Thesis

ZnCdMgSe and AlGalnP multi-quantum well films for colour conversion and optically-pumped visible lasers

Creator
Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2015
Thesis identifier
  • T14081
Person Identifier (Local)
  • 201154163
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • II-VI semiconductor material ZnCdMgSe has the potential to enable optical devices emitting throughout the visible spectrum. While difficulties in doping of this material have hindered its development for conventional electrically-injected semiconductor lasers, the recent availability of efficient, high power InGaN-based laser diodes has created the opportunity for optically-pumped devices, and this work primarily focusses on the progression towards realising vertical external-cavity surface-emitting lasers (VECSELs) based on this material system. Challenges in the growth of a ZnCdMgSe distributed Bragg reflector (DBR), such as low refractive index contrast and limited growth thickness for maintaining material quality, lead to the design of novel thin-film VECSEL structures, and the development of epitaxial transfer techniques to overcome the absorptive InP growth substrate and buffer. Transfer of thin-film (few microns thick) multi-quantum well heterostructures is demonstrated for samples with areas of a few mm², successfully transferring and liquid-capillary-bonding the films to diamond heat-spreaders for thermal management. Continued challenging growth, namely heterostructure layer inaccuracies, mean that laser threshold is not yet reached, however extensive characterisation and analysis is carried out to inform future progress in realising the ZnCdMgSe thin-film VECSEL. The thin-film VECSEL architecture offers advantages beyond allowing for the use of novel materials, opening the potential for novel laser cavities and optical pumping schemes. The thin-film transfer method developed for the II-VI VECSEL is adapted for the transfer of III-V AlGaInP epitaxial structures from GaAs growth substrates, and AlGaInP thin-film VECSELs are demonstrated operating continuous wave at red wavelengths at room temperature. Laser operation is currently limited by pump-induced de-bonding from the diamond, with attempts made to counter this through the refinement of structure design (including strain balancing) and transfer method. Until thermal rollover occurs, performance is relatively comparable with the 'conventional' gain-mirror AlGaInP VECSELs, with a maximum output power of 21 mW recorded at both 682 nm and 670 nm for low output coupling. Using the transfer method developed for the II-VI material, ZnCdMgSe multi-quantum well structures are used as colour conversion films for micron-size LED arrays. The resulting hybrid devices are demonstrated to have high modulation bandwidths, limited only by the LED modulation bandwidth, suitable for application in visible-light communication.
Resource Type
DOI
Date Created
  • 2015
Former identifier
  • 1231811

Relations

Items