input variable types used for 

the ANFIS model were the same as used with the Fuzzy-based logic however 

different output membership functions and rules were used. Through the iterative 

training process during the system operation, the model continuously adjusted 

parameters of the output membership functions in order to produce the optimal 

output in the given environment. The ANN model was developed using the NN 

toolbox in MATLAB and is used to calculate a variable ratio of system operation. A 

three layer ANN structure was used with the input, hidden and output layers 

consisting of two, five and one neurons respectively. The performance of each 

method was tested on a simulation model of a two story residential building which 

was developed using the International Building Physics Toolbox (IBPT) and 

MATLAB. The two adaptive control methods (the ANFIS and ANN methods) were 

able to achieve more stable and accurate control of the thermal conditions compared 

to the Fuzzy-based non-adaptive method. All three control methods utilised a similar 

amount of energy. 

 

Neuro-Fuzzy control techniques have proven to be effective for HVAC 

control in many cases. However, due to both ANN-based control and fuzzy control 

requiring a large amount of system operation data, which covers the whole process 

operating range, for model training, there still remains a drawback with this AI 

technique. Moreover, they often cannot take account of constraints directly in the 

control design. Therefore, the application of such intelligent methods might be 

limited in practice (Salsbury 2005). 

 

2.5 Other Relevant Works 

There are other techniques in the literature which have been used to develop 

control systems for buildings which do not fall directly into the subcategories 
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mentioned above. Some of these methods use adaptive and nonlinear controller 

design techniques. The use of nonlinear controller design methods for HVAC control 

systems surprisingly, has been rare despite it being a valuable approach to dealing 

with nonlinear and time-varying systems. Adaptive control on the other hand has 

been used extensively in this area. In this section, some of the relevant works using 

these alternative methods are reviewed. 

 

Wang, Zhang et al. (2008) present a self-adaptive human-imitating intelligent PID 

controller design for HVAC control. The authors state that simulating human 

intelligent control consists of four steps; simulating human divisional control; online 

parameter tuning; feed-forward control; and lag compensation. Human divisional 

control is simulated using a set of rules based on the error and error gradient. The 

proportional, integral and derivative gains, which have been pre-selected, are 

modified according to different values of error and error gradient. The gains are also 

tuned online based on a cumulative error signal over a period of 300 seconds. Based 

on this error, new values for the gains are calculated. A feed-forward controller is 

also employed in order to adjust the flow of fresh air into the room based on changes 

in amplitude of the outside temperature or flow rate. In order to compensate for the 

lag characteristic in the temperature control process, alterations are made to the input 

control signal based on the values of the error and error gradient. The results 

presented show an improvement with regard to overshoot over a traditional PID 

controller although it is not clear how the traditional PID controller was tuned. The 

intelligent PID controller however produces a more oscillatory response. The results 

also do not show the disturbance rejection capability of the controller. A limitation of 

the method is that it does not consider the problems which could arise from actuator 

saturation and the tracking set point is out with the reach of the control system 

(unreachable). 

 

Moradi, Saffar-Avval et al. (2011) present a comparison of two nonlinear 

multivariable controller designs for indoor temperature and humidity control. The 

method is applied to a nonlinear MIMO air handling unit model. The authors use an 

observer to estimate state variables and design a hybrid control system. A regulation 
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system designed using state feedback control laws is used for disturbance rejection. 

The control laws are constructed based on the assumption that full state feedback is 

available however the observer is in fact used to estimate the process states. Two 

nonlinear control methods are designed and compared for tracking objectives; gain 

scheduling and feedback linearization. The performance of the control methods are 

evaluated based on the tracking responses to a sequence of step/ramp-step 

commands. The results show that the controller based on the feedback linearization 

approach achieves a quicker response time than the gain scheduled controller 

however it produces higher overshoots. The authors state that the gain scheduled 

controller consumes less energy due to less variation of air and cold water flow rates 

being required for the tracking objectives to be attained. Results demonstrating the 

ability of both controllers to deal with model uncertainty are also shown. The 

feedback linearization controller produces a superior performance over the gain 

scheduled controller. The authors state that this is due to inaccurate parameter 

adjustments in the gain scheduled controller.  

 

Chaudhry and Das (2012) developed an adaptive one step ahead (OSA) and an 

adaptive weighted one step ahead (WOSA) controller for regulation of indoor 

temperature of a building. A simulation study was performed with the controller 

methods applied to a building modelled as a bilinear system. The authors use a 

recursive least squares estimation algorithm to estimate unknown model parameters 

and the control signal is computed based on these parameters. The global stability of 

the system is proven using a theorem provided by the authors. The performance of 

the control system is tested in a scenario where the controller is required to raise the 

temperature of the room to a desired set point by following a user-specified 

trajectory. A comparison of the controller performance is made with a PID-fuzzy 

controller. The PID-fuzzy controller shows an oscillatory response with a large 

overshoot before settling down to the desired set point. The adaptive OSA controller 

displays a much smaller overshoot and accurate set point tracking. A similar 

response is produced with the adaptive WOSA controller however a steady state 

error is observed. By tuning the weight parameter in the controller however, accurate 

tracking of the set point is achieved.  
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Rehrl and Horn (2009) present a supply air temperature controller for an industrial 

HVAC pilot plant based on a Smith predictor and Inward approach. The authors 

utilise a controller with two degrees of freedom in order to overcome the structural 

constraints of conventional PI controllers. A standard Smith predictor is used in order 

to compensate for the dead time in the HVAC plant. The controller is then designed 

based on the dead time free plant. An overall transfer function is derived based on 

user defined specifications for overshoot and rise-time. Through the application of 

the linear algebraic method in (Chen 1993), the controller transfer functions are 

determined. The control system design was performed using MATLAB/Simulink 

and implemented on an electronic control unit using automatic code generation. 

Experimental results were obtained on an industrial HVAC pilot plant with a 

comparison being made between the proposed controller design applied and a 

conventional PI controller tuned using the T-sum rule. Two configurations of the PI 

controller were tested: “standard” and “fast”. The results show that the “fast” PI 

controller has slightly more accurate set point tracking and a faster response than the 

“standard” PI controller. The proposed controller shows a similar response time to 

the “fast” PI controller however a larger steady state error exists over the PI 

controller. The response is also more oscillatory than the PI controller.  

 

Inverse dynamics based controller methods is another technique which has 

received little or no attention in the HVAC controls field. Nonlinear inverse 

dynamics controllers are typically utilised in high performance control applications 

such as aerospace or robotics (Counsell, Khalid et al. 2011). The methods developed 

in this thesis utilise an inverse dynamics based controller methodology, which was 

originally used in the aerospace field, namely Robust Inverse Dynamics Estimation 

(RIDE) (Bradshaw and Counsell 1992). More recent uses and developments of this 

method in the aerospace and other fields can be found in the literature [(Ding, 

Bradshaw et al. 2004); (Counsell, Brindley et al. 2009); (Counsell, Zaher et al. 

2010); (Brindley, Counsell et al. 2012)]. To the knowledge of the author, there is no 

published literature on the use of the RIDE controller algorithm for HVAC control 

systems design other than the works of the author of this thesis (Zaher, Counsell et 
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al. 2011). Recently, however, it has been utilised for assessing the controllability of 

buildings (Counsell, Khalid et al. 2011) as well as developing a simplified dynamic 

method for energy estimation of dwellings (Murphy, Khalid et al. 2011). A review of 

these works has been included in this section for completeness. 

 

Murphy, Khalid et al. (2011) developed a simplified dynamic method of assessing 

the controllability and energy estimation of a dwelling and its servicing systems. The 

method, Inverse Dynamics based Energy Analysis and Simulation (IDEAS), aims to 

supplement the Standard Assessment Procedure (SAP) used in the buildings industry 

for calculating a rating for the energy efficiency and environmental impact of a 

specific dwelling. With IDEAS, the authors take into account statistical parts of the 

model such as impact of casual heat gains and solar gains by inheriting this from the 

current SAP model.  Therefore, a model which is more advanced but is also 

backwards compatible with the current SAP model was developed.  The underlying 

theory is that the use of more detailed data in the model will produce more detailed 

results.  Using this model, the authors use inverse dynamics to evaluate the perfect 

control input at each model time step and to enable the implementation of the 

dynamic model in Microsoft Excel. The inverse dynamics method used to determine 

the perfect control is the RIDE methodology. This method can be used to estimate 

the energy or power input required to maintain an ideal standard occupancy 

temperature and time profile. 

 

Counsell, Khalid et al. (2011) presented a methodology to assess the controllability 

of a building and its servicing systems such as heating, lighting and ventilation. The 

Robust Inverse Dynamics Estimation (RIDE) algorithm, which is a nonlinear inverse 

dynamics method that has been successfully applied in the aerospace and robotics 

industries, was used to develop a controllability science for buildings similar to that 

which exists in the aerospace industry (Muir and Bradshaw 1996). The authors 

developed a simplified dynamic building model using differential equations that 

provides answers to fundamental questions of controllability and accurately captures 

the dynamic and cross-coupling behaviour of the building. The nonlinear dynamic 

equations that were constructed were then linearized in order to enable the 
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application of the aerospace controllability science. The engineering science 

presented in this paper is based on „A Perfect Control Philosophy‟. In this 

philosophy, the feasibility of perfect control whilst maintaining stability for the 

closed-loop control system is established for a given design. Through this feasibility 

assessment, a designer would be able to assess the ease in which perfect control 

could be achieved. The authors‟ reasoning behind this is that it can be assumed that 

the easier it is to achieve perfect control, the easier the real system will be to control 

in reality. In this work, the controllability of the building model is assessed by using 

Nonlinear Inverse Dynamics and the RIDE Methodology (Bradshaw and Counsell 

1992), which in a modelling exercise provides a perfect control solution. Using these 

methods, the main aspects which should be considered when designing control 

systems are assessed such as stability, degree of coupling and reachability. The 

methods presented in this work provide a tool that can aid architects in their 

decisions on which building design and services to use. In addition to this, the 

method can also be used to assist the control systems designer in developing high 

performance control systems for buildings. Therefore, the principles behind the 

controllability science presented in this work proved to be valuable when designing 

the control systems presented in this PhD thesis. 

 

2.6 Chapter Conclusions 

The research community has been active in developing advanced control systems for 

buildings in order to improve their performance and efficiency for many years. In 

light of the review presented in this chapter, it is clear that researchers have utilised 

several different techniques for developing adaptive, learning and robust controllers 

that aim to achieve the desired improvement in thermal comfort control performance. 

2.6.1 Summary of Reviewed Techniques 

Adaptive and self-tuning PID control methods are practical and easy to implement. 

This is a highly important attribute as it has been identified that controllers that are 

complex or require extra commissioning time can often be disregarded in industry 

(Salsbury 2005). Another desirable feature which this type of controller possesses is 



47 

 

that they can be applied to different buildings without alteration due to their adaptive 

nature. Their performance however, can often be similar to fixed gain PID 

controllers due to the fact that they usually do not have robustness measures for 

dealing with inaccuracies in the identified models (Naidu and Rieger 2011). 

Furthermore, the performance of their online estimation algorithms deteriorates when 

faced with un-modelled disturbances and actuator nonlinearities. Geng and Geary 

(1993) however recognised that since buildings typically have slowly varying 

parameters, constant online adaption is unnecessary. Control systems developed 

based on robust (H∞) control theory provide a framework for dealing with modelling 

inaccuracies. This principle is valuable as it could, conceptually, provide a solution 

for the inaccuracies in the identification procedure in self-tuning and adaptive 

controllers. Implementation of these methods in practice however can be complicated 

and impractical due to the difficulty associated with the selection of the control 

parameters. MPC methods provide an interesting approach to HVAC systems control 

in that they possess an anticipative property. These methods can reduce energy usage 

due to the minimisation of a cost function which incorporates the prediction error and 

the control effort. The main drawback of these methods however is their reliance on 

an accurate model of the system. AI techniques utilised in control systems design 

aim to tackle the problem from a human perspective i.e. through learning and 

reasoning etc. These methods possess many advantages due to their ability to learn 

complex nonlinear relationships and deal with uncertainties. ANN and FL based 

controllers however, typically require a large amount of system operation data which 

covers the whole process operating range for model training (Huang and Wang 

2008). Therefore the application of AI techniques is still limited in the buildings 

industry.  

2.6.2 Advantages of Proposed Control Methods 

The methods developed in this thesis will be explained in detail in Chapters 5 

and 6, however at this point it would be useful to highlight some of the beneficial and 

novel aspects of the methods developed by the author in this thesis. As mentioned 

previously, the controller structure used as the basis of the methods developed is that 

of a robust nonlinear inverse dynamics controller, namely the RIDE methodology. 
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NID controller designs cannot be found easily in the HVAC literature. Specifically, 

to the knowledge of the author, the RIDE methodology has not been applied in the 

control of HVAC systems, other than in the work of the author (Zaher, Counsell et 

al. 2011). The lack of use of NID techniques in HVAC control may be attributed to 

the requirement of an accurate model of the system in order for the NID control law 

to produce suitable results. The controller structure used in this thesis alleviates this 

problem associated with other NID methods however, as it does not require full 

knowledge of the system dynamics. This feature is useful, particularly in systems 

that have large differences in time constants like buildings, as it overcomes part of 

the problem associated with identifying system models. Furthermore, the structure of 

the control system is designed to be robust to modelling inaccuracies, which makes it 

ideal for dealing with inaccuracies in identified models. The inverse dynamics based 

control law also cancels the system dynamics and replaces them with the designed 

closed loop system dynamics. This improves the performance of the system since 

time constants for buildings are usually very large.  

It is a known problem that the online estimation methods typically used in the 

adaptive HVAC control methods suffer from deteriorated estimation accuracy when 

subjected to changes in loads and disturbances. These methods however, require 

constant estimation of the plant process parameters due to the structure of the control 

system not being robust to modelling inaccuracies or disturbances. The robust 

control structure and inverse dynamics estimation algorithm used in this thesis negate 

the necessity for constant online adaption. Adaption can therefore be performed 

infrequently and in times when the system is not subjected to many disturbances.  An 

additional benefit of this aspect is the reduced computational demand due to 

infrequent adaption.  

The inverse dynamics control law used in the developed controller determines a 

property of the system known as the equivalent control. The equivalent control is 

based on high gain control principles and is the control action required to decouple 

and linearize a nonlinear MIMO system (Bradshaw and Counsell 1992). High gain 

control, theoretically, is the optimum type of control for rejecting disturbances and 

dealing with uncertainties etc. however it cannot be applied in practice due to high 

frequency oscillations and sensitivity to noise etc. The control algorithm used in this 
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thesis, despite being derived from high gain principle, is mathematically a low gain 

technique and therefore it can be applied in practice.  

In spite of being a high performance control algorithm, the structure of the 

control system developed in this thesis is no more complicated than the adaptive PID 

control methods already in use in the buildings industry. The controller still consists 

of proportional and integral gains, albeit in the structure of a pseudo derivative 

feedback (PDF) controller (Phelan 1977). The inverse dynamics part of the control 

law is straightforward in its implementation and requires a simple identification 

procedure of a FOPDT model. The tuning of the control system is a more transparent 

procedure than that of a PID controller, due to the gains being tuned by the selecting 

the natural frequency and damping ratio of the closed loop system. There are two 

options for controller tuning presented in this thesis: a self-tuning controller and a 

controller tuned by a genetic algorithm (GA).  

Finally, the majority of works in the literature focus on one control problem in 

buildings: either the control of the HVAC systems or the control of the zone thermal 

comfort. The research presented by the author in this thesis shows a full control 

system for regulating both the zone thermal comfort conditions as well as the HVAC 

systems inside it. 
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3. Modelling of Building Zone and HVAC Systems 

This chapter aims to elucidate the development of the building model that was 

used to assess the performance of all of the control algorithms developed and tested 

throughout this thesis. The advanced controller design methods developed in this 

research require that the system to be controlled can be represented in a relatively 

low order state space form. The detailed, high order energy simulation models 

typically used for energy performance evaluation are not suitable for controller 

design due to the necessity to use the state space model in the control law design as 

well as to investigate system stability. This necessitates the development of a 

simplified, low order model that captures the essential dynamic properties of the 

building thermodynamics [(Tashtoush, Molhim et al. 2005); (Gouda, Underwood et 

al. 2003)]. 

The thermal dynamics of a building can be described by classical differential 

equations for heat transfer and thermodynamics. The thermal model of the building is 

typically developed using the principal of analogy such that the resulting equations 

are translated to an electrical circuit model relating the temperatures and voltages, the 

heat fluxes and the currents, the heat transmission resistances and the electrical 

resistances, the thermal capacities and the electrical capacities, etc. (De Keyser, 

Dumortier et al. 1984). This type of dynamic modelling approach is often referred to 

as lumped parameter modelling.  

The thermal model developed in this research using the aforementioned 

approach, consists of equations representing the rates of change of temperature of 

indoor air, walls, roof, floor and internal thermal mass. This model is based on the 

dynamic models developed in [(Murphy 2012); (Khalid 2011)] but with additional 

components which are detailed in the following sections.  

Section 3.1 describes the differential equations comprising the zone model.  The 

state space representation of the model is detailed in Section 3.2. Section 3.3 

provides a description of the actuation systems that have been modelled. These are 

two different types of actuation system; a fast acting direct heater with a separate 

mechanical ventilation system; a full air handling unit comprising a heater, 
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humidifier and ventilation system. Open loop simulation results demonstrating the 

dynamics of the system are given in Section 3.4.  

 

3.1 Zone Model 

The zone model developed in this research consists of four state variables for 

temperature and one state variable for humidity. These are: zone air temperature (Ta), 

internal wall structure temperature (Tsi), external wall structure temperature (Tse), 

furniture and internal mass temperature (Tft) and zone humidity (Wa). The zone air is 

assumed to be fully mixed meaning the temperature distribution across the zone is 

uniform. The air density is also assumed to be constant and unaffected by changes in 

temperature and humidity of the zone. A diagram illustrating the heat transfer 

dynamics of the zone is given in Figure 3.1. The nonlinear differential equations that 

govern the zone temperature and humidity are detailed in the following sections. 

 

Figure 3.1: Zone thermal dynamics 

 

3.1.1 Wall Structure Temperatures: 

The walls of the zone are assumed to be composite and are comprised of an 

internal surface, the wall structure and an external surface. Therefore, the heat loss 



58 

 

through the wall is approximated by two energy stores, the thermal mass of the 

bricks and the overall U-Value for conductions through the wall (Murphy 2012). 

This effectively means that there are two temperature nodes for the wall; an inner 

temperature (Tsi) and an external temperature (Tse). This is illustrated in Figure 3.2. 

Equation 3.1 shows that the internal wall temperature is related to the difference 

between the heat entering it from the zone and the heat lost to the external node of 

the wall structure.  The temperature of the external node is  related to the difference 

between the heat transfer from the inner node and the heat loss to the environment 

(To), as described by Equation 3.2.  

 

 

Figure 3.2: Temperature nodes across the wall 

 

     

       

  
  ̇   

   

      
                  (3.1) 

 

     

       

  
 

   

      
                   ̇      (3.2) 

 

The terms  ̇  i and  ̇   in equations 3.1 and 3.2 represent the heat transfer between 

the internal zone and inner wall structure node and the outer wall structure node and 

the external environment respectively. They are expressed as follows: 

 

 ̇                    (3.3) 
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 ̇                    (3.4) 

 

3.1.2 Internal thermal mass and furniture temp: 

The temperature of the internal thermal mass is determined from the heat 

transfer between the internal zone and the thermal mass. The internal thermal mass 

here relates to the heat stored in the building elements other than the external wall 

structure. This includes the heat stored in the furniture, roof, floor and windows.  

Equation 3.5 shows the heat transfer between the internal zone and the thermal mass.  

 

      

       

  
                      (3.5) 

 

3.1.3 Internal Air (Zone) Temperature: 

The air in the zone is assumed to be fully mixed at constant pressure, so that the 

internal zone air temperature distribution is uniform and is modelled as a single node 

representing an average temperature of the zone. This assumption dictates that the air 

in the zone is fully stratified. This assumption is generally not valid for thermal 

buoyancy force-dominated flow and does not conform to reality. The resulting 

equations however, are far less complex whilst remaining detailed enough for the 

purposes of controller design (Khalid 2011). This assumption is adopted by most 

building models that are used for controller analysis in the literature [(Counsell, 

Khalid et al. 2011); (Gouda, Underwood et al. 2003)]. In reality, due to occupant 

behaviour etc the air temperature is never uniform in all parts of the zone and this has 

a significant impact on the controller performance and design. This effect however, 

is taken as a transport lag.  It is extremely important to assess the effects of transport 

lag when designing a HVAC control system as it is a common cause of 

underperforming and unstable control systems in practice. The effects of transport 

lag and the countermeasures developed in this research are discussed in detail in 

Chapters 4 and 5. The rate of change of air temperature is described by equation 3.6. 
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  ̇      ̇       ̇       ̇      

(3.6) 

 

The structural mass of the zone i.e. the walls, is a source of heat storage (Balaras 

1996). The heat stored in the wall is a result of the heat transfer between the structure 

and the internal and external environments. If the internal or external temperature is 

high relative to that of the structure, then heat is transferred to, and stored in, the 

structure. If the zone temperature drops then this stored heat is transferred to the 

zone. In this model, the energy stored in the building elements other than the external 

walls is captured in the internal thermal mass parameter (denoted by the subscript ft) 

as explained in section 3.1.2(Murphy 2012), such that: 

 

Windows Heat Loss is:  

 

 ̇                      (3.7) 

 

 

Floor Heat Loss is:      

 

 ̇                      (3.8) 

Roof Heat Loss is:   

 ̇                      (3.9) 

Furniture and Internal Mass Heat Loss is:     

 

 ̇                          (3.10) 
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Equations 3.7 to 3.10 are always in steady state implying that there is constant heat 

loss through windows, furniture and internal mass, roof and floor.  

The term  ̇  in equation 3.6 signifies the heat added to the zone from the 

controlled heater. Since actuator dynamics are not included in main plant model for 

the controller design method developed in this research, the equations describing the 

dynamics of the heating system are not included in this zone model. They are 

detailed in Section 3.3 on Actuation System Dynamics. Details on why actuator 

dynamics are not included in the main plant model and how actuator dynamics are 

dealt with are given in Chapter 4.  

The heat lost through natural ventilation and the controlled mechanical 

ventilation system is denoted by  ̇   and  ̇   respectively, as shown in equation 3.6. 

The heat transfer equations for both types of ventilation are given below: 

 

 ̇    ̇       (           ) (3.11) 

 ̇    ̇      (           ) (3.12) 

 

Heat gains that arise in a building from uncontrolled sources such as heat emitted 

from occupants or solar gains are often referred to as casual heat gains. Casual heat 

gains can be useful as they can contribute to the heating of a building and 

consequently reduce the amount of power required from a controlled heating source. 

The impact of casual heat gains becomes more significant with improved insulation 

in buildings and can constitute a high proportion of the total heat needed in a 

building. Whilst this impact can be useful, it can also prove problematic for a control 

system. Consider the fact that, due to heating systems being used intermittently in 

buildings, they are sized for early morning pre-heating when casual heat gains are 

generally not available (Khalid 2011). This means that the heating systems are often 

significantly oversized for times when casual heat sources are present, typically 

being the majority of the day. This can often render accurate and efficient control 

difficult to attain. Hence, considering the impact of casual gains on the internal 

temperature is crucial for control system design. Furthermore, understanding the 

effect of casual gains is necessary if the heating and cooling plant systems are to be 
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sized accurately. The  ̇        term in equation 3.6 represents the heat transfer from 

casual heat gains, which are comprised of the following contributors: 

- Solar Gain 

- People 

- Lighting 

- Appliances 

The equations describing these elements which were used in this thesis can be found 

in (Khalid 2011). The data used for external temperature and solar gains is for 

Glasgow, Scotland during the winter/spring months January to March.  

3.1.4 Internal Zone Humidity 

Indoor humidity levels within a building have a significant bearing on the health 

of occupants, energy consumption as well as construction durability (Zhang and 

Yoshino 2010). It is therefore essential that humidity levels in an indoor environment 

are regulated at suitable levels in order to ensure the health of occupants and 

sustainability of the building. Control of indoor humidity levels is not trivial 

however, on account of the many influencing factors such as moisture sources 

(human presence and activity, equipment, plants), mechanical ventilation and air 

infiltration in the building, air flow and temperature distributions in rooms, moisture 

adsorption and desorption from surrounding surfaces (interior walls, floor, carpet, 

furniture, futon and books, etc.), as well as the absolute humidity of the outdoor air 

(Khalid 2011). Thus, a control system must be designed to effectively regulate 

indoor temperature and humidity levels at the same time. In order to do this, it is 

essential that the effects of humidity are included in the zone model. The humidity 

model used in this research is based on the model presented by (Rentel-Gomez and 

Velez-Reyes 2001). 
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(3.12) 

 

 

Equation 3.12 demonstrates that the moisture content (absolute humidity) in the 

zone is determined by the vapour added to and removed from the zone through the 

mechanical ventilation system as well as natural ventilation in the zone (air 

infiltration). Moisture is also added to the zone air through occupancy, which is 

linear proportional to the number of occupants. A more practical measure for 

humidity with regards to occupant comfort is relative humidity. An empirical relation 

between the absolute and relative humidity is derived from data from the 

Psychrometric chart in (Rentel-Gomez and Velez-Reyes 2001). This relation is taken 

from an operating point of 23°C and an absolute humidity of 0.007 kg/kg. The 

resulting expression defining the relative humidity in the zone is given below: 

 

                                      (3.13) 

3.2 State Space Representation 

In order to apply the control system design methods developed in this research to 

the building model, the differential equations must be rewritten in state space format. 

The generalised state space format for differential equations is shown in equations 

3.14 and 3.15.  

 ̇⃑      ⃑      ⃑⃑      ⃑    (3.14) 

 ⃑      ⃑    (3.15) 

Where  ⃑    is the state vector,  ⃑⃑    is the input vector,  ⃑    is the disturbance vector 

and  ⃑    is the output to be controlled. A, B, C and F are the state, input, output and 

disturbance matrices respectively. There are a number of ways to express a set of 

differential equations in state space format depending on the selection of the input, 
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output and disturbance vectors. This section demonstrates how the differential 

equations described in the previous section are expressed in state space format if the 

actuation system described in section 3.3.1 is used such that the inputs to the system 

are the heating power  ̇     and the mass flow rate provided by the mechanical 

ventilation system  ̇    . The system outputs i.e. the states that are being regulated, 

are the air temperature,       and relative humidity,        . The disturbances 

(uncontrolled inputs) to the system are the free heats, external temperature and 

humidity and the number of occupants in the zone. The state space vectors are 

therefore described as follows: 

 ⃑    

[
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 (3.16) 

 ⃑⃑    [
 ̇    
  ̇    

] (3.17) 

 ⃑    
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 (3.18) 

 ⃑    [
       
     

] (3.19) 

From the differential equations describing the model in the previous section, it can be 

observed that the B matrix is nonlinear and is a function of the state and disturbance 

vectors. A generalized nonlinear form of state space representation should therefore 

be used in order to enable a nonlinear controller design to be used. The resulting state 

space format used to express the model is as follows: 

 ̇⃑      ⃑       ⃑          ⃑⃑      ⃑    (3.20) 

 ⃑      ⃑      (3.21) 
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The full nonlinear state space description of the model is shown in equations 3.22 

and 3.23. The expansion of the coefficients of the state space matrices  , 

 ( ⃑     ⃑   ) and   can be found in Appendix A.  
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(3.22) 
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+ (3.23) 

 

3.3 Actuation System Dynamics 

One of the fundamental assumptions the RIDE controller design method is based 

on is that the actuation system dynamics of the system to be controlled are fast 

relative to the plant and therefore are not required to be represented in the plant 

model for the controller design. By ensuring that the closed loop controller 

bandwidth is slower than the actuation system bandwidth by a factor of three or 

more, the actuator dynamics can be considered as „parasitics‟ i.e. the transients die 

out very quickly and therefore do not need to be included in the controller design 

model [(Counsell, Khalid et al. 2011); (Counsell 1992)]. They are however, dealt 

with in the controller design as they have a significant bearing on controller 

performance. This will be explained in detail in Chapter 4. Modelling the actuator 

dynamics in order to understand their effects is very important as in reality these 

dynamics are sometimes the reason for uncontrollable effects which cause poor 
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thermal comfort and excessive energy usage in a building as well as damaging the 

actuators themselves. One of the key issues is that all actuator plants are nonlinear in 

reality due to limitations on their power output. Thus, despite the fact that the 

building physics might be relatively simple and could be approximated with linear 

functions, the plant dynamics are nonlinear. 

3.3.1 Fast Direct Acting Heater and Mechanical Ventilation 

(Case1) 

The actuation systems models used to control the temperature and humidity of 

the zone in this case are a direct acting heater and mechanical ventilation with first 

order dynamics. The time constants of the first order models of both actuation 

systems represent the inertia present in the actuation system between the commanded 

controller output and the actual output achieved by the actuator (Bi, Cai et al. 2000). 

The dynamics of the heater are characterised by a nonlinear first order transfer 

function with amplitude limits representing the actuation system‟s heating power 

limitations as shown in equations 3.24 and 3.25. The mass flow rate provided by the 

mechanical ventilation system is also characterised by a nonlinear first order transfer 

function with amplitude limits directly proportional to the maximum fan speed. The 

flow rate is also directly proportional to the fan speed and therefore the time constant 

represents the delay resulting from the power limitations of the fan motor and the fan 

inertia. The ventilation system supplies air to the zone at the outside air temperature 

and with a constant humidity value of 0.02 kg/kg to represent a constant 

humidification rate. The dynamics of the ventilation system are described by 

equations 3.26 and 3.27. 

 

 ̈  
 

  
(         ̇    ) (3.24) 

      ̇          (3.25) 

 ̈  
 

  
(        ̇    ) (3.26) 

      ̇          (3.27) 
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3.3.2 Full Air Handling Unit (Case2) 

The components comprising the full air handling unit (AHU) modelled in this 

thesis are a fan, mixing box, heating coil, ducting and humidifier. The layout of the 

AHU is shown in Figure 3.3.  

 

 

Figure 3.3: Layout of AHU 

The AHU is operated by the control system which responds to the feedback signals 

from the temperature and humidity sensors. The thermostat senses the temperature in 

the zone and sends a signal to the controller which determines the heating power 

required from the heating coil based on the control law. Similarly, based on the 

signal from the humidity sensor, the control system determines the vapour rate 

required from the humidifier in order to regulate the humidity ratio in the air. The 

airflow rate in the system is varied using a variable flow fan and the ratio of return 

air to outside air is controlled using dampers. The outputs of the AHU are the 

temperature and humidity ratio of the supplied air. The three control inputs to the 

AHU are: the heating power supplied by the heating coil, the vapour produced by the 

humidifier and the mass flow rate provided by the variable flow fan. The different 

control strategies and AHU setups, e.g. Constant Volume – Variable Temperature, 

Variable Volume – Constant Temperature etc., that were tested in this research and 

the corresponding changes in the model representation are discussed in Chapter 6. 

Since the inputs to the zone from this actuation system (heat and humidity added 

from the supplied air) differ from inputs to the zone from the actuation system 

described in Section 3.3.1, the equation representing the rate of change of air 

temperature, namely equation 3.6, must be altered slightly. The term representing the 

heat transfer through mechanical ventilation ( ̇       is taken out of equation 3.6 
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since there is no longer a separate mechanical ventilation system in this AHU. 

Therefore, equation 3.6 becomes equation 3.28. 

 

    

      

  
  ̇      ̇         ̇       ̇      ̇    

  ̇      ̇       ̇   

(3.28) 

 

3.3.2.1 Heating Coil Model 

The heating coil heats the air in the AHU for ventilation which in turn is used to 

condition the air in the zone. The coil is modelled with a nonlinear first order 

differential equation with power limitations. This model is used as the majority of 

heating systems, whether they are wet or dry, have first order dynamics. The 

differences in response characteristics are typically down to differing time constants. 

Therefore the first order model used here for the heating coil can represent a wet or 

dry system.  The nonlinearities arise due to the power limitations of the system e.g. 

the maximum and minimum heat outputs that can be delivered from the heating coil. 

The first order model of the heating coil is shown in equations 3.29 and 3.30.  

 

 ̈        
 

     
(           ̇       ) (3.29) 

        ̇               (3.30) 

 

The overall energy balance between the heating coil and the air flowing through the 

AHU is expressed as follows: 

 

   

         

  
  ̇            (              )

  ̇                       

(3.31) 

 

The mass balance is: 
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                 (3.32) 

 

The energy transferred to the air passing through the coil equates to the energy added 

from the heating coil and the energy transferred to the surroundings by the return air. 

 

3.3.2.2 Humidifier Model 

The humidification process increases the amount of water vapour in the 

atmospheric air. Humidification is necessary when there is low moisture content in 

the air which has undesirable health implications for the occupants. Therefore the 

regulation of indoor humidity levels in a building is an important task for HVAC 

systems. The humidifier model used in this thesis is that which was developed by 

(Kasahara, Yamazuki et al. 2001) cited by (Tashtoush, Molhim et al. 2005). The 

energy and mass balance equations for the humidifier model are expressed as 
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 (3.34) 

 

Where h(t) is the rate of humid air that the humidifier can produce. In this work the 

humidification rate is described with first order dynamics and amplitude limits 

representing the maximum humidification rate the humidifier can produce. This is 

expressed in equations 3.35 and 3.36. 

 

 ̇    
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3.3.2.3 Duct Model 

The transient model developed by (Clark, Hurley et al. 1985) cited by 

(Tashtoush, Molhim et al. 2005) for a duct unit is used. The inlet and exit air 

temperatures are          and          respectively. The rate change of air 

temperature through the duct is: 

 

         

  
 

           ̇      

             

                    (3.37) 

 

3.3.2.4 Mixing Box 

Return air from the zone is mixed with outside air in the mixing box before it is 

fed through the AHU. The ratio of outside air to return air can be adjusted with 

dampers which in turn has an effect on air quality and humidity within the zone. The 

mixing of air streams typically happens under steady and adiabatic conditions. For 

the work presented in this thesis, it is assumed that no frictional losses occur through 

the mixing box. The equations describing the energy and mass balance across the 

mixing box are given below: 

 

      
  ̇                ̇         

 ̇    
 (3.38) 

 

      
  ̇                ̇         

 ̇    
 (3.39) 

 

Where   is the ratio of return air to outside air adjusted by the dampers. It is clear 

that the mass flow rate of air,  ̇    , can be cancelled out in equations 3.38 and 3.39 

such that the temperature and humidity of the air after the mixing box can be 

expressed as follows: 

 

                        (3.40) 
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                        (3.41) 

 

3.3.2.5 Fan Model 

The dynamics of the fan are described with a first order. For the purposes of this 

research it is assumed that the fan has negligible effects on the air temperature and 

consequently its effects on the physical properties of the air are also negligible. The 

fan also has no effect on the humidity ratio of the air as there is no mass transfer 

occurring over the fan. Power limitations for the fan are taken into account in the 

maximum flow rate of air that can be produced. This is shown in equations 3.42 and 

3.43: 

 

 ̈  
 

  
(        ̇    ) (3.42) 

      ̇          (3.43) 

 

 

3.4 Simulation 

The modelling and simulation package that was used for all simulations in this 

thesis is ESL (European Simulation Language, ISIM Limited). Despite being 

originally developed for the European Space Agency for satellite and spacecraft 

simulation, ESL is a general purpose Continuous System Simulation Language 

(CSSL) which can be used to model all types of dynamical systems. ESL possesses 

many desirable features e.g. discrete event capability, separate experiment and model 

specification sections, a submodel concept, clear model definition code and advanced 

discontinuity handling which is particularly important when modelling dynamic 

systems for controller design purposes. These features lend themselves well to 

solving the problem at hand and hence, this simulation package has been used in the 

work presented in this thesis.  
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The simulation model developed in this research is comprised of sub models 

files representing the zone, actuation system, controller and external environment 

and casual heat gains. A separate data package file contains all of the data for the 

buildings parameters such as heat transfer coefficients and room size etc. Each of the 

submodels was created using the ESL code implementation as opposed to the block 

diagram modelling approach.  

This section presents the open loop responses of the system with both actuation 

systems in order to observe its characteristics and time response of its components. 

The simulations for Case 1 were run with 1 minute communication intervals and 10 

integration steps per communications interval i.e., a time step of 6 seconds.  Due to 

the faster dynamics associated with the components within the actuation system in 

Case 2, the simulations for Case 2 were run with 300 integration steps per 1 minute 

communication interval equating to a 0.2 second time step. Details of the building 

parameters are given in Table 3-1.  

 

Parameter Value (Units) Parameter Value (Units) 

   1012 (J/kgK)    0.2 (W/m
2
K) 

   1000 (J/kgK)     2.0 (W/m
2
K) 

    900 (J/kgK)    691 (kg) 

   192 (m
2
)     7000 (kg) 

   144 (m
2
)     7000 (kg) 

   17 (m
2
)     8000 (kg) 

   144 (m
2
)     0.1 (W/mK) 

    138 (m
2
)        0.5 (m) 

   0.13 (W/m
2
K)    6.9277 (W/m

2
K) 

   1.5 (W/m
2
K)    6.3557 (W/m

2
K) 

Table 3-1: Building Parameters 
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3.4.1 Open loop transient response - Case 1 

The system was simulated running in open loop in order to demonstrate the 

effect of the actuation system on the zone air temperature and relative humidity. For 

the first test, the heater was turned on with a constant power of 4kW for a period of 

three hours, between 7 AM and 12 PM, and the mechanical ventilation switched off. 

The zone air temperature and relative humidity responses for this test are shown in 

Figure 3.4 and Figure 3.5 respectively. In order to show the effect of the mechanical 

ventilation system on the zone air temperature, the room must be heated so that the 

temperature of the air in the zone is higher than that of the outside air. Providing the 

outside air temperature is lower than the zone air temperature, the mechanical 

ventilation system has a cooling effect on the zone air by blowing the cold outside air 

into the zone. If the zone air temperature is already the same temperature as the 

outside air, then the effect of the mechanical ventilation system cannot be observed. 

Hence, for the second test, the heater was kept on at a constant power of 4kW with 

the ventilation being switched on for three hours at a mass flow rate of 0.25kg/s. The 

results of the second test are illustrated in Figure 3.6 and Figure 3.7. The values used 

for the parameters of the actuation system are given in Table 3-2.  

Parameter Value (Units) 

     0 (W) 

     10000 (W) 

     0 (kg/s) 

     0.35 (kg/s) 

   120 (s) 

   60 (s) 

Table 3-2: Actuation system parameters (Case 1) 

 

From Figure 3.4, it can be seen that when the zone air temperature reaches steady 

state, i.e. zero heat transfer to or from the air, the slope of the zone air temperature 

can be observed to follow the slope of the outside air temperature. This is to be 

expected since the only heat transfer process that is non-zero is the heat transferred 
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when the outside air temperature changes. When the heater is initially switched on, 

the air temperature rises before reaching steady state after approximately 15 minutes. 

The relative humidity of the zone can be seen to effectively mirror the response of 

the zone air temperature as expected from the relationship between relative humidity 

and air temperature expressed in equation 3.13.  

 

Figure 3.4: Zone air temperature (Open Loop Heater Test - Case 1) 

 

Figure 3.5: Zone relative humidity (Open Loop Heater Test - Case 1) 

Figure 3.6 shows the response of the zone air temperature when the ventilation is 

switched on. The ventilation, delivering a flow rate of 0.25kg/s, causes the 

temperature to drop by approximately 0.7˚C. The relative humidity of the zone 

experiences a large increase from 68% to 90%. This large increase in relative 

humidity is due to the fact that the air supplied by the ventilation has a constant 
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humidity value of 0.02kg/kg which is significantly higher than the zone humidity. 

The slight decrease in the zone temperature also causes the zone relative humidity to 

increase. It is important to note that, from the results of both open loop tests, the 

response of the system can be seen to be predominantly first order. 

 

Figure 3.6: Zone air temperature and heater power (Open Loop Ventilation Test - Case 1) 

 

Figure 3.7: Zone air temperature and ventilation mass flow rate (Open Loop Ventilation Test - 

Case 1) 

 

3.4.2 Open loop transient response - Case 2 

The open loop tests for the AHU actuation system in Case 2 indicate how the 

system responds to heat input from the heating coil and humidification from the 
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humidifier. Similar to the open loop tests for the Case 1 actuation system, the heating 

coil is switched on for 3 hours at a power of 4kW for the first test. For the second 

test, the humidifier is switched on for a period of 3 hours with a humidification rate 

of 7.2kg/h. The parameter values for the AHU are given in Table 3-3. 

Parameter Value(Units) Parameter Value(Units) 

       0 (W)     4500 (J/K) 

       20000 (W)      40 (J/sK) 

     0 (kg/s)     8.33 (W/m
2
K) 

     0.5 (kg/s)      16.6 (W/m
2
K) 

      0 (kg/s)       160.1 (kg) 

      0.004 (kg/s)    1.44 (m
3
) 

      15 (s)     2.88 (m
3
) 

    10 (s)    18.3 (J/sK) 

   630 (J/K)       418.7 (J/kgK) 

Table 3-3: Actuation system parameters (Case 2) 

 

The temperature of the supply air from the AHU rises by approximately 10˚C as a 

result of the heat input from the heating coil. This in turn causes a comparatively 

small increase in the zone air temperature of approximately 1.6˚C. The 

corresponding drop in the zone relative humidity is approximately 3.5% as shown in 

Figure 3.9. 
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Figure 3.8: Zone air temperature, AHU supply temperature and heater power (Open Loop 

Heater Test - Case 2) 

 

 

Figure 3.9: Zone relative humidity (Open Loop Heater Test - Case 2) 

 

Figure 3.10 indicates that the humidifier does not affect the temperature of the zone 

air.  This is to be expected as the humidification process only increases the moisture 

content in the air and there is no heat transfer taking place. The humidification causes 

the relative humidity of the zone to increase from approximately 78% to 

approximately 88%.  

 



78 

 

 

Figure 3.10: Zone air temperature, AHU supply temperature and heater power (Open Loop 

Humidifier Test - Case 2) 

 

 

Figure 3.11: Zone relative humidity (Open Loop Humidifier Test - Case 2) 

 

3.5 Chapter Conclusions 

This chapter demonstrated the development a simplified low order building zone 

model which is suitable for controller design purposes. The building zone was 

represented as a fifth order model with four state variables for temperature and one 

for humidity. Two different actuation systems were developed for conditioning the 

zone thermal comfort. Firstly, a fast acting direct heater and mechanical ventilation 
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system, represented with first order models, were developed for controlling the zone 

air temperature and humidity respectively – case 1 in chapter 3.  Secondly, the zone 

model was combined with a full air handling unit model which included a humidifier 

and a heating coil for conditioning the supply air – case 2 in chapter 3. The AHU was 

represented as a fifth order model with three states for temperature and two states for 

humidity. The overall system model was nonlinear with multiple inputs and outputs 

and dynamic casual gains and weather data. This provided a complex control task 

which included many of the complexities that would be encountered when designing 

a HVAC control system in practice. Open loop simulation tests showed that the 

model exhibits a predominantly first order response, despite being of higher order, as 

would be expected. It is important to note that this model is not intended as a model 

for accurately assessing the building zone energy performance behaviour. It is 

intended as a model which can produce representative dynamic behaviour of a 

building zone and actuation system and is suitable for controller design purposes. 

This model is used to assess the different aspects of the controller algorithms 

designed in this thesis and therefore the realism of the energy performance is not of 

particular importance. Furthermore, the purpose of the control algorithms developed 

in this thesis was to be able to control building HVAC systems with a wide range of 

dynamic characteristics, thus calibrating the model such that it performed with 

particular dynamic behaviour would have been redundant. 

 As shown in section 3.2, the model can be represented in state space format 

and can therefore be used in the controller algorithm design processes developed in 

this thesis. The following chapter explains the fundamentals of the high performance 

controller designs used in this thesis. 
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4. Fundamentals of Robust High Performance 

Control Theory 

 The objective of the research in this PhD project, as mentioned in Chapter 1, was 

to design a robust high performance HVAC control strategy that is capable of dealing 

with the complexities associated with modern building control whilst being a low 

cost solution which is easy to implement. Robust high performance control means 

achieving the desired tracking objectives quickly and efficiently whilst dealing with 

the following issues: 

- Uncertainties 

- Nonlinearity 

- Interacting MIMO systems 

- Actuator power limitations 

- Disturbances 

Since buildings and their HVAC systems often possess all of the complexities 

mentioned above, advanced control strategies are required in order to ensure that 

comfort requirements are met efficiently. Therefore it is intuitive that the 

fundamental structure of the control systems developed must be robust and enable 

high performance. This chapter describes the fundamentals of the robust control 

methods used in this thesis including the RIDE control theory which is a robust 

nonlinear inverse dynamics (NID) controller design originally applied in the 

aerospace industry (Counsell 1992). To the extent of the author‟s knowledge, this 

algorithm has not been used for the design of HVAC control systems, other than in 

the author‟s own work (Zaher, Counsell et al. 2011). This algorithm provides an 

interesting approach to HVAC control systems design which is not typically used in 

the buildings industry. This theory was used as the structure for the various 

advancements developed in this thesis. Hence, it is imperative that the reader is 

familiarised with its concepts so as to clarify its robust structure and enabling 
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features which are essential to the control methods described in the subsequent 

chapters. 

4.1 Inverse Dynamics 

The fundamental concept of inverse dynamics is a straightforward and logical 

one. If the dynamics of the system are known such that, for a given input, the output 

of the system can be determined then the dynamics can be inverted in order to 

determine the required input for a desired output as illustrated below. 

 

Figure 4.1: Inverse Dynamics Concept 

For a given system, inverse dynamics can be utilised in the control system design in 

order to cancel the systems dynamics, enabling the control system designer to specify 

the desired closed loop dynamics. By using the dynamic inverse to cancel the 

systems dynamics, any cross coupling between control channels, disturbances and 

nonlinear behaviour which would otherwise cause control problems are removed 

(Lane and Stengel 1988). 

In practice, the implementation of inverse dynamics can be difficult, or in some 

cases, impossible as full knowledge of the system dynamics, including any 

disturbances, is required. The RIDE control algorithm however, provides an effective 

and practical approach to implementing inverse dynamics. It possesses many 

desirable features which have proven invaluable in the design of the HVAC control 

strategies developed in this thesis. These advantageous enabling features work hand 

in hand with the methods developed in order to create robust high performance 

HVAC control strategies. In order for the reader to understand the novel controller 

methods described in the subsequent chapters, the fundamentals behind the RIDE 

methodology must be explained.  
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4.2 Equivalent Control – The Perfect Control Input 

Equivalent control is the nonlinear dynamic inverse of a plant required to remove 

any interaction between controlled channels, nonlinear plant dynamics and 

disturbances. This type of control is derived from high gain and sliding mode control 

principles. Equivalent control is an integral part of the RIDE control theory and 

therefore it is imperative that the reader is familiarised with its properties and effects.   

Equivalent control is based on the simple observation that controlling a first order 

system is straightforward in comparison to controlling higher order systems. The 

equivalent control method (Utkin 1971), in the output feedback mode, produces a 

reduced-order system which exhibits output feedback equivalent dynamics (Slotine 

and Li 1991). This methodology can be viewed as a form of realisable inverse 

dynamics due to the use of the equivalent control input which inverts the model with 

respect to the controlled outputs (Khalid 2011).  

Consider a system whose measured output is denoted by y(t) and the desired 

output is denoted by v(t). Steady state tracking of a constant reference input, v(0), for 

a feedback control system (Bradshaw and Counsell 1992) can be expressed as: 

   
   

                  (4.1) 

If condition 3.14 is satisfied, then steady state tracking is attained even in the 

presence of a disturbance vector, d(t). The tracking objective then, is to drive the 

system output to track the desired output such that y(t)=v(t) in steady state. When 

this criterion is satisfied, the tracking error, defined as e(t)=v(t)-y(t), is zero and the 

system is in a condition referred to as sliding mode, where the sliding surface, 

denoted by s(t), is the tracking error, e(t). When in sliding mode, the rate of change 

of e(t) is zero as shown below (Khalid 2011): 

  ̇      ̇     ̇      (4.2) 

                        ̇     ̇      (4.3) 
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The actuator inputs required to ensure the criterion in equation 4.3 is achieved are 

determined by the equivalent control using inverse dynamics. This is achieved by 

accounting for the disturbances and system dynamics that would otherwise prevent 

the system from operating like an ideal integrating system. Let us consider that the 

system is linear and is represented by the following state equation: 

 ̇                      (4.4) 

The output or measured variable y(t) is related to the state x(t) by: 

           (4.5) 

When the system is in sliding mode i.e. steady state, the rate of change of the system 

output is equal to zero as shown below. 

 ̇      ̇      (4.6) 

The state equation representing the system can then be substituted into equation 4.6 

to give: 

 ̇                           (4.7) 

From equation 4.3, it can be seen that, when v(t) is constant, the tracking objective 

entails driving the rate of change of the system output to zero i.e. steady state. The 

input signal which drives the system dynamics   ̇      to zero is: 

                                (4.8) 

Substituting equation 4.8 back into equation 4.4 gives: 
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 ̇                                              (4.9) 

This results in  ̇     . Therefore it can be seen that when the system is in sliding 

mode, it is unaffected by external disturbances and is able to reach steady state. This 

virtual control input U derived above is known as the equivalent control input, ueq(t). 

4.2.1 Effects of Equivalent Control 

In order to understand the benefits of using equivalent control, it is necessary that 

the effects of its use are explained. Consider the basic feedback control system 

illustrated in Figure 4.2 which combines the equivalent control input with a 

controller matrix K. 

 

Figure 4.2: Control system with controller matrix K(t) and dynamic inverse input Ueq(t) 

Where ur(t) is the reference input to the controller, uc(t) is the controller output, u(t) 

is the control signal to the actuator, ua(t) is the actuator output and y (t) is the actual 

system output. When designing a control system, it is of course necessary that the 

relevant actuator dynamics are represented in the state equations. However, high 

frequency dynamical modes should not be included as they would serve only to 

obscure the important features at the initial design stage (Khalid 2011). It has been 

shown that, if the control system bandwidth is designed such that it is three times 

slower than the actuator and sensor bandwidths, the actuator and sensor dynamics 

can be neglected as „parasitics‟ (Khalid 2011).  In order to demonstrate how the use 

of equivalent control reduces the order of the system, the actuator bandwidth is 

considered to be fast in comparison to the control system bandwidth and thus the 

actuator transfer function is equal to 1. Hence u(t) becomes ua(t). If the control signal 
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from Figure 4.2, u(t)=uc(t) + ueq(t), is substituted into the state equation 4.4, it 

becomes:  

 ̇           (            )        (4.10) 

Equation 4.5 can then be differentiated in order to obtain the rate of change of output 

and equation 4.10 substituted into it. A Laplace transform („s‟) of the resulting 

equation can then be taken in order to give a transfer function from input to output 

and from disturbance to output: 

               (            )         (4.11) 

Substituting the input from equation 4.8 into 4.11 yields:  

              (4.12) 

    

     
        (4.13) 

Thus it is shown that the equivalent control input can reduce a higher order system to 

a first order system represented by the transfer function, s
-1

ICB. Any n
th

 order system 

with the equivalent control input and controller gain K will be reduced to the generic 

reduced order transfer function in equation 4.13. Therefore, ueq can be considered to 

be the perfect control input which is able to control a complex higher order system 

such that it behaves like a first order system, even in the presence of disturbances.   

  

4.3 Robust Inverse Dynamics Estimation (RIDE) 

The structure of the RIDE controller is based on the remarkable pseudo-

derivative-feedback (PDF) control structure developed by Richard Phelan (Phelan 

1977). Phelan demonstrated that simple first order systems could be perfectly 

controlled using the mathematically simple PDF control strategy. As explained in the 
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preceding section, through the use of equivalent control, higher order systems can be 

reduced to behave like first order systems. In a coupled multivariable system, the 

equivalent control input also serves the purpose of decoupling the control channels 

such that they behave as independent SISO channels characterised by first order 

responses, as shown in equation 4.13 in the previous section. Thus, the PDF control 

structure is ideal for use with the equivalent control input. The RIDE controller 

methodology combines the properties of equivalent control with the PDF control 

structure and extends them for use with MIMO systems. The PDF control structure 

also provides the necessary robustness features which are of key importance to the 

successful performance of the methods developed in this thesis as will be shown in 

this section.  

Consider an open loop multivariable system transfer function in state space: 

 ̇                      
(4.14) 

           
(4.15) 

Where M is the output matrix designed by the user which determines the feedback 

measurements (Khalid 2011). Differentiating equation 4.15 and substituting equation 

4.14 into it gives: 

 ̇                         
(4.16) 

If MB is not equal to zero and MA and MF are cancelled, the system is reduced to: 

                
(4.17) 

Figure 4.3 shows the reduced order system under closed loop control in block 

diagram form: 
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Figure 4.3: Simple feedback control system with the reduced order system 

Where V(s) is the set-point, Y(s) is the system output, g is the scalar gain and K is the 

controller gain matrix. If the controller matrix K is chosen to be MB
-1

, the closed loop 

systems transfer function would be reduced to a perfect first order system and each 

channel of the multivariable system would behave like a perfect integrator for each 

control variable i.e. an ideal non interacting Multi - Single Input Single Output (M-

SISO) system which can be expressed by: 

[

     
     

 
     

]  
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    ]
 
 
 
 
 
 

[

     
     

 
     

] (4.18) 

Where the closed loop system time constant is 1/g and the bandwidth is g. By 

selecting the correct feedback for the control system, it is relatively easy to ensure 

that MB≠0. The difficulty generally arises when attempting cancel MA and MF. This 

particular case is addressed in the RIDE methodology by adding the equivalent 

control input ueq(t) to the control law as shown in Figure 4.4.    
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Figure 4.4: Closed loop control system with ueq 

 

By setting the gain matrix K to (MB)
-1

 the control law becomes: 

             (         )         (4.19) 

Where r(t) is the demand signal. If equation 4.19 is substituted into equation 4.16, 

this gives: 

 ̇             (         )                  (4.20) 

Substituting the equivalent control input equation 4.8 into equation 4.20 results in the 

MA and MF terms being cancelled thus reducing the system to: 

 ̇      (         ) (4.21) 

This is equivalent to being a system where CA=0. In the Laplace domain, equation 

4.21 becomes: 

                     (4.22) 

This control law is valid for all values of the matrix MA as the ueq input cancels the 

MA and MF terms. Furthermore, substituting this control law into the state equation 

4.14 results in  ̇     , meaning ueq has driven the system to steady state. The only 

requirement for ueq to cancel the MA and MF terms is |MB|≠0.  
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As mentioned earlier in this section, the PDF algorithm provides the perfect 

control law for controlling a first order system. Since the equivalent control input is 

able to decouple the multivariable system and reduce each control channel to a 

perfect integrator, the PDF controller can be used to perfectly control its response, 

which is a function of its gains. Hence the combination of the PDF algorithm with 

the equivalent control input theoretically provides a „perfect control algorithm‟. The 

RIDE control law, which incorporates the PDF structure, is given by:  

                           (4.23) 

 ̇                   (4.24) 

The controller is shown in diagrammatic form in Figure 4.5. 

 

 

Figure 4.5: RIDE structure 

 

Where  ⃑ is disturbance. If the control law equation 4.23 is substituted into equation 

4.16, this gives: 

 ̇      (             ) (4.25) 

The closed loop transfer function of the plant and control system illustrated in Figure 

4.5 is given by: 
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[    ]  [                 ]       (4.26) 

Where Im is an identity matrix. The proportional and integral gains can be selected 

such that they are expressed as follows: 

   [  ]    (4.27) 

   [  ]    (4.28) 

Where g = 2ZdΩn and ρ = Ωn
2
. Zd and Ωn are the designed system damping ratio and 

natural frequency respectively. By setting KP and KI as in equations 4.27 and 4.28, 

the system transfer function can be expressed as a diagonal matrix of ideal second 

order transfer functions in generalised form as shown below: 

[    ]
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 ]
 
 
 
 
 
 
 
 

 (4.29) 

The diagonal matrix [G(s)] has the dimensions m x m, where m is the number of 

system inputs. The system response can be shaped by tuning KP and KI through Zd 

and Ωn. Thus it is shown that applying the RIDE control law results in the controlled 

system behaving like an ideal second order system and its response is completely 

controllable as a function of the controller gains matrices. This allows the control 

system designer to specify the closed loop bandwidth and damping ratio of the 

system being controlled thus enabling an improved level of control over the response 

characteristics of the buildings systems. 

So far it has been considered that the equivalent control term is implemented 

using equation 4.8. In practice, ueq is derived from the model of the system which is 
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an approximation of the real dynamics of the system. Therefore, the ueq implemented 

in practice would in fact be an estimate of the real ueq and an error of some 

magnitude would exist. The RIDE control law would therefore become: 

                     ̂      (4.30) 

Where  ̂      denotes the estimated equivalent control. An error in the estimated 

equivalent control would result in the system not behaving as a completely 

decoupled first order system. It can be seen from equation 4.8 that implementing 

equivalent control in this way is somewhat impractical as full knowledge of the 

systems dynamics, including any disturbances, as well as measurement of all state 

variables and disturbances is required. Thus, the implementation of equivalent 

control in practice is often disregarded. In order to alleviate the difficulty in 

implementing equivalent control, the RIDE controller algorithm utilises an estimate 

of the equivalent control (Muir and Bradshaw 1996) which requires less information 

and knowledge of the system. Consider dividing equation 4.16 by MB: 

       ̇                              

              (4.31) 

Rearranging this equation yields another expression for the equivalent control: 

                   ̇    (4.32) 

It can be seen from equation 4.32 that the equivalent control can be estimated with 

knowledge of the matrix MB, rate of change of the measured variable w(t) and the 

actuator output u(t). This greatly simplifies the implementation of equivalent control 

in practice since modelling the system with fully detailed system (A) and disturbance 

(F) matrices is no longer required. It is necessary however to assess the sensitivity of 

MB as it has a direct bearing on the feasibility of perfect control.  
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4.3.1 Controller Robustness 

As the equivalent control used in the RIDE control law is an estimate of the exact 

equivalent control based on a system model, un-modelled disturbances as well as 

modelling errors in the CB matrix will cause the estimated equivalent control to 

deviate from the real equivalent control. This will result in the system not behaving 

as a fully decoupled system and the disturbances will not be fully cancelled. This 

issue however, is dealt with in the RIDE structure which provides a degree of 

insensitivity to errors in the ueq estimation (Khalid 2011).  

If the control law equation 4.23 is substituted into equation 4.32,
 
this gives: 

       ̇     ̂                ⃑       ⃑    (4.33) 

Differentiating equation 4.33 twice and substituting equation 4.24 in and then taking 

the Laplace transform of the resulting equation gives: 

[               ]      [ ̂            ]         (4.34) 

It can be seen that if the equivalent control estimate approaches the real equivalent 

control such that  ̂            , then a perfect second order closed loop response 

which can be shaped through the controller gains is achieved as shown below: 

    

    
   

 [            
 ]

  
 (4.35) 

In practice however,  ̂      may be somewhat inaccurate due to modelling 

inaccuracies and un-modelled disturbances as mentioned previously. In that case, in 

terms of high gain singular perturbation method (Khalid 2011), dividing both sides of 

equation 4.34 by g and rearranging gives:  

*
  

 
   

 

 
+     

   [ ̂            ]

 
 

 

 
     (4.36) 
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As g tends to infinity s tends to zero resulting in w(s)=r(s). Of course, in practice, it 

is not possible to achieve infinite gain. Furthermore, in systems with slow actuation 

systems, a lower gain value is typically required. Hence, the more accurate the 

equivalent control calculation, the smaller the ∆ueq(s) term meaning a lower gain 

value can be used to make the effects negligible. In this sense, an accurate estimate 

of ueq(s) makes this a low gain method. Reducing the sensitivity of the controller to 

∆ueq(s) further is the structure of the PDF algorithm itself. This is shown by dividing 

both sides of equation 4.34 by the integral gain ρ as sown below: 

*
  

 
 

  

 
  +     

   [ ̂            ]

 
      (4.37) 

It can be seen that, if the integral gain is made to be very high, the system is driven to 

steady state i.e. w(s)=r(s). Furthermore, as the system tends to steady state i.e. s 

tends to zero, the effect of ∆ueq(s) also becomes zero. Therefore the integral gain 

should be increased as much as possible. There is however, a limit as to how much 

the integral gain can be increased before increasing the system‟s sensitivity to 

unknown dynamics, such as delays from actuator and sensor dynamics which with 

too high a gain, will eventually drive the system to closed loop instability. The auto-

tuning algorithm presented in Chapter 5 alleviates the difficulty in determining this 

optimum value of gain. 

Overall it has been shown that the RIDE control algorithm is robust against 

errors in the estimated inverse dynamics i.e. ueq. This robustness property makes it an 

excellent algorithm for dealing with uncertain systems like buildings. It also provides 

a good foundation for the identification method described in Chapter 6. 

4.3.2 Dealing with Actuation System Limits 

Actuator limitations are extremely important in controller design as they govern 

the maximum achievable controller performance, irrespective of the controller 

design. It is the controller design that determines how close actual performance is to 

the maximum achievable. Therefore, it is important that the control law is able to 

operate the system within its limits and does not drive the system to perform an 
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operation that is out with its capability e.g., in this application, asking the actuator 

(heater) to deliver more heat than it is physically able to provide. If this situation 

arises and the controller output continues to build up, demand more output from the 

actuator, then the actuator will be forced to stay on its limit for longer than is 

necessary to achieve the desired performance. This is an issue which causes many 

problems with systems in practice (Khalid 2011). It is therefore necessary that the 

control algorithm has a means with which to deal with actuator limitations in order to 

achieve optimum and safe control. The safety criteria for ueq (Counsell 1992) was 

developed in order to ensure the safe operation of the control system under 

disturbances and actuator nonlinearities since power limitations on the plants 

actuation systems cause limitations on maintaining stable tracking. The algorithm 

works on the principle that when the actuator output, has reached its upper (LU) or 

lower (LL) limits, the control signal to the actuator, uc(s), must either remain constant 

or decrease in order to avoid overdriving the actuator and to maintain safe control. 

This is achieved by using a dynamic method for limiting the control signal produced 

by the controller. The following commutation law is used with the RIDE control 

algorithm to provide a Variable Structure Control (VSC) design which prevents the 

controller output from exceeding the actuator limits: 

 ̇     {
                     

                         
 (4.38) 

                  (4.39) 

             (4.40) 

             (4.41) 

Where i is the control channel. The tracking criterion, derived in (Counsell, Brindley 

et al. 2009), which the system must satisfy in order to be able to safely reach its set 

point is shown below: 

   
  ̂⃑⃑     

 
  ⃑⃑         

  ̂⃑⃑     

 
 (4.41) 
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It can be seen from equation 4.38 that providing the closed loop response is fast i.e. g 

is relatively large compared with rates of change of ueq(s), the tracking criteria 

reduces to: 

    ⃑⃑         (4.42) 

This criterion demonstrates that by setting the error signal in the RIDE topology to 

zero when actuator limits are reached, safety can be ensured on the condition that 

steady state is reachable i.e. ueq(s) satisfies the criteria in equation 4.38 (Counsell, 

Brindley et al. 2009). 

4.3.3 System Stability 

In order to ensure that the system is controllable in a safe and stable manner, a 

stability analysis for the system must be performed. This involves determining the 

transmission zeros for the system. The stability of the closed loop system is 

determined by the locations of the closed loop poles. The closed loop poles of the 

system are the values of „s‟ at which the system characteristic equation is equal to 

zero. The locations of the closed loop poles in a PI design vary with differing gain 

values, however in the RIDE design the final position of the pole(s) are restricted to 

those given by the characteristic equation in equation 4.35 and by the position of the 

fixed open loop zeros. Since the open loop zeros (known as transmission zeros for 

MIMO systems) correspond to the closed loop poles, it is imperative that the 

transmission zeros are determined so as to establish whether the system can be 

stabilised when using either high gain feedback control or inverse dynamics 

(Counsell, Khalid et al. 2011). This is due to the fact that, if the transmission zeros 

are unstable then the closed loop poles migrate towards these unstable transmission 

zeros with increasing gain, ultimately making the system unstable. For a system 

represented by state space equations 4.4 and 4.5, the transmission zeros can be 

calculated by evaluating the following determinant (Khalid 2011): 

|
     

  
|    (4.46) 
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4.4 Chapter Conclusions 

It was shown that the perfect control input coupled with the PDF algorithm can 

be used to control highly nonlinear multivariable systems. Furthermore, the 

algorithm was shown to be robust against modelling inaccuracies and disturbances. 

This is an important feature and an advantage over PID controllers or PID based 

controllers whose structure does not offer the same level of robustness. From a 

building control system design perspective, the RIDE algorithm provides an 

interesting and unconventional approach for designing robust and high performance 

control systems. The features of this algorithm described in this chapter make it a 

good foundation on which the advanced methods described in the subsequent 

chapters can be developed. 
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5. Robust Nonlinear HVAC Systems Control with 

Evolutionary Optimisation 

All control systems have parameters which require tuning. Tuning a control 

system has a direct bearing on its performance such that a control system can be 

tuned well in order to produce its optimal deliverable performance. On the other 

hand, a poorly tuned control system will produce sub optimal performance and, in 

some cases, can lead to system instability. This concept is analogous to the 

performance tuning of car engines. A highly refined and well-tuned car engine can 

produce better performance than a poorly tuned engine of the same size. Therefore, 

tuning is a vital part of the controller design process. 

It was shown in the preceding chapter that the controller gains for the RIDE 

algorithm can be represented as follows: 

   [  ]    (5.1) 

   [  ]    (5.2) 

Where g = 2ZdΩn and ρ = Ωn
2
. Zd and Ωn are the designed system damping ratio and 

natural frequency respectively. This is the case providing the ueq estimation is 

correct. It was also shown that in order to reduce the effects of inaccuracies in the ueq 

estimation, the integral gain should be made as high as possible. Increasing the gain 

too high however can result in closed loop instability due to sensitivity to unknown 

dynamics, particularly in systems with slow actuators. Therefore it is necessary to 

tune the gains carefully in order to attain the optimum system performance whilst 

ensuring stability of the system. 

In buildings it is recognised that it is difficult to know exactly the properties or 

parameters of the building such as air change rates, heat transfer coefficients etc. 

Therefore, when modelling the building, a degree of uncertainty will exist in the 

model. This, as mentioned before, can affect the accuracy of the ueq calculation as 

well as the control law itself. Equations 5.1 and 5.2 show that the gains are reliant on 

a part of the system model: the MB matrix. Therefore, if the real buildings 
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performance deviates from that of the model, then the performance of the controller 

may deteriorate. This deterioration in performance, of course, can be more apparent 

in some buildings or applications than others. This uncertainty can further complicate 

the controller tuning process. It is possible, however, to specify a range of 

uncertainty which the building parameters are known to lie within. Using this 

method, some of the parameters which are known to cause the biggest performance 

variation can be accounted for in the model. By tuning the control system gains over 

the range of uncertainty, the controller can be made to be more robust to these 

parameter variations.  

 This chapter sets forth the development of a robust and high performance 

controller for room temperature and relative humidity control which combines a 

Genetic Algorithm (GA) based auto-tuning method with the RIDE controller 

algorithm described in Chapter 4. The auto-tuning method alleviates the difficulty in 

tuning the closed loop system by automatically tuning the control system such that it 

is robust to parameter variations which have the most significant effect on the 

performance of the system.  

 

5.1 Genetic Algorithm Optimisation 

Genetic Algorithms (GA) are an evolutionary computation method premised on 

the principles of natural selection. The basic concept of the GA is to simulate the 

processes that occur during evolution in nature according to Darwin's theory. Hence 

they represent an intelligent exploitation of a random search within a defined search 

space to solve a problem. The GA was first pioneered by John Holland in the 60s, 

who later published the book Adaption in Natural and Artificial Systems in 1975 

(Holland 1975). Since then, GAs have been experimented and applied in many fields 

of engineering. GA‟s have become known for their efficacy in global optimisation 

problems and consistently outperform traditional methods in many applications.  

 Traditionally, the GA process is performed using binary encoding. This means 

that the individuals are represented with binary strings; individual being the term 

used to refer to one solution to the optimization problem. Using the binary 

representation however can be unnatural and unwieldy for many problems.  Real-
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coded GAs offer a more natural representation when tackling optimization problems 

with variables in continuous or discontinuous domains. In real-coded GAs, an 

individual is coded as a finite-length string of real numbers corresponding to the 

design variables. The real-coded GA is rigorous, precise, and efficient as the floating 

point representation is conceptually close to the real design space (Zamanan, 

Sykulski et al. 2006). Furthermore, the length of the string is reduced to the number 

of design variables. It has been shown that real-coded GAs outperform binary-coded 

GAs in many optimisation problems through a comparative study conducted by 

(Janikow and Michalewicz 1991).  

 The GA process is illustrated in the flowchart shown in Figure 5.1. From the 

flowchart it can be seen that the process can be broken down into a series of steps; 

Initial population, Fitness Evaluation, Stop Criteria Check, Genetic operations. 

 

 

Figure 5.1: GA Process (Zaher, Counsell et al. 2011) 

 

5.1.1 Initial population  

In this step, a random initial population of individuals is created by the 

algorithm. Each individual in the population consists of a number of values, 

dependent on the problem, which represent a possible solution. For example, 
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consider a problem in which four parameters are being optimised. The individual in 

that case would consist of four values which present a possible solution to the 

problem. The number of individuals in the population is dependent on the user 

defined population size. The selection of the population size and the method by 

which the individuals are chosen are two important questions which should be 

addressed initially when using GAs. There have been several theoretical approaches 

for selecting the size of the population however the fundamental concept is a trade-

off between efficiency and effectiveness. Intuitively, an „optimal‟ population size 

should exist for a given individual size. Selecting a population size which is too 

small would not allow sufficient room for exploring the search space effectively. 

Conversely, selecting too large a population size could impair the efficiency of the 

method such that a solution might not be obtained within a reasonable amount of 

time. Determining the „optimal‟ population size often requires a degree of trial and 

error. Once the population size as been decided, the initial population must be 

generated. The values in the initial population are typically generated randomly using 

a random number generator. These values are all generated within user specified 

boundaries (constraints) which define the search space. It is sometimes useful to 

„seed‟ the initial population with known good solutions as it can help the GA to find 

a better solution more quickly than is possible from a random start. A drawback of 

this method however is that there is a possibility of inducing premature convergence. 

For the work presented in this thesis, the initial population was generated using the 

random number generator available in the Visual Studio C++ library. Each 

population constitutes what is referred to as a generation e.g. the initial population is 

generation 1 and so on. 

5.1.2 Fitness Evaluation  

As the GA is based on the principle of „survival of the fittest‟, the fitness of each 

individual must be evaluated. To this end, an objective function, which provides a 

performance measure for the solution represented by an individual, must be 

designed. This is typically a function which captures the error between the desired 

system performance and the actual performance of the system. Based on the user 

defined objective function, the fitness of each individual in the population is 
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evaluated. The better the result from the objective function for the individual, the 

more 'fit' the individual is hence the more likely that individual is to „survive‟. It is 

clear that this is an important part of the optimization procedure as it has a direct 

bearing on the evolution towards the optimal solution. 

5.1.3 Stop Criteria Check  

GA‟s are a stochastic search method that could in principle run forever. Thus, 

some sort of termination criteria must be put in place in order to stop the evolution 

process. This can be done by simply terminating the procedure after a specified 

length of time or number of fitness evaluations. Another option is to track the 

performance statistics of the GA and terminate the process upon the satisfaction of a 

performance based criteria e.g. the variance in fitness levels in the population. 

Measuring the variance of mean fitness of one generation to the next is also a 

commonly used method. If the variance of the mean fitness falls below a threshold 

value, the generation is counted as a „stall‟ generation. A limit can then be put on the 

number of stall generations allowed before the process is terminated. Alternatively, a 

number of termination criteria can be specified which terminate the process based on 

whichever criterion is met first. 

5.1.4 Genetic Operations 

 These operations drive the evolution process by simulating natural evolution 

processes in order to determine which individuals constitute the subsequent 

population i.e. the new generation. There are four operators used in the GA in this 

thesis; elite children, selection, crossover and mutation.  

5.1.4.1 Selection 

This operator selects a number of individuals from the current population, called 

parents, who contribute their properties to the next generation through the mutation 

and crossover genetic operations described in the following sections. The selection 

process is related to the fitness of the individuals in that the fitter the individual, the 

more likely it will be chosen as a parent. There are a number of algorithms that have 

been developed for the selection process such as roulette wheel selection, tournament 
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selection and ranking. The roulette wheel selection algorithm was found to be 

sufficient for the purposes of the work in this thesis. Roulette wheel selection uses a 

probability distribution for selection in which the selection probability of a given 

string is proportional to its fitness. Figure 5.2 illustrates the concept of roulette wheel 

selection.  

 

 

Figure 5.2: Roulette Wheel Selection 

Each individual is assigned a probability of selection which is proportional to 

their fitness. For function minimisation, the lower the fitness value, the more fit the 

individual is. Therefore, the probability of selection in this case is inversely 

proportional to the actual fitness value. The total of all the fitness values for the 

population is calculated then a probability is assigned to each individual using the 

following equation: 

            
                        

             
 (5.3) 

This returns a probability value between 0 and 1. Pseudo random numbers are then 

generated between 0 and 1 for each individual and the individual is selected as a 
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parent if the random number is smaller than the probability value. Fitter individuals 

will have a larger number and therefore there is a higher probability that the random 

number will be smaller than it. This follows the principle of „survival of the fittest‟ as 

the fitter individuals are selected as parents and thus survive to contribute their 

properties to the subsequent generation. 

5.1.4.2 Elite Children 

 This operator insures that a specified number of the fittest individuals survive to 

go to the next generation without alteration. This is effectively the same as seeding 

the initial population with known good solutions. It ensures that important good 

performing solutions are not lost throughout the evolution process and speeds up the 

convergence process. The number of elite children must be selected carefully 

however since, as with seeding the initial population, the possibility of inducing 

premature convergence remains. Many researchers have found that using the elite 

children operator significantly improves the performance of the GA (Man, Tang et 

al. 1999). 

5.1.4.3 Crossover 

The crossover operator takes two of the individuals in the current population that 

have been selected as parents and creates two new individuals which retain some of 

the characteristics of each of the parents. There are various crossover methods which 

have been developed which differ for real coded and binary coded GAs. These 

methods have different mechanisms for the crossover procedure. The number of 

parents required and offspring created through the operator varies from one method 

to another. The crossover method used in this thesis is arithmetic crossover. This 

involves swapping chromosome parts between individuals but is not performed on 

every pair of individuals. The crossover frequency is controlled by a crossover 

probability parameter (Arumugam, Rao et al. 2005). In this method, two parents 

produce two offspring. Consider two individuals, represented by equations 5.4 and 

5.5, who have been selected as parents. 

   [  
      

 ] (5.4) 
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   [  
      

 ] (5.5) 

Where x
i
 is the ith parent n is the number of variables, often referred to as genes, 

being optimized. The offspring that are generated are then created arithmetically as 

follows: 

               (5.6) 

               (5.7) 

Where y
i
 is the ith offspring and α is a random number which varies for each 

generation. This is known as non-uniform arithmetical crossover. 

5.1.4.4 Mutation 

 The mutation procedure creates new genetic material in the population by 

altering one individual to produce a single new individual for use in the new 

population. This ensures that a degree of diversity remains in the population. The 

individuals which undergo mutation are governed by the mutation probability. In this 

thesis, the non-uniform mutation method, which is commonly used in real coded 

GAs, is used. This method works by altering one gene (parameter) in the individual 

to create a new individual. If the individual to be altered is denoted by x, the mutated 

gene is given by: 

   {
                       

                       
 (5.8) 

Where i is then gene position in the individual, ui and li are the upper and lower 

bounds of xi respectively, τ is a random digit which takes the value of 0 or 1 and Δ is 

a function given by: 
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  {
               
               

 (5.10) 

Where α is a uniformly distributed random number with a value between 0 and 1, k 

is the current generation number, T is the maximum number of generations and b is 

the shape parameter which determines the degree of non-uniformity. This form of 

mutation is designed such that the amount of mutation decreases as k increases.  

 

5.2 Case Study: Robust HVAC Control with GA Based Auto-

tuning 

This section presents the development of a robust HVAC control system for 

temperature and relative humidity regulation through application of the RIDE 

controller with the GA based auto-tuning methodology. The control system is 

designed based on the RIDE controller principles described in Chapter 4. The 

controller is then tuned using the GA based auto-tuning method which makes it 

robust against uncertainty in the heat transfer coefficient of the internal mass. 

Furthermore, the auto-tuner alleviates the otherwise tedious manual controller tuning 

process. The proposed controller‟s performance is compared to an improved PI 

controller strategy which provides a reasonable representation of control systems 

commonly used in industry.  

5.2.1 Zone Model and HVAC System Description 

The building model described in Chapter 3 is used for the controller 

development and analysis in this case study. The zone model consists of four state 

variables for temperature and one state variable for humidity. These are: zone air 

temperature (Ta), internal wall structure temperature (Tsi), external wall structure 

temperature (Tse), furniture and internal mass temperature (Tft) and zone humidity 
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(Wa). The zone air is assumed to be fully mixed meaning the temperature distribution 

across the zone is uniform. The air density is also assumed to be constant and 

unaffected by changes in temperature and humidity of the zone. The nonlinear 

differential equations that govern the zone temperature and humidity are as follows: 
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When the control system is applied, the zone air temperature (Ta) and relative 

humidity (Wrel) are tracked. The expression defining the relative humidity in the zone 

is given below in equation (5.16): 

                                      (5.16) 

For the control system design the differential equations were rewritten in state space 

format as shown in equations (5.17) and (5.18). 
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The expansion of the coefficients of the state space matrices can be found in 

Appendix A.  

5.2.1.1 Actuation Systems 

The actuation systems models used to control the temperature and humidity of 

the zone in this research are a direct acting heater and mechanical ventilation with 

first order dynamics as described in Case 1 in chapter 3. The dynamics of the heating 

system are described in equations (5.19) and 5.20 and the ventilation system is 

described in equations 5.21 and 5.22. 

 ̈  
 

  
(         ̇    ) (5.19) 

      ̇          (5.20) 

 ̈  
 

  
(        ̇    ) (5.21) 

      ̇          (5.22) 

The values used for the parameters of the actuation system are given in Table 5-1. 
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Parameter Value (Units) 

     0 (W) 

     10000 (W) 

     0 (kg/s) 

     0.35 (kg/s) 

   600 (s) 

   100 (s) 

Table 5-1: Actuation system parameters 

 

5.2.1.2 Stability 

As explained in Chapter 4, the system‟s transmission zeros, from which the 

stability of the system can be assessed, are determined by evaluating the following 

determinant: 

 

|
     

  
|    (5.23) 

Which can be expanded to: 
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(5.24) 

For this analysis, the nonlinear state space equations were linearised around the 

operating point  ̇     , Wa = 0.109kg/m3 and Ta = 21°C. The result of the 

analysis shows that the system is stable with the transmission zero locations at: 

s = -7.79951x10
-5

, s = -7.93704x10
-6

 and s = -2.96314x10
-6 
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5.2.2 Controller Design 

5.2.2.1 Proportional and Integral Control 

PI control is very commonly used in building control systems as well as many other 

industrial applications due to its simplistic design. For this reason, a PI controller 

tuned with a GA is used in this paper as a representation of common practice in 

industry. Since the PI controller is tuned with the same robust GA tuning method 

used with the RIDE controller, this controller represents an improved PI controller 

which is more robust than a standard PI controller which might be used in industry. 

This serves as a reasonable benchmark against which the advanced control method 

presented in this research can be compared.  

The PI control law is as follows: 

               ∫     (5.25) 

               (5.26) 

Where SP is setpoint. The proportional and integral gains, KP and KI respectively, 

must be tuned in order to attain the best performance according to the design 

specifications of the system. Since the PI controller is a SISO design, two separate 

controllers must be designed for each channel. This means that the tuning process is 

performed twice, once for each channel. The objective function calculation for 

optimisation of the gains is shown in Section 5.2.2.3. 

5.2.2.2 RIDE Controller Design 

The RIDE controller design has proven to be highly effective when applied to 

nonlinear systems (Fielding, Varga et al. 2002) due to its superiority over PI in 

response to uncertain disturbances. A more detailed explanation of this algorithm is 

given in Chapter 4. The RIDE control law is given by: 

  ⃑⃑⃑⃑⃑     ⃑     ⃑     ⃑⃑      (5.27) 

 ̇⃑     ⃑    (5.28) 

 ⃑⃑       [  ]   ̇⃑     ⃑⃑    (5.29) 
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Where KP and KI are the proportional and integrals gains (which require tuning) 

respectively. The  ̂⃑⃑      term (equation 5.29) is an estimate of the equivalent control 

which is required to drive the rate of change of the output to zero. The equivalent 

control estimate uses the dynamic inverse to diminish disturbances, cross-coupling 

and nonlinear plant dynamics (Counsell 1992). It was shown in Chapter 4 that the 

proportional and integral gains are expressed as in equations 5.1 and 5.2 respectively 

and that the system response can be shaped by tuning KP and KI through Zd and Ωn. 

It can be seen then that the information required for the implementation of this 

algorithm is the MB matrix and measurements of the outputs, i.e. the temperature 

and relative humidity of the zone, and the actuator input. The MB matrix based on 

the building model is expressed as follows: 

[  ]  
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 (5.30) 

5.2.2.3 Optimisation Objective Function Design 

Due to the inherent parameter uncertainty associated with buildings, implementing 

building control systems in practice which have been designed using a building 

model can prove difficult. This is caused by the difficulty in accurately capturing the 

dynamic behaviour of the building since the values of many parameters might not be 

known exactly. Hence the performance of the building in reality will differ from the 

model and the controller may not perform as expected. The proposed method in this 

research attempts to alleviate the problems associated with parameter uncertainty by 

tuning the controller parameters over a range of uncertainty. This makes the 

controller more robust against discrepancies between the building model and the real 

building.  This is achieved through the design of the objective function for 

optimisation. 

When designing the optimisation objective function, it is necessary to specify 

some uncertainty ranges for the building parameters. The building model can be used 

to identify which parameters have the most significant impact on the control system 

performance. This is done by altering parameters in the building model and 

observing which parameters affect the response of the system the most. Through this 
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method it was identified that the heat transfer coefficient for the internal mass (Uft) 

had the biggest effect on the control system performance. It is impossible to model 

the thermal properties of the internal mass due to the wide range of use of a building 

in its lifetime. Therefore the control system was optimised over the uncertainty range 

for this parameter. 

It is considered that Uft can vary by ±60%. In order to optimise the controller 

parameters over this range, the objective function was designed such that it calculates 

the root mean square of the error between the set point and the system response over 

three simulations: one at the normal operating condition (Uft = 2.0W/m
2
K) and two 

others at the extremes of the uncertainty range (Uft = 0.8W/m
2
K and Uft = 

3.2W/m
2
K). As mentioned in Section 5.2.2.1, the tuning process is performed on 

each channel separately for the PI controller. The error for the PI case is simply taken 

as the value of the error on the channel being tuned. However, since the RIDE 

controller is MIMO and both channels are tuned with the same natural frequency and 

damping ratio, the error is taken as the absolute value of the sum of the error on both 

channels. The resulting objective function calculations are shown below: 

    √
    
  

 
(28) 

                                      

                  
(29) 

  
                   

                      
 

(30) 

Where n is length of the error vector, Terr is the total error over all three simulations, 

OP stand for operating point and E is the value of the error squared and is determined 

by equations (31) and (32) for the RIDE and PI controllers respectively: 

  
                                                

  (31) 

  
              

  (32) 
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Where y is actual system response and SP stands for setpoint. A detailed explanation 

of the tailored GA tuning process used in this work is given below in Algorithm 1. 

Algorithm 1 

1. Set GA parameter values; max_stall,tol_fun, gen_max, popsize, elite_count, 

nvars, crossover_fract, mut_prob , UB, LB 

2. Initialise popi,k with random values between the upper (UBk) and lower (LBk) 

bounds for all i ϵ {1,...,popsize} and k ϵ {1,...,nvars} 

3. Initialise generation counter: gen = 1 

4. Do 

5. For All i ϵ [1,...,popsize] do 

6. Set operating point 1 (Uft = 0.8W/m
2
K) 

7.  Evaluate the cumulative error over the simulation  (E1 + E2...+ En)OP-1 

8. Set operating point 2 (Uft = 2.0W/m
2
K) 

9.  Evaluate the cumulative error over the simulation  (E1 + E2...+ En)OP-2 

10. Set operating point 3 (Uft = 3.2W/m
2
K) 

11.  Evaluate the cumulative error over the simulation  (E1 + E2...+ En)OP-3 

12. Evaluate RMSE = √
    

  
 

13. Assign RMSE to fitnessi 

14. End For 

15. Calculate mean fitness for current population (mean_fitgen) 

16. If mean_fitgen - mean_fitgen-1 ≤ tol_fun 

17.  stall_num  = stall_num + 1 

18. End if 
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19. Select elite individuals from current population 

20. Perform Roulette wheel selection 

21. Determine crossover individuals from current population other than elite: 

ensure within boundaries 

22. Determine mutation individuals from current population other than elite: 

ensure within boundaries 

23. Bring elite, mutation and crossover individuals together to form new 

population 

24. WHILE (stall_num  <  max_stall) AND (gen < gen_max) 

The GA used for tuning in this research was coded in C++ and compiled into an 

executable file. The settings for the GA used in the auto-tuning process are given in 

Table 5-2. 

 

Parameter Value 

Population size 15 

Elite count 3 

Crossover fraction 0.7 

Mutation 0.25 

Selection method Roulette 

Table 5-2: GA Parameters 

 

5.2.3 Results 

The control systems discussed above where applied to the building model and 

simulated over a three month winter/spring period with weather data from January to 

March. Their performance was evaluated over three different operating conditions 

across the range of uncertainty in the heat transfer coefficient of the furniture. This 

was done in order to demonstrate each controller‟s ability to cope with parameter 

uncertainty which is very common in buildings. The different operating conditions 
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were: Uft = 0.8W/m
2
K, Uft = 2.0W/m

2
K and Uft = 3.2W/m

2
K, where Uft = 2.0W/m

2
K 

is the „normal‟ operating condition. 

The PI controller was tuned using the same GA optimisation scheme that was 

used for the RIDE controller so as to provide a representation of a very well-tuned PI 

controller and to demonstrate the efficacy of using the GA tuning method with the 

RIDE controller. In reality many PI controllers in use in the buildings industry are 

not optimally tuned, hence tuning the PI controller with the GA can be considered to 

provide an example which is better than many controllers in industry. The tuning 

results for both controller setups are detailed below in Table 5-3 and Table 5-4. 

 Channel 1 (Temperature) Channel 2 (Humidity) 

No. Generations 10 8 

KP  252.6 298.2 

KI  0.129 0.118 

Table 5-3: PI Auto-Tuning Results 

No. Generations 8 

Ζ 0.86 

Ω 0.00195 

Table 5-4: RIDE Auto-Tuning Results 

It is clear that the tuning process for the PI-GA controller took longer than the 

RIDE-GA controller since the PI-GA controller required tuning for each channel 

separately whereas the RIDE-GA controller is MIMO and so both channels were 

tuned simultaneously. Another important point to note is that since the RIDE theory 

allows the controller gains to be tuned using the natural frequency and damping ratio 

of the closed loop system, the tuning process is simplified as a direct correlation 

between the system response and the gain values can be observed. Figure 5.3 shows 

a plot of the zone air temperature and external temperature over three days at all 

three operating points. It can be seen that the PI-GA controller does not track the 

temperature set point (21°C) accurately, with significant overshoots occurring for 

large portions of each day such that the zone air temperature is either too hot or too 

cold for the majority of each day resulting in a very uncomfortable environment for 

the building occupants. This is true for all three operating points, as the system 
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response over the three operating points is similar albeit the overshoots increase 

slightly as the furniture heat transfer coefficient decreases. This can be expected as 

the lower the heat transfer coefficient, the lower the thermal inertia. The 

corresponding heating power used corroborates this result as more heating power is 

used as the thermal inertia increases. Figure 5.4 shows that the RIDE-GA controller 

achieves a significantly faster response when compared to the PI-GA controller as 

well as much improved set-point tracking. A small overshoot can be observed at the 

beginning of the day however almost perfect tracking is achieved over the rest of 

each day for all three operating points. This indicates that the RIDE-GA controller is 

more robust to the uncertainty in the furniture heat transfer coefficient as the 

response is nearly identical regardless of the operating point.  

 

Figure 5.3: Zone air temperature and heat input (PI-GA) 

 

Figure 5.4: Zone air temperature and heat input (RIDE-GA) 
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The PI-GA controller tracks the relative humidity setpoint (50%) accurately for the 

majority of each day as can be seen in Figure 5.5. The zone relative humidity can be 

seen to oscillate rapidly around the setpoint however as the controller is locked in a 

limit cycle as can be observed from the mechanical ventilation rate. This type of 

oscillatory behaviour is highly undesirable as it can damage the actuation system in 

practice. There are also a few spikes which can be observed in the relative humidity 

which are caused by casual gains which the controller fails to deal with. The relative 

humidity can be seen to increase above the setpoint for a few hours on the third day 

however this is due to the setpoint being unreachable i.e. the lower limit of the 

mechanical ventilation actuation system renders tracking of the setpoint during this 

period impossible. The RIDE-GA controller again achieves quick and accurate 

tracking of the setpoint as shown in Figure 5.6. This is achieved without any 

damaging oscillations in the actuation system resulting in financial savings. The 

same increase in the zone relative humidity on the third day observed with the PI-GA 

controller occurs with RIDE-GA controller. However, as explained, this is due to the 

setpoint becoming unreachable as a result of actuator limitations. Overall, the RIDE-

GA controller exhibits a significantly improved performance when compared to the 

PI-GA controller which, in practice, could result in significantly improved comfort 

conditions and potential financial savings.   

 

Figure 5.5: Zone relative humidity and mechanical ventilation rate (PI-GA) 
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Figure 5.6: Zone relative humidity and mechanical ventilation rate (RIDE-GA) 

5.2.3.1 Disturbance Rejection Results 

In reality, a building is subject to many disturbances such as people entering and 

leaving rooms, opening windows and doors etc. Therefore it is necessary that the 

control system is able to deal with these disturbances i.e. reject the disturbances 

without an adverse effect on its performance. In order to assess the ability of both 

controller designs to deal with disturbances, two types of disturbances were 

simulated; heat loss and heat gain. The first disturbance simulates a heat loss 

disturbance with a window being opened with an area of 0.1m
2
 for a period of 2 

hours. This was done to assess how each controller recovered after a sharp 

disturbance. Results for this are shown over a three day period with the disturbance 

being simulated on the third day from 56-58 hours. 

 

Figure 5.7: Zone air temperature and heat input with heat loss disturbance (PI-GA) 
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Figure 5.8: Zone air temperature and heat input with heat loss disturbance (RIDE-GA) 

Figure 5.7 shows that when the window is opened the temperature drops significantly 

and the PI-GA controller increases the heating power in an attempt to compensate for 

the heat being lost through the open window. The response is too slow however and 

the controller is unable to reject the disturbance on time instead causing a large 

overshoot in temperature (approx. 4°C) when the window is closed. The result is the 

zone air temperature dropping below the setpoint for a period of two hours and then 

rising above the setpoint for approximately two hours also. The RIDE-GA controller 

on the other hand demonstrates greatly improved disturbance rejection as shown in 

Figure 5.8. The zone air temperature can be seen to oscillate around the setpoint 

briefly when the window is opened and then the controller resumes accurate tracking 

of the setpoint. The PI-GA controller shows effective disturbance rejection on the 

relative humidity channel as can be seen from the second spike on the third day in 

Figure 5.9. The relative humidity response for the RIDE-GA controller can be seen 

to spike in Figure 5.10 however it can be seen that the actuator (mechanical 

ventilation) is on the lower limit when this happens and so the setpoint is 

unreachable during this period. The relative humidity then briefly oscillates around 

the setpoint and then the controller resumes accurate tracking. These results highlight 

the efficacy of the RIDE/GA controller‟s robust structure which makes its tracking 

performance less sensitive to disturbances.  



122 

 

 

Figure 5.9: Zone relative humidity and ventilation rate with heat loss disturbance (PI-GA) 

 

Figure 5.10: Zone relative humidity and ventilation rate with heat loss disturbance (RIDE-GA) 

The second disturbance simulates a heat gain by raising the number of room 

occupants by 10 for a period of 3 hours. This represents situations which could arise 

such as group meetings where a room will temporarily have extra occupants. Figure 

5.11 and Figure 5.12 show the zone air temperature, under PI-GA control and RIDE-

GA control respectively, over a three day simulation period with the disturbance 

simulated on the second day between 35-38 hours. The PI-GA controller 

demonstrates poor disturbance rejection as can be seen from Figure 5.11. The 

temperature increases to 23°C when the extra of occupants enter the room and 

remains above the setpoint for the majority of the time before the occupancy level 

drops again. This shows that the controller does not react quickly enough to reject the 

disturbance and would result in uncomfortable thermal conditions. The RIDE-GA 
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controller again deals with the disturbance effectively with minor oscillations 

occurring. The controller can be seen to reduce the heating power when the 

disturbance occurs in order to accommodate for the heat gain. Therefore, it manages 

to maintain accurate tracking of the set point. From Figure 5.13 and Figure 5.14, the 

zone relative humidity response of both controllers can be seen to be unaffected by 

the heat gain disturbance. The RIDE-GA controller rejects the disturbance by 

reducing the ventilations rate over the disturbance period. The PI-GA controller 

response is oscillating rapidly around the setpoint and so appears to be unaffected by 

the disturbance.  

 

Figure 5.11: Zone air temperature and heat input with heat gain disturbance (PI-GA) 

 

Figure 5.12: Zone air temperature and heat input with heat gain disturbance (RIDE-GA) 
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Figure 5.13: Zone relative humidity and ventilation rate with heat gain disturbance (PI-GA) 

 

Figure 5.14: Zone relative humidity and ventilation rate with heat gain disturbance (RIDE-GA) 

The results presented in this section showcase the proposed RIDE-GA controller‟s 

superiority over the PI-GA controller with respect to disturbance rejection, as in all 

cases presented it is able to reject the disturbances effectively.  

 

5.3 Chapter Conclusions 

It was shown in the simulation results that the RIDE control method combined 

with the GA optimisation is a highly effective control strategy. This was clearly 

demonstrated through the case study using the simplified building physics model. 

The results show that the developed control strategy offers the following advantages 

over the PI controller tuned with the GA: 
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 Faster response 

 Increased accuracy and stable tracking 

 Improved disturbance rejection 

 Decreased sensitivity to parameter variation 

 No oscillatory behaviour translating to less damage to actuators 

These benefits of the control system mean that an improved level of thermal comfort 

for the occupants is achieved as well as potential financial savings due to prolonged 

life of actuation systems. 

5.3.1 Limitations and Improvements Made in other Work 

The auto-tuning process described in this chapter was shown to be effective in 

applications in which there are a small number of parameters with uncertainty which 

must be accounted for. A limitation of this method however, is that it may become 

inefficient if it is used to account for uncertainty in a large number of parameters. 

The auto-tuning method was also designed for use in systems for which models have 

been developed and the control system designer wishes to tune the control system 

based on the model. This way, using the system model, the control system can be 

tuned to produce close to optimal performance when implemented in practice. In 

some applications however, a system model is unavailable or is difficult to develop 

due to certain unknown parameters such as transport lag. Therefore, an alternative 

method which can be used to implement high performance control systems without a 

detailed model of the system which has been previously developed is required. In 

Chapter 6, control methods which are capable of dealing with these difficulties are 

presented. 
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6. Robust System Identification Based Nonlinear 

Inverse Dynamics Control 

 The aim of the work presented in this chapter is to create a high performance 

MIMO control strategy for control of thermal comfort conditions in buildings which 

is easy to implement and overcomes the difficulties mentioned in the previous 

chapters. Chapter 5 presented an auto-tuning method which can be used to apply the 

advanced RIDE control methodology for building HVAC systems control. This 

method required the development of a building physics model for use in the 

controller design. The derivation of a model which accurately represents the 

dynamics of a building is not a trivial task, particularly for an operator with limited 

knowledge of the building physics. Furthermore, obtaining knowledge of certain 

parameters in a building model can be difficult due to the wide range of use of a 

building in its lifetime, or in some cases the parameters cannot be known prior to the 

use of the building e.g. transport lag. The buildings industry is generally reluctant to 

adopt many of the advanced methods which have been developed by the research 

community, due to the difficulty in their implementation or extra parameters which 

require specification resulting in a more lengthy commissioning process. 

Consequently, traditional PID controller designs are predominantly used in the 

industry on account of their simplicity and ease of commissioning. Much 

advancement has been made towards improving PID controller designs in the areas 

of self-tuning and adaptation however these methods suffer from the drawbacks 

discussed in Chapter 2. Therefore it is desirable to develop a method which borrows 

from the advantageous features of these methods whilst achieving an improved 

performance through advanced design. This chapter presents a methodology which 

combines the self-tuning principles of the aforementioned methods with the robust 

NID controller principles presented in Chapter 4. This methodology aims to enable a 

building control systems designer to apply fundamentally complex and high 

performance controller design methods with minimal input and extra knowledge 

required.   
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6.1 System Identification based Rate Compensated Inverse 

Dynamics (SI-RCID) Methodology 

 It has been established that PID control remains the most common control method 

used in the buildings industry due to its simplicity and familiarity. It is known that 

one of the main difficulties with designing PID HVAC control systems is tuning (Bi, 

Cai et al. 2000). In order to tune a PID controller, an accurate model of the process 

being controlled is required as well as an effective controller design rule. The tuning 

procedure is often time-consuming, expensive and complicated. In practice, some 

HVAC control engineers can take over three days to tune a single control loop. 

Furthermore, in large HVAC system‟s, re-tuning of the controller is often required, 

which adds further cost and time onto a project. Consequently, many of the 

advancements made in PID controller designs for HVAC systems are based on auto-

tuning and self-tuning/adaptive control. These methods offer advanced methods for 

tuning the gains of the control systems based on identification of the system being 

controlled using input-output data. Since most of the processes in HVAC systems 

can be approximated by first order models, the identification methods employed in 

these controllers typically aim to identify a first order plus dead time (FOPDT) 

model using step response data. This has proven to be an effective method in many 

cases however one of the drawbacks of these controller methods is robustness to 

changes in operating conditions and inaccuracies in the identified models.  

 Since identification of FOPDT models of HVAC systems from step response data 

is an established methodology which the buildings industry is familiar with, it is 

logical to utilise this method whilst improving on the drawbacks of these control 

strategies. Hence, the methodology presented in this chapter utilises the step response 

system identification method in a robust NID controller structure which overcomes 

the robustness drawbacks commonly found in PID controllers whilst offering 

significant performance improvements. 

Consider a system represented by the state equations below: 

 ̇                      (6.1) 

           (6.2) 
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           (6.3) 

From Chapter 4, it was shown that the RIDE control law is given by equation 6.4-

6.6.  

                           (6.4) 

 ̇                   (6.5) 

                   ̇    (6.6) 

Where: 

   [  ]    (6.7) 

   [  ]    (6.8) 

It can be seen that in order to implement the RIDE control algorithm in practice, the 

only part of the system model required is the MB matrix. Therefore, in order to apply 

this control algorithm to an unknown system only the MB matrix would have to be 

identified. The requirement to identify the MB matrix only, simplifies the 

identification process as one of the difficulties encountered in identification is often 

identifying the structure of the model that is to be identified. The structure of the MB 

matrix however is fixed for any system as it is a square matrix with a number of rows 

and columns equal to the number of inputs to the system.  

 When identifying the model of the building it is desirable to do it at a time when 

disturbances are small or have a small effect. In an office building it would be 

reasonable to assume that disturbances would be smallest at night time. Hence, 

within an adequately small time frame, the disturbances can be assumed to be 

negligible. Based on this assumption, for a building whose dynamics are represented 

by the state space equations 6.1-6.3, the state equation 6.1 would become:  

 ̇                (6.9) 

It is possible to separate a system represented in state space into its fast and slow 

parts. The fast part of the system is influenced directly by the input and the slow state 

is subsequently influenced by the fast state (Khalid 2011). The system expressed in 

equations 6.9 can be decomposed into fast and slow modes in the form shown below: 
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 ̇                       (6.10) 

 ̇                              (6.11) 

A set of states can be transformed into another set using a transformation matrix J as 

follows: 

     [          ]
        (6.12) 

Where the transformation matrix J is given by: 

  [
  
  
] (6.13) 

Thus: 

      [
      

      
] (6.14) 

The transformation is based on the condition that: 

      (6.15) 

Therefore, based on the assumption that B2 and C2 are non-singular and that the CB 

matrix is full rank: 

   [
 
  

] (6.16) 

     [    ] 
(6.17) 

The state space representation then becomes: 

[
 ̇    

 ̇    
]  [

      

      
] [

     
     

]  [
 
  

] [    ] (6.18) 

[    ]  [    ] [
     
     

] (6.19) 

In the case of thermal comfort control, the controlled states are typically the internal 

air temperature, humidity and CO2 concentration which are the fast states. Therefore, 

the feedback, w(t), can be expressed as: 
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[    ]  [   ] [
     
     

] (6.20) 

If equation 6.20 is differentiated and equation 6.11 is substituted into it then this 

gives: 

 ̇                                      ̇     (6.21) 

In many cases w(t)=x2 such that M2=1 for a SISO system, or M2=I for a MIMO 

system. For now, let us consider a SISO system. In buildings, it is reasonable to 

assume that the slow modes of the system are much slower than the fast modes of the 

system i.e. the states that are directly controlled using the actuators, such as 

temperature and humidity, have a much faster response than the wall temperature for 

example (Khalid 2011). When this is true, it can be assumed that, within a given time 

frame, the slow modes of the system are approximately constant. This time frame 

should be long enough for the fast modes to respond and reach steady state whilst 

being short enough such that the slow modes remain constant. Therefore, if the input 

to the system is initially zero and then a step input is applied to the system, then 

equation 6.21 at the initial conditions and after the step input will be represented by 

equations 6.22 and 6.23 respectively: 

   ̇                           (6.22) 

   ̇                                    (6.23) 

Where T is the time taken for the system to reach steady state after the step input has 

been applied. Considering equation 6.21 in terms of the difference caused by the step 

input will give: 

    ̇                           (6.24) 

Dividing through by M2: 

  ̇                       (6.25) 

 The standard format of a first order differential equation is given by: 
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  ̇               (6.26) 

Where τ is the time constant and G is the process gain. It can be seen that equation 

6.25 can be rearranged in this format as follows: 

 

   
  ̇            

  

   
      (6.27) 

This shows that there is a first order relation between the system input and output 

where: 

  
 

   
 (6.28) 

  
  

   
 (6.29) 

Therefore, if a step input is applied to the system, the process gain and time constant 

of the system can be determined. Since M2 is known, as it is specified by the user, 

M2B2 can subsequently be determined by rearranging equation 6.29 and multiplying 

by M2 to give: 

            (6.30) 

This can be determined since the gain and time constant (1/A22) have been identified.  

6.1.1 MIMO System Identification 

 The method described above can also be used to identify the MB matrix in MIMO 

systems. Consider equation 6.25 for a two input two output MIMO system. The 

expanded matrices would be as follows: 

[
   ̇      

   ̇      
]  [

              
              

] [
         

         
]  [

            
            

] [
      
      

] (6.31) 

In a system where the fast states are not dependent on one another, as is the case in 

many systems, the A22 matrix will be diagonal. The three main thermal comfort 

parameters that are controlled in a building are temperature, humidity and CO2 

concentration. These three parameters are not dependant on one another e.g. a change 
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in air temperature does not affect the absolute humidity of the zone and the same is 

true for CO2 concentration. The exception is relative humidity, which is a function of 

air temperature and absolute humidity. This however can be dealt with by 

considering the effect of the states on one another in the B matrix, as will be 

demonstrated in the case study section 6.2, thus keeping the A matrix diagonal. In 

light of this, equation 6.31 can be rewritten as: 

[
   ̇      

   ̇      
]  [

        

        
] [

         

         
]  [

            
            

] [
      
      

] (6.32) 

If a step input is applied to one channel at a time and the input for the other channel 

is kept as zero, the MB matrix can be identified as follows. Applying a step input to 

the first channel i.e. (x2)1 will result in both equations being expressed as: 

   ̇                                     (6.33) 

   ̇                                     (6.34) 

Both of these equations can be rearranged in the format of standard first order 

equations as shown below: 

 

       
   ̇                 

      
       

       (6.35) 

 

       
   ̇                 

      
       

       (6.36) 

Where the process gain Gi and time constant τi for each channel (i) are given by: 

   
 

       
 (6.37) 

   
      
       

 (6.38) 

   
 

       
 (6.39) 

   
      
       

 (6.40) 
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Hence, with knowledge of the process gain and time constants, the parameters of the 

B2 matrix relating the first input to both channels can be determined by rearranging 

equations 6.38 and 6.40 as follows: 

                 (6.41) 

                 (6.42) 

Thus the cross coupling of inputs across channels is known. The above process can 

then be repeated for the second channel and the remaining parameters of the B2 

matrix can be determined. The M2B2 matrix can then be determined by multiplying 

the M2 and B2 matrices together. This process can be extended to MIMO systems 

with any number of inputs and outputs, providing the number of inputs and outputs 

are the same. 

6.1.2 System Identification from Step Response 

 In the previous section it was shown that the M2B2 matrix can be determined 

through the identification of the first order response characteristics of the input-

output relation of the building zone and HVAC system within a given time frame. 

Hence, a first order system identification technique must be adopted in order to do 

this. Since most thermal processes in buildings and HVAC systems can be 

approximated by first order plus dead time (FOPDT) models (Bi, Cai et al. 2000), 

there are numerous methods which can be found in the literature for the identification 

of FOPDT models from input-output data. The FOPDT model transfer function is 

shown below: 

   
 

     
     (6.43) 

Where K is the system gain, TC is the time constant and L is the dead time. Dead 

time represents the time taken for the system to respond, or for a response to be 

observed, after the moment the input is applied to the system. Dead time in buildings 

is an issue which has adverse effects on the performance of control systems and is 

often the cause of poor performance of building control systems in practice. Section 
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6.1.6 details an advanced method designed to deal with time delay in the RIDE 

controller structure.  

 Two basic and common identification methods which are used to identify first 

order process models from open loop step response data are the two point method 

and the area method (Kealy and O'Dwyer 2002). The area method is based on 

integrals of the step response. Integrals of specific areas of the open loop step 

response data are taken and based on the resulting values the dead time and time 

constant are determined.  

 In the two point algorithm approach, the system gain is determined by dividing 

the steady state output value by the steady state input value as shown below: 

  
    
    

 (6.44) 

The time constant and dead time of the process are then determined from the time 

taken for the process to reach 28% and 63% of the final steady state output value. 

These two points in the output response are then used in equations 6.45 and 6.46 as 

follows: 

          (6.45) 

       
  
 

 (6.46) 

Where TD and TC are the dead time and time constant respectively. There have been 

several new developments in advanced identification methods from step response 

data however for the purposes of the work presented in this thesis, the two point 

algorithm was found to be sufficiently effective.  

 Buildings are slowly varying systems, as mentioned by Geng and Geary (1993), 

therefore continuous adaptation is generally not necessary. Therefore, the system can 

be adapted slowly e.g. every night or every weekend. 

6.1.3 Robustness 

 Once the MB matrix has been obtained using the procedure explained above, it 

can be used in the control system design. As shown in equation 6.6, the equivalent 



136 

 

control equation is calculated based on the MB matrix. Therefore the equivalent 

control can be implemented using the identified MB matrix. As the RIDE controller 

structure is inherently robust to errors in the ueq calculation, the control system will 

consequently be robust to errors in the identified MB matrix which might cause 

inaccuracy in the ueq estimation. Going back to section 4.3.1 explaining the 

robustness of the RIDE control structure, it can be seen from equations  6.47 and 

6.48 below that the integral gain (g) and proportional gain (p) can be increased to 

decrease the effect of the error in MB and ueq.  

*
  

 
   

 

 
+     

   [ ̂            ]

 
 

 

 
     (6.47) 

*
  

 
 

  

 
  +     

   [ ̂            ]

 
      

(6.48) 

The MB matrix used in the gain equations might differ from real MB in which case 

the MB matrix will be cancelled out however the natural frequency and damping 

ratio of the closed loop system might not correspond exactly with what the user has 

specified in the proportional and integral gains according to equations 6.7 and 6.8. 

This can be dealt with using the method presented in the section 6.1.5.  

 The robust structure of the controller design provides a good framework which 

reduces sensitivity to identification errors and can reject plant changes, which cause 

the MB matrix to differ from the identified one, as disturbances providing they are 

not excessively large such that the error in ueq is greater than ueq itself. In the case 

that the MB matrix does vary significantly, the system identification process can be 

performed at different operating points such that different MB matrices can be 

scheduled and used at different points in the operating range.  

 

6.1.4 Novel Improved Commutation Law for Dealing with 

Actuation System Limits 

While the original commutation law for the RIDE controller given in equation 

4.38 works well in most cases, there are certain conditions in which it has an adverse 
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effect on the controller performance. Let us consider the effect of equation 4.38 on 

the control signal produced by equation 6.4 using the example of a zone temperature 

control system. If we assume that the controller is switched on at the beginning of the 

day and that initially the zone air temperature is lower than the set point such that the 

error is positive, then a positive control signal is required i.e. heat input is required. 

Looking at equation 6.6 it can be seen that in order for the ueq term in equation 6.4 to 

be positive, the rate of change of the output must be negative since the actuator input 

u(t) is initially zero. If at the beginning of the day however, the rate of change of 

output (temperature) is positive due to casual heat gains or rising external 

temperature, which is common, the control action produced by ueq will be negative. 

The proportional action in equation 6.4 will always be negative in a zone air 

temperature control system unless the zone air temperature is below zero which we 

can assume to be unlikely in most cases. Thus, in this scenario, in order for the 

control action produced by equation 6.4 to be positive the following must be true:  

|      |  |        ̂     | (6.49) 

Thus, for the condition in equation 6.49 to be true, the error must be large enough to 

make the magnitude of the integral action larger than the magnitude of the 

proportional and ueq action. This is unlikely to be true at the point when the controller 

is switched on since the integral of error has not yet been given time to build up. 

Therefore the overall control action produced will be negative i.e. it is attempting to 

drive the system in the wrong direction. In reality however, the heater will not 

produce negative heat. Thus, the lower limit of the actuator is zero. According to the 

original commutation law in equation 4.38, the error term is set to zero when the 

controller demands action which is out with the limits of the actuation system in 

order to avoid integrator wind up which forces the system to remain on the actuation 

limit for longer than necessary. In this scenario however, by setting the error to zero, 

the control action produced will be negative and will continue to be negative since 

the integral term will not build up. Thus, this commutation law forces the system to 

become locked on the lower limit despite the system requiring positive control 

action. In order to overcome this problem, a new commutation law with an extra 

criterion shown in equations 6.50 and 6.51 is proposed: 



138 

 

 ̇     {
                                           

                         
 (6.50) 

      (     )     (  
   ) (6.51) 

Based on the above commutation law, the error in the integral term is only set to zero 

when the control system is on the limit and the system output is on the correct side 

of the set point. Therefore, in the scenario described above, the error would not be set 

to zero and consequently the integral term would build up. This would lead to the 

condition in equation 6.49 becoming true and a positive control signal would be 

produced. Therefore this new improved commutation law overcomes the issues 

which occur with the original commutation law and is effective in all conditions. 

6.1.5 Stability and Tuning 

 In order to apply high gain or inverse dynamics control, the transmission zeros of 

the open loop system must be stable as they dictate the final location of the closed 

loop poles. Therefore, it is necessary to check if the systems transmission zeros 

(TZ‟s) are stable. If the system has not been modelled, then the existence of RHP 

TZ‟s can be determined simply by observing the response of the system to a step test 

as this type of system shows an initial movement in the opposite direction i.e. a non-

minimum phase system. If the TZ‟s are found to be stable, then the RIDE controller 

can be applied, providing the MB matrix is full rank. In the case that the TZ‟s are 

found to be unstable, then the feedback must be changed until the system no longer 

exhibits the non-minimum phase characteristics.  

 Most cases of degenerate MB matrices in practice arise due to one of the matrices 

M or B not having maximal rank. It is possible to assess this without modelling the 

system by looking at the inputs and outputs of the system (Khalid 2011). An example 

could be if one input is applied to control more than one state, the columns of the B 

matrix corresponding to these controls would be collinear causing the matrix to be 

degenerate (Khalid 2011). It is also possible to identify whether the MB matrix will 

be full rank or not by analysing the step response of the system. If a step input is 
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applied and no response is observed in the corresponding output being controlled 

then the MB matrix will not be full rank.  

 It was shown in Chapter 4 that when the equivalent control input is used, the 

closed loop system transfer function becomes: 

[    ]  [                 ]       (6.52) 

By setting the gains to equations 6.7 and 6.8, the MIMO system is then represented 

by SISO channels characterised by ideal second order transfer functions with the 

designed damping ratio and natural frequency as shown below: 
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 (6.53) 

In reality however, errors in the MB matrix can result in the natural frequency and 

damping ratio being different from those specified by some factor ki (where i is the 

control channel) meaning equation 6.52 now becomes: 
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 (6.54) 

This factor can be compensated for by applying a step input on the closed loop 

system and observing the response. It is known that the rise time (Tr) of a second 

order system can be approximated by equation 6.55: 

   
   

  
 (6.55) 
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The rise time is defined as the time taken for the system response to go from 10% to 

90% of the final steady state value. Therefore, the natural frequency of the closed 

loop system can be calculated approximately from the step response of the closed 

loop system (Ding, Bradshaw et al. 2006). If it is found that ωn is not the same as 

what was specified by the user, then the natural frequency specified in the gains can 

be adjusted to compensate for this error. It is very important however that the closed 

loop bandwidth (ωn) of the system is at least three times slower than the actuator 

bandwidth (ωa) in order to ensure tracking is possible (Khalid 2011). Hence, the 

closed loop step response test should be performed with the bandwidth specified at a 

value lower than 
  

 ⁄ . 

6.1.6 Time Delay Compensation 

 In buildings, thermal systems with large dead time are common. Dead time, as 

mentioned in Section 6.1.2, is the time taken for a response to be observed by the 

output of the system after an input has been applied to the system. Dead time is 

commonly associated with large times taken for energy to be transferred and is 

therefore often referred to as transport lag. This can occur in AHUs in buildings due 

to long ducting which can cause a significant delay in the time taken for the heat 

transferred from the heating system to the supply air reaching the outlet or zone. 

Another example which is common in building zone thermal comfort control is large 

transport lag due to poor sensor placement. If the temperature sensor is located at 

some distance from the heat source e.g. on the opposite side of a large room, a lag 

will exist due to the time taken for the heat transferred from the source to reach the 

temperature sensor on the other side of the room. This becomes more problematic 

with increasing room size. During this lag time, a situation is created in which the 

control system essentially becomes open loop as there is no feedback from the sensor 

measuring the effect the heater is having on the room air temperature i.e. it is feeding 

back outdated information. This causes significant problems for control systems as 

dead time reduces gain and phase margins and is often a cause for poor performance 

of building control systems in practice (Vodencarevic 2010). Therefore, dead time is 

an important issue which must be considered in the control system design.  
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 The most established method for dealing with time delays in control systems is 

the Smith‟s Predictor (SP) (Smith 1957). The SP concept is based on the principle of 

using a model of the system to predict the system response during the time that there 

is no up to date feedback data. This way the time delay can be eliminated from the 

characteristic equation of the closed loop system (Moreno, Guzmán et al. 2013). The 

Smith Predictor method can be better explained using Figure 6.1 showing a SP 

feedback control system applied to a system with dead time. G is the lag free part of 

the system, L is the dead time, C is the controller,  ̂ is a model of the delay free 

system and  ̂ is the model delay.  

 

Figure 6.1: Smiths Predictor (SP) control 

 It can be seen from Figure 6.1 that there are two feedback loops in the control 

system. One loop feeds the measured data from the process back to the controller as 

normal. Due to the dead time however, the performance of the controller with this 

single loop alone will be impaired. The second inner loop is designed to alleviate this 

problem by using the model of the plant as a predictor to control the system during 

the time which no up to date data is available i.e. the plant output is unobservable. 

Therefore the feedback signal w(s) is given by: 

          (          ) (6.56) 

It can be seen from equation 6.56 that if the model of the plant corresponds exactly to 

the plant itself, then the feedback from outer and middle loops, gd(s) and Y(s) 

respectively, cancel each other and the effect of the time delay will be negated. In 
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reality, the output from the model g(s) may not match the output of the real system 

however some corrective action is produced by the error between gd(s) and Y(s).  

 While the SP control method is effective in many cases, it is known that the main 

drawback of this method is that modelling errors, particularly in the dead time, 

typically result in severe degradation in the control performance and can drive the 

system to instability. Many modifications of the SP have been proposed in the 

literature, which offer improvements over the original SP [(Liu, Zhang et al. 2005), 

(Astrom, Hang et al. 1994), (Torrico and Normey-Rico 2005), (Normey-Rico, 

Bordons et al. 1997)]. The majority of these methods are more complex than the 

original SP (Normey-Rico and Camacho 2009). A solution proposed by Normey-

Rico (2007) which improves the robustness of the SP to modelling mismatches is the 

Filtered Smith Predictor (FSP). The FSP structure was originally introduced in 

(Normey-Rico, Bordons et al. 1997) for FOPDT stable processes. Then the authors 

presented a unified approach for designing the FSP in such a way that it can be used 

to compute a controller taking into account the robustness, coping with unstable 

plants, improving the disturbance rejection properties and decoupling the set-point 

and disturbance responses (Normey-Rico and Camacho 2009). The FSP controller 

design is the same as the conventional SP with two additional filters as shown in 

Figure 6.2.  

 

Figure 6.2: Filtered Smiths Predictor (FSP) control 

F(s) is a traditional reference filter used to improve the set-point response and Fr(s) is 

a predictor filter used to improve the properties of the predictor. In the structure in 

Figure 6.2,     ̂   ̂  is a model of the process where   ̂  is the delay free part of 
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the plant model,  ̂  is the model delay and C is the primary controller. The actual 

plant is        . In this structure, the nominal closed loop transfer functions when 

the model of the plant is perfect i.e.           , are as follows (Normey-Rico and 

Camacho 2009): 

      
    

    
 

             

       ̂   
 (6.57) 
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       ̂   
+ (6.58) 

In order to analyse the robustness, consider a family of plants P(s) such that      

     [       ] and: 

|      |    ̅̅̅̅              (6.59) 

Thus, the robust stability condition for the FSP is [(Normey-Rico 2007; Normey-

Rico and Camacho 2009)]: 

  ̅̅̅̅           
|        ̂    |

|      ̂          |
          (6.60) 

It can be seen that only 
    

    
 and       are modified by the inclusion of the filter. 

Therefore, the filter       can be utilised for improving the robustness or the 

disturbance rejection capabilities of the system without affecting the nominal set-

point response. Furthermore, when controlling unstable plants,       can be tuned to 

obtain an internal stable system (Normey-Rico and Camacho 2009). A detailed 

explanation of the tuning procedures for various types of systems as well an in depth 

stability analysis of this FSP can be found in [(Normey-Rico 2007; Normey-Rico and 

Camacho 2009)].  

6.1.6.1 Time delay and RIDE 

 It is known that the existence of a time delay in a control loop reduces the gain 

and phase margins of the system and thus there are limits on the gain which can be 

used i.e. it is no longer possible to use a high gain controller. By increasing the gain 
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in a closed loop system, the closed loop poles are driven towards the locations of the 

open loop zeros. Since the ueq term in the RIDE controller essentially places the 

closed loop poles of the system over the zeros of the open loop system, the ueq term 

achieves the equivalent effect as a high gain controller and thus the existence of a 

time delay in the control loop has severe adverse effects on the performance of the 

RIDE controller. When a significant time delay exists in the system, the ueq term in 

the RIDE controller actually results in the system becoming unstable and it 

cannot be stabilised by reducing the gain as is possible with other controller 

designs. This is a very important observation which allows us to understand the 

effects of having a time delay in the system when using equivalent control. If we 

assess the equation for the ueq term in the RIDE controller, we can see that it acts on 

the derivative of the output signal. This exacerbates the problem due to the derivative 

signal having increased sensitivity to incorrect data caused by the time delay. If the 

rate of the delayed output signal is negative when in reality the rate of output is 

positive, then according to ueq equation 6.6, the equivalent control will produce a 

positive control signal forcing the output in the wrong direction. Therefore, when a 

large enough transport lag exists in the system, the RIDE controller often exhibits 

highly oscillatory behaviour whereas a PI or PDF controller may be less oscillatory 

as will be shown in section 6.2.2.2. It was found however, that for systems with a 

relatively small time delay, typically in the order of 
  

 
    , the oscillation in the 

RIDE controller‟s response could be diminished by eliminating the lag effect in the 

derivative signal used in ueq only, i.e. only compensating for the time delay in the 

derivative signal. This is due to the ueq term producing corrective control action for 

the incorrect control signal caused by the time delay produced by the PDF part of the 

controller. Therefore, a novel rate compensated equivalent control strategy using the 

SP concept explained above is presented in this section. Figure 6.3 shows a block 

diagram of the conventional ueq method used in the RIDE controller. 
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Figure 6.3: RIDE controller with time delay plant 

As explained above, the ueq term is acting on the derivative of the delayed feedback 

signal which causes the oscillatory behaviour. In order to compensate for the delay 

effect in the rate feedback signal, the new rate compensated ueq method shown in 

Figure 6.4 based on the SP method is proposed. 

 

Figure 6.4: Rate compensated inverse dynamics for time delay system control 

Using the principles of the conventional SP, a model of the system can be used to 

compensate for the outdated rate output signal used in the ueq calculation. The new 

rate feedback signal sw(s) used in ueq becomes: 

            (            ) (6.61) 
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Thus, if the rate output from the model matches the rate output of the actual system, 

then the delayed model and plant outputs will cancel out and the effect of the time 

delay on the measured rate output signal will be negated and in turn ueq will correct 

the control signal produced by the PDF part of the controller. In some cases, there 

might remain some effect of the time delay on the PDF part of the controller however 

the controller gains can be reduced slightly to overcome this if necessary. If the rate 

output of the model does not match the actual system then the error between the 

delayed rate signals from the model and system (sgd(s)-sy(s)) will provide some 

corrective action to the rate feedback signal from the model. Another benefit of using 

the rate compensation method above is that the PDF controller structure provides 

robustness to inaccuracies in the ueq estimation, as shown in section 6.1.3.  

Time Delay Compensation for Long Time Delay Systems (Td / τ  > 0.1) 

 As mentioned earlier, the method presented above is able to remove the 

oscillatory behaviour from the RIDE controller for systems with a relatively small 

time delay. It was found however that this method was not sufficient for systems 

with long time delays. Therefore a new method which is capable of handling longer 

time delays is required. First let us consider the original SP concept applied in the 

RIDE controller framework as shown in Figure 6.5. 

 

Figure 6.5: RIDE controller with time delay compensation based on original SP 

When the above setup was tested, it was found that in the presence of small 

modelling inaccuracies, large overshoots or even unstable behaviour was produced. 
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This is demonstrated through application of the controller to a simple first order 

model with the following transfer function: 

   
    

    
     (6.62) 

Initially, the standard RIDE controller is applied to the plant model. A unit step input 

is applied to the closed loop system firstly without any time delay and then with a 1 

second time delay.  It can be seen from Figure 6.6 that the controller becomes 

unstable when there is a time delay in the plant.  

 

Figure 6.6: RIDE controller response with first order delayed and non-delayed system 

Applying the RIDE controller with the SP as shown in Figure 6.4 to the same first 

order system, the effect of the time delay can be negated and the response stabilised 

as demonstrated in Figure 6.7. If an error is put in the model used in the SP 

compensator however, from Figure 6.7 it can be seen that the closed loop system 

response becomes unstable. 
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Figure 6.7: RIDE-SP controller response with no time delay error and -20% time delay error 

Therefore, a novel time delay compensation method for equivalent control using a 

modified version of the SP, shown in Figure 6.5, was developed using the concept of 

correcting the rate of the model used for prediction as opposed to the actual value, as 

well as the inclusion of a filter for improving robustness to modelling inaccuracies. 

This novel controller structure will be referred to as SI-RCID. 

 

Figure 6.8: Novel SI-RCID controller structure 

The corrected rate signal produced by the rate predictor is integrated in order to 

produce the correct value of output for feedback. The integration initial condition is 

set as the value of the measured signal at the point when the control action is started. 
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Figure 6.9 shows the SI-RCID controller applied to the system given in equation 6.62 

with a -20% error in the model time delay. It can be seen that the closed loop 

response is stable and tracks the set point accurately with a very slight overshoot. 

 

Figure 6.9: SI-RCID unit step response with -20% time delay error 

Unfortunately due to a lack of available time in this PhD project, an in depth analysis 

and design procedure for the filter was not possible and therefore this is an area for 

future work as explained in chapter 7. In the work presented in this thesis, a first 

order filter was used and was found to produce good results and an improved 

robustness to modelling errors including time delay estimation errors as is shown in 

the case study in Section 6.2.  

6.1.6.2 Robustness to Signal Noise 

It is important to assess the robustness of the controller design to signal noise as 

this is an issue which can cause problems in control systems in practice. In order to 

do this, the SI-RCID controller was applied to the system given in equation 6.62 

however with the addition of signal noise. A time delay modelling error of -20% is 

also included in the model. The signal noise was generated using the Gaussian noise 

generator in Matlab with a variance of 0.08 and sample time of 0.01. The closed loop 

response of the system as well as the measured feedback signal is shown in Figure 

6.10. It can be seen that control system is unaffected by the signal noise and 

maintains accurate tracking. This is due to the filter in the feedback loop as well as 

the fact that the feedback is dominated by the model response as opposed the noisy 
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system feedback signal. This makes the SI-RCID controller effective in practical 

situations. 

 

Figure 6.10: SI-RCID robustness to feedback signal noise 

 

 

 

6.2 Case Study: Robust SI Based NID Control 

 This section presents the application of the robust SI based NID control 

methodology described above to the zone model and AHU described in Chapter 3. 

Firstly, the procedure of designing the RIDE controller for the HVAC system is 

demonstrated in order to showcase the difficulties that would be encountered using 

the conventional design procedure. The proposed SI-RCID controller method is then 

applied in order to demonstrate the benefits of this method and how it alleviates 

many of the difficulties encountered whilst also solving problems that cannot be 

solved using the conventional RIDE controller method. Details of a self-tuning 

proportional plus integral (ST-PI) control method and a filtered smith predictor (FSP) 

method which the proposed method is compared with are given. Finally, simulation 

results demonstrating the performance of all three control methods are presented. 
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6.2.1 HVAC Controller Design 

 The building zone model with the full AHU actuation system (Case 2) described 

in Chapter 3 is used for all controllers in this case study. Full details of the 

differential equations representing the zone and AHU as well as the building 

parameter values are given in Chapter 3. There are a number of ways that the 

differential equations can be represented when developing the control system. These 

are dependent on the choices of the control system designer on the control strategy 

e.g. the inputs and outputs of the system and whether a separate control loop 

(cascade) should be used to control the AHU or should it be single loop structure etc. 

This will be shown in detail in Section 6.2.1.1 on designing the RIDE control system 

using the conventional modelling methodology. 

 In this section, four different controller design processes will be shown; RIDE 

designed with the conventional method based on the model of the system; the 

proposed SI-RCID controller method; the ST-PI controller; and the FSP controller. 

The conventional RIDE design procedure is performed in order to demonstrate the 

lengthy procedure and difficulties encountered when designing the RIDE controller 

in this way.  The comparison with the ST-PI and FSP controller methods is to 

demonstrate the performance benefits of the proposed controller over a typical 

controller currently used in industry and a more advanced method recently developed 

in the literature.  

 Before beginning the controller design process, it is important to understand what 

the control objective is and what the different inputs and outputs to the system are in 

order to identify the suitable control setups. The control objective in this case study is 

to regulate the air temperature (Ta) and relative humidity (Wrel) of the zone. As 

explained in chapter three, the AHU provides the inputs to the zone which can be 

used to control the comfort conditions within it. The AHU supplies air at a certain 

temperature (Tsup) and humidity (Wsup) into the zone which consequently affects the 

temperature and humidity of the air within the zone. The inputs to the AHU which 

control the conditions of the air that it supplies are the humidification rate of the 

humidifier (h) and the heat supplied from the heating coil (Qcoil). The air supplied to 

the zone from the AHU is drawn from outside at external conditions and is flowing at 
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a mass flow rate ( ̇ ) which can be controlled by the fan in the AHU. Based on the 

control objective, the overall outputs of the control system are clear i.e. they are Ta 

and Wrel. In order to control these however, Tsup and Wsup must be regulated. The 

mass flow rate of the air being supplied to the zone will affect the rate at which the 

zone comfort conditions are affected by the supply air. Hence a decision must be 

made as to how the zone air temperature will be heated – the data used for this case 

study is for a building in the UK during the winter, hence the AHU is used in heating 

mode. The different options are: Tsup can be kept constant and  ̇  varied in order to 

control the rate of heating – constant temperature-variable volume (CTVV);  ̇  can 

be kept constant and Tsup varied – variable temperature-constant volume (VTCV); or 

varying both Tsup and  ̇  (VTVV). The difficulty of varying Tsup is that it can only be 

varied within a certain temperature range since too hot or cold a temperature will 

result in uncomfortable conditions for the zone occupants. The same decision must 

be made regarding regulation of Wrel. Regardless of whichever setup is chosen, there 

are three inputs to the zone,  ̇ , Tsup and Wsup, and there are only two outputs Ta and 

Wrel.  In order for the system to be controllable i.e. the MB matrix not degenerate, 

only one control input can be used to control each output. Therefore, the controller 

design should be selected carefully in order to deal with this as the difficulty of the 

control problem varies from one setup to another. The final control setup which was 

used for all of the results is a two-loop controller design detailed in section 6.2.2.1. 

6.2.1.1 AHU Control Setup 

 There are some aspects of the AHU controller strategy which were designed based 

on practical considerations and are common to all of the control algorithms tested. 

These aspects have been designed to improve the performance of the AHU and 

reduce energy consumption. Firstly, the AHU is used in a variable temperature - 

variable volume (VT-VV) setup. This means that the mass flow rate and temperature 

of the supply air are variable. The air temperature however, only varies between 

three set values, 35˚C, 40˚C and 45˚C, which is a reasonable temperature range for 

the supply air in heating mode during the winter. This is based on the consideration 

that having too high or too low a supply temperature will cause discomfort for 

occupants. The heating power required to heat the zone air dictates the variation of 
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the supply air temperature i.e. Tsup increases with increasing heat demand Qh as 

shown in Table 6-1. 

Heat Demand 

(kW) 

Supply Air Temperature 

Set Point (˚C) 

0 - 2 35 

2 - 5.5 40 

5.5+ 45 

Table 6-1: Variation of AHU supply air temperature set-point 

The mass flow rate of the supply air is determined accordingly using the following 

equation: 

 ̇     
     

  (             )
 (6.63) 

The damper ratio which controls the ratio of outside air to return air in the mixing 

chamber is also varied based on the heating power required. It is logical that using a 

larger amount of warm return air will result in warmer air flowing through the AHU 

which in turn means less heating power is required from the heating coil to increase 

the supply air temperature. Of course in reality using 100% return air would be 

hazardous for occupants and would result in unacceptable CO2 levels. Since CO2 is 

not controlled in this controller setup, the damper ratio is set to use 90% return air for 

heat demands above 7.5kW and 60% return air for all other heat demands. 

6.2.2 RIDE Controller Design  

 The design procedure that would be used if the control system for the zone and 

AHU system were to be designed using the conventional design method for RIDE 

will be considered in this section. Given a set of differential equations which 

represent the system, like those in chapter three, this process involves rearranging the 

equations into state space format such that they can be used for the controller design. 

The state space equations must be arranged based on decisions on what the inputs 

and outputs of the system should be which will affect the stability and controllability 
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of the system. Once a suitable setup has been chosen based on these decisions and 

the equations arranged accordingly, the MB matrix can be determined and the 

actuator dynamics considered and hence the control system developed.  

 There are a number of different control arrangements that are possible for this 

system, however only two setups will be shown in this section: a single loop setup 

and a two-loop cascade setup. The two-loop cascade control setup is the final design 

which was used in all of the results however the single loop setup is shown here in 

order to demonstrate the process for designing the RIDE controller using the 

conventional approach. As explained in chapter three, there are essentially two 

systems or processes to be controlled in this case study: the AHU and the zone. It is 

possible to control these systems with two separate loops i.e. an outer loop 

controlling the zone and a cascade loop controlling the AHU. It is also possible 

however to consider both systems as one, and design the control system as one single 

loop. Let us consider the single control loop setup with the control inputs being  ̇ , 

Qcoil and h and the outputs being Ta , Tsup and Wa i.e. a three input - three output 

MIMO controller. This setup can be expected to create a difficult control scenario 

due to the heavy dependence of both the zone air and the AHU supply air on the 

mass flow rate through the AHU. This can be corroborated through the design 

process. The single loop setup would result in all of the AHU equations being 

included in the main system model and the state space matrices would be expressed 

as follows: 
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(6.64) 
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The coefficients of the A, B and F matrices as well as the disturbance vector d(t) are 

given in Appendix B. From equations 6.66 and 6.67, the MB matrix would be: 
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] (6.70) 
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With this single loop setup, it can be seen that the MB matrix is rank defective and 

hence the controller cannot be designed. In order to solve this problem, model order 

reduction must be performed by considering         ,       ,         and        to 

be steady state i.e.: 

 ̇         ̇       ̇        ̇        (6.71) 

The steady state equations can then be substituted into the remaining equations.  This 

process results in the model becoming sixth order and  ̇       and  ̇     being 

expressed as: 
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The MB matrix then becomes: 
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] (6.74) 

Where     is the same as before, however the coefficients with the star (*) 

superscript are altered due to the model order reduction. Some of the coefficients of 

the A matrix are also altered by the model order reduction. The altered matrix 

coefficients are given in Appendix B. It can be seen from the coefficients of the MB 

matrix that the control problem is complex as there is cross-coupling between the 

channels and it is nonlinear. The dependence of the supply air on  ̇  means that 

when  ̇  decreases, the heating power required (Qcoil) will have to increase 
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substantially in order to heat the zone and supply air. Therefore, this control setup is 

unnecessarily overcomplicated.   

6.2.2.1 Two Loop Controller Design 

 As mentioned earlier, the systems in this case study can be considered as two 

systems and a two loop (cascade) controller design can be used to control them. 

Using a cascade controller design would make for a simpler control problem as will 

be shown. This section presents a novel controller setup with a RIDE controller on 

the outer loop controlling the zone air temperature and humidity and a RIDE 

controller on the inner loop controlling the supply air temperature from the AHU. Let 

us first consider the outer loop controller. The outputs for this loop are Ta and Wrel. 

The inputs are selected as h(t) for controlling Wa and Qh for controlling Ta. Using Qh 

to control Ta instead of  ̇  simplifies the equations since using  ̇  means that many 

terms are included in the B matrix which make it highly nonlinear. Therefore the 

state space matrices, excluding the disturbance matrix, for the outer loop after the 

necessary model order reductions are represented as follows:  

[
 
 
 
 
 
  ̇   

   ̇    

   ̇    

   ̇    

  ̇   ]
 
 
 
 
 

 

[
 
 
 
 
           
           
         

         
       ]

 
 
 
 

[
 
 
 
 
     
      
      
      

     ]
 
 
 
 

 

[
 
 
 
 
    
  
  
  
    ]

 
 
 
 

[
 ̇    
    

] 

 

(6.75) 

[
     

       
]  *

     
             

+

[
 
 
 
 
     
      
      
      

     ]
 
 
 
 

 
(6.76) 

The MB matrix for the outer loop controller is shown below: 

    [
    

                
] (6.77) 

The coefficients for all of the matrices above are given in Appendix C. While the 

MB matrix is still nonlinear, by using Qh to control Ta, the MB matrix is less 
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complex than when using a single loop design. This MB matrix can then be used in 

the ueq calculation and the gains. The proportional and integral gains are given 

below: 

  
  [

    
                

]
  

* 
  

   + (6.78) 

  
  [

    
                

]
  

*
    
    

+ (6.79) 

The natural frequency of all channels should be set as three times slower than the 

actuator bandwidth as explained in section 6.1.5. The natural frequency of the Ta 

channel of the outer loop controller must be at least three times slower than the 

natural frequency of the inner loop controller thus the inner loop controller must be 

designed first.  

 The inner loop controller is a SISO system represented by equation 6.72 where 

Qcoil is used to control Tsup. MB for the inner loop is: 

    
 ̇      

      ̇            
 (6.80) 

Thus, the inner loop control problem is also nonlinear. The RIDE controller can be 

designed for this loop with the gains specified as follows: 

   [   ]      (6.81) 

   [   ]     (6.82) 

The bandwidths of all of the actuation systems in the AHU used in this case study are 

given in chapter 3. The values of natural frequency and damping ratio defining the 

gains for both the inner and outer loops are given below in Table 6-2. 
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Control Channel     (rad/s) 

Ta 1.5 0.0073 

Wrel 1.5 0.03 

Tsup 1.5 0.022 

Table 6-2: Natural frequency and damping ratio for SI-RCID controller 

6.2.2.2 RIDE Controller Tests 

 Simulation results showing the performance of the cascade RIDE controller 

design described above are shown in this section. The performance of the controller 

is shown over a two day period with control starting at 7am and ending at 7pm on 

both days. The zone air temperature and relative humidity set points are 21˚C and 

50% respectively. It was necessary to use the new commutation law detailed in 

section 6.1.4 with the RIDE controller since using the original commutation law 

resulted in the inner loop controller being stuck on the lower limit and not producing 

any heat throughout the day. Initially, the RIDE controller is tested without any time 

delay in the outer loop. The supply air temperature from the AHU however has an 

inherent time delay in its dynamics due to the long ducting between the heating 

source and the outlet. Therefore the inner loop controller was not tested without time 

delay. Figure 6.11 shows the outer loop controller tracking the zone air temperature 

set point of 21°C. 

 

Figure 6.11: Zone air temperature with heat supplied to zone from AHU (RIDE control) 
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Excellent tracking of the zone temperature set point was achieved and the rise time 

for the system is approximately 5 minutes as defined by the controller gains in Table 

6-2. Figure 6.12 shows the corresponding supply air temperature from the AHU 

controlled by the inner loop controller. The supply temperature set point is at the 

highest level of 45˚C at the initial part of both days as expected. The set point then 

varies throughout the day according to the heat demand from the outer loop 

controller. The inner loop controller is able to maintain accurate tracking of the set 

point, however there is an initial large overshoot of approximately 4˚C followed by 

oscillations. These oscillations are caused by the time delay as explained earlier. The 

controller responds well to set point changes albeit a slight overshoot can be 

observed as well as some oscillations on the first day at approximately 5hrs on 

Figure 6.12. The heat supplied by the AHU as shown on Figure 6.11 is smooth due to 

the mass flow rate, shown in Figure 6.14, varying according to the supply 

temperature set point in order to match the heat demanded by the outer loop 

controller. Hence, the tracking of air temperature by the outer loop controller is not 

affected by the oscillations observed in the supply air temperature. The variation of 

mass flow rate does however affect the heat transfer rate from the heating coil to the 

supply air. Therefore, the mass flow rate acts as a disturbance to the inner loop 

controller. The inner loop controller however rejects this disturbance effectively and 

maintains accurate tracking of the set point. 

 

Figure 6.12: AHU supply air temperature with heating coil power (RIDE Control) 
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Figure 6.13 shows that the outer loop controller is also able to track the zone relative 

humidity set point accurately. The humidifier initially reaches its maximum 

humidification rate for a short period in order to bring the zone relative humidity to 

the set point. It then comes off the limit and maintains the zone relative humidity at 

the desired set point throughout the day on both days. Again, the mass flow rate acts 

as a disturbance to the humidification loop since the rate of mass transfer, i.e. 

humidification, between the supply air and the zone air is dependent on the mass 

flow rate of the supply air. The outer loop controller rejects this disturbance again 

showcasing the efficacy of the RIDE control algorithm with regards to disturbance 

rejection. 

 

Figure 6.13: Zone relative humidity with humidification rate (RIDE control) 

 

Figure 6.14: AHU supply air mass flow rate (RIDE control) 

In reality, a delay normally exists in the zone dynamics between the moment when 

an input is applied to the zone and the moment the sensor recognises this input. This 

period is dependent on sensor placement and the size of the zone. In order to 
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simulate the effect that a time delay can have on the RIDE controller, a 5 minute time 

delay signifying transport lag for both the temperature and humidity sensors is 

introduced in both channels of the outer loop. Figure 6.15-Figure 6.18 show that the 

large time delay has a severe adverse effect on the controller performance. Large 

oscillations in both the zone air temperature and relative humidity can be observed. 

These oscillations in turn cause large oscillations in the inner loop controller also. 

 

Figure 6.15: Zone air temperature with heat supplied to zone from AHU (RIDE control with 

time delay) 
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Figure 6.16: Zone relative humidity with humidification rate (RIDE control with time delay)

 

Figure 6.17: AHU supply air temperature with heating coil power (RIDE Control with time 

delay) 
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Figure 6.18: AHU supply air mass flow rate (RIDE control with time delay) 

 The cascade RIDE controller is shown to be an effective and high performance 

control strategy which is able to deal with the nonlinearity in both the zone and 

AHU. It also displays good disturbance rejection ability. Thus it is able to attain fast 

and accurate set point tracking for both the zone comfort conditions and AHU supply 

air. It is shown however, that a large time delay has a severe adverse effect on the 

performance of the controller which is unacceptable.  

 With regards to the design procedure, the conventional controller design process 

is clearly a lengthy and complicated procedure which would most likely lead to it not 

being adopted in the buildings industry. Therefore, despite its high performance, this 

strategy is flawed in the same way that a large number of advanced HVAC control 

strategies found in the literature are.  

6.2.3 SI-RCID Controller Design 

 This section presents the application of the SI-RCID controller method described 

above. Using this controller design methodology described, the controller design 

process is greatly simplified. The controller design process is as follows: 

1. Select controller setup 

2. Assess stability from step response 

3. Identify MB and dead time using robust SI method 

4. Calculate controller parameters accordingly 

5. Assess closed loop step response to check gains etc. and adjust if necessary 
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Firstly, the inputs and outputs (controller setup) must be selected as before, which 

is a necessary step in any controller design. The same two loop controller setup 

described in section 6.2.2.1 is used in all controller designs tested in this case study. 

With the SI-RCID controller methodology described in section 6.1, there is no need 

to rearrange any equations or perform model order reduction as was necessary in the 

conventional RIDE methodology. The stability of the system can be checked by 

observing the step responses of both the inner and outer loops. The response of the 

inner loop to a step input of 1.5kW from the heating coil and a constant supply air 

mass flow rate of 0.35kg/s is shown in Figure 6.19. 

 

Figure 6.19: AHU supply air temperature step response 

The system can be seen to show no non-minimum phase characteristics so the open 

loop transmission zeros can be considered stable for both the inner and outer loops. 

Based on this step response data, the system can be identified using the simple 

method given in equations 6.45-6.47. The identified FOPDT model describing the 

behaviour of the inner loop is: 

             
       

     
     (6.83) 

The response of the FOPDT model, shown in Figure 6.19, can be seen to be similar 

to the actual system however a steady state error of approximately 0.2˚C exists. It 

follows then from equations 6.28 and 6.29 that MB is calculated as follows: 
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           (6.84) 

6.2.3.1 Outer loop 

 The same process must be performed using the MIMO system identification 

method described in section 6.1.1 to design the outer loop controller. The same 5 

minute time delay introduced in section 6.2.2.2 is included the outer loop dynamics. 

Firstly, the dynamics associated with the heat input Qh from the AHU are identified. 

This entails applying a step input of heat whilst keeping the humidification input at 

zero. Figure 6.20 and Figure 6.21 show the response of the zone air temperature and 

relative humidity to a step heat input of 4kW respectively. 

 

Figure 6.20: Zone air temperature response to step heat input (Qh) 
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Figure 6.21: Zone relative humidity response to step heat input (Qh) 

It can be seen that in both cases there is no sign of non-minimum phase behaviour 

and so the open loop transmission zeros can be considered to be stable. The FOPDT 

models derived from this data describing the response of Ta and Wrel to the heat input 

Qh are given below: 

        
        

      
       (6.85) 

          
       

      
       (6.86) 

The simple identification method used results in an underestimation of the dead time 

of 13 seconds. Section 6.2.6.1 will show tests on the robustness of the controller to 

delay estimation errors. From Figure 6.20 and Figure 6.21, it can be seen that the 

FOPDT models have similar differences to the actual system behaviour. The 

identified models show a slightly faster response and steady state errors exists 

initially, however the actual system continues to increase (or decrease in the case of 

relative humidity) never quite reaching steady state. This however is most likely 

cause by disturbances such as the external temperature. The modelling errors that 

exist will serve as a test to the robustness of the controller to modelling errors. This is 

a necessary test since modelling errors always exist in reality. From equations 6.37-

6.40 the first column of the MB matrix can be determined as follows: 
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            (6.87) 

     
       

   
             (6.88) 

The remaining parameters of the MB matrix must then be determined by applying a 

step humidification input whilst keeping the heat input at zero. Figure 6.22 shows the 

response of Wrel to a step humidification input of 0.002kg/s with a constant supply 

air mass flow rate of 0.35kg/s.  

 

Figure 6.22: Zone relative humidity response to step humidification input 

The humidifier does not have any effect on Ta and therefore the associated parameter 

in the MB matrix (MB12) is equal to zero. From the data in Figure 6.22, the FOPDT 

model describing the relation of Wrel to the humidification rate (h) is derived as: 

         
      

       
       (6.89) 

Again, an error exists in the dead time estimation however this time it is an 

overestimation of 21 seconds. The logical choice of dead time for the relative 

humidity channel would be the shorter dead time. The response of the identified 

FOPDT model is shown in Figure 6.22. In section 6.2.6.1 however, the robustness of 

the controller to under and overestimation of the dead time will be tested. The 
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parameter of the MB matrix associated with the humidifier input (h) is determined as 

follows: 

     
      

    
      (6.90) 

The overall MB matrix for the outer loop is: 

    *            
               

+ (6.91) 

The closed loop bandwidth and natural frequency for the inner and outer loop 

controllers can then be selected in the same way as described in section 6.2.1.2 for 

the conventional RIDE controller i.e. the bandwidth can be set as 3 times slower than 

the actuator bandwidth and the damping ratio can be selected to give an over-damped 

response. Therefore, the natural frequency and damping ratio used in the inner loop 

controller for this case study are the same as in Table 6-2. 

6.2.3.2 FRP filter design 

 For time delay compensation, the SI-RCID controller structure shown in Figure 

6.6 is used. This requires the use of a model for prediction of the rate of change of 

the system output. The FOPDT models given in equations 6.85, 6.86 and 6.89 are 

used in this case. However, since the relative humidity channel is affected by both 

inputs, the overall model describing its behaviour is: 

       
      

       
       

      

      
       (6.92) 

Note, for simplicity, the same dead time is used for both parts of the model. As 

mentioned earlier, the robustness of the controller to different dead time errors will 

be tested in section 6.2.6.1. The prediction filters for both channels must also be 

designed. Based on testing for this case study, the use of first order prediction filters 

was found to be sufficient and produces good results. A crude rule the author has 

found for selecting the time constants of the filters which was found to produce 

tenable results for this case study is given below: 
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 (6.93) 

Where    is the time constant of the prediction filter. This design however has not 

been verified with a robustness or stability analysis and therefore it is by no means a 

final or ideal design and requires further work as highlighted in section 7.4.2. Based 

on the design rule in equation 6.93, the prediction filters for the zone air temperature 

and relative humidity channels are given below: 

          
 

      
 (6.94) 

 It can be seen from the controller design process that it is a straightforward and 

easy process for designing a high performance control system. The design process is 

greatly simplified in comparison to the conventional RIDE controller design 

procedure. All of the parameters of the controller are designed based on rules which 

could be calculated automatically and so it involves a similar level of user input as 

the commonly used self-tuning PI controllers. Thus, this is a strategy which could be 

used in the buildings industry due to its ease of implementation as well as the fact 

that it is not computationally expensive. 

6.2.4 Self-Tuning PI Controller Design 

 It is well-known that the ST-PI controller design is very commonly used in 

industrial control systems. Therefore, this section details the design of a ST-PI 

controller for this case study. The same two loop controller structure is used however 

two separate SISO controllers are designed for controlling the two channels in the 

outer loop. The PI controller structure is given in equation 6.95: 

        (  
 

   
)      (6.95) 

The tuning rules from (Skogestad 2003) are used to design the PI controllers. These 

are shown below: 
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 (6.96) 

Where: 

   
 

  
 (6.97) 

      {           } (6.98) 

Where     is the closed loop time constant. Based on the FOPDT models of the inner 

and outer loop dynamics in equations 6.83, 6.85 and 6.89, the controller gains were 

calculated using the tuning rules above. The close loop time constants were selected 

to be the same as those specified in the SI-RCID controller gains. The resulting gains 

for the PI controller are given in Table 6-3. 

Control Channel       (seconds)     (seconds) 

Ta 1722 543 250 

Wrel 0.000429 1388 60 

Tsup 137.8 33 81 

Table 6-3: ST-PI controller gains 

 This ST-PI controller serves as a good representation of a typical controller used 

in the buildings industry as many industrial PI controllers are tuned using the 

methodology described in this section i.e. using an identified FOPDT with known 

tuning rules.  

6.2.5 FSP Controller Design 

 This section shows the application of the FSP controller design described in 

section 6.1.6. The FSP controller has different design procedures based on the type 

of system being controlled (Normey-Rico and Camacho 2009). Since the behaviour 

of the systems considered in this case study are simplified for controller design 

purposes using stable FOPDT models, the FSP tuning procedure provided for this 

type of system is used here (Normey-Rico and Camacho 2009). 
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 The first step of the tuning procedure is to design the base controller (C in Figure 

6.2) as a PI controller using the following rules: 

   
  
   

 (6.99) 

      (6.100) 

Where    defines the closed loop pole (Normey-Rico and Camacho 2009). The filter 

   is then designed based on the following equations: 

   
             

        
 (6.101) 

    *  (  
  
  

)
 

 
 

 

  + (6.102) 

There are two tuning parameters,    and   , which must be selected to obtain the best 

trade-off between robustness and performance.    defines the speed of response of 

the closed loop system and    affects the robustness. Normey-Rico and Camacho 

(2009) state that    can be increased arbitrarily in order to increase the system 

robustness if the system is open loop stable, which is true for the systems in this case 

study. Based on the FOPDT models in equations 6.83, 6.85 and 6.89, the calculated 

base PI controller gains as well as the closed loop and disturbance rejection time 

constants for the inner and outer loops are given in Table 6-4. The disturbance 

rejection time constant for the Wrel channel had to be increased significantly in order 

to prevent a highly oscillatory response. 

Control 

Channel 

       

(seconds) 

    

(seconds) 

    

(seconds) 

Ta 3700 543 250 200 

Wrel 0.00248 1435 60 600 

Tsup 142.95 33 81 100 

Table 6-4: Base PI controller gains and time constants for FSP controller 
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The filters for the Ta, Wrel and Tsup control channels are given below: 

  
   

                  

         
 (6.103) 

  
     

                

         
 (6.104) 

  
     

                

         
 (6.105) 

The FSP controller design provides an example of a more advanced method recently 

presented in the literature which is specifically designed to control time delay 

systems. Despite this method requiring more time and effort to tune than the ST-PI 

and proposed SI-RCID methods, it is still relatively simple to tune and is therefore a 

representation of an advanced method recently developed in the literature which 

could be used in industry as an alternative to simple PI controllers.  

6.2.6 Simulation Results 

 In this section, simulation results showing the performance of the proposed two-

loop SI-RCID controller design compared with the ST-PI and FSP controller designs 

are presented. All three controller designs are applied to the zone and AHU model 

described in chapter 3-case 2 with the inclusion of a 5 min time delay in the 

measurement of both the zone air temperature and relative humidity signifying 

transport lag in the system. All controllers were applied with their respective 

controller parameters stated in sections 6.2.3-6.2.5. In each case, the controllers were 

designed based on the identified dead time in the outer loop of 287 seconds i.e. an 

underestimation error of 13 seconds. The performance of the controllers is shown 

over a two day period with control starting at 7am and ending at 7pm on both days. 

The zone air temperature and relative humidity set points are 21˚C and 50% 

respectively.  

 The original gains for the supply and zone air temperature loops of the FSP and 

ST-PI controllers given in Table 6-3 and Table 6-4, which were obtained using the 

design procedures described by their respective authors, were too low resulting in the 
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air temperatures being significantly lower than the desired set point. Therefore, for 

both controller designs, the proportional and integral gains for the supply and zone 

air temperature loops were increased by a factor of 5 in order for them to achieve a 

reasonable response. This was the maximum amount the gains could be increased by 

before the controllers became highly oscillatory. This process took time and of 

course, in practice, is undesirable. Figure 6.23-Figure 6.25 show the performance of 

the three controller designs in tracking the zone air temperature set point of 21°C. 

 

Figure 6.23: Zone air temperature response with ST-PI controller 

 

Figure 6.24: Zone air temperature response with FSP controller 
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Figure 6.25: Zone air temperature response with SI-RCID controller 

The ST-PI and FSP controllers show similar poor response behaviour. Ta rises very 

slowly, reaching the set point in approximately 2.5 hours.  Furthermore, Ta can be 

seen to deviate from the set point near the end of both days. It is clear that the FSP 

and ST-PI controllers are unresponsive however as mentioned earlier, increasing the 

gain values further caused the system to become oscillatory. The SI-RCID controller 

on the other hand can be seen to reach the set point quickly (approx 10 mins) and 

then tracks the set point perfectly for the duration of both days, unaffected by the 

external temperature or other casual gain disturbances. The performance of the outer 

loop control of Ta is of course affected by the AHU supply air temperature, Tsup, and 

it is therefore important to look at the performance of the controllers in tracking Tsup. 

The performance of the controllers in tracking Tsup is shown in Figure 6.26-Figure 

6.28. Here, the performance of the SI-RCID controller is clearly superior to the other 

controllers. The SI-RCID controller tracks the changing set point very accurately 

with very little or no overshoots. On the first day, between 5 and 10 hours in Figure 

6.28, some slight oscillation can be seen however this is caused by the set point 

changing rapidly based on the demand from the outer loop controller which the inner 

loop controller handles very well and maintains accurate tracking. Both the FSP and 

ST-PI controllers show very poor responses. The responses are very sluggish and 

Tsup never reaches the set point in both cases. Again, increasing the gain for the inner 

loop was not possible as it caused the system to become highly oscillatory. The 

oscillations seen in both controllers‟ responses in Figure 6.26 and Figure 6.27 are 

caused by the rapidly changing set point due to the demand of the outer loop 
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controller for Ta. It is important to note that, although both of the outer loops are 

nonlinear as their behaviour varies with the AHU air mass flow rate, the effect of the 

nonlinearity is greatest on the inner loop as it can be seen to have a significant impact 

on Tsup from equation 6.72. The SI-RCID controller however is able to deal with the 

nonlinearity and disturbances and maintain stable and accurate tracking.  

 

Figure 6.26: AHU supply air temperature with ST-PI controller 

 

Figure 6.27: AHU supply air temperature with FSP controller 
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Figure 6.28: AHU supply air temperature with SI-RCID controller 

Figure 6.29-Figure 6.31 show the zone relative humidity (Wrel) tracking response of 

the controllers. The ST-PI controller exhibits a slow response and a steady state error 

can be seen to exist. The tracking is poor on both days as Wrel deviates significantly 

from the set point, particularly on the second day where it drops to approximately 

45% near the end of the day. Some small oscillations, caused by oscillations in the 

inner loop, can be seen on both days. This performance is unsatisfactory and would 

result in poor comfort conditions for occupants. The FSP controller produces an 

improved response relative to the ST-PI controller with better set point tracking over 

both days. A large overshoot of approximately 7-9% is produced on both days 

however and oscillations around the set point can be seen. The controller takes 

around 2.5 hours to settle on the first day however it tracks the set point accurately 

for the rest of the day. The settling time on the second day is longer with the system 

taking approximately 4 hours to settle. The FSP controllers tracking performance on 

the second day is also slightly worse as it can be seen to deviate from the set point 

slightly at times. The SI-RCID controller produces a significantly improved 

performance relative to the other controllers. A quick response with little overshoot 

is achieved. There is some slight oscillation at the beginning of both days however 

overall stable and accurate control is maintained. The corresponding AHU air mass 

flow rate for each controller is shown in Appendix D.  
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Figure 6.29: Zone relative humidity with ST-PI controller 

 

Figure 6.30: Zone relative humidity with FSP controller 

 

Figure 6.31: Zone relative humidity with SI-RCID controller 
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6.2.6.1 Controller Robustness to Time Delay Estimation Errors 

 It is important to test the robustness of the controller to errors in the estimation of 

the time delay in order to assess how the controller would be affected by large errors 

that might arise in practice. In the previous section, the controllers were designed 

with an underestimation error in the time delay of 13s. In this section the 

performance of the FSP and SI-RCID controllers will be assessed with time delay 

estimation errors of ±30%. Thus for a 5 min time delay, the controllers will be 

designed based on time delays of 210 seconds and 390 seconds. The parameters of 

the base PI controller in the FSP controller design are unaffected by changes in the 

time delay estimation however the filter parameters are. Similarly, the gain values in 

the SI-RCID controller are also unaffected however the filter parameters were 

required to be changed. The new filters for the FSP and SI-RCID controllers 

calculated based on their respective design procedures are given in Table 6-5 and 

Table 6-6 respectively. 

Control Channel    (-30% error)    (+30% error) 

Ta                   

         
 

                  

         
 

Wrel 
                

         
 

                

         
 

Table 6-5: Filters for FSP controller designed with time delay estimation errors 

Control Channel   (-30% error)   (+30% error) 

Ta  

      
 

 

      
 

Wrel 
 

      
 

 

      
 

Table 6-6: Filters for SI-RCID controller designed with time delay estimation errors 
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The performance of the SI-RCID controller in tracking Ta and Wrel with time delay 

estimation errors of ±30% are shown in Figure 6.32 and Figure 6.33. The AHU supply 

air temperature and air mass flow rate behaviour for all controllers is shown in 

Appendix E. 

 

Figure 6.32: Zone air temperature with SI-RCID controller (with time delay estimation errors) 

Figure 6.32 shows that the SI-RCID controller performs almost identically when 

designed with both of the erroneous time delay estimations. In the case with the 

+30% time delay error, the response curve approaching the set point appears to be 

slightly smoother than with the -30% time delay error. In both cases the controller is 

able to attain very accurate and stable tracking of the set point. It can be seen from 

Figure 6.33 that there is a slight difference in the zone relative humidity tracking 

performance between the two cases. With the overestimated time delay, a slightly 

higher overshoot (approximately 1%) is produced in the initial transient period on 

both days. Both cases however, have the same settling time and maintain accurate 

tracking over both days.   
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Figure 6.33: Zone relative humidity with SI-RCID controller (with time delay estimation errors) 

The performance of the FSP controller with ±30% time delay estimation errors is 

shown in Figure 6.34 and Figure 6.35. As with the SI-RCID controller, there is no 

difference in the FSP controllers tracking of Ta with the different time delay errors. 

In both cases the FSP controller produces a slow response and deviates from the set 

point slightly towards the end of the second day. In Figure 6.35 it can be seen that a 

large over shoot and oscillations are produced in Wrel at the beginning of both days 

with both time delay errors. However, when the time delay is underestimated, a 

larger overshoot (approximately 2.5%) and more oscillations are produced.  

 

Figure 6.34: Zone air temperature with FSP controller (with time delay estimation errors) 
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Figure 6.35: Zone relative humidity with FSP controller (with time delay estimation errors) 

 

6.3 Chapter Conclusion  

 The overall performance of the SI-RCID controller algorithm in tracking all three 

variables is superior to the other controllers tested. Furthermore, the SI-RCID 

controller also demonstrates good robustness to modelling errors as it is able to 

maintain accurate set point tracking in the presence of inaccuracies in the identified 

FOPDT models as well as large errors in the model time delay. In reality this 

improved performance would result in improved thermal comfort conditions for 

occupants being maintained even in the presence of disturbances such as the casual 

gains and external temperature variation explained in chapter 3. In addition to the 

improved performance, the design procedure for the SI-RCID controller was 

demonstrated to be simple and straightforward and did not require any further user 

input. The FSP and ST-PI controllers on the other hand required further tuning after 

the initial setting of the parameters based on the design rules specified by their 

respective authors. As mentioned earlier, this is undesirable in practice as one of the 

main issues in industrial control systems is controller tuning. Therefore, it is a 

significant benefit to be able to design a control system based on set rules which 

produce good performance without further user input. The SI-RCID controller is able 

to achieve a significantly improved performance over the compared controllers and 
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does so using the initial parameters designed using the specified rules. Thus, the SI-

RCID controller design method presented above provides a practical yet effective 

controller design process for applying a fundamentally advanced controller design to 

HVAC processes in industry.  
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7. Discussion, Conclusions and Further Work 

It has been established that designing effective building control systems to 

achieve accurate and efficient control of the indoor comfort conditions of a building 

is a complex task, particularly with the increasingly sophisticated designs, materials 

as well as advanced HVAC systems found in modern climate adaptive buildings. The 

simple control systems which are still widely used in the buildings industry are often 

unable to cope with the aforementioned complex dynamics of buildings. Hence, a 

substantial amount of energy is wasted as a result of these poor control systems 

which cause unnecessary heating, fabric and ventilation losses. Therefore, the 

buildings industry is in need of upgraded control systems which are able to achieve 

desired comfort levels whilst making efficient use of energy. In response to this 

requirement, many advanced controller designs have been developed in the literature. 

Chapter 2 in this thesis provided a review of a wide range of control systems which 

have been proposed. From this review, it was deduced that, despite the significant 

advancements that have been made in building control systems design in the 

academic world, the buildings industry has often been reluctant to adopt these 

designs. This is down to a number of reasons from lengthy commissioning times due 

to overcomplicated design procedures, to a reluctance to adopt methods that may 

have to be treated as 'black box' due to robustness issues. Thus, the ultimate goal for 

building HVAC control systems design and the research objectives for this body of 

work, as defined in chapter 1, were to design a robust high performance HVAC 

control strategy that is capable of dealing with the complexities associated with 

modern building control whilst being a low cost solution which is easy to design and 

implement. Furthermore, the control algorithm should not be computationally 

intensive so as to allow for implementation on the low cost hardware that is currently 

being used in industry.  

The first area of development in this thesis was the development of the building 

zone and HVAC system models detailed in chapter 3. Developing a model is a 

necessary part of the controller design process in order to design the algorithms and 

evaluate controller performance. The thermal dynamics of the building zone and 

HVAC systems were modelled using classical differential equations for heat transfer 
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and thermodynamics and implemented in the ESL modelling environment. This 

modelling approach was necessary for capturing the important dynamics of the 

building whilst remaining simple enough to be represented in state space format and 

used for controller design.  

Once the model was developed, the performance of different controller 

algorithm designs was then investigated. The fundamentals of the advanced 

nonlinear inverse dynamics (NID) based control algorithms developed in this thesis 

were described in chapter 4. It was seen from the literature review in chapter 2 that 

inverse dynamics based controller designs have not been developed for HVAC 

systems in the literature and so this in itself was a novel research area. It was 

demonstrated through the fundamentals of the advanced controller design, how it is 

possible to overcome the aforementioned complexities which can be encountered by 

a control system. In this thesis, there are two main controller designs developed 

based on the research objectives specified. These controller designs, detailed in 

chapters 5 and 6, provide solutions which tackle the building HVAC control problem 

from different perspectives. The following sections provide summaries of the 

research presented in these chapters and the conclusions and outcomes drawn from 

the research will be discussed. Suggestions for future work are also given. 

 

7.1 Conclusions - Robust Nonlinear HVAC Systems Control 

with Evolutionary Optimisation 

Chapter 5 detailed the development of an auto-tuning algorithm which relieves 

the difficulty in the manual tuning process of the NID based RIDE control algorithm. 

The auto-tuning algorithm was developed using a genetic algorithm (GA) 

optimisation scheme which optimises the control system tuning parameters based on 

a set of user specified criteria. The optimisation scheme takes into account 

uncertainty in the building model by optimising the controller parameters over a 

range of uncertainty in selected building parameters. The auto-tuner was 

implemented in Visual C++ and combined with the ESL model representing the zone 

and HVAC system. In this chapter, the zone model was used with the direct heater 

and mechanical ventilation system described in case 1 in chapter 3. The first step in 
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the controller design process was to convert the model into state space representation 

such that it could be used to design the RIDE controller algorithm. The RIDE control 

system parameters were then tuned using the GA auto-tuner.  

The proposed RIDE-GA controller was tested on the building zone model and its 

performance compared to a PI control system which was also optimised using the 

same GA based auto-tuning algorithm. The robustness of both controllers to 

parameter uncertainty was tested by varying the value of the thermal mass heat 

transfer coefficient by ±60% of the value used for the controller design and testing 

their performance at all three operating points. The results showed that the GA auto-

tuner worked very well with the RIDE controller and was able to achieve 

significantly improved performance over the auto-tuned PI controller. The RIDE-GA 

controller produced a significantly faster response as well as more stable and 

accurate set-point tracking when tested over the range of uncertainty in the building 

model. It was also shown that the RIDE-GA controller was unaffected by the 

variation in the thermal mass heat transfer coefficient as its performance was nearly 

identical regardless of the operating point. The PI-GA controller on the other hand, 

showed different response characteristics over the three operating points. The RIDE-

GA controller also showed superior disturbance rejection performance compared to 

the PI-GA controller. 

7.1.1 Limitations of this method 

The GA auto-tuning process described in chapter 5 was shown to be effective in 

applications in which there are a small number of parameters with uncertainty which 

must be accounted for. As discussed in section 5.3.1 however, there are a few 

limitations with this method which could lead to it being perceived as impractical for 

building HVAC control systems in industry as is the case with many advanced 

control algorithms developed in the literature. One limitation of this method is that it 

may become inefficient if it is used to account for uncertainty in a large number of 

parameters. The auto-tuning method was also designed for use in systems for which 

models have been developed and the control system designer wishes to tune the 

control system based on the model. This way, using the system model, the control 

system can be tuned to produce close to optimal performance when implemented in 
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practice. In some cases however, a system model is unavailable or is difficult to 

develop due to certain unknown parameters such as transport lag. The control 

methods developed in chapter 6 address the limitations of the method presented in 

chapter 5 and come together to provide a practical solution which is suitable for use 

in industry.  

7.2 Conclusions - Robust System Identification based 

Nonlinear Inverse Dynamics Control 

In chapter 6, a full control solution, named System Identification based Rate 

Compensated Inverse Dynamics (SI-RCID), was developed in order to overcome all 

of the issues and satisfy all of the criteria specified in the research objective i.e. a 

high performance control algorithm which is suitably straightforward for use in 

industry. A number of contributions were made in this chapter, in order to develop a 

methodology for applying a fundamentally complex control algorithm in a simple 

manner. It was mentioned in the previous section that in some cases it is difficult to 

develop a model of a building due to certain unknown parameters and the variability 

of a building during its lifetime. Furthermore, a controller design which requires a 

dynamic model of the building zone to be created for use in the control law is 

unlikely to be adopted in industry due to its complexity and lengthy design 

procedure. Thus, in order to overcome this issue, the novel system identification 

strategy for identifying the necessary part of the model (MB matrix) for use in the 

NID based control law was developed. Using a well-known simple system 

identification technique for obtaining FOPDT models from step input data, this 

strategy allows the control systems designer to apply the NID controller without any 

more input than would be required for the popular self-tuning PID control methods 

commonly used in industry. A design strategy for SISO and MIMO systems was 

developed in chapter 6.  

A novel commutation law for governing the behaviour of the control system 

around actuator saturation limits was also developed. It was identified that the 

original commutation law used in the RIDE controller would cause the controller to 

become stuck on the actuator limits in certain circumstances due to complications 
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with the equivalent control law. Therefore, a new law which included extra criteria 

was developed which overcomes these complications.  

Through testing on the equivalent control law with transport lag systems, an 

important observation was made which provides valuable insight into the effects of 

large time delays on a controller which uses equivalent control. It was found that 

using equivalent control on systems with large time delay caused the system to 

become unstable and the system cannot be stabilised by reducing the system gain. 

The reason for this is that using equivalent control achieves the same effect as a high 

gain controller. That is, the closed loop poles of the system are moved to the 

locations of the open loop zeros. It is known that high gain control cannot be used 

with systems with large time delay. Therefore, it is not possible to use equivalent 

control in these cases as it is the same as permanently using high gain control.  

In order to overcome this issue i.e. to enable the use of equivalent control on 

systems with large time delay, a novel time delay compensation method for 

equivalent control based on the long established Smith Predictor method was 

developed. This method uses an identified model of the system in order to predict the 

rate of change of the non-delayed system and correct the rate of change of the actual 

measured output signal. A first order filter is used on the corrective error signal in the 

predictor to improve robustness of the controller to modelling errors. The final SI-

RCID control algorithm combines all of the aforementioned features into one control 

solution which is straightforward in its design and implementation. 

7.2.1 Outcomes from controller design and results 

When applying the various control algorithms to the building model, the first 

step was to design the setup of the AHU to be used with all of the controllers tested. 

The AHU was used in a variable temperature variable volume setup (VTVV) i.e. the 

temperature and mass flow rate of the AHU supply air was allowed to vary based on 

the demand for conditioning the zone thermal comfort. A two loop control setup was 

used for all controllers tested, with the outer loop controlling the zone comfort 

conditions and the inner loop controlling the AHU supply air based on the demand 

from the outer loop. 
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The conventional design procedure for the RIDE controller was shown in 

chapter 6 in order to showcase the difficulties that would be encountered while 

implementing this algorithm in practice. It was shown that the design procedure for 

the RIDE controller was lengthy and too complicated to be adopted in industry. From 

a performance perspective, the RIDE controller was shown to produce fast and 

accurate set-point tracking without the presence of time delay in the measurement 

signals. When time delays were added in the measurements however, the controller 

was shown to become unstable. 

The performance of the SI-RCID algorithm was tested on the building zone 

model with the full AHU actuation system described in case 2 in chapter 3. A self-

tuning PI controller and a Filtered Smith Predictor (FSP) controller were also 

designed and tested in order to provide a comparison with the proposed method. The 

design procedure of the SI-RCID controller was relatively straightforward and in fact 

required less input than the other controllers due to the other controllers producing 

unsatisfactory performance after the initial design procedure. The results showed that 

the SI-RCID controller‟s performance was superior to the other controllers tested. It 

produced a faster response as well as more accurate set-point tracking and improved 

disturbance rejection. It also displayed improved robustness to large modelling errors 

in both the first order model as well as the time delay (±30% error) when compared 

to the FSP controller. Thus, overall the proposed controller overcame all of the 

difficulties mentioned and fulfilled all of the research objectives set out in this 

project. It is a high performance control strategy which has the potential to improve 

the performance of building HVAC systems in practice and is easy to design and 

implement thus making it suitable for use in industry. 

 

7.3 Novelties and Contributions of Research 

The main contributions and novelties presented in the research in this thesis can 

be summarized as follows: 



191 

 

1. Development of a mathematical model of a building with a full AHU 

actuation system using models developed in (Murphy 2012) and (Tashtoush, 

Molhim et al. 2005). 

 

2. Development of a novel auto-tuning algorithm for the RIDE controller with 

robustness for parameter uncertainty using Genetic Algorithm optimization. 

 

3. Presentation of a case study demonstrating the application of the proposed 

GA based auto-tuning algorithm with the RIDE controller applied to a 

building zone and HVAC system model. 

 

a. Comparison of the proposed control strategy to a PI controller tuned 

with the GA based auto-tuning algorithm 

 

4. Novel use of the RIDE algorithm in a two loop control structure for building 

zone control with AHU inner control loop. 

 

5. Novel system identification based NID controller strategy (SI-RCID) using 

system identification from step response for inverse dynamics estimation and 

transport lag compensation. 

 

6. Development of a novel improved commutation law for governing the 

behaviour of equivalent control based controllers SI-RCID and RIDE. 

 

7. Contribution of knowledge providing valuable insight and explanation of the 

effects of large time delays on equivalent control based controller designs. 

 

8. Design of a novel transport lag/dead time compensation method for an 

equivalent control based NID controller using modified smith‟s predictor 

principle. 

 

9. Presentation of a full methodology for designing a low cost controller design 

which is simple to implement and is capable of dealing with time delay, 

parameter uncertainty, nonlinearity, interacting MIMO systems, unknown 

system parameters (identification) and tuning/re-tuning.  
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10. Novel application of inverse dynamics to HVAC systems using a practical 

approach for designing full HVAC system and zone control. 

 

11. Presentation of a case study demonstrating the application of the proposed SI-

RCID controller design to a building zone and AHU system model. 

 

a. Comparison of the proposed controller strategy to an industry 

standard self-tuning PI controller and a more advanced Filtered Smith 

Predictor method recently developed in the literature 

 

7.4 Further Work 

The overall control algorithms and design methodologies presented in this thesis 

are of archival value for both researchers and industrial engineers in this field as they 

provide a strong platform which can be easily built upon. While the final controller 

designs presented satisfies the research objectives set out to be achieved in this 

thesis, there are a number of areas where improvements can be made to the 

developed controller design in order to further improve its performance and 

suitability for industry. 

7.4.1 Incorporation of an improved identification algorithm 

The system identification algorithm used for the identification of the MB matrix 

and for the model used in the dead time compensation method in thesis is very basic. 

While it was sufficient for the work presented, there are many step response 

identification methods that have been developed in the literature which could be 

used. The simple identification algorithm used in this thesis resulted in significant 

modelling errors. Although this showcased the robustness of the controller to 

modelling errors, the performance of the controller could be improved if more 

accurate models were identified. Furthermore, the incorporation of a more advanced 

identification method could extend the range of application of the controller since 

open loop unstable plants could be identified. 
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7.4.2 Stability analysis and development of a robust design 

procedure for dead-time compensator filter 

It was shown in chapter 6 that the error between the model and the actual system 

output was passed through a first order filter in order to improve the robustness of the 

controller to modelling errors. As mentioned in chapter 6, this filter design was 

selected as it was found to produce good results and was not verified with a stability 

analysis due to a lack of time available in this project. If a full analysis of the effect 

of the filter on the controller was to be performed, an amplitude dependant stability 

criterion could be established whilst also assessing the potential for the filter design 

to be improved and in turn the controller performance improved. Moreover, a robust 

design procedure for the filter characteristics could be developed since the current 

design procedure is based on a very crude rule for selecting the time constant for the 

first order filter. 

7.4.3 Combination of SI-RCID method with detailed simulation 

packages 

Models created using detailed simulation packages such as ESP-r or CFD are 

normally not suitable for controller design purposes due to their vast complexity and 

detail. Therefore, controller design is typically performed using low order models 

which can be represented in state space format. The novel SI-RCID method 

developed in this thesis however eliminates the necessity of developing a low order 

model for use in the controller design procedure as it uses system identification to 

design the control system. Thus, it only requires to be connected to the system that 

needs to be controlled i.e. the building HVAC system, and it will identify a low order 

system model for use in the design process which can be easily automated. This 

opens up the possibility of easily integrating the SI-RCID controller with detailed 

energy simulation packages by developing a simulation-in-loop environment. The 

controller can identify a low order model from the detailed simulation and the 

controller can be designed. This would enable advanced control systems to be 

developed and tested in a highly detailed and realistic simulation environment. This 



194 

 

would be very useful for use in the conceptual building design stage or simply for 

testing algorithms prior to their implementation in a real life system. 

7.4.4 Implementation in an industrial/experimental environment 

The results presented in this thesis were all obtained in a dynamic simulation 

environment. The models developed in this thesis included many of the difficulties 

that would be encountered when designing a control system in practice and therefore 

the results provide a good indication of how the controller would perform in a real 

life system. The best way to evaluate the performance of the controller however 

would be to test it in practice in industry or in an experimental setup. This way a 

practical assessment of the controller methodology could be made and further 

improvements could be made to the controller if necessary in order to ready the 

controller for industrial deployment. 
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Appendix A.   State Space Matrix Coefficients 
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Appendix B. State Space Matrix Coefficients 
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Appendix C. Two Loop Controller State Space 
Matrix Coefficients 
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Appendix D. AHU Air Mass Flow Rate For Case 
Study Section 6.2.6 
 

 
Figure D-1: AHU air mass flow rate with ST-PI controller  

 
Figure D-2: AHU air mass flow rate with FSP controller  

 
Figure D-3: AHU air mass flow rate with SI-RCID controller  
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Appendix E. Supply Air Temperature and AHU Air 
Mass Flow Rate (Case Study Section 6.2.6.1) 
 

 
Figure E-1: AHU supply air temperature with FSP controller (-30% delay estimation error) 

 
Figure E-2: AHU supply air temperature with SI-RCID controller (-30% delay estimation 

error) 
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Figure E-3: AHU supply air temperature with FSP controller (+30% delay estimation error) 

 
Figure E-4: AHU supply air temperature with SI-RCID controller (+30% delay estimation 

error) 

 
Figure E-5: AHU air mass flow rate with FSP controller (-30% delay estimation error) 
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Figure E-6: AHU air mass flow rate with SI-RCID controller (-30% delay estimation error) 

 
Figure E-7: AHU air mass flow rate with FSP controller (+30% delay estimation error) 

 
Figure E-8: AHU air mass flow rate with SI-RCID controller (+30% delay estimation error) 

 

 


