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Abstract

Accurate predictions of the flow behaviour in microscale geometries are needed, for

example, to design and optimise micro devices, and to ensure their safety/reliability.

Rarefied gas flows in such geometries tend, however, to be far from local thermodynamic

equilibrium, meaning that the flow behaviour cannot be described by conventional fluid

mechanics. Alternative approaches for modelling ‘non-equilibrium’ gas flows have been

proposed in recent years; because analytical solution methods are subject to significant

limitations, the direct simulation Monte Carlo (DSMC) method is, at present, the most

practical numerical simulation tool for dilute gases.

Unfortunately, the computational expense of tracking and computing collisions be-

tween thousands (or perhaps millions) of DSMC particles means that simulating the

scales of realistic flow problems can require months (or even years) of computing time.

This has resulted in the development of continuum-DSMC ‘hybrid’ methods, which aim

to combine the efficiency of a conventional continuum-fluid description with the detail

and accuracy of the DSMC method.

This thesis focuses on the development of a continuum-DSMC method that offers a

more general approach than existing methods. Using a heterogeneous framework with

a field-wise coupling strategy, this new method is not subject to the limitations of the

well-known domain decomposition framework, or the restrictions of the heterogeneous

point-wise coupling approach. The continuum-fluid description is applied across the

entire flowfield, while the DSMC method is performed in dispersed micro elements

that can be any size and at any location; these elements then provide the continuum

description with updated constitutive and boundary information. Unlike most methods

in the literature, the coupling strategy presented here is able to cope with heat transfer,

and so non-isothermal flows can be simulated.
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Testing and validation of this new continuum-DSMC method is performed by simu-

lating a number of benchmark cases and comparing the results with full DSMC solutions

of the same cases. Two 1D flow problems are considered: a micro Fourier flow problem

tests the energy coupling procedure of the method, and a high-speed micro Couette

flow problem demonstrates the full coupling algorithm. In general, the method’s accu-

racy is found to depend on the arrangement of the micro elements — with sufficient

micro resolution, good agreement with the equivalent full DSMC simulations can be

obtained. Although the hybrid method offers no computational speed-up over the full

DSMC simulations for several of these 1D test cases and only modest speed-ups for

the others, both of these 1D flow problems are simulated only to validate the coupling

strategy of the method.

Considerable speed-ups are offered by the method when simulating a larger and

more realistic flow problem: a microchannel with a high-aspect-ratio cross-section acts

as a representative geometry for modelling a gas flow through a narrow microscale

crack. While the limitations of existing hybrid methods preclude their use for this type

of high-aspect-ratio geometry, the new hybrid method is able to model this problem

under isothermal and non-isothermal conditions. The implementation of the method

is simplified to 2D by assuming that the flow variation in the streamwise direction is

negligible, i.e. the method is applied to the microchannel cross-section only. Accurate

predictions of the mass flow rate and the streamwise velocity field are obtained for a

number of test cases; accurate predictions of the temperature field are also obtained

when there is a temperature difference between the bounding walls.
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Chapter 1

Introduction

1.1 Motivation

Conventional fluid mechanics is able to predict the flow behaviour in most fluid flow

problems by assuming a continuum-fluid description. There are, however, situations

where the flow can be far from local thermodynamic equilibrium and the molecular

nature of the fluid (which is neglected in conventional fluid mechanics) becomes impor-

tant. In this thesis, our interest lies in the behaviour of dilute gases; dense fluids behave

somewhat differently. As illustrated in Fig. 1.1, ‘non-equilibrium’ flow (also commonly

referred to as ‘rarefied’ flow) may occur in a gas when the density is low, when sur-

face effects become dominant in highly confined geometries, or when there are large

gradients in the flow properties. The conventional linear constitutive relations and the

traditional ‘no velocity slip/temperature jump’ fluid boundary conditions are not ac-

curate for non-equilibrium flows. Note that, in conditions of extreme non-equilibrium,

the flow may become ‘non-continuum’ i.e. the continuous fluid description breaks down

completely.

Until the late 1950s, non-equilibrium effects were generally found in low density

gas flows, for example around high altitude aircraft or spacecraft. However, the trend

towards miniaturisation within science and technology (popularised by Nobel Prize win-

ner Richard Feynman in 1959 [1]) has led to the development of revolutionary microelec-

tromechanical systems (MEMS) and nano-scale systems that display non-equilibrium

flow behaviour. While MEMS technologies (i.e. devices with length scales between

1
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100 nm and 100 µm) are readily available on the market today, nanotechnologies (i.e.

systems with length scales in the range of 1 to 100 nm) are still emerging.

non-equilibrium flow

low

density
large 

gradients

surface

effects

Figure 1.1: Causes of non-equilibrium flow in gases.

Due to their interdisciplinary applications, it is expected that micro- and nano-

scale systems could have a major impact on many industries in coming decades [2].

The downscaling of systems can increase performance; examples include micro heat

exchangers that can provide increased heat transfer for circuit cooling within the elec-

tronics industry; lightweight micro components in the aerospace industry that enhance

flight performance and reduce material consumption; ‘lab-on-a-chip’ devices that enable

faster (and potentially more accurate) medical diagnosis [3]; micro fuel cells and micro

gas turbines that not only reduce component volume, but are also more powerful and

longer lasting than conventional batteries; and carbon nanotubes, which can provide

much greater mass flow rates than predicted by continuum fluid mechanics as well as

excellent salt rejection capabilities for the desalination of salt water [4].

Despite advances in fabrication, the non-conventional flow behaviour through and

around micro- and nano-scale devices is still not well understood. Such behaviour has

been observed experimentally, for example, in an investigation performed by Arkilic et

al. [5]: the mass flow rates of a rarefied gas inside long rectangular microchannels were

found to deviate from that predicted by the ‘no-slip’ Navier-Stokes model, as shown in

Fig. 1.2. Note that, while the first-order slip model is shown to match fairly well to

the experimental values, the rarefaction is only slight with an outlet Knudsen number

Kn = 0.155 (Kn provides an indication of the level of non-equilibrium in a gas, as will

be discussed in Chapter 2). Later experiments by Colin [6] in similar microchannel
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geometries confirmed that the accuracy of the first- and second-order slip models was

reduced at higher Kn; see Fig. 1.3.

Figure 1.2: Taken from Arkilic et al. [5]: the mass flow rate of helium gas through a microchannel
of height 1.33 µm with an outlet Knudsen number Kn=0.155. Dots indicate experimental values;
dashed-dot curve is the no-slip solution; solid curve is the first-order slip solution.

Figure 1.3: Taken from Colin [6]: inverse reduced flow-rate of gas through a microchannel for a
pressure-ratio of 1.8. Curves NS1 and NS2 represent predictions from the first- and second-order
slip models, respectively. Circles and squares indicate experimental values for nitrogen and helium
gas, respectively; different colours (white, grey, and black) represent different channel geometries.

Poor performance of these slip models at high Kn was also shown by Lockerby

and Reese [7] in the study of low-speed flow past a micro-sphere. By measuring the

normalized drag, the new model that was presented (a new slip model with a near-

wall scaling of the Navier-Stokes constitutive relations) was compared with the first-

and second-order slip models, as well as Bhatnagar-Gross-Krook (BGK) results from
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Lea and Loyalka [8], and a curve fit to the experimental data of Allen and Raabe [9].

As shown in Fig. 1.4, the new model and the BGK approach were significantly more

accurate than even the second-order slip model at high Kn.

Figure 1.4: Taken from Lockerby and Reese [7]: normalized drag on a sphere. Comparison of
classical slip solution; a second-order slip solution; new model; a BGK solution by Lea and Loyalka
[8]; and a curve fit to the experimental data of Allen and Raabe [9].

Accurate flow prediction is needed for the design and optimisation of micro-devices,

and so a greater understanding of the fundamental flow behaviour is essential. At

the moment, there are significant limitations on the data that can be extracted from

physical experiments due to the lack of suitable measurement techniques. Attention

has therefore turned to modelling approaches that, unlike conventional fluid solvers,

are able to capture the molecular behaviour of the fluid. Kinetic theory focuses on

modelling the molecular behaviour of dilute gases by solving the Boltzmann equation.

Generally, both analytical and numerical solution methods (for example, based on the

BGK model) are subject to limitations; numerical simulation tools are, however, fairly

robust and can be applied to a wide range of flow problems.

The most fundamental molecular simulation tool is molecular dynamics (MD) [10].

Taking a deterministic approach, this technique solves Newton’s equations of motion

for a system of interacting atoms/molecules. While being suitable for liquids and dense

gases, MD is inefficient for dilute gases (where molecular interactions are less frequent).

The direct simulation Monte Carlo (DSMC) method [11] can instead provide a coarse-
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grained molecular description. Founded on kinetic theory, the DSMC method reduces

computational expense by adopting two approximations: (1) each simulated particle

can represent a large number of real gas molecules, and (2) the particle motion and

interparticle collisions can be decoupled over small time intervals; particle movements

are computed deterministically, while interparticle collisions are treated statistically.

Despite their accuracy, these molecular (or particle) simulation tools are generally

much too expensive to resolve the spatial and temporal scales of real engineering prob-

lems. Multiscale ‘hybrid’ methods that combine the efficiency of continuum methods

with the detail and accuracy of molecular descriptions have therefore been developed

over the past few decades. The molecular treatment is applied over micro/nano scales

to resolve the microscopic flow behaviour, while a continuum-fluid description is em-

ployed over macro scales to resolve macroscopic flow variations. The essential aim of

these hybrid methods is to obtain computational savings by exploiting spatial and/or

temporal ‘scale separation’ as much as possible; scale separation exists when there is

only a loose coupling between the microscopic and macroscopic flow behaviour.

1.2 Objective: a continuum-DSMC hybrid method

The vast majority of existing continuum-DSMC hybrid methods are based on a domain

decomposition (DD) framework [12–25]. The main reason for this is that the DD

approach is able to exploit the fact that non-equilibrium flow often appears close to

bounding walls: the molecular/particle solver is applied in a ‘micro’ sub-domain close to

the wall, and a conventional continuum-fluid solver is applied in the remaining ‘macro’

sub-domain; an interface or overlap then enables coupling of the two solvers, as shown in

Fig. 1.5(a). However, DD methods are limited to flow problems where the continuum-

fluid model is accurate across the majority of the flowfield and microscopic resolution

is required only in local regions (i.e. close to bounding walls or around singularities).

Although newer and less common than the DD framework, the Heterogeneous Mul-

tiscale Method (HMM) [26] has the ability to simulate problems that require the particle

solver to complement the continuum solver everywhere, i.e. when the traditional linear

fluid-constitutive relations fail within the bulk of a system. This could be the case if

non-equilibrium flow appears in the bulk (caused, for example, by large temperature
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gradients) or if the transport properties are unknown in an unusual gas mixture. In the

HMM framework, a continuum-fluid description is applied across the entire flowfield,

and the molecular/particle solver is applied in spatially-distributed micro elements.

These micro elements provide the local continuum description with updated bound-

ary conditions and/or fluid-constitutive information. As illustrated in Fig. 1.5(b), a

‘point-wise coupling’ approach is typically adopted — the micro elements supply this

information directly to the nodes of the macro grid, both at the bounding walls and in

the bulk. At the same time, the elements are constrained based on the local continuum

solution obtained at the collocated macro nodes. Unfortunately, point-wise coupling

means that the position and size of the micro elements is restricted by the placement

and the density of the macro nodes. It also means that, while the HMM is effective

when the spatial scales are highly separated (i.e. when the variation of the macroscopic

properties relative to the physical extent of a micro element is small), it is inefficient

for flow problems that possess mixed degrees of spatial scale separation.

To overcome the restrictions of point-wise coupling, the HMM with field-wise cou-

pling (HMM-FWC) [27] was proposed fairly recently. Once again, this framework places

a continuum-fluid description across the entire flowfield. However, each micro element

now represents fields that correlate directly with an identically-sized continuum sub-

region. The coupling is then performed via fields rather than the nodal points: local

continuum property fields are imposed across the micro elements, and local constitutive

correction fields (i.e. corrections to the linear constitutive-fluid relations) are extracted;

these local corrections are then interpolated to provide a global correction across the

entire flowfield. Like in the HMM, the near-wall micro elements are also able to provide

the continuum description with updated boundary information. Essentially, the HMM-

FWC can be considered a more general heterogeneous approach than the HMM — as

indicated in Fig. 1.5(c), the position and size of the micro elements is not restricted

by the macro nodes, and flows with mixed degrees of spatial scale separation can be

simulated.

In theory, the HMM-FWC could be applied to simulate the flow through long

micro/nanochannels; such channels are fairly common in emerging micro- and nano-

technologies and so these high-aspect-ratio flows are of increasing interest. As a large
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portion (if not all) of the flowfield is near-wall, the application of a DD method would be

inefficient. The traditional HMM would also be unsuitable as the micro elements would

likely be forced to overlap. However, a specific class of HMM-FWC has been devel-

oped for these types of flows: the framework and coupling strategy of the Internal-flow

Multiscale Method (IMM) [28] is tailored to exploit the large length scale separation

that exists in the streamwise direction. As in the other heterogeneous frameworks, the

IMM applies a continuum-fluid description over the entire channel. Very short micro

elements that occupy the entire cross-section (i.e. the entire channel height) are then

distributed along the channel length; see Fig. 1.5(d). The coupling is simplified com-

pared with other heterogeneous methods by circumventing the need to supply boundary

conditions or constitutive information directly; pressure gradients are imposed across

the micro elements and the resulting mass flux is used to correct the continuum de-

scription.

continuum 

macro grid

bounding

wall
bounding

walls

coupling 

overlap(a) DD (b) HMM

(d) IMM(c) HMM-FWC

bounding

walls high-aspect-ratio 

channel

particle

micro solver

Figure 1.5: Schematic of the four hybrid frameworks: (a) domain decomposition (DD), (b) the
Heterogeneous Multiscale Method (HMM), (c) the HMM with field-wise coupling (HMM-FWC),
and (d) the Internal-flow Multiscale Method (IMM).

The HMM, the HMM-FWC, and the IMM were all originally implemented with a

continuum-MD coupling for the simulation of liquids. With the exception of the IMM,

the use of heterogeneous methods has continued to focus on continuum-MD couplings

— there has been little attention given to continuum-DSMC couplings for dilute gases.

Although the Coupled Multiscale Multiphysics Method (CM3) of Kessler et al. [29] was
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based on a heterogeneous approach (i.e. the DSMC method supplied the continuum-

fluid description with constitutive information), both the continuum description and

the DSMC solver were employed over the entire flowfield. The spatial and temporal

scales remained fully coupled, and computational savings were obtained only by using

a smaller number of averaging ensembles in the DSMC stage of the CM3 than was used

in the equivalent full DSMC simulations.

With the aim of a versatile hybrid method that can deal with mixed levels of spatial

scale separation across a wide range of dilute gas flows, this thesis will adapt the HMM-

FWC approach to a continuum-DSMC coupling.

Both the HMM-FWC and the IMM were first developed with assumptions of steady,

incompressible, and isothermal flow. The IMM has now been implemented for a

continuum-DSMC coupling [30, 31] and has seen extensions to compressible [30], non-

isothermal [31], and unsteady flows [32]; the HMM-FWC has seen no such developments

to date. Therefore, as well as modifying the constraint of the micro elements to suit

the use of a DSMC solver, the hybrid method of this thesis will extend the HMM-FWC

coupling strategy to include capabilities in compressible and non-isothermal flows. An

extension to unsteady flows will not be considered, but could be a subject of future

work.

With its flexibility, this new continuum-DSMC method will have the potential to

simulate a wide range of flow problems: it will be applicable for the types of prob-

lems that are normally tackled by DD methods, i.e. where non-equilibrium appears at

bounding walls; it will also be suitable when non-equilibrium appears in the bulk, or

when the transport properties of the gas are unknown.

To demonstrate the method’s ability to deal efficiently with mixed levels of spatial

scale separation, it will be used to simulate a rarefied gas flowing in a microchannel

that is representative of a microscale crack. Leakage from narrow cracks can occur,

for example, in pressure vessels, pipes, and valves. The limitations of the other hybrid

frameworks preclude their use for crack-type geometries where the cross-section of the

flow is of high-aspect-ratio: DD methods would be inefficient as the entire flowfield

is near-wall; the micro elements of the HMM would overlap; and, although the IMM

could exploit high scale separation in the streamwise direction, it would require each
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micro element to occupy the entire cross-sectional area and so would not be able to

exploit scale separation over the large dimension of the flow cross-section. Our new

HMM-FWC method will have the ability to exploit high scale separation over this

dimension, while also dealing with the low scale separation that exists over the small

dimension of the cross-section. Note also that, while the original HMM-FWC method

was demonstrated for a 1D flow problem only, our new method will be implemented in

2D for this crack flow problem.

1.3 Thesis outline

Chapter 2 introduces the fundamentals of rarefied gas dynamics, including the Knud-

sen regimes of gas flow and the kinetic theory of dilute gases. Based on solving the

Boltzmann equation, kinetic theory provides the basis for modelling non-equilibrium

gas flows. The limitations of direct solution methods are discussed. The algorithm of

the numerical DSMC method is then described, including the application of boundary

conditions, the collision procedure, and the extraction of macroscopic properties. Some

important features of the dsmcFoamStrath code (which is used to perform the DSMC

simulations in this thesis) are also highlighted.

A detailed review of existing hybrid methodologies is provided in Chapter 3. After

a brief discussion of ‘unified’ methods, focus is placed on continuum-DSMC hybrid

methods. The capabilities and limitations of the four hybrid frameworks (DD, HMM,

HMM-FWC, and IMM) are discussed. The coupling strategies adopted within these

frameworks are examined in terms of their approach to spatial and temporal coupling,

the information that is exchanged between the solvers, and the techniques for imposing

boundary conditions on the micro sub-domains/elements. This review highlights the

need for the continuum-DSMC method developed in this thesis.

Based on a HMM-FWC framework, the new continuum-DSMC hybrid method is

presented in Chapter 4. The advantages of this method and possible applications are

discussed. The multiscale methodology and the coupling strategy (i.e. the constraint

of the micro elements and the correction of the continuum description) are described

in detail. Finally, the iterative algorithm of the method is summarised.

In Chapter 5, the new hybrid method is validated for 1D energy coupling. This
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is achieved by demonstrating its application to a micro Fourier flow problem for var-

ious rarefaction and temperature conditions. Results are compared with full DSMC

simulations and the computational efficiency of the method is discussed.

Further validation is performed in Chapter 6, where the method is applied to high-

speed micro Couette flow. With viscous heating, this flow problem requires simultane-

ous 1D momentum and energy coupling. Two wall speeds are considered to test the

method’s capabilities: one corresponding to supersonic flow, and the other to hyper-

sonic flow. Once again, results are compared with full DSMC simulations.

In Chapter 7, the method is used to simulate the more realistic engineering problem

of a rarefied gas flowing in a simple microscale crack. Essentially, the method is applied

across the high-aspect-ratio cross-section of a microchannel that acts as a representative

geometry; by assuming periodicity in the streamwise direction, the problem becomes

2D. Both isothermal and non-isothermal cases (i.e. where a temperature difference is

present between the crack walls) are considered. The accuracy and computational cost

of the method are again compared with equivalent full DSMC simulations.

Following a summary of the work presented in this thesis, Chapter 8 concludes with

a discussion of possible future work.
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Chapter 2

Rarefied gas dynamics and the

DSMC method

In this chapter, the fundamentals of rarefied gas dynamics will be discussed. This

includes the classification of the different gas flow regimes, and the need for modelling

techniques that are able to predict the flow behaviour of non-equilibrium gases. The

kinetic theory of dilute gases will be introduced — as this is based on the solution of

the Boltzmann equation, the limitations of direct solution methods will be considered.

The importance of the numerical DSMC simulation method will then be explained,

and its algorithm described in detail. Finally, the capabilities of the dsmcFoamStrath

code (that will be used to perform all of the DSMC simulations in this thesis) will be

reviewed.

2.1 Rarefied gas dynamics

2.1.1 Regimes of gas flow: the Knudsen number

Thermodynamic equilibrium in a gas is the result of highly frequent intermolecular and

molecule-surface collisions. Low gas density, highly confined conditions, and large flow

gradients drive a gas towards non-equilibrium. The level of non-equilibrium in a dilute

gas is characterised by the Knudsen number,

Kn =
λ

l
, (2.1)

12
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where λ is the molecular mean free path of the gas (i.e. the average distance that gas

molecules travel between successive collisions) and l is some characteristic length scale

of the flow system. Setting l to a geometric dimension (e.g. a channel width or pipe

diameter) results in a global Knudsen number Kngl, which provides an indication of

the overall level of non-equilibrium in the system. Alternatively, if interest lies in a

particular region of a system, a gradient-length local Knudsen number Knl can be

defined by taking l as the scale of the gradient of a macroscopic quantity, e.g. l = ρ/∇ρ

where ρ is the gas density. Depending on Kn, gas flows fall into different regimes as

indicated in Fig. 2.1.

continuum 

regime

slip 

regime

transition 

regime

free molecular

regime

0 110-1 1010-210-3

Kn

Figure 2.1: Gas flow regimes over different Knudsen numbers Kn. Note that there remains
ambiguity in the upper and lower limits of the slip regime.

The continuum regime

In the limit Kn ≈ 0, the frequency of molecular collisions is so high that the diffusive

transport of heat and momentum can be neglected and the gas flow is considered to

be in full thermodynamic equilibrium. From the continuum-fluid point of view, the

flow is approximately isentropic and the conservation equations are the inviscid Euler

equations.

In the range 0 < Kn < 10−3, the collision frequency is still very high and the

flow is considered to be in quasi-equilibrium. The conventional Navier-Stokes-Fourier

(NSF) equations (i.e. the conservation equations closed using the conventional linear

NSF fluid-constitutive relations) are excellent for modelling the gas behaviour in this

regime. The frequency of molecule-wall collisions is high enough that there are no

discontinuities at gas-solid interfaces, and so the traditional ‘no velocity slip’ and ‘no

temperature jump’ boundary conditions are valid.
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The slip regime

As Kn increases, fewer molecular collisions occur. In the approximate range 10−3 <

Kn < 0.1, the molecule-wall collision frequency becomes so low that discontinuities

appear — the macroscopic gas velocity and temperature at a solid surface are no

longer equal to the velocity and temperature of the surface itself. The NSF model can,

however, be extended into this regime by including Maxwell’s velocity slip [33] and von

Smoluchowski’s temperature jump [34] boundary conditions.

The transition regime

When the Knudsen number rises above about 0.1, the collision frequency decreases

further such that the gas is now far from thermodynamic equilibrium. Molecule-wall

collisions become more frequent than intermolecular collisions, and momentum and/or

thermal Knudsen layers form at the surfaces — these are essentially regions of non-

equilibrium (with a thickness dependent on Kn) where the gas behaviour deviates

from that of the linear NSF constitutive relations. Even with the use of slip and jump

boundary conditions, the traditional NSF equations cannot model this phenomenon.

The need for alternative modelling approaches in this flow regime has resulted in con-

siderable research activity in recent years. Generally, these alternative approaches are

based on the kinetic theory of dilute gases, which provides the foundation of the gas

description in this flow regime; kinetic theory will be discussed further in section 2.1.2.

Note that this Kn range is a guide only. There is uncertainty in the literature

regarding the validity of the linear NSF fluid-constitutive relations for Kn as large as

0.1 [35].

The free molecular regime

When Kn > 10, the flow becomes so rarefied that the molecules are separated by

extremely large distances relative to their diameter. Intermolecular collisions are rare

and molecule-wall collisions dominate. Analytical solutions to the Boltzmann equation

can be obtained for simple geometries, as will be discussed in section 2.1.2. More com-

plex geometries require numerical simulation (usually with MD) to obtain an accurate

particle-surface interaction model for a given gas-surface combination.
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2.1.2 Kinetic theory and the Boltzmann equation

Modelling techniques that are able to capture molecular behaviour are needed for gas

flows that fall inside the transition regime. The most fundamental technique is deter-

ministic MD, where the motion and interactions of individual molecules are governed

by classical Newtonian mechanics. For a molecule i,

mi
d2ri
dt2

=

Nmol∑
j=1
j 6=i

Fij , (2.2)

where mi is its molecular mass, ri is its position, and the right hand side of this expres-

sion represents the net forcing on the molecule. The force Fij acting between molecule

i and another molecule j is a function of the intermolecular potential, most often based

on a Lennard-Jones (LJ) model. As MD simulates all Nmol molecules in the system, the

computational cost can be enormous; even for a dilute gas, a cubic centimetre volume

at standard temperature and pressure contains 2.687× 1019 molecules [36].

Although MD is physically accurate for any fluid, it is highly inefficient for modelling

dilute gases. A gas is considered dilute when the mean molecular separation δ is

considerably larger than the molecular diameter d, i.e. δ � d. Intermolecular potentials

can then be neglected and collisions are overwhelmingly likely to be binary. Rather

than using a computationally costly deterministic approach, we can instead adopt a

statistical technique based on the kinetic theory of dilute gases.

In kinetic theory we often refer to ‘particles’ — these can be atoms or molecules, or

even groups of atoms/molecules. The overall aim is to estimate the probability of having

a particle at a particular position, velocity, and internal state. Using both probability

theory and statistical averaging, macroscopic property fields can be obtained from

microscopic data. Note, however, that statistical fluctuations must be insignificant; the

volume over which the property fields are averaged must contain a sufficient number

of particles to reduce statistical error. The molecular chaos restriction ensures that

the velocities of colliding particles are uncorrelated, requiring that the length scale

for the averaging process is (at minimum) 100× the average molecular separation [11].

Although kinetic theory is capable of describing polyatomic gases and gas mixtures, the
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presence of internal degrees of freedom dramatically increases the model complexity.

Such complexity is avoided in this thesis by considering simple monatomic dilute gases;

each particle then has translational kinetic energy only.

Derived from the Liouville equation of statistical mechanics, the Boltzmann equa-

tion is the backbone of kinetic theory. Essentially, the equation describes the evolution

of the (normalised) velocity distribution function f , which represents the distribution

of particles as a function of position, velocity, and time. Assuming molecular chaos in

a monatomic dilute gas, the Boltzmann equation can be expressed as [11],

∂(nf)

∂t
+ c

∂(nf)

∂r
+ F

∂(nf)

∂c
= J(f, f∗), (2.3)

where n is the number density, F is an external body force, and r and c are the

position and velocity vectors of a particle, respectively. The term on the right hand

side, J(f, f∗), is the non-linear collision integral that accounts for the effects of particle

collisions on the distribution function. With superscript ∗ denoting post-collision values,

this collision term can be written in full,

J(f, f∗) =

∫ ∞
−∞

∫ 4π

0
n2(f∗f∗1 − ff1)crξdΛdc1, (2.4)

where f and f1 are the two particle velocity distribution functions corresponding to c

and c1, respectively, and cr is the relative speed between the two colliding particles.

The particle collision cross-section is denoted by ξ, while Λ is the solid angle (and

ξdΛ is the differential cross-section). Upon solution of Eq. (2.3), weighted integrals

of f can then be used to obtain macroscopic field properties, including the density,

velocity, and temperature. Although the Boltzmann equation is perfectly valid for all

Kn (provided that the assumptions of binary collisions and molecular chaos hold true),

the non-linearity of the collision integral means that direct solution is very difficult.

In the continuum regime, the governing fluid conservation equations can, in fact,

be derived from the Boltzmann equation by taking moments, i.e. by multiplying the

Boltzmann equation in turn by the molecular mass, momentum, and energy, and then

integrating over all velocity space (over all c) [37]. In the limit Kn ≈ 0, the gas is in
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full equilibrium and the velocity distribution function takes the Maxwellian form fo,

fo(c
′) =

(
m

2πkBT

)3/2

exp

[
−mc′2

2kBT

]
, (2.5)

where m is the molecular mass, kB is Boltzmann’s constant, and T is the gas temper-

ature. In kinetic theory, a reference frame moving with the stream velocity is often

adopted and so parameters are defined in terms of the thermal (or ‘peculiar’) velocities

of the particles. The thermal velocity c′ of a particle is its instantaneous velocity c

relative to the stream velocity c0, i.e. c′ = c− c0; the stream velocity c0 is equal to the

mean of the instantaneous particle velocities. Note that we can express the Maxwellian

speed distribution (which is visualised in Fig. 2.2 for a gas temperature of 273 K) in

terms of the thermal speed c′ [38], i.e.

fo(c
′) = 4π

(
m

2πkBT

)3/2

c′2 exp

[
−mc′2

2kBT

]
. (2.6)

The Maxwellian velocity distribution fo(c
′) corresponds to a viscous stress tensor that

is equal to the thermodynamic pressure and a heat flux that is zero, i.e. no diffusive

momentum or energy transport; the conservation equations then reduce to the Euler

equations, as mentioned previously.

 0
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Figure 2.2: Maxwellian (thermal) speed distribution for a gas temperature of 273 K.

As we move away from thermodynamic equilibrium, the particle distribution di-

verges from Maxwellian form. If the departure from equilibrium is only slight, the

Chapman-Enskog (CE) technique can be employed — this aims to obtain an analyt-

ical solution to the Boltzmann equation by considering a distribution function which

is a small perturbation from the Maxwellian form. Using a Kn series expansion, this
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distribution can be expressed as,

f = fo{1 + b1Kn+ b2Kn
2 + ...+ bnKn

n}, (2.7)

where coefficients b1,2,...n are functions of density, velocity and temperature only [39].

Note that the zeroth-order approximation in Kn results in the Maxwellian distribution,

and so yields the Euler equations. The first-order approximation in Kn corresponds to

the linear constitutive relations of the NSF conservation equations. The second-order

approximation produces the complex non-linear constitutive relations of the Burnett

equations [40], while the third-order approximation results in the super-Burnett equa-

tions [41]. As the Burnett and super-Burnett equations are accurate to a higher order

in Kn, they could essentially extend the continuum-fluid description beyond the NSF

equations and into the transition regime. However, the departure from equilibrium

must be small for the CE to be valid, and the mathematical complexity involved in

the solution of these equation sets means that applications are restricted to the most

simple geometries. In addition, there are some concerns regarding the stability and

thermo-mechanical consistency of these higher order Burnett approaches [42].

Grad [43] took a somewhat different approach, expanding the distribution func-

tion as a series of Hermite polynomials, where the coefficients are combinations of the

moments of f . With infinite Hermite coefficients, no molecular information is lost.

However, for practicality, the distribution function must be truncated: Grad truncated

at the third order in Hermite polynomials, resulting in his well-known 13 moment equa-

tions (G13). Based on Grad’s work, there has been significant development of moment

methods in recent years. In order to smooth out artificial discontinuities of the G13

equations, Struchtrup & Torrilhon [44] derived a set of regularized 13 moment equa-

tions (R13) by using an additional Chapman-Enskog-like expansion. Gu & Emerson

[45] truncated the distribution function at the fourth order in Hermite polynomials

and derived a set of 26 moment equations that were regularized by the procedure of

Struchtrup & Torrilhon. Despite these developments, a number of problems remain,

including the presence of instabilities and the need for additional boundary conditions

[39]. Although recent studies have proposed new boundary conditions [46–48] and

have considered implementation for problems like Couette and Poiseuille flows [49–52],
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further development of moment methods is needed for complex 3D flows.

Generally, analytical solution of the Boltzmann equation is restricted to free molec-

ular flows around simple geometries; analytical solution is not possible for arbitrary

complex geometries in the transition regime. Attention has therefore turned to numer-

ical solution methods. Unfortunately, with the high dimensionality of the collision term,

direct numerical solution is extremely computationally expensive (particularly for 3D

systems) due to the need for discretisation of both physical space and velocity space.

Simplification of the collision integral makes numerical solution much more accessible.

The Bhatnagar-Gross-Krook (BGK) method [53], for example, replaces the collision

integral in Eq. (2.4) with a simplified representation of the collision processes — this

effectively linearises the Boltzmann equation. Techniques such as the discrete velocity

method (DVM) can then be implemented for solution [54–56]. However, simplifying

the collision term also reduces the applicability of such solution methods, with studies

focusing mainly on simple benchmark flow problems. The standard BGK model, for

example, is rarely accurate for complex, highly non-equilibrium flows [35], and modifi-

cations are required in order to obtain the proper Prandtl number [57].

In recent years, the rise in parallel computing technologies has lead to a renewed

focus on numerical solution methods. In particular, there has been an interest in using

Graphic Processing Units (GPUs) to perform faster calculations [58, 59]. Despite this,

numerical Boltzmann solvers are not yet regarded as a viable alternative to particle-

based simulation methods. Today, the most popular numerical tool in rarefied gas

dynamics is the particle-based direct simulation Monte Carlo (DSMC) method.

2.2 The DSMC method

The DSMC method was first proposed by Bird [60] in the 1960s as an alternative to

expensive MD simulations. Although it is based on kinetic theory (and so is subject to

the same dilute gas and molecular chaos restrictions), DSMC does not aim to solve the

Boltzmann equation directly. Instead, the aim is to simulate the physics of the system.

The fundamental concept is to track a large number of particles that move through

a computational mesh, storing their position, velocity, and internal state. During a

simulation, the particles collide with each other and with bounding surfaces while con-
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serving mass, momentum, and energy. The main advantage of the DSMC method over

MD is the computational savings that are offered by two key assumptions: first, each

simulated particle is able to represent a large number of real gas molecules; secondly,

particle collisions can be treated stochastically rather than deterministically. Essen-

tially, DSMC decouples the particle motion and collisions over small time intervals —

particle movements are computed deterministically depending on the velocity vector

and DSMC time step, after which collisions are handled statistically.

The DSMC method became very popular in the 1970s due to a focus on the develop-

ment of hypersonic aerodynamics. This led to rapid advances in the method, including

the extension to gas mixtures [61] and diatomic molecules [62]; the introduction of the

Larsen-Borgnakke model [63] for redistribution of energy between translational and ro-

tational modes during inelastic collision; Bird’s No Time Counter (NTC) scheme [64] for

obtaining accurate collision rates; and the implementation of the sub-cell approach [11]

to promote nearest neighbour collisions. For several decades, there was concern over

the relationship between the method and the Boltzmann equation [65]. This was, how-

ever, put to rest in 1992 when it was proved mathematically that DSMC can produce

a solution to the Boltzmann equation for a monatomic gas in the limit of an infinite

number of particles [66]. It is now widely accepted that DSMC is the most robust

method for modelling highly rarefied dilute gas flows in complex geometries. Results

from newer modelling approaches (e.g. analytical methods and hybrid approaches) are

often validated against results from full DSMC simulations.

2.2.1 The DSMC algorithm

Before beginning a DSMC simulation, a computational mesh is generated over the

flowfield — this will be needed for selecting particle collision partners. Cell dimensions

are set to a fraction (usually 1/3) of the mean free path to ensure realistic collisions.

The boundary conditions that are to be imposed at the outer limits of the system

are then defined. The molecular properties of the gas are also specified, including the

molecular mass m and the number of real molecules FN that each DSMC particle will

represent. The molecular collision model is selected; the popular Variable Hard Sphere

(VHS) model is used for all DSMC simulations in this thesis. This model, unlike the
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fixed-diameter Hard Sphere (HS) model, is able to preserve the viscosity-temperature

relationship of a gas by allowing a variable molecular diameter dVHS [11], i.e.

dVHS =

(
15m(RT/π)1/2

2µ(7− 2ω)(5− 2ω)

)1/2

, (2.8)

where µ is the gas dynamic viscosity, and ω is the viscosity exponent of the gas. The

VHS mean free path is then calculated from,

λ =
1√

2πd2
VHSn

, (2.9)

where n is the gas number density.

After defining these simulation parameters, the standard DSMC algorithm can be-

gin; this algorithm is summarised in Fig. 2.3. First, the system is initialised: the mesh

is populated with DSMC particles at an equilibrium state, i.e. the thermal velocity

of each particle is sampled from a Maxwellian distribution at the desired macroscopic

temperature and velocity. The main loop of the algorithm then consists of four steps.

Start

Populate mesh with particles 

and initialise boundaries

1. Move particles 
Compute interaction with boundaries

2. Update particle indexing 

3. Compute particle collisions

4. Sample flow properties

Compute averaged properties

t > t
end

?

End

Yes

No

Figure 2.3: Flowchart of the standard DSMC algorithm.
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1. Particle movements

The first step is to move each particle i along its velocity vector ci for a duration of one

DSMC time step δt, assuming that the velocity remains constant and that there are

no collisions. If the decoupling of movements and collisions is to produce an accurate

solution, δt must be significantly smaller than the average time between gas particle

collisions, referred to as the mean collision time tmc [11].

Particle-boundary interactions are also dealt with in this step. There are three

important types of boundary condition that are commonly imposed in DSMC simu-

lations. The first of these deals with the flow of particles across the boundaries (into

or out of the system) to obtain the desired freestream conditions. Inflow boundaries

are based on the insertion of particles depending on the equilibrium Maxwellian num-

ber flux [11], while particles that make contact with outflow boundaries are instantly

deleted from the system. Pressure-based inflow/outflow boundary conditions have also

been developed especially for low-speed flows through microgeometries [67].

The second type of boundary condition deals with particle-surface interactions. In

DSMC, the most frequently used interaction model is Maxwell’s [33], which considers

both specular and diffuse reflections as illustrated in Fig. 2.4. Specular reflection is

representative of a perfectly smooth surface with perfect slip: incident particles conserve

tangential momentum — the normal component of their incident velocity is reversed

while their tangential velocity and energy remain unchanged, and the angle of reflection

Θrefl is the same as the angle of incidence Θinc. On the other hand, diffuse reflection is

representative of a microscopically rough surface, i.e. incident particles lose all of their

tangential momentum to the wall. The post-interaction velocity does not depend on

the incident velocity; it is sampled from a Maxwellian distribution depending on the

surface temperature, with equal probability in all directions. For a given gas-boundary

interaction, the fraction of particles that experience a diffuse reflection α is known as

the tangential momentum accommodation coefficient (TMAC), and depends on the gas

properties, the surface material, and the surface roughness. While Maxwell’s model is

sufficient for the simple test cases of this thesis, future cases may benefit from the

use of the more sophisticated Cercignani-Lampis-Lord (CLL) interaction model [68].

However, there remains uncertainty in the type of problems that require the CLL model.
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Figure 2.4: Schematic of Maxwell’s diffuse and specular particle-surface interactions..

The third boundary type is periodic — when a particle crosses a periodic boundary,

it simply re-enters at the mirror boundary with the same velocity and internal state.

2. Indexing

After moving the particles and computing boundary interactions, each particle is in-

dexed into a cell of the computational mesh depending on its current position. This

indexing is required as particle collision partners are selected on a cell-by-cell basis.

3. Particle Collisions

Intermolecular collisions are computed probabilistically. It is vital that the collision

process is representative of real gas interactions and so particles should collide only

with neighbouring particles. For this reason, particle collision pairs are selected from

the same cell. Nearest neighbour collision can be further encouraged by using a sub-

cell technique (or a more advanced transient-adaptive sub-cell technique [69]), in which

particles are restricted to collisions with other particles that reside in the same sub-cell.

To simulate realistic collision rates, an appropriate collision modelling scheme must

be chosen. Bird’s NTC scheme can produce accurate collision rates in exchange for

minimal computational effort, and so has become the standard approach in DSMC.

In this scheme, a number of particle pairs are selected at random within each cell or

sub-cell, regardless of their position. An acceptance-rejection approach is then adopted.

For each particle pair, a collision is accepted if

(ξtotcr)

(ξtotcr)max
> Rf , (2.10)
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where ξtot is the total collision cross-section (i.e. ξtot = πd2), cr is the relative speed

between the pair, and Rf is a random fraction between 0 and 1. Initially, (ξtotcr)max =

(ξtotcr); subsequently, if (ξtotcr) is found to be greater than (ξtotcr)max, then the max-

imum value is updated. After the collision is processed, or if the pair are rejected, a

new particle pair is selected and the acceptance-rejection procedure is repeated. This

continues until the required number of candidate pairs,

Mcand =
Nc(Nc − 1)FN (ξtotcr)maxδt

2Vc
, (2.11)

within the cell volume Vc at the given time step δt has been selected (where Nc is the

instantaneous number of DSMC particles in the cell).

In DSMC, accepted collisions are processed by altering the velocities (but not the

positions) of both particles. For the monatomic gases considered in this thesis, particles

i and j will exchange translational energy only and so the collision will be fully elastic.

Conserving momentum, the post-collision velocities for each particle can be calculated

from,

c∗i = c∗m +

(
mj

mi +mj

)
c∗r ,

c∗j = c∗m −
(

mi

mi +mj

)
c∗r ,

(2.12)

where superscript ∗ denotes post-collision values. The centre of mass velocity cm re-

mains unchanged by the collision, i.e.

c∗m = cm =
mici +mjcj
mi +mj

. (2.13)

The post-collision relative velocity c∗r is computed from,

c∗r = c∗r [(sinϑ cosϕ)x̂ + (sinϑ sinϕ)ŷ + (cosϑ)ẑ]. (2.14)

From the conservation of energy, it can be deduced that the magnitude of the relative

velocity between the particles cr is not changed by the collision, i.e. c∗r = cr = ‖ci−cj‖.

With the isotropic scattering law of the VHS model, the scattering angles ϑ and ϕ are



CHAPTER 2 RAREFIED GAS DYNAMICS AND THE DSMC METHOD 25

uniformly distributed over a unit sphere, between 0 and 2π radians. The azimuthal

angle ϕ is equal to 2πRf , while the elevation angle ϑ = cos−1(2Rf − 1).

For diatomic or polyatomic gases, each particle pair should be considered for rota-

tional energy exchange and collisions may be inelastic; the phenomenological Larsen-

Borgnakke model can then be used to compute post-collision velocities.

4. Sampling

When modelling real applications, engineers are not generally interested in microscopic

information — interest lies in the variation of the macroscopic properties. Macroscopic

information is recovered in DSMC from statistical averaging of the microscopic infor-

mation, using expressions taken from kinetic theory [11]. We restrict the discussion

here to a monatomic simple gas, where all particles are of the same chemical species

and there are no effects of rotational or vibrational energy. The discussion would be

more complex for a gas mixture with multiple chemical species.

First, we discuss the extraction of macroscopic properties by averaging over all

particles NV in a volume V . Typically, this volume is a DSMC computational cell,

however the same process applies to any user-defined volume. The gas number density

n can be computed from,

n =
NV FN
V

. (2.15)

Note that it is important to account for the fact that each DSMC particle represents

some number FN of real gas molecules. The mass density ρ is then simply,

ρ = nm, (2.16)

where m is the molecular mass. As mentioned in section 2.1.2, the macroscopic stream

velocity c0 (also denoted u in this thesis) is the mean of the instantaneous particle

velocities c, i.e.

u = c0 = c =
1

NV

NV∑
i=1

c. (2.17)

The use of an overline indicates the average value of the expression over all particles

in the sample. If a reference frame moving with this stream velocity is adopted, the
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macroscopic properties are then defined in terms of the particle thermal velocities c′,

i.e. c′ = c− c0. The pressure tensor p is computed from,

p = ρc′c′, (2.18)

for example, in component form,

pxy = ρu′v′. (2.19)

The macroscopic scalar pressure p is then the average of the three normal components

of the pressure tensor, i.e.

p =
1

3
ρ
(
u′2 + v′2 + w′2

)
. (2.20)

The components of the viscous stress tensor τ are computed from the negative of the

pressure tensor, with the scalar pressure subtracted from the normal components, e.g.

τxx = −
(
ρu′2 − p

)
, (2.21)

and,

τxy = −
(
ρu′v′

)
. (2.22)

In monatomic gases, the particles have only translational kinetic energy εtr. Conse-

quently, the overall gas temperature T is equal to its translational temperature Ttr,

Ttr =
2

3kB
εtr =

1

3kB
m
(
u′2 + v′2 + w′2

)
. (2.23)

With no rotational or vibrational energy, the components of the heat flux vector q can

be computed from, for example,

qx =
1

2
ρc′2u′. (2.24)

The macroscopic properties of the gas at the bounding walls will also be needed in

the later chapters of this thesis. These can be obtained by summing over all particles
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Nsur that strike the surface [70]. For example, for a horizontal wall, the speed of the gas

ugs at the surface (i.e. the tangential component of the stream velocity at the surface,

c0gs,t) is computed from,

ugs = c0gs,t =

Nsur∑
j=1

[(m/|cn,j |) ct,j ]tot

Nsur∑
j=1

[(m/|cn,j |)]tot

, (2.25)

where cn,j and ct,j are the normal and tangential velocity components of particle j,

respectively. The subscript ‘tot’ signifies that the summation is performed both before

and after the gas-surface interaction. The temperature of the gas at the wall surface

Tgs is then obtained from,

Tgs =
1

3kB

Nsur∑
j=1

[
(m/|cn,j |)

(
‖cj‖2

)]
tot
−
Nsur∑
j=1

[(m/|cn,j |)]tot u
2
gs

Nsur∑
j=1

[(1/|cn,j |)]tot

, (2.26)

where ‖cj‖ is the magnitude of the particle velocity. At each time step δt, the tangential

shear stress components of the gas at the wall τgs,t can be sampled from the difference

in the tangential momentum flux before (denoted by subscript ‘inc’) and after (denoted

by subscript ‘refl’) the gas-surface interaction [38], i.e.

τgs,t =
FN
Aδt

Nsur∑
j=1

[
(mct,j)refl − (mct,j)inc

]
, (2.27)

where A is the surface sampling area. Similarly, the heat flux on the surface (i.e.

the normal component of the heat flux vector at the wall, qgs,n) is sampled from the

difference in the energy fluxes before and after the gas-surface interaction at each time

step, i.e.

qgs,n =
FN
Aδt

Nsur∑
j=1

[(
1

2
mc2

j

)
inc

−
(

1

2
mc2

j

)
refl

]
. (2.28)

Unfortunately, statistical scatter is inherent in DSMC. For steady-state problems

like those considered in this thesis, this problem can be lessened by using cumulative

time averaging. When a simulation reaches steady-state, the gas properties are averaged
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over a large number of time steps g = 1, 2, ...Gav, for example,

n =
1

Gav

Gav∑
g=1

n(g). (2.29)

For transient problems, scatter reduction can be achieved from ensemble averaging (i.e.

repeating the simulation many times).

2.2.2 dsmcFoamStrath

In collaboration with researchers at the University of Strathclyde, OpenCFD Ltd have

released MD and DSMC solvers within the framework of their C++ toolbox, Open-

FOAM [71]. Primarily a Computational Fluid Dynamics (CFD) package, OpenFOAM

is completely open source under the GNU general public licence and is freely avail-

able for download. The DSMC solver, named dsmcFoam, includes the key features of

any modern DSMC code: particle initialisation in arbitrary 2D/3D geometries; par-

ticle tracking in structured and unstructured meshes; freestream and periodic bound-

aries; Maxwellian diffuse/specular gas-surface interactions; automatic sub-celling; NTC

partner selection; Larsen-Borgnakke rotational energy redistribution; steady-state and

transient simulation capabilities; and unlimited parallel processing capability.

The open source nature of OpenFOAM means that users are also able to extend the

code to suit their own needs. The standard dsmcFoam code has been extended within

the research group of the author [36] to provide additional functionality; additions

include a vibrational mode, quantum-kinetic (QK) chemical reactions, and a CLL gas-

surface interaction model. This extended solver, referred to as ‘dsmcFoamStrath’, has

been validated for various benchmark cases, including hypersonic and microchannel

flows [72–74]. It is therefore used to perform all of the hybrid and full-scale DSMC

simulations in this thesis.

Measurement techniques

As discussed in the previous section, the macroscopic properties in a volume can be

extracted by averaging over all particles in that volume according to Eqs. (2.15) –

(2.24). The standard dsmcFoam distribution simply averages on a cell-by-cell basis.



CHAPTER 2 RAREFIED GAS DYNAMICS AND THE DSMC METHOD 29

Driven by the needs of the hybrid method presented in the later chapters of this thesis,

a new measurement framework [36] has been added to the dsmcFoamStrath code; this

framework includes two alternative measurement techniques — the ‘method of zones’

(MOZ) and the ‘method of bins’ (MOB) are based on averaging over the particles in

some user-defined volume.

In the MOZ technique, a user-defined ‘zone’ is created. Consisting of connected

DSMC computational cells, this zone can be any size or shape and can be at any

location on the DSMC mesh. The spatial average of the macroscopic properties in that

zone is then extracted; this technique cannot, however, capture spatial gradients.

Spatial gradients can be captured by the MOB technique. A volume (the full domain

or a user-defined zone) is split into a number of ‘bins’ and the spatial average of the

properties in each bin is extracted. In this thesis, these measurement bins are 1D or

2D, both shown in Fig. 2.5. Other possibilities include 2D radial bins (for cylindrical

geometries) or even 3D bins. It is important to note that this binning method is

independent of the computational mesh used by the DSMC algorithm — this provides

the ability to define the resolution of the extracted macroscopic fields, and to control

the level of noise, without affecting the particle collision rate.

x ∆x
x

y

∆y

(a) (b)

∆x

Figure 2.5: Schematic of the MOB using (a) 1D planar bins and (b) 2D bins.

Note that it would be much too memory-intensive to store particle properties at each

time step and then calculate the macroscopic properties on completion. Instead we per-

form measurements ‘on the fly’, storing less memory-intensive macroscopic properties

at each write interval. All of the measurement tools in dsmcFoamStrath can perform

instantaneous measurements until steady-state is reached (resetting after write out),

and cumulative measurements during the steady-state run (averaging over time).
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State controllers

Generally, DSMC simulations are constrained by imposing conditions at the system

boundaries. In MD, constraints can also be applied by implementing state controllers

[75, 76] in some prescribed volume; a desired macroscopic state is obtained by con-

trolling the molecular behaviour. Again motivated by the requirements of the hybrid

method of later chapters, this methodology has been extended to the DSMC method.

State controllers for the density, velocity, and temperature have been added to the

dsmcFoamStrath code with the help of others from the research group of the author.

A simple feedback loop algorithm is used for all three controllers: in the volume of

interest the measured property is compared against its target value, with the difference

providing the basis for the controlling action. By calculating the difference between

the target density ρtar and the density measured ρmeas in the volume V , the density

controller is able to insert or delete particles accordingly, i.e.

∆N = (ρtar − ρmeas)
V

FNm
, (2.30)

where ∆N is the number of particles to be inserted/deleted (note that this is rounded

to the nearest integer). Inserted particles are given an arbitrary position within the

volume, with their thermal velocities sampled from a Maxwellian distribution at the

desired macroscopic conditions. If particles must be deleted from the volume, these are

selected at random. Velocity control is fairly straightforward; the difference between

the target velocity utar and the measured stream velocity umeas (i.e. c0,meas) is added

to the original velocity c of each particle in the volume, i.e.

cnew = c + (utar − umeas). (2.31)

The temperature controller is based on a Berendsen thermostat [77], which rescales the

thermal velocities of the particles in the volume according to a scaling factor, i.e.

cnew = (c− umeas)

[
1 +

δt

ς

(
Ttar

Tmeas
− 1

)]1/2

+ umeas, (2.32)

where Ttar is the target temperature, Tmeas is the temperature measured in the volume,
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and ς is a relaxation constant that determines the speed of the response.

A flexible time scheme is used, meaning that the frequencies of measurement and

control are independent of each other; each can be specified to suit the given state prop-

erty and the particular problem. It may be useful, for example, to measure a property

less frequently than it is controlled in order to reduce the statistical inaccuracies fed

back to the controller algorithm. Note that if a system requires simultaneous density,

velocity and temperature control, then these are implemented sequentially. Density

control is performed first, followed by velocity control. Temperature control is then

performed on the updated particle velocities from the velocity control.

Based on the measurement framework of the dsmcFoamStrath code, the state con-

trollers can be implemented using the MOZ or MOB techniques. The MOZ enables

control of the spatial average of a property in a user-defined zone of any shape/size.

With the MOB, spatial gradients can be imposed across a user-defined zone — the

volume is divided into a number of bins and the spatial average of each bin is then

controlled. Like the measurement bins, the control bins in this thesis are either 1D

planar bins or 2D bins (see Fig. 2.5). As the MOB is completely independent of the

computational mesh used by DSMC, the resolution of the imposed macroscopic fields

can be defined without affecting the DSMC computations.

2.3 Summary

There is a need for techniques that are able to accurately model the flow behaviour

of dilute gases in the transition regime. At present, direct (analytical or numerical)

solution of the Boltzmann equation is infeasible for complex 3D flow problems and/or

where the departure from equilibrium is significant. The numerical DSMC method is

currently the most effective (and most popular) simulation tool for non-equilibrium di-

lute gas flows — it is considerably more efficient than MD for these types of flows, and

the macroscopic flow properties can be easily obtained from the microscopic informa-

tion. The dsmcFoamStrath code that has been developed within the framework of the

OpenFOAM toolbox is a robust DSMC solver; as well as having the important features

of modern DSMC codes, this code now includes measurement and control capabilities

that will be useful in subsequent chapters of this thesis.



Chapter 3

Hybrid methods for dilute gases

The DSMC method is valid for dilute gases across all Knudsen regimes, from the

continuum to the free-molecular. However, despite it being significantly more efficient

than MD, the computational cost of tracking hundreds of thousands (or even millions) of

DSMC particles, computing collisions between these particles, and performing sampling

of the property fields is still enormous. This cost is raised further by the need to reduce

statistical scatter in the sampled fields, either by cumulative time averaging or ensemble

averaging. Even with advances in high performance computing and parallel processing,

realistic engineering problems can require months or even years of simulation time.

Fortunately, the great majority of conventional macroscale flow problems can be

described using a continuum-fluid model, and so can be resolved through the traditional

discretisation techniques of CFD. In some cases, however, there may be regions of

the flow where the molecular behaviour at the microscale impacts flow behaviour at

the macroscale. This can occur, for example, when there are large gradients in fluid

properties, or when surface effects become dominant. While traditional CFD cannot

capture the important microscale phenomena, it would be computationally prohibitive

to implement the DSMC method across the entire flowfield. This has led to proposals

for multiscale ‘hybrid’ methods. For dilute gases, hybrid methods can be split into two

categories: unified methods, and continuum-DSMC methods.

32
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3.1 Unified methods

The basis of a unified approach is that the flowfield is divided into equilibrium and

non-equilibrium regions, and the same type of description (kinetic or particle-based) is

used in both — the key advantage of this is that the transfer of information between

the regions is naturally accommodated. An example of an ‘all-kinetic’ unified solver

is that of Kolobov et al. [78, 79], in which a numerical Boltzmann solver is applied in

non-equilibrium regions and the equilibrium regions are treated using a kinetic CFD

scheme. Another example of an all-kinetic solver is the unified gas-kinetic scheme of

Xu and Huang [80], which is based on the use of the BGK model everywhere.

‘All-particle’ unified hybrids have also been developed, for example by Tiwari and

Klar [81]. In these schemes, a DSMC solver is implemented in the non-equilibrium

regions, while the particle approach that is applied in the equilibrium regions avoids

the DSMC collision computation, instead redistributing particle velocities under the

assumption of local equilibrium. Unfortunately, this type of equilibrium particle ap-

proach is often plagued by numerical diffusion errors due to unrealistic random particle

motion. Burt and Boyd [82, 83] were, however, able to reduce numerical diffusion errors

and statistical scatter with a low-diffusion equilibrium particle method: by ensuring

that the particles move along trajectories similar to the gas streamlines, the random

thermal motion was suppressed.

Although simplifications to the Boltzmann equation in the equilibrium regions mean

that all-kinetic hybrids are more efficient than applying a typical numerical Boltzmann

solver everywhere, using a typical Boltzmann solver in the non-equilibrium regions is

significantly more difficult (and possibly more expensive) than using a DSMC solver,

particularly for complex 3D problems. Also, despite all-particle hybrid methods be-

ing less computationally demanding than a full DSMC simulation, the use of a par-

ticle method in regions of equilibrium flow is much less efficient than a conventional

continuum-fluid solver. Generally, a traditional continuum-fluid solver is the most ef-

ficient modelling approach for regions of equilibrium flow and, at present, the DSMC

method is the most accessible method for modelling non-equilibrium flows. Continuum-

DSMC hybrid methods have therefore been of increased interest in recent years.
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3.2 Continuum-DSMC hybrid methods

As well as combining the efficiency of a continuum approach with the accuracy of the

DSMC method, continuum-DSMC methods have the additional advantage that both

types of solver are fairly mature and so have been heavily validated and optimised.

However, difficulties exist in coupling two solvers that are so different in nature. In

2004, Wijesinghe and Hadjiconstantinou [17] highlighted two significant challenges in

the development of this type of method.

The first challenge is the selection of the coupling technique. The most efficient

method will exploit spatial and temporal scale separation as much as possible; as men-

tioned in section 1.1, scale separation exists where the microscopic behaviour is only

loosely coupled with the behaviour on a larger scale. Note that the efficiency of a

hybrid method can be measured by the computational speed-up offered in compari-

son with a full particle simulation of the given flow problem. Hybrid methods in the

literature have varying abilities to exploit scale separation depending on: the type of

coupling framework being used; the spatial configuration of the solvers; the type of

information being exchanged; and the frequency of the coupling exchange. Selection of

the appropriate coupling technique is therefore a complex issue.

The second challenge cited in [17] lies in the application of boundary conditions

at the interface between the solvers. It is particularly problematic to translate the

macroscopic continuum variables into boundary conditions that are suitable for a par-

ticle simulation. Proposed approaches are often based on the use of a particle reservoir,

where the local continuum property fields are used to impose a Maxwellian or Chapman-

Enskog (CE) particle distribution. As macroscopic fields can be extracted fairly easily

from a DSMC solver by statistical averaging, imposing boundary conditions on the con-

tinuum domain is much less problematic. The level of statistical scatter in the particle

information must, however, be low to avoid any coupling instabilities.

To date, there is no one continuum-DSMC hybrid method that can be universally

applied — the methods proposed in the literature have often been designed to deal

with particular types of flow problem. Generally, two popular hybrid frameworks have

emerged for both continuum-MD (used for dense fluid flows) and continuum-DSMC

coupling: the domain decomposition (DD) technique, and the Heterogeneous Multiscale



CHAPTER 3 HYBRID METHODS FOR DILUTE GASES 35

Method (HMM). Derived from the HMM, the HMM with field-wise coupling (HMM-

FWC), and the Internal-flow Multiscale Method (IMM) have also been proposed in

recent years. In the following sub-sections, the capabilities and limitations of these

four frameworks will be discussed. Focusing mainly on continuum-DSMC methods,

the coupling strategies adopted within these frameworks will also be discussed, as well

as the techniques used for imposing boundary conditions on the particle sub-domains.

This review of existing hybrid methods will provide a backdrop for the HMM-FWC

continuum-DSMC method that will be presented in the following chapters of this thesis,

highlighting its benefits and capabilities as well as possible future developments.

3.2.1 Domain decomposition (DD)

The DD framework exploits spatial scale separation by dividing the flowfield into sep-

arate sub-domains: a full continuum-fluid model (closed by conventional constitutive

relations) is used to resolve the macroscale phenomena in a large ‘macro’ sub-domain,

while a particle/molecular solver resolves the microscale phenomena in a small ‘micro’

sub-domain. These micro and macro sub-domains are independent but communicate

through some coupling interface or overlap. Generally, the DD approach is very pop-

ular as it is able to take advantage of the fact that non-equilibrium flow most often

occurs close to bounding surfaces; a micro sub-domain can be placed in this region of

non-equilibrium while the remainder of the system forms the macro sub-domain.

Based on the type of information that is exchanged between the solvers, DD continuum-

DSMC techniques in the literature can be split into two categories: flux-based coupling

and state-based coupling. A schematic of both is shown in Fig. 3.1. Typical flux-based

coupling methods match fluxes of mass, momentum, and energy at the coupling in-

terface. The fluxes in the DSMC solver are computed from the particles crossing the

interface, while the fluxes in the continuum solver must be extrapolated from the macro-

scopic state properties and their gradients. These fluxes are then modified to ensure

conservation across the interface and are applied as boundary conditions, updating

the continuum solver and providing the basis for generating the chosen distribution

function in the DSMC solver [84].

In state-based coupling, an overlap is used to match the macroscopic state quan-
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tities, like velocity and temperature; each solver essentially provides the other with

a Dirichlet boundary condition. Averaged state quantities extracted from the DSMC

cells of the overlapping region are passed to the ‘continuum boundary cells’ to update

the continuum solution. Simultaneously, the average state quantities extracted from

the continuum cells of the overlapping region are passed to the ‘DSMC boundary cells’,

where they are used to generate the chosen particle distribution.

DSMC cell

(a) (b)

continuum boundary cell

continuum cell 

DSMC boundary cell

flux-based coupling interface state-based coupling overlap region

Figure 3.1: Schematic of typical (a) flux-based and (b) state-based coupling techniques for the
DD framework. Note that the continuum-fluid and DSMC cells are shown to be of the same
dimensions but this is not necessary.

Flux-based methods lend themselves to unsteady flows [17]. The fluxes at the inter-

face are typically exchanged every time step, with both the continuum-fluid solver and

the particle solver using the same time step [21]; this is often referred to as ‘strong’,

‘full’, or ‘tight’ temporal coupling, and is shown schematically in Fig. 3.2(a). However,

a major issue with flux-based coupling is its sensitivity to the high level of statistical

scatter associated with the measurement of fluxes in particle-based simulation meth-

ods. This was highlighted in 1992 by Wadsworth and Erwin [12] in the application of

their strongly coupled, flux-based NS-DSMC method to 2D unsteady slit flow — while

the ‘continuum-to-particle’ flux was time-explicit, cumulative averaging was needed to

reduce statistical scatter when calculating the ‘particle-to-continuum’ flux.

As there is considerably less scatter associated with the measurement of macroscopic

state properties, state-based coupling methods have become more popular than flux-

based methods in recent years. With varying approaches to temporal coupling, these

state-based methods have been applied to both steady and unsteady flows. However,

strong coupling is typically used to tackle unsteady flow problems. For example, a

strongly coupled state-based Euler-DSMC method was developed by Roveda et al. in

1998 for moving 1D shock waves [13] and then extended in 2000 to deal with 2D
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(c) Schwarz coupling

t macro

t micro

Nmacro

(a) strong coupling

t macro
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exchanges

(b) loose coupling
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t micro

Δt

δt

δt

Figure 3.2: Schematic of various temporal coupling schemes used in DD hybrid methods: (a)
strong coupling, (b) loose coupling, and (c) Schwarz (alternating) coupling.

unsteady slit flow [15]. Although statistical fluctuations were lessened compared with

flux-based methods, the use of strong coupling meant that the averaging of the state

properties in the DSMC cells was limited to the number of particles per cell. A novel

approach was therefore adopted to reduce scatter in these cells: particles were effectively

cloned in ‘ghost cells’ at no significant additional cost.

In 2003, Sun et al. [18] also proposed a state-based hybrid method, strongly coupling

an unsteady NS solver with an information preservation (DSMC-IP) solver to simulate

subsonic microscale flows. Developed by Fan and Shen [85], the DSMC-IP method

is a derivation of Bird’s DSMC method that is designed to reduce statistical scatter

by tracking additional macroscopic information that is assigned to each particle. With

reduced scatter, strong coupling could be used without instabilities. The hybrid method

was demonstrated successfully for a range of microscale problems, for example, Couette

flow and external flow over micro-airfoils. However, the level of non-equilibrium in these

problems was fairly low. When Wang and Boyd [86] applied this scheme to hypersonic
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flows (where the effects of non-equilibrium are significant), the accuracy was poor: in

the simulation of 1D shock waves, the DSMC-IP solver produced an incorrect shock

jump and a shock wave that was too thin. A new energy flux model helped to reduce

these discrepancies somewhat, but at an increased computational cost [87].

Although a strong coupling means that the time evolution of the hybrid solution

will be accurate, this type of temporal scheme is usually inefficient — advancing the

continuum solver with the ‘micro’ time step of the particle solver is often unnecessary

and wasteful. A straight-forward improvement is a ‘loosely’ coupled approach (referred

to as the ‘Continuous micro solution – Intermittent coupling’ or CI scheme in [88]),

where each solver adopts its own time step, and information is exchanged less frequently.

This approach is shown schematically in Fig. 3.2(b). Using a much larger ‘macro’ time

step ∆t to advance the continuum solver and reducing the number of coupling exchanges

can produce some computational savings, and enable us to reduce statistical scatter in

the DSMC measurements with cumulative time averaging. If the macro time step is

small enough, loose coupling is able to capture the evolution of the flowfield in time.

In 2009, Abbate et al. [21] proposed a state-based method, loosely coupling an

unsteady Navier-Stokes (NS) solver to the DSMC method for unsteady flows. Both

solvers were run for one ‘coupling time step’ that was greater than the macro NS time

step and, in turn, much greater than the micro DSMC time step. Validation cases

included a 1D shock tube flow and a 2D pressure-driven slit flow; the property profiles

produced were shown to match those from full DSMC simulations at various time

intervals, with a computational speed-up of approximately 10× for the slit flow case.

More recently, in 2014 a loose state-based NS-DSMC method was developed within

the OpenFOAM numerical suite by Pantazis and Rusche [24], coupling the density-

based rhoPimpleFoam solver to the standard dsmcFoam solver. The creation of a

hybrid solver within OpenFOAM provides opportunities for 3D unstructured meshes

and parallelisation, which resulted in a highly flexible scheme that could deal with ar-

bitrary geometries. Two unsteady problems were considered for validation: shock tube

flow and flow through an orifice. The hybrid solutions were shown to match well with

the equivalent full DSMC solutions at various points in time, with the computational

speed-up depending on the parallel decomposition of the domain.
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Garcia et al. [14] also used a loose temporal coupling between the continuum-fluid

and DSMC solvers in the adaptive mesh and algorithm refinement (AMAR) method

that was presented in 1999. AMAR is fundamentally different from traditional DD

schemes (in which there is a coupling interface between two separate continuum and

DSMC sub-domains) — the DSMC solver is instead introduced at the finest level of an

adaptive mesh refinement (AMR) hierarchy.

The AMAR method can be considered in two parts. In the first, the Euler or NS

equations are applied to the entire flowfield and the AMR procedure provides local grid

refinement where needed. Starting with a coarse uniform mesh, a refinement criterion

is used to determine if each cell should be divided into smaller sub-cells; this continues

until the cells reach some lower size limit. In the AMR procedure, there is a coupling

between the fine and coarse levels of the mesh: the quantities in the higher level grid

cells are replaced by quantities that are obtained by averaging over the equivalent cells

in the lower level grid. A process called ‘refluxing’ is then applied at the boundary of

the fine grid to correct for the difference between the coarse and fine grid fluxes.

The second part of the AMAR method is an algorithm refinement. The DSMC

solver now overlays the lowest level continuum cells of the AMR scheme, providing

a local correction to the continuum solver. The coupling between the two solvers is

similar to AMR coupling and can be considered as a combination of both state- and

flux-based coupling. Each DSMC region is surrounded by ‘buffer’ or ‘reservoir’ cells

(see Fig. 3.3), where a Maxwellian or CE velocity distribution is used to impose the

properties of the local continuum solution. It is worth noting that, with all particles in

the buffer cells being deleted at the end of each DSMC time step, this distribution must

be generated at the beginning of each DSMC time step — this is a computationally

costly procedure. After a number of DSMC time steps equivalent to the continuum

time step, the field properties in the continuum cells are replaced by values obtained

by averaging over the particles in the collocated DSMC region. The fluxes crossing the

DSMC interface (averaged over the DSMC time steps to reduce scatter) are then used

to correct the continuum cells adjacent to the DSMC region. To date, the AMAR has

been demonstrated for 1D and 2D gas flows including the Rayleigh problem, flow past

a sphere, and a moving shock problem [14, 89]. Note that the differences between this
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method and the HMM-FWC method will be discussed in section 3.2.3.

Figure 3.3: Schematic taken from [14] showing a DSMC region and its surrounding buffer cells
embedded within a continuum mesh. Continuum cells (dashed lines); DSMC collision cells (dotted
lines); DSMC/continuum interface (solid line); buffer cell sheath (dot-dashed line).

When coupling a costly DSMC solver with a much less expensive continuum-fluid

solver, the reduction in macro time steps that is provided by loose coupling (compared

with strong coupling) does not produce significant savings. The expense of continuum-

particle methods comes mainly from the number of micro time steps performed to

advance the particle solver, and loose coupling offers no reduction in this number.

This means that strong and loose temporal coupling schemes are applicable only for

short time scales; simulating the macroscopic time scales that are of interest in real

engineering problems (for unsteady flows or the evolution to steady-state) is infeasible.

Fortunately, for steady flows, it is possible to iterate towards steady-state instead.

A number of state-based DD hybrid methods have used the iterative Schwarz

technique, which was originally adopted by Hadjiconstantinou and Patera [90] for a

continuum-MD coupling. Starting from an initial guess, each Schwarz iteration lets

each sub-domain reach its ‘local’ steady-state before transferring the state quantities in

the overlap. Alternating between these local steady-state solutions, successive Schwarz

iterations (typically O(20) [76]) are continued until the global solution converges to

steady-state, i.e. the solutions from both solvers match in the overlap region. Note

that in Schwarz-based continuum-DSMC methods, the continuum-fluid solver typically

adopts a steady flow description and an implicit solution method; Nmacro is the number

of implicit steps required for the continuum sub-domain to reach its local converged
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condition. Schwarz coupling, shown schematically in Fig. 3.2(c), is able to provide

computational savings as the particle sub-domain does not require explicit integration

to the global steady-state — it is generally able to reach its local steady-state in fewer

micro time steps. Aktas and Aluru [16] were the first to apply a Schwarz temporal

coupling scheme for rarefied gas flows. In 2002, they modelled the steady flow in mi-

crofilters using a state-based Stokes-DSMC scheme, reporting computational speed-ups

ranging from 2× to 100× depending on the microfilter system.

In 2006, Wu et al. [19] presented a Schwarz-based NS-DSMC method that was able

to take advantage of parallel computing. The method was applied to two steady-state

hypersonic cases: flow over a 2D wedge, and nitrogen gas flow expanding from a 3D

nozzle into a near-vacuum environment. With an unstructured mesh, the interface

between the solvers was adjusted continuously. Although validation showed that the

results from the wedge flow case matched well to the equivalent full DSMC solution, the

hybrid simulation was found to require more computational time. Later work by Lian

et al. [91] improved the efficiency of this method by modifying the criterion used to

determine the location of the interface, enabling the method to achieve a computational

speed-up of approximately 2× compared with the full DSMC simulation.

Similar to Wu’s method, Schwartzentruber and Boyd [20, 92] proposed the Modular

Particle-Continuum (MPC) method in 2007. Using a Schwarz approach, existing and

practically unmodified DSMC and NS source codes are merged into a single modular

code. While Wu et al. continuously exchange information between the solvers (even

if the interface is not yet properly positioned), the MPC method does not update the

NS boundary conditions until the interface is in the correct location. Various steady-

state hypersonic flows have been simulated, including planar shock waves [20], 2D blunt

body flows [93, 94], axi-symmetric blunt body flows [95], and viscous interaction flows

[96]. Deschenes et al. have also implemented improvements in recent years, including

parallelization of the code [97] and capabilities for simulating rotational and vibrational

non-equilibrium [98, 99]. The computational speed-up offered by the method (compared

with full DSMC simulations) has ranged from approximately 1.5× for strongly non-

equilibrium flows, to around 30× for near-equilibrium flows.

Since 2007, a number of other studies have adopted similar state-based Schwarz-
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type coupling for simulating steady flows in a range of applications. For example: in

2009, John and Damodaran [22] modelled the rarefied flow that occurs in the head-

disk interface gap in a modern hard disk drive using a NS-DSMC method; also in

2009, Xu and Wu [23] used a zonal Euler-DSMC method to simulate unsteady high-

temperature flow over a laser propelled ‘lightcraft’ at high altitude; in 2014, Tang

et al. [25] investigated the nozzle and plume flowfield of small space thrusters, using

axisymmetric NS-DSMC method to simulate steady nitrogen flow through a conical

de-Laval nozzle as a representative test case. These studies have generally found that

this type of coupling is able to match the steady-state solutions of equivalent full DSMC

simulations, while obtaining some computational speed-up.

In summary, most DD continuum-DSMC methods transfer state-based information

between the solvers in order to avoid the statistical scatter associated with flux-based

exchanges. This state-based coupling can be strong or loose for unsteady flows, while

steady flows typically use the iterative Schwarz technique. Note that both state- and

flux-based continuum-MD methods have also been developed for the simulation of dense

fluids [90, 100–102]. All of the DD continuum-DSMC methods that have been discussed

here have imposed boundary conditions on the DSMC sub-domains through a velocity

distribution that is either of Maxwellian form [12, 13, 15, 16, 19, 23, 24], or Chapman-

Enskog (CE) form [14, 17, 18, 20–22, 25]; the generation of a Maxwellian distribution

is common in standard DSMC codes, and the sampling of particle velocities from a

CE distribution can be achieved using the algorithm of Garcia and Alder [103]. A

study by Hash and Hassan [104] concluded that a Maxwellian distribution is adequate

when the continuum sub-domain can be represented by the Euler equations, while a CE

distribution will produce a more accurate solution when the NS equations are required.

A major challenge in the implementation of DD continuum-particle methods lies

in identifying the exact regions of space and time that require particle simulation. At

present, there is no single criterion used to detect the onset of non-equilibrium or con-

tinuum breakdown in dilute gases. A range of different ‘breakdown parameters’ have

been adopted in the DD methods discussed above, including the global Knudsen num-

ber, the gradient-length local Knudsen number [105], Tsien’s parameter [106], Bird’s

parameter [62], Tiwari’s criterion [107], the parameter B [103], the criterion proposed
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by Lockerby et al. [108], and others [109, 110]. Although the selection of a breakdown

parameter is not a focus of this thesis, it may be a consideration for future work.

Generally speaking, DD hybrid methods are suitable and efficient when the contin-

uum model is accurate across the majority of the flowfield and the molecular/particle

description is required only in local regions (around singularities, or close to surfaces);

these types of fluid flow problems have been labelled as ‘Type A’ [26]. Despite their

popularity, DD methods are not useful for simulating ‘Type B’ problems, which require

the micro solver to complement the continuum solver everywhere. This is the case when

the traditional linear constitutive relations fail in the bulk of a system, for example due

to non-equilibrium effects in the wake of a re-entry vehicle, or if the transport prop-

erties are unknown in an unusual gas mixture. Although less common than the DD

framework, the Heterogeneous Multiscale Method (HMM) is able to deal with Type A

and Type B problems, or even a mixture of the two.

3.2.2 The Heterogeneous Multiscale Method (HMM)

The Heterogeneous Multiscale Method (HMM) was first proposed in 2003 by E and En-

gquist [26]. The framework of the method is such that micro-resolution can be provided

both close to surfaces and in the bulk of the flowfield. A continuum-fluid description

(i.e. the governing conservation equations) is applied across the entire system, while the

molecular/particle solver is applied in spatially distributed micro elements. As illus-

trated in Fig. 3.4, a ‘point-wise coupling’ approach is traditionally adopted: the micro

elements are located at the bulk and boundary-wall nodes of the macro grid, supplying

missing fluid-constitutive and/or boundary information directly to these points. At the

same time as supplying this data, the micro elements must be constrained using local

continuum properties obtained at the nodal points, for example the local strain-rate.

Point-wise coupling means that the HMM is effective when the spatial scales are

highly separated, i.e. the variation of the macroscopic properties over the physical

extent of a micro element is small. In such conditions, the HMM can provide major

computational savings over a full particle simulation. However, this restriction to highly

scale-separated flow systems can also be considered a disadvantage: the continuum grid

spacing must be greater than the extent of the micro elements in order to avoid overlaps,
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placing a limit on the minimum scale of the macroscopic variation that can be simulated

[27]. The traditional HMM is therefore inefficient for fluid flow problems that possess

mixed degrees of spatial scale separation.

bulk 

micro 

element

macro

grid

near-wall

micro

element

bounding walls

Figure 3.4: Schematic of the HMM framework with point wise coupling. Particle simulations
are performed in micro elements at each node of the macro grid used by the continuum solver.

A second disadvantage of point-wise coupling is that the micro elements must be

collocated with the nodes of the macro mesh. This means that, if the number of macro

nodes is to be increased or reduced, then the number of micro simulations must also

be increased or reduced accordingly. Linking the micro and macro resolution in this

way can be restrictive as the micro and macro variations may not necessarily require

the same resolution. The micro elements of the HMM typically provide information

relating to the stress, which varies more slowly than macroscopic properties like velocity

and density — as an example, consider the case of classical Poiseuille flow, in which

the streamwise velocity profile is parabolic while the stress profile is linear; although

these variations will not hold exactly at the microscale, it can be assumed that the

same tendency will exist [27]. Generally, the resolution required for resolving fields like

the velocity is higher than the resolution required to provide information on quantities

like the stress. These disadvantages of point-wise coupling have been addressed by the

‘field-wise coupling’ approach of Borg et al. [27], which will be discussed in section 3.2.3.

The three temporal coupling schemes used by DD methods (strong, loose, and

Schwarz coupling) can also be implemented for HMM hybrid methods. However, a

temporal scheme that is often associated with the HMM is depicted in Fig. 3.5. Referred
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to as ‘Heterogeneous micro solution – Intermittent coupling’ or HI in [88], this scheme

is very effective for exploiting high degrees of time scale separation, i.e. for unsteady

flows where the macroscopic variation in time is slow. The continuum solver (typically

an unsteady description with explicit integration) takes one large macro time step ∆t

while the particle solver runs for a number of smaller micro time steps δt until the micro

elements relax to a quasi steady-state. For highly time scale separated problems, this

relaxation period tmicro is typically much smaller than the required macro time step,

and so wasteful segments of the micro time scale can be skipped before information

is exchanged. This means that, compared with a full particle simulation, significant

computational savings can be obtained. Unfortunately, HI is not accurate for problems

that have low or mixed time scale separation, i.e. where the macro solution varies more

quickly [88].

HMM coupling

t macro

t micro

δt

Δt

tmicro

Figure 3.5: Schematic of the temporal coupling scheme (HI) often used in HMM hybrid methods.

The seamless HMM (SHMM) strategy was proposed in 2009 by E et al. [111] in or-

der to overcome a potential disadvantage of the HMM algorithm: it was suggested that

the HMM might be subject to a significant computational overhead if each micro ele-

ment required re-initialisation after each coupling exchange. Although re-initialisation

is arguably not required at all, the temporal scheme of the SHMM (known as the ‘Con-

tinuous micro solution – Asynchronous coupling’ or CA scheme in [88]) is an attractive

alternative to HI for low and mixed levels of time scale separation. Despite exchanging

data after every time step, the SHMM scheme is able to exploit time scale separation

by using a different time step for each solver; each solver has its own ‘clock’. The

error from this asynchronous coupling is acceptable for scale-separated conditions as

the micro elements remain quasi-equilibrated to the macroscopic evolution [88].

As well as assessing existing temporal schemes, Lockerby et al. [88] also presented
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a new, highly efficient and time-accurate scheme that is essentially a generalisation

of existing approaches. Known as the ‘Continuous micro solution – Asynchronous

Intermittent coupling’ or CAI, this scheme combines the best features of loose (CI),

HMM (HI), and SHMM (CA) coupling. It enables the time stepping to adapt depending

on the flow behaviour: the number of micro time steps performed between exchanges

is continuously adjusted. This temporal scheme could be combined with any hybrid

framework to simulate unsteady flows with varying degrees of time scale separation.

To date, the traditional point-wise coupling HMM framework has been applied only

for liquid flows with MD as the molecular solver. The methods developed in the liter-

ature, most notably by Ren and E [112], Yasuda and Yamamoto [113], and Asproulis

et al. [114], focus mainly on the transfer of momentum: the micro elements are con-

strained using the local continuum strain-rate, and the resulting stress and/or velocity

slip at the boundary-walls is passed back to the continuum nodes. These schemes differ

mainly in the way that the strain-rate constraint is applied to the MD micro elements.

In 2014, Yasuda and Yamamoto [115] extended their multiscale approach to consider

the transfer of momentum and heat in the lubrication of a polymeric liquid with viscous

heating.

In general, there has been very little progress in the development of heterogeneous

hybrid methods for dilute gases, i.e. those that couple a continuum description to

the DSMC method. In 2010, Kessler et al. [29] proposed a HMM-type framework

dubbed the Coupled Multiscale Multiphysics Method (CM3), in which an unsteady

continuum description was closed using stress and heat flux fields that were obtained

from a DSMC solver. Both the continuum description and the DSMC solver were,

however, implemented across the entire flowfield, precluding any computational savings

from spatial scale separation. With a temporal scheme similar to that of loose coupling,

the CM3 could be applied for unsteady flows (and would be accurate for mixed time

scale separation). However, with no exploitation of scale separation, computational

savings were obtained only by performing a smaller number of averaging ensembles

in the DSMC stage of the CM3 than were performed in the equivalent full DSMC

simulation. Savings were obtained when simulating the transient start-up behaviour

of a 1D Rayleigh flow — the speed-up varied from 1× to 10× depending on Kn.
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The results from the method (both at several time instants, and the final steady-state

solution) were shown to match well to the full DSMC simulation of the problem. High

accuracy was also obtained for steady-state Fourier flow; unfortunately the method was

found to be more expensive than the equivalent full DSMC simulation for this case.

The development of a heterogeneous continuum-DSMC method that can exploit scale

separation (specifically spatial scale separation) is therefore the aim of this thesis.

3.2.3 The HMM with field-wise coupling (HMM-FWC)

To overcome the disadvantages of point-wise coupling, Borg et al. [27] presented a

modification to the traditional HMM framework in 2013, focussing on a continuum-MD

coupling. Termed the ‘HMM with field-wise coupling’ or HMM-FWC, the framework

places a continuum-fluid description across the entire domain, but each micro element

now represents fields that correlate directly with a continuum sub-region, the spatial

dimensions of which are identical to those of the micro element itself. The micro

resolution is no longer restricted by the nodes of the macro grid: the position and size

of the micro elements can be optimised independently of this grid to suit the given

problem. A schematic of this HMM-FWC framework applied to a simple 1D Poiseuille

flow problem is shown in Fig. 3.6(d); a comparison is made with the DD and HMM

frameworks applied to the same problem. A key advantage of the HMM-FWC is its

ability to simulate flow problems with mixed degrees of spatial scale separation, i.e.

macroscopic properties may vary substantially across the extent of a micro element.

As well as modifying the basic framework of the HMM, the HMM-FWC also takes

a somewhat different coupling approach. As discussed previously, the traditional HMM

closes the governing conservation equations by applying the stresses (and sometimes

heat fluxes) extracted from a micro element directly to each grid node. In the HMM-

FWC, the coupling is performed via fields rather than points. The method presented

in [27] assumes isothermal conditions, however, the field extracted from the micro ele-

ments is not the explicit stress — it is a constitutive stress correction, i.e. a correction

to the linear NSF constitutive relation. These fields are then interpolated between the

micro elements to provide a global correction field across the entire flowfield (unlike DD

methods which provide a local correction only). Along with updated velocity bound-
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ary conditions obtained from the near-wall micro elements, this global stress correction

is then supplied to a ‘modified’ momentum conservation equation, i.e. the governing

momentum conservation equation closed by the corrected constitutive relation. Essen-

tially, the HMM-FWC takes advantage of the fact that quantities like the stress (and

hence their corrections) often vary slowly in space, meaning that computational savings

can be obtained by interpolating these fields between micro elements. Note that the

benefit of coupling via a stress correction rather than an explicit stress field is that a

correction field provides an indication of the system’s departure from equilibrium.

Figure 3.6: Schematic taken from [27] showing (a) 1D Poiseuille flow problem (cross-channel),
and (b) the DD; (c) HMM with point-wise coupling; and (d) HMM with field-wise coupling (HMM-
FWC) frameworks applied to this problem. The grey mesh indicates the macro domain, while
black filled boxes indicate micro sub-domains. The A-A’ is the line of symmetry.

The constraint of the micro elements is also revised. The techniques proposed in the

HMM literature assume that there is no macroscopic variation across the extent of a

micro element. The HMM-FWC, however, requires the imposition of a field in order to

provide a direct physical correlation between the micro element and the macro domain.

The local continuum solution is essentially projected onto all micro elements, i.e. the

projected fields act as target conditions for each particle simulation to reproduce. The

constraint procedure proposed in [27] was developed for isothermal flows with MD as the

micro solver — the macroscopic velocity field (obtained from the modified momentum
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conservation equation) is therefore projected onto each MD element. As an example,

the constraint of a bulk micro element for a 1D Poiseuille flow problem is illustrated

in Fig. 3.7. Each element is split into a ‘core’ region and a ‘constrained’ region. No

constraints are applied in the core region; instead, the velocity fields imposed across the

constrained regions should produce the projected velocity field u(y) (see red dashed line

in Fig. 3.7(b)) across the core region. As the boundary conditions of the MD elements

are periodic, the velocity field imposed in the constrained regions u∗i (see solid blue lines

in Fig. 3.7(b)) is a modification of this projection that is able to satisfy periodicity. This

modified velocity field u∗i is generated by applying an artificial body force f∗x,i in the

constrained regions, as shown in Fig. 3.7(c); this force distribution is calculated by

substituting the target velocity field into the modified momentum equation. The data

that is used to calculate the stress correction field is then extracted from the physically

accurate core region only.

Figure 3.7: Illustration taken from [27] showing (a) a bulk micro element, (b) the projected and
modified velocity fields across the periodic element, and (c) the consistent force constraint derived
from the target velocity field. Dotted lines indicate unmodified projected fields, while solid lines
indicate imposed fields that are modified to satisfy periodicity.

Steady, incompressible, and isothermal 1D Poiseuille flow was used to validate the

HMM-FWC in [27]; an alternating Schwarz-type scheme was used to iterate towards the

steady-state solutions. Two cases were considered: one using a Newtonian fluid, and the

other a non-Newtonian fluid. For both cases, convergence occurred quickly (inside only

3 to 4 iterations) and the results were in close agreement with the corresponding full MD

simulation results. In the Newtonian fluid case, the stress correction field constructed
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from the micro elements was shown to correct for inaccuracy in the assumed viscosity

model. Similarly, in the non-Newtonian fluid case, the stress correction was able to

provide the unknown fluid-constitutive behaviour. A computational speed-up of 74×

was achieved for the Newtonian fluid case (which required only one near-wall micro

element for this axisymmetric problem) while a speed-up of 66× was obtained for the

non-Newtonian case (which required one near-wall element and one bulk element).

At first glance, the HMM-FWC approach might seem similar to the AMAR method.

There are, however, some important differences. First, AMAR can be considered a DD

approach as it provides only a local ‘correction’ to the overall solution; on the other

hand, the HMM-FWC provides a global correction that covers the entire flowfield.

Secondly, the procedure for constraint of the particle sub-domains is different. The

AMAR method (which was implemented for dilute gases) imposes the local continuum

properties in buffer cells that surround each DSMC sub-domain by generating a particle

distribution based on these properties; this approach is, however, expensive as all of

the particles in the buffer cells are inserted and deleted at every DSMC time step.

Although the HMM-FWC has been implemented with MD micro elements, the general

approach to constraint is based on enabling the core region of the element to relax

gradually in space and time — it can therefore be considered a more natural and less

expensive approach. The AMAR coupling also includes flux-based exchanges, which

are not performed in the HMM-FWC. Finally, the AMAR uses a loose coupling to deal

with unsteady flows, while the HMM-FWC has been applied only to steady flows using

a Schwarz-type coupling.

As the HMM-FWC can deal with various degrees of spatial scale separation, it

can be considered the most general hybrid framework. For this reason, the continuum-

DSMC method that will be presented in the following chapter of this thesis uses a HMM-

FWC framework. The constraint of the micro elements will be modified to suit the use of

the DSMC method, and the coupling between the solvers will be extended to deal with

mass, momentum, and heat transport such that compressible and non-isothermal flows

can be simulated. Only steady flows will be considered and so an iterative Schwarz-

type coupling scheme will be sufficient; future development could involve extension to

time-scale separated problems by using the HI, CA, or CAI schemes.
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3.2.4 The Internal-flow Multiscale Method (IMM)

The final framework that is discussed in this chapter can be considered a specific class

of the HMM-FWC. Presented by Borg et al. [28] in 2013 for a continuum-MD coupling,

the Internal-flow Multiscale Method (IMM) is tailored to simulate flows through long

micro/nanochannels. Such channels are common in emerging miniaturised technologies,

and are generally of high aspect-ratio, i.e. the length in the streamwise direction is likely

to be several orders of magnitude larger than the dimensions of the cross-section. Fluid

flows in this type of geometry cannot be classed as Type A or Type B, and so have

been termed ‘Type C’ problems [116]. As the majority (if not all) of the flow can be

considered near-wall, a DD approach would require the micro solver to occupy a large

portion of the computational domain, as indicated in Fig. 3.8(b); this would result in

few savings and would severely restrict the length of channel that could be studied. The

traditional point-wise coupling HMM would also be inefficient for such highly-confined

channel flows as the micro elements would overlap; see Fig. 3.8(c).

The IMM can instead obtain computational savings by exploiting the uni-directional

length scale separation that exists in these high-aspect-ratio flows: the molecular pro-

cesses occurring transverse to the flow are only loosely coupled to the gradual variation

of the macroscopic properties in the streamwise direction. Like the other heterogeneous

frameworks, the IMM applies a continuum description over the entire channel. The

molecular/particle solver is then implemented in micro elements that are distributed

along the channel length, covering the entire cross-section as shown in Fig. 3.8(d).

The coupling exchange of the IMM differs from that of the HMM and the HMM-

FWC as the boundary and constitutive information is supplied to the continuum de-

scription indirectly. The complexities of imposing strain-rates/velocity fields on the

micro elements and extracting the resulting stresses are avoided. Assuming an isother-

mal, incompressible, and steady-state flow, the IMM coupling is based on imposing

pressure gradients (or pressure drops) across the micro elements, and using the result-

ing mass flux to correct the continuum description. As the boundaries of the micro

element are periodic, these pressure drops are imposed by simply applying a body force

to the molecules. Using a Schwarz-type iterative approach, the iterations continue until

the mass and momentum flux are both conserved across the system.
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Figure 3.8: Schematic taken from [30] of different types of hybrid frameworks applied to (a) a
generic internal-flow problem: (b) the DD, (c) the HMM, and (d) the IMM.

The IMM was originally demonstrated on force-driven flow through an axially-

periodic converging/diverging nanochannel. Later in 2013, Borg et al. [117] also con-

sidered its application to network-type systems that can be decomposed into high-

aspect-ratio channel components and junction components — computational savings

can then be obtained by modelling the high-aspect-ratio channels via a series of smaller

micro elements, while the junction components (for example a reservoir or a bend) are

simulated entirely by the micro solver. Attention was restricted to serial networks (i.e.

where each component has only one inlet and one outlet) in the form of pressure-driven

flow through a nanochannel that connects two reservoirs. For both of these applica-

tions, the convergence of the method was found to be very quick, occurring inside 2 to

4 iterations. The mass flow rate/mass flux results showed good quantitive agreement

with equivalent full MD simulations, with only small errors in the range of 1 − 5%

depending on the case and the number of micro elements used. There were, however,

discrepancies between the streamwise pressure and density variations predicted by the

IMM and those predicted by the full MD simulations. The authors attribute this error
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to the effects of compressibility — even at low Mach number in isothermal conditions,

compressibility can have significant effects in high-aspect-ratio geometries due the com-

bination of high viscous forces and the long channel lengths. Computational speed-ups

ranging from approximately 3× to 12× were achieved, with larger speed-ups likely for

longer (and more realistic) channels.

In 2014, Stephenson et al. [118] extended the IMM technique to general micro/nano

network geometries of arbitrary size and complexity, where components can have any

number of inlets and outlets. The MD micro elements and junction components were

required to satisfy the pressure variation and mass conservation, both locally and glob-

ally. A density correction was also implemented to account for compressibility effects:

the fluid density in each component was adjusted according to an equation of state

(based on the applied boundary pressures). The flow of liquid argon through a bifur-

cating channel geometry was considered for (a) a bifurcating case, with one branch

splitting into two; and (b) a mixing case, with two branches joining into one. Conver-

gence of the IMM occurred inside 3 iterations for both cases and, comparing against

full MD simulations, the mean errors in the mass flow rate and pressure variations were

below 4%. Speed-ups of approximately 2× were obtained.

Unlike the HMM-FWC of [27], there have been a number of extensions to the

original IMM of [28, 117]. In 2013, Patronis et al. [30] considered the application of the

IMM to rarefied dilute gases, and also extended the coupling technique to deal with

compressible flows. Replacing MD with the DSMC method in the micro elements did

not require significant modifications to the IMM algorithm — the largest modifications

came instead from the compressibility requirements. The incompressible IMM of [28,

117] depended on calculating the pressure drop that should be applied across each micro

element in order to represent the pressure difference across the full system (while also

ensuring that mass conservation was satisfied). In addition to obtaining this pressure

drop, the compressible IMM must also obtain the fluid density that should be used to

initialise each micro element. The low-speed flow of a rarefied gas through three high-

aspect-ratio geometries was considered for validation: streamwise-periodic converging-

diverging microchannel flow; non-periodic pressure-driven microchannel flow around a

corner; and eccentric cylindrical micro Couette flow. For all three, the compressible
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IMM was able to produce flow predictions that matched extremely well to the equivalent

full DSMC simulations while providing speed-ups of 6×, 50×, and 300×, respectively.

A further extension of the IMM to non-isothermal flows was presented by Patro-

nis and Lockerby [31] in 2014. The method was applied to investigate thermal creep/

transpiration, and its use in high-aspect-ratio Knudsen-compressor channels. Thermal

creep is a rarefied gas effect, where the presence of a streamwise temperature gradient

results in the development of a slip flow at a surface; this flow moves, counter-intuitively,

from low temperatures to higher temperatures. Solid-state Knudsen-compressors op-

erate by exploiting this behaviour. For this type of application, the compressible IMM

must predict the effects of the applied streamwise temperature variation on both the

mass flow rate and the streamwise pressure and density variations. The reported modifi-

cation to the IMM coupling strategy was not substantial: as well as applying the correct

pressure drop and density to each micro element, the temperature and the temperature

gradient dictated by the wall boundary conditions for that element were also imposed.

As examples, temperature profiles were applied to straight, converging-diverging, and

diverging-converging channel geometries. For all cases, the IMM was able to provide

flow predictions that matched very well to the equivalent full DSMC simulations, while

achieving major computational savings. Note that, despite being effective for the IMM

applied to these thermal transpiration flows, this coupling strategy is not general; the

extension of the HMM-FWC to non-isothermal flows will require coupling via the con-

servation of energy. It should also be noted that the micro solver used in [31] was not

the traditional DSMC method — a low-variance deviational simulation Monte Carlo

(LVDSMC) method was applied in the micro elements instead.

The use of LVDSMC comes from the desire to avoid the statistical scatter that

can be problematic in DSMC, particularly for low-speed flows. The LVDSMC achieves

variance reduction by splitting the velocity distribution into an equilibrium distribution

that is represented analytically, and a deviational distribution that is represented by

particle simulation. Using the same number of particles that would have been used to

model the full velocity distribution, the variance in the deviational distribution is hugely

reduced [31]. In the non-isothermal IMM algorithm, the imposition of the boundary

conditions on each micro element was tailored to the capabilities of the LVDSMC
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method: the streamwise gradients in pressure and temperature were both represented

(independently of each other) by an effective body force on the particles. This meant

that the micro elements remained periodic, avoiding the complexity and computational

expense of non-periodic boundaries. Although the LVDSMC method is suitable for this

particular application, it is accurate only if the departure from equilibrium is small.

The LVDSMC source code [119] is also subject to geometric limitations at present.

The latest extension to the IMM is the ‘unsteady-IMM’ that was presented by

Borg et al. [32] in 2015. Based on a continuum-MD coupling, this method adopts the

CAI temporal scheme proposed in [88]. By exploiting varying levels of both length

and time scale separation, the unsteady-IMM was able to achieve orders of magni-

tude computational savings (compared with full MD simulations) when applied to a

converging-diverging nanochannel geometry, and the level of accuracy was excellent in

most cases. The degree of time scale separation in a given case was found to determine

not only the computational savings achieved, but also the sensitivity of the method’s

accuracy to the macro-micro time stepping.

3.3 Summary

This review has highlighted that a large majority of the continuum-particle methods

in the literature utilise a DD framework, with the exchange of information between the

solvers being typically state-based to avoid the statistical scatter that is inherent in flux-

based exchanges. Despite their popularity, DD hybrid methods are effective only for

Type A problems, where the particle description is required only in localised regions

(e.g. close to bounding walls). The framework of the HMM provides an interesting

alternative to DD as it is suitable for Type B problems, in which the micro solver

is required to complement the continuum solver everywhere due to the failure of the

traditional linear constitutive relations. However, the point-wise coupling approach

of the HMM means that the micro resolution (i.e. the position and size of the micro

elements) is restricted by the need for collocation with the nodes of the macro grid; it

also restricts the use of the HMM to flows where the spatial scales are highly separated.

The development of the field-wise coupling (HMM-FWC) approach was the result

of an effort to overcome these restrictions. In this framework, the micro resolution is
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not restricted by the nodes of the macro grid — the micro elements can be any size

and can be placed at any location in the flowfield. A constitutive correction field is

obtained from all micro elements, and is then interpolated between adjacent elements

to provide a global correction. Unlike the traditional HMM, the HMM-FWC is then

able to simulate flows with mixed degrees of spatial scale separation; it can therefore

be considered a more general heterogeneous approach. The IMM can be viewed as a

type of HMM-FWC with a framework and coupling strategy specifically tailored to

Type C flows through high-aspect-ratio channels (where large length scale separation

exists in the streamwise direction). Both the HMM-FWC and the IMM were originally

presented with a continuum-MD coupling for the simulation of liquids, and assumed

steady, incompressible, and isothermal flow. To date, the IMM has seen more devel-

opment than the HMM-FWC, with extensions to rarefied gases (using DSMC as the

micro solver), and to compressible, non-isothermal, and unsteady flows.

In this thesis we will develop a continuum-DSMC method within a HMM-FWC

framework, and will extend the coupling strategy to deal with compressible and non-

isothermal flows. An extension to unsteady flows will not be considered but could be

a subject of future work.



Chapter 4

A new heterogeneous

continuum-DSMC method

In this chapter, a heterogeneous hybrid method is developed for dilute gases, coupling a

continuum-fluid description to a DSMC solver. An HMM-FWC framework is adopted,

and the coupling strategy is extended from that of the original HMM-FWC (which

considered the transport of mass and momentum) to consider the transport of energy.

A new procedure for constraining the micro elements is implemented: the imposition of

the local continuum property fields is now tailored to the use of a DSMC micro solver.

It is also worth noting that, while the original HMM-FWC was tested only on a 1D

flow problem, this method will be validated and tested on 1D and 2D flow problems in

subsequent chapters.

The extension of the coupling strategy means that, unlike a large majority of hybrid

methods in the literature, our method is able to deal with non-isothermal flow problems;

it is also able to model compressible flow. As was discussed in section 3.2.3, the HMM-

FWC framework is adopted because it is the most general heterogeneous framework

and has the potential to tackle flow problems that are beyond the reach of the other

hybrid frameworks. Unlike the CM3 of [29], it is able to exploit spatial scale separation.

It is suitable for Type A problems where local non-equilibrium occurs, for example,

close to a surface. It is also suitable for Type B scenarios where the traditional linear

constitutive relations fail in the bulk of a system, meaning it is able to capture non-

equilibrium behaviour in the bulk, or compensate for unknown transport properties (for

57
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example, in an usual gas mixture). The key benefit of the HMM-FWC is that it is not

subject to the restrictions of the HMM and the IMM: the micro elements can be any

size and can be placed independently of the continuum grid, as illustrated in Fig. 4.1;

flow problems with mixed degrees of spatial scale separation can then be simulated.

bulk 

micro 

element

macro

grid

near-wall

micro

element

Figure 4.1: Schematic of the HMM with field wise coupling (HMM-FWC). DSMC simulations
are performed in micro elements that are positioned independently of the macro grid used by the
continuum solver.

An example of a flow problem that exhibits mixed degrees of spatial scale separation

is pressure-driven flow through a microchannel that is connecting two large reservoirs;

see Fig. 4.2. This system might be simulated to investigate inlet and outlet losses, for

example. If the HMM-FWC was implemented, larger micro elements would be placed in

the reservoirs where the spatial scale separation is low, while smaller elements would be

distributed along the length of the micro channel where the streamwise scale separation

is high. Note that this problem could also be simulated by combining the HMM-FWC

with the IMM, i.e. the HMM-FWC method would be applied in the reservoirs and at

the inlet and outlets of the channel, and the IMM would be applied along the channel

length.

micro elements

continuum grid

x

y

z

Figure 4.2: Schematic of the HMM-FWC framework applied to flow through a microchannel
that is connecting two reservoirs. The continuum-fluid grid is applied across the entire system
and the particle simulations are performed in the micro elements.
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Another flow problem that could exhibit mixed degrees of spatial scale separation

is the flow of a rarefied gas through a narrow microscale crack. As mentioned in

Chapter 1, the DD, HMM, and IMM frameworks would not be able to exploit high

scale separation (i.e. slow variation of the flow properties) over the large dimension of

the flow cross-section. The application of our HMM-FWC continuum-DSMC method

to this type of flow problem will be discussed in Chapter 7 — as the method can deal

with heat transport, the presence of a temperature difference between the walls of the

crack will be considered.

4.1 Hybrid methodology

The dsmcFoamStrath solver is used in the micro elements of this hybrid method, and

for the full DSMC simulations that are required to validate the method; several features

of this DSMC code (its measurement and state controller capabilities in particular) are

useful for implementing the hybrid method’s coupling algorithm. Note that, for all

of the test cases that will be simulated in the later chapters of this thesis, the micro

elements of the hybrid method are small enough that each micro DSMC simulation is

performed in serial (i.e. on a single processor). All of the full DSMC simulations are,

however, performed in parallel (i.e. they are split across a number of processors).

The steady-state continuum conservation equations can be simplified somewhat for

the 1D and 2D validation problems that will be considered in this thesis. Finite differ-

ence approximations are adequate, and can be solved using simple matrix manipulation

in MATLAB. In future, the simulation of more complex 2D and 3D cases could utilise

a CFD solver from the OpenFOAM toolbox; for example, rhoSimpleFoam is suitable

for steady-state, compressible flows.

At present, the algorithm of the hybrid method is also implemented using a MAT-

LAB script — this handles all the requirements of the coupling, including the creation

of the micro DSMC simulations, the execution of both solvers, and the exchange of

information between the solvers. The migration of the entire hybrid algorithm into

OpenFOAM is, however, an aim of future work.

As attention is restricted to steady-state flow problems in this thesis, an alternating

Schwarz-type scheme is adopted; see Fig. 3.2(c). However, the use of simplified finite
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difference approximations means that the solution of the continuum equations requires

only one implicit step (i.e. Nmacro = 1). It is worth noting that DD methods generally

require that a system is initialised uniformly across the flowfield, with Schwarz coupling

then converging in O(20) iterations; the HMM-FWC approach, on the other hand,

allows initialisation based on some initial guess about the flow variation across the

system, and so the correct solution can be reached in fewer iterations (usually <10).

As mentioned in section 3.2.3, an extension to unsteady flows could be a focus of future

work, and would involve the use of a HI, CA, or CAI scheme.

The general methodology of our HMM-FWC continuum-DSMC method is as fol-

lows. A ‘modified’ continuum-fluid description is applied across the entire flowfield;

the modification comes from closure of the governing conservation equations with ‘cor-

rected’ constitutive relations, i.e. the linear NSF relations augmented by correction

fields. At the start of the simulation, these constitutive correction fields are assumed

equal to zero, and the conventional no slip/jump boundary conditions are imposed. Mi-

cro elements are dispersed across the system with the arrangement depending on the

flow problem1. Based on the local continuum solution, constraints are applied to the

micro elements and DSMC is performed. After steady-state is reached and a subsequent

cumulative averaging period is complete, the macroscopic property fields are extracted

from each micro element and used to compute the local correction fields across that

element; the global correction fields (across the entire flowfield) are then approximated

by interpolating between adjacent micro elements. The macroscopic properties of the

gas at the bounding walls are also extracted from the near-wall micro elements and

interpolated to provide boundary conditions at all bounding walls. Using these global

correction fields and updated boundary conditions to solve the modified continuum

equations then provides updated or ‘corrected’ continuum property fields — these are

used to constrain the micro elements once more, and this process is repeated. With

continuing iterations, the corrected continuum solution should converge towards a full

DSMC solution of the problem. The two-way coupling exchange performed in each

iteration is summarised in the schematic of Fig. 4.3.

1In this thesis, the placement of the micro elements is based on the author’s judgement (and the
knowledge that non-equilibrium flow usually occurs close to bounding walls). Future work could include
the selection or definition of a breakdown parameter for identification of localised spatial regions that
require micro resolution.
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Figure 4.3: Schematic of the coupling exchange performed by the hybrid method in each iteration.

4.2 Coupling strategy

The coupling strategy is now discussed in detail; note that this discussion applies to

1D, 2D, and 3D problems. As mentioned previously, the transport of energy is now

considered, and the constraint of the micro elements is now tailored to the use of a

DSMC solver.

4.2.1 Macro-to-micro coupling: constraining the micro elements

The corrections to the constitutive relations must be extracted from micro elements

that properly represent the local conditions in the macro domain. For dilute gases, this

is achieved when the correct particle distribution is imposed at the boundaries of the

micro element. However, the particle distribution required at the boundaries cannot

be extracted directly from the macroscopic continuum solution — such detail is not

available from a continuum-fluid description. This problem is circumvented here by

introducing an artificial ‘relaxation’ region around each micro element that facilitates

a natural relaxation to the correct particle distribution (and macroscopic state) within

the core of the element. It is not essential that the gas state in the relaxation region

accurately represents the conditions in the corresponding macro domain; its sole pur-

pose is to develop the boundary conditions needed for the core region of the element.

Sampling of the property fields is then performed only in this core ‘sampling region’.

A schematic of a 3D bulk micro element is shown in Fig. 4.4. Note that these sampling

and relaxation regions can be defined easily in the dsmcFoamStrath code by generating

zones on the DSMC computational mesh.
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Relaxation region

Sampling region

Figure 4.4: Schematic of a 3D bulk micro element, showing the sampling and relaxation regions.

The imposition of boundary conditions is now tailored to dilute gases (with DSMC

as the micro solver) and is achieved in two stages. First, the local continuum velocity,

temperature, and density fields (i.e. the spatial variation of these properties) are im-

posed throughout the relaxation region. Differing from the body forcing approach of

the original HMM-FWC, this is done by implementing state controllers (as described

in section 2.2.2) for the duration of the micro DSMC simulation. Secondly, although

a particle distribution is not applied directly at the boundaries of the sampling re-

gion, a particle distribution is applied at the outer boundaries of the relaxation region.

This applied distribution replaces the periodic boundaries implemented in the original

HMM-FWC, removing the need for the imposed property fields to satisfy periodicity.

In this thesis, local Maxwellian distributions are applied for simplicity2. The relaxation

region must then be large enough that the particle state will relax fully (via particle

collisions) across its extent — the particle distribution in the sampling region will then

be dictated solely by the applied continuum state, with no effects from the imposed

equilibrium distribution. When the hybrid solution converges, the artificiality of the

relaxation region will dissolve seamlessly into the true particle distribution and fluid

state in the core sampling region.

Force-driven flows are modelled in pure DSMC simulations by applying an external

forcing (i.e. acceleration) to all particles in the system; although the acceleration is

applied continuously, particle-wall interactions mean that the macroscopic velocity will

reach a constant steady-state. In an equivalent hybrid simulation, we apply the same

acceleration to all of the particles in the micro elements (in both the relaxation and

sampling regions), in addition to the micro constraints discussed above.

2Local Chapman-Enskog (CE) distributions could also be applied using the approach of Stephani et
al. [120] — as this distribution incorporates a perturbation from equilibrium, the extent of the required
relaxation region may be reduced somewhat.
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In summary, the sampling region of a micro element is surrounded by a relaxation

region: the local continuum property fields are imposed in this relaxation region, and a

particle distribution is applied at its outer boundaries; if required, an external acceler-

ation is also applied to all particles in the element. The sampling region of a near-wall

micro element must, however, be adjacent to the wall itself in order to capture the

non-equilibrium behaviour that exists at bounding walls. Figure 4.5 shows bulk and

near-wall micro elements in an example computational set-up for a 2D problem.

relaxation region 

with control bins

sampling region 

with measurement bins

imposed particle 

distribution

near-wall 

micro elements
bulk 

micro element

continuum grid

solid wall

Figure 4.5: Schematic of an example computational domain for a 2D problem showing bulk
and near-wall micro elements. The control and measurement bins are independent of the DSMC
computational cells, and can also be independent of the continuum mesh.

Our coupling strategy requires that the spatial variation of the flow properties is

imposed on and extracted from regions of the DSMC micro elements. As was discussed

in section 2.2.2, macroscopic fields can be imposed on and extracted from a flowfield

in dsmcFoamStrath by using the MOB technique. Each relaxation region is therefore

divided into a grid of control bins; state controllers are used to impose the continuum

properties in each control bin, creating the desired spatial variation across the region.

Similarly, each sampling region is divided into a grid of measurement bins and the

property fields are extracted by averaging over the particles in each bin according to

Eqs. (2.15) – (2.24). In the near-wall micro elements, boundary information is also

extracted from the wall-adjacent faces of the measurement bins by summing over all

particles that strike the surface according to Eqs. (2.25) – (2.28). The key advantage

of using the MOB here is that the measurement and control bins are completely inde-

pendent of the computational mesh used by the DSMC algorithm. As mentioned in
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section 2.2.2, this enables adjustment of the macroscopic resolution of the fields that

are extracted/imposed, and provides the ability to control the level of statistical scatter

in the measurements without affecting the accuracy of the DSMC computations. The

measurement and control bins can also be independent of each other, and of the con-

tinuum grid — if the measurement and control bins are not collocated with the cells of

the continuum mesh, then data can simply be interpolated between the meshes using

MATLAB interpolation functions.

Sufficient micro resolution is crucial to obtaining an accurate result from the hybrid

method, and the adequate micro element configuration (i.e. the number, location, and

size of the micro elements) will vary from problem to problem. However, for a given

number of micro elements at predefined locations, we enable the spatial extents of both

the sampling and relaxation regions to adapt dynamically depending on the local flow

by defining these extents as some number of local mean free paths λl — the appropriate

number for each region will be studied in Chapter 5. At each iteration, the dimensions

of each element are then set depending on λl: in the first iteration, λl is assumed equal

to the global mean free path, λgl; in subsequent iterations, λl is updated for each micro

element using Eqs. (2.8) and (2.9), where T and n are the are spatial averages measured

in the sampling region of the element in the previous iteration.

With the element extents potentially changing at each iteration, all of the micro

DSMC simulations are initialised at equilibrium (by sampling the particle velocities

from a Maxwellian distribution) at the start of each iteration. For consistency between

the micro and macro domains, the velocity, temperature, and density for initialisation

are obtained from the local continuum solution: continuum values of these properties

are averaged over a sub-region of the macro domain that corresponds to the element.

4.2.2 Micro-to-macro coupling: correcting the continuum description

The ease in obtaining macroscopic properties from particle information means that

micro-to-macro coupling is less challenging than macro-to-micro coupling. However,

the data transferred from the micro elements to the continuum description must not

contain too much statistical scatter, as this could lead to instability of the coupling algo-

rithm. Each micro DSMC simulation (and full DSMC validation simulation) is therefore
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performed in two stages: a transient period enables the flow to reach steady-state, and

a longer cumulative averaging period reduces scatter in the measured properties3.

The steady-state conservation equations of fluid mechanics form the basis of our

hybrid method, i.e.

∇ · ρu = 0, (4.1)

ρu · ∇u = −∇ · pI +∇ · τ + f , (4.2)

and,

∇ · (ρeu) = −∇ · (pI · u) +∇ · (τ · u)−∇ · q, (4.3)

where u is the velocity vector, τ is the viscous stress tensor, f is an external force per

unit volume, e is the specific energy, and q is the heat flux vector. For most conventional

flow problems, the linear NSF constitutive relations are used to close these continuum

equations. However, the interest here lies in flows where these linear relations fail.

In our HMM-FWC hybrid method, the constitutive relations used for closure are the

linear NSF relations augmented by ‘correction fields’, i.e.

τ = µ(∇u) + µ(∇u)T − 2

3
µ(∇ · u)I + Ω, (4.4)

and,

q = −κ∇T + Φ, (4.5)

where Ω is a stress correction tensor and Φ is a heat flux correction vector, µ is the

gas dynamic viscosity, and κ is the gas thermal conductivity. Closing Eqs. (4.2) and

(4.3) with these ‘corrected’ constitutive relations gives,

ρu · ∇u = −∇ · pI +∇ · µ(∇u) +∇ · µ(∇u)T

−2

3
∇ · [µ(∇ · u)I] +∇ ·Ω + f ,

(4.6)

3Ensemble averaging could be used to reduce scatter if transient flows are considered in future.
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and,

∇ · (ρeu) = −∇ · (pI · u) +∇ · [µ(∇u) · u] +∇ · [µ(∇u)T · u]

−2

3
∇ · [µ(∇ · u)I · u] +∇ · [Ω · u] +∇ · (κ∇T )−∇ ·Φ,

(4.7)

respectively. Along with the gas equation of state,

p = ρRT, (4.8)

Eqs. (4.1), (4.6), and (4.7) can then be used to describe the entire flowfield. As a

starting point, the correction fields Ω and Φ are initially assumed equal to zero; in

subsequent iterations, they are supplied by the distributed DSMC micro elements,

incorporating the effects of non-equilibrium and/or any inaccuracies in the assumed

transport properties, µ and κ.

The extraction of Ω and Φ from the micro elements (both near-wall and bulk)

is performed in two steps. In the first step, the local correction fields across each

sampling region are computed: the corrections in each measurement bin and at each

wall boundary are calculated from the time-averaged flow properties that were measured

in that bin or at that wall boundary. The stress correction is calculated according to

Eq. (4.4) based on the measured stress and the velocity gradient; similarly, the heat flux

correction is calculated from Eq. (4.5) using the measured heat flux and the temperature

gradient. Note that the property gradients in each bin (and at each wall boundary) are

approximated using finite difference representations that are based on the properties in

adjacent bins (or the adjacent wall boundary); for example, the temperature gradient

in a bin b is approximated as dT
dx b

=
(Tb+1−Tb−1)

2δx , where δx is the bin width in the

x-direction. The second step is then to obtain approximations of the global correction

fields across the entire domain, for example by interpolating between adjacent local

correction fields. In this thesis, linear interpolation is initially adopted due to its

simplicity. The use of higher order interpolations and global fitting approaches will be

considered in Chapter 6.

In addition to the constitutive correction fields, the micro elements also provide

the continuum description with updated boundary information. The properties (i.e.
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the velocity, temperature, and pressure) of the gas at the wall are extracted from the

wall-adjacent faces of the measurement bins in each near-wall sampling region — this

local boundary information is then interpolated (or extrapolated) to produce estimates

at all bounding walls. To maintain simplicity, this interpolation/extrapolation is typ-

ically linear. Therefore, when simulating 2D and 3D problems, the configuration of

the near-wall micro elements will be dictated by the need to construct a reasonable

approximation of the boundary properties with this type of interpolation.

4.3 The iterative coupling algorithm

As mentioned above, the hybrid method is iterative for steady flows. The method’s

algorithm is therefore executed according to the following steps:

(0) Assuming no constitutive corrections (i.e. Ω = Φ = 0) and no slip/jump at the

bounding walls, solve the continuum equations (4.1), (4.6), and (4.7), and the gas

equation of state (4.8), to obtain an initial NSF velocity field uNSF, temperature

field TNSF, pressure field pNSF, and density field ρNSF across the entire system.

(1) Initialise and constrain each DSMC micro element:

(a) Impose the local continuum property fields (i.e. the velocity, temperature,

and density) across the relaxation region by implementing state controllers

in each control bin.

(b) Apply a Maxwellian particle distribution at the outer boundaries of the

relaxation region based on the local continuum temperature and velocity.

(c) If a condition of the flow problem, apply an external acceleration to all

particles in the element.

(2) Execute the DSMC method in each micro element. When steady-state is reached,

perform cumulative averaging of the macroscopic measurements for some averag-

ing period.

(3) When all DSMC micro simulations are complete, extract the time-averaged flow

properties from the measurement bins of each sampling region. Additionally,

extract the gas properties at the bounding walls from the wall-adjacent bin faces.
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(4) Calculate the velocity and temperature gradients in each measurement bin and

at each bounding wall using (here) finite difference approximations based on the

properties in the adjacent bins or at the adjacent bounding wall.

Using the velocity gradient and stress from all measurement bins/bounding walls,

compute the local stress correction field across each sampling region via Eq. (4.4).

Similarly, using the temperature gradient and heat flux from all measurement

bins/bounding walls, compute the local heat flux correction field across each

sampling region via Eq. (4.5).

(5) Based on the local correction fields, perform interpolations (or global fitting)

to approximate the global correction fields Ω and Φ across the entire flowfield.

Interpolate (or extrapolate) linearly between the local gas boundary properties

obtained in Step (3) in order to estimate the gas properties at all bounding walls.

(6) With these global correction fields and this updated boundary information, solve

the continuum equations (4.1), (4.6), and (4.7), and the gas equation of state (4.8),

to obtain a new, corrected velocity field ucorr, temperature field Tcorr, pressure

field pcorr, and density field ρcorr across the system.

(7) Using this corrected solution to constrain the micro elements, repeat from Step

(1) until the corrected property fields do not change between iterations to within

user-defined tolerances. The final converged solution should then agree well with

a full DSMC solution of the same problem.

4.4 Summary

A heterogeneous hybrid method has been proposed, in which the DSMC method com-

plements a continuum-fluid description, i.e. provides missing boundary and constitutive

information. Using field-wise coupling, the key advantage of this new method over ex-

isting continuum-DSMC methods is its generality: micro elements of any size can be

placed at any location (i.e. close to walls or in the bulk of the domain) independently

of the continuum grid. The micro resolution can be adjusted to suit each problem,

and problems with any degree of spatial scale separation can be simulated. The size
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of the micro elements is also able to adapt dynamically depending on the local mean

free path of the gas; this will be demonstrated in the following chapters. In addition,

the coupling strategy considers the transfer of energy (which has often been neglected

in previous methods) and so non-isothermal flows can be dealt with. The flexibility

offered by the method makes it applicable for a wide variety of flow problems.

The following two chapters each consider a 1D validation problem, comparing the

results from the hybrid method against those obtained from full DSMC simulations of

the same problems. The micro Fourier flow problem that will be discussed in Chapter 5

will validate and test the energy coupling strategy. The high-speed micro Couette flow

problem considered in Chapter 6 will then validate and assess the performance of the

full coupling algorithm. With velocity slip/temperature jump and the accompanying

Knudsen layers, both of these 1D flow problems could be considered Type A. However,

by assuming that the transport property models are unknown, these problems become

Type B — local corrections close to the walls are no longer sufficient and global con-

stitutive corrections are required.

A larger and more realistic engineering problem is considered in Chapter 7: using

a microchannel with a high-aspect-ratio cross-section as a representative geometry, the

flow of gas through narrow microscale cracks is studied. By assuming periodicity in the

streamwise direction, the application of the method is simplified to 2D. This type of

high-aspect-ratio geometry can be considered as a specific class of Type C problem and,

as mentioned previously, cannot be tackled by DD, HMM, or IMM hybrid methods.



Chapter 5

Micro Fourier flow: a 1D

validation problem

The hybrid method is first demonstrated on a simple micro Fourier flow problem; a

motionless gas (in this case monatomic argon) is confined between two infinite parallel

planar walls that have different temperatures, Tcold and Thot. The implementation of

the method’s coupling algorithm for this particular flow problem will be discussed, and

then the results from a number of different test cases will be compared with the results

from equivalent full DSMC simulations. Note that, with negligible transport of mass

and momentum, the method’s coupling is performed via the 1D heat flux only: local

temperature fields are imposed on the micro elements, and the resulting global heat

flux correction field is supplied to the modified energy equation.

5.1 Computational set-up

Discretising the domain in 1D space, the continuum mesh consists of Mx macro nodes

(including a node at each wall). Figure 5.1 shows a schematic of the computational

domain; an example micro element arrangement is shown with an element at each

wall and one in the bulk. In practice, the appropriate micro element arrangement will

depend on the case itself; this will be discussed further in section 5.3.1.

As depicted in Fig. 5.1, the consideration of a 1D problem means that each near-

wall element comprises a single sampling region and a single relaxation region, while

70
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each bulk element consists of a single sampling region with a relaxation region on either

side. Each sampling region is divided into a number of measurement bins, and each

relaxation region is split into a number of control bins. For this flow problem, the

measurement and control bins are set to have the same width δx, and the centre of

each bin b is set to coincide exactly with a macro node i. The bin width δx is then

equal to the spacing between each macro node ∆x. Note that this collocation of the

bins and macro nodes is not a requirement of the method; it does, however, greatly

simplify the transfer of data between the continuum mesh and the micro elements.
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imposed particle 

distribution

solid walls

∆x
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Figure 5.1: Schematic of the computational set-up for a 1D Fourier flow problem.

5.2 Coupling algorithm

To demonstrate the method’s ability to deal with missing constitutive information, the

variation of the gas thermal conductivity κ with temperature is assumed to be unknown.

A reasonable reference value κref is adopted, which is constant and independent of the

temperature field across the system — the true variation of κ will then be modelled

indirectly via the heat flux correction field Φx. With this reference conductivity, the

modified energy equation (4.7) is reduced to,

κref
d2T

dx2
− dΦx

dx
= 0. (5.1)

Rearranging Eq. (4.5), the heat flux correction field Φx is obtained from the micro

elements according to,

Φx = qx + κref
dT

dx
. (5.2)

The coupling algorithm for this validation problem is therefore as follows:
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(0) With no heat flux correction, Eq. (5.1) can be approximated using a central finite

difference scheme, i.e.

κref
(Ti−1 − 2Ti + Ti+1)

∆x2
= 0, (5.3)

where i=2, 3, ...(Mx − 1). Assuming that there is no temperature jump at the

solid walls (i.e. T1=Tcold and TMx=Thot), solution of this equation produces an

initial NSF temperature field TNSF.

(1) All DSMC micro elements are initialised at equilibrium: the temperature and

density for initialisation are obtained from the local continuum solution.

Each element is then constrained as follows:

(a) The local continuum temperature field is imposed across each relaxation

region by implementing the temperature controller in each control bin.

(b) Maxwellian particle distributions are imposed at the outer boundaries of each

relaxation region via a diffuse reflection boundary at the local continuum

temperature.

(2) The DSMC algorithm is executed in each micro element. When steady-state

conditions are reached, cumulative measurements are performed in each sampling

region for some averaging period.

(3) The time-averaged values of the temperature and the heat flux are extracted

from each measurement bin. The temperature and the heat flux of the gas at the

walls are also extracted from the wall-adjacent bin faces of the near-wall sampling

regions.

(4) The heat flux correction in each measurement bin and at each bounding wall

is then calculated according to Eq. (5.2). For this calculation, the temperature

gradient in each bin (and at each bounding wall) is approximated using a finite

difference scheme based on the temperature in adjacent bins (or the adjacent

bounding wall), e.g. for a bin b,

Φxb = qxb + κref
(Tb+1 − Tb−1)

2δx
. (5.4)
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(5) To obtain Φx at every point in the system, linear interpolations are performed be-

tween the sampling regions. For this 1D geometry, interpolations of the boundary

gas temperature are not required.

(6) Now with the global heat flux correction field Φx, Eq. (5.1) can again be approx-

imated using a central finite difference scheme, i.e.

κref
(Ti−1 − 2Ti + Ti+1)

∆x2
+

(Φxi+1 − Φxi−1)

2∆x
= 0, (5.5)

where i=2, 3, ...(Mx − 1). Temperature jump is now accounted for: the tempera-

ture of the gas at each solid wall is set to be that measured in the corresponding

near-wall sampling region during Step (3). Solution of Eq. (5.5) then results in

the new, corrected temperature field Tcorr across the system.

(7) Replacing TNSF with Tcorr, the process is repeated from Step (1). Iterations

continue until Tcorr converges to within a user-defined tolerance.

5.3 Results

For simplicity, monatomic argon gas is used for all test cases in this chapter: with a

molecular mass m = 66.3×10−27 kg and a viscosity exponent ω = 0.81, a reference

temperature of 273 K results in a VHS molecular diameter dVHS = 4.17×10−10 m. The

separation W between the two fully diffuse heated walls is maintained at 1 µm for all

cases and, to accurately capture the macroscopic variation, Mx = 201 macro nodes are

used, giving a uniform spacing ∆x = 5 nm (= δx).

As was discussed in section 2.1.1, the overall level of non-equilibrium in a system

is represented by the global Knudsen number Kngl. Here, the global mean free path

λgl is calculated from the VHS expression (2.9) based on the average temperature Tav

and number density nav in the system, while the global characteristic dimension is the

separation W , i.e. Kngl = λgl/W . By varying Kngl (i.e. by changing the gas density)

and the temperature of the walls, a range of test cases will explore the hybrid method’s

ability to cope with missing constitutive and boundary information.

To ensure a fair comparison between each hybrid simulation and the corresponding
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full DSMC validation simulation, the same cell size and time step is used for the DSMC

micro simulations and the full simulation: the cell size is a fraction of the global mean

free path λgl, while the time step δt must be a fraction of the mean collision time tmc.

For all cases in this chapter, δt = 1×10−12 s. An initial start-up run of 3 million time

steps enables all simulations to reach steady-state, and a further averaging period of

50 million time steps reduces statistical fluctuations.

The convergence of the hybrid algorithm is monitored using a convergence parame-

ter ζT , which quantifies the difference between the temperature solutions in current and

previous iterations. Convergence occurs when ζT falls below a user-defined tolerance

value ζtolT , i.e.

ζT
k =

1

Mx

Mx∑
i

∣∣∣∣∣T kcorri − T
k−1
corri

T kcorri

∣∣∣∣∣ ≤ ζtolT , (5.6)

where i=1, 2, ...Mx and k is the iteration index. The tolerance value ζtolT depends on

the case itself, with typical values of O(10−2) and below.

A measure of the overall accuracy of the hybrid solution Tcorr is provided by the

mean percentage error ε̄T , comparing against the corresponding full DSMC solution

TFull, i.e.

ε̄kT =
1

Mx

Mx∑
i

[
TFulli − T kcorri

TFulli

× 100%

]
, (5.7)

where i=1, 2, ...Mx. The accuracy of the method (and hence the value of this error) de-

pends on how well the micro elements are able to capture the ‘true’ heat flux correction

field across the system. The true heat flux correction is that which can be computed

from the full DSMC solution, i.e. Φx,Full — this is computed by using the full DSMC

temperature field TFull and the full DSMC heat flux field qx,Full in Eq. (5.2).

5.3.1 Micro element configuration

Generally, the number of micro elements and their position and size will determine the

accuracy of the method. The appropriate configuration depends on (a) the arrangement

of the sampling regions that is needed to provide the required micro resolution, and

(b) the size of the relaxation regions that is required to enable full relaxation of the

particle state. Typically, particle relaxation occurs over several mean free paths. The

required micro resolution is, however, more complex, depending on both the level of
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non-equilibrium (globally and locally) and the knowledge of the transport property

models.

When modelling this Fourier flow problem, the temperature jump should be cap-

tured within the sampling region at each wall. Ideally, each near-wall sampling region

should also capture the associated thermal Knudsen layer, which typically extends sev-

eral mean free paths from a wall surface. Note however that, for high values of Kngl,

the Knudsen layers may be so large that the hybrid approach (over a number of itera-

tions) becomes more expensive than a full DSMC treatment. For lower values of Kngl

where the Knudsen layers are fairly small, micro resolution could be required in the

bulk to capture non-equilibrium behaviour caused by strong temperature gradients, or

to provide the correct thermal conductivity model.

As mentioned previously, for a given number of micro elements Π, the extents of

both the sampling and relaxation regions are able to adapt dynamically depending on

the local flow. In this thesis, these extents are set to be some number of local mean

free paths λl, with λl updated at each iteration using Eqs. (2.8) and (2.9). Based

on an initial test case, sensitivity studies are now performed in order to explore the

appropriate number of local mean free paths for each region.

Setting Kngl = 0.01, a global mean free path λgl = 0.01 µm corresponds to an

average gas number density nav = 1.295× 1026 m−3. With an average gas temperature

Tav = 273 K, a reference value of κref = 0.0164 W/mK is adopted [121]. The temper-

ature difference ∆T between the heated walls is set to 50 K (i.e. Tcold = 248 K and

Thot = 298 K), resulting in a temperature gradient of 50×106 K/m across the system.

With this value of Kngl and this temperature gradient, the bulk of the system will

be in equilibrium. Although the heat flux correction should be non-zero in the bulk to

correct for the error in the assumed conductivity κref, the hybrid method should be able

to construct an adequate representation of Φx by using a linear interpolation between

the two near-wall sampling regions. This is due to the fact that, in reality, the thermal

conductivity of argon varies approximately linearly with temperature over a range of

200 K to 350 K, and so the true heat flux correction field Φx,Full will vary approximately

linearly across the bulk of the system. Two near-wall elements are therefore sufficient

and no bulk elements are needed, i.e. Π = 2.
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Two studies are performed: in the first, the effect of the relaxation region extent

WRR is considered by incrementally increasing its value from 1λl to 7λl, while the

extent of the sampling regions WSR remains constant at 5λl; in the second, the impact

of WSR is considered by increasing it from 1λl to 7λl, keeping WRR constant at 5λl.

With micro elements in this size range, convergence of the hybrid method must occur

within 3 to 4 iterations for there to be any computational advantage over a full DSMC

simulation. For this test case, a tolerance value of ζtolT=0.001 is selected. Figure 5.2(a)

shows that, for all WRR, convergence is reached inside 4 iterations. However, as shown

in Fig. 5.2(b), convergence does not occur inside 4 iterations when WSR is 1λl or

3λl. Larger sampling regions of either 5λl or 7λl are therefore needed, both of which

achieve convergence inside 2 to 3 iterations. Note that, for all simulations, the level of

convergence fluctuates slightly due to statistical scatter.
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Figure 5.2: Fourier flow: convergence of the hybrid method for (a) WSR=5λl and various WRR,
and (b) WRR=5λl and various WSR, when Kngl=0.01 and ∆T=50 K.

The final temperature profiles from the hybrid method (i.e. from iteration k=4) are

shown in Fig. 5.3; also plotted is the initial NSF and full DSMC temperature fields. The

accuracy of the method is, however, more apparent from the mean percentage error ε̄T .

Calculated using Eq. (5.7), this error is presented for each iteration in Fig. 5.4; iteration

k=0 represents the initial NSF solution. When both the relaxation and sampling region

extents are 5λl or 7λl, the mean error is reduced to less than 0.1%.
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Figure 5.3: Fourier flow: final hybrid temperature solutions Tcorr for (a) WSR=5λl and various
WRR, and (b) WRR=5λl and various WSR, when Kngl=0.01 and ∆T=50 K. These are compared
with the equivalent full DSMC and NSF temperature solutions. Insets show results at each wall.
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Figure 5.4: Fourier flow: mean error ε̄T in the hybrid solutions for (a) WSR=5λl and various
WRR, and (b) WRR=5λl and various WSR, when Kngl=0.01 and ∆T=50 K.
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As mentioned previously, the value of ε̄T depends on the method’s ability to capture

the true heat flux correction field, i.e. the field computed from the full DSMC solution

Φx,Full. The final heat flux correction fields approximated by the hybrid (at k = 4) are

shown in Fig. 5.5, along with Φx,Full.
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Figure 5.5: Fourier flow: final heat flux correction fields Φx for (a) WSR=5λl and various WRR,
and (b) WRR=5λl and various WSR, when Kngl=0.01 and ∆T=50 K. These are compared with
the full DSMC heat flux correction.

Based on these studies, the problems considered in the remainder of this chapter

use extents of 5λl for every sampling and relaxation region. Although extents of 7λl

would provide slightly higher accuracy, extents of 5λl provide sufficient accuracy while

also enabling a greater computational efficiency. Each near-wall element therefore has

a total extent of 10λl, while each bulk element has a total extent of 15λl.

5.3.2 Various rarefaction and temperature conditions

The method’s ability to capture the temperature jump and the thermal Knudsen layer

is now explored under various rarefaction conditions (study A) and various temperature

conditions (study B). In both studies, the wall separation W remains at 1 µm, and the

average gas temperature Tav = 273 K. By varying the gas density, study A considers

three global Knudsen numbers, Kngl = λgl/W = 0.01, 0.02, 0.03, while the temperature



CHAPTER 5 MICRO FOURIER FLOW: A 1D VALIDATION PROBLEM 79

difference between the walls remains at ∆T=50 K. Study B considers three temperature

differences, ∆T = 50, 100, 150 K, while the density is set to maintain Kngl = 0.01.

In all six cases, Kngl and ∆T are small enough that the bulk of the system will be

in equilibrium. Also, for argon, the true variation of the thermal conductivity will be

approximately linear across these temperature ranges. As in section 5.3.1, two near-

wall sampling regions with linear interpolation should therefore be sufficient to capture

the heat flux correction field.

With a tolerance value of ζtolT = 0.001, convergence of the hybrid method is reached

inside 3 iterations for all six cases; this is shown in Figs. 5.6(a) and 5.6(b) for studies

A and B, respectively.
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Figure 5.6: Fourier flow: convergence of the hybrid method for (a) various Kngl (study A), and
(b) various ∆T (study B).

The final hybrid temperature solutions (at k = 4) from all three cases of study A are

presented in Fig. 5.7(a), alongside the corresponding full DSMC solutions. The initial

NSF solution is also shown — as this is independent of Kngl, it is the same for all cases

of study A. The final hybrid temperature solutions from all three cases of study B are

shown in Fig. 5.7(b); the corresponding NSF and full DSMC solutions are also shown,

with the NSF solution different for each value of ∆T .
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Figure 5.7: Fourier flow: final temperature solutions Tcorr for (a) various Kngl (study A), and (b)
various ∆T (study B). These are compared with the corresponding NSF and full DSMC solutions.
Insets show results at each wall.

Note that the full DSMC temperature solutions from the three cases of study B

do not intersect at x=0.5 as the NSF temperature solutions do — this is because the

extent of the thermal Knudsen layer at each wall depends on the wall temperature.

Once again, a clearer measure of the hybrid’s accuracy is provided by the mean

percentage error ε̄T in the temperature solution, compared with the corresponding full

DSMC solution. This error is presented in Fig. 5.8 for each iteration, where iteration
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k=0 again represents the initial NSF solution. Figure 5.8(a) shows that, for all three

values of Kngl in study A, the hybrid technique reduces ε̄T to approximately 0.07%.

This is due to the fact that, for all Kngl, the heat flux correction representation Φx

is in fairly good agreement with the corresponding full DSMC correction Φx,Full, as

indicated in Fig. 5.9(a). Figure 5.8(b) shows that the overall accuracy of the hybrid

method decreases as ∆T is increased in study B — this is a reflection of the lower

quality estimation of the heat flux correction field, as observed in Figure 5.9(b). It

should be noted, however, that the hybrid solution provides an improvement over the

corresponding NSF solution for all values of ∆T .
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Figure 5.8: Fourier flow: mean error ε̄T in the hybrid solutions for (a) various Kngl (study A),
and (b) various ∆T (study B).

When modelling higher temperature differences, the accuracy of the method could

be improved by increasing the extent of the near-wall sampling regions, or by adding an

element in the bulk. This would, however, increase the computational expense. There

must be a balance exercised between the accuracy required of, and the computational

savings offered by, the hybrid method (particularly for flow problems with low spatial

scale separation such as this).
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Figure 5.9: Fourier flow: final hybrid heat flux correction fields Φx for (a) various Kngl (study
A), and (b) various ∆T (study B), compared with corresponding full DSMC correction fields.

5.3.3 Extreme temperature conditions

For the cases in sections 5.3.1 and 5.3.2, the hybrid method has used only two near-wall

micro elements. However, even if the bulk of the system remains close to equilibrium,

higher temperature conditions might mean that the true variation of the conductivity

with temperature is non-linear. If so, a linear interpolation of the heat flux correction

between the two near-wall sampling regions is not likely to produce an accurate solution;

the accuracy should be improved by the addition of micro elements in the bulk.

The method’s ability to deal with more extreme temperature conditions is now

verified on a test case. With Kngl = 0.01, the average gas temperature Tav is increased

to 500 K, and so κref is increased to 0.027 W/mK [121]. The temperature difference

∆T between the walls is then set equal to 600 K (i.e. Tcold = 200 K and Thot = 800 K).

Retaining linear interpolations of Φx, two micro element configurations are investigated:

the first uses only two near-wall elements, i.e. Π = 2; the second considers the addition

of a bulk element in the centre of the system, i.e. Π = 3.
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Setting ζtolT=0.01, Fig. 5.10 shows that convergence occurs inside 3 iterations for

both configurations. The resulting hybrid temperature fields, along with the initial

NSF and the full DSMC temperature fields, are presented in Fig. 5.11.
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Figure 5.10: Fourier flow: convergence of the hybrid method for Π=2 and Π=3, when Kngl=0.01
and ∆T=600 K.
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Figure 5.11: Fourier flow: final hybrid temperature solutions for Π=2 and Π=3, alongside the
NSF and full DSMC temperature solutions, for Kngl=0.01 and ∆T=600 K. Insets show results
at each wall.

For both configurations, Fig. 5.12 shows the mean percentage error ε̄T at each iter-

ation: as would be expected, the addition of a bulk element results in a more accurate

solution. In fact, in comparison with the initial NSF solution, this configuration pro-

vides an order of magnitude reduction in ε̄T . This increased accuracy is the result of

the higher quality representation of the heat flux correction, as shown in Fig. 5.13.

The accuracy of the hybrid method could be improved by a further increase in

the micro resolution, either by increasing the element extents, or by adding more bulk

elements (or both). However, even with only two near-wall micro elements, the method

is able to provide a substantial improvement over the NSF solution.
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Figure 5.12: Fourier flow: mean error ε̄T in the hybrid temperature solution with Π=2 and Π=3,
when Kngl=0.01 and ∆T=600 K.
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Figure 5.13: Fourier flow: final hybrid heat flux correction fields Φx for both Π=2 and Π=3,
alongside the full DSMC heat flux correction field, for Kngl=0.01 and ∆T=600 K.

5.4 Computational savings

In this thesis, computational savings from the hybrid method come from spatial scale

separation only — time scale separation has not been exploited, and both the full

and micro element DSMC simulations run for the same number of DSMC time steps.

However, the dimensions of these Fourier flow cases have been restricted by the need

to perform equivalent full DSMC simulations (in order to validate the hybrid method).

The thermal Knudsen layers are therefore relatively large, and the micro elements

occupy a significant portion of the system. With low spatial scale separation, the

computational savings offered by the method are modest.

A measure of the computational speed-up S is given by the ratio of the total process-

ing time required for the full DSMC simulation, to the total processing time required

for the hybrid approach. For the hybrid approach, the time taken to compute the con-

tinuum solution is negligible compared with the computational time required by the

DSMC micro simulations. The total processing time of each approach can therefore
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be computed from the total number of DSMC time steps Gtot (over both the transient

and averaging periods) × the average clock time per DSMC time step tcl, i.e.

S =
Gtot,Fulltcl,Full

Gtot,Hybtcl,Hyb
. (5.8)

For all cases in this chapter, Gtot,Hyb = Gtot,Full = 53×106. The expense of the hybrid

method depends on both the micro element configuration and the number of iterations

required. As the physical extent of an element can differ in each iteration, the total

average clock time per time step for the hybrid approach tcl,Hyb is calculated as the

sum of tcl for all micro elements h=1, 2, ...Π, over all iterations k=1, 2, ...I,

tcl,Hyb =
I∑

k=1

[
Π∑
h=1

tcl(h, k)

]
. (5.9)

Note that, in this thesis, the values of tcl,Full and tcl,Hyb that are used to calculate

the speed-up S are the average clock times per DSMC time step based on performing

both the micro and full DSMC simulations in serial on the ARCHIE-WeSt High Per-

formance Computer; S could therefore be increased by exploiting the scalability of the

dsmcFoamStrath code in future.

For all cases in section 5.3.2, the hybrid method uses only two near-wall elements

and converges inside 3 iterations. With Π = 2 and I = 3, the computational speed-up

S for each case is presented in Table 5.1. As the number of particles in a micro element

depends on its extent, these speed-ups are determined by the extents of both elements,

Wleft = (WSR + WRR)left and Wright = (WSR + WRR)right, each of which are 10λl; the

extents presented in Table 5.1 are those at k=3 and subsequent iterations. If Kngl is

0.01, Wleft and Wright are small enough that a modest speed-up is obtained, i.e. S > 1.

However, when Kngl is increased to 0.02 and 0.03, Wleft and Wright become so large

that there is no speed-up at all, i.e. S < 1.

Convergence is also reached inside I = 3 iterations for both micro element configu-

rations considered in section 5.3.3, where Kngl = 0.01 and ∆T = 600 K. The speed-ups

for Π = 2 and Π = 3 are shown in Table 5.2. With only near-wall elements, Wleft and

Wright are again small enough to provide a modest speed-up; note the change from their

original extent of 0.1 µm. Unfortunately, the increase in accuracy that comes from the
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addition of the bulk element is also accompanied by an increased computational cost.

In fact, with an extent Wbulk = (WSR + 2WRR)bulk corresponding to 15λl, the hybrid

method provides no savings at all and S < 1.

Study A

Kngl ∆T (K) Wleft (µm) Wright (µm) I S

0.01 50 0.1 0.1 3 1.77
0.02 50 0.19 0.21 3 0.88
0.03 50 0.29 0.31 3 0.59

Study B

0.01 50 0.1 0.1 3 1.77
0.01 100 0.09 0.11 3 1.73
0.01 150 0.09 0.11 3 1.77

Table 5.1: Computational speed-ups S for the Fourier flow cases of section 5.3.2.

Π Wleft (µm) Wbulk (µm) Wright (µm) I S

2 0.07 - 0.12 3 1.71
3 0.07 0.15 0.12 3 0.96

Table 5.2: Computational speed-ups S for the Fourier flow configurations of section 5.3.3.

In summary, several of the simple cases in this chapter demonstrate moderate com-

putational savings from using the hybrid method, while a number of cases are more

expensive than the equivalent full DSMC simulation. It is important to note, however,

that these Fourier flow cases have been chosen simply to test and validate the energy

coupling strategy. Simulations of larger, more realistic, 2D/3D problems are expected

to highlight any practical computational advantages of the hybrid method.

5.5 Summary

The new hybrid method has been demonstrated on a micro Fourier flow problem, using

1D energy coupling. The method’s ability to compensate for inaccurate boundary and

constitutive information has been explored across a range of conditions. For most of

the cases considered, the hybrid procedure was found to converge inside only 3 itera-

tions. Generally, good agreement with full DSMC simulations was observed, with the

exact level of accuracy depending on the micro element arrangement. The computa-
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tional speed-ups reported in this chapter were, at best, modest. The micro element

arrangement can, however, be adjusted to attain the desired balance of accuracy with

efficiency, and this Fourier flow problem was selected only as a simple validation case.

Before tackling 2D/3D problems, the method must first be tested on non-stationary

flows with simultaneous momentum and energy coupling.



Chapter 6

High-speed micro Couette flow: a

1D validation problem

Interesting flow problems often involve the transport of momentum and heat. The

method is therefore used to simulate high-speed micro Couette flow in this chapter; a

gas is confined between two infinite parallel planar walls that have the same temper-

ature Twall, but are moving at different planar speeds, ulower and uupper. With high

speeds (i.e. Mach number Ma > 0.2), viscous heating occurs in the gas. This flow

problem will demonstrate the full coupling algorithm of the method: the local contin-

uum velocity, temperature, and density fields are imposed on the micro elements, and

the resulting global stress and heat flux corrections are applied to the modified conser-

vation equations. Note, however, that mass conservation is satisfied automatically, and

so density coupling is required only in the macro-to-micro direction — no DSMC data

is needed to satisfy mass conservation. The results from a number of test cases will

be validated against solutions from equivalent full DSMC simulations. Micro Couette

flow problems can be representative of the flow in, for example, micro gas bearings, or

between computer-disk-reader heads and the rotating hard disks [39].

6.1 Computational set-up

The computational set-up for this Couette flow problem is similar to that outlined for

the Fourier flow problem in Chapter 5. The continuum grid takes the form of My macro

88



CHAPTER 6 HIGH-SPEED MICRO COUETTE FLOW: A 1D VALIDATION PROBLEM 89

nodes, as depicted in Fig. 6.1. An example micro element arrangement is shown, while

the actual arrangement will depend on the case under consideration. The measurement

and control bins have the same height δy and, for convenience, the centre of each bin b

is set to coincide exactly with a macro node j. The bin height δy is then equal to the

macro node spacing ∆y.

sampling regions

relaxation regions

imposed particle 

distribution

solid walls

∆y

bulk 

micro element

near-wall 

micro element

near-wall 

micro element

δy H

x

T
wall

y

u
upper

T
wall

u
lower

Figure 6.1: Schematic of the computational set-up for a 1D Couette flow problem.

6.2 Coupling algorithm

Reasonable (and constant) reference values are assumed for the gas dynamic viscosity

and thermal conductivity: µref and κref, respectively. The true variation of these trans-
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port properties will then be modelled indirectly by the constitutive correction fields.

In the streamwise x-direction, the modified momentum conservation equation (4.6) is

reduced to,

µref
d2u

dy2
+
dΩxy

dy
= 0, (6.1)

where u is the streamwise velocity component. The variation of the pressure trans-

verse to the streamwise direction may be non-zero for high-speed flows, and so the

conservation of momentum in the y-direction reads,

dp

dy
− dΩyy

dy
= 0. (6.2)

With viscous heating in the gas, the conservation of energy must also be considered;

the modified energy equation (4.7) is reduced to,

κref
d2T

dy2
− dΦy

dy
+ µref

(
du

dy

)2

+
du

dy
Ωxy = 0. (6.3)

The three constitutive correction fields are computed from the sampling regions of the

micro elements by rearranging Eqs. (4.4) and (4.5), i.e.

Ωxy = τxy − µref
du

dy
, (6.4)

Ωyy = τyy, (6.5)

and

Φy = qy + κref
dT

dy
. (6.6)

Therefore, the coupling algorithm for this high-speed Couette problem is as follows:

(0) With no corrections, Eqs. (6.1), (6.2), and (6.3) can be represented by finite

difference approximations,

µref
(uj−1 − 2uj + uj+1)

∆y2
= 0, (6.7)

(pj − pj−1)

∆y
= 0, (6.8)
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and

κref
(Tj−1 − 2Tj + Tj+1)

∆y2
+ µref

(u2
j−1 − 2uj+1uj−1 + u2

j+1)

4∆y2
= 0, (6.9)

respectively, where j=2, 3, ...(My − 1). With no velocity slip (i.e. u1 = ulower

and uMy = uupper), solving Eq. (6.7) provides the initial NSF velocity field uNSF

in the streamwise direction. Unfortunately, there are no obvious initial values

for the boundary pressures and so a gauge pressure p′1 = 0 is assumed at the

lower wall; solving Eq. (6.8) then produces a gauge pressure field p′NSF. The NSF

velocity field uNSF is used to solve Eq. (6.9) — assuming no temperature jump

(i.e. T1 = TMy = Twall), this provides the NSF temperature field TNSF.

According to the ideal gas law, the actual pressure field pNSF can then be ex-

pressed as,

pNSF = p′NSF + δp = ρNSFRTNSF, (6.10)

where δp is the difference between the gauge pressure and the actual pressure.

Considering the variation of the density field ρNSF across the channel, i.e.

∫
ρNSFdy =

My∑
j=1

ρNSFj = ρavH, (6.11)

the pressure difference δp is calculated from,

δp =

ρavH − 1
R

My∑
j=1

(
p′NSF
TNSF

)
j

1
R

My∑
j=1

(
1

TNSF

)
j

, (6.12)

where ρav is the average density of the gas in the system and H is the separation

between the moving walls. The actual pressure field pNSF and the density field

ρNSF are then calculated from Eq. (6.10).

(1) All DSMC micro elements are initialised at equilibrium: the velocity, temperature,

and density for initialisation are obtained by averaging over a sub-region of the

continuum solution that corresponds to the element.
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Each element is then constrained as follows:

(a) The local continuum velocity, temperature, and density fields are imposed

over each relaxation region by implementing all three state controllers in

each control bin.

(b) Based on the local continuum properties, Maxwellian particle distributions

are imposed at the outer boundaries of each relaxation region via a diffuse

reflection boundary.

(2) The DSMC algorithm is performed in each micro element for a transient start-up

period and a subsequent steady-state averaging period.

(3) The time-averaged macroscopic properties are extracted from the measurement

bins of each sampling region. The properties of the gas at the moving walls are

also extracted from the wall-adjacent bin faces of both near-wall sampling regions.

(4) The shear stress correction in each measurement bin and at each wall is computed

according to Eq. (6.4); the velocity gradient in each bin (and at each bounding

wall) is approximated using a finite difference scheme based on the velocities in

the adjacent bins (or at the adjacent bounding wall), e.g. for a bin b,

Ωxyb = τxyb − µref
(ub+1 − ub−1)

2δy
. (6.13)

From Eq. (6.5), the normal stress correction in each bin b (and at each wall) is

simply,

Ωyyb = τyyb . (6.14)

The heat flux correction in each measurement bin and at each wall is computed

from Eq. (6.6); again, the temperature gradient is represented by a finite difference

approximation, e.g.

Φyb = qyb + κref
(Tb+1 − Tb−1)

2δy
. (6.15)

(5) Interpolations of the correction fields are then performed between the sampling

regions to obtain Ωxy, Ωyy, and Φy everywhere in the system. Interpolations of

the gas boundary information are not required for this 1D problem.



CHAPTER 6 HIGH-SPEED MICRO COUETTE FLOW: A 1D VALIDATION PROBLEM 93

(6) With these global correction fields, Eqs. (6.1), (6.2), and (6.3) can again be rep-

resented using a finite difference scheme, i.e.

µref
(uj−1 − 2uj + uj+1)

∆y2
+

(Ωxyj+1
− Ωxyj−1

)

2∆y
= 0, (6.16)

(pj − pj−1)

∆y
−

(Ωyyj − Ωyyj−1
)

∆y
= 0, (6.17)

and,

κref
(Tj−1 − 2Tj + Tj+1)

∆y2
−

(Φyj+1 − Φyj−1)

2∆y

+µref

(u2
j−1 − 2uj+1uj−1 + u2

j+1)

4∆y2
+

(uj+1 − uj−1)

2∆y
Ωxyj = 0,

(6.18)

respectively, where j=2, 3, ...(My−1). The boundary conditions are now updated

to the gas velocities, pressures, and temperatures measured at the bounding walls

during Step (3). Solving Eqs. (6.16), (6.17), and (6.18) then provides the new,

corrected streamwise velocity field ucorr, pressure field pcorr, and temperature field

Tcorr, respectively. The new density field ρcorr is also computed from the ideal gas

law, ρcorr = pcorr/RTcorr.

(7) Replacing the NSF property fields (i.e. uNSF, TNSF, pNSF, and ρNSF) with these

new, corrected property fields (i.e. ucorr, Tcorr, pcorr, and ρcorr), the process is

repeated from Step (1). Iterations continue until all fields converge to within

user-defined tolerances.

6.3 Results

The working gas is monatomic argon for all test cases in this chapter, with the VHS

parameters as stated in section 5.3. The separation H between the walls is 1 µm and

My = 201 macro nodes are used for all cases; this results in a node spacing ∆y = 5

nm (= δy). Both moving walls are maintained at a temperature Twall = 273 K and

are fully diffuse unless stated otherwise. The global Knudsen number Kngl = λgl/H

is 0.01 for all cases, i.e. the gas density is set to obtain λgl = 0.01 µm from Eq. (2.9).

Although this value of Kngl is fairly small, viscous heating of the gas will produce local
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non-equilibrium effects in the bulk of the flowfield, and the average gas temperature

Tav will be considerably larger than Twall.

In all cases, both walls move at the same speed but in opposite directions. Two

wall speeds are considered to test the coupling strategy of the hybrid method: first,

the walls are ‘supersonic’ with a speed corresponding to a Mach number Ma ≈ 1.1;

secondly, the walls are ‘hypersonic’ with a speed corresponding to Ma ≈ 5. Note that

these Mach numbers are approximated based on the speed and the temperature of the

wall (with no slip/jump), i.e.

Ma =
|uwall|√
γRTwall

, (6.19)

where |uwall| = |ulower| = |uupper|, and γ is the ratio of specific heats.

The same cell dimensions and DSMC time step δt are adopted in both the hybrid

micro simulations and the corresponding full DSMC simulation for each test case; for

all cases in this chapter, δt = 1×10−12 s. The start-up and averaging time periods

are also the same for both the micro and full DSMC simulations. A start-up run of 3

million time steps enables all DSMC simulations in this chapter to relax to a steady-

state. As statistical scatter is lessened at higher flow speeds, the averaging period is set

depending on the wall speed: a period of 30 million time steps is used for Ma ≈ 1.1,

while 20 million time steps is adequate for Ma ≈ 5.

For each property s (i.e. s = u, T, p, and ρ), convergence of the hybrid solution

occurs when,

ζs
k =

1

My

My∑
j

∣∣∣∣∣s
k
corrj − s

k−1
corrj

skcorrj

∣∣∣∣∣ ≤ ζtols , (6.20)

where k is the iteration index, j=1, 2, ...My, and ζtols is the property tolerance value that

depends on both the property and the case itself; the hybrid algorithm is converged

when all properties satisfy their convergence criterion. The accuracy of each hybrid

property solution is then quantified by the mean percentage error, i.e.

ε̄ks =
1

My

My∑
j

[
sFullj − skcorrj

sref
× 100%

]
, (6.21)

where sref is a constant reference value. As the velocity u, temperature T , and density

ρ vary considerably across the flowfield, sref is the range of the full DSMC solution
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for these properties, i.e. sref = sFull, max−sFull, min. The pressure p, on the other hand,

remains almost constant across the flowfield and so sref is the average of the full DSMC

pressure field, i.e. pref = pFull, av. The values of these mean percentage errors will

depend on the accuracy of the correction fields Ωxy, Ωyy, and Φy constructed by the

hybrid method; ideally these should match the full DSMC corrections Ωxy,Full, Ωyy,Full,

and Φy,Full that are calculated by substituting the full property fields (i.e. uFull, TFull,

τxy,Full, τyy,Full, and qy,Full) into Eqs. (6.4), (6.5), and (6.6), respectively.

6.3.1 Supersonic flow

First, both walls move with a speed corresponding to Ma ≈ 1.1, i.e. ulower= −340 m/s

and uupper= 340 m/s. Assuming no velocity slip or temperature jump, the NSF solu-

tion predicts an average gas temperature Tav = 322.13 K. Based on this temperature,

Eq. (2.9) indicates that an average gas density ρav = 8.98 kg/m3 is required to obtain

λgl = 0.01 µm. Also based on this temperature, a reference viscosity µref = 2.4×10−5

kg/ms and reference conductivity κref = 0.019 W/mK are adopted [121]. A number of

micro element configurations are considered for this case; for all, the interpolations of

all three correction fields between adjacent sampling regions are simply linear.

An initial configuration is based on the sensitivity study performed in Chapter 5:

with only two near-wall elements (Π = 2), an extent of 5λl is adopted for each sampling

and relaxation region, i.e.HSR = HRR = 5λl. As discussed previously, the first iteration

of the method assumes λl=λgl, while subsequent iterations calculate λl for each element

using Eq. (2.9). Figure 6.2 shows that this initial configuration (represented by the blue

dashed line) does not enable the velocity field to converge to within ζtolu= 0.02 inside

the 5 iterations performed. The temperature, pressure, and density are, however, able

to converge to within ζtolT= ζtolp= ζtolρ= 0.002 inside 3 iterations.

Although it is difficult to observe the accuracy of the final hybrid property fields

depicted in Fig. 6.3, the mean percentage errors in these fields shown in Fig. 6.4 con-

firm that this initial configuration provides only a slight improvement over the NSF

solution (represented by results at iteration k=0). This is because of the correction

fields constructed by the method, which are presented in Fig. 6.5 for k = 5; with this

micro element configuration, the approximations of all three correction fields are quite
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poor. An increase in the micro resolution should increase the method’s accuracy: the

addition of bulk elements should improve the capture of the shear stress correction

Ωxy and hence the accuracy of ucorr; extending the near-wall sampling regions should

improve the capture of the heat flux correction Φy, increasing the accuracy of Tcorr.

Three alternative micro element configurations are therefore considered: in the first,

there are only two near-wall elements (i.e. Π = 2); in the second, a bulk element centred

at y = 0.5H is added (i.e. Π = 3); in the third, two bulk elements centered at y = 0.33H

and y = 0.67H are added (i.e. Π = 4). The extents of the near-wall sampling regions are

increased to HSR=15λl, while each bulk sampling region has an extent of HSR=10λl.

The extents of the relaxation regions remain at HRR=5λl.

With the same tolerance values as the initial test case, Fig. 6.2(a) shows that the

velocity convergence is subject to fluctuations when Π = 2, but occurs inside 3 iterations

when Π = 3 or Π = 4. Again, the temperature, pressure, and density fields are able to

converge inside 3 iterations for all configurations.
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Figure 6.2: Supersonic Couette flow: convergence of the (a) velocity, (b) temperature, (c)
pressure, and (d) density solutions for all four of the hybrid configurations implemented.

Compared with the results from the initial test case, the extension of the near-

wall sampling regions in the new configurations improves the approximations of all

three corrections, as shown in Fig. 6.5. Unfortunately this has come at an increased

computational cost, as will be discussed in section 6.4. Adding elements in the bulk

offers no real benefit for the capture of Ωyy or Φy — it does, however, enable a more
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accurate approximation of Ωxy, reducing ε̄u to below 0.1%. It can be noted that Π = 4

does not produce significantly better accuracy than Π = 3; see Fig. 6.4. The use of one

bulk element (Π = 3) can be considered sufficient for this case.
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Figure 6.3: Supersonic Couette flow: final hybrid (a) velocity ucorr (b) temperature Tcorr (c)
pressure pcorr and (d) density ρcorr solutions for all four configurations, alongside the NSF and full
DSMC solutions.
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6.3.2 Hypersonic flow

The wall speeds are now increased to ulower= −1550 m/s and uupper= 1550 m/s, cor-

responding to Ma ≈ 5. Although hypersonic conditions are unlikely in the types of

problems that Couette flow can represent, the purpose of this case is simply to test the

hybrid coupling algorithm more rigorously than the previous supersonic flow case.

With no velocity slip or temperature jump, the initial NSF solution predicts an

average gas temperature Tav = 1294 K. From Eq. (2.9), a gas density ρav = 11.66

kg/m3 is then required to obtain λgl = 0.01 µm. Reference values of µref = 6.25×10−5

kg/ms and κref = 0.049 W/mK are also assumed [121].

It is expected that the viscous heating in the gas will be significant with such

high wall speeds, resulting in highly non-equilibrium flow in the bulk. To test the

performance of the hybrid method in such highly non-equilibrium conditions, the same

three micro element configurations that were considered for the supersonic flow case are

considered once more, i.e. Π = 2, Π = 3, and Π = 4; the near-wall and bulk sampling

regions have extents of 15λl and 10λl, respectively, while the relaxation regions have

extents of 5λl. Once again, linear interpolations are performed between the sampling

regions to approximate the global corrections.

With tolerance values of ζtolu= 0.05 and ζtolT= ζtolp= ζtolρ= 0.002, Fig. 6.6 shows

that all hybrid property fields converge inside 3 iterations, for all three configurations.
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Figure 6.6: Hypersonic Couette flow: convergence of the (a) velocity, (b) temperature, (c)
pressure, and (d) density solutions for all three of the hybrid configurations implemented.
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The final property fields at iteration k = 5 are shown in Fig. 6.7, while the mean

percentage error in the property fields at each iteration is presented in Fig. 6.8. The

final hybrid correction fields at k = 5 are also shown in Fig. 6.9.
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As would be expected, the higher degree of non-equilibrium in this hypersonic flow

case means that (when comparing against the corresponding full DSMC solutions)

the NSF prediction of the property fields is considerably less accurate than the NSF

prediction for the previous supersonic case, i.e. compare k = 0 in Fig. 6.4 and Fig. 6.8.

When simulating this hypersonic case with only two near-wall elements, the mean errors

in the final velocity and pressure fields produced from the method are ε̄u = 1.53% and

ε̄p = 4.47%, respectively. By adding elements in the bulk, improved approximations

of Ωxy and Ωyy reduce these errors down to approximately 0.1%, for both Π = 3 and

Π = 4. The largest difference in accuracy between the two bulk element configurations

lies in the temperature solution, largely due to the capture of Φy: one bulk element

results in ε̄T = 2.42%, while two bulk elements gives ε̄T = 1.59%. This increase in

accuracy might not be considered to be worth the increase in the computational cost;

the cost of all three configurations will be discussed in section 6.4.

Alternative interpolation approaches

So far, all of the hybrid simulations performed in this chapter (and the previous chapter)

have approximated the global corrections across the entire flowfield by using simple

linear interpolations between the local correction fields of adjacent sampling regions.

Based on this hypersonic test case and considering both bulk element configurations

(i.e. Π = 3 and Π = 4), three alternative approaches are now investigated.

The first is cubic interpolations: essentially, a third degree polynomial is generated

to fill the gap between adjacent sampling region corrections. Instead of interpolations,

the second alternative fits a global curve across the entire flowfield based on the local

corrections in all of the sampling regions: a polynomial curve of order np is generated

using the MATLAB ‘polyfit’ function [122]. The third alternative is also a global curve-

fitting approach: B-splines are fit over the entire flowfield using the MATLAB ‘splinefit’

function [123], where the data is split into pieces and splines of order ns are applied to

each piece; here, the correction data is split into 20 uniform pieces (i.e. each piece has

the same number of data points).

Before performing any hybrid simulations, a fair comparison of these alternative

approaches is made by performing tests on the ‘ideal’ sampling region corrections, i.e.
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interpolation/fitting is carried out based on the sections of the full DSMC correction

fields that correspond to each sampling region. Along with observing the resulting

global correction fields, the accuracy of each approach is measured by calculating the

mean percentage error in comparison with the actual correction fields computed from

the full DSMC solution, i.e. for Γ = Ωxy,Ωyy and Φy,

ε̄Γ =
1

My

My∑
j

[
ΓFullj − Γj

(ΓFull, max − ΓFull, min)
× 100%

]
. (6.22)

As all three corrections are known to vary considerably across the system, the denom-

inator for each is the range of the full DSMC correction field.

The values of ε̄Ωxy , ε̄Ωyy , and ε̄Φy that result from applying linear interpolations

and these three alternatives approaches to the ideal sampling region data are given in

Table 6.1, for both Π=3 and Π=4. Linear interpolations are fairly accurate for both

configurations, with the errors in all three correction fields below 1.5% — this approach

therefore provides a benchmark, against which the other three approaches are measured.

Note that only selected values of np and ns are shown: these highlight the spread of

accuracy; higher values are typically less accurate. As would be expected, two bulk

elements (Π = 4) are more accurate than only one (Π = 3) for all four approaches.

Π=3 Π=4
np or ns ε̄Ωxy ε̄Ωyy ε̄Φy (%) ε̄Ωxy ε̄Ωyy ε̄Φy (%)

Linear - 1.34 0.61 0.38 0.37 0.59 0.10

Cubic - 0.68 0.81 0.19 0.26 0.62 0.06

Polyfit 3 6.43 2.55 4.13 6.86 2.54 2.01
6 7.04 8.31 3.27 3.96 4.96 1.37
9 11.13 20.50 3.05 2.09 4.27 0.77
12 5.32 18.58 6.83 2.16 6.64 0.77
15 13.07 45.84 2.55 1.62 6.26 0.50
18 27.24 65.51 11.05 2.26 8.95 0.71

Splinefit 3 0.53 1.60 0.34 0.23 1.59 0.27
6 1.45 2.62 0.47 0.75 1.34 0.13
9 6.12 14.83 1.11 0.63 2.89 0.13
12 15.05 24.88 3.82 1.18 5.77 0.22
15 18.74 30.59 4.60 1.07 6.06 0.18
18 59.68 248.3 36.62 1.20 26.60 1.40

Table 6.1: Mean errors in the correction fields produced from all interpolation/fitting approaches.
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Although it is difficult to observe from the resulting global correction fields shown

in Fig. 6.10, the error values in Table 6.1 indicate that, compared with linear interpola-

tions, cubic interpolations provide a slight increase in the accuracy of Ωxy and Φy and

a slight decrease in the accuracy of Ωyy.
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Figure 6.10: Global correction fields with linear and cubic interpolations: Ωxy for (a) Π = 3 and
(b) Π = 4; Ωyy for (c) Π = 3 and (d) Π = 4; and Φy for (e) Π = 3 and (f) Π = 4. Full DSMC
global corrections are also shown. Insets show detailed views of interpolations.

For both Π = 3 and Π = 4, the fitting of polynomial and B-spline curves is increas-

ingly erratic with increasing values of np and ns; see Figs. 6.11 and 6.12, respectively.

The mean error values in Table 6.1 confirm that, with the exception of ns = 3, the

polynomial and spline fitting approaches are less accurate than linear interpolations.
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Note that, although the normal stress correction curves Ωyy produced for np = 3 and

np = 6 appear to match well to the full DSMC correction Ωyy,Full in Fig. 6.11, these

polynomial curves are not able to capture the sharp change close to the bounding walls.

Table 6.1 also shows that spline fitting is typically less accurate than polynomial fitting

for Π = 3, but more accurate than polynomial fitting for Π = 4. Similar to the cubic

interpolations, fitting cubic splines with ns = 3 across the flowfield provides an increase

in the accuracy of Ωxy and Φy and a decrease in the accuracy of Ωyy when compared

with linear interpolations.
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Figure 6.11: Global correction fields with polynomial fitting: Ωxy for (a) Π = 3 and (b) Π = 4;
Ωyy for (c) Π = 3 and (d) Π = 4; and Φy for (e) Π = 3 and (f) Π = 4. Full DSMC global
corrections are also shown.
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Figure 6.12: Global correction fields with spline fitting: Ωxy for (a) Π = 3 and (b) Π = 4; Ωyy
for (c) Π = 3 and (d) Π = 4; and Φy for (e) Π = 3 and (f) Π = 4. Full DSMC global corrections
are also shown.

Therefore, based on this testing, cubic interpolations and cubic spline fitting (i.e.

with ns = 3) were implemented in hybrid simulations of this hypersonic test case; note

that these alternative approaches were used only to obtain the global Ωxy and Φy fields,

with linear interpolations performed to obtain the global Ωyy field.

When comparing the mean percentage errors in the property fields that resulted

from these hybrid simulations, cubic interpolations were found to have approximately

the same accuracy as linear interpolations, as depicted in Fig. 6.13 for Π = 4. However,

the response of the cubic spline fitting approach to the real sampling region data was
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generally unpredictable; see Fig. 6.14 for Π = 4. Unfortunately, this resulted in the

iterative algorithm of the hybrid method becoming unstable, with the property fields

(particularly Tcorr) diverging from the full DSMC solution as iterations continued.
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Figure 6.13: Hypersonic Couette flow: mean errors in the hybrid (a) velocity, (b) temperature,
(c) pressure, and (d) density solutions with different interpolation/fitting approaches and Π=4.
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Figure 6.14: Hypersonic Couette flow: full DSMC and final hybrid (a) shear stress Ωxy, and (b)
heat flux Φy correction fields, with different interpolation/fitting approaches and Π=4.
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With no particular advantage from the use of cubic interpolations, linear interpola-

tions are adequate for this case. In fact, for any given problem, simple linear interpo-

lations will provide the most reliable approach to approximating the global correction

fields and, with sufficient micro resolution, could produce a fairly accurate solution.

Mixed specular-diffuse walls

The conventional NSF continuum-fluid description with no slip/jump does not consider

specular reflection — the bounding walls are essentially assumed to be fully diffuse. The

near-wall micro elements of this hybrid method should, however, be able to capture the

effects of specular reflection; this is now demonstrated by setting the moving walls of

this hypersonic test case to have a diffuse fraction α of 0.5.

To compare the method’s performance for this mixed specular-diffuse case with that

for the fully diffuse case, the micro element configuration that was the most accurate

for the fully diffuse case is adopted, i.e. two near-wall elements and two bulk elements,

Π = 4. Once again, the extents of the near-wall and bulk sampling regions are 15λl and

10λl, respectively, and the relaxation region extents are 5λl. Following the discussion

in the previous sub-section, linear interpolations are used to approximate the global

corrections. Figure 6.15 shows the convergence of the hybrid simulations for both

types of wall boundaries, with the final property fields presented in Fig. 6.16.
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Figure 6.15: Hypersonic Couette flow: convergence of the hybrid (a) velocity, (b) temperature,
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Figure 6.16: Hypersonic Couette flow: full DSMC and final hybrid (a) velocity (b) temperature
(c) pressure and (d) density solutions for fully diffuse (α=1) and mixed specular-diffuse (α=0.5)
walls; note that the NSF solution is the same for both wall types.

Once again, values of ζtolu= 0.05 and ζtolT= ζtolp= ζtolρ= 0.002 are selected, and so

the method converges inside 3 iterations for both cases. Compared with the correspond-

ing full DSMC solutions, the mean percentage error in each property is presented in

Fig. 6.17. The final correction fields constructed by the method are shown in Fig. 6.18.
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Figure 6.17: Hypersonic Couette flow: mean error in the hybrid a) velocity ε̄u, b) temperature
ε̄T , c) pressure ε̄p, and d) density ε̄ρ solutions for fully diffuse (α=1) and mixed specular-diffuse
(α=0.5) walls; k=0 is the NSF solution.
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Figure 6.18: Hypersonic Couette flow: full DSMC and final hybrid (a) shear stress Ωxy, (b)
normal stress Ωyy, and (c) heat flux Φy correction fields for fully diffuse (α=1) and mixed specular-
diffuse (α=0.5) walls.
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Figure 6.16 shows that, compared with fully diffuse walls, specular-diffuse walls

result in greater velocity slip (and hence a larger momentum Knudsen layer), greater

temperature jump, a higher maximum temperature in the centre of the flowfield, and

a higher average pressure. The NSF solution (which is the same for both cases) is less

accurate for the mixed specular-diffuse case than for the fully diffuse case. However,

as the micro element configuration of the hybrid method is able to construct good

approximations of all three correction fields, the final hybrid solution is equally accurate

for both types of wall boundary; ε̄u, ε̄p, and ε̄ρ are less than 1%, and ε̄T is less than 2%.

6.4 Computational savings

As in the Fourier flow problem, the Couette flow test cases examined in this chapter per-

form the micro element and full DSMC simulations for the same number of time steps,

i.e. Gtot,Hyb= Gtot,Full. Computational savings can then come only from spatial scale

separation. The computational speed-up S offered by the hybrid method is calculated

according to Eqs. (5.8) and (5.9). For each case, S is determined by the spatial extents of

the near-wall micro elements, Hlower=(HSR+HRR)lower and Hupper=(HSR+HRR)upper,

and the spatial extents of any bulk micro elements, Hbulk=(HSR + 2HRR)bulk.

Table 6.2 presents the speed-up from each of the micro element configurations con-

sidered for the supersonic test case of section 6.3.1. The initial configuration (with

Π = 2 and Hlower= Hupper= 10λl) offers a modest speed-up of 1.72×. This value of S

is, however, based on I=3 iterations. Although the temperature, pressure, and density

fields are able to converge inside 3 iterations, the velocity field is unable to converge

with this configuration, and the final results are quite poor.

Larger near-wall elements (i.e. Hlower= Hupper= 20λl) and additional bulk elements

(with Hbulk= 20λl) enable the method to converge fully inside I=3 iterations, and

improve the method’s accuracy. Unfortunately, the increased computational cost that

accompanies the increase in the micro resolution makes the hybrid method more ex-

pensive than the full DSMC simulations, i.e. S < 1 for Π = 2, 3, and 4; see Table 6.2.

This is also true of the same three configurations applied to the hypersonic case of sec-

tion 6.3.2 — even with convergence inside I=3 iterations, Table 6.3 shows that S < 1

for all three.
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The spatial element extents presented in both Tables 6.2 and 6.3 are those at k=3

and subsequent iterations; note the changes from their original extents of 0.2 µm (not

including the initial configuration applied to the supersonic case, which had original

element extents of 0.1 µm). Comparing Tables 6.2 and 6.3, it is clear that the extents

of the near-wall elements are smaller for the hypersonic case than for the supersonic

case — this is because the variation of the density field ρcorr is much more extreme in

the hypersonic case, resulting in a higher density (and hence smaller local mean free

path λl) close to the walls.

With the low spatial scale separation of these Couette flow test cases and the need

to capture multiple constitutive correction fields, the hybrid method has been unable

to provide computational savings for this flow problem (and still provide sufficient

accuracy). However, the main purpose of these test cases was simply to validate the full

coupling algorithm in 1D. As mentioned in the previous chapter, simulations of larger

2D/3D flow problems are expected to highlight any real computational advantages of

the method.

Π Hlower (µm) Hbulk (µm) Hupper (µm) I S

2 (initial) 0.095 - 0.095 3 1.72
2 0.19 - 0.19 3 0.87
3 0.19 0.205 0.19 3 0.57
4 0.19 0.205 0.19 3 0.43

Table 6.2: Computational speed-ups S for the four micro element configurations applied to the
supersonic test case of section 6.3.1.

Π Hlower (µm) Hbulk (µm) Hupper (µm) I S

2 0.17 - 0.17 3 0.99
3 0.17 0.285 0.17 3 0.55
4 0.17 0.27 0.17 3 0.41

Table 6.3: Computational speed-ups S for the three micro element configurations applied to the
hypersonic test case of section 6.3.2.
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6.5 Summary

The HMM-FWC continuum-DSMC method has been implemented for a micro Couette

flow problem, where high wall speeds cause viscous heating in the gas. The method’s

full coupling algorithm (with one-way density coupling) has been demonstrated in 1D,

considering simultaneous momentum and heat transport. The need to capture multiple

constitutive corrections meant that the method’s accuracy (compared with equivalent

full DSMC simulations) depended heavily on the micro resolution, both close to the

walls and in the bulk. Unfortunately, due to the low spatial scale separation of the

test cases considered, the micro resolution required to obtain sufficient accuracy re-

sulted in the hybrid method being more computationally expensive than the equivalent

full DSMC simulations. Nevertheless, like the Fourier flow test cases of the previous

chapter, these cases were chosen simply to validate the coupling strategy of the hybrid

method, and greater computational speed-ups might be afforded when the method is

applied to the larger 2D flow problem in the next chapter.



Chapter 7

Flow through a microscale crack:

a 2D application

In this chapter, interest lies in modelling a rarefied gas flowing through a channel that

has a high-aspect-ratio cross-section. Such channels can be encountered in MEMS

devices, but are also representative of narrow cracks. Leakage from narrow cracks is

fairly common in engineering systems like pressure vessels, pipes, and valves — as ‘leak-

before-break’ analysis is commonly adopted as a form of safety assessment (and as an

assessment of product reliability and performance), it is important that the leak rates

through these cracks can be estimated accurately.

Consider the idealised crack-type channel geometry shown in Fig. 7.1 (where the

cross-section of the flow is perfectly rectangular): the width W in the x-direction is

much greater than the height H in the y-direction, i.e. W/H � 1; the streamwise

length L is then much greater than the width.

W

H

x

y
z

L

flow

Figure 7.1: Schematic of an idealised 3D crack-type channel geometry.
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To date, the study of gas flows in crack-type geometries has focused mainly on the

continuum and slip regimes [124], with conventional fluid mechanics used to predict

the flow behaviour. However, if the mean free path of the gas is of the same order as

the crack opening (i.e. the height H), the flow will be non-equilibrium and predictions

from conventional fluid mechanics will be poor. While the DSMC method could pro-

vide accurate flow predictions for such conditions, full DSMC simulations are likely to

be prohibitively expensive for very high cross-sectional aspect-ratios. Existing DSMC

studies [125, 126] have lessened this expense by assuming negligible variation of the

flow in the direction of the width (essentially considering a 2D model in height and

length), but this assumption will not hold true if there is significant geometric varia-

tion in the direction of the width. In reality, the cross-section of a crack will not be

perfectly rectangular, for example, it could be more open at one end than the other;

surface roughness or even surface defects could also have substantial effects on the flow

behaviour.

A continuum-DSMC hybrid approach could be useful for modelling more realistic

crack-type flows that see flow variation in the direction of the width. As the entire

flowfield is near-wall, the popular DD framework would not be suitable. The point-wise

coupling approach of the original HMM would also be inefficient as the micro resolution

required over the crack/channel height would force the micro elements to overlap. While

the IMM could exploit high scale separation in the streamwise z-direction, it would

require each micro element to occupy the entire cross-sectional area and so could not

exploit scale separation in the direction of the width. Our HMM-FWC method has the

potential to deal effectively with the mixed degrees of spatial scale separation that can

exist over the cross-section of such flows — it is able to exploit high scale separation

in the direction of the width by distributing the micro elements across this dimension;

simultaneously, it can cope with the low scale separation in the direction of the height

by setting the micro elements to occupy the entire crack height. The higher the scale

separation (i.e. the more gradual the variation of the flow properties) in the direction

of the width, the more efficient our hybrid method will be.

To maintain simplicity and limit the expense of the full DSMC simulations that

we use for validation, we assume that there is no flow variation in the streamwise z-
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direction: periodicity is applied in this direction and an external acceleration az is used

drive the flow. We then demonstrate the method’s ability to cope with mixed spatial

scale separation by applying it to the 2D cross-section of the channel only; see Fig. 7.2.

Also for simplicity, we assume the channel cross-section to be perfectly rectangular,

i.e. there is no geometric variation in the direction of the width. Although it is not

necessarily representative of real crack flows, variation of the flow properties over the

crack width is instead considered by imposing a temperature difference between the left

and right walls of the channel, with an associated linear temperature gradient imposed

on the lower and upper walls. A temperature difference between the lower and upper

walls is also considered, with an associated linear temperature gradient imposed on

the left and right walls — this could be representative of, for example, flow in a high-

aspect-ratio microchannel heat exchanger. An isothermal test case and both of these

non-isothermal test cases will demonstrate the hybrid coupling procedure (including

simultaneous momentum and energy coupling) in 2D. Once again, the accuracy and

the computational cost of the hybrid method will be compared with equivalent full

DSMC simulations.

micro elements

continuum grid

x

y

z

W

H

Figure 7.2: Schematic of the HMM-FWC framework applied to the high-aspect-ratio cross-
section of a microchannel (flow is into the page); this acts as a representative geometry for a
narrow crack. The continuum grid is applied over the entire cross-section and the DSMC particle
simulations are performed in the micro elements.

More realistic geometric configurations could be considered in future work. The

HMM-FWC method could also be applied in 3D, with the streamwise extents of the

micro elements depending on the degree of scale separation in this direction. Alter-

natively, if the streamwise scale separation was very high, then significant computa-

tional savings could be achieved by combining the HMM-FWC method with the IMM:

the HMM-FWC would comprise the ‘micro elements’ spaced intermittently along the

streamwise direction of an IMM implementation.
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7.1 Computational set-up

The computational set-up for this 2D flow problem is shown in Fig. 7.3: the 2D con-

tinuum grid applied over the entire cross-section is uniform, consisting of Mx macro

nodes across the width and My macro nodes over the height (including nodes at the

bounding walls); the horizontal and vertical node spacings are ∆x and ∆y, respectively.

The micro elements span the entire height H. The element arrangement shown is an

example, consisting of a ‘side-wall’ element at each of the left and right walls and one

in the ‘bulk’ of the system. Each side-wall element comprises a single sampling region

and a single relaxation region, while each bulk element consists of a single sampling

region with a relaxation region on either side. All sampling regions are discretised into

a grid of 2D measurement bins, while all relaxation regions are split into a grid of 2D

control bins. Here, the measurement and control bins are set to have the same width

δx and height δy.

relaxation regions

sampling regions

imposed particle  

distribution

x

y

H

W

z

solid walls

continuum grid

Figure 7.3: Schematic of the computational set-up for a 2D crack-type flow problem. The macro
nodes are represented by the intersections of the horizontal and vertical lines of continuum grid.
Note that the 2D bins of the sampling and relaxation regions are independent of the macro nodes.

7.2 Coupling algorithm

Compared with its implementation for 1D flow problems, the implementation of our

hybrid method in 2D presents additional challenges: the continuum conservation equa-

tions become more complex; the micro elements must be constrained by applying

boundary conditions within 2D relaxation regions; and the interpolations of the con-

stitutive correction fields between the sampling regions must be 2D.

Once again, constant reference values of the transport properties are adopted, µref
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and κref, with the constitutive corrections capturing the true variation of these prop-

erties as the iterations proceed. With subsonic flow and periodicity in the streamwise

z-direction, mass conservation is satisfied automatically, and the transport of momen-

tum in the x- and y-directions is assumed negligible, i.e. the gas pressure and density

are assumed constant over the flow cross-section. In the streamwise z-direction, the

modified momentum equation (4.6) is reduced to,

µref

(
∂2w

∂x2
+
∂2w

∂y2

)
+ fz + Ψ = 0, (7.1)

where w is the streamwise velocity component, fz is the streamwise external force per

unit volume, and the ‘overall momentum correction’ term Ψ is the divergence of the

constitutive shear stress correction, i.e.

Ψ =
∂Ωzx

∂x
+
∂Ωzy

∂y
. (7.2)

In isothermal conditions, this momentum equation will be sufficient to describe the

macroscopic flow variation. The two constitutive stress corrections are computed from

the sampling regions of the micro elements by rearranging Eq. (4.4), i.e.

Ωzx = τzx − µref
dw

dx
, (7.3)

and

Ωzy = τzy − µref
dw

dy
. (7.4)

In non-isothermal conditions (i.e. if there is a temperature difference between the

bounding walls of the cross-section), the transport of energy must also be considered.

Using the product rule, the modified energy equation (4.7) is reduced to,

µref

[
w

(
∂2w

∂x2
+
∂2w

∂y2

)
+

(
∂w

∂x

)2

+

(
∂w

∂y

)2
]

+κref

(
∂2T

∂x2
+
∂2T

∂y2

)
+ Υ = 0,

(7.5)

where the ‘overall energy correction term’ Υ encompasses both the constitutive stress
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and heat flux corrections,

Υ = Ωzx
∂w

∂x
+ Ωzy

∂w

∂y
+ w

(
∂Ωzx

∂x
+
∂Ωzy

∂y

)
−
(
∂Φx

∂x
+
∂Φy

∂y

)
. (7.6)

The two constitutive heat flux corrections are computed from the sampling regions by

rearranging Eq. (4.5), i.e.

Φx = qx + κref
∂T

∂x
, (7.7)

and

Φy = qy + κref
∂T

∂y
. (7.8)

Therefore, for the non-isothermal cases of this flow problem, the hybrid coupling

algorithm is as follows1.

(0) With no corrections (Ψ = Υ = 0), five-point finite difference approximations are

used to represent Eqs. (7.1) and (7.5), i.e.

µref

[
(wi−1,j − 2wi,j + wi+1,j)

∆x2
+

(wi,j−1 − 2wi,j + wi.j+1)

∆y2

]
+ fzi,j = 0, (7.9)

and,

µrefwi,j

[
(wi−1,j − 2wi,j + wi+1,j)

∆x2
+

(wi,j−1 − 2wi,j + wi,j+1)

∆y2

]
+µref

[
(w2

i+1,j − 2wi−1,jwi+1,j + w2
i−1,j)

4∆x2
+

(w2
i,j+1 − 2wi,j−1wi,j+1 + w2

i,j−1)

4∆y2

]

+κref

[
(Ti−1,j − 2Ti,j + Ti+1,j)

∆x2
+

(Ti,j−1 − 2Ti,j + Ti,j+1)

∆y2

]
= 0,

(7.10)

respectively, where i=2, 3, ...(Mx−1) and j=2, 3, ...(My−1). With no velocity slip

at the solid walls, solving Eq. (7.9) obtains the initial NSF streamwise velocity

field wNSF. This NSF velocity field is then used in Eq. (7.10); with no temperature

jump, solution of this equation produces the NSF temperature field TNSF.

(1) All micro elements are initialised at equilibrium; the velocity and temperature

1The same algorithm is implemented for isothermal cases by neglecting the conservation of energy
(and hence the calculation of the heat flux corrections) and the imposition of the continuum temperature
field over the relaxation regions.
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for initialisation are obtained by averaging over a sub-region of the continuum

solution that corresponds to the element.

Each element is then constrained as follows:

(a) The local continuum velocity and temperature fields are imposed across

each relaxation region by implementing the velocity and temperature state

controllers in each 2D control bin.

(b) A Maxwellian particle distribution is imposed at the outer boundaries of each

relaxation region via a diffuse reflection boundary at the local continuum

velocity and temperature.

(c) An external acceleration az= fz/ρ is applied to all particles in the element

(in both the sampling and relaxation regions).

(2) The DSMC algorithm is executed in each micro element for a transient start-up

period, followed by a subsequent steady-state averaging period.

(3) The time-averaged macroscopic flow properties are extracted from the 2D mea-

surement bins of all sampling regions. The gas properties at the walls are also

extracted from the wall-adjacent bin faces of all sampling regions.

(4) The shear stress corrections in each measurement bin and at the walls are com-

puted according to Eqs. (7.3) and (7.4); the velocity gradients are approximated

using finite difference representations, e.g. for a bin bi,j ,

Ωzxbi,j
= τzxbi,j − µref

(wbi+1,j
− wbi−1,j

)

2δx
, (7.11)

and

Ωzybi,j
= τzybi,j − µref

(wbi,j+1
− wbi,j−1

)

2δy
. (7.12)

Similarly, the heat flux corrections in each measurement bin and at each wall are

computed from Eqs. (7.7) and (7.8); again, finite difference approximations are

used for the temperature gradients, e.g.

Φxbi,j
= qxbi,j + κref

(Tbi+1,j
− Tbi−1,j

)

2δx
, (7.13)
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and

Φybi,j
= qybi,j + κref

(Tbi,j+1
− Tbi,j−1

)

2δy
. (7.14)

(5) Global approximations of Ωzx, Ωzy, Φx, and Φy over the entire cross-section are

obtained by interpolating between the local sampling region corrections.

To approximate the global boundary information at all wall surfaces, the local

gas boundary velocities and temperatures extracted in Step (3) are interpolated

linearly across the channel width.

(6) Now with the global constitutive corrections, Eqs. (7.1) and (7.5) can again be

approximated by a five-point finite difference scheme, i.e.

µref

[
(wi−1,j − 2wi,j + wi+1,j)

∆x2
+

(wi,j−1 − 2wi,j + wi,j+1)

∆y2

]
+ fzi,j + Ψi,j = 0,

(7.15)

where the overall momentum correction is approximated as,

Ψi,j =
(Ωzxi+1,j − Ωzxi−1,j )

2∆x
+

(Ωzyi,j+1
− Ωzyi,j−1

)

2∆y
, (7.16)

and

µrefwi,j

[
(wi−1,j − 2wi,j + wi+1,j)

∆x2
+

(wi,j−1 − 2wi,j + wi,j+1)

∆y2

]
+µref

[
(w2

i+1,j − 2wi−1,jwi+1,j + w2
i−1,j)

4∆x2
+

(w2
i,j+1 − 2wi,j−1wi,j+1 + w2

i,j−1)

4∆y2

]

+κref

[
(Ti−1,j − 2Ti,j + Ti+1,j)

∆x2
+

(Ti,j−1 − 2Ti,j + Ti,j+1)

∆y2

]
+ Υi,j = 0,

(7.17)

where the overall energy correction is,

Υi,j = Ωzxi,j

(wi+1,j − wi−1,j)

2∆x
+ Ωzyi,j

(wi,j+1 − wi,j−1)

2∆y

+wi,j

(Ωzxi+1,j − Ωzxi−1,j

)
2∆x

+

(
Ωzyi,j+1

− Ωzyi,j−1

)
2∆y


−

[(
Φxi+1,j − Φxi−1,j

)
2∆x

+

(
Φyi,j+1 − Φyi,j−1

)
2∆y

]
,

(7.18)
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where i=2, 3, ...(Mx−1) and j=2, 3, ...(My−1). Using the updated global bound-

ary velocity information, solution of Eq. (7.15) provides the new, corrected stream-

wise velocity field wcorr over the cross-section. Subsequently, using this corrected

velocity field and the updated global boundary temperature information to solve

Eq. (7.17) produces the new, corrected temperature field Tcorr.

(7) Using wcorr and Tcorr to replace wNSF and TNSF, the algorithm is repeated from

Step (1) until both fields converge to within user-defined tolerances.

7.3 Results

All of the test cases considered in this chapter are based on the same channel geometry:

with a width W of 200 µm and a height H of 0.1 µm, the aspect-ratio of the cross-

section is 2000. Greater macroscopic resolution is needed in the direction of the height

than in the direction of the width; My = 26 macro nodes over the height (including

nodes at the lower and upper walls) give a vertical node spacing ∆y = 4 nm, while

Mx = 801 nodes across the width (including nodes at the left and right walls) give a

horizontal spacing ∆x = 250 nm. The micro elements of the hybrid method capture a

somewhat higher resolution — the height of each measurement/control bin δy is equal

to the vertical macro node spacing of 4 nm, but the bin width δx is 50 nm.

Argon is the working gas in all of the cases of this chapter (with the VHS parameters

stated in section 5.3). As mentioned above, both isothermal and non-isothermal cases

are considered: in the isothermal case, the gas and the fully diffuse bounding walls are

maintained at Tav= Twall= 273 K; in the non-isothermal cases, temperature differences

are present between the diffuse bounding walls but the average gas temperature remains

at Tav= 273 K. Therefore, based on this temperature, reference values µref = 2.1×10−5

kg/ms and κref = 0.0164 W/mK [121] are adopted for all cases.

The 1D test cases of the previous chapters were restricted (due to the low spatial

scale separation in the problems investigated) to low values of Kngl. All of the cases in

this chapter are, however, based on Kngl= 1. The global characteristic dimension for

this crack-type geometry is the height H, i.e. Kngl= λgl/H, and so, from Eq. (2.9), an

average gas density ρav of 0.85 kg/m3 is set to obtain λgl= 0.1 µm.
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To generate low-speed flow in the z-direction, all of the micro DSMC simula-

tions of the hybrid method (and the comparable full DSMC simulations) apply an

acceleration az of 10×1010 m/s2 to each particle; this corresponds to a body forcing

fz = ρavaz = 8.5×1010 N/m3. It is common practice to apply such large and unre-

alistic forcing in particle/molecular simulations, so that the resulting signal-to-noise

ratio is manageable. For both isothermal and non-isothermal conditions, the conven-

tional no-slip NSF solution of this flow problem predicts a maximum flow velocity of

approximately 5 m/s in the centre of the cross-section, i.e. Ma ≈ 0.016.

All of the micro and full DSMC simulations performed in this chapter use a micro

time step δt = 5×10−12 s. Steady-state conditions are reached inside a transient start-

up period of 0.6 million time steps, and a further 1.4 million time steps are then

performed to reduce the statistical scatter in the measured flow properties.

For this 2D problem, the convergence of each property field s produced from the

hybrid method (i.e. for the isothermal case, s=w; for the non-isothermal cases, s=w, T )

is monitored at each iteration k according to,

ζs
k =

1

MxMy

My∑
j

Mx∑
i

∣∣∣∣∣s
k
corri,j − s

k−1
corri,j

skcorri,j

∣∣∣∣∣ ≤ ζtols , (7.19)

where i=1, 2, ...Mx and j=1, 2, ...My. In this chapter, tolerance values of ζtolw=3×10−3

and ζtolT=3×10−4 are adopted. The accuracy of each hybrid property field is then

measured by the mean percentage error compared with the full DSMC solution, i.e.

ε̄ks =
1

MxMy

My∑
j

Mx∑
i

[
sFulli,j − skcorri,j

sFull, max − sFull, min
× 100%

]
. (7.20)

As both property fields are expected to vary considerably over the cross-section, the

denominator of this expression is the range of the full DSMC solution. These errors

will depend on the construction of Ωzx, Ωzy, Φx, and Φy, which should ideally match

the full DSMC corrections Ωzx,Full, Ωzy,Full, Φx,Full, and Φy,Full that are calculated by

using the full DSMC property fields in Eqs. (7.3), (7.4), (7.7), and (7.8), respectively.

When investigating fluid flows through cracks and general microchannels, interest

often lies in predicting the mass flow rate ṁ along the crack/channel length. For the
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2D test cases of this chapter, the mass flow rates from each solution (i.e. the NSF

approach, the hybrid method, and the full DSMC simulation) are approximated using

a surface integral,

ṁ =

∫
A
ρwdA ≈

My∑
j

Mx∑
i

[ρi,jwi,j∆x∆y] , (7.21)

where i=1, 2, ...Mx and j=1, 2, ...My. As well as using the different velocity fields from

each solution (wNSF, wHyb= wcorr, and wFull), this mass flow rate calculation is also

based on the different density fields: ρNSF and ρHyb are simply equal to the average

density ρav everywhere, while ρFull is the density field predicted from the full DSMC

simulation. For these low-speed test cases, ρFull will vary only slightly from the value

of ρav.

7.3.1 Isothermal flow

The no-slip NSF description of this isothermal flow problem (where Twall=Tav=273 K)

predicts a velocity field wNSF with a maximum of approximately 5 m/s (i.e.Ma ≈ 0.016)

in the centre of the cross-section; this is shown in Fig. 7.4(a). From Eq. (7.3), this

velocity field gives a mass flow rate prediction ṁNSF= 5.74×10−11 kg/s. A full DSMC

simulation of this same problem predicts a streamwise velocity wFull with a much larger

magnitude, and a maximum of approximately 50 m/s (i.e. Ma ≈ 0.16) in the centre

of the cross-section, as shown in Fig. 7.4(b). The mass flow rate prediction based on

wFull and ρFull is also significantly larger than the NSF prediction, with a value of

ṁFull= 73.6×10−11 kg/s.
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x (µm)

(a)
(b)
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x (µm)

y  (10
-2
µm)

y  (10
-2
µm)

Figure 7.4: Isothermal crack flow: surface plot of (a) the NSF velocity field wNSF and (b) the
full DSMC velocity field wFull.
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The aim of the hybrid method is to iterate from the NSF solution towards the

‘correct’ full DSMC solution at a computational cost that is less than that of the full

DSMC simulation. When implementing the method for this case, two micro element

configurations are considered: the first uses only two side-wall elements, at the left

and right walls (i.e. Π = 2); the second considers the addition of a bulk element (i.e.

Π = 3) that is centred at x=0.5W . Following some initial testing, horizontal extents of

WSR=WRR=5λl were deemed sufficient for the sampling and relaxation regions, with

both adapting dynamically at each iteration depending on λl. The interpolations of the

local shear stress correction fields and boundary velocities across the width are linear.

For both element configurations, the velocity fields produced from the hybrid method

were able to converge within 6 iterations; see Fig. 7.5. To compare the final hybrid

velocity fields with the NSF and full DSMC velocity fields shown in Fig. 7.4, the veloc-

ity profiles across the channel width at the centreline of its height (i.e. at y=0.5H) are

depicted in Fig. 7.6(a). Similarly, the velocity profiles over the height at the centreline

of the width (i.e. at x=0.5W ) are shown in Fig. 7.6(b). The solution from both hybrid

configurations is shown to agree almost exactly with the the full DSMC solution.
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Figure 7.5: Isothermal crack flow: convergence of wcorr for both configurations.
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Figure 7.6: Isothermal crack flow: the NSF, full DSMC and final hybrid velocity solutions, (a)
across the width at y = 0.5H, and (b) over the height at x = 0.5W , for both configurations.
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The mean percentage error ε̄w presented in Fig. 7.7 confirms that the hybrid method

is able to achieve a major increase in accuracy over the NSF solution — while the NSF

velocity solution has a mean error of 112.98%, the hybrid method is able to reduce this

to below 1% after 6 iterations, for both Π = 2 and Π = 3. The same is true of the mass

flow rate: compared with the full DSMC prediction, the NSF prediction has an error of

92.2%; contrastingly, both hybrid configurations are able to predict ṁHyb= 73.7×10−11

kg/s, equating to an error of only 0.14%.
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Figure 7.7: Isothermal crack flow: mean error ε̄w in the hybrid velocity field for both configura-
tions; k=0 represents the initial NSF solution.

For this flow problem, there is no increase in accuracy with the addition of a bulk

micro element. This is because both configurations are able to construct good approx-

imations of the constitutive stress correction fields; the corrections computed from the

full DSMC solution are depicted in Fig. 7.8. The excellent agreement between the final

corrections approximated by the hybrid method and these full DSMC corrections is

shown by the profiles across the width at y=0.5H and over the height at x=0.5W in

Fig. 7.9. Although two side-wall elements are sufficient for this case, this may not be

true if there is variation in the flow properties across the width.
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Figure 7.8: Isothermal crack flow: surface plots of the full DSMC stress correction fields, (a)
Ωzx, and (b) Ωzy.
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Figure 7.9: Isothermal crack flow: full DSMC and final hybrid stress corrections, Ωzx (a) across
the width at y=0.5H and (b) over the height at x=0.5W , and Ωzy (c) across the width at y=0.5H
and (b) over the height at x=0.5W , for both configurations.

The computational savings afforded by the hybrid method for this test case and the

non-isothermal test cases in the following sub-sections will be discussed in section 7.4.

7.3.2 Non-isothermal flow: a temperature difference across the width

A temperature difference between the left and right walls is now considered: the left

wall is set at Tleft= 223 K while the right wall is set at Tright= 323 K; the associated

linear temperature gradient is then imposed on the lower and upper walls.

The NSF velocity and temperature solutions for this case are presented in Fig. 7.10(a)

and (c), respectively; wNSF does not incorporate the effects of the temperature differ-

ence on the flow velocity, while TNSF assumes a linear temperature variation in the

x-direction. Once again, the streamwise velocity wFull predicted from a full DSMC

simulation has a much larger magnitude, as shown in Fig. 7.10(b); this velocity field

is somewhat skewed, with a larger velocity at the colder left wall and a maximum

of approximately 55 m/s (i.e. Ma ≈ 0.18). Although it is difficult to observe from

Fig. 7.10(d), the full DSMC temperature field TFull features small thermal Knudsen

layers at the left and right walls.

With variation of the flow properties in the x-direction, the hybrid method is per-

formed with two side-wall elements and one bulk element at x=0.5W (i.e. Π = 3).
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Each sampling and relaxation region has a horizontal extent WSR=WRR=5λl, and the

interpolations of the local correction fields and boundary properties are linear.
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Figure 7.10: Crack flow with a temperature difference across the width: surface plot of (a) the
NSF velocity field wNSF, (b) the full DSMC velocity field wFull, (c) the NSF temperature field
TNSF, and (d) the full DSMC temperature field TFull.

Using this element configuration, Fig. 7.11 shows that both the velocity and temper-

ature fields produced from the method reach convergence inside 6 iterations. The final

hybrid velocity and temperature fields are then compared with the full DSMC fields

by observing the profiles across the channel width at y=0.5H, and over the height at

x=0.5W ; see Fig. 7.12. For both properties, the method predicts fields that match

almost exactly those obtained from the full DSMC simulation, capturing the skew of

the velocity in the x-direction, and the thermal Knudsen layers at the side walls.

As for the isothermal case, the hybrid method provides a substantial reduction in

the mean error ε̄w: the initial NSF solution has a mean error value of 97.59%; the

hybrid method reduces this to only 0.81% inside 5 iterations, as shown in Fig. 7.13(a).

Although the initial NSF temperature solution has a mean error of only 3.11%, the

method is able to reduce this to 0.25% inside 6 iterations; see Fig. 7.13(b).
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Figure 7.11: Crack flow with a temperature difference across the width: convergence of (a) wcorr

and (b) Tcorr.
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Figure 7.12: Crack flow with a temperature difference across the width: the NSF, full DSMC
and final hybrid velocity solutions (a) across the width at y=0.5H and (b) over the height at
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Figure 7.13: Crack flow with a temperature difference across the width: mean error in the hybrid
(a) velocity and (b) temperature fields at each iteration; k=0 represents the NSF solution.
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As well as providing highly accurate predictions of the velocity and temperature

fields over the cross-section, the hybrid method is also able to provide an excellent

approximation of the mass flow rate: compared with the full DSMC prediction for this

test case, ṁFull= 73.97×10−11 kg/s, the hybrid prediction of ṁHyb= 74.1×10−11 kg/s

has an error of only 0.18%. On the other hand, the prediction from the NSF description

(which is the same as that for the isothermal case, ṁNSF=5.74×10−11 kg/s) equates to

an error of 92.24%.

Such high accuracy is achieved as this hybrid configuration is able to generate

good approximations of all four constitutive correction fields; the full DSMC correction

fields are presented in Fig. 7.14. The final correction fields constructed by the hybrid

method are compared against these full DSMC corrections in Fig. 7.15, which shows a

comparison of the profiles across the width at y=0.5H and over the height at x=0.5W

for all four corrections. Note that substantial scatter makes it difficult to observe the

true variation of the heat flux correction fields. Scatter in the bulk micro element also

results in a discontinuity in the hybrid method’s approximation of Φx near the centre

of the channel width, which can be seen in Fig. 7.15(c). Fortunately, the effects of this

discontinuity are not significant.
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Figure 7.14: Crack flow with a temperature difference across the width: surface plot of the full
DSMC (a) Ωzx, (b) Ωzy, (c) Φx, and (b) Φy correction fields.
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Figure 7.15: Crack flow with a temperature difference across the width: full DSMC and final
shear stress corrections, Ωzx over (a) y=0.5H and (b) x=0.5W , and Ωzy over (c) y=0.5H and (d)
x=0.5W . Similarly, the full DSMC and final heat flux corrections, Φx over (e) y=0.5H and (f)
x=0.5W , and Φy over (g) y=0.5H and (h) x=0.5W .

7.3.3 Non-isothermal flow: a temperature difference over the height

To test the method further, the same temperature difference is now imposed between

the lower and upper walls, i.e. the lower wall is set at Tlower= 223 K while the upper wall

is set at Tupper= 323 K. A linear temperature gradient between these two temperatures

is imposed on the left and right walls.

As in the non-isothermal test case of the previous sub-section, the NSF prediction

of the streamwise velocity wNSF for this problem does not incorporate the effects of the



CHAPTER 7 FLOW THROUGH A MICROSCALE CRACK: A 2D APPLICATION 132

temperature difference on the flow velocity, and the temperature field TNSF assumes

a linear temperature variation, now in the y-direction; see Figs. 7.16(a) and (c), re-

spectively. Again, the velocity field wFull predicted from a full DSMC simulation has a

much larger magnitude; although it is difficult to see in Fig. 7.16(b), this field is some-

what skewed in the y-direction, with a maximum velocity of approximately 51 m/s (i.e.

Ma ≈ 0.17) closer to the hotter upper wall. The full DSMC temperature field TFull

depicted in Fig. 7.16(d) shows significant temperature jump and substantial thermal

Knudsen layers at the lower and upper walls.
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Figure 7.16: Crack flow with a temperature difference over the height: surface plot of (a) the
NSF velocity field wNSF, (b) the full DSMC velocity field wFull, (c) the NSF temperature field
TNSF, and (d) the full DSMC temperature field TFull.

The hybrid micro element configuration that was used to simulate the previous non-

isothermal case is used again (i.e. Π=3 and WSR=WRR=5λl), and linear interpolations

provide approximations of the global correction fields and boundary properties. With

this configuration, the hybrid velocity and temperature solutions converge inside 7

iterations, as shown in Fig. 7.17. The velocity and temperature profiles depicted in

Fig. 7.18 confirm that the method is, once again, able to predict property fields that

agree closely with those of the full DSMC simulation: the hybrid velocity field is able
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to model the skew of the velocity in the y-direction, and the hybrid temperature field

is able to capture the large thermal Knudsen layers at the lower and upper walls.
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Figure 7.17: Crack flow with a temperature difference over the height: convergence of (a) wcorr

and (b) Tcorr.
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Figure 7.18: Crack flow with a temperature difference over the height: the NSF, full DSMC and
final hybrid velocity solutions (a) across the width at y=0.5H and (b) over the height at x=0.5W ,
and the NSF, full DSMC and final hybrid temperature solutions (c) across the width at y=0.5H
and (d) over the height at x=0.5W .

Compared with the full DSMC solution, the mean error in the NSF velocity solution

is 109.23%; Fig. 7.19(a) shows that the hybrid method is able to reduce this to only

0.87% inside 7 iterations. The error in the initial NSF temperature field is 26.73%

for this case — this is considerably larger than for the previous non-isothermal test

case. Nevertheless, a reduction to only 0.56% is achieved by the hybrid method inside

7 iterations, as indicated in Fig. 7.19(b).
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Figure 7.19: Crack flow with a temperature difference over the height: mean error in the hybrid
(a) velocity field and (b) temperature field at each iteration; k=0 represents the NSF solution.

The mass flow rate predicted by the full DSMC simulation of this case is ṁFull=

74.41×10−11 kg/s. Compared with this value, the error in the NSF prediction (which

is again ṁNSF= 5.74×10−11 kg/s) is 92.93%. Fortunately, after 7 iterations, the hybrid

method estimates ṁHyb= 74.42×10−11 kg/s, equating to an error of only 0.013%.

The high accuracy of the hybrid predictions for this case is a result of the method’s

ability to approximate the true form of all four of the constitutive correction fields,

i.e. those calculated from the full DSMC property fields that are shown in Fig. 7.20.

The agreement between the hybrid approximations and these full DSMC corrections is

confirmed by the profiles across the width and over the height, shown in Fig. 7.21.
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Figure 7.20: Crack flow with a temperature difference over the height: surface plot of the full
DSMC (a) Ωzx, (b) Ωzy, (c) Φx, and (b) Φy correction fields.
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Figure 7.21: Crack flow with a temperature difference over the height: Full DSMC and final
shear stress corrections, Ωzx over (a) y=0.5H and (b) x=0.5W , and Ωzy over (c) y=0.5H and (d)
x=0.5W . Similarly, the full DSMC and final heat flux corrections, Φx over (e) y=0.5H and (f)
x=0.5W , and Φy over (g) y=0.5H and (h) x=0.5W .

Once again, scatter in the bulk micro element results in a discontinuity in the

method’s approximation of Φx, which can be seen near the centre of the width in

Fig. 7.21(c). As for the previous test case, the effects of this discontinuity are not

significant.



CHAPTER 7 FLOW THROUGH A MICROSCALE CRACK: A 2D APPLICATION 136

7.4 Computational savings

Like the test cases of the two previous chapters, each of the cases in this chapter was

simulated using the same number of DSMC time steps for the hybrid micro DSMC

simulations and the equivalent full DSMC simulation, i.e. Gtot,Hyb = Gtot,Full = 2×106.

For each case, the computational speed-up S obtained by exploiting spatial scale

separation is computed from Eqs. (5.8) and (5.9). With side-wall element extents

Wleft=(WSR +WRR)left and Wright=(WSR +WRR)right equal to 10λl, and bulk element

extents Wbulk=(WSR+2WRR)bulk of 15λl, Table 7.1 shows that considerable speed-ups

are achieved by all of the hybrid simulations performed in this chapter, i.e. S>1. Note

that, as an additional iteration is required for convergence, the speed-up is slightly less

for the non-isothermal case of section 7.3.3.

Π Wleft (µm) Wbulk (µm) Wright (µm) I S

isothermal 2 0.98 - 0.98 6 16.84
3 0.98 1.47 0.98 6 9.95

temperature 3 1.1 1.45 0.9 6 9.77
difference over width

temperature 3 0.98 1.47 0.98 7 8.51
difference over height

Table 7.1: Computational speed-ups S offered by all hybrid simulations of Chapter 7. The micro
element extents W that are stated are those in iteration I and subsequent iterations.

As mentioned previously, the increase in expense that comes from adding a bulk

micro element brings no additional accuracy to the isothermal case of section 7.3.1.

Although the element configuration used to simulate the non-isothermal cases of sec-

tions 7.3.2 and 7.3.3 included a bulk element, two near-wall elements and linear in-

terpolations of the constitutive corrections (and boundary information) may have been

adequate for both of these cases: the temperature gradient on the upper and lower walls

in section 7.3.2 was linear and so (for the temperature range considered) the transport

properties would have varied approximately linearly across the width; in section 7.3.3,

the temperature difference over the height produces little variation of the flow properties

across the width. Bulk elements could, however, provide essential micro resolution if,

for example, there are surface defects, or the cross-section is not perfectly rectangular.

A more extreme temperature range may also require bulk micro resolution.
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7.5 Summary

The HMM-FWC continuum-DSMC method has been used to simulate gas flowing in a

crack-type microchannel that has an aspect-ratio of 2000. Non-isothermal conditions

required the method’s coupling strategy to deal with the transport of both momentum

and heat in 2D. For all of the test cases considered, convergence of the method’s al-

gorithm was achieved inside 6 − 7 iterations. Like the test cases of the previous two

chapters, the results from all cases were compared with equivalent full DSMC solutions.

The initial NSF predictions of the velocity fields, the temperature fields, and the mass

flow rates were found to have errors in ranges of 98 − 113%, 3 − 27%, and 92 − 93%,

respectively. The hybrid method was able to reduce all of these errors to under 1% in

all cases and, at the same time, provide substantial speed-ups between 8× and 17× de-

pending (mainly) on the micro element configuration. Importantly, variation in the flow

properties across the larger dimension of the cross-section, i.e. the width, was modelled

accurately and efficiently — such variation is often neglected in the literature.

The speed-up offered by the hybrid method should increase with increasing cross-

sectional aspect-ratio — narrow microscale cracks may have much higher aspect-ratios

than that examined in this chapter, for example of O(105) and above. As well as higher

aspect-ratios, future work could include the study of this 2D crack problem with higher

levels of rarefaction (i.e. larger Kngl), with non-rectangular cross-sections, or with the

presence of surface defects/roughness. More extreme temperatures and larger temper-

ature differences may also require the consideration of momentum transport in the x-

and y-directions. All of these scenarios would likely necessitate bulk micro elements,

and could perhaps benefit from the use of surface fitting (i.e. 3D curve fitting) tech-

niques to approximate the global constitutive corrections. As mentioned previously, 3D

crack-type flows could be studied by implementing the HMM-FWC along the stream-

wise length of the crack geometry or, if the scale separation in the streamwise direction

is high, by combining the HMM-FWC with the IMM. Investigations might then focus

on the effects of different streamwise pressure and temperature gradients.



Chapter 8

Conclusions

8.1 Summary

To avoid the computational expense of using full DSMC simulations to model the flow

behaviour of non-equilibrium dilute gases, this thesis has focused on the development of

a continuum-DSMC hybrid method. The vast majority of existing continuum-DSMC

methods are based on a DD framework, and so are effective only for flow problems that

can be classed as Type A, i.e. where the micro resolution is needed in localised spatial

regions. Heterogeneous frameworks offer an alternative to DD for Type B problems,

which require micro resolution everywhere in order to compensate for the failure of the

traditional NSF constitutive relations.

In general, continuum-particle hybrid methods achieve computational savings over

full particle simulations by exploiting scale separation. However, with the exception

of the IMM (which is restricted to flows through very long, thin channels), there has

not yet been a heterogeneous continuum-DSMC method that is able to exploit spatial

scale separation. A traditional HMM framework has been adopted by a number of

continuum-MD hybrid methods for liquid flows; the point-wise coupling approach of

these methods is able to exploit highly separated spatial scales. The position and size

of the micro elements is, however, restricted by the macro resolution, and this type of

framework is not suitable for flows with low or mixed spatial scale separation. Het-

erogeneous field-wise coupling (HMM-FWC) is able to avoid these restrictions: micro

elements of any size can be placed at any location in the flowfield; interpolations across

138
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the distributed micro elements supply the continuum-fluid description with global con-

stitutive and boundary information, meaning that flows with low/mixed spatial scale

separation can be simulated. Due to its generality, this HMM-FWC framework provides

the basis for the continuum-DSMC method of this thesis.

The original continuum-MD HMM-FWC method was proposed with assumptions of

steady, incompressible, and isothermal flow. With the focus remaining on steady flows,

the work of this thesis has adapted the HMM-FWC to simulate dilute gas flows: the

constraint of the micro elements (i.e. the imposition of the local continuum property

fields) has been tailored to a DSMC particle solver. In addition, the coupling strategy

has been extended, providing capabilities in compressible and non-isothermal flows.

The method has also been made more flexible by enabling the spatial extent of each

micro element to adjust dynamically with the local mean free path of the gas.

The versatility of this HMM-FWC method provides the potential to simulate a

wide range of flows, including Type A and Type B problems. Its ability to cope with

inaccurate boundary and constitutive information has been assessed in this thesis by

modelling two 1D validation problems, comparing the accuracy and computational

expense with equivalent full DSMC simulations. A micro Fourier flow problem under

various temperature and rarefaction conditions was used to test the 1D energy coupling

procedure; a high-speed micro Couette flow problem (where viscous heating is present

in the gas) with supersonic and hypersonic wall speeds was then able to demonstrate

the full coupling algorithm in 1D. Featuring velocity slip/temperature jump and the as-

sociated momentum/thermal Knudsen layers, these 1D flow problems could be classed

as Type A. However, with the transport property models assumed unknown, consti-

tutive corrections are required everywhere in the flowfield and these problems become

Type B.

Convergence of the hybrid algorithm was found to occur very quickly (within 3

or 4 iterations) for most of these 1D validation cases. The accuracy of the converged

solutions was found to depend heavily on the arrangement of the micro elements, as this

determined how well the method was able to approximate the constitutive correction

fields and boundary information. With sufficient micro resolution, the method was

able to obtain excellent agreement with the full DSMC solutions. The level of spatial
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scale separation was, however, very low in these problems, meaning that the micro

elements were required to cover a considerable portion of the flowfield to achieve high

accuracy. Unfortunately, this resulted in only moderate computational speed-ups for

the Fourier flow test cases, while no speed-ups were obtained for the Couette flow

test cases. Nevertheless, the purpose of these 1D cases was simply to validate the

method’s coupling strategy. Also, for any given flow problem, the micro resolution can

be adjusted by the user to achieve the desired balance of accuracy and efficiency.

Following this 1D validation, the method’s performance was tested on a larger and

more challenging 2D problem. A microchannel with a high-aspect-ratio cross-section

was considered as a representative geometry to model the flow of a gas through a mi-

croscale crack; leakage from microscale cracks can occur in a variety of engineering

systems. The implementation of the method was simplified to 2D by assuming pe-

riodicity in the streamwise direction and using an external body forcing to drive the

flow. This high-aspect-ratio crack-type geometry can be viewed as a specific class of

Type C problem: DD methods are unsuitable as the majority (if not all) of the flow is

near-wall; the point-wise coupling approach of the HMM is also unsuitable as the reso-

lution required over the smaller dimension of the cross-section (i.e. the channel height)

would result in overlapping of the micro elements. Although the IMM is suitable for

Type C flows where high scale separation exists in the streamwise direction, it cannot

exploit scale separation over the larger dimension of the channel cross-section (i.e. the

width). The HMM-FWC method of this thesis is able to exploit scale separation in the

direction of the width by dispersing micro elements across this dimension; at the same

time, it is able to deal with the low scale separation over the channel height by setting

each element to occupy the entire height.

One isothermal and two non-isothermal test cases were considered based on an

aspect ratio of 2000 and a Knudsen number of 1; the results from the hybrid method

were again compared with equivalent full DSMC solutions. The isothermal test case

was able to demonstrate the momentum coupling procedure in 2D. With temperature

differences between the bounding walls of the cross-section, the non-isothermal test

cases then demonstrated simultaneous momentum and energy coupling in 2D. For each

of the three test cases, the hybrid method’s predictions of the property fields and the
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mass flow rate were within 1% of the full DSMC solution. Although more iterations (i.e.

6− 7) were required for convergence than were typically required by the 1D test cases

of previous chapters, the method was able to achieve substantial computational speed-

ups ranging from approximately 8× to 17× depending mainly on the micro element

configuration. Even greater speed-ups are expected for higher aspect-ratios.

8.2 Future work

This thesis opens a number of paths for potential future work. For the high-aspect-ratio

crack-type flow problem, it would be interesting to consider the following:

• More extreme temperature conditions and/or larger temperature gradients. If the

transport properties do not vary linearly over the temperature range of the prob-

lem, ‘bulk’ micro elements would be required. Approximations of the constitutive

correction fields might also benefit from the use of surface fitting techniques.

• Geometric variation in the direction of the width. In reality, the geometry of a

crack will not be perfectly rectangular, e.g. it could be more open at one end than

the other. Surface roughness or even surface defects could also have substantial

effects on the flow behaviour. Note that any geometric variation would also likely

require bulk micro elements.

• An extension of the method to 3D. The variation of the flow behaviour may not

be negligible along the streamwise length of a crack/channel. The HMM-FWC

method could be applied along the length to study the effects of streamwise

pressure and temperature gradients — this would require a 3D continuum de-

scription, constraints of the micro elements in 3D, and 3D interpolations/fitting.

Alternatively, if there is high scale separation along the streamwise direction, the

IMM could be employed to achieve even greater computational speed-ups (due

the streamwise periodicity of the micro elements used in the IMM).

The hybrid method could also be applied to tackle the following:

• Other flow problems with mixed levels of spatial scale separation. This could

include the microchannel/reservoirs flow problem that was discussed in Chapter 4.
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As mentioned previously, this type of problem could be modelled using the HMM-

FWC: small elements distributed along the microchannel length could exploit the

higher scale separation in this dimension, while larger micro elements could cope

with the lower scale separation in the reservoirs. Again, greater speed-ups might

be possible by replacing the HMM-FWC with the IMM along the channel length.

• The flow of polyatomic gases and gas mixtures. Although modelling a monatomic

gas was sufficient to validate and test the hybrid method in this thesis, engineering

problems involve the flow of gases like air, carbon dioxide, or even hydrogen.

The hybrid method has the ability to deal with unknown transport property

models in any gas flow. Note that the discussion in Chapter 2 regarding property

measurement and control within the DSMC method was based on the assumption

of a monatomic gas; while the dsmcFoamStrath code is able to deal with the

additional complexities in the extraction of the flow properties from polyatomic

gas mixtures, the control of particles that possess rotational energy will require

further development.

• External high-speed, high-altitude gas flows, for example around hypersonic space

access vehicles; physical data is scarce in this area due to the high cost of per-

forming experiments. The hybrid method could be useful in modelling the thin

bow shocks that appear at the front of hypersonic vehicles, and the low density

wake region behind them. Although the non-equilibrium behaviour of these flows

has similarities to that in micro devices, very high temperatures may result in

chemical reactions becoming important — the ability to model such reactions

would require further investigation and development of the method.

Development of the hybrid method itself could focus on:

• The imposition of a Chapman-Enskog (CE) distribution at the outer bound-

aries of the micro element relaxation regions. As this distribution incorporates

a perturbation from equilibrium, its use may reduce the extents required by the

relaxation regions. A CE distribution could be implemented at these boundaries

using the technique proposed by Stephani et al. [120].
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• The selection or definition of a breakdown parameter. Thus far, the initial place-

ment of the micro elements has been based on the author’s judgement, and the

knowledge that non-equilibrium flow typically occurs close to bounding walls. Ex-

isting DD hybrid methods often use a breakdown parameter to identify localised

spatial regions that require micro resolution. Although the aim of this hybrid

method is to supply a global correction to the continuum description, a break-

down parameter could be useful in determining the placement of the elements; it

would be very useful to be able predict where large gradients in the constitutive

corrections might occur.

• An extension to unsteady flows. The method could be implemented using the

CAI scheme of Lockerby et al. [88]. This adaptive time stepping approach is

able to deal with mixed/varying degrees of temporal scale separation, and could

increase the computational speed-up offered by the method considerably.

• The use of a CFD solver from the OpenFOAM toolbox. Finite difference ap-

proximations have been sufficient for the 1D and 2D problems considered in this

thesis. Larger and more complex 2D and 3D flow problems may, however, require

the use of a CFD solver; rhoSimpleFoam, for example, can simulate compressible,

steady-state flows.

• The migration of the entire hybrid algorithm to the OpenFOAM toolbox. Cur-

rently, the hybrid algorithm is performed by a MATLAB script that creates the

micro DSMC simulations, executes both solvers, and performs the information

exchange between the solvers. Although a MATLAB script could also be used

to couple two separate OpenFOAM solvers (i.e. a CFD solver and dsmcFoam),

the execution of the entire algorithm could be migrated into OpenFOAM. This

package has the benefit of being fully open source, avoiding the need for expensive

license fees. Having all of hybrid method’s code in the same toolbox and in the

same language would also ease future development.
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