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Abstract 

Background: Glucocorticoid deficiency and excess are difficult to identify because of 

the non-specificity of their clinical and biochemical features which are also poorly 

correlated with levels of circulating steroids. The lack of reliable biomarkers for 

glucocorticoid action makes it challenging to determine precise therapeutic needs 

of patients with GC-deficient or excessive conditions such as congenital adrenal 

hyperplasia and Cushing’s syndrome, respectively. 

Aim: To identify the main biomarkers indicative of changes in cortisol action in 

healthy individuals and those with different metabolic diseases. 

Study design and methodology: Plasma samples were collected from three 

separate studies. The first study was a randomised double-blind crossover design 

involving 8 men with type 2 diabetes given either placebo or metyrapone + 

mifepristone (‘glucocorticoid blockade’) for 12 hours. In the second study, 20 

healthy men were given metyrapone with either low or high doses of insulin, plus 

such a dose of hydrocortisone as to achieve low, medium or high plasma cortisol 

levels. Finally, plasma samples were also obtained from 119 patients with CAH 

receiving standard clinical care. Liquid chromatography-mass spectrometry was 

then employed for the metabolomic profiling of all the plasma samples, and 

MzMatch software was used to identify the metabolites present. Multivariate and 

univariate analyses were employed to determine the most reliable metabolites as 

biomarkers for glucocorticoid action.  



xxi 
 

Results: Branched chain amino acids, bile acids and their conjugates, and free fatty 

acids were the main metabolite groups that were significantly altered by at least 

two of the three interventions. Compared to placebo, bile acids and their 

conjugates were significantly (p < 0.05)elevated following glucocorticoid blockade, 

but subsequent insulin administration significantly lowered their levels. On the 

other hand, high glucocorticoid dose significantly (p < 0.05) increased the levels of 

chenodeoxyglycocholate in patients with conginetal adrenal hyperplasia, but no 

effects on bile acids were observed in similarly treated healthy men. Branched chain 

amino acids were significantly lowered in healthy men following high insulin dose, 

but were significantly (p < 0.05) increased upon high hydrocortisone  infusion. High 

BCAs levels were associated with high body mass index , and high systolic and 

diastolic blood pressure in pateints with conginetal adrenal hyperplasia. In contrast, 

L-valine, was significantly elevated following glucocorticoid blockade in patients 

with type 2 diabetes. A number of saturated and unsaturated fatty acids were 

significantly (p < 0.05) elevated following hydrocortisone infusion in healthy men, 

but insulin reduced their levels significantly (p < 0.05). High glucocorticoid dose in 

patients with conginetal adrenal hyperplasia significantly increased C15:0, C16:0 

and C20:0 while C16:1 reduced. In contrast, use of insulin following glucocorticoid 

blockade in patients with type 2 diabetes significantly (p < 0.05) reduced levels of 

C12:0, C18:0 and C18:3.  
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Conclusion: These hypothesis-free metabolomics screening studies have identified 

metabolites in plasma which are differentially sensitive to glucocorticoid deficiency 

or excess and may be useful in clinical assessment of glucocorticoid therapy. 
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Chapter 1: 

 

General Introduction 
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1 Introduction 

1.1 General background 

Glucocorticoids (GC) such as cortisol have diverse physiological actions. Intracellular 

GC receptors are widely expressed and affect energy metabolism (e.g. interacting 

with insulin and inducing gluconeogenesis, stimulating lipolysis and fatty acid 

turnover, inducing proteolysis) (Andrews and Walker, 1999a, Macfarlane et al., 

2008), cardiovascular control (Walker, 2007) (inducing sodium and water retention, 

potentiating vasoconstriction, increasing blood pressure), cellular proliferation, 

central nervous system function (impairing short-term memory, altering mood) 

(Seckl and Olsson, 1995) and innate immunity (enhancing macrophage apoptosis, 

inhibiting pro-inflammatory cytokine signalling) (Sapolsky et al., 2000) (Table 1.1). 

Most actions of GC are mediated slowly by altered gene transcription in response to 

altered intracellular cortisol concentrations, whereas plasma levels of cortisol 

exhibit marked circadian and ultradian variation, thus there is a poor correlation 

between plasma cortisol levels and the clinical and biochemical actions of cortisol.  
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Table 1.1  Indication of GC treatments and their side effects. 

Indication Side effects 

Endocrine disorders such as congenital adrenal 
hyperplasia 

Obesity, T2D 

Rheumatic disorders such as arthritis hypertension 
Collagen diseases such as systemic lupus 
erythematosus 

Immunosuppression 

Dermatologic diseases such as severe psoriasis Muscle weakness 
Ophthalmic diseases such as allergic conjunctivitis Pancreatitis and peptic ulcer 
Respiratory diseases such as aspiration 
pneumonitis 

Anaemia 

Neoplastic diseases that require palliative 
management 

Short- and long-term 
memory loss 

 

 

Acute elevation in cortisol is a crucial component of the stress response, but chronic 

excess of GC results in Cushing’s syndrome, characterised by non-specific features 

including obesity, type 2 diabetes (T2D), hypertension, impaired immunity, 

depression and cognitive dysfunction. Subtle GC excess may be important in diverse 

conditions, ranging from metabolic syndrome (Walker, 2007) to neuropsychiatric 

disease (Seckl and Olsson, 1995). This excess may involve increased circulating 

levels of cortisol or increased local regeneration of cortisol within target tissues by 

the enzyme 11-hydroxysteroid dehydrogenase type 1 (11-HSD1) (Rask et al., 

2001). GC deficiency is potentially life threatening during stress, but is characterised 

by non-specific clinical features such as lethargy, hypotension and weight loss. The 

deficiency is especially difficult to diagnose during critical illness when conventional 

tests of cortisol production, such as adrenocorticotropic hormone (ACTH) 

stimulation tests, may be unreliable (Boonen et al., 2013). However, it is crucial to 

identify patients at risk of serious complications or those most likely to have a 

disease. Metabolomics has been introduced as a new tool for diagnosing and 
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predicting diseases via discovery of reliable biomarkers; for instance, elevated 

amino acids are associated with 60 to 100% risk of having diabetes compared to the 

5–37% risk associated with known polymorphisms (Wang et al., 2011). 

 

In the current work, the aim was to identify biomarkers that reflect GC action. To 

investigate GC deficiency, metabolomic analysis was performed on plasma samples 

obtained from healthy men and patients with T2D after administration of the GC 

antagonist RU38486 (mifepristone) together with the inhibitor of cortisol 

biosynthesis, metyrapone, a combination which has been termed ‘glucocorticoid 

blockade’ (Wake et al., 2007, Macfarlane et al., 2014). To investigate GC dose 

effects, samples from healthy men treated with metyrapone were obtained and this 

was followed by hydrocortisone (HC) replacement to induce low, medium and high 

(supra-physiological) circulating cortisol levels. In each study, the specificity of the 

response to GC was tested by taking measurements before and after insulin 

infusion. The  metabolomic features of GC excess in plasma samples of patients 

with congenital adrenal hyperplasia (CAH) receiving GC replacement therapy from 

the UK Congenital adrenal Hyperplasia Adult Study (CaHASE) (Arlt et al., 2010) were 

also investigated. 

 

1.2 Glucocorticoids 

GC are steroid hormones manufactured from cholesterol via a process called 

steroidogenesis (Figure 1.1). Major classes of steroid hormones include:  
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(A) Progestagens, which are divided into progesterones (which maintain pregnancy 

via suppressing uterine contractility and prevent spontaneous abortion) and  

corticosteroids (which are divided into i) mineralocorticoids such as aldosterone, 

which induces reabsorption of sodium and water and secretion of potassium via the 

kidneys and ii) GC such as cortisol, which have various physiological activities, for 

instance, suppression of the immune system and glucose metabolism).  

(B) Androstagens, which are divided into androgens such as testosterone (which 

contributes to the development of male characteristics) and oestrogen (which 

contributes to the development of female characteristics) (Miller and Auchus, 2011) 

(Table 1.2). 
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Figure 1.1 Steroidogenesis. 
Conversion of cholesterol into steroid hormones. Enzymes involved in the process are coloured 
according to their cellular location. Metabolites shaded in yellow represent progestogens (21 
carbons), while those shaded in light blue represent androgens (19 carbons). 

 

Table 1.2 Enzymes associated with GC biosynthesis and their dysfunctions. 

Enzyme Physiological function Dysfunction 

17α-hydroxylase 
Converts pregnenolone to 17 
hydroxy pregnenolone 

Congenital adrenal 
hyperplasia* 

3β-hydroxysteroid 
dehydrogenase 

Converts 17 hydroxy pregnenolone 
to 17 hydroxy progesterone 

Congenital adrenal 
hyperplasia* 

21-hydroxylase 
Converts 17 hydroxy progesterone to 
11 deoxycortisol 

Congenital adrenal 
hyperplasia (95% of 

the cases) 

11β-hydroxylase Converts 11 deoxycortisol to cortisol 
Congenital adrenal 

hyperplasia* 

11β-hydroxysteroid 
dehydrogenase 

Converts corticosterone to cortisol Cushing’s syndrome 
 

*Uncommon, the table shows enzymes contribute to steroidogenesis and their physiological and 
pathophysiological effect. 
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1.3 Physiological role of GC 

Research regarding the role of GCs has been on-going over the past century and a 

half, during which time it has led to various key advancements in many aspects of 

molecular biology. GC are steroid hormones that play multiple roles in the body by 

regulating various processes involved in the metabolism of carbohydrates, lipids 

and proteins, as well as playing key roles in the regulation of the immune and 

cardiovascular systems, and in coping with stress. In this way, these hormones 

regulate various aspects of the body’s homeostasis. For this reason, a deficiency of 

GCs results in postural hypotension, hypoglycaemia and weight loss, while excess 

GCs leads to hypertension, glucose intolerance and obesity (Andrews et al., 1999). 

Cortisol is the most physiologically important GC in the body and is produced by the 

adrenal glands, which are the small bodies that sit on top of each of the kidneys. 

The secretion of GCs is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. 

The adrenal glands are stimulated to release GC by ACTH, or corticotropin, which is 

released from the anterior pituitary gland. This corticotropin, whose release is also 

controlled by another hormone—corticotropin releasing hormone (CRH), from the 

hypothalamus—acts to keep the amount of cortisol released by the adrenal gland 

within the normal range according to the needs of the body. The hypothalamus, in 

turn, releases a stimulating hormone in response to certain signals in the blood, or 

from stress (e.g. injury, infection or surgery), but mainly through a negative 

feedback mechanism. If the level of cortisol in the blood is high, CRH release from 

the hypothalamus is suppressed, meaning that the anterior pituitary is not 
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stimulated to release ACTH, thus causing the adrenal glands to stop producing 

cortisol, and vice versa (Figure 1.2). 

 

 

Figure 1.2 Hypothalamic Pituitary Adrenal-Axis (HPA-Axis).  
HPA axis regulation of the secretion of cortisol. The hypothalamus releases CRH into the pituitary 
gland, which in turn releases ACTH from its anterior lobe. The ACTH induces the adrenal cortex in the 
adrenal gland to release GC. 

 

Cortisol is the active circulating GC, while its precursor is cortisone (Figure 1.3), the 

inactive form of cortisol found mainly in the kidneys (Joels et al., 2011). The tissue-

specific inter-conversion of cortisone and cortisol occurs in the endoplasmic 

reticulum under the action of two isozymes of 11β-HSD1 and 11β-HSD2 (Campino et 

al., 2010, Walker, 2006a).  
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Figure 1.3 Physiological conversion between cortisone and cortisol.  
Conversion of cortisone (inactive) to cortisol (active) by the enzyme 11β-hydroxysteroid 
dehydrogenase 1 (11βHD1), while  11βHD2 converts cortisol to cortisone. 

 

The two isozymes are coded by two distinct genes present in different tissues. The 

11β-HSD1 isozyme is present mainly in the liver, kidney, adipose tissue and brain, 

while the 11β-HSD2 isozyme is mostly present in the kidney and salivary glands 

(Campino et al., 2010). The inert cortisone is converted to cortisol in humans by 

11β-HSD1, while the opposite reaction takes place through the action of 11β-HSD2. 

A restricted concentration of cortisol is what brings about the activation of the GC 

receptor (GR), as it is the ligand-induced activation of the GR that mostly produces 

GC activity. The presence of 11β-HSD1 in tissues like liver and adipose tissue leads 

to cortisol accumulation due to reduced cortisone and diffusion from circulating 

levels in the plasma. In the kidney, the level of cortisol is decreased by 11β-HSD2 

(Ferrari, 2010). The tissue-specific concentration of cortisol is also maintained by 

cortisol metabolism in the liver. 
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1.1 Actions of GC in peripheral tissues 

The effects of GC vary from one tissue to another, depending on the activity of 

glucose transporters and enzymes that regulate the processes of glycogenesis, 

glycolysis and gluconeogenesis. GC promote hepatic gluconeogenesis and inhibit 

peripheral utilisation of glucose. Additionally, they promote glycogen synthesis, 

which is needed for an acute stress response. High levels of GCs also increase the 

catabolism of proteins (proteolysis) and lipids (lipolysis), thus supplying the resulting 

amino acids and free fatty acids as substrates for gluconeogenesis in the liver. These 

effects will be discussed in more detail below. 

 

1.1.1 Muscle  

GC modulate protein and glucose metabolism in the skeletal muscle by antagonising 

the actions of insulin mediated via the insulin/insulin-like growth factor 1 (IGF-1) 

signalling pathway (Heszele and Price, 2004). Excessive GC activity within skeletal 

muscles leads to increased catabolism of proteins and reduced protein synthesis, 

leading to a severe loss of muscle mass known as muscle atrophy or steroid 

myopathy. Steroid myopathy is recognised as a common feature of Cushing’s 

syndrome and long-term steroid therapy, and is clear proof that excess GCs directly 

or indirectly promote increased catabolism of skeletal muscle (Vegiopoulos and 

Herzig, 2007). Patients with steroid myopathy exhibit symmetric weakness in the 

proximal lower extremities (Batchelor et al., 1997, Weiner et al., 1993). 
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The breakdown of muscle mass leads to the production of amino acids, which are 

mobilised by the body to serve as an alternative source of energy as well as 

precursors for gluconeogenesis and protein synthesis. This occurs due to the 

increased energy demands of the body under stress and can lead to muscle wasting. 

This condition has been observed in cancer cachexia, a severe wasting syndrome in 

the tumour bearing state, which is associated with chronically elevated GC levels. In 

this condition, the prolonged action of the GC leads to life-threatening weakening of 

the patients, thereby substantially decreasing their prognosis, quality of life and 

tolerance to medications and other therapeutic interventions (Tisdale, 2002). 

Similar effects are observed in other stressful conditions, such as sepsis and 

starvation, where the chronically elevated GC-induced catabolic effect causes 

muscle wasting and the resulting body weakness. In some disease states, such as 

asthma, rheumatoid arthritis and chronic obstructive pulmonary disease, prolonged 

use of exogenous GC such as HC, dexamethasone and prednisolone can lead to 

muscle atrophy as a result of increased muscle protein breakdown (Wang and 

Harris, 2015). 

 

In addition, GC inhibit glucose uptake and oxidation in the muscle and reduce its 

storage as glycogen. This effect may be mediated via blockade of the insulin/IGF-1 

signalling cascade (Heszele and Price, 2004) or suppression of insulin secretion by 

pancreatic β-cells (Lambillotte et al., 1997). The inhibition of glucose uptake in the 

muscle increases its availability for other tissues, such as the brain, immune system 

and, in the case of cancer patients, the tumour (Vegiopoulos and Herzig, 2007).  
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GC have direct catabolic effects on skeletal muscles through interactions with 

intracellular receptors to increase glutamine synthase expression, leading to 

conversion of free muscle amino acids into glutamine for export; and the degree of 

muscle atrophy correlates with the level of expression of glutamine synthase, a 

mobiliser of amino acids (Kanda et al., 2001). These effects can be reversed by 

administration of growth hormone and recombinant number 1 (IGF-1), both of 

which reduce expression of glutamine synthase (Kanda et al., 1999, Kimura et al., 

2001). Also, IGF-1increases signalling by Akt1 (RAC-α serine/threonine protein 

kinase), resulting in suppression of catabolic pathways, thus inducing muscle 

hypertrophy (Stitt et al., 2004). GC also decrease the translocation of glucose 

transporter type 4 (GLUT 4) glucose transporters to the cell surface. The GLUT 4 

receptor’s role is the insulin-dependent uptake of glucose in the skeletal muscle. 

Thus, by inhibiting the receptor’s translocation to the cell’s surface, glucose uptake 

is prevented in the presence of GCs. These hormones also enhance lipolysis, 

probably through increased local synthesis of adrenaline (Andrews and Walker, 

1999b). By suppressing IGF-1 activity, GC also reduce the synthesis of type I 

collagen. Additionally, GCs indirectly induce osteopenia by causing a decrease in 

intestinal Ca2+ absorption coupled with increased renal excretion, as well as 

decreased production of the hormones oestrogen and testosterone (van Staa, 2006, 

Canalis et al., 2007). The resulting steroid-induced weakness of the muscle makes 

the patient susceptible to increased falls (Trikudanathan and McMahon, 2008).   
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1.1.2 Skeleton and bones 

GC exert significant effects on the skeleton by inducing increased bone resorption 

and a progressive decline in bone formation, which particularly affects the 

trabecular bone (van Staa et al., 2002, McDougall et al., 1994). The resulting decline 

in bone density results in increased likelihood of bone fractures, which are GC dose 

dependent. GC also impair the replication, differentiation and function of 

osteoblasts (Canalis, 2005). There is also an increased rate of apoptosis of 

osteoblasts and osteocytes because the GCs activate caspase 3, which acts as a key 

mediator of apoptosis (Liu et al., 2004, O'Brien et al., 2004). This increased 

apoptotic activity substantially reduces bone formation and makes the bones more 

fragile. In fact, increased risk of vertebral bone fractures has been observed in post-

menopausal women receiving long-term GC therapy (Angeli et al., 2006), but it is 

not clear whether the risk varies between sexes (van Staa et al., 2002). Thus, as a 

precaution, patients on long-term GC therapy are given prophylactic doses of bone-

protection treatment with daily calcium and vitamin D3 supplements; they are also 

advised not to smoke, to reduce their weight and to avoid alcohol consumption 

(Eastell et al., 1998). Patients on long-term GC therapy who have additional bone-

density risk factors, such as postmenopausal women, are also given bisphosphonate 

therapy as a preventive strategy against osteoporosis. The bisphosphonate acts to 

inhibit bone resorption mediated by osteoclasts and to prevent osteocyte and 

osteoblast apoptosis via the activation of extracellular kinases (Plotkin et al., 1999, 

Eastell et al., 1998). Risedronate (Wallach et al., 2000, Reid et al., 2000), alfacalcidol 

and alendronate (de Nijs et al., 2006, Kishimoto et al., 2006, Minisola et al., 2006) 
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and teriparatide (Saag et al., 2007) are prescribed as preventive therapy for 

osteoporosis caused by GCs.  

 

1.1.3 Hepatic effects 

In addition to promotion of gluconeogenesis and glycogenesis, high levels of GCs 

have also been associated with the development of non-alcoholic fatty liver disease 

(NAFLD) as occurs in insulin resistance (Marchesini et al., 2001). This effect might 

contribute to the condition of hepatic steatosis that is observed in metabolic 

syndrome (Andrews and Walker, 1999a). In fact, fat accumulation in the liver has 

been demonstrated in patients suffering from Cushing’s syndrome, and various 

animal models of obesity, dyslipidemia and hepatic steatosis have demonstrated 

dramatically increased GC levels (Anstee and Goldin, 2006, Alberts et al., 2005). GC 

treatment also leads to increased hepatic synthesis of triglycerides and decreased 

oxidation of fatty acids, both of which result in increased accumulation of hepatic 

lipids, as has been demonstrated in rats (Cole et al., 1982) and in isolated 

hepatocytes exposed to GC (Mendoza-Figueroa et al., 1988). For this reason, 

hepatic triglyceride accumulation is inhibited in adrenalectomised rats, particularly 

in response to high dietary fat intake, an effect that is reversed by replacement 

therapy with GC (Mantha et al., 1999). Although the mechanisms involved in the 

development of GC-dependent fatty liver are largely unknown, the increased 

hepatic lipogenesis and associated increase in very low density lipoprotein (VLDL) 

production have been attributed to the induction of lipogenic enzymes such as 

acetyl-CoA-carboxylase or fatty acid synthase (Mangiapane and Brindley, 1986). The 



15 
 

inhibition of mitochondrial fatty acid β-oxidation by GC also promotes the 

accumulation of lipids intracellularly, which exacerbates the pro-steatotic effect 

(Letteron et al., 1997). In adipose tissues, NAFLD causes enhanced breakdown of 

fats to release free fatty acids (FFAs) and glycerol into the blood, as has been 

confirmed in non-diabetic people with NAFLD using tracer studies (Fabbrini et al., 

2008, Bugianesi et al., 2005). The FFAs released into circulation in turn contribute a 

significant proportion of the total fat deposits in the liver (Donnelly et al., 2005). 

Insulin resistance as a feature of NAFLD (Gastaldelli et al., 2007) may occur either as 

a primary outcome or as secondary to enhanced gluconeogenesis induced by 

increased levels of FFAs and glycerol in the liver (Chen et al., 1999). The condition 

might be exaggerated in individuals with obesity-induced insulin resistance, a 

situation that results in the high presence of NAFLD in patients with T2D. 

 

1.1.4 Brain  

GC regulate the brain and behaviour, leading to modifications in learning and 

memory. Regulation of the HPA axis can be a self-repeating process, given that GCs 

moderate both the initiators and the terminators of the stress response. Thus, 

stress is necessary for the optimisation of behaviour in response to environmental 

pressures. Dysregulation of the HPA axis is implicated in the pathogenesis of many 

diseases, including anxiety and depression (McEwen, 1998). It is of paramount 

importance to efficiently initiate a stress response, as it promotes survival, while it 

is equally important to terminate the stress response, as GC are metabolically 

demanding and can lead to disease. Adverse effects of GC therapy in the brain 
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include manifestations of emotional lability, psychosis, gain or loss of appetite, 

insomnia and memory impairments (Wang and Harris, 2015).  

 

1.1.5 Adipose tissue 

The adipose tissue is a key endocrine organ in the maintenance of glucose 

homeostasis and energy balance in the body, and for this reason it plays a key role 

in the pathophysiology of metabolic syndrome (Minokoshi et al., 2003). The 

excessive levels of GC observed in patients with Cushing’s syndrome are held to be 

responsible for the obesity observed in these patients (Walker, 2006b). It has also 

been suggested that hyperactivity of the HPA axis, which leads to high levels of GC 

in the body, positively correlates with metabolic syndrome, as demonstrated in 

patients suffering from insulin resistance, hypertension and glucose intolerance 

(Reynolds et al., 2001). This observation further suggests that GC play a causative 

role in the obese phenotype. Similarly, treatment with RU38486, a GR antagonist or 

adrenalectomy, reversed the obese condition in rats (Livingstone et al., 2000). The 

induction of hepatic gluconeogenesis by GCs necessitates the availability of 

gluconeogenic substrates such as FFA and amino acids, which can be oxidised to 

two carbon (2C) acetyl units or other intermediates such as oxaloacetate that can 

eventually enter the gluconeogenesis pathway to produce glucose. Thus, in order to 

produce the required free fatty acids for this purpose, GC promote fat catabolism in 

adipose tissues (Johannsson et al., 2015, Wang and Harris, 2015). The resulting free 

fatty acids cause hyperlipidaemia, which contributes to risks of adverse 

cardiovascular effects and impaired lipid homeostasis (Dallman et al., 2000, 
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Lightman et al., 2008). However, GC exert differential effects in distinct fat deposits. 

Thus, whereas lipolysis is increased by GC through activation of hormone-sensitive 

lipase (HSL) and decreased activity of lipoprotein lipase (LPL) in peripheral fat 

deposits (Slavin et al., 1994), in some sites, such as the face and trunk, higher than 

physiologic levels of GC promote lipogenesis. This altered fat distribution is 

observed in Cushing’s disease as ‘buffalo hump’ and round face (Kirk et al., 2000). 

 

1.1.6 Cardiovascular system 

Treatment with GCs is associated with increased risk of hypertension, 

dyslipidaemia, atherosclerosis and cardiovascular disease. It has been suggested 

that these conditions are partly mediated by the insulin resistance caused by the 

opposing effects of GCs on carbohydrate metabolism (Andrews and Walker, 1999b).  

 

1.1.7 Gastrointestinal tract 

GC increase the risk of gastritis, ulcer formation and gastro-intestinal (GI) bleeding 

in peptic ulcer disease (PUD). These effects probably arise from an increase in 

gastric acid secretion induced by the GCs. GC also suppress the protective functions 

of prostaglandins by inhibiting phospholipase A2 (PLA2) in the arachidonic acid 

pathway through a mechanism similar to that of non-steroidal anti-inflammatory 

drugs (NSAIDs). For this reason, the risk of GC-induced ulcers is increased in patients 

who are taking NSAIDS because of their similar effects on PLA2 (Trikudanathan and 

McMahon, 2008). There is also increased risk of pancreatitis. 
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1.1.8 Immune system 

In the immune system, GC act as potent suppressors of immune response and thus 

possess potent anti-inflammatory effects, particularly in pharmacological 

treatment. Once released into the blood stream, GC induce the proliferation of 

regulatory T-cells (Tregs) while suppressing helper T-cells (Th cells). Tregs modulate 

the immune system by maintaining tolerance to self-antigens and preventing 

autoimmune diseases, while Th cells mediate the activity of other immune cells by 

releasing T-cell cytokines. The inhibition of Th-cell proliferation can also result from 

prevention of T-cell recognition of stimulating interleukin signals. GC also impair 

inflammation by inhibiting the secretion of histamine. Thus, the overall effect of GC 

on the immune system is immunosuppression, which removes the body’s immune 

protection and leaves it susceptible to infection and disease. These effects render 

patients suffering from chronic stress who are exposed to high levels of GC highly 

vulnerable to infections. 

 

1.2 Pathophysiological perturbations 

Much of the early work on the role of GC in disease pathogenesis was inspired by 

two highly insightful observations, one by Dr Thomas Addison, who described a 

condition of adrenal hormone insufficiency, now known as Addison’s disease; and 

the other by Dr Harvey Cushing, who described an opposite condition associated 

with excess GC hormone, known as Cushing’s syndrome. The fact that adrenal over- 

or under-performance, which leads to excess or insufficient GC, respectively, are 

both pathological, contributed to the subsequent development and understanding 
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of the concept of homeostasis. GC deficiency is characterised by postural 

hypotension, weight loss and hypoglycaemia, while GC excess is characterised by 

hypertension, central obesity and glucose intolerance (Andrews and Walker, 1999b) 

(Table 1.1Table 1.2). 

 

In the normal physiological state, GCs are released according to a circadian rhythm; 

the highest levels are present in the blood in the morning, while the levels lowest 

are at night, but under stress, they are produced in quantities of up to ten times the 

normal amount. Through this controlled release mechanism, the body manages to 

maintain the levels of cortisol within a physiological range, which is in 

serum :  09.00 h, 171‐536 nmol/L and 00.00h < 50 nmol/L (Addison, 2012), which is 

required for the body to function properly. In Addison’s disease, also known as 

primary adrenal insufficiency (PAI), the adrenal glands fail to produce sufficient 

steroid hormones, including cortisol, due to an autoimmune condition such as 

congenital adrenal hyperplasia (CAH), but it may also arise from tuberculosis 

infection, especially in the developing world (Arlt and Allolio, 2003). Other causes of 

PAI may include sepsis, bleeding into both adrenal glands and certain medications. 

Secondary adrenal insufficiency is associated with a loss of stimulation of the 

adrenal or anterior pituitary glands due to lack of ACTH from the anterior pituitary 

gland or corticotropic hormone (CRH) from the hypothalamus, respectively.  

 

On the other hand, GC excess arises from over-stimulation of the adrenal gland as a 

result of a tumour in the pituitary gland, usually an adenoma, which constantly 
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releases ACTH into the blood stream even in the absence of stimulation from the 

hypothalamus (Addison, 2012). This continuous stimulation of the adrenal gland 

leads to over-production of cortisol. The excessive cortisol in turn causes Cushing’s 

disease. An alternative mechanism for Cushing’s disease may be a tumour in the 

adrenal gland itself, which causes overproduction of cortisol even in the absence of 

ACTH stimulation. 

  

The lack of specific biomarkers makes clinical management of patients who require 

GC replacement therapy particularly challenging, and may contribute to well-

documented excessive morbidity and mortality in patients with hypopituitarism or 

adrenocortical failure (Arlt et al., 2010, Filipsson et al., 2006, Bergthorsdottir et al., 

2006). Moreover, several therapeutic strategies have been proposed to reduce 

cortisol secretion or action in metabolic and psychiatric diseases. These include 

inhibitors of cortisol biosynthesis in the adrenal cortex (such as metyrapone), GR 

antagonists (such as RU38486) (Jacobson et al., 2005) and inhibitors of 11β-HSD1 

(Hughes et al., 2008). The complexity of GC action imposes a major limitation on the 

development of such compounds because of the lack of simple indicators for 

successful reduction of the cortisol effect. Thus, for example, the efficacy of early 

11β-HSD1 inhibitors was not apparent until completion of a Phase IIa study (Hughes 

et al., 2008). For this reason, novel biomarkers for GC action are urgently needed. 

These may emerge from hypothesis-free screening technologies, including 

metabolomics. 
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1.3 Metabolomics 

The term ‘metabolomics’ is defined as analytical technique is the ‘un-biased 

comprehensive identification and quantification of the entire metabolome under a 

given set of conditions with high selectivity and sensitivity’ (Dunn et al., 2005). The 

term is derived from the word ‘metabolism’, which itself comes from the Greek 

word metabol�́�, which means ‘change’. Different researchers have discussed to a 

great extent the precise definition of metabolomics, but the common theme of 

these definitions is that metabolomics is concerned with the study of the low 

molecular weight molecules found in a cell or organism that participate in the 

biological metabolic functions necessary for the normal functioning of the cell, such 

as growth and maintenance (Oliver et al., 1998, Harrigan and Goodacre, 2012). 

These metabolites are themselves end-products of gene and protein expression in 

cells based on the interaction of the cells with the immediate environment (Fiehn, 

2002).  

 

The successful study and application of metabolomics involves various fields in 

different disciplines, including organic chemistry, analytical chemistry, 

chemometrics, bioinformatics and bioscience (Fukusaki and Kobayashi, 2005). It can 

be applied in fields such as medical sciences (diagnosis and treatment evaluation), 

pharmaceutical research (mechanism of drug actions), microbiology, plant science 

and food and plant nutrition, among other applications (Kim et al., 2013, Kondo et 

al., 2011, Al Zweiri et al., 2010, Bundy et al., 2005, Hirai et al., 2004). 

 



22 
 

1.3.1 Approaches to metabolome analysis 

The study of metabolic perturbations associated with different disease states or 

treatments can be undertaken based on untargeted, semi-targeted or targeted 

metabolomic profiling (Dunn, 2013). These approaches differ in various aspects, 

including their quantitative ability (whether absolute or relative), level of 

experimental precision and accuracy, sample complexity in terms of the number of 

metabolites involved and the objective of the study. 

 

1.3.1.1 Targeted approach (hypothesis testing) 

Targeted approaches already know the identity of one or a few metabolites, in a 

pathway such as glycolysis, prior to sampling, and the technique is optimised to give 

high precision, accuracy and selectivity for the targeted analytes, making this 

approach highly quantitative. Thus, the targeted method utilises the results from 

preliminary hypothesis-generating untargeted or semi-targeted studies in order to 

test the hypothesis using robust techniques involving authentic standards. 

Definitive identification of the significant metabolites allows deductions to be made 

about their biological relevance in relation to the hypothesis.  

 

1.3.1.2 Semi-targeted approach 

The semi-targeted approach, also known as large-scale targeted metabolomics, has 

the capability to conduct measurements of hundreds of predefined biomarkers. 

Unlike the targeted approach, the semi-targeted approach applies one calibration 

curve for a set of biomarkers with a similar chemical structure. Recent 
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advancements in analytical techniques have narrowed the gap between targeted 

and untargeted metabolomic profiling. 

1.3.1.3 Untargeted approach (hypothesis generating) 

Also known as global metabolomics, untargeted methods of profiling provide a 

means of detecting hundreds to thousands of metabolites with limited or no prior 

knowledge of the metabolite profile expected in a given sample, for instance, the 

metabolomic difference between healthy patients and patients with metabolic 

syndrome. During this procedure, samples are analysed and the resulting data are 

processed using available tools. The results obtained in turn enable the researcher 

to derive hypotheses based on the significant observations obtained from the data. 

This approach involves a lot of metabolites, some of which might not be 

identifiable, and certainly even those that are identified cannot all be confirmed, as 

this would require a large number of standards, which is expensive and some 

standards may not be available.   

 

As a relatively new and emerging field, metabolomics studies have been made 

possible by advances in analytical techniques and informatics tools, which have 

enabled rapid analysis of complex samples to generate vast amounts of data that 

can be analysed and modelled using various software and online-based tools. These 

technologies have been recently applied in plant, environmental and mammalian 

systems with the aim of identifying novel biomarkers and understanding possible 

biological mechanisms resulting from different treatments or genetic alterations 

(Dunn, 2013).  
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1.4 Analytical platforms 

Early development of metabolomics relied on nuclear magnetic resonance 

spectroscopy (NMR), which is limited by low resolution for individual metabolites 

and the limited diversity of analytes detected. However, mass spectrometry has 

become increasingly applied in this area (van Ginneken et al., 2007, Fardet et al., 

2008, Zhen et al., 2007). A major technological breakthrough was the invention of 

the LTQ Orbitrap Fourier Transform mass spectrometer (FTMS) (Makarov et al., 

2006), which offers very high and consistent mass accuracy in combination with the 

rapid scanning required for compatibility with chromatographic systems (Kamleh et 

al., 2008). Although a previous study using conventional liquid and gas 

chromatography with mass spectrometry included limited metabolomic profiling in 

the urine and plasma of subjects treated with anti-inflammatory synthetic GC 

(Ellero-Simatos et al., 2012), Orbitrap FTMS had not been applied previously in 

studies of GC action. With the advancement in analytical techniques, hundreds of 

metabolite peaks are generated from a biological sample. Visualising and 

interpreting a metabolomic change is challenging and needs a robust multi- and 

univariate statistical approach to identify reliable biomarkers. 

 

1.5 Univariate analysis 

Statistical analysis deals with one variable and is considered the simplest step in 

analysing a single variable. Univariate analysis can be inferential or descriptive, but 

it does not deal with relationships and causation like regression analysis. In 

metabolomics, a huge number of variables are produced, and one of the aims is to 
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examine the relationship between the metabolomic change and the intervention. 

Unlike multivariate analysis, univariate analysis does not provide this important 

information. 

  

1.6 Multivariate analysis 

Recent advances in high data-density analytical techniques offer unrivalled promise 

for improved medical diagnostics in the coming decade. Genomics, proteomics and 

metabolomics provide a detailed descriptor of the biology of each individual. 

Relating the large quantity of data on many different individuals to their current 

(and possibly even future) phenotype is a task not well suited to classical 

multivariate statistics. The datasets generated by metabolomics techniques very 

often violate the requirements for classical multivariate analysis (MVA) (such as 

multiple regression, samples (N) must be greater than variables (K), the K variables 

should be noise-free and uncorrelated and the X-matrix should be complete i.e no 

missing values. For MVA, K can be much larger than N, the K variables can be 

multicollinear and the X-matrix noisy and incomplete i.e with missing values. 

However, another statistical approach exists as an alternative to classical statistical 

treatments that was developed in the early part of this century by Hermann Wold 

and colleagues and that can overcome these problems. This approach, called 

multivariate analysis (MVA), has the potential to revolutionise medical diagnostics 

in a broad range of diseases. It opens up the possibility of expert systems that can 

diagnose the presence of many different diseases simultaneously, and even make  
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predictions about the future diseases an individual is likely to suffer from (Grainger, 

2003). 

 

Data analysis is comprised of two steps, multivariate analysis followed by univariate 

analysis. The multivariate step contains two phases, firstly, pattern recognition 

using unsupervised techniques in order to get an overview of the data and to 

ensure that it does not contain outliers, secondly, biomarker identification followed 

by model validation to ensure predictive ability. Prior to starting the steps of data 

visualisation and biomarkers identification, data should be pre-processed. 

 

1.6.1 Data pre-processing. 

1.6.1.1 Missing values 

Missing values is of a major concern in metabolomics, in which non-zero values 

appears in the variables matrix and it would give a misleading result. The cause of 

missing values may be biological and/or technical (Hrydziuszko and Viant, 2012), 

which can lead to [1] detection of metabolite in one sample but not in others at any 

concentration, [2] concentration of metabolite in a sample is below the analytical 

method’s limit of detection, and [3] the metabolite not detected and reported by 

the data processing software (Di Guida et al., 2016). 

Different methods are employed to minimise the effect of missing values. Missing 

values in each detected metabolite are either replaced with; [1] Small value (SV): 

the half of the minimum peak intensity, [2] Mean (MN):  mean of intensities, [3] 

Median (MD): median of intensities, [4] K-nearest neighbour imputation (KNN): 
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mean of nearest 10 non-missing values (Xia and Wishart, 2011), [5] Bayesian 

Principal Component Analysis (BPCA): employing principal component analysis 

regression with a Bayesian method to obtain unique replacement values 

(Hrydziuszko and Viant, 2012), or [6] Random Forest imputation (RF) uses the RF 

classification to generate adjacent matrix as a source of iterative imputation of 

missing values (Breiman, 2001). SIMCA-14 software, which used in multivariate 

analysis in this thesis, employs Non-linear Iterative Partial Least Squares (NIPALS) 

algorithm as a default to estimate missing values relying on slopes of least squares 

line that crosses the origin of observed data points. 

1.6.1.2 Transformation 

Transformation is used to make the data to approach normality when individual 

variables depart from normal distribution. Thus, transformation make the 

distribution of the residuals more normal which effectively helps in eliminating 

outliers (Eriksson et al., 2013g). Many forms of data transformations are used, such 

as log2, log10, inverse, neglog, etc., depending on the data to be transformed and 

this can be examined using normal probability plots (Eriksson et al., 2013g) as 

shown in Figure 1.4. The observations in plot B are situated on the straight line with 

R2 =0.98 after log2 transformation compared to the untransformed observations in 

plot A which deviate from the straight line with R2 =0.88. 
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Figure 1.4 Normal probability plot of residuals. 
The plot displaying the residuals standardized on a double log scale on y-axis vs standard deviation 
on the x-axis. Observations lying outside the –4 or +4 standard deviations are outliers. The regression 
line to assess the normality of the observations. (A) Untransformed variables (B) log2 transformed 
variables 

 

1.6.2 Scaling 

Statistical analysis focuses on metabolites with high intensities giving less weight to 

those with lower intensities. However,the importance of these smaller metabolites 

can not be neglected because they might have high biological importance. Scaling is 

often used in metabolomics to overcome such issues (Xi et al., 2014) and can be 

performed by: [1] Mean centring, i.e., taking the average of each variable and 

subtracting it from the intensity of the variable in each row; [2] Univariate scaling, 

i.e.,  calculating standard deviation of each variable (column) and dividing it by the 

intensity of the variable in each row (sample); [3] Auto scaling, which is a 

combination of univariate scaling and mean centring. Auto-scaling is preferred 
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when variables have different units, but, it may increase the effect of noise 

variables on the analysis. To reduce such undesirable effects, [4] Pareto scaling is 

recommended. Pareto scaling takes the square root of each variable in a column 

and divides it by the intensity of the variable per row; Pareto scaling is more 

popular when dealing with spectroscopic data (Xi et al., 2014). [5] Block weighting, 

is another scaling technique where a variable in each row is multiplied by 

1/(kblock)
1/2, where kblock = number of variables in that block. This technique is 

preferred in combination with univariate scaling when variables with different units 

are analysed and a block of variables with large values will dominate over smaller 

value blocks (Eriksson et al., 2013a), for instance systolic blood pressure (mmHg) 

and height (m).  

 

1.7 Data visualisation 

1.7.1 Unsupervised Techniques 

Due to the nature of the information contained in biological data sets (such as 

metabolomics data), LC-MS can generate very large amounts of data. As in this 

research, it is required to establish possible relationships (or correlations) among 

the various subjects or variables; the greater the amount of information there is to 

analyse, the higher the difficulty and complexity of obtaining the required results 

will be. It would be almost impossible to properly examine and analyse the data 

without appropriate statistical software. Hence, it is necessary to apply suitable 

statistical methods to increase the chance of identifying any potential similarities or 
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differences among the various samples in the data, by reducing the dimensionality 

of the input space of the data to a small number of dimensions.  

 

To classify the samples into groups of similar characteristics, which can give an 

insight in the situation under investigation, statistical methods such as Principal 

Components Analysis (PCA) and Cluster Analysis such as Hierarchical Cluster 

Analysis (HCA) can be used. Samples classified in a group will have similar 

characteristics, but be different from those in other groups. No information about 

the groups is known beforehand and no assumptions are necessary concerning the 

group into which a sample may be classified. These unsupervised pattern 

recognition techniques aim to reduce the amount of data complexity and 

afterwards present in a graphical form the patterns or clusters identified in the data 

(Prelorendjos, 2014).  

 

1.7.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is an unsupervised model employed to explore 

how variables cluster regardless to which class an observation belongs to (Kirwan et 

al., 2012). It considered the main tool used by analysts for data reduction to extract 

meaningful information (Yamamoto et al., 2009). This is achieved by combining 

variables that correlate with each other into few latent variables (components). The 

higher the correlation among variables the smaller the number of components that 

will be needed with components < observations, without losing an important 

amount of the total variation of the data (Prelorendjos, 2014). PCA is normally 
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employed as the first step in the analysis of metabolomics data (Kirwan et al., 2012, 

Trygg et al., 2007) in order to visualise data and detect outliers. 

 

1.7.3 Detecting outliers: (DModX and Hotelling’s T2 ) 

Strong  and moderate outliers are interesting. Strong outliers can be investigated by 

Hotllings’ T2 plot while moderate outlier can be found in DModX plot (Figure 1.5). 

The Hotelling's T2 plot displays distance of an observation from the origin of the 

model plane for each observation. Values larger than the 95% confidence limit 

(orange horizontal dotted line in (Figure 1.5) are suspect, and values larger than the 

99% confidence limit (red horizontal dotted line in (Figure 1.5,) can be considered as 

serious (strong outlier) as for observation P102 in (Figure 1.5A) which pulls the 

model in a detrimental way (Eriksson et al., 2013e). 

 

DModX is distance of an observation to the model. The critical value of DModX, 

denoted Dcrit (red vertical dotted line in Figure 1.5, below). Dcrit regulates the size 

of the area surrounding the data points. Observations with a DModX larger than the 

DCrit are outliers. When DModX is twice DCrit they are strong outliers. This 

indicates that these observations are different from the normal observations with 

respect to the correlation structure of the variables (Eriksson et al., 2013e). 
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Figure 1.5 Distance to model (DModX) vs Hotellings T
2
 plot.  

DModX on x-axis versus Hotelling’s T2 on Y-axis. Hotelling’s T2 has two limits on the y-axis the first 
T2 Crit(95%) and called warning limit and represented by yellow dotted line, the second limit T2 
Crit(99%) called action limit and represented by red dotted line. The red dotted line on the x-axis 
represents DModX uses critical distance DCrit at level 0.05. Observations considered strong outliers 
if; above the action limit or above the warning limit plus DModX critical limit. Plot (A) showing a 
model with outlier, plot (B) showing the same model after removing the outliers P102 and P202. 
(P=placebo, T=treatment). 

 

1.7.3.1 Hierarchical Clustering Analysis (HCA) 

The concept of HCA or dendrogram –both are used interchangeably- as a clustering 

analysis tool is to try to find a natural grouping of a data set, so that there is high 

similarity (low variability) of observations within clustered groups and less similarity 

(high variability) of observations between clustered groups (Figure 1.6). In HCA 

clustering, the two closest clusters or observations are merged, thereafter the two 

closest clusters or points are again merged, until one super cluster remains 

(Figure 1.6) (Lozano et al., 2014). HCA is extensively used when a study is done with 
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no previous knowledge about grouping, and is considered a preface for a supervised 

multivariate techniques. 

 

 

Figure 1.6 Hierarchical Clustering Analysis (HCA) plot. 
The dendrogram above shows observations clustered into three groups. X-axis represents patient’s 
observations and y-axis shows variability index. The high the variabilit index the more between 
groups variability, the small variability index the high within group similarity. 

 

1.7.4 Supervised Techniques 

PCA provides an overview of the dataset, but it does not relate the phenotype-

disease state for instance- of an individual to the measured parameters. Partial least 

squares-discriminant analysis (PLS-DA) performs a PCA analysis on the Y-matrix 

(observations/samples) to yield a small number of latent variables, and then 

constructs a series of latent variables from the X-matrix 

(descriptors/variables/metabolites) which explain the maximum variance in these Y 

latent variables.  
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Orthogonal partial least squares - discriminant analysis (OPLS-DA) is an extension of 

PLS-DA  model, and has an advantage over the PLS-DA that it can separate variation 

in X that correlates to Y (horizontally) called predictive variation, and also separate 

variation in X that is uncorrelated to Y (orthogonal) (Figure 1.7). OPLS-DA is a most 

powerful technique that is employed to examine the difference between groups 

(Kirwan et al., 2012), it can identify reliable biomarkers that have a strong 

association with separation between groups (Trygg et al., 2007) and relate disease 

to perturbations in metabolic pathways (Goodacre, 2007) and thus help expand our 

understanding of pathophysiology and future therapeutic targets. 

 

 

Figure 1.7 Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) score plot. 
The OPLS-DA score plot shows plasma samples of patients receiving either low GC (A-green) or high 
GC (B-blue). The two groups clearly separated horizontally (t-predictive), within group variability (to, 
orthogonal) for those receiving low GC dose is higher than those receiving high GC dose. The model 
explains 4% of the predictive variation (between groups variability) and 29.7% of the orthogonal 
variation (within group variability).  
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The quality of a supervised model is assessed by R2 (the goodness of fit) and Q2 (the 

goodness of prediction), and P CV-ANOVA (the p-value of the model) from cross-

validation procedures which determine the degree of significance of the model 

(Triba et al., 2015) and are called quality parameters (Wheelock and Wheelock, 

2013). 

 

1.7.5 Model validation  

During analysis, the quality parameters R2 and Q2 are the most powerful tools for 

validating any applied model. R2 is a quantitative measure of the goodness of fit, it 

relates y (observations) to x (variables), by quantifying the fraction of y explained by 

the variation in x. The issue with such a parameter is that it can be made arbitrarily 

close to one, the maximal value, as long as we increase the number of components. 

This might lead to over-fitting the data due to the large number of variables 

compared to small number of observations and thus give too optimistic results. 

However, this can be controlled by the goodness of prediction parameter Q2, 

obtained via cross validation (CV) (Kirwan et al., 2012) by which predefined number 

of observations should be left out and followed by refitting the model. This process, 

applied to all the data until all  have been kept out only once (Eriksson et al., 

2013b). Then the average value of the refitted models Q2 are compared to the R2 of 

that model which provides an indication that it  predicts much better than chance . 
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Figure 1.8 Observed vs Predicted plot. 
The figure shows (A) Observed vs predicted plot with R

2
 = 0.77 based on 7

 
CV groups (the default) 

compared to R
2 

= 0.99 in plot with C20 CV groups. (B) OPLS-DA score plot showing two groups of 
observations based on 7

 
CV groups compared to plot D which showed tighter clustering following to 

20 CV groups. 

 

For the purpose of cross validation SIMCA P software - by default - leaves 1/7th of 

the data out. An observed vs predicted plot is employed to examine the efficiency 

of CV, by which the R2 of the regression line should be improved. Plot C in 

(Figure 1.8) shows better clustering of the observations around the regression line 

following 1/20th CV with R2 = 0.99 compared plot A in the same figure in which 
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observation gave a model with R2= 0.77. Plot B and D, are score plots of an OPLS-DA 

model following 1/7th and 1/20th CV, respectively. 

Moreover, in order to examin whether a specific classification of observations into 

two groups is significantly better than any other random grouping in two arbitrary 

classes, permutations test is applied (Westerhuis et al., 2008). 

 

 

Figure 1.9 Permutations test. 
The plot shows, the vertical axis gives the R

2
Y and Q

2
Y -values of each model. The horizontal axis 

represents the correlation coefficient between the original Y, which has correlation 1.0 with itself, 
and the permuted Y. If the supervised model has valid predictive ability, the R

2
Y and Q

2
Y of the real 

model are always larger than the corresponding values of the models fitted to the permuted 
responses.  

 

In this test, the R2 and Q2 parameters obtained from the original model are 

compared to newly permuted R2 and Q2, this process can be repeated to generate 

new quality parameters. The new parameters generated from this permutation 

should all be lower in value than the original values. In addition to that, the 
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regression line of the predictive model should cross the horizontal zero line 

(Figure 1.9) (Eriksson et al., 2013f). In order to test the significance of the variation 

predicted by the supervised model, Analysis of variance (ANOVA) of the cross 

validated residuals is employed (CV-ANOVA). Once the predictive ability of the 

model is validated, then the accuracy of the model in discriminating observations 

based on their metabolic profile should be assessed and reported using area under 

the receiver operating characteristic (ROC) curve. 

 

1.7.6 Cross validated ANOVA (CV-ANOVA) 

The significance of a supervised model is assessed using cross validated ANOVA (CV-

ANOVA), the test examins the variation predicted by the model against H0 

hypothesis of equal cross validated predictive residuals around the mean (Eriksson 

et al., 2008b).  

 

1.7.7 Receiver Operating Characteristic (ROC) 

Area under the ROC curve (AUROCC) is a reflection of how accurate a supervised 

model is at discriminating between samples/observations sharing the same 

metabolomics profile and those not. The greater the AUROCC, the more accurate 

the classifier. 

The concept of an ROC is built up on two factors, sensitivity and specificity. Within 

metabolomics sensitivity of a biomarker is the proportion of individual for whom a 

biomarker is high that are correctly identified by the test, the specificity is the 

proportion of individuals for whom the biomarker is not high that are correctly 
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identified by the test (Bewick et al., 2004). The ROC curve formed by several points 

of sensitivity and specificity in which the AUROCC is normalised to 1 and used to 

assess the predictability of the classifier with a rough guide as follow, 0.9–1.0 = 

excellent; 0.8–0.9 = good; 0.7–0.8 = fair; 0.6–0.7 = poor; 0.5–0.6 = fail (Xia et al., 

2013). Figure 1.10 shows an excellent classifier with AUROCC accuracy above 0.9 for 

all the groups which means that the model was able to determine and predict the 

metabolomic differences between the three groups with more than 90% accuracy. 

 

 

Figure 1.10 Area Under the Reciever Operating Characterestics Curve (AUC). 
The ROC curve shows sensitivity (true positive rate (TPR)) on the y-axis versus (false positive rate 
(FPR = 1 - Specificity)) on the x-axis, the value of both normalised to 1 which represents the value of 
AUC for group. Three groups of patients with excellent AUC accuracy; (1-green)=0.99, (2-blue)=0.99 
and (3-plum)=0.91. 
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1.8 Biomarkers identification using an S-plot 

The S-plot is a tool used to identify biomarkers based on a supervised model. The 

metabolites far to the upper right and to the lower left are highly associated with  

difference between assigned groups. Unfortunately, there are no firm cutoffs that 

one can rely on when selecting metabolites using the S-plot, and also using such 

vague way of selecting significant metabolites could lead to neglecting other 

significant metabolites. For instance, L-octanoylcarnitine is a medium chain acyl 

carnitine which was found positively associated with arterial stiffness in obese 

individuals (Kim et al., 2015). This significant metabolite was not picked up by the S-

plot (Figure 1.11). Based on that it would be preferred to employ univariate analysis 

at this stage in order to guarantee equal treatment of the metabolites and then fair 

selection without losing potential biomarkers. 
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Figure 1.11 S-plot. 
The plot shows metabolites distributed according to their correlation (x-axis) and magnitude of 
effect (y-axis) based on an intervention. Plum hexagonal symbols represent selected significant 
metabolites that significantly affected by the GC dose. Small box on the down right is for L-
octanoylcarnitine. 

 

1.8.1 Variable importance in the projection (VIP) 

The contribution of each metabolite in a given model is examined by considering 

the variable importance in the projection (VIP). This parameter estimates and ranks 

the importance of each variable (metabolite) in the projection and it is often used 

for variable selection during metabolomics (Chong and Jun, 2005). Metabolites are 

generally considered to have a high contribution in the model if VIP > 1 (Eriksson et 

al., 2013d, Zhang et al., 2016). VIP, provides a value for each metabolite in terms of 

its contribution to the difference between groups (VIPpred) and its contribution to 

the within group variability (VIPortho). Metabolites with high VIPpred and low 

VIPortho values are sensitive and specific. 
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1.8.2 Corrected p values 

The only tool in statistics used to judge the statistical significance of a variable is the 

p-value, α level = 0.05 is the most used level, which means that there is less than 5% 

risk this difference may be due to chance. Number of variable (k) has positive 

relation ship with increased risk of false positive discoveries, this relationship = 1-

(0.95)k (Eriksson et al., 2013c), where k is number of variables. For instance, k = 5 

the risk of false positive = 22%, and in order to minimise this risk, bonferroni 

correction is employed in which the 0.05 α divided by the number of k, for instance 

when k = 5 the new α level of significance will be 0.01, so any variable above 0.01 

will not be significant. In metabolomics variables are in the hundreds so when k = 

100, α = 0.0005, this significance level might be acceptable when for example 

human cells lines are used as a matrix of metabolomics profiling in which almost all 

the conditions are under control, but in the case of human plasma which is a 

complex matrix (Dunn et al., 2011), which renders levels of metabolites among 

individuals of the same group disease/control highly variable and this will affect the 

significance level of these variables. Based on that, a less stringent tool such as false 

discovery rate (FDR) (Benjamini and Hochberg, 1995) is preferred for human 

biological samples. 
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1.8.3 Jack-knifing (JK) uncertainties 

A 95% confidence interval is calculated for each metabolite in the supervised model 

based on the jack-knife of uncertainty which estimates the prediction error rate 

based on the cross validation rule used (Efron and Gong, 1983). Jack-knifing is a 

method for finding the precision of an estimate, and is important for filtering out 

unreliable metabolites. 
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1.9 Aims and objectives 

1.9.1 First objective 

The first objective of this work was to determine the physiological and pathological 

link between GC and insulin resistance and to assess the therapeutic potential of 

decreasing cortisol action (via GC blockade) in patients (n=8) with T2D and NAFLDby 

assessing which metabolic pathways were significantly affected. The GC blockade 

was achieved by a combination of mifepristone (RU38486), a GC receptor 

antagonist, with metyrapone, an inhibitor of cortisol biosynthesis. A double blind 

cross over design was used in which the patients were given either placebo or GC 

blockade treatment followed by insulin after a 2 weeks washout period. Plasma 

samples were collected at the end of the treatment period and analysed for 

metabolite differences in order to examine the effect of insulin after the GC 

blockade in both groups. 

 

1.9.2 Second objective 

The second objective was to identify the biomarkers for GC and insulin action 

through metabolomic analysis of plasma samples from healthy men (n=20) treated 

with metyrapone followed by HC (HC) infusion to induce low, medium and high 

(supra-physiological) circulating cortisol levels. The specificity of the response to GC 

was assessed through measurements taken before and after insulin infusion, and 

the interaction between insulin and HC was also examined. 
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1.9.3 Third objective 

To determine the categories of CAH patients at risk of having further chronic 

diseases through untargeted metabolomic profiling. This was performed by using 

liquid chromatography-high resolution mass spectrometry (LC-MS) to identify the 

responsible metabolites in plasma samples from these patients (n=119). The  

anthropometric (BMI, height, weight, age) and clinical (systolic & diastolic blood 

pressure and levels of androstenedione & 17-hydroxy progesterone) measurements 

were assessed for their contribution in patients’ clustering and metabolomic 

differences among groups were examined . 

 

1.9.4 Fourth objective  

Another objective for this study was to explore the changes in metabolites that 

occur at different GC dose cut-offs in order to rationalise preventive measures 

against increased likelihood of GC-induced adverse effects (n=117). This was 

intended to also facilitate the establishment of dose cut-offs between physiological 

replacement required to maintain a normal metabolic state and the 

pharmacological therapy needed to induce specific responses.  
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Chapter 2: 
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2 Materials and Methods 

2.1 Chemicals and Solvents 

HPLC grade acetonitrile (ACN), chloroform and methanol were purchased from 

Fisher Scientific, UK. HPLC grade water was produced by a Direct-Q 3 Ultrapure 

Water System from Millipore, UK. AnalaR grade formic acid (98%) was obtained 

from Fisher Sceintific, UK. Sodium chloride (NaCl), ammonium carbonate, 

ammonium acetate, ammonium hydroxide solution (30-33%) and all standard 

compounds used to evaluate the column or develop the methods were purchased 

from Sigma-Aldrich, UK.  

2.2 Sample Preparation 

The collected samples were stored at -80°C and thawed at ambient temperature for 

1-2 hours before further preparation. Metabolites were extracted by transferring 

200 μl of sample to an eppendorf tube with addition of 800 μl of acetonitrile. After 

vortexing the samples were centrifuged at 8000 round per minute for 10 min. The 

supernatant was then collected into a HPLC vial as a final solution ready for LC-MS 

analysis. 

 

2.3 HPLC conditions 

2.3.1 Mobile phase solutions for ZIC-pHILIC chromatography 

All mobile phase solutions were freshly prepared and stored at room temperature 

for up to 48 hours. Mobile phase A (20mM ammonium carbonate buffer, pH 9.2) 

was prepared by addition of 1.92g of ammonium carbonate to 800 ml of HPLC-
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grade water followed by adjustment to pH 9.2 with ammonia solution and then 

more water was added to make the volume up to 1L. Mobile phase B was HPLC-

grade acetonitrile only. The column used was a ZIC-pHILIC column (L150 × I.D. 4.6 

mm, 5µm, polymeric bead support) from Hichrom Ltd, Reading, UK (Zhang et al., 

2013). 

 

2.3.2 Mobile Phase for C18 Chromatography 

All solutions were freshly prepared and were stored at room temperature for up to 

48 hours. Mobile phase A (0.1% (v/v) formic acid in water, pH 3) was prepared by 

addition of 1ml of formic acid to 800 ml of HPLC-grade water followed by mixing 

then was completed to a volume to 1L with additional water. Mobile phase B (0.1% 

(v/v) formic acid in acetonitrile, pH 3) was prepared by addition of 1ml of formic 

acid to 800 ml of HPLC-grade acetonitrile followed mixing then was completed to a 

volume of 1L with more acetonitrile, pH adjusted using pH meter. The column used 

was an ACE C18-AR (150 × 4.6mm, particle size 5 µm, pore size 100A˚) from 

Hichrom Ltd., Reading UK (Zhang et al., 2013). 

 

2.3.3 HPLC setup 

The HPLC was fitted with the appropriate mobile phase components. The auto-

sampler needle and sample syringe were flushed with the syringe wash solution 

(methanol: water, 1:1). The system was initially purged, successively, with 100% of 

each of mobile phases B followed by A at a flow at 5 ml/min for 5 min in each case. 

The purge valve was then closed and the selected HPLC column was conditioned 
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with 50% of mobile phase B at a flow rate of 0.3 ml/min for 10 min. The operating 

pump pressure was continuously monitored to ensure that it was below 2,000 

pounds per square inch (p.s.i). injection volume is 10 ul per sample and 

chromatographic separations were performed on both ZIC-pHILIC and C18-AR 

columns by applying two separate linear gradient elutions over 30 min (excluding 

reequilibration, as shown in Table 2.1 and Table 2.2), column control temperature is 

off. The mobile phases described in sections 2.3.1 and 2.3.2 above respectively at a 

flow rate of 0.3ml/min. For both separations, the same operating conditions were 

employed for the electrospray ionization (ESI) interface which was operated in a 

positive/negative polarity switching mode. While on the instrument, samples were 

kept on a vial tray which was set to a constant temperature of 4˚C to avoid any 

possible degradation of samples. 

 

Table 2.1 Gradient elution programme applied for ZICpHILIC in LC-MS analysis. 

 

Time (min) Mobile phase A% Mobile phase B % Flow rate (ml/min) 

0 20 80 0.3 
30 80 20 0.3 
31 92 8 0.3 
36 92 8 0.3 
37 20 80 0.3 
46 20 80 0.3 
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Table 2.2 Gradient elution programme applied for C18-AR in LC-MS analysis. 

 

Time (min) Mobile phase A% Mobile phase B % Flow rate (ml/min) 

0 95 5 0.3 

30 0 100 0.3 

35 0 100 0.3 

36 95 5 0.3 

46 95 5 0.3 

 

 

2.3.4 Orbitrap Exactive MS setup 

LC-MS was performed with an Accela HPLC pump connected to an Exactive 

(Orbitrap) mass spectrometer from Thermo Fisher Scientific (Bremen, Germany). 

The quality of data acquired from an instrument has an implication on the accuracy 

of the deductions that can be made from a study as a whole. Instrument sensitivity 

was assessed weekly and any residues in the ion source chamber were removed to 

maintain enhanced sensitivity. This was achieved by sonicating the sample cone and 

the ion transfer capillaries in a 50:50 (vol/vol) methanol/water solution for 15 min.  

 

The mass spectrometer (MS) was tuned and calibrated in accordance with the 

manufacturer’s specifications using the Thermo Calmix standard solutions. The 

signals of acetonitrile dimer (2xACN+H) m/z 83.0604 and m/z 195.03765 for 

caffeine were used as lock masses for positive (PIESI) mode and m/z 91.0037 (2 x 

formate-H) was used as a lock mass for negative (NIESI) mode, during each 

analytical run. The MS accuracy was tested using standard analytes with intensities 

between 104 and 107 as calibrants. The calibrant peaks were checked to make sure 

that the mass deviations were less than 3 part per million (p.p.m), otherwise the 
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instrument was recalibrated to correct the mass errors. The spray voltage used was 

4.5 kV for positive mode and -4.0 kV for negative mode. The temperature of the ion 

transfer capillary was 275 °C and the sheath and auxiliary gases were set at 50 and 

17 arbitrary units, respectively. The full scan range was 75 to 1200 m/z for both 

positive and negative modes with settings of AGC target and resolution as Balanced 

and High (1E6 and 50,000), respectively. 

 

2.4 Data extraction methods used in processing the files obtained 
from LC-MS analysis of plasma samples. 

2.4.1 mzMatch and IDEOM 

All raw data files (Thermo-Xcalibur format) were manually sorted into folders 

according to study groups. Then they were converted to mzXML files using an open 

source software: msconvert (proteowizard.sourceforge.net), and polarity split using 

the mzMatch split function to separate the Exactive’s positive and negative ion 

mass spectra. After this, XCMS was run through R and, using the centwave function, 

peaks were picked and each individual file converted to peakml format. The settings 

for the centwave function employed were: mass deviation from scan to scan (< 2) 

ppm, range for baseline peak width (minimum 5 seconds and maximum 100 

seconds), Signal to Noise ratio (3), prefilter intensity (1000), and Mzdiff (0.001). This 

was followed by running mzMatch to match peaks from each sample to produce a 

single dataset and group individual peakml files together.  

 



52 
 

Furthermore, the noise, RSD, intensity and detection filters were run to remove 

irreproducible signals (Creek et al., 2012). Parameter settings for the mzMatch 

filters were: mass deviation from sample to sample (5 ppm) and RT deviation from 

sample to sample (0.5 min). If there was a large shift in retention times, the signal 

intensities would not be comparable and the datasets would not make sense. 

MzMatch filtrations were: [1] RSD filter (0.5), where peak reproducibility was 

assessed by the RSD of peak intensities for each group of replicates; [2] noise filter 

(0.8), where peak shape was assessed by CoDA-DW score (0-1); [3] intensity filter 

(3000), where features were removed if no sample had a peak above the intensity 

threshold; and, [4] detection filter (3), where peaks must be present in a minimum 

number of samples. In addition, mzMatch fills the gap using PeakML Gap-Filler 

which fills gaps in the peak intensity table for peaks which may fall off during the 

process. Finally, IDEOM was used to filter the data further, and then the 

metabolites were compared and identified (Creek et al., 2012). 

 

IDEOM is a Microsoft Excel template enabled for automated data processing of high 

resolution LC-MS data from untargeted metabolomics studies (Creek et al., 2012). In 

IDEOM, more noise filtration is achieved and the authentic chemical standard is 

matched with a sample metabolite. It is necessary to update DB with retention 

times using a list of retention times from authentic standards (≈180 standards) run 

with each experiment; this list is created using Toxid (which is an automated 

compound identification tool that dramatically simplifies processing of LC/MS data 

and identifies compounds according to retention time and chemical formula). The 
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retention time calculator also uses physiochemical properties (depending on the 

functional group and chemical formula of compounds) in the DB sheet to predict 

retention times based on a multiple linear regression model with the authentic 

standards. The retention time calculator uses the Quantitative Structure Retention 

Relationships (QSRR) approach to predict retention times based on the known 

retention times of authentic standards and the physicochemical nature of the 

interactions of analyte with columns that determine retention times (Creek et al., 

2011). In this thesis, level (2) putatively annotated compounds and level (3) 

putatively characterised compound classes were used to identify metabolites 

according to Metabolomic Standard Intiative (MSI) are level (Sumner et al., 2007). 

Identification of more accurate putative metabolite requires more filtration of 

mzMatch files. The blank run with the study group to filter all intensities in a study 

group must be greater than that in the solvent blanks to remove contaminants. 

Other filters for noise, such as RSD, intensity and detection filters, are repeated. 

Chromatography filters, shoulder peak filter and duplicate peak filter, are also 

applied in IDEOM. Identification of metabolites is performed by matching the 

accurate mass (accurate mass error for mass identification with DB < 3ppm is 

suitable for formula identification from a biochemical database with unique entries 

in DB of 97%) and retention time (RT for identification of authentic standards is 5%) 

of detected metabolite peak to metabolites in the database. Final lists of identified 

and rejected peaks are annotated with confidence level from 0 to 10 (10 = most 

confident) according to the identification of each metabolite; confidence < 5 is 
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rejected as false identification and metabolites matched with the retention times of 

authentic standards are identified metabolites and highlighted yellow. 

 

2.4.2 Data bases used for identification 

 KEGG Kyoto Encyclopedia of Genes and Genomes 

(http://www.genome.jp/kegg/) 

 HMDB Human Metabolome Data Base (http://www.hmdb.ca/) 

 METACYC Metabolic Pathway Database (http://metacyc.org/) 

 LIPID MAPS (http://www.lipidmaps.org/) 

 

2.5 Metabolomics profiling 

2.5.1 Statistical softwares used 

All data processing, including data visualisation, biomarker identification, 

diagnostics and validation, was implemented using SIMCA software v.14 (Umetrics 

AB, Umeå, Sweden) for multivariate analysis (Zhang et al., 2016). Metaboanalyst 3.0 

(www.metaboanalyst.ca) (Xia et al., 2015) and IBM SPSS Statistics software 

package version 22.0 (IBM SPSS, Chicago, IL) were employed for univariate analysis. 

 

2.5.2 Pre-treatment 

Prior to multivariate analysis, LC-MS data was log transformed (base 2) and then 

Pareto scaled for variance (Par) so that the responses for each variable were 

centred by subtracting its mean value and then divided by the square root of its 

standard deviation. 

http://www.metaboanalyst.ca/
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2.5.3 Pooled samples 

Pooled plasma samples were prepared by taking 20 µL aliquots from 10 randomly 

selected non-extracted plasma samples, metabolites were extracted by transferring 

the 200 μl to an eppendorf tube with addition of 800 μl of acetonitrile. After 

vortexing the samples were centrifuged at 8000 round per minute for 10 min. The 

supernatant was then collected into a HPLC vial as a final solution ready for LC-MS. 

The instrument was set to inject a pooled sample through out the run, the pooled 

sample had at least 4 readings. To quantify the precision of the measurements, the 

relative standard deviation (RSD) was calculated between the 4 pooled samples 

based on total intensities in each sample and an RSD must not exceeds 15%. RSD 

was also calculated for each of the putatively identified metabolites among the 

pooled samples, metabolites with RSD >15% were rejected. RSD applied as the last 

filter following corrected p value, 95%CI and AUC. Metabolites were removed if only 

detected in less than 80% of the biological samples in each defined group. 

 

2.5.4 Data visualisation and biomarkers identification 

Prior to modelling the LC-MS data, Hotelling’s T2 and DModX limits were employed 

to detect sample outliers which might affect the whole model. Samples were 

removed from the model if they were above the 99% red line (action limit) of 

Hotelling’s T2 or if they exceeded the 95% orange line (warning limit) of Hotelling’s 

T2 plus Dcrit (critical limit) of DModX (Eriksson et al., 2013e). Principal Component 

Analysis (PCA), an unsupervised model, was employed to explore how observations 



56 
 

clustered based on their metabolic composition regardless of their grouping (Kirwan 

et al., 2012, Ivosev et al., 2008). On the other hand, orthogonal projections to latent 

structures-discriminant analysis (OPLS-DA), a supervised model, was employed to 

examine the differences between groups while neglecting the systemic variation 

(Kirwan et al., 2012). The p values of the biomarkers were corrected using false 

discovery rate (FDR)(Benjamini and Hochberg, 1995, Ruxton and Beauchamp, 2008). 

Variable importance in the projection (VIP) was employed to assess the contribution 

of each variable in the observed metabolomics change to a given model compared 

to the rest of variables (Eriksson et al., 2013h, Chong and Jun, 2005). VIP, divided 

into VIPpred, which represent contribution of a metabolite to the difference 

between groups compared to other metabolites, and VIPortho, which indicates 

contribution of a metabolite to variability within group compared to other 

metabolites in the same model. The average VIP is equal to 1; thus a variable with 

VIP larger than 1 has more contribution in explaining y and vice versa (Eriksson et 

al., 2013h). The 95% confidence interval was calculated for each metabolite based 

on jack-knife of uncertainty which estimates the prediction error rate based on the 

cross validation rule used (Efron and Gong, 1983). Correlation coefficient of a 

metabolite to high dose of GC used to evaluate reliability of a metabolite (Wiklund 

et al., 2008). Metabolites were then filtered based on their p-values and 95% CI so 

that all metabolites with p-values > 0.05 and/or 95% CIs crossing the zero point 

were filtered out. 
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2.5.5 Diagnostics and validation  

R2 and Q2 were employed as diagnostic tools for supervised and unsupervised 

models. The R2 represents the percentage of variation explained by the model while 

Q2 indicates the percentage of variation in response to cross validation (Kirwan et 

al., 2012). In the process of cross validation SIMCA-P, by default, leaves out 1/7th of 

the data, and then examines the appropriateness of the cross-validation by plotting 

Y observed vs Y predicted. The R2 value of the regression line in the plot represents 

the strength of the association between the observed and predicted Y values; the 

closer to unity, the stronger is the association. The R2 value was used to choose the 

number of latent variables (orthogonal axis) (Xi et al., 2014). On the other hand, 

permutations test was applied to both supervised models to evaluate whether the 

specific grouping of the observations in the two designated classes was significantly 

better than any other random grouping in two arbitrary classes (Westerhuis et al., 

2008). Model validity was also assessed using CV-ANOVA which corresponds to H0 

hypothesis of equal cross validated predictive residual of the supervised model in 

comparison with the variation around the mean (Eriksson et al., 2008a). The 

AUROCC was used to assess the accuracy of the classifier with a rough guide as 

follow: 0.9–1.0 = excellent; 0.8–0.9 = good; 0.7–0.8 = fair; 0.6–0.7 = poor; 0.5–0.6 = 

fail (Xia et al., 2013).  
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2.5.6 Putative biomarker selection workflow was as follow: 

1. The metabolites were filtered based on their p-values and 95% CI of mean 

difference; if a metabolite had a p-value > 0.05 and/or its 95% CI crossed 0, 

then it was filtered out. 

2. All significant metabolites were processed using Metaboanalyst in order to 

get corrected p-values and AUROCC; if the metabolite had an p > 0.05 

and/or AUC < 0.6, it was filtered out. 

3. Where there were two interventions in the study, for instance GC blockade 

and insulin dose, the interaction between the two interventions was 

examined using suitable univariate statistical tests such as Two-Way 

repeated mesurements ANOVA. The specific tests used in each study have 

been stated in the subsequent chapters wherever applicable. 
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Chapter 3:  

Studying the effect of acute GC blockade on 

metabolic dysfunction in patients with T2D 

using metabolomics 
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3 Effect of acute GC blockade on metabolic dysfunction in 

patients with T2D using metabolomics 

 

3.1 Abstract 

Background and Aim: Supraphysiological levels of GC have a strong association with 

the development of metabolic syndrome which is composed of T2D and is 

commonly associated with dyslipidemia, obesity and often hypertension. These 

complications contribute to the development of cardiovascular disease. This study 

examined the role of acute GC blockade on metabolomic changes in patients with 

T2D and its role in improving insulin sensitivity. 

Methodology: Untargeted metabolomics profiling, using LC-MS, of plasma samples 

from 8 men with T2D. The participants had been subjected to a randomised, 

double-blinded, placebo-controlled crossover study of acute GC blockade using the 

GC receptor antagonist RU38486 and a cortisol biosynthesis inhibitor. 

Results: GC blockade significantly increased plasma levels of bile acids and their 

conjugates, and significantly decreased phosphocholines. Compared to placebo, GC 

blockade reduced endothelial dysfunction mediated via insulin through L-arginine 

metabolism, and significantly reduced some bile acids and 2-

methylbutyroylcarntine. Fatty acid levels reduced significantly upon insulin injection 

following GC blockade compared to placebo. 

Conclusion: GC blockade improves the effect of insulin in lowering plasma levels of 

bile acids. 
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3.2 Introduction 

 

T2D is a widespread chronic disease worldwide. Half a billion people are expected 

to be affected by the disease by 2030 (Klein and Shearer, 2016). Chronic 

complications developed during progression of the disease are diverse, ranging 

from insulin resistance to cardiovascular diseases (Smyth and Heron, 2006). Insulin 

stimulates lipogenesis in liver, muscle and adipose tissues and promotes its storage. 

Insulin induces synthesis of protein and glycogen, and inhibits lipolysis. Insulin 

resistance dysregulates these functions (Saltiel and Kahn, 2001) which leads to 

hyperglycaemia that can result in various complications such as neuropathy, 

retinopathy and nephropathy (Dunn, 2013).  

 

Metabolic syndrome can manifest itself in hepatic tissues as NAFLD which is also an 

indicator for insulin resistance (Marchesini et al., 2001). In adipose tissues, the 

latter causes enhanced breakdown of fats to release free fatty acids (FFAs) and 

glycerol into blood as has been confirmed in non-diabetic people with NAFLD using 

tracer studies (Fabbrini et al., 2008, Bugianesi et al., 2005). The FFAs released into 

circulation in turn contribute a significant proportion of the total fat deposits in the 

liver (Donnelly et al., 2005). On the other hand, insulin resistance as a feature of 

NAFLD (Gastaldelli et al., 2007) may occur either as a primary outcome or 

secondarily to enhanced gluconeogenesis induced by increased levels of FFAs and 

glycerol in the liver (Chen et al., 1999). The condition might be exaggerated in 
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individuals with obesity-induced insulin resistance, a situation that results in the 

high presence of NAFLD in patients with T2D. 

 

Evidence suggests that anti-diabetic treatments which improve insulin sensitivity 

such as metformin and thiazolidinediones also reduce hepatic triglyceride content 

in patients with NAFLD (Shyangdan et al., 2011), although the effect is generally 

modest. For this reason, new approaches with higher efficacies are urgently 

required. One such approach is to decrease GC activity in both the adipose tissue 

and liver, thus minimising lipolysis and gluconeogenesis in these two tissues, 

respectively (Macfarlane et al., 2008a, Andrews and Walker, 1999b). As the most 

important GC in humans, cortisol is the key target for anti-GC therapy. However, 

lowering the circulating levels of cortisol in the body might be problematic since it 

can lead to adrenocortical crisis during periods of increased stress. This challenge 

can be overcome by selectively lowering cortisol in the liver and adipose tissues 

through inhibition of 11β-HSD1, an enzyme that amplifies local activation of GC 

receptors through the conversion of cortisone, which is inactive, to cortisol, an 

active form (Rosenstock et al., 2010, Feig et al., 2011). In doing so, 11β-HSD1 

contributes extra-adrenal cortisol to the liver and adipose tissues, thus increasing 

the risk of NAFLD (Morgan and Tomlinson, 2010, Stimson et al., 2009).  

 

The activity of 11β-HSD1 has been found to be increased in adipose tissues and 

sustained in livers of obese patients with T2D (Stimson et al., 2011, Rask et al., 

2002). For this reason, this enzyme has been targeted as a means to improve insulin 
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sensitivity in these patients. However, based on 3 months’ treatment in patients 

with T2D, the efficacy obtained with 11β-HSD1 inhibitors towards glycaemic control 

was not sufficient to support their commercial viability as anti-diabetic medications. 

In order for these types of medications to have commercial value, new therapeutic 

indications need to be identified, such as NAFLD. Based on preclinical studies in 

transgenic mouse models, 11β-HSD1 overexpression in adipose tissues and liver 

leads to the development of fatty liver (Paterson et al., 2004, Masuzaki et al., 2001), 

while its inhibition decreases liver fat content (Berthiaume et al., 2007). However, it 

is not clear if non-diabetic patients with NAFLD would benefit from 11β-HSD1 

inhibition since some studies in these patients have found low levels of 11β-HSD1 in 

the adipose tissue and liver (Ahmed et al., 2012, Konopelska et al., 2009, 

Westerbacka et al., 2003), although cortisol levels were elevated (Zoppini et al., 

2004). 

 

Many metabolomics studies have been applied to uncover metabolic dysregulations 

associated with T2D (Guasch-Ferre et al., 2016). For instance, in the Framingham 

Heart Study with more than 12 years of follow up, lipid profiling using LC-MS was 

carried out on plasma samples of 189 participants who developed T2D and 189 

matched controls. The authors reported that the risk of prediabetes and diabetes 

increased with increase in levels of lipids with lower numbers of double bonds and 

lower numbers of carbon atoms (Rhee et al., 2011). Metabolomics studies have also 

reported an association between high levels of branched chain amino acids (BCAs) 

and diabetes (Wang et al., 2011a), and also with insulin resistance (Wang et al., 
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2011a, Roberts et al., 2014, Newgard et al., 2009). In a study of 2,422 participants 

followed up for 12 years, 201 of them developed diabetes, and this was associated 

with high levels of BCAs (Wang et al., 2011a). A replication study of 163 case-

controls was performed and reported the association of BCAs with the incidence of 

diabetes. 

 

However, no metabolomics study has been performed to assess the therapeutic 

potential of decreasing cortisol action on improving insulin sensitivity. In the current 

study the metabolomic effects of different doses of cortisol were evaluated in 8 

patients with T2D and NAFLD to determine which metabolic pathways were 

significantly affected. This group of patients was selected based on the fact that 

they are a potential target for longer term interventions to decrease cortisol 

activity. A GC blockade approach (Wake et al., 2007a), was employed through a 

combination of RU38486 and metyrapone (Wake et al., 2007b). A double blind cross 

over design was used in which the patients were given either placebo or GC 

blockade treatment followed by insulin after a 2 weeks’ washout period, in order to 

examine the effect of insulin after the GC blockade treatment in both groups. 

Plasma samples were collected at the end of the treatment period and analysed for 

metabolite differences. 
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3.3 Methodology 

 

3.3.1 Participants and sample collection 

Fourteen male patients with T2D were recruited from Edinburgh Royal Infirmary 

diabetes clinic. Inclusion criteria included: age 20 – 70 years; glycated haemoglobin 

(HbA1c) <8% (64mmol/mol); Body mass index (BMI) <40 kg/m2; negative tests for 

hepatitis B and C; general health good; normal screening blood tests (full blood 

count, renal function, electrolytes, thyroid function, ferritin); alcohol intake <20 

units/week; no medications known to increase fat deposition in the liver, e.g. 

nucleoside analogues, methotrexate and amiodarone; no medications known to 

interfere with lipolysis, e.g. beta blockers; and no GC use in the last 6 months. All 

patients were receiving treatment with a single oral anti-diabetic agent (metformin) 

and primary prevention with a statin. Importantly, neither metformin nor statins 

influence fatty acid turnover. Fat mass was measured by bioimpedence (Body fat 

Monitor BF302, OMRON Healthcare (UK) Ltd, Henfield, UK). Local ethical committee 

approval and written informed consent were obtained (Macfarlane et al., 2014). 

 

3.3.2 Study design and protocol 

Participants entered a two phase randomised double-blind placebo controlled 

crossover study of GC blockade. In the active phase, subjects took 400mg RU38486 

(mifepristone, Exelgyn, Henley-on-Thames, UK) and 1g of metyrapone (metopirone, 

Alliance Pharmaceuticals, Chipenham, UK) at 2300h the evening before and at 
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0800h on the morning of the study, as previously described (Wake et al., 2007a). 

Study visits were separated by a wash out period of at least two weeks. 

 

Subjects received primed infusions of 1,1,2,3,3-2H5-glycerol (1.6 μmol/kg for 1 min, 

then 0.11 μmol/kg/min) and 6,6-2H2-glucose (17.6 μmol/kg for 1 min, then 0.22 

μmol/kg/min), as well as 13C1-palmitate infused at 0.04μmol/kg/min. Given the 

short time required to reach steady state with the palmitate tracer, the palmitate 

infusion was interrupted during the study to reduce the volume of 20% (w/v) 

albumin infused. Blood samples were taken at baseline (1), between 60-90mins (2), 

and at 210-240mins (3), the latter during the final 30mins of a low dose 

(10mU/m2/min) hyperinsulinaemic-euglycaemic clamp to investigate suppression of 

lipolysis and endogenous glucose production. Euglycaemia was maintained by a 

variable rate infusion of 20% (w/v) dextrose if necessary.  

3.3.2.1 Patients numbering 

Each patient had a number of 4 characters, first character was either placebo (P) or 

GC blockade treatment (T) phase, the seconed character was either (1) baseline, (2) 

pre-insulin or (3) post-insulin. The last two characters represented the patients’ 

number. For instance P302= first character (P) represent placebo, second character 

(3) represents the time point of sample collection which here represents post-

insulin. The last two characters (02) represents the patient’s number. 
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3.3.3 LC-MS analysis 

- LC-MS conditions and sample preparation are reported in detail in  sections 

2.1-2.3 (pages: 47-51). 

- Columns used in this project were ZICpHILIC and C18-AR. 

 

3.3.4 Data extraction and processing 

These details have been reported in section 2.4 (pages: 51-54). 

 

3.3.5 Data analysis 

Most of the details of data analysis are reported in section 2.5 (pages: 54-58). Two-

way repeated measurements ANOVA was employed on putative metabolites that 

showed significant changes following administration of insulin, GC blockade, or 

both. The test was conducted to examine the difference between baseline, pre-

insulin and post-insulin as repeated measurements in each intervention (placebo or 

GC blockade) separately. In addition, it tested the difference between GC blockade 

and placebo as paired plus the interaction between GC blockade and insulin dose. 
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3.4 Results 

 

Figure 3.1 2D PCA score plot for QC (pooled) plasma samples of patients with T2D.  
The plot shows the clustering of pooled samples (plum-QC) compared to the rest of plasma samples 
(grey-No class) of patients with T2D. Samples numbering are (P) placebo, (T) GC blockade treatment 
phase, the seconed character (1) baseline, (2) pre-insulin or (3) post-insulin, The last two characters 
represents the patients’ number.. 
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The instrument was set to inject a pooled sample after every 15 plasma samples, 

thus the pooled sample had 4 readings (Figure 3.1, above). To quantify the precision 

of the measurements, the relative standard deviation (RSD) was calculated between 

the 4 pooled samples based on total intensities in each sample and an RSD of 0.2% 

was obtained. RSD was also calculated for each of the putative biomarkers in the 

pooled samples and the highest RSD was for N-(tetracosanoyl)-sphing-4-enine 

(66.68%) followed by S-(3-oxo-3-carboxy-n-propyl)cysteine (13%) while the lowest 

RSD was for dihydroxyoctadecanoic acid (0.04%). The precision of these values 

clearly indicates that any metabolomic differences between groups cannot be due 

to instrumental factors alone. None of the metabolites were removed based on the 

RSD. 
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3.4.1 Data visualisation 

 

Figure 3.2 Hierarchical Clustering Analysis (HCA) plot for patients with T2D having placebo and GC blockade.  
The dendrogram shows observations clustered into three groups. X-axis represents the samples and y-axis shows the variability index. The higher the variability 
index the larger the between group variability and the lower the similarity index, the smaller the between group variability. The plot divides samples into three 
groups; group 1 (green), group 2 (blue) and group 3 (plum). Characters on the x-axis are (P) placebo, (T) GC blockade treatment phase, the seconed character (1) 
baseline, (2) pre-insulin or (3) post-insulin, The last two characters represents the patient’s number. 
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A hierarchical clustering analysis (Figure 3.2) shows that samples clustered into 

three groups. Inter-individual variability played a major role in the clustering 

pattern in group 1, for instance, all the samples in the groups  belonged to patients 

number 3 and 4. Nevertheless, 75% (6 out of 8 samples) in group 2 were patients 

having placebo, on the other hand, 61.1% (16 out of 26 observations) in group 3 

were accounted for by patients having GC blockade treatment (Table 3.1). 

 

Table 3.1 Shows proportions (%) of HC and insulin doses based on the HCA grouping. 

HCA 

grouping Samples (n) 

 

Placebo Treatment 

Baseline 
Pre-

insulin 

Post-

insulin 
Baseline 

Pre-

insulin 

Post-

insulin 

1 (Green) 12 16.67 16.67 16.67 16.67 16.67 16.67 

2 (Blue) 8 25 25 25 0 25 0 

3 (Plum) 26 11.54 15.38 11.54 23.08 15.38 23.08 
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Figure 3.3 (A) PCA vs (B) OPLS-DA score plots for pstients with T2D.  
The figure shows distribution of 48 samples based on readings of 537 putative biomarkers in 8 
patients with T2D. (P) denotes placebo and (T) denotes GC blockade treatment, samples collected at 
1 = baseline, 2 = pre-insulin and 3 = post-insulin. Plot (A) PCA has R

2 
= 0.909, Q

2
=0.565. Plot (B) OPLS-

DA has  R
2 

= 0.749, Q
2
=0.618. 

 

A principal components analysis (PCA) score plot (Figure 3.3A) shows no clear 

clustering pattern. Separation between groups based on type of intervention can be 

seen clearly in the OPLS-DA score plot (Figure 3.3B) although observations in pre-

insulin and baseline showed some overlap when placebo had been given. 

 

To study the effect of GC blockade in patients with metabolic syndrome, an OPLS-

DA model was built on 537 putative biomarkers which were measured in 48 

samples from 8 patients with T2D. In a comparison of placebo to GC blockade, 18 

putative biomarkers (Table 3.2) passed the 95% CI filter and showed a significant 

change based on the corrected p-value and had an AUC above 0.7. These markers 

were then used to rebuild an OPLS-DA model (Figure 3.4) in order to examine its 

ability to separate subjects based on the intervention. 
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3.4.2 Biomarker identification 

3.4.2.1 Effect of GC blockade treatment on plasma metabolome of patients with 

T2D. 

 

Figure 3.4 OPLS-DA score plot of placebo vs GC blockade samples of patients with T2D based on 
18 putative metabolites. 
The plot shows distribution of 46 observations based on readings of 18 putative biomarkers. The 
model includes two groups, subjects treated with placebo (22 samples-green) and subjects treated 
with GC blockade (24 samples-blue).The model consists of one predictive x-score component; 
component t[1] and two orthogonal x-score components  to[1-2]. t[1] explaining 41.2% of the 
predictive variation in x, to[1] explaining 15.2% of the orthogonal variation in x, R

2
X (cum) = 0.673, 

R
2
Y (cum) = 1, R

2
 (cum) = 0.99, Goodness of prediction Q

2
 (cum) = 0.981. 

 

The OPLS-DA score plot (Figure 3.4, above) was built on 18 putative biomarkers 

(Table 3.2) that significantly changed based on the treatment. Two observations 

(P302 and P307) were excluded as they were considered outliers based on 

Hotelling’s T2 vs DModX plot. The plot clearly shows significant separation between 

the two groups with P CV-ANOVA = 8.8E-32. 67% of the change in metabolites was 

explained by the model, 41% out of this variability was due to GC blockade 
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treatment, while 26% of the variability in metabolites had no relation to the type of 

intervention. 99% of the variability between the subjects was explained by the 

variability in the metabolites, around 98% of this variability was predicted by the 

model based on cross-validation. The validity of the number of orthogonal 

components in the model was examined using observed versus predicted plot, the 

regression line in the plot was R2 = 0.99 (Figure S3.1B, appendix), indicating validity 

of the cross validation of the model. Based on the permutations test plot (Figure 

S3.1A, appendix), the original model has valid predictive ability compared to the 

newly permuted Q2. Thus, 18 putative biomarkers that were significantly changed 

by the GC blockade treatment constitute a unique metabolomics classifier with 

excellent accuracy AUROCC=1 for each group (Figure S3.1C, appendix).  

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

 

Table 3.2 Shows list of putative biomarkers that significantly changed following GC 

blockade treatment. 

Putative biomarkers AUC Placebo : GC blockade FDR 

Bile acids and their conjugates    

Chenodeoxyglycocholate C18 0.9 1 : 10.62 6.6E-06 

Glycocholate C18 0.85 1 : 180.93 0.0001 

Taurodeoxycholate * 0.87 1 : 35.65 0.00003 

Glycochenodeoxycholate sulphate C18 0.99 1 : 16.86 1.8E-06 

Glycochenodeoxycholate glucuronide C18 0.8 1 : 19.37 0.009 

Miscellaneous    

7-oxo-11E,13-Tetradecadienoic acid 0.9 1 : 3.92 0.001 

Hexanoic acid (C6:0) * 0.8 1 : 1.25 0.02 

D-Glucuronate * 1 1 : 13.4 3.1E-22 

Androsterone sulphate 0.7 1 : 1.76 0.01 

Pregnenolone sulphate 0.96 1 : 116.5 6.3E-06 

L-Valine 0.6 1 : 1.5 0.03 
 

* Retention time matches standard. 
C18

 metabolites identified using C18-AR column, the rest 
identified using ZICpHILIC column. 
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Bile acids and their conjugates (Table 3.3) are the major group of putative 

biomarkers that were significantly elevated following GC blockade treatment. 

 

Table 3.3 List of bile acids and their conjugates that increased following treatment with 

GC blockade. 

Putative metabolites r 99% CI VIPpred VIPorth 

Chenodeoxyglycocholate C18 0.64 (0.10, 0.44) 1.25 0.72 

Glycochenodeoxycholate sulfate C18 0.98 (0.28, 0.57) 1.46 0.51 

Glycochenodeoxycholate glucuronideC18 0.41 (0.05, 0.30) 0.63 1.2 

Glycocholate C18 0.57 (-0.04, 0.53) 0.81 1.14 

Taurodeoxycholate * 0.61 (0.19, 0.33) 0.92 0.97 
 

* Retention time matches standard. C18 metabolites identified using C18-AR column, the rest 
identified using ZICpHILIC column. VIPpred= variable importance in the projection (predictive value), 
VIPortho= variable importance in the projection (orthogonal value). 
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Figure 3.5 (A)OPLS-DA score plot and (B) ROC curve of placebo vs GC blockade treatment in 
patients with T2D based on readings of bile acids metabolites and their conjugates. 
The OPLS-DA score plot 9A) shows 46 observations of placebo vs GC blockade treatment based on 
bile acids metabolites and their conjugates readings (Table 3.3) in two groups, subjects treated with 
placebo (22 samples-green) and subjects treated with GC blockade (24 samples-blue).The model 
consists of one predictive x-score component; component t[1] and three orthogonal x-score 
components  to[1-3]. t[1] explains 44.8% of the predictive variation in x, to[1] explains 24.7% of the 
orthogonal variation in x, R

2
X (cum) = 0.911, R

2
Y (cum) = 1, R

2
 (cum) = 0.74, Goodness of prediction 

Q
2
 (cum) = 0.682. On the right, plot (B) shows area under the ROC curve (AUROCC) of the two 

groups, x-axis showing (FPR) false positive rate (1-specificity), y-axis showing true positive rate 
(sensitivity). AUROCC for placebo = 0.98 and GC blockade = 0.98. 

 

An OPLS-DA score plot (Figure 3.5A) was built on 5 metabolites of bile acids and 

their conjugates (Table 3.3). Two observations (P302 and P307) were excluded as 

they were considered outliers based on Hotelling’s T2 vs DModX plot. The OPLS-DA 

plot shows significant separation between the two groups with P CV-ANOVA = 3.1E-

7. Around 91% of the changes in metabolites was explained by the model, 44.8% 

out of this variability was due to the effect of GC blockade treatment, while 46% of 

the variability in metabolites had no relation to the treatment. 74% of the variability 

between the subjects was explained by the variability in the metabolites, around 
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68% of this variability was predicted by the model based on cross-validation. The 

validity of the number of latent variables in the model was examined using the 

observed versus predicted plot, the regression line of the plot was R2 = 0.74 (Figure 

S3.2B, appendix) indicating validity of the cross validation. Based on the 

permutations test plot (Figure S3.2A, appendix), the original model has valid 

predictive ability compared to the newly permuted Q2. The 5 putative biomarkers 

that were significantly elevated following GC blockade treatment have excellent 

classifying ability (Figure 3.5B, above) (AUROCC= 0.98) in differentiating between 

patients treated with placebo and those treated with GC blockade.  
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3.4.2.2 Study of the effect of insulin on plasma metabolome of patients with T2D 

regardless of GC blockade treatment or placebo. 

 

 

Figure 3.6 OPLS-DA score plots of the effect of insulin on (A) 537  and (B) 2 putative metabolites. 
Plot A shows distribution of 31 observations based on readings of 537 putative biomarkers. The 
observations classified into two groups; baseline (15 samples-blue/grey) and post-insulin (16 
samples-plum). The model consists of one predictive x-score component; component t[1] and one 
orthogonal x-score components  to[1]. t[1] explains 4.4% of the variability between the two groups, 
to[1] explains 19.6% of the variability within group, R

2
X (cum) = 24%, R

2
Y (cum) = 1, R

2
 (cum) = 0.78, 

Goodness of prediction Q
2
 (cum) = 0.224. (B) OPLS-DA score plot shows distribution of 32 

observations based on readings of 2 putative biomarkers (Table 3.4, below). The observations 

classified into two groups; baseline (16 samples-blue/grey) and post-insulin (16 samples-plum). The 
model consists of one predictive x-score component; component t[1] and one orthogonal x-score 
components  to[1]. t[1] explains 89.2% of the variability between the two groups, to[1] explains 
10.8% of the orthogonal variation in (within group variability), R

2
X (cum) = 1, R

2
Y (cum) = 1, R

2
 (cum) 

= 0.863, Goodness of prediction Q
2
 (cum) = 0.852. 

 

The OPLS-DA score plot (Figure 3.6A)  shows separation between the two groups of 

observations (baseline vs post-insulin), but this separation is insignificant P CV-

ANOVA = 0.144. The model shows that only 4.4% of the variation in the putative 

metabolites between the two groups was due to the insulin dose while 19.6% of the 
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variability had no link to the effect of insulin dose. The model explained 78% of the 

variability among the samples which led to the variability in the putative 

metabolites; only 22.4% of this variability was predicted by the model based on 

cross-validation of the R2. 

 

The supervised model (Figure 3.6A) was rebuilt (Figure 3.6B) using two putative 

biomarkers that significantly increased following insulin dose (N4-

Acetylaminobutanal and 2,3,4,5-Tetrahydropyridine-2-carboxylate, Table 3.4) which 

passed the filters of FDR corrected p-value <0.05, AUC >0.8 and the 95% CI of the 

differences in means. The plot (Figure 3.6B) shows clear separation between the 

observations in the two groups (baseline vs post-insulin) with P CV-ANOVA = 7.6E-

11. And it also shows that within group variability in the post-insulin group is 

smaller than those in the baseline group. The model shows that 89% of the 

variation in these two putative metabolites among subjects was due to the insulin 

dose while 11% has no link to the insulin dose. 86% of the variability between the 

subjects was explained by the variability in the two putative metabolites, 85% of 

this variability was predicted by the model based on cross-validation of the R2. The 

validity of the number of orthogonal components in the model was examined using 

observed versus predicted plot, the regression line in the plot was R2 = 0.86 (Figure 

S3.3B, appendix) indicating validity of the model. Based on the permutation test 

(Figure S3.3A, appendix) the original model has valid predictive ability compared to 

the newly permuted Q2. N4-acetylaminobutanal and 2,3,4,5-tetrahydropyridine-2-
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carboxylate have excellent classifying ability (AUROCC=1) of patients with T2D 

treated with insulin compared to baseline (Figure S3.3C, appendix).  

 

Table 3.4 Putative biomarkers which significantly increased following insulin dose. 

Putative biomarkers 
Placebo Treatment Ratio 

FDR AUC FDR AUC P1 : P3 : T1 : T3 

N4-Acetylaminobutanal 7.7E-06 1 0.0018 0.95 1 : 14.2 : 3.2 : 12 

2,3,4,5-Tetrahydropyridine-2-

carboxylate 
7.7E-06 1 2.7E-06 1 1 : 8.64 : 1: 7.9 

 

P1 = Baseline in placebo, P3 = Post-insulin in Placebo, T1 = Baseline in GC blockade treatment and T3 

= Post-insulin in GC blockade treatment. AUC=area under the curve, FDR= false discovery 

rate(corrected p-value).  

 

3.4.2.3 The effect of insulin dose on plasma metabolome of patients with T2D 

following GC blockade treatment compared to placebo. 

 

Table 3.5 Putative biomarkers that significantly affected by the insulin dose following GC 

blockade. 

Putative biomarkers AUC P1 : P3 : T1 : T3 FDR(T) r 99% CI 

2,3,4,5-Tetrahydropyridine-

2-Carboxylate 
1 1: 8.6: 1: 7.9 1E-6 0.93 (0.11, 0.67) 

N4-Acetylaminobutanal 0.95 1: 14.2: 3.2: 12 0.001 0.79 (0.07, 0.59) 

2-Methylbutyroylcarnitine 0.84 1: 1.03: 1.5: 0.8 0.02 -0.64 (-0.48, -0.05) 

Chenodeoxyglycocholate C18 0.91 1: 0.3: 13.2: 2.9 0.007 -0.69 (-0.50, -0.08) 

Taurodeoxycholate * 0.88 1: 0.5: 117: 22 0.023 -0.61 (-0.42, -0.08) 

γ-Linolenic acid(C18:3) 0.83 1: 0.7: 1.2: 0.6 0.032 -0.57 (-0.37, -0.10) 

Stearic acid(C18:0) 0.84 1: 1.02: 1.2: 0.7 0.032 -0.53 (-0.51 , 0.07) 

Lauric acid (C12:0) 0.78 1: 1.3: 1.7: 0.8 0.032 -0.54 (-0.63 , 0.17) 
 

* Retention time matches standard. 
C18  

metabolites identified using C18-AR column, the rest identified using 

ZICpHILIC column. (P1 = Baseline in placebo, P3 = Post-insulin in Placebo, T1 = Baseline in GC blockade 

treatment and T3 = Post-insulin in GC blockade treatment), FDR(T)= FDR= false discovery rate(corrected p-

value)for the insulin effect following GC blockade treatment,  AUC=area under the curve. 
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Figure 3.7 OPLS-DA score plots of the effect of insulin on (A) 537  and (B) 8 putative metabolites 
following GC blockade treatment.  
Plot (A) shows distribution of 16 observations based on readings of 537 putative biomarkers 
following GC blockade treatment. The observations classified into two groups; baseline (8 samples-
brown) and post-insulin (8 samples-dark yellow). The model consists of one predictive x-score 
component; component t[1] and one orthogonal x-score components  to[1]. t[1] explains around 7% 
of the predictive variation in x, to[1] explains 21% of the orthogonal variation in x, R

2
X (cum) = 27.8%, 

R
2
Y (cum) = 1, R

2
 (cum) = 0.90, Goodness of prediction Q

2
 (cum) = -0.12. (B) shows distribution of 16 

observations based on readings of 8 putative biomarkers (Table 3.5, above). The observations 

classified into two groups; baseline (8 samples-brown) and post-insulin (8 samples-dark yellow). The 
model consists of one predictive x-score component; component t[1] and three orthogonal x-score 
components  to[1-3]. t[1] explains 45.6% of the predictive variation in x, to[1] explains 29.5% of the 
orthogonal variation in x, R

2
X (cum) = 891, R

2
Y (cum) = 1, R

2
 (cum) = 0.991, Goodness of prediction Q

2
 

(cum) = 0.977. 

 

The first model (Figure 3.7A) was built on readings of 537 putative biomarkers in 16 

samples of patients treated with GC blockade: 8 samples at baseline and 8 samples 

following insulin. Although the model showed clear separation between the two 

groups, this separation was not statistically significant at the multivariate level (P 

CV-ANOVA = 1). The model explained only 7% of the variation in the metabolome 



83 
 

following insulin treatment. In order to get a better model, the putative metabolites 

were filtered using FDR corrected p value <0.05, AUC<0.7 and 95% CI of the 

difference. 8 metabolites passed these filters (Table 3.5), and a new model 

(Figure 3.7B) was built on these 8 metabolites. The model showed clear and 

significant separation between the two groups P CV-ANOVA = 6.3E-6. The model 

explained 89% of the variation in the metabolites and 46% of this variation were 

due to insulin treatment while 43.5% has no link to the intervention. 99% of the 

variability between the subjects was explained by the variability in the metabolites, 

around 97.7% of this variability was predicted by the model based on cross-

validation of the R2. 

 

N4-acetylaminobutanal and 2,3,4,5-tetrahydropyridine-2-carboxylate showed 

significant elevation following insulin injection in both placebo and GC blockade 

treatment; this indicates that these two putative biomarkers were effected 

significantly by insulin regardless of the intervention. N-4-acetylaminobutanal was 

affected significantly by the interaction between the GC blockade treatment and 

the insulin injection (p value = 0.006), and GC blockade caused a 6-fold increase in 

N-4-acetylaminobutanal following insulin injection compared to 13-fold during 

placebo. Remodelling the plot (Figure 3.7B) without both N-4-acetylaminobutanal 

and 2,3,4,5-tetrahydropyridine-2-carboxylate rendered the model insignificant at 

multivariate level with P CV-ANOVA = 0.77, but the explained variation in the 

putative metabolites increased to 67%. 
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Figure 3.8 Heat map showing the putative metabolites that are significantly affected by insulin 
following GC blockade treatment.  
The top row of the plot represents the phases of sample collection; 1) baseline following placebo 
(red), 2) insulin follwoing placebo (green), 3) baseline following GC blockade (dark blue) and 4) 
insulin following GC blockade (light blue). The different colour shades represent intensities of each 
metabolite (rows) in each observation (column). Stearic acid was not given in the heat map from 
Metaboanalyst. 

 

The clearest effect in the heat map was that the putative biomarkers N-4-

acetylaminobutanal and 2,3,4,5-tetrahydropyridine-2-carboxylate increased in 

observations following insulin injection regardless the treatment. N-4-

acetylaminobutanal showed less certain elevation following insulin administration 

in GC blockade compared to placebo. Chenodeoxyglycocholate and 

taurodeoxycholate showed a clear elevation in observations with GC blockade 

compared to placebo regardless of insulin. Lauric acid showed statistically 

significant reduction, but was less certain (99% CI, -0.63 to 0.17) following insulin 

injection in the presence of GC blockade. 
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3.5 Discussion 

 

Supraphysiological levels of GC have strong association with the development of 

metabolic syndrome which is composed of T2D and is commonly associated with 

dyslipidemia, obesity and often hypertension. These complications contribute to the 

development of cardiovascular disease which is most commonly linked to mortality 

in T2D (Segal and Kim, 1963, Prawitt et al., 2011). Reducing levels of circulating 

cortisol might improve insulin resistance. An increasing number of studies have 

used the mass spectrometer as a powerful tool for biomarker discovery (Huffman et 

al., 2009), but none of these studies examined the metabolomic changes caused by 

GC blockade and whether or not it improves insulin sensitivity compared to 

placebo. In this crossover double blind study, plasma samples of 8 patients with 

metabolic syndrome were analysed using an LC-MS platform. GC blockade 

treatment led to a significant elevation of conjugated and unconjugated bile acids in 

comparison to placebo. Some unconjugated bile acids and free fatty acids were 

reduced significantly in response to insulin injection following GC blockade, 

compared to placebo.  

 

In our study, bile acids and their conjugates were elevated significantly following GC 

blockade compared to placebo. The treatment would disturb the physiological 

activity of the HPA axis. This was found to affect bile acids levels in patients with 

Addison’s disease who have higher serum levels of bile acids compared to healthy 

controls (Rose et al., 2011). Bile acids are known as metabolic regulators and 
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mediate their action via receptor-dependent and independent pathways. The most 

prominent receptor for these signalling molecules are Farnesoid X receptor (FXR) 

(Pircher et al., 2003, Goodwin et al., 2000) and TGR5 (Thomas et al., 2009). It was 

found that FXR expression is reduced in a rat model of T2D, and that insulin 

administration reverses this effect (Duran-Sandoval et al., 2004). TGR5 which is 

expressed in muscle and brown adipose tissue is activated by bile acids and this 

promotes an increase in energy metabolism and attenuates diet-induced obesity 

(Thomas et al., 2009). Both receptors contribute to the regulation of lipid, glucose 

and energy metabolism (Cariou et al., 2006, Abdelkarim et al., 2010, Maruyama et 

al., 2006). Metabolic disturbances of these pathways might lead to a predisposition 

of T2D and associated complications (Prawitt et al., 2011). 

 

Previous observations in patients with T2D reported that bile acids (BAs) decreased 

following insulin injection (Bennion and Grundy, 1977). Consistently, in our study, 

circulating bile acids reduced significantly upon insulin injection following GC 

blockade, but were not statistically affected upon insulin injection following 

placebo. Physiologically, insulin inhibits the expression of the two key enzymes in 

bile acid biosynthesis, CYP7A1 and CYP27A1, which has been previously reported in 

rat hepatocytes (Lefebvre et al., 2009). 

 

(Lambert et al. (2003) noticed that bile acids regulate cholesterol and triglycerides 

through hepatic FXR. In this study GC blockade significantly increased the levels of 

conjugated and unconjugated bile acids. In 1978, before FXR was identified, 
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chenodeoxycholic acid was administered to decrease plasma lipids in patients with 

hypertriglyceridemia (Bateson et al., 1978, Duran-Sandoval et al., 2004). 

 

On the other hand, 11b-HSD1 influences the expression of the fatty acid transport 

protein 5 (Fatp5), which not only mediates the hepatic uptake of fatty acids, but 

also exhibits bile acid-CoA ligase activity, hence activating bile acids to coenzyme A 

thioesters, which is essential for proper BA conjugation (Doege et al., 2006, Doege 

et al., 2008, Mihalik et al., 2002, Steinberg et al., 2000). 

 

Fatp5 has been proposed as a potential target for treatment of NAFLD (Doege et al., 

2008, Anderson and Stahl, 2013). It is appealing to infer that down regulation of 

Fatp5 upon therapeutic intervention with selective 11b-HSD1 inhibitors may 

contribute to the observed beneficial effects on lipid profiles in humans (Rosenstock 

et al., 2010, Shah et al., 2011). In addition, the elevated circulating BAs upon 

abolishing 11b-HSD1 activity may stimulate energy expenditure in brown adipose 

tissue (Watanabe et al., 2006), ameliorate atherosclerosis (Pols et al., 2011) and 

enhance glucose tolerance through the activation of TGR5 (Thomas et al., 2009). 

 

GC induce phosphatidylcholine synthesis via enhancing choline uptake through 

stimulating choline transporter like protein CTL1 and CTL2 (Nakamura et al., 2010). 

Consistently, in this study, GC blockade significantly reduced plasma levels of 

phosphocholines. On the other hand, gut microbiota induces the HPA axis to 

respond to stress (Dinan and Cryan, 2012, Clarke et al., 2014). Plasma levels of 
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choline reduced due to the conversion of choline to methylamines by gut 

microbiota in 129S6 strain mouse (Dumas et al., 2006); this goes in line with a 

choline deficient diet causing NAFLD, both in mice and humans (Clarke et al., 2014, 

Wang et al., 2011b). (Drogan et al., 2015) reported an inverse relationship between 

level of phosphatidylcholine and T2D in a study of 300 individuals with T2D 

compared to 300 matched controls. Low levels of phosphocholines were linked to 

cardiovascular diseases (Wang et al., 2011b) which is unwanted. It is possible that 

GC blockade directly or indirectly promotes stress which might enhance the 

conversion of choline to methylamines by gut microbiota. 

 

High glucose levels upregulate arginase enzyme activity, which might contribute to 

vascular endothelial dysfunction in diabetes and obesity (Duarte et al., 2007). In this 

study, insulin injection led to a significant elevation in N4-Acetylaminobutanal, this 

might indicate upregulation of arginase activity. GC blockade caused insignificant 

elevation of the arginase activity; this elevation might be due to significant 

elevation (p = 0.03) in valine levels following GC blockade. L-valine is one of the 

gluconeogenic amines which are considered precursors for L-arginine. It is worth 

noting that elevations of N4-Acetylaminobutanal upon insulin injection following GC 

blockade were significantly reduced (p = 0.0018) to 4-fold compared to 14-fold in 

placebo with (p = 0.006). GC blockade might improve NO production following 

insulin which in turn reduces vascular side effects in diabetic patients.  
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Insulin significantly elevates levels of 2,3,4,5-tetrahydropyridine-2-carboxylate (p = 

7.7E-6) which is an intermediate in lysine degradation pathway via pipecolic acid. 

Upregulation of this pathway was reported in diabetic monkeys, in which SLC6A20 

sodium transporter was attenuated compared to non-diabetic controls (Patterson 

et al., 2011). This could be an early biomarker of diabetic nephropathy (Dunn, 

2013). GC blockade did not alter the levels of 2,3,4,5-tetrahydropyridine-2-

carboxylate. 

 

It was previously reported that the acylcarnitines; 2-methylbutyroylcarnitine (2-

MBC) was elevated in the plasma of patients with NAFLD (Kalhan et al., 2011) and 

also those with T2D and insulin resistance (Lynch and Adams, 2014). The 2-MBC was 

also found elevated in obese children with insulin resistance compared to those 

who were insulin sensitive (Mastrangelo et al., 2016). 2-MBC is a substrate in the 

catabolic pathway of isoleucine for energy production through tricarboxylic 

acid  (TCA) cycle, thus accumulation of 2-MBC indicates an inhibition of branched 

chain acyl CoA dehydrogenase (Milburn et al., 2013). In our study 2-

methylbutyroylcarnitine was not affected by GC blockade, but insulin injection 

following GC blockade significantly reduced the plasma level of 2-MBC by half but 

remained unchanged when insulin injection was given following placebo. This result 

suggests that GC blockade improves insulin sensitivity. 

 

Unlike insulin and ACTH hormones which increase the rate of esterification and 

lipolysis respectively, GC have a controversial effect on fatty acid metabolism, since 
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they induce the lipolytic effect of lipase enzyme, and at the same promote tissue 

antilipolytic activity (Peckett et al., 2011), but the net result is an increase in plasma 

level of FFAs (Chatterjea and Shinde, 2008). In the current study, GC blockade 

significantly increased (p value = 0.02) plasma levels of a medium chain fatty acid 

(C6:0). This might be in part due to the effect of GC blockade on lowering circulating 

levels of insulin (Macfarlane et al., 2014) and also increased levels of ACTH which 

accelerates FFA release from adipose tissue to plasma. Insulin injection following 

placebo non-significantly reduced plasma levels of unsaturated long chain fatty 

acids (C18:3), and almost had no effect on saturated long chain fatty acid levels 

(C18:0), but increased levels of the medium chain fatty acids (C12:0). Consistently, 

the Framingham study reported that the lower double bond and lower carbon 

number fatty acids were associated with T2D (Rhee et al., 2011). GC blockade 

improves insulin action in lowering plasma levels of triacylglycerols. 

 

Finally, the other major alterations in response to GC blockade are, as might be 

expected, in steroid metabolism. Androsterone glucuronide level is significantly 

increased (p = 0.01) following GC blockade dose. Androsterone can be metabolised 

from adrenal androgens such as dehydroepiandrosterone, dihydrotestosterone or 

androstenedione, and is considered an inactive end product. In contrast, 

pregnenolone sulphate, is not a waste product of sulphated pregnenolone following 

phase II reaction as one would expect (Harteneck, 2013). Biologically, pregnenolone 

is synthesised from cholesterol by the rate limiting enzyme CYP11A1, and then 

sulfonated via cytosolic sulfotransferase enzyme. Pregnenolone sulphate targets 
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different ligands and receptors leading to potentiation of memory, learning and 

anxiolysis; enhances neuronal development and synapse formation; and it also 

induces melanin synthesis and mediates pain modulation. Clinically, pregnenolone 

sulphate levels in plasma are increased before and during parturition, decreased in 

hypothyroidism and also reduced 4-fold in patients suffering from rheumatoid 

arthritis. In this study, pregnenolone sulphate significantly increased (p = 6.3E-6) 

more than 100-fold indicating dramatic upregulation of steroidogenesis in response 

to HPA-axis feedback mechanism following GC blockade (Harteneck, 2013).       
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4 A metabolomic study of the interaction between HC and 

insulin 

 

4.1 Abstract 

Background and Aims: To date, no direct study on the effects of insulin and HC on 

metabolic profiles in individuals has been reported in literature. In relation to our 

interest in the potential inhibition of HC biosynthesis for the treatment of metabolic 

syndrome, metabolomic profiling of plasma samples was carried out on healthy 

subjects. 

Methodology:  The subjects were administered either a low or high insulin infusion 

along with HC infusion at three different levels. All subjects were administered 

metyrapone prior to treatment, which blocks formation of HC by the body. Plasma 

samples were then analysed using untargeted metabolomics. 

Results: The clearest effects of insulin were in lowering the levels of the branched 

chain amino acids (BCAs) leucine and isoleucine, and their deamidated metabolites, 

in plasma, while also lowering levels of FFAs and acylcarnitines. The clearest 

interaction between HC and insulin was that hydrocortisone caused the levels of 

BCAs and their metabolites to become significantly elevated in plasma. HC did not 

affect levels of FFAs when low doses of insulin were given but, interestingly, did 

result in elevated levels in subjects treated with a high insulin infusion. HC did not 

affect the levels of acyl carnitines.  
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Conclusion: These observations tie in with recent observations on the importance 

of BCAs in insulin resistance and diabetes, but the direct modulation of these 

metabolites by insulin and HC is reported here for the first time. 
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4.2 Introduction 

 

GC such as cortisol have diverse physiological actions. Intracellular GC receptors are 

widely expressed and affect energy metabolism (e.g. interacting with insulin and 

inducing gluconeogenesis, stimulating lipolysis and fatty acid turnover, inducing 

proteolysis) (Andrews and Walker, 1999a, Macfarlane et al., 2008b), cardiovascular 

control (Walker, 2007b) (inducing sodium and water retention, potentiating 

vasoconstriction, increasing blood pressure), cellular proliferation, central nervous 

system function (impairing short-term memory, altering mood) (Seckl and Olsson, 

1995), and innate immunity (enhancing macrophage apoptosis, inhibiting pro-

inflammatory cytokine signalling) (Sapolsky et al., 2000). Most actions of GC are 

mediated slowly by altered gene transcription in response to altered intracellular 

cortisol concentrations, whereas plasma level of cortisol exhibit marked circadian 

and ultradian variation, and so there is a poor correlation between plasma cortisol 

levels and the clinical and biochemical actions of cortisol.  

 

Acute elevation in cortisol is a crucial component of the stress response, but chronic 

excess of GC results in Cushing’s syndrome, characterised by non-specific features 

including obesity, T2D, hypertension, impaired immunity, depression, and cognitive 

dysfunction. Subtle GC excess may be important in diverse conditions, ranging from 

metabolic syndrome (Walker, 2007b) to neuropsychiatric disease (Segal and Kim, 

1963). This may involve increased circulating levels of cortisol or increased local 

regeneration of cortisol within target tissues by the enzyme 11-HSD1. GC 
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deficiency is potentially life-threatening during stress, but is characterised by non-

specific clinical features such as lethargy, hypotension, and weight loss. It is 

especially difficult to diagnose during critical illness when conventional tests of 

cortisol production, such as ACTH stimulation tests, may be unreliable (Boonen et 

al., 2013). 

 

A lack of specific biomarkers makes clinical management of patients requiring GC 

replacement therapy particularly challenging, and may contribute to well-

documented excess morbidity and mortality in patients with hypopituitarism or 

adrenocortical failure (Arlt et al., 2010, Filipsson et al., 2006, Bergthorsdottir et al., 

2006). Moreover, several therapeutic strategies have been proposed to reduce 

cortisol secretion or action in metabolic and psychiatric disease. These include 

inhibitors of cortisol biosynthesis in the adrenal cortex (such as metyrapone), GR 

antagonists (such as RU38486) (Jacobson et al., 2005), and inhibitors of 11-HSD1 

(Hughes et al., 2008). The complexity of GC action imposes a major limitation in the 

development of such compounds, because of the lack of simple indicators of 

successful reduction in cortisol effects. Thus, for example, efficacy of early 11-

HSD1 inhibitors was not apparent until completion of a Phase IIa study (Hughes et 

al., 2008).  

 

Novel biomarkers for GC action are urgently needed. Although mass spectrometry 

has become increasingly applied to this area, this topic has not been widely studied. 

A previous study using GC-MS reported limited metabolomic profiling in urine and 
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plasma of subjects treated with anti-inflammatory synthetic GC (Ellero-Simatos et 

al., 2012). A recent more comprehensive study was carried out using GC-MS and LC-

MS methods to both profile and quantify the metabolome of 20 healthy male 

volunteers following dexamethasone administration (Bordag et al., 2015). They 

observed many changes in lipid, amino acid and steroid hormone metabolism. The 

most marked effects were lowering of alanine, methionine, asparagine, 

phenylalanine, proline and serine in plasma which were consistently affected over 

the four days of the study. A number of other amino acids were altered but less 

consistently. 

 

Given the extensive interactions between GC and insulin, any biomarkers of GC 

action may overlap with those responsive to insulin. A number of recent studies 

have deployed metabolomics in obesity and insulin resistance. Insulin resistance 

induced by feeding a high fat diet to mice was associated with an elevation in 

citrate and a significant fall in the levels of leucine, valine, glycine, suberate, 

acetate, hippurate and arginine (Shearer et al., 2008). A comparison of people with 

varying degrees of insulin sensitivity using Fourier Transform mass spectrometry 

(FT-MS) found a number of markers to be altered in insulin resistant individuals, 

particularly unsaturated fatty acids (Lucio et al., 2010).  Batch et al observed a 

distinct metabolic signature linked to obesity, where plasma levels of the BCAs 

leucine, isoleucine and valine were elevated in obese subjects. In addition, 

methionine, glutamine, phenylalanine, tyrosine, asparagine, and arginine were also 

elevated, with concomitant depression of glycine levels (Batch et al., 2013). 
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Furthermore, a number of free fatty acids and acyl carnitines exhibited elevated 

levels. The latest work by the Newgard group, which was carried out on a cohort of 

1872 individuals who were subdivided into lean, overweight and obese groups, 

proposed that BCAA levels can provide a better signature of metabolic wellness 

than body mass index (Huffman et al., 2009). Another group found that elevated 

levels of BCAA in plasma could be linked to obesity and potentially to development 

of insulin resistance in children and adolescents (McCormack et al., 2013), although 

feeding mice a high fat diet (HFD) supplemented with leucine reduced insulin 

resistance in comparison with mice maintained on a HFD alone (van Raalte et al., 

2009). 

 

To date, no direct study on the effects on insulin and HC on metabolic profiles in 

individuals has been reported. To identify biomarkers which reflect GC and insulin 

action, metabolomic analysis was performed on plasma samples obtained from 

healthy men treated with metyrapone followed by HC infusion to induce low, 

medium and high (supra-physiological) circulating cortisol levels. Moreover, 

specificity of the response to GC was tested by making measurements before and 

after insulin infusion, and examining the interaction between insulin and HC. 
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4.3 Methodology 

 

4.3.1 Sample collection 

Twenty (20) healthy men, aged (33.4 ± 15.2 years), with BMI (23.8 ± 1.4 kg/m2), 

normal screening blood tests (full blood count, renal and thyroid function) and 

alcohol intake <28 units/week, who had not received GC therapy by any route in the 

previous 6 months, were recruited. They each attended for three study days in the 

morning after taking metyrapone 1 g orally at 2300 h the previous evening and 

fasting overnight. They were randomly assigned to one of two groups of 10 

participants, to be infused with either low dose (0.06 mU/kg/min) or medium dose 

(0.2 mU/kg/min) insulin on all three occasions, together with dextrose, 6,6-2H2-

glucose, 1,1,2,3,3-2H5-glycerol, somatostatin, glucagon and growth hormone for 4 

hours, with a second dose of metyrapone 1 g orally after 150 min. The three study 

days were separated by at least 3 weeks and comprised, in random order, ‘low’, 

‘medium’ and ‘high’ GC phases. For the low GC phase, subjects took placebo tablets 

at 2300 h and 0700 h and were infused with saline to achieve peak plasma cortisol 

after 4 hours for the medium GC phase, subjects took HC 10 mg orally at 2300 h and 

5 mg at 0700 h and were infused with HC 0.04 mg/kg bolus followed by 0.025 

mg/kg/h to achieve peak plasma cortisol after 4 hours, and for the high GC phase 

subjects took HC 20 mg orally at 2300 h and 10 mg at 0700 h and were infused with 

HC 0.18 mg/kg/h bolus and 0.12 mg/kg/h to achieve peak plasma cortisol after 4 

hours. Samples for metabolomics analysis were obtained at the end of each 4 hour 

infusion. 



100 
 

4.3.1.1 Patients numbering 

Each subject had a number of 4 characters; the first character was either (1) low 

insulin or (2) high insulin dose, the seconed character was either (L) low HC, (M) 

medium HC or (H) high HC doses. The last two characters represented the patients’ 

number. For instance 1M02= first character (1) low insulin dose, second character 

(M) medium HC dose. The last two characters (02) the subject’s number. 

 

4.3.2 LC-MS analysis 

- LC-MS conditions and samples preparation are reported in details in section 

2.1-2.3 (pages: 47-51). 

- Column used in this project are ZICpHILIC and C18-AR. 

 

4.3.3 Data extraction and processing 

Details of data extraction and processing are reported in section 2.4 (pages: 51-54). 

 

4.3.4 Data analysis 

Most of the details on data analysis have been described in section 2.5 (pages: 54-

58). Additionally, split-plot ANOVA were employed on putative metabolites that 

showed significant changes following administration of insulin, HC, or both. The 

tests were conducted to examine the differences between low, medium, and high 

HC doses at repeated measurements in each intervention (low or high insulin dose) 

separately. In addition, the interaction between HC and insulin dose were also 

assessed. 
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4.4 Results 

 

 

Figure 4.1 2D PCA score plot for QC (pooled) samples in healthy individuals. 
The plot shows the clustering of pooled samples (plum-QC) compared to the rest of 
plasma samples (grey-No class) in healthy individuals. 
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The instrument was set to inject a pooled sample after every 15 plasma samples, 

thus the pooled sample had 4 readings (Figure 4.1). To quantify the precision of the 

measurements, the relative standard deviation (RSD) was calculated between the 4 

pooled samples based on sum of the intensities in each sample and an RSD of 0.5% 

was obtained. RSD was also calculated for each of the putative biomarkers among 

the pooled samples and the highest RSD was for 1-hexadecanoyl-2-

(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine 

(9.7%) while the lowest RSD was for alanine (0.23%). The precision of these values 

clearly indicates that any metabolomic differences between groups cannot be due 

to instrumental factors alone. No any one of the metabolites were removed based 

on the RSD. 
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4.4.1 Data visualisation  

 

Figure 4.2 Hierarchical Clustering Analysis (HCA) for healthy subjects having different doses of HC and insulin.  
The dendrogram shows observations clustered into three groups. X-axis represents the samples and y-axis shows the variability index. The higher the variability 
index the larger the between group variability and the lower the variability index, the smaller the between group variability. The plot divides samples into three 
groups; group 1 (green), group 2 (blue) and group 3 (plum). 
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HCA (Figure 4.2, above) shows that samples almost clustered according to the 

insulin dose. For instance, group 3 consisted of 32 samples and about 80 % of the 

samples are for individuals receiving a high insulin dose. 100% of the observations 

in group 1, and also about 89% of the observations in group 2 are for individuals 

receiving a low insulin dose (Table 4.1). According to Figure 4.2 and Table 4.1, HC 

doses did not show as much contribution to the clustering pattern as did insulin 

dose. 

 

Table 4.1 Shows proportions (%) of samples with different HC and insulin doses based on 

the HCA grouping. 

HCA 

grouping 
Samples (n) 

Low insulin dose High insulin dose 

L M H L M H 

1 (Green) 7 28.6 28.6 42.9 0.0 0.0 0.0 

2 (Blue) 17 23.5 29.4 35.3 0.0 0.0 11.8 

3 (Plum) 32 9.4 6.3 3.1 28.1 31.3 21.9 

L= low GC, M= medium GC and H= high GC. 
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Figure 4.3 (A) PCA vs (B) OPLS-DA score plots for healthy individuals recieving different doses of HC 
and insulin.  
PCA score plot (A) includes 2 groups of subjects (n=30 samples/10 subjects/group). Group 1 denotes 
samples with low insulin dose (n=30), group 2 denots samples with high insulin dose(n=30). Subjects 
in each group have 3 different levels of HC treatment; L = low HC, M = medium HC and H = high HC 
dose, R

2
=0.638, Q

2
=0.105. OPLS-DA score plot (B) includes the same group of subjects. Subjects in 

the same oval shapes were given the same insulin dose. In the OPLS-DA, model separation is 
between low and high GC doses in each insulin group but the domain of the medium GC dose 
overlaps with that of high GC dose in both insulin groups, while in the high insulin group also 
overlaps with the low GC dose, R

2
=0.313, Q

2
=0.243. 

 

PCA score plot (Figure 4.3A) shows that there is separation between subjects having 

high insulin dose from those receiving a low insulin dose. Although subjects with a 

high insulin dose tend to show separation based on the HC dose, it is noticeable 

that subjects receiving a high HC dose overlap with the low insulin group, but this 

can’t be confirmed as the plot is 2 dimensional. 
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Separation between groups based on both insulin and HC dose can be seen clearly 

in the OPLS-DA score plot although subjects with medium and high HC dose showed 

some overlap when low insulin dose had been given. 

 

4.4.2 Biomarker identification 

4.4.2.1 Effect of insulin dose on plasma metabolome of healthy individuals. 

An OPLS-DA model was built on 606 putative metabolites, which were detected in 

60 observations having either low or high insulin dose. Two observations (1M02 and 

2H10) were excluded as they were considered to be outliers based on Hotellings’ T2 

vs DModX plot, leaving 58 observations (29 observations per group) from high and 

low insulin groups. The resulting model identified 29 putative metabolites (Table 4.2) 

which were selected based on their 95% CI, corrected p-values (< 0.05), and AUC of 

the ROC curves (> 0.7). The identified metabolites were then used to rebuild the 

OPLS-DA model (Figure 4.4) in order to examine its ability to separate the subjects 

based on the insulin dose. 
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Figure 4.4 OPLS-DA score plot for for healthy individuals having either high or low insulin dose.  
The OPLS-DA plot shows two groups of samples(n = 29 samples per group) based on readings of 29 
significant putative metabolites in plasma of healthy individuals. Subjects with low insulin dose 
(green) and subjects with high insulin dose (blue). The model consists of one predictive x-score 
component; component t[1] and one orthogonal x-score components to[1]. t[1] explains 56.9% of 
the predictive variation in x, to[1] explains 22% of the orthogonal variation in x, R

2
X (cum) = 0.789, 

R
2
Y (cum) = 1, R

2
 (cum) = 0.841, Accuracy of prediction Q

2
 (cum) = 0.796. 
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The plot clearly shows separation between the two groups; around 79% of the 

variability in metabolites was explained by the model, of which 57% was due to 

insulin dose alone with the rest being linked to orthogonal variations. 84% of the 

variability between the samples was explained by the variability in the metabolites, 

of which 80% was predicted by the model following cross-validation. The validity of 

the number of orthogonal components in the model was examined using observed 

versus predicted plot (R2 = 0.84) (Figure S4.1, appendix). Based on the permutation 

test (Figure S4.1B, appendix) this model has valid predictive ability compared to the 

newly permuted Q2. Using 29 putative metabolites (Table 4.2) that were significantly 

changed by the insulin dose it was possible to classify samples based on the 

metabolomic change with 100% accuracy.  
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Table 4.2 Metabolites that change significantly following insulin dose. 

Putative metabolite AUC High/Low insulin FDR 

Polyunsaturated fatty acids 

C22:4 0.87 0.48 0.0001 

C22:6 0.86 0.46 0.0001 

C20:2 0.92 0.37 0.000005 

C20:4 0.81 0.59 0.002 

C18:2 0.94 0.29 6.38E-07 

C18:3 0.94 0.27 0.000002 

Monounsaturated fatty acid 

C20:1 0.97 0.26 4.40E-07 

C18:1 0.94 0.30 0.000003 

C16:1 0.95 0.23 6.68E-07 

C14:1 0.90 0.32 0.00001 

Straight chain fatty acids 

C20:0 0.86 0.53 0.0001 

C17:0 0.88 0.44 0.00001 

C16:0 * 0.92 0.36 0.000007 

C15:0 0.88 0.45 0.0001 

C14:0 * 0.89 0.35 0.00002 

C10:0 * 0.84 0.60 0.001 

Acyl carnitine 

O-Acetylcarnitine * 0.92 0.57 4.60E-07 

Decanoylcarnitine 0.91 0.47 0.000002 

Oleoylcarnitine 0.96 0.58 0.000007 

Branched chain amino acids 

L-Leucine * 0.79 0.74 0.003 

3-Methyl-2-oxopentanoic acid C18 0.77 0.71 0.001 

4-Methyl-2-oxopentanoate * 0.75 0.67 0.003 

L-Isoleucine * 0.82 0.76 0.00008 

L-Valine * 0.77 0.85 0.021 

Miscellaneous 

4-Hydroxybutanoic acid 0.93 0.28 0.00006 

2-Hydroxybutanoic acid * 0.73 0.64 0.013 

Indolepyruvate 0.79 1.34 0.008 

Gamma-Glutamylglutamine 0.73 0.81 0.017 

Glycerol 0.90 0.74 0.0001 
 

* Retention time matches standard. 
C18 

metabolites identified using C18-AR column, the rest 
identified using ZICpHILIC column. (L=low insulin dose, H=high insulin dose). 
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Table 4.2 shows that all the metabolites were significantly decreased (p < 0.05) at 

high compared to low insulin doses except indolepyruvate which was significantly 

increased (p = 0.008). The majority of these putative metabolites demonstrated 

excellent classifying ability based on their AUC values (AUC > 0.9). Of the 

metabolites separated by the C18-AR column, only (S)-3-Methyl-2-oxopentanoic 

acid was significantly affected (H/L ratio = 0.71; p = 0.001) although it had a 

moderate classifying ability (AUC = 0.77).  

 

Generally, in order to avoid the possibility of over-fitting in an OPLS-DA model, the 

number of the variables should be less than the total number of observations. (Xia 

et al., 2013) suggested that using 1-10 biomarkers for classification is more 

statistically robust and clinically more practical. For this reason, a new OPLS-DA 

model was created based on 10 most significant metabolites (Table 4.3), according 

to their AUC. The resulting model, shown in Figure 4.5, was able to separate the two 

insulin groups. This implies that these ten metabolites might be used as potential 

biomarkers for insulin dose. 
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Figure 4.5 OPLS-DA score plot for the effect of insulin on 10 selected metabolites. 
The OPLS-DA score plot based on 10 most significant putative biomarkers showing two groups: 
samples with low insulin dose (green) and sampless with high insulin dose (blue). The model consists 
of one predictive x-score component; component t[1] and one orthogonal x-score components  
to[1]. t[1] explains 82% of the predictive variation in x, to[1] explains 11.2% of the orthogonal 
variation in x, R

2
X (cum) = 1, R

2
Y (cum) = 1, R

2
 (cum) = 0.706. Accuracy of prediction Q

2
 (cum) = 0.665. 

 

The OPLS-DA model (Figure 4.5) was based on the readings of 10 variables 

(Table 4.3) with the highest AUC values among the putative metabolites that were 

significantly affected by the insulin dose (Table 4.2) in plasma samples of 58 subjects 

(low insulin = 29, high insulin = 29). All these metabolites were strongly negatively 

correlated to insulin dose (|r| > 0.88). Two observations (1M02 and 2M12) were 

excluded as they were strong outliers based on Hotelling’s T2 vs DModX plot. The 

model shows that approximately 93% of the variations in these putative biomarkers 

were explained by the model; 82% of this variation was due to the insulin dose with 

P CV-ANOVA = 4.91E-12, while approximately 12% was due to orthogonal 
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variability. AUC shows an excellent classifying ability of these 10 putative 

metabolites with 98% accuracy based on the insulin dose.  

 

Table 4.3 The 10 putative metabolites with highest AUC values and their correlations (r) 

to insulin dose. 

Putative biomarkers r 99% CI of difference 

C20:2 -0.88 (-0.301 , -0.227) 

C20:1 -0.94 (-0.318 , -0.25) 

C18:3 -0.92 (-0.297 , -0.254) 

C18:2 -0.92 (-0.3 , -0.254) 

C18:1 -0.94 (-0.304 , -0.259) 

C16:1 -0.92 (-0.285 , -0.267) 

C16:0 * -0.89 (-0.3 , -0.234) 

4-Hydroxybutanoic acid -0.83 (-0.316 , -0.181) 

O-Acetylcarnitine * -0.88 (-0.33 , -0.194) 

Oleoylcarnitine -0.94 (-0.367 , -0.198) 
 

 

4.4.2.2 Effect of HC on the plasma metabolome 

A total of 606 metabolites were measured in 60 subjects receiving 3 different HC 

doses: low HC dose = 20 subjects, medium dose = 20 subjects and high dose = 20 

subjects. 4 observations (1L02, 1M02, 2L04 and 2H06) were excluded as they were 

considered to be outliers based on Hotellings’ T2 vs DModX plot. The medium HC 

dose was found to be a poor classifier (Xia et al., 2013) based on its AUC of 0.67 

compared to low and high HC does (AUC = 1.0 each), and had a high proportion of 

misclassified observations (47.4%) compared to the other two doses (0% each) 

(Table 4.4). In addition, this dose was found to overlap with both low and high doses 

(Figure 4.3). For these reasons, the medium HC dose was not considered for further 
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comparisons in subsequent analysis. Thus only comparisons between low HC vs high 

HC were expected to give a better indication of how HC dose affects the human 

plasma metabolome. 

 

Table 4.4 Misclassification table showing the proportions of correctly classified 

observations using on Fisher’s probability. 

 Class Smples (n) Correct LC MC HC 

Low HC 14 100% 14 0 0 

Medium HC 19 52.63% 1 10 8 

High HC 12 100% 0 0 12 

No class 9 
 

3 1 5 

Total 54 80% 18 11 25 

Fisher's prob. 9.6e-009 
 

      
 

 

In a comparison of low HC vs high HC, 23 putative biomarkers (Table 4.5) which 

passed the 95% CI filter, showed significant change based on FDR corrected p 

values, and each had an AUC above 0.7. These 23 putative biomarkers were used to 

rebuild an OPLS-DA model (Figure 4.7) in order to examine its ability to separate 

observations based on HC dose.  
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Figure 4.6 OPLS-DA score plot for the effect of HC dose on 23 significant puatative metabolites in 
plasma of healthy individuals. 
 The plot shows two groups: low HC dose (grey-blue) and high HC dose (red) observations. The 
model consists of one predictive x-score component; component t[1] and one orthogonal x-score 
components  to[1]. t[1] explains 38.5% of the predictive variation in x, to[1] explains 28.3% of the 
orthogonal variation in x, R

2
X (cum) = 0.66, R

2
Y (cum) = 1, R

2
 (cum) = 0.76. Accuracy of prediction Q

2
 

(cum) = 0.699. 

 

 

The OPLS-DA score plot (Figure 4.6) was built on 23 putative biomarkers that 

significantly changed with HC dose. An outlier (2H06) was removed based on 

Hotelling’s T2 vs DModX plot. The plot clearly shows separation between 

observations having either low or high HC doses. Approximately 66% of the 

variability in metabolites was explained by the model, of which 38.5% was due to 

HC dose alone with the rest being linked to orthogonal variability. According to this 

model, 76% of the variability between the observations was explained by the 

variability in the metabolites, and also was able to predict around 70% of this 
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variability based on cross validated R2. The validity of the number of orthogonal 

components in the model was examined using observed versus predicted plot, with 

a good fit of the regression line (R2= 0.82) (Figure S4.2A, appendix). Based on the 

permutation test (Figure S4.2B, appendix), this model has valid predictive ability 

compared to the newly permuted Q2. According to the area under the ROC curve, 

23 putative biomarkers that were significantly changed by the HC dose have 

excellent classifying ability with 100% accuracy. 
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Table 4.5 Putative metabolites that were significantly affected in plasma of healthy 

individuals following HC dose. 

Putative metabolite AUC High HC/Low HC FDR 

Lipids 

Fatty acids    

C22:6 0.72 1.58 0.00028 

C20:4 0.74 1.41 0.002 

C18:0 0.71 1.45 0.005 

C17:0 0.72 1.49 0.005 

C20:0 0.73 1.45 0.001 

Miscellaneous    

2-Hydroxybutanoic acid * 0.83 1.66 0.00001 

2-Oxopentanoic acid 0.72 1.23 0.00004 

2-Ketobutyric acid * 0.81 2.02 0.00002 

Methylacetoacetic acid 0.80 1.27 0.0002 

Androsterone glucuronide 0.84 0.48 3.30E-08 

Pregnenolone sulphate 0.95 0.30 1.70E-09 

Branched chain amino acids 

(S)-3-Hydroxyisobutyrate C18 0.77 1.52 0.0004 

(S)-3-Methyl-2-oxopentanoic acid C18 0.89 1.56 6.10E-08 

4-Methyl-2-oxopentanoate * 0.93 1.69 0.001 

L-Leucine * 0.76 1.30 0.002 

L-Isoleucine * 0.81 1.24 0.00005 

3-Methyl-2-oxobutanoic acid * 0.77 1.25 0.0003 

L-Valine * 0.75 1.16 0.001 

Miscellaneous 

Hypoxanthine * 0.74 1.28 0.004 

Xanthine * 0.83 1.30 0.00001 

Gamma-Glutamylglutamine 0.75 1.21 0.004 

6-methyltetrahydropterin 0.76 1.44 0.008 

2-Methylbutyroylcarnitine 0.82 1.58 0.000008 
 

* Confirmed by standard. 
C18 

metabolites identified using C18 column, the rest identified using ZICpHILIC 

column. (L= low HC, H=high HC), p-value obtained from split plot ANOVA. 
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Table 4.5 above shows significant elevation of branched chain amino acids and their 

deaminated metabolites following high HC dosage. Purine metabolites, represented 

by xanthine and hypoxanthine, and C20:4, C22:6 and C18:3 fatty acids, were 

significantly elevated by high HC dose. On the other hand, steroids, that is 

pregnenolone sulfate and androsterone glucuronide, were the only metabolites 

that showed significant reduction after higher HC dosage.  

 

 

Figure 4.7 OPLS-DA score plot for the effect of HC dose on selected 10 significant putative 
metabolites with highest AUC valuse in plasma of healthy individuals. 
The plot shows two groups: subjects with low HC dose (grey-blue) and subjects with high HC dose 
(red). The model consists of one predictive x-score component; component t[1] and one orthogonal 
x-score components  to[1]. t[1] explains 50% of the predictive variation in x, to[1] explains 15.8% of 
the orthogonal variation in x, R

2
X (cum) = 0.65.9, R

2
Y (cum) = 1, R

2
 (cum) = 0.74 and accuracy of 

prediction Q
2
 (cum) = 0.693. 
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The OPLS-DA model (Figure 4.7) was built on readings of 10 variables having the 

highest AUC values among the putative metabolites significantly affected by the HC 

dose (Table 4.6, below) in plasma samples of 38 observations (low= 19, high= 19). All 

these metabolites showed varying degrees of positive correlation (0.54 ≤ r ≤ 0.85) 

except the steroid conjugates androsterone glucuronide (|r| = 0.7) and 

pregnenolone sulfate (|r| = 0.85) which were negatively correlated with HC dose. 

Two observations (2L04 and 2H06) were excluded as they were outliers based on 

Hotellings’ T2 vs DModX plot. The model shows that about 66% of the variations in 

these putative biomarkers were explained by the model, 50% of this variation was 

due to the HC dose with P CV-ANOVA = 4.32E-08, while about 16% was due to 

orthogonal variation. The area under the ROC curve shows an excellent ability of 

these metabolites to classify the samples with 100% accuracy based on the HC dose. 

When observations of medium HC dose were added to the model, the ability of the 

10 putative biomarkers to classify observations based on their HC dose was reduced 

as follows: low HC = 0.94, medium HC = 0.69 and high HC = 90. 
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Table 4.6 The 10 metabolites with highest AUC values and their correlations (r) to HC 

dose. 

Putative biomarkers r 99% CI of differenceb 

(S)-3-Methyl-2-oxopentanoic acid C18 0.78 (0.159 , 0.403) 

4-Methyl-2-oxopentanoate * 0.85 (0.193 , 0.418) 

L-Isoleucine * 0.69 (0.118 , 0.381) 

Methylacetoacetic acid 0.56 (0.021 , 0.381) 

2-Hydroxybutanoic acid * 0.68 (0.082 , 0.408) 

2-Ketobutyric acid * 0.54 (0.045 , 0.344) 

2-Methylbutyroylcarnitine 0.66 (0.04 , 0.436) 

Xanthine * 0.68 (0.0025 , 0.488) 

Androsterone glucuronide -0.7 (-0.418 , -0.088) 

Pregnenolone sulphate -0.85 (-0.422 , -0.192) 
 

b
 99% certain that the difference would fall within the defined interval based on cross validation. 
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4.4.2.3 Metabolites affected by both HC and insulin 

Twelve putative metabolites were found to be significant in both insulin and HC 

treatments (p < 0.05) as shown in Table 4.7. 

 

Table 4.7 Putative biomarkers significantly affected by both interventions (Split plot 

ANOVA). 

Putative metabolite 1L : 1H : 2L : 2H p-value (HC) p-value (insulin) 

Fatty acids 

C22:6 1 : 1.44 : 0.38 : 0.75 0.0003 0.000126 

C20:4 1 : 1.34 : 0.54 : 0.84 0.002 0.002 

C20:0 1 : 1.26 : 0.41 : 0.79 0.001 0.000106 

C18:0 1 : 1.36 : 0.42 : 0.71 0.005 0.00002 

C17:0 1 : 1.37 : 0.37 : 0.67 0.005 0.000015 

2-Hydroxybutanoic acid * 1 : 1.63 : 0.62 : 1.07 0.000013 0.013 

Branched chain amino acids 

L-Isoleucine * 1 : 1.23 : 0.69 : 0.98 0.00006 0.00009 

L-Leucine * 1 : 1.25 : 0.77 : 0.95 0.002 0.003 

L-Valine * 1 : 1.18 : 0.86 : 0.99 0.001 0.021 

4-Methyl-2-oxopentanoate* 1 : 1.62 : 0.62 : 1.13 0.0018 0.003 

3-Methyl-2-oxopentanoic acidC18 1 : 1.57 : 0.71 : 1.11 0.00000061 0.001 

Peptide 

Gamma-Glutamylglutamine 1 : 1.19 : 0.79 : 0.98 0.004 0.017 

* Retention time confirmed by standard. 
C18 

metabolites identified using C18-AR column, the rest identified 

using ZICpHILIC column. (in the ratio column, 1=low insulin, 2=high insulin, L= low HC, H=high HC). Fold change 

been calculated based on the average of absolute intensity of each group, and normalised to the first phase 

(1L= low insulin, low HC) as a reference for comparison. N.B. SPSS out-put. 
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All the 12 metabolites were elevated by HC and reduced by insulin doses 

respectively. A heat map of the 12 metabolites which were significant in both 

inteventions was plotted using Metaboanalyst based on intensitites of each 

metabolites in each observation (Table 4.8). 

 

 

Figure 4.8 Heat map shows putative biomarkers that significantly affected by both interventions 
insulin and HC. 

The plot shows heat map of the putative biomarkers (Table 4.7, above)that significantly changed 

following insulin and HC doses in individual samples after excluding medium HC dose (n = 40). The 
different colour shades represent intensities of each metabolite (rows) in each observation (column). 
The metabolites were generally increased in observations with low insulin/high HC class (LI/HC - dark 
blue), decreased in high insulin/low HC class (HI/LC - green), and unevenly disturbed in both low and 
both high insulin and HC respectively. Valine wasn’t given in the heat map from Metaboanalyst. 
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The clearest effect in the heat map was that the putative biomarkers were reduced 

in observations with a high dose of insulin plus low dose of HC. In contrast, the 

putative biomarkers were elevated in the samples with low insulin plus high HC 

doses. In addition, individuals responded differently with regard to these 

metabolites when high insulin and high HC or low insulin and low HC were given. 

 

Based on a split-plot ANOVA, only three metabolites (Table 4.8) showed significant 

interaction between insulin and HC doses. All the three metabolites were 

significantly increased (p < 0.05) following high HC dose, while 3-methyl-2-

oxobutanoic acid was significantly decreased (p = 0.036) following high insulin dose. 

High insulin dose renders the elevation of methylacetoacetic acid and 3-Methyl-2-

oxobutanoic acid following high HC dose insignificant and also reduces the 

significant elevation of  2-methylbutyroylcarnitine from 1.9 to 1.31. 

 

Table 4.8 Putative metabolites that show significant interaction in both interventions. 

Putative metabolite 
Ratio P-value 

1L : 1H : 2L : 2H Interaction HC Insulin 

2-Methylbutyroylcarnitine 1 : 1.9 : 1.1 : 1.38 0.015 0.000008 0.37 

Methylacetoacetic acid 1 : 1.4 : 0.9 : 1.04 0.023 0.000272 0.08 

3-Methyl-2-oxobutanoic acid 1 : 1.3 : 0.9 : 1.02 0.014 0.000364 0.03 
 

In the ratio column, 1=low insulin, 2=high insulin, L= low HC, H=high HC. Output of split-plot ANOVA (SPSS). Fold 

change been calculated based on the average of absolute intensity of each group, and normalised to the first 

phase (1L= low insulin, low HC) as a reference for comparison. 
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4.5 Discussion 

 

All subjects in the study were given metyrapone which blocks the conversion of 

inactive cortisone to the active cortisol via 11β-hydroxysteroid dehydrogenase 1 

enzyme. With the production of cortisol being inhibited, it was then replaced by 

infusing HC at three different levels, in the presence of either low or high insulin. 

The data set presents a clear set of metabolites which impact on a number of 

pathways that have been linked to the actions of HC and insulin.  There are three 

clear effects which can be observed within this data which are due to insulin alone, 

HC alone, and where insulin and HC interact with each other.  

 

In Tables 4.2, 4.5 and 4.7 metabolites which were significantly changed by insulin, 

HC, and their interaction, respectively, are shown. Comparisons between low and 

high insulin, and between different levels of HC infusion, are presented on the basis 

of a simple T-test of the log 2 transformed data and the FDR corrected p-value. 

Metabolites affected by both treatments where tested again using split plot ANOVA 

in order to examine the significance of the interaction between insulin and HC for 

each metabolite.  

 

The clearest effect where insulin and HC oppose each other is with regard to an 

effect on the metabolism of BCAA and their metabolites. High insulin significantly (p 

value < 0.05)reduces the levels of leucine/isoleucine, valine and their metabolites 

compared with low insulin. Increasing the dose of HC infused increases the levels of 
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leucine/isoleucine and their metabolites irrespective of insulin dose. HC in the 

presence of low insulin dose also produces an increase in BCAs as the concentration 

of HC is increased and this is the strongest metabolic signature of HC action 

amongst all the significantly altered metabolites. This observation links to the role 

of BCAs in obesity and insulin resistance observed in the literature (Batch et al., 

2013, Huffman et al., 2009, McCormack et al., 2013). Thus, in the current case, a 

similar effect is observed from a different perspective, where insulin directly lowers 

BCAA levels significantly (p value < 0.05) and HC opposes this effect. HC is known to 

promote breakdown of muscle proteins (van Raalte et al., 2009), while BCAs are 

known to promote production of muscle protein (Krebs, 2005, Krebs and Roden, 

2004, Rennie et al., 2006). In contrast, insulin is known to promote production of 

muscle tissue and this would be consistent with an increased requirement for BCAs 

and hence a reduction of their circulating levels. BCAs are not just a building block 

of the muscles, but may also have some pharmacological activity. BCAs may exert 

some beneficial effect in the treatment of insulin resistance associated with chronic 

liver disease: in a rat model with liver cirrhosis, BCAA improved glucose uptake 

(Nishitani et al., 2005); in rodents, BCAA improve glucose metabolism in 

hepatocytes, skeletal muscle, and adipocytes (Nishitani et al., 2002, Hinault et al., 

2004, Broca et al., 2004). 

 

Another clear effect where insulin and HC act in opposition is with regard to poly 

unsaturated fatty acid (PUFA) metabolism. Previously, it was observed that omega-

3/omega-6 PUFA levels increased in response to BCAA in two cases (Kawaguchi et 
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al., 2007). In the current case, high insulin lowers the levels of PUFA and, 

irrespective of insulin, high HC dose increases levels of PUFA.  

 

The most comprehensive list of metabolites within a class that were affected by 

insulin were the FFAs. Many FFAs are lowered by > x2 by insulin infusion and effects 

are seen of fatty acids with chain lengths between C10 and C22. HC appears to act 

in an opposite manner to insulin by promoting higher levels of some FFAs in plasma. 

Presumably a relatively low level of HC is required to increase levels of FFAs and 

thus increasing the level of the HC infusion does not promote this process any 

further—a reason why there was no significant difference between medium and 

high HC doses. Nevertheless, irrespective of insulin, which lowers the levels of FFAs, 

the effect of increasing the dose of HC infusion on some fatty acids can be 

observed. (Bordag et al., 2015) observed a decrease in the levels of poly 

unsaturated fatty acids in plasma following dexamethasone treatment. The 

difference in the current study may be that the subjects underwent GC block prior 

to HC replacement. 

 

(Batch et al., 2013) also described the elevation of C3 and C5 acylcarnitines in obese 

compared with lean subjects and the elevation of these metabolites in rats fed a 

diet enriched with BCAA. Insulin has a marked effect in lowering acyl carnitines. The 

most marked effect is in lowering decanoylcarnitine. HC generally does not have a 

marked effect on the levels of these metabolites, but has a significant effect on 2-

methylbutyroylcarnitine in particular. However, when HC acts against the insulin 
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infusion it promotes a marked elevation of oleoylcarnitine. There is no effect on 

carnitines above chain length C16:0. There is evidence that high levels of long chain 

fatty acids such as C16:0 are toxic, promoting apoptosis via a mechanism involving 

caspase 2 (Johnson et al., 2013). Thus, carnitine conjugation provides a means of 

removing C16:0 and other shorter chain acids. The role of carnitine in tissues is as a 

buffer for acylCoA/CoA levels. CoA is compartmentalised within the cell and cannot 

cross membranes (Zammit et al., 2009). Within mitochondria, the transfer of an acyl 

group from acylCoA to carnitine maintains the level of free CoA and allows the acyl 

group to enter or leave the organelle in the form of its carnitine ester. Carnitine 

palmitoyl transferase is present on the outer membrane of mitochondria and only 

selects long chain fatty acids for entry into mitochondria. However, the availability 

of a range of carnitine transferases within mitochondria and peroxisomes permits 

the export of fatty acids with different chain lengths out of these organelles 

(Zammit et al., 2009). 

 

Tryptophan metabolism is regulated by GC and insulin which regulate the enzyme 

tryptophan dioxygenase (TDO) (Nakamura et al., 1980, Fernstrom and Wurtmen, 

1972, Sono, 1989, Ochs et al., 2015). Insulin was found to inhibit the induction of 

TDO by dexamethasone (Nakamura et al., 1980). Indolepyruvate as a metabolite in 

the tryptophan pathway shows significant elevation following high insulin dose and 

non-significant reduction following HC dose. (Bordag et al., 2015) observed 

elevation of a number of tryptophan metabolites in plasma following 

dexamethasone treatment. There is a link between tryptophan metabolism and 
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purine metabolism. TDO has haem at its active centre and enzyme activity is 

regenerated by coupling with the superoxide anion. One of the major sources of 

superoxide in the body is from the action of xanthine oxidase which converts 

hypoxanthine via xanthine to uric acid (Sono, 1989). Elevated xanthine and 

hypoxanthine is associated with the high GC group and this could indicate an 

increase in xanthine oxidase leading to increased availability of the superoxide 

required to support TDO activity. 

 

Finally, the other major alterations in response to HC are, as might be expected, in 

steroid metabolism. HC suppresses ACTH resulting in reduced adrenocortical 

secretion of precursor steroids which, in the presence of metyrapone, are diverted 

to adrenal androgens. This most likely explains the reduction, with increasing HC, of 

androsterone glucuronide, a metabolite of adrenal androgens such as 

dehydroepiandrosterone, dihydrotestosterone or androstenedione; and of 

pregnenolone sulphate, a metabolic precursor of HC.   Bordag et al observed that 

dexamethasone decreased the levels of a number of steroid hormones, particularly 

androstenedione (Bordag et al., 2015). 

 

Of course, metabolite changes detected in plasma are only an indirect indicator of 

the biochemical changes in target tissues for cortisol and insulin. Moreover, there 

may be a bias in metabolomic studies in favour of detecting changes in the most 

abundant, rather than the most biologically important metabolites. Of equal 

interest, however, is the pragmatic application of changes in metabolites as 
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biomarkers to measure GC or insulin action. For insulin, fasting plasma 

insulin/glucose ratios are the only non-invasive approach to determine insulin 

sensitivity, and classification of risk of T2D could be enhanced by additional 

biomarkers. By combining 4 markers, we demonstrate high sensitivity to 

discriminate between high dose and low dose insulin infusion, but further tests in 

large numbers will be required to test associations with physiological insulin action. 

For GCs, there are no reliable specific or sensitive biomarkers, since even 

measurement of plasma cortisol is subject to many caveats. We show that a 

combination of 10 markers has reasonably high sensitivity to discriminate between 

low and high dose HC infusion, although the discrimination of medium dose 

infusion remained relatively poor (AUC = 0.69). It remains to be tested whether 

these markers, in combination or alone, will be sensitive to physiological or 

pharmacological variation in cortisol action, and crucially whether they have 

specificity when compared with effects of obesity and other features which 

accompany GC excess. 
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Chapter 5:  

Metabolomic Profiling of Patients with 

Congenital Adrenal Hyperplasia Confirms 

Uncertainty in Finding Reliable Biomarkers 

Associated with the Disease Progress 
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5 Metabolomic profiling of patients with congenital adrenal 

hyperplasia uncovers significant biomarkers associated 

with the disease progress. 

 

5.1 Abstract 

 

Background and Aim: Patients with CAH are treated with GC in order to replace the 

low levels of endogenously produced GC. To date, there are no reliable tools to 

assess health outcomes arising from under or over treatment. Metabolomics 

signatures based on anthropometrics and clinical measurements can be used to 

determine patients at heightened risk of developing further complications.  

 Methodology: MS based metabolomics profiling was carried out on plasma 

samples from 119 patients with varying anthropometric and clinical  measurements. 

HCA was initially used to assess the clustering pattern of patients based on their 

anthropometric measurements; then OPLS-DA was employed to examine the 

metobolomic differences among the clustered groups. 

Results: This analysis revealed that the patients in fact fell into three distinct 

groups, in which GC dose still had only a minor contribution (VIPpred = 0.44), while 

BMI (VIPpred = 1.38), BP (VIPpred = D 1.27/S 1.32), and weight (1.39) had major 

contributions to the between-group differences. Patients in the first group had 

higher BMI, GC dose, systolic and diastolic blood pressure and lower levels of 

androstenedione and 17-hydroxyprogesterone compared to the other two groups. 
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The metabolomics analysis revealed that 13 metabolites including branched chain 

amino acids and the taurine pathway  were significantly elevated in G1 compared to 

G2 and G3.  

Conclusion: These 13 metabolites were employed to produce receiver operator 

characteristics (ROC) curves with fair classification based on AUCs in the range of 

0.75. Further assessment is required to determine the relevance of these molecules 

as potential predictors of health status of patients with CAH. 
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5.2 Introduction 

 

GC are some of the most widely prescribed class of drugs, both for treating 

inflammatory conditions and for replacement therapy in conditions where 

endogenous GC are deficient such as CAH. CAH is an autosomal recessive diseases 

affecting cortisol biosynthesis (Merke, 2008). 95% of CAH cases account for 

mutations in the CYP21A2 gene which encodes 21-Hydroxylase enzyme (Krone et 

al., 2000), and rarely due to mutation in CYP17A1 wich encodes 17α-hydroxylase 

enzyme (Guenego et al., 2015). Recently, it has been found that cases with 

deficiency in both enzymes are due to mutation in P450 oxidoreductase (POR) 

which facilitates electron transfer from NADPH to those enzymes (Dhir et al., 2007, 

Krone et al., 2007). 17α-hydroxylase enzyme catalyses the conversion of 

progesterone to 17-hydroxyprogesterone and pregnenolone to androstenedione, 

while 21-hydroxylase enzyme catalyses the conversion of 17-hydroxyprogesterone 

into GCs and mineralocorticoids (Dhir et al., 2007).  

 

Currently recommended treatment regimens for GC replacement in patients with 

CAH involve daily doses of HC or cortisone acetate administered twice- or thrice-

daily. Whereas prednisolone is recommended as an alternative to HC for once- or 

twice-daily dosing in patients with reduced compliance, dexamethasone is not 

recommended at all due to the risk of Cushing-like side effects arising from dose 

titration difficulties (Bornstein et al., 2016), and both alternatives have been 

associated with impaired quality of life among CAH patients (Han et al., 2013b). The 
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drugs act on intracellular GC receptors widely expressed in mammalian cells to 

mediate a variety of physiological processes including energy metabolism (Andrews 

and Walker, 1999a, Macfarlane et al., 2008b), cardiovascular control (Walker, 

2007b), cellular proliferation, central nervous system (CNS) function (Seckl and 

Olsson, 1995), and innate immunity (Sapolsky et al., 2000).  

 

Determining the optimal dose for GC replacement particularly in CAH is incredibly 

difficult, with over-replacement leading to Cushing adverse metabolic effects while 

under-replacement increases the risk of adrenocortical crisis or death, especially 

during infections and other periods of increased stress (Johannsson et al., 2015). At 

present very few patients with adrenal insufficiency on GC treatment achieve good 

disease control and their treatment outcomes are generally poor (Han et al., 

2013a), with high morbidities and low overall life expectancies (Johannsson et al., 

2015). This has been attributed to the failure of the treatment to replicate the 

normal circadian rhythm of cortisol release in the body, as well as a lack of 

individualised treatment protocols for patients in whom specific dosing would be 

more beneficial. 

 

In addition, treatment of patients with Cushing’s syndrome, a disease associated 

with chronic GC excess, and in whom surgical intervention is unresponsive, is 

difficult to monitor particularly when using GC receptors antagonists such as 

mifepristone. This is further complicated by the fact that biochemical (hormonal) 

monitoring of GC replacement is currently not recommended (Bornstein et al., 



134 
 

2016) as there are no known reliable biomarkers of GC action. Instead, the 

recommended monitoring for GC replacement relies on clinical markers such as 

body weight, postural blood pressure, energy levels and signs of clear GC excess 

(Bornstein et al., 2016) which might not accurately reflect the prevailing state of the 

patient’s GC action.  

 

Models that assess the disease status based on number of admissions/visits to the 

hospital per year plus other clinical parameters were suggested (Hummel et al., 

2016). Although these showed good sensitivity to the disease assessment, these 

models cost a lot in terms of time and money, and would be a burden on health 

care systems. Thus, in order to determine the categories of patients at a high risk of 

developing other diseases arising from GC use, untargeted metabolomics profiling 

was carried out by liquid chromatography-high resolution mass spectrometry (LC-

HRMS) on plasma samples from 119 patients with varying anthropometric (BMI, 

height, weight, age) and clinical (systolic & diastolic BP and levels of 

androstenedione & 17-OH progesterone) measurements, undergoing treatment for 

CAH with different doses of GCs (as prednisolone equivalent, PredEqBNF). 

Multivariate statistical analysis was applied to the complex metabolite datasets 

generated in order to pinpoint the key metabolites that would eventually lead to 

the detection of patients in whom further interventions or monitoring would be 

required to prevent against risk of GC over- or under-dose. 
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5.3 Methodology 

 

5.3.1 Anthropometric data collection 

The procedures for patient recruitment and assessment have already been 

described in sections 6.3.1 (Patient recruitment) and 6.3.2 (Procedure for collection 

of anthropometric data). 

5.3.1.1 Patient’s numbering 

119 patients, each one had a number of 6 characters. The first character was 

represented the centre of the study, the last 5 characters represented the patient’s 

number in that centre. For example, C05005, C = this patient belongs to centre C, 

05005= patient’s number. 

 

5.3.2 LC-MS analysis 

- LC-MS conditions and sample preparation procedures are reported in detail 

in section 2.1-2.3 (pages: 47-51). 

- Column used in this project is ZICpHILIC. 

 

5.3.3 Data extraction and processing 

Details of data extraction and processing are reported in section 2.4 (pages: 51-54). 

 

5.3.4 Data analysis 

The data was analysed as described already in section 2.5 (pages: 54-58). 

Additionally, One-Way ANOVA was employed to test the differences in the 

anthropometrics and clinical measurements between the three groups. 
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5.4 Results 

 

5.4.1 Anthropometrics and clinical measurements 

5.4.1.1 Multivariate analysis 

In order to detect patients at risk of further physiological abnormalities from GC 

use, a PCA model was built based on the readings of the anthropometric and clinical 

measurements in all the 119 patients, followed by HCA. The anthropometric and 

clinical measurements divided the patients into 3 groups on the basis of similarity 

between the observations as shown in the dendrogram plot (Figure 5.1). Since there 

were three clear groups uncovered by the unsupervised analysis, a supervised 

OPLS-DA model was then created based on the groups highlighted by HCA 

(Figure 5.2A). This model clearly showed separation between the three groups, the 

model explained 46.4% of the variation in the anthropometric and clinical 

parameters among the groups. The model attributed 57% of the variation between 

the patients to the variation in the anthropometric and clinical parameters. 
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Figure 5.1 Hierarchical Clustering Analysis (HCA) of patients with CAH based on anthropometrics and clinical measurements. 
The dendrogram shows clustering of 119 patients into three groups. X-axis represents patient observations (no enough space for all the samples to appear on the 
figure) and y-axis shows variability index. The higher the variability index, the larger the between group variability; and the smaller the variability index, the smaller 
the within group variability. 
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Figure 5.2 (A) OPLS-DA score plot of 119 patients with CAH based on anthropometrics and clinical 
measurements, and (B) Pie chart showing the contribution of each anthropometric and clinical 
parameter in the classification. 
Plot A, shows 119 samples of patients with CAH clustered into three groups based on their 
anthropometrics and clinical measurements, group 1 (20 samples - green), group 2 (43 samples - 
blue) and group 3 (56 samples - plum). The model consists of two predictive components t[1-2]. R

2
X 

(cum) = 0.464, R
2
Y (cum) = 1, R

2
 (cum) = 0.569, Goodness of prediction Q

2
 (cum) = 0.547. (B) Pie chart 

showing how each measurement; androstenedione, 17-OH progesterone, weight, height, age, body 
mass index (BMI), GC treatment (GT), systolic and diastolic blood pressure (SBP & DBP) contributed 
to the classification of the patients with CAH into 3 groups based on partial eta squared for each 
parameter. 

The current gold standard in testing metabolomics models is the use of a ROC (Xia 

et al., 2013). The AUC for a ROC classification is regarded as excellent when AUC > 

0.9. The supervised model classified the patients into 3 groups, and in order to test 

the ability of the model to produce such a classification, the  areas under the ROC 

curves were employed (Figure S5.1, appendix). The AUC of the ROC for the groups 

were: group 1 = 0.99, group 2 = 0.99 and group 3 = 0.91, all indicating excellent to 

perfect classification. 
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5.4.1.2 Univariate analysis 

The pie chart (Figure 5.2B) showed that weight, androstenedione, BMI and 17-OH 

progesterone had the most significant contribution to the classification of the 

patients into 3 groups based on one-way ANOVA with p-values: 9.52E-14, 1.03E-9, 

3.12E-12 and 1.70E-8 respectively. On the other hand GC treatment had the lowest 

contribution to the grouping with only a 3% contribution and a p value = 0.034. 

Systolic and diastolic blood pressure measurements also showed a significant 

contribution to the group classification with p values of 8.73E-8 and 9.86E-7 

respectively (Figure 5.3). 
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Figure 5.3 Error plots (means and 95% confidence intervals), comparing the anthropometrics and clinical measurements among the three groups 
using one-way ANOVA. 
The plot shows differences of anthropometric and clinical measurements among groups; group 1 (G1), group 2 (G2) and group 3 (G3). The 
measurements are; GC treatment, androstenedione, 17-OH progesterone, systolic and diastolic blood pressure, body mass index. Each plot presents F 
statistics, one-way ANOVA based p-value and partial eta squared (η

2
p). ( 

^
F ) = F statistics value based on Welch test, and any significance in these 

parameters was based on Games-Howell post hoc test, otherwise p-value based on Scheffe post hoc test. (*, p<0.05), (**, p<0.01) and (***, p<0.001).  
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The error plots (Figure 5.3) show how the anthropometric and clinical 

measurements varied among the three groups. Based on the similarities in the 

readings, patients clustered into three groups G1 (n=20), G2 (n=43)  and G3 (n=56). 

Patients in G1 have significantly higher BMI (median=39.1, IQR=37.1-41.6 kg/m2), 

SBP (135.55 ± 11.54 mmHg), DBP (median=86.2, IQR=78.4-92.4 mmHg) and GC dose 

(median=6, IQR=4.75-7.25 predEqBNF) compared to G2 and G3. Similarly, G1 also 

had significantly lower levels of 17-hydroxyprogesterone (median=4.1, IQR=2.38-

6.45 nmol/l) and androstenedione (median=2.25, IQR=1.53-3.9 nmol/l) (Table 5.1, 

below). 

 

Table 5.1  Shows values of the anthropometrics and clinical measurements among the 

three groups. 

Parameter 

Median (Q1, Q3) / Mean ± SD 

G1 G2 G3 

Androstenedione (nmmol/l)b 2.25(1.53,3.9) 1.6(1.1, 3) 8(3.7,27.3) 

17-OHprogesterone (nmmol/l)b 4.1(2.38,6.45) 8.65 (3, 15.48) 64.5(10.08, 185) 

GC dose (PredEqBNF)b 6(4.75,7.25) 5(2.5,6.13) 5(3.63, 7.5) 

BMI (kg/m2)b 39.1 (37.1,41.6) 26.5 (24.65,29.6) 29.6(28.45,33.8) 

SPB (mmHg) 135.55±11.54 117.64± 10.31 116.78 ± 9.89 

DPB (mmHg)b 86.2(78.4,92.4) 73.3 (69, 78) 73.5 (67.3, 78.1) 

Age (years) 39.46 ± 11.99 38.8 ± 10.66 32.66 ± 10.08 

Weight (Kg) 95.68 ± 11.76 63.71 ± 7.04 79.25 ± 12.59 

Height (m) 1.57 ± 0.08 1.54 ± 0.08 1.61 ± 0.07 
 

 b 
Not normally distributed, median (Q1, Q3) used instead of Mean ± SD. Q1= first quartiel, Q3= 3

rd
 

quartile. 
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Based on the previous clustering, an OPLS-DA model was built on the readings of 

382 putative metabolites in plasma samples of the same patients in order to study 

the metabolomic differences among the three groups. 

 

5.4.2 Study the metabolomics difference between the groups 

 

Figure 5.4 2D PCA score plot shows 119 observations for patients with CAH (grey-No class) plus 5 
pooled samples (plum-QC).  

 

Starting with the pooled plasma samples (Figure 5.4, above), tight clustering was 

observed with a calculated RSD of 0.47% based on the sum of the intensities in each 

sample (n = 5) 0.47%. In addition, the RSD was calculated for each of the putative 

biomarkers, and the highest RSD was for 4-hydroxy-2-oxopentanoate (9.54%) while 

the lowest were for L-glutamine and pantothenate with 0.28% and 0.19% 

respectively. The precision of these values indicated that any metabolomic 
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differences between groups could not be attributed to instrumental factors. RSD 

has not been used as primary filter for the metabolites. 

 

5.4.3 Biomarkers identification 

 

Table 5.2 shows the most significant putative biomarkers discriminating between the 

3 groups. Group 1 has elevated metabolites which are most typical of metabolic 

syndrome with highly elevated levels of branched chain amino acids and their acidic 

metabolites (Newgard et al., 2009, Huffman et al., 2009, Batch et al., 2013, 

McCormack et al., 2013). Since GC dose had only weak significance in separating 

these three groups, the compounds in the table are not expected to be specific 

markers of GC activity due to the small contribution of the GC dose in the 

separation of the three groups. 
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Table 5.2 List of putative biomarkers that show significant differences among the three 

groups using one way ANOVA. 

   Post-hoc test 

Putative biomarkers FDR G1 : G2 : G3 G1*G2 G1*G3 G2*G3 

L-Isoleucine * 0.026 1 : 0.32 : 0.41 4.5E-5 0.001 0.05 

L-Valine * 0.026 1 : 0.25 : 0.31 8.2E-6 0.001 0.17 

3-Methyl-2-oxobutanoic acid * 0.038 1 : 0.18 : 0.25 4.5E-5 0.004 0.10 

3-Methyl-2-oxopentanoic acid 0.045 1 : 0.07 : 0.23 0.002 0.094 0.03 

2-Methyl-3-oxopropanoate 0.027 1 : 0.24 : 0.32 3.9E-5 0.004 0.06 

Gamma-Glutamylglutamine 0.042 1 : 0.58 : 0.67 3.9E-5 0.008 0.10 

5-L-Glutamyl-taurine 0.042 1 : 0.45 : 0.54 0.001 0.024 0.15 

2-Oxoglutarate * 0.043 1 : 0.46 : 0.58 0.001 0.012 0.01 

N-Formimino-L-glutamate 0.043 1 : 0.08 : 0.15 0.002 0.020 0.25 

L-Aspartate * 0.038 1 : 0.14 : 0.28 0.005 0.004 0.06 

Myristoleic acid(C14:1) 0.023 1 : 0.74 : 0.78 6.7E-5 0.000 0.01 

L-Octanoylcarnitine 0.045 1 : 0.78 : 0.8 0.003 0.004 0.07 

5-Methylcytosine 0.047 1 : 0.33 : 0.44 0.005 0.030 0.21 
 

*Retention time matches standard. Fold change been calculated based on the average of absolute 

intensity of each group, and normalised to the first group as a reference for comparison. 

 

FDR corrected p-values following one-way ANOVA revealed 13 putative markers 

with significant differences. Most of the difference was between patients in G1 

compared to G2 and G3. All the presented putative markers were elevated 

significantly in G1 compared to the other two groups. BCAA; L-isoleucine, L-valine, 

3-methyl-2-oxobutanoic acid, 3-methyl-2-oxopentanoic acid, and 2-methyl-3-

oxopropanoate represented around 40 % of the metabolomics changes and had a 

high contribution to the difference between groups and within groups with VIPpred 
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and VIPorth above 1. 23 % of the metabolomics changes were manifested in the 

taurine pathway; 5-L-glutamyl-taurine, gamma-glutamylglutamine and 2-

oxoglutarate, the putative metabolites in this pathway had a high contribution to 

the variation between the groups with VIPpred above 1 and had low contribution to 

the variation within groups with VIPorth below 1. Lipids in this metabolome 

represented 15 % of the metabolomics changes. However, both myristoleic acid 

(C14:1) and L-octanoylcarnitine had low contribution to the variation between and 

within groups with VIPpred and VIPorth below 1.  

 

The metabolomic differences between G2 and G3 are very minimal compared to the 

difference between G1 vs G2 and G1 vs G3. Patients in group 1 have higher BMI, 

SBP and DBP compared to G2 and G3, and also have higher GC dose compared to 

G2; all these measurements might have the implication of higher risk of having 

chronic diseases among patients in G1 compared to those in G2 or G3. In order to 

examine the accuracy of predicting those patients susceptible to chronic diseases, 

ROC curves for both anthropometrics and metabolomics data were modeled as G1 

(High risk, 20 patients) vs  G2+G3 (Low risk, 99 patients) (Figure 5.5). 

Anthropometric and clinical measurement based classification were excellent 

classifiers with 99% accuracy of separating the CAH patients at low risk from those 

at high risk (Figure 5.5A, below). On the other hand, the plasma metabolome had 

fair ability (Figure 5.5B) to differenciate patients with low from those with high 

susceptibility of having chronic diseases, with 75% accuracy (Xia et al., 2013). 
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Figure 5.5 The ROC curves of low risk vs high risk groups, (A) for anthropometrics measurements 
and (B) for corresponding metabolomics difference. 
Each plot shows sensitivity (true positive rate (TPR)) on the y-axis versus (false positive rate (FPR = 1 - 
Specificity)) on the x-axis. (A) Shows AUCs based anthropometrics and clinical measurements of high 
(plum) vs low (blue) risk groups with 0.99 for each group. (B) Shows AUCs based metabolome of high 
(plum) vs low (blue) risk groups with 0.75 for each group. 
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5.5 Discussion 

 

Patients with CAH have low levels of biosynthesised GC. Different GC replacement 

therapies are available with different potencies and associated  side effects. The 

challenging point is to what extent we are able to determine patients at risk of 

further diseases and  needing an early intervention. Anthropometric and clinical 

measurements provide important information about the health status of a patient, 

but it can not predict it accurately (Wang et al., 2011a). We used the provided 

anthropometrics and clinical measurements as a link to study the metabolome 

associated with patients at risk according to HCA classification. 13 potential 

biomarker metabolites were identified and their ability to predict patients at risk 

was assessed.  

 

Based on the anthropometric and clinical measurements, patients in G1 had a 

higher BMI, SBP, DBP and GC dose compared to G2 and G3, and also they had lower 

levels of 17-hydroxyprogesterone and androstenedione. 17-hydroxyprogesterone 

(median=4.1, IQR=2.38-6.45 nmol/l) level for the patients in G1 was lower than the 

suggested maintenance level for adult female at fertility of < 24.2 nmol/l and adult 

male of (< 75.5 nmol/l) (Merke, 2008).  This might implicate down regulation of the 

biosynthesis of GC mediated by high GC dose via the HPA-axis, or inactivity of the 

17α-hydroxylase enzyme which converts progesterone to 17-hydroxyprogesterone.  
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Metabolomics studies have reported an association between high levels of 

branched chain amino acids with diabetes (Wang et al., 2011a), and insulin 

resistance (Wang et al., 2011a, Roberts et al., 2014, Newgard et al., 2009). Among 

2,422 participants followed up for 12 years, 201 individuals developed diabetes and 

this was associated with high levels of BCAA. A replication study of 163 case-

controls was performed and reported the association of BCAA with an incidence of 

diabetes (Wang et al., 2011a). 

 

Gamma-glutamyl-glutamine, 5-L-glutamyl taurine and 2-oxoglutarate  are 

intermediate metabolites in taurine metabolism. These metabolites are elevated 

significantly in G1, and this elevation indicates enhancement in taurine catabolism, 

i.e., patients in G1 have low plasma levels of taurine compared to other groups. 

Association between taurine deficiency and chronic diseases such as T2D, insulin 

resistance, and cardiovascular diseases were reported previously (Ito et al., 2012). 

Aspartate is elevated significantly in G1; it is transported from intracellular to 

extracellular space in an exchange with glutamate, the latter is converted to alpha-

ketoglutarate by the aspartate transaminase enzyme (AST). Alpha-ketoglutarate is 

transported to cytosol in an exchange with malate, the whole process is known as 

the malate-aspartate shuttle and its aim is to transfer electrons to mitochondria in 

order to produce ATP. In the Framingham offspring study, aspartate positively 

correlated with BCAA in control subjects, and had no significant difference 

compared to diabetic subjects (Wang et al., 2011a). The plasma levels of histidine in 
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9,369 Finnish non diabetics or recently diagnosed men with T2D were reported to 

be a reliable predictor of incidence of insulin resistance.  In the study, low plasma 

levels of histidine were associated with insulin resistance (Stancakova et al., 2012). 

In line with this, N-formimino-L-glutamate  byproduct of histidine was significantly 

elevated in G1; this implicates low levels of histidine in this group. Previously, 

middle aged subjects with arterial stiffness were reported to have high plasma 

levels of L-octanoylcarnitine (Kim et al., 2015). Compared to non diabetics, patients 

with T2D have high plasma levels of L-octanoylcarnitine (Adams et al., 2009), as do 

those with a high risk of prediabetes (Guasch-Ferre et al., 2016). Myristoleic acid 

(C14:1) was increased significantly in G1 compared to the other groups. Myristoleic 

acid is formed by desaturation of myristic acid; the latter is positively associated 

with risk of T2D (Xu et al., 2013). 5-Methylcytosine was also increased significantly 

in the plasma of patients in G1 compared to those in groups 2 and 3, which is 

consistent with earlier observations of upregulation of DNA methylation found in 

patients with atherosclerosis (Zaina et al., 2014). 

 

Patients with CAH clustered into low and high risk groups with 99% accuracy (Figure 

6.7A) based on their anthropometric and clinical measurements. The 13 combined 

biomarkers (Table 6.1) in the plasma of those patients might be used as good 

prognostic and/or diagnostic biomarkers with 75% accuracy (Figure 6.7B). Although 

the current study is limited by use of a single analytical platform, the results are 

statistically strong and clinically consistent with many other studies and could be 
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used as a reliable basis for further targeted analysis in the way of risk prediction and 

diagnosis.   
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Chapter 6: 

The exploration of different cut offs of GC dose 

using metabolomics 
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6 Exploration of different cut offs of GC dose using 

metabolomics 

 

6.1 Abstract 

 

Background and Aim: GC replacement therapy is the mainstay of treatment for 

CAH. However, there are no established biomarkers for GC effect which could 

indicate the cut-off between physiological replacement, when the metabolic state is 

normative, and pharmacological therapy, in which GC administration is designed to 

induce specific responses.  

Methods: LC-MS based metabolomic profiling was carried out on plasma samples 

from 117 patients with CAH being treated with GC replacement therapy. The MS 

data was processed to produce a metabolite list which was then subjected to 

analysis by using both multivariate and univariate statistics in which the clinical 

meta-data was also incorporated. 

Results: The clearest metabolomic changes were between patients receiving ≤5 mg 

and > 5 mg prednisolone dose equivalents (PredDEq). The metabolome of patients 

receiving > 5-15 mg had net result of increased circulating FFA levels, except for 

palmitoleic acid (16:1) which was decreased in this group. Chenodeoxyglycocholic 

acid, octanoylcarnitine and tryptophan were elevated significantly in the high dose 

group as was the metabolite of tyrosine, hydroxy phenyl pyruvic acid.  
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Conclusion: A combination of seven biomarkers produced excellent discrimination 

between the patients receiving ≤5 mg and > 5-15 mg of PredDEq based on an AUC 

of 0.92 for a ROC curve. These biomarkers could be readily incorporated into a rapid 

targeted screen for GC action. 
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6.2 Introduction 

 

GC replacement therapy is the mainstay of management interventions for CAH (Han 

et al., 2013a) and both primary and secondary adrenal insufficiency (Johannsson et 

al., 2015). It is also employed in the treatment of a variety of chronic and 

inflammatory diseases such as rheumatoid arthritis (RA), obstructive lung diseases, 

asthma, and systemic lupus erythromatosus (Hoes et al., 2008).  

 

Oral HC is one of the most commonly used GC which is administered in divided 

doses of 2 or 3 times daily (Johannsson et al., 2015) and has been associated with 

better quality of life (QoL) in patients with CAH (Han et al., 2013b). Other most 

commonly used GCs include prednisolone, prednisone, dexamethasone, 

budesonide, beclometasone, fluticasone and deflazacort (Hoes et al., 2008), but 

both prednisolone and dexamethasone have been associated with impaired QoL in 

CAH patients (Han et al., 2013b). Treatment with GCs is generally associated with 

adverse reactions commonest among which are development of osteoporosis (Van 

Staa et al., 2000), reduced bone density, and risk of bone fractures which occur 

within 3-6 months of oral therapy at doses >5 mg daily (Van Staa et al., 2002a). 

Other side effects are cardiovascular diseases including acute myocardial infarction 

(Wei et al., 2004, Varas-Lorenzo et al., 2007), insulin resistance, obesity, 

hypertension, and hyperglycaemia (Han et al., 2013a, Wei et al., 2004).  
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The frequency and severity of these adverse effects depend largely on the type of 

drug, duration of treatment, and the dose, calculated as prednisolone dose 

equivalent (PreDEq), administered (Han et al., 2013b). For instance, in a study to 

determine the effect of drug dose and timing of GC treatment on health outcomes 

among CAH patients, a once daily dose regimen of dexamethasone was found to 

produce lower androgens and ACTH levels, suggesting favourable disease control, 

but it also caused greater insulin resistance than HC or prednisolone (Han et al., 

2013a).  

 

On the other hand, higher GC dose was associated with increased blood pressure, 

poor disease control and mutation severity. In children, both prednisolone and 

dexamethasone are associated with 15- and 70–80-fold higher linear growth 

suppression effects compared to HC (Rivkees and Crawford, 2000, Punthakee et al., 

2003, Bonfig et al., 2007). Thus HC is preferred during childhood over more potent 

long-acting GCs which are not recommended during this period (Speiser et al., 

2010). The choice between GC drugs in CAH thus depends on the age of the patient, 

gender, evidence of virilisation in women, and desire for fertility (Han et al., 2013a). 

For instance, young women desiring to have children would rather take high dose of 

synthetic, long-acting GCs while middle-aged men with no requirement for fertility 

might prefer physiological doses with HC to reduce risk of osteoporosis and 

cardiometabolic disorders (Walker, 2007a).  
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The therapeutic dose of GCs is very broad which can vary by more than 200-fold 

depending on the condition being treated (Buttgereit et al., 2002). Therapeutic 

effects are mediated by both genomic actions, which occur via binding to cytosolic 

GC receptors no earlier than 30 minutes of receptor binding, and non-genomic 

actions which occur immediately (within seconds or minutes) via biological 

membranes at higher concentrations (Buttgereit et al., 2002). To minimise the risk 

of adverse effects, clinicians should prescribe the least possible doses for the 

shortest duration possible (Trikudanathan and McMahon, 2008). 

 

The conventional classification for GC dose in rheumatology has been suggested, 

based on daily PreDEq, as low dose (≤ 7.5 mg), medium dose (> 7.5 mg, but ≤ 30 

mg), high dose (> 30 mg, but ≤ 100 mg), very high dose (> 100 mg), and pulse 

therapy (≥ 250 mg a day for one or a few days) (Buttgereit et al., 2002). However, 

this daily dose can either be given in multiple dosing in reversed circadian rhythm or 

in single daily doses depending on the type of drug and the condition being treated. 

Whereas it is clear that higher GC doses lead to cardiometabolic effects, there is 

currently no reliable information regarding the dose cut-off at which these effects 

begin to manifest. This has led to a lack of consensus among clinicians and 

researchers alike on the doses of GC beyond which preventive treatment should be 

initiated to protect the patient against GC-induced side effects, such as use of 

bisphosphonate for protection against osteoporosis.  
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Some researchers have suggested that since the physiological level of GCs in blood 

is approximately 2.5 mg PreDEq daily, patients receiving daily doses of GCs above 5 

mg PreDEq should start taking bisphosphonate for prevention against osteoporosis. 

Additionally, these studies have suggested that the risk of adverse effects such as 

hypertension, insulin resistance, etc., becomes more likely when a patient is on a 

daily dose > 7.5 mg PreDEq, while other adverse effects such as infectious diseases 

due to deterioration of the immune system might appear when the daily dose 

exceeds 10 mg PreDEq. However, there is need to collaborate these clinical and 

pharmacological cut-offs with a more complete analysis of the metabolic profile of 

patients on different daily doses of GCs to provide precise discrimination at 

different dose cut-offs to predict the onset of a significantly altered metabolic state 

that might signify development of adverse effects. 

 

Thus the aim of this study was to employ metabolomics as a tool to explore the 

changes in metabolites that occur at different GC dose cut-offs in order to 

rationalise preventive measures against increased likelihood of GC-induced adverse 

effects. This would also help to establish the cut-off between physiological 

replacement, when the metabolic state is normative, and pharmacological therapy, 

in which GC administration is designed to induce specific responses. Ultimately the 

findings will enable clinicians to make informed decisions about GC therapy 

including restricting doses to those specifically required to induce the desired 
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outcomes and early adoption of measures to protect against GC-induced adverse 

effects. 

 

6.3 Methodology 

 

6.3.1 Patient recruitment 

The UK Congenital adrenal Hyperplasia Adult Study Executive (CaHASE) cohort is a 

cross-sectional study of adult CAH patients recruited from 17 specialised British 

endocrine centres. The study protocol was approved by West Midlands MREC 

(MREC/03/7/086) and registered with ClinicalTrials.gov (NCT00749593) and has 

been previously published in detail (Arlt et al., 2010). All centres contacted adult 

patients (18 years or older) with a confirmed diagnosis of CAH currently under their 

care. All participants gave written informed consent. 

 

6.3.2 Procedure for collection of anthropometric data 

Participants attended the research unit of their respective centre after an overnight 

fast having taken their regular medication, followed by medical history, physical 

examination and fasting blood sampling. Physical examination included: blood 

pressure (three seated, one standing, separated by 5 min), height and weight. 

Biochemical assessment: steroid hormones including 17-hydroxyprogesterone 

(17OHP), androstenedione. All laboratories participated in the UK NEQUAS scheme 

for quality control of steroid immunoassays. Inclusion criteria for the metabolomics 
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analysis were as follows: known 21-hydroxylase deficiency; additional serum sample 

collected at time of recruitment; full anthropometric and biochemical data available 

for each participant. Samples from 117 patients were eligible for metabolomics 

analysis; subjects were treated with hydrocortisone, prednisolone and 

dexamethasone or combination therapy. Treatment dose was converted to PreDEq 

using respective ratios for prednisolone: hydrocortisone: dexamethasone of 1: 4: 

0.15 based on British National Formulary (BNF) (Society, 2012). 

 

6.3.2.1 Patient’s numbering 

117 patients, each one had a number of 6 characters. The first character 

represented the centre of the study, the last 5 characters represented the patient’s 

number in that centre. For example, C05005, C = this patient belongs to centre C, 

05005= patient’s number. 

 

6.3.3 LC-MS analysis 

- LC-MS conditions and sample preparation are reported in detail in section 

2.1-2.3 (pages: 47-51). 

- Column used in this project is ZICpHILIC. 

 

6.3.4 Data extraction and processing 

Details of data extraction and processing are reported in section 2.4 (pages: 51-54). 
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6.3.5 Data analysis 

Data analysis was carried out as already described in section 2.5 (pages: 54-58). 

 

6.4 Results 

 

6.4.1 Metabolomics profiling of different GC cutoffs 

117 patients with CAH receiving four types of GC treatment were employed. In 

order to examine different GC cut-offs based on metabolomic differences, GC 

therapies were converted to prednisolone equivalents based on the relative 

potencies of the steroids reported in the British National Formulary (PredEqBNF) 

(Society, 2012). Thus, patients were divided into 4 groups based on the GC doses 

they were receiving, as follows: group 1, 1-2.5 mg; group 2, >2.5-5 mg; group 3, >5-

7.5 mg;  and group 4, >7.5-15 mg prednisolone dose equivalents on a daily basis 

(Figure 5.1, Table 5.1). The strongest GC cut-offs were found between patients 

receiving 1-5 mg daily (low GC, 64 observations) vs patients receiving > 5-15 mg 

(high GC, 53 observations). The anthropometric and biochemical measurements 

were examined between these two groups in order to make sure that any 

metabolomics differences between them were due only to the differences in the GC 

dose.  

 

The GC dose was found to be significantly different between the two groups (FDR 

corrected p = 1.4E-19) with median (IQR) of 3.75 (2.5, 5) and 7.5 (6.25, 7.5) for low 
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and high dose groups respectively, with AUC =1 (Table 5.2) which is obvious based 

on our classification. In addition, there were no significant differences in the rest of 

anthropometric and biochemical measurements (p value > 0.05) (Table 6.2, below). 

Since there were no confounding variables, any differences in metabolites between 

the two groups could be attributed to GC dose alone.  
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Figure 6.1 OPLS-DA score plots shows 4 comparisons of 117 samples of patients with CAH grouped 
based on their daily doses of GC. 
Comparison [1], plot (A) shows patients divided into 4 groups; (1) patients having 1-2.5 mg (n=18, 
green), (2) >2.5-5 mg (n=46, blue), (3) >5-7.5 mg (n=41, plum) and (4) >7.5 -15 mg (n=12, orange), 
R

2
= 0.469, Q

2
=0.215 . Comparison [2], plot (B) shows patients divided into 2 groups; (1) 1-2.5 mg 

(n=18, green) and (2) >2.5-5 mg (n=46, blue), R
2
= 0.453, Q

2
=-0.37. Comparison [3], plot (C) shows 

patients divided into 2 groups; (1) >5-7.5 mg (n=41, plum) and (2) >7.5-15 mg (n=12, orange), R
2
= 

0.41, Q
2
=-0.36 . Comparison [4], plot (D) shows patients divided into 2 groups; (1) 1-5 mg (n=64, 

green) and (2) >5-15 mg (n=53, blue), R2
= 0.649, Q

2
=-0.612 . 
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In the first comparison, plot A (Figure 6.1, above) shows that the metabolomics’ 

based groups separation between different dose cutoffs varies (p = 2.5E-06). It 

clearly shows that groups (1) 1-2.5 and (2) >2.5-5 overlapped and all the samples in 

group 1 (18 samples) were misclassified as members of group 2 (Table 6.1, below). In 

the same way, samples in groups (3) >5-7.5 and (4) >7.5-15 mg also overlapped, and 

all the samples in group 4 (12 samples) were misclassified as members of group 3 

(Table 6.1, below). The clearest and most significant separation (P CV-ANOVA = 1.5E-

20) can be seen when patients are divided into (1) 1-5 mg (64 samples) and (2) >5-

15 mg (53 samples) as shown in comparison [4] plot D (Figure 6.1) and we can see 

that only two samples of group (2) >5-15 mg overlapped with group (1) 1-5 mg 

according to the misclassification table (Table 6.1). 
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Table 6.1 Data corresponding to (Figure 6.1) regarding group assignment plus AUC for 

classification. 

Group Samples(n) Distribution of samples 
(%)a AUC P 

[1] Comparison A 1-2.5 >2.5-5 >5-7.5 >7.5-15 

1-2.5 18 0* 17 1 0 0 0.75 

2.5E-6 
>2.5- 5 46 0 43* 3 0 93.4 0.89 

>5- 7.5 41 0 1 40* 0 97.5 0.9 

>7.5-15 12 0 1 11 0* 0 0.81 

[2] Comparison B 1-2.5 >2.5 - 5 
 

1-2.5 18 5* 13 27.7 0.84 
1 

>2.5-5 46 4 42* 91.3 0.84 

[3] Comparison C >5 - 7.5 >7.5 
 

>5-7.5 41 40* 1 97.6 0.89 
1 

>7.5 12 4 8* 66.7 0.89 

[4] Comparison D 1-5 >5 
 

1-5 64 64* 0 100 0.98 1.5E-

20 >5-15 53 2 51* 96 0.98 
 

*Number of samples that correctly assigned to the correct group. 
a
 = percentage of correctly classified samples 

within each group. P = p value based on CV-ANOVA. 
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6.4.2 Metabolomics difference between patients receiving 1-5 mg and 

those receiving >5-15 mg prednisolone equivalent.  

 

Table 6.2 Comparison of anthropometric and clinical measurements between the low (L) 

and high (H) dose GC exposed groups. All measurements were similar between the two 

groups except for GC dose. 

 

Parameter Group Mean±SD/Median(Q1, Q3) FDR AUC 

Age (year) 
L 36.5 ± 10.8 

0.64 0.52 
H 35.4 ± 11.7 

Weight (kg) 
L 75.7 ± 13.96 

0.76 0.52 
H 77.9 ± 17.4 

Height (m) 
L 1.56 ± 0.08 

0.39 0.57 
H 1.58 ± 0.08 

BMI (kg/m2) 
L 30.96 ± 6.04 

0.83 0.51 
H 30.84 ± 6.5 

SPB (mmHg) 
L 118.7 ± 12.1 

0.27 0.59 
H 122.7 ± 12.6 

DPB (mmHg) 
L 73.53 ± 9.01 

0.21 0.61 
H 76.9 ± 8.8 

GC dose (PredEqBNF)b 
L 3.75 (2.5, 5) 

1.4E-19 1 
H 7.5 (6.25, 7.5) 

Androstenedione 

(mmol/l)b 

L 3.35 (1.5, 5.9) 
0.42 0.54 

H 3.1 (1.7, 15) 

17-OH 

progesterone(mmol/l)b 

L 11.5 (3, 92.5) 
0.81 0.51 

H 12.6 (4.3, 80.9) 
 

b 
(non-parametric), Mann-Whitney U test used and Median(Q1, Q3) presented instead of 

Mean±SD, L= 1-5 mg daily prednisolone equivalent, H= >5-15 mg daily prednisolone equivalent 
according to BNF. 
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All the anthropometrics and clinical measurementas except GC dose, show 

insignificant difference between the two groups following FDR correction (Table 6.2, 

above). So, the change in metabolome between the two groups is mainly driven by 

the effect of GC dose (Figure 6.2). 

 

 

Figure 6.2 OPLS-DA score plot shows samples of patients with CAH receiving either 1-5 mg or >5-15 
mg prednisolone equivalent. 
The plot built up on readings of 382 putative biomarkers in plasma samples of 117 patients with 
CAH. Patients divided into two groups, green observations (64 samples) represent patients receiving 
a GC dose of 1-5 prednisolone equivalent and the blue observations (53 samples) represent patients 
receiving GC dose > 5 mg prednisolone equivalent. The model consists of one predictive x-score 
components; component t[1] and three orthogonal x-score components  to[1-3]. t[1] explains 4.8% 
of the predictive variation in x, to[1] explains 45.7% of the orthogonal variation in x, R2X (cum) = 
0.506, R2Y (cum) = 1, R2 (cum) = 0.829, Goodness of prediction Q2 (cum) = 0.657.  

 

The OPLS-DA model (Figure 6.2, above) was based on readings of intensities of 382 

metabolites in plasma samples of 117 patients; the plot shows a clear and 

significant separation between the two groups of patients (P CV-ANOVA = 7.4E-22). 
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The plot also shows that within group variability (orthogonal variation) is higher in 

patients receiving low GC dose (1-5) mg compared to those in the group treated 

with a higher dose of GC (>5-15) mg. The model exhibits strong predictive power 

based on the permutations test (Figure S6.1, appendix) which shows that the 

original Q2 has higher value compared to the newly permutated (predicted) Q2 

values. The model explained about 83% of the variability among the observations 

and was able to predict about 66% of this variability based on cross validation. 

50.6% of the variation between the metabolites was explained by the model and 

only 4.8 % of this variation is certainly due to the difference in the GC dose between 

the two groups. Table 6.3 shows significant metabolites that were affected by the 

difference in the GC doses between the two groups. Metabolite’s selection was 

based on the following criteria: p value <0.05 following FDR correction, and AUC 

>0.6. 
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Table 6.3 Putative biomarkers significantly affected by the difference in GC dose between 

the low (L) and high (H) GC dose groups. 

Putative biomarkers AUC FDR H / L VIPpred VIPortho 

Saturated fatty acids 

Tridecanoic acid (C13:0) 0.63 0.0162 0.9 0.58 0.54 

Pentadecanoic acid (C15:0) 0.64 0.0056 1.3 0.98 0.78 

Palmitic acid *(C16:0) 0.66 0.021 1.4 1.06 1.07 

Phytanic acid (C20:0) 0.65 0.0117 1.4 1.03 0.92 

Unsaturated fatty acids 

Palmitoleic acid (C16:1) 0.77 0.000004 0.7 1.55 0.4 

Docosahexaenoic acid (C22:6) 0.65 0.00298 1.2 0.87 0.62 

15(S)-Hydroxyeicosatrienoic acid 

(20:3) 
0.65 0.00201 1.3 1.06 0.75 

Prostaglandin B1(C20:2) 0.64 0.00596 1.3 1.02 0.8 

Nucleotide Metabolism 

Inosine * 0.63 0.0102 0.9 0.69 0.56 

Uridine * 0.75 0.00027      0.7 1.21 0.46 

Hypoxanthine * 0.73 0.00001 2.4 2.11 1.02 

Methionine and taurine metabolism 

L-Methionine * 0.73 0.00041 1.2 0.87 0.4 

5-L-Glutamyl-taurine 0.65 0.0114 1.6 1.14 0.85 

Aromatic amino acids 

L-Tryptophan * 0.67 0.0003 1.7 1.59 0.97 

3-Dehydroquinate 0.67 0.0059 1.3 1.02 0.82 

4-Hydroxyphenyl pyruvic acid* 0.75 0.00006 0.5 1.8 0.6 

Alpha-N-Phenylacetyl-L-

glutamine 
0.61 0.0293 0.9 0.55 0.43 

4-Hydroxy-2-oxopentanoate 0.65 0.0003 3.5 2.34 1.6 

Miscellaneous 

L-Asparagine * 0.72 0.00004 2.6 2.29 1.14 

L-Threonine * 0.62 0.0211 0.7 1.14 0.56 

2-Keto-glutaramic acid 0.64 0.0103 0.8 0.8 0.65 

N-Methylnicotinamide 0.68 0.0003 2.2 1.85 0.85 

L-Octanoylcarnitine 0.66 0.00319 1.4 1.16 0.83 

Chenodeoxyglycocholic acid 0.82 1.9E-10 4.8 6.73 1.46 
 

*Retention time matches standard 

 



 

169 
 

The initial OPLSDA model (Figure 6.2), based on a large set of putative metabolites 

(382 metabolites), was refined by systematically discarding metabolites which did 

not contribute strongly to the difference between the two groups (Figure 6.3) until 

it was possible to produce a robust model based on only seven putative metabolites 

each with an FDR corrected p-value < 0.001 (Table 6.4). The number of metabolites 

used as putative biomarkers is thus < 10% of the number of observations which 

reduces the likelihood of the model being over-fitted. 

 

 
Figure 6.3 Bar chart of the most significant metabolites. 
Bars plot shows 24 metabolites (Table 3). Each bar represents a metabolite on y-axis, and its Area 
Under ROC Curve (AUROCC) value on x-axis. Each metabolite’ bar comprises of two segments; 
VIPpred (blue) and VIPortho (red), their values presented as percentages (white colour), FDR 
adjusted p-value presented for each metabolite at the right of each bar (dark blue). Metabolites 
arranged based on their statistical significance from top to down. Metabolites was refined by 
selecting top 10 statistically significant metabolites, each must have VIPpred ≥ 2*VIPortho to pass 
the filter. 
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Based on the 7 biomarkers, a new OPLS-DA model was constructed as shown in 

(Figure 6.4) These 7 variables in combination produced a ROC curve with an AUC of 

0.92 for the classification of the high and low dose corticosteroid response which is 

regarded as excellent classification (Xia et al., 2013).  

 

 

Figure 6.4 (A) OPLS-DA score plot and (B) Area under the ROC, both built up on readings of 7 
putative biomarkers (Table 6.4) in 117 patients.  
The plot shows two groups of samples, green samples (n=64) represent patients receiving a GC dose 
of 1-5 prednisolone equivalent and the blue samples (n=53) represent patients receiving GC dose > 
5-15 mg prednisolone equivalent. The model consists of one predictive x-score components; 
component t[1] and one orthogonal x-score components  to[1]. t[1] explains 33.7 % of the predictive 
variation in x, to[1] explains 23% of the orthogonal variation in x, R

2
X (cum) = 0.57, R

2
Y (cum) = 1, R

2
 

(cum) = 0.535, Goodness of prediction Q
2
 (cum) = 0.497. On the right, plot showing area under the 

ROC curve (AUC) of the two groups, x-axis showing (FPR) false positive rate (1-specificity), y-axis 
showing true positive rate (sensitivity). AUC for 1) 1-5 = 0.92 and 2) >5-15 = 0.92. 
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The new model in plot A (Figure 6.4) explained 33.7% of the variability between the 

two groups compared to the previous model (Figure 6.2) which explained only 4.3% 

of the variation between the two groups. The majority of the 7 metabolites were 

positively correlated to GC dose; chenodeoxyglycocholate had the highest 

correlation value (r= 0.76) while N-methylnicotinamide has the lowest correlation 

value (r= 0.46). On the other hand, 4-Hydroxyphenyl pyruvate and palmitoleic acid 

had negative correlation to GC dose (r = -0.57 and r= -0.66) respectively (Table 6.4). 

 

 
Table 6.4 List of significant putative biomarkers used to build up the OPLS-DA model in 

Figure 6.4. 

Putative biomarker FDR H / L 
VIP 

r 99% CI 
pred orth 

L-Asparagine * 4.5E-5 2.6 2.29 1.14 0.52 (0.08 , 0.34) 

L-Tryptophan * 3.3E-4 1.6 1.59 0.97 0.53 (0.12 , 0.29) 

4-Hydroxyphenyl pyruvate * 6.6E-5 0.5 1.8 0.6 -0.57 (-0.37, -0.08) 

Palmitoleic acid 4.1E-6 0.7 1.55 0.4 -0.66 (-0.42 , -0.1) 

Chenodeoxyglycocholate 2E-10 4.8 6.73 1.46 0.76 (0.16 , 0.44) 

N-Methylnicotinamide 3.0E-4 2.2 1.85 0.85 0.46 (0.02 , 0.34) 

Hypoxanthine * 1.8E-5 2.4 2.11 1.02 0.51 (0.05 , 0.34) 
 

*Retention time matches the standard. H= patients receiving high GC dose >5 mg prednisolone 

equivalent, L= patients receiving low GC dose 1-5 mg prednisolone equivalent. 
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6.5 Discussion 

 

GC replacement therapy in GC-deficient conditions such as CAH and Addison’s 

disease is challenging because there are no reliable biomarkers for GC action. This 

often leads to overtreatment causing metabolic side effects or under-replacement 

leading to increased risk of death from adrenal crisis. In order to discover 

biomarkers indicating GCs effect mass spectrometry based metabolomic profiling 

was carried out on plasma samples from 117 patients. The clearest metabolomic 

separation was found between patients receiving ≤5 and >5-15 mg prednisolone 

equivalents. A combination of the seven strongest biomarkers produced an AUC of 

0.92 for a ROC curve. In addition there were  another 17 metabolites with AUC 

values > 0.6. 

 

Chenodeoxycholic acid levels were nearly five fold in the high compared with the 

low GC dose groups; increased levels of bile acids have been associated with T2D 

(Prawitt et al., 2011).  There is mounting evidence that GC can regulate bile acid 

biosynthesis and equally that bile acids can regulate GC levels (Baptissart et al., 

2013). 

 

Hydroxyphenylpyruvic acid can be converted to tyrosine via transamination. The 

promotion of tyrosine transaminase by GCs has been known for over 50 years (Segal 

and Kim, 1963); thus lower levels of hydroxyphenyl pyruvic acid in the high GC dose 
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samples might reflect its conversion to tyrosine. In a previous study, aromatic amino 

acid levels were correlated with insulin resistance in 263 lean individuals (Tai et al., 

2010). Tyrosine and phenylalanine were significantly increased in patients receiving 

high GC dose. The bacterial-derived metabolite 4-Hydroxy-2-oxopentanoate also 

increased significantly, as observed in the current study, implicating gut microbiota 

in phenylalanine degradation. Many previous studies have focussed on the role of 

gut microbiota in the incidence of obesity, T2D and insulin resistance (Boulange et 

al., 2016). 

 

Tryptophan metabolism is regulated by GC activity which regulates the enzyme TDO 

at the entry to the kynurenine pathway. Corticosteroids have been found to 

promote TDO (Ochs et al., 2015). The observation of elevated tryptophan in the 

high HC dose samples is the opposite of what would have been expected.  However, 

TDO has haem at its active centre and enzyme activity is regenerated by coupling 

with the superoxide anion (Sono, 1989). hypoxanthine increased and inosine 

decreased, the later catabolised to hypoxanthine and xanthine, one of the major 

sources of superoxide in the body is from the action of xanthine oxidase (XO) which 

converts hypoxanthine via xanthine to uric acid (Sono, 1989). Dexamethasone 

reported to induced hypertension in rats via this mechanism (Wallwork et al., 2003). 
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Palmitoleic acid has been used as a plasma marker for stearoyl CoA desaturase 

(SCD) activity which is required for the secretion of triglycerides by the liver (Paillard 

et al., 2008). High SCD activity has been found in diabetic and obese subjects 

(Warensjo et al., 2009). Significant negative correlation between SCD activity and a 

homeostasis model for insulin resistance (HOMA-IR) was found in 299 healthy men. 

Palmitoleic acid was found to correlate closely with plasma triglyceride content; a 

chronically elevated level of GC is associated with the development of fatty liver 

disease (Gambino et al., 2016). In this study C15:0, C16:0, C20:3 and C22:6 fatty 

acids were all elevated significantly in patients receiving GC dose >5-15 mg 

prednisolone equivalent while C13:0 and C16:1 fatty acids were reduced 

significantly. Elevated plasma levels of C16:0, C20:3 and C22:6 were reported in 

patients with NAFLD compared to controls. Palmitic acid (C16:0) has a strong 

positive association with the incidence of T2D compared to control, while the odd 

chain pentadecanoic acid (C15:0) has inverse association with T2D (Forouhi et al., 

2014). Plasma levels of C15:0 to C13:0 fatty acids indicate downregulation of odd 

chain FA oxidation. Desaturation of C16:0 to C16:1 was reduced in patients 

receiving a high GC dose, this might implicate reduced activity of stearoyl CoA 

desaturase enzyme (SCD).  

 

N-methylnicotinamide (NMN) is a metabolite of tryptophan and urinary levels of 

NMN have been found to be elevated in diabetes along with its metabolites, the N-
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methyl pyridine carboxamides, and knock down of nicotinamide N-methyl 

transferase has been found to protect against obesity (Kraus et al., 2014). 

 

In a study which closely correlates with our results, (Zhao et al., 2010) studied 

diabetic and non-diabetic individuals aiming to uncover the metabolomic 

differences between individuals with impaired glucose tolerance (IGT) compared to 

controls. They found that individuals with IGT have reduced levels of phenylacetyl-

glutamine and increased levels of acylcarnitines, α-ketoglutarate, tryptophan, 

xanthine, methionine and nucleotides. They also found that phenylacetyl-glutamine 

and increased levels of acylcarnitines and α-ketoglutarate were markers of TCA 

intermediate depletion leading to mitochondrial stress which interfered with 

physiological insulin functions. In line with the observation in this study patients 

with diabetes have higher plasma levels of octanoylcarnitine compared to 

nondiabetic individuals (Kim et al., 2015). 

 

All the 7 candidate biomarkers had AUC values above 0.7 and a high contribution to 

the separation between the high GC and low GC groups and gave low within group 

variability. Although the current study is limited by use of a single analytical 

platform, the results are consistent with previous studies and the markers 

discovered could be used as reliable indicators of supraphysiological GC action.  The 

seven biomarkers could readily be incorporated into a rapid targeted screen. 
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Chapter 7: 

General Discussion, Conclusion, Strengths, 

Limitations and Future Work 
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7 General discussion 

 

GC play a key role in the development of metabolic disease.  As a result, several 

therapeutic strategies have been proposed to reduce cortisol secretion or action in 

such disease states. These strategies include use of GR antagonists such as RU38486 

(Jacobson et al., 2005), and inhibitors of 11β-HSD1 such as metyrapone (Hughes et 

al., 2008). One of the major limitations in the development of these therapies is the 

lack of simple indicators of successful reduction in cortisol effects. This lack of 

specific biomarkers makes clinical management of patients requiring GC 

replacement therapy particularly challenging (Hummel et al., 2016), and may 

contribute to well-documented excess morbidity and mortality in patients with 

hypopituitarism or adrenocortical failure (Arlt et al., 2010, Filipsson et al., 2006, 

Bergthorsdottir et al., 2006).  

 

In the current work, the aim was to identify biomarkers which reflect GC action. To 

investigate GC deficiency, metabolomics analysis was performed on plasma samples 

obtained from healthy men and patients with T2D following administration of the 

GR antagonist RU38486 together with the inhibitor of cortisol biosynthesis, 

metyrapone, a combination which has been termed ‘GC blockade’ (Wake et al., 

2007a, Macfarlane et al., 2014). To investigate GC dose effects, plasma samples 

were obtained from healthy men treated with metyrapone followed by varying 

doses of HC to induce low, medium and high (supra-physiological) circulating 
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cortisol levels. In each study, the specificity of the response to GC was tested by 

making measurements before and after insulin infusion. The metabolomic features 

of GC excess were also investigated in plasma samples of patients with CAH who 

had been receiving GC replacement therapy from the UK Congenital Adrenal 

Hyperplasia Adult Study (CAHase) (Arlt et al., 2010).  

 

In order to obtain broader coverage for polar and non-polar metabolites, ZICpHILIC 

and C18-AR columns were employed. Metabolites from the two columns were 

integrated into SIMCA software for multivariate analysis. R2 and Q2 produced by 

SIMCA for such integration were valid, and the effect of interventions / phenotypic 

differences was clear. Pooled samples were employed to examine the instrument’s 

precision and to exclude any instrumental factor that would impact on the results. 

The practice in relation to pooled samples is to make a pooled sample of all the 

samples in the run or to buy a QC sample. However, buying a QC sample seems 

impractical, because it contains compounds which are likely to be different than 

those in the examined samples, based on that, the judgment of stability of the 

detected metabolites is not achievable. On the other hand, making a pooled sample 

from all the examined samples, is financially better than buying a QC sample, but, 

practically time consuming. In this thesis, a pooled sample was made from 10 semi-

randomly selected samples i.e when control vs treatment was available, 5 control 

and 5 treatment sample were randomly selected. 
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Eight metabolites (chenodeoxyglycocholate, 5-L-glutamyl-taurine, gamma-

glutamylglutamine, hypoxanthine, valine, 2-methylbutyroylcarnitine, androsterone 

glucuronide and pregnenolone sulfate) were significantly affected by GC 

interventions in more than one study. The bile acid conjugate, chenodeoxy 

glycocholate, was significantly elevated following GC blockade in patients with T2D, 

and was also elevated significantly in patients with CAH receiving high GC dose. The 

increase in the levels of bile acids following GC blockade is probably an indication of 

increased HPA-axis activity in order to meet the body’s demand for GC. 

Disturbances in HPA-axis have previously been  found to raise serum bile acid levels 

in patients with Addison’s disease relative to healthy controls (Rose et al., 2011). On 

the other hand, the increase in bile acids observed at high GC doses in CAH patients 

agrees with a previous report of acute treatment of mice with prednisolone which 

was found to elevate plasma levels of bile acids by promoting the apical sodium-

dependent bile acid transporter (Asbt) expression thus enhancing BA absorption 

from the intestine (Out et al., 2014).  

 

HC increased plasma levels of gamma-glutamylglutamine in healthy individuals, and 

this metabolite was also found to be elevated in plasma samples from a  group of 

patients with CAH who received high GC dose, and had high BMI, high SPB, and high 

DBP (G1). In the same group of CAH patients, 5- L-glutamyl-taurine was also 

elevated. Both gamma-glutamyl-glutamine and 5-L-glutamyl taurine are 

intermediate metabolites in taurine metabolism and their elevated levels indicate 
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enhancement of taurine catabolism. Thus  it is expected that patients in G1 had low 

plasma levels of taurine compared to other groups. Associations between taurine 

deficiency and chronic diseases such as T2D, insulin resistance, and cardiovascular 

diseases have been reported previously (Ito et al., 2012). 

 

Xanthine and hypoxanthine were elevated significantly in healthy individuals 

infused with high HC dose, but in CAH patients who received a high GC dose, 

hypoxanthine was increased while inosine was decreased. Inosine is catabolised to 

hypoxanthine and xanthine, one of the major sources of superoxide in the body, is 

from the action of xanthine oxidase (XO) which converts hypoxanthine via xanthine 

to uric acid (Sono, 1989). Dexamethasone was reported to induce hypertension in 

rats via this mechanism (Wallwork et al., 2003). 

 

L-valine is a BCAA and it was found to be significantly elevated in plasma samples of 

patients with T2D following GC blockade. Additionally, it was also elevated in 

healthy individuals following a high dose of HC. In patients with CAH, L-valine was 

elevated in those who had high GC dose, BMI, SBP and DBP (G1 group). Elevation of 

L-valine might be due to protein wasting caused by excess plasma levels of GC 

(Schakman et al., 2013). Moreover, hyperactivity of HPA-axis is associated with 

enhanced protein breakdown (Tataranni et al., 1996). On the other hand, insulin, an 

anabolic hormone, significantly reduces levels of L-valine in healthy individuals. This 
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means that deviations in the levels of L-valine in blood from the physiological norm 

can be indicative of the imbalance between insulin and cortisol levels. 

 

2-MBC was significantly elevated in patients with T2D following GC blockade. It was 

also elevated following high HC dose in healthy individuals. 2-MBC is a catabolic 

product of isoleucine used for energy production through TCA, thus its 

accumulation indicates an inhibition of branched chain acyl CoA dehydrogenase 

(Milburn et al., 2013). It was previously reported that patients with NAFLD had high 

plasma levels of this metabolite (Kalhan et al., 2011), as did those with T2D and 

insulin resistance (Lynch and Adams, 2014). The 2-MBC was also found elevated in 

obese children with insulin resistance compared to those who were insulin sensitive 

(Mastrangelo et al., 2016). Insulin injection following GC blockade significantly 

reduced the plasma levels of 2-methylbutyroylcarnitine by half but remained 

unchanged when insulin injection was given following placebo. These observations 

suggest that GC blockade improves insulin sensitivity. 2-MBC was affected 

significantly by the interaction between insulin dose and HC infusion (p = 0.015). 

High HC infusion significantly increased plasma levels of 2-MBC (p = 0.000008), but 

high insulin dose insignificantly elevates the plasma baseline of the metabolite (p = 

0.37) and renders high HC dose less effective. 

 

Androsterone glucuronide and pregnenolone sulfate are intermediate conjugates in 

the steroidogenesis pathway. Both were elevated significantly following GC 
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blockade in patients with T2D but as expected, they were decreased significantly 

following high HC dose in healthy individuals probably in response to HPA-axis 

inhibitory feedback mechanism (Harteneck, 2013). Androsterone glucuronide is 

considered an inactive end product. In contrast, pregnenolone sulphate, is not a 

waste product of sulphated pregnenolone following phase II reaction as one would 

expect (Harteneck, 2013). 

 

The studies were limited to a single analytical platform using LC-MS, this increases 

the chance of missing some biomarkers, but the metabolomics changes in our 

studies were consistant with other studies. Moreover, application of stringent 

criteria in statistical analysis reduces number of significant biomarkers, but this in 

turn reduces the chance of type I error (false positive) and gives reliability to the 

clinical results. Although GC blockade and insulin vs HC interaction studies had small 

sample sizes the design of these studies and multiple sampling give high significance 

values for these studies. 

 

Metabolomic response to GC action shows sensitivity but not specificity. For 

instance, chenodeoxyglycocholate is elevated in response to high GC dose in 

patients with CAH, but not affected in healthy subjects following high HC dose. 

Moreover, in TMRI-6 study, GC blockade treatment of 5 lean and 7 obese subjects 

did not detect alterations in bile acid levels (Alzweiri, 2008). On the other hand, in 

TMRI-4 study, 6 diabetic and 6 healthy subjects treated with carbenoxolone, which 
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blocks the interconversion between cortisone and cortisol, had significantly high 

levels of chenodeoxyglycocholic acid glucuronide compared to placebo (Alzweiri, 

2008). These discrepancies in results might be due to differences in the health 

status of subjects recruited in each study, in which baseline levels of metabolites 

might vary, and this in turn might affect, to some extent, the metabolomic 

responses obtained with similar interventions. 

 

7.1 Conclusion 

Hypothesis-free metabolomics screening has identified putative metabolites in 

plasma which are differentially sensitive to GC deficiency or excess and may be 

useful in clinical assessment of GC therapy. 

 

7.2 Strengths and limitations 

Metabolomic profiling was employed to address clinical implications of the effect of 

GC abnormalities in humans using plasma samples. GC blockade and insulin HC 

interaction studies benefited from robust statistical designs, but on the other hand 

were limited by small sample sizes. GC dose cutoffs linked the biological 

perturbations to GC action in patients with CAH for the first time and produced 

reliable predictive biomarkers. In the same patients, HCA was able to detect 

patients at a high risk of cardiovascular complications based on their 

anthropometric and clinical measurements, but it would not be able to detect those 
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with heightened risk of adrenal crisis due to lack of sufficient clinical information 

about this complication in this study. 

 

Generally, these studies were limited by using a single analytical technique, and also 

by a lack of replication studies, but benefited from the statistical approach used at 

multi- and uni-variate levels which guarantee proper and reliable biomarker 

selection.  In particular the CAH study used a large co-hort of subjects making the 

application of supervised multivariate methods very robust. 

 

7.3 Future work 

Practically, an important area to address will be to tidy up the identification of some 

of the putative biomarkers using available standards and in the absence of suitable 

standards, MS2 fragmentation. This can be made more difficult by the very small 

sample volumes provided by clinical collaborators following their use in other 

aspects of a study. 

 

Over and under replacement therapy of GC dose in patients with CAH is a point of 

concern, due to lack of reliable biomarkers that predict further complications. 

Addisonian crisis is a lethal complication as a result of under GC treatment. Until 

now, clinicians rely on questionnaires and annual assessments to address those at 

risk of Addisonian crisis (Hummel et al., 2016), which is time consuming and might 

lead to late medical interventions. Metabolomics profiling of plasma samples of 
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those with CAH at different stages would be a great area of research and it would 

provide potential biomarkers that predict those at risk of an Addisonian crisis. 

 

Gut microbiota plays an important role in the development of some chronic 

diseases such as NAFLD (Dumas et al., 2006). This effect is either mediated directly 

through output of this flora and/or indirectly by manipulating GC biosynthesis 

(Hussain, 2013). Many metabolomic pathways are affected, such as aromatic amino 

acids, choline biosynthesis and bile acids. Thus targeting these pathways by 

integrating faeces and plasma metabolomes of patients with NAFLD compared to 

those without NAFLD would be of great benefit in the understanding of the 

pathophysiological perturbations and therapeutic targets. 
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Appendices 

Appendices for Chapter 3 

 

 

Figure S3.1 (A) Permutations test. The plot shows, for a selected Y-variables, on the vertical axis the 
values of R

2
 and Q

2
 for the original model (far to the right) and of the Y-permuted models further to 

the left. The horizontal axis shows the correlation between the permuted Y-vectors and the original 
Y-vector for the selected Y. The original Y has the correlation 1.0. (B) The plot displays the observed 
(y-axis) versus predicted (x-axis) values of the selected Y-variable of the model. The R

2
 of the 

regression line indicates the goodness of Fit = 0.99, with a good model all the observations will fall 
close to this 45 degree of the line, and with less good models the observations are scattered around 
the regression line. (C) Receiver Operating Characteristics (ROC) curve shows sensitivity (true positive 
rate (TPR)) on the y-axis versus (false positive rate (FPR = 1 - Specificity)) on the x-axis. The area 
under ROC curve (AUROCC) =1 for each group. 
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Figure S3.2 (A) Permutations test. The plot shows, for a selected Y-variables, on the vertical axis the 
values of R

2
 and Q

2
 for the original model (far to the right) and of the Y-permuted models further to 

the left. The horizontal axis shows the correlation between the permuted Y-vectors and the original 
Y-vector for the selected Y. The original Y has the correlation 1.0. (B) The plot displays the observed 
(y-axis) versus predicted (x-axis) values of the selected Y-variable of the model. The R

2
 of the 

regression line indicates the goodness of Fit = 0.74. 
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Figure S3.3 (A) Permutations test. The plot shows, for a selected Y-variables, on the vertical axis the 
values of R

2
 and Q

2
 for the original model (far to the right) and of the Y-permuted models further to 

the left. The horizontal axis shows the correlation between the permuted Y-vectors and the original 
Y-vector for the selected Y. The original Y has the correlation 1.0. (B) The plot displays the observed 
(y-axis) versus predicted (x-axis) values of the selected Y-variable of the model. The R

2
 of the 

regression line indicates the goodness of Fit = 0.86. (C) Receiver Operating Characteristics (ROC) 
curve shows sensitivity (true positive rate (TPR)) on the y-axis versus (false positive rate (FPR = 1 - 
Specificity)) on the x-axis. The area under ROC curve (AUROCC) =1 for each group. 
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Appendices for Chapter 4 

 

Figure S4.1 (A) The plot displays the observed (y-axis) versus predicted (x-axis) values of the selected 
Y-variable of the model. The R

2
 of the regression line indicates the goodness of Fit = 0.84, with a 

good model all the observations will fall close to this 45 degree of the line, and with less good 
models the observations are scattered around the regression line. (B) Permutations test. The plot 
shows, for a selected Y-variables, on the vertical axis the values of R

2
 and Q

2
 for the original model 

(far to the right) and of the Y-permuted models further to the left. The horizontal axis shows the 
correlation between the permuted Y-vectors and the original Y-vector for the selected Y. The original 
Y has the correlation 1.0. 
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Figure S4.2 (A) The plot displays the observed (y-axis) versus predicted (x-axis) values of the selected 
Y-variable of the model. The R

2
 of the regression line indicates the goodness of Fit = 0.82, with a 

good model all the observations will fall close to this 45 degree of the line, and with less good 
models the observations are scattered around the regression line. (B) Permutations test. The plot 
shows, for a selected Y-variables, on the vertical axis the values of R

2
 and Q

2
 for the original model 

(far to the right) and of the Y-permuted models further to the left. The horizontal axis shows the 
correlation between the permuted Y-vectors and the original Y-vector for the selected Y. The original 
Y has the correlation 1.0. 
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Appendices for Chapter 5 

 

 

 

Figure S5.1 Receiver Operating Characteristics (ROC) curve shows sensitivity (true positive rate 
(TPR)) on the y-axis versus (false positive rate (FPR = 1 - Specificity)) on the x-axis. The area under 
curve (AUC) of the ROC for the groups; G1=0.99, G2=0.99 and G3=0.91. 
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Figure S5.2 (A)The plot displays the observed (y-axis) versus predicted (x-axis) values of the selected 
Y-variable of the model 1 vs 2. (B)The plot displays the observed (y-axis) versus predicted (x-axis) 
values of the selected Y-variable of the model 1 vs 3. The R2 of the regression line indicates the 
goodness of Fit, with a good model all the observations will fall close to this 45 degree of the line, 
and with less good models the observations are scattered around the regression line. 
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Appendices for Chapter 6 

 

 

Figure S6.1 Permutations test. The plot shows, for a selected Y-variables, on the vertical axis the 
values of R

2
 and Q

2
 for the original model (far to the right) and of the Y-permuted models further to 

the left. The horizontal axis shows the correlation between the permuted Y-vectors and the original 
Y-vector for the selected Y. The original Y has the correlation 1.0 with itself, defining the high point 
on the horizontal axis. 

 

 


