Thesis

High-voltage pulse generators incorporating modular multilevel converter sub-modules

Creator
Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2018
Thesis identifier
  • T14896
Person Identifier (Local)
  • 201552499
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • Recent research established the effectiveness of applying a pulsed electric field to deactivate harmful microorganisms (such as bacteria and E. coli). Successful deactivation is achieved by lethal electroporation; a process that produces electric pores in the biological cell membrane of the harmful microorganisms when subjected to high-voltage (HV) pulses. The HV pulses are designed to create pores beyond a critical size at which the biological cell can reseal.;In contrast when applying non-lethal electroporation, the cell-membrane survives after the electroporation process. This is required, for example, when inserting protein cells in the cell-membrane. In both lethal and non-lethal electroporation, HV pulses in the kilo-Volt range (1-100 kV) with durations ranging between nanoseconds and milliseconds are required.;This thesis proposes nine pulse generator (PG) topologies based on power electronic devices and modular multilevel converter sub-modules. The proposed topologies are divided into two main groups namely: PGs fed from a HV DC supply and PGs fed from an LV DC supply. The first group presents a new family of HV DC fed topologies that improve the performance of existing HV DC fed PGs, such as flexible pulse-waveform generation and full utilisation of the DC link voltage.;The second group is dedicated to a new family of LV DC fed PG topologies which have flexible pulse-waveform generation, controlled operation efficiency, and high voltage gain.;All the proposed PG topologies share the important aspect in the newly developed HV PGs, that is modularity, which offers redundancy and robust pulse generation operation.;The presented PG topologies are supported by theoretical analysis, simulations, and experimentation.
Advisor / supervisor
  • Holliday, Derrick
  • Williams, Barry
Resource Type
DOI
Date Created
  • 2018
Former identifier
  • 9912603493402996

Relations

Items