Micro-transfer printing for visible light communications applications

Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2017
Thesis identifier
  • T14893
Person Identifier (Local)
  • 201364446
Qualification Level
Qualification Name
Department, School or Faculty
  • The work presented in this thesis focuses on the transfer printing of InGaN-based blue emitting light emitting diodes (LEDs) onto various non-native substrates for visible light communications applications. The controlled mechanical integration of photonic structures onto non-native substrates using micro-transfer printing (µTP) techniquesis paving the way to high-performance, heterogeneous and multi-functional integrated photonic devices.;2µm-thick 100µm x 100µm LEDs are transfer printed onto these non-native, capability enhancing, substrates using a modified nano-lithography system. Blue-emitting µLEDs in this thin, transfer printable format, were integrated into an array of green-emitting µLEDs to create a dual-colour µLED on a single chip. This chip is then electrically andoptically characterised and demonstrated to examine its potential for data communications applications. The same blue-emitting µLEDs are also integrated with colloidal quantum dot (CQD) colour-converting structures. This yields integrated red, green and orange colour-converting structures all pumped by the blue-emitting transfer printed µLEDs. The µTP technique is finally used to fabricate an integrated optical transceiver device.
Advisor / supervisor
  • Dawson, Martin
  • Laurand, Nicolas
Resource Type
Date Created
  • 2017
Former identifier
  • 9912602592402996