Thesis

Development of a multi-axial load distribution measurement device

Creator
Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2013
Thesis identifier
  • T13375
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • Diabetic foot ulceration is a global health problem that often leads to amputation. While peripheral vascular disease and neuropathy are common risk factors for foot ulcers, excessive mechanical stress would directly cause the breakdown of plantar tissue. Once the skin is broken, many factors may contribute to defective healing and putting one at greater risk for ulceration. Clinical measurement of plantar pressure distribution, therefore, is commonly used to identify feet at risk of ulceration. However, plantar pressures are poor predictors and there is evidence that shear load is at least equally important in ulcer development. Compared to the numerous commercial systems available for plantar pressure distribution measurement, only a few experimental devices exist for shear distribution measurement. These are typically either too large for high spatial resolution measurement or expensive to manufacture, limiting their suitability for routine clinical use. The aim of this study was to develop a low-cost multi-axial load transducer array to measure the distribution of stress beneath the human foot during walking. A preexisting piezoelectric-based load transducer and several novel transducer designs using hydraulic, optoelectronic and magnetic-based technologies were manufactured and their performance relative to 29 criteria evaluated. The magnetic-based design was found to possess the highest performance (accuracy <3%RC, hysteresis <4%RC, non-linearity <2%RC) and physical characteristics (sensing area 10x10mm). Subsequently, an array consisting of 20 discrete magnetic-based transducers was constructed. In a single subject trial, the total shear load measured by the array was <2N of that measured by a KistlerĀ® force platform. Although the array was capable of measuring biaxial shear load distribution, further work is required to expand the current design to measure load distribution beneath the entire plantar surface. Once realised, such a system has the potential to provide valuable biomechanical data that may help clinicians identify diabetic feet at risk of ulceration.
Resource Type
Note
  • This thesis was previously held under moratorium from 10th May 2013 until 10th May 2015.
DOI
Date Created
  • 2013
Former identifier
  • 989158

Relations

Items