Thesis
Optimisation of ozone generation using dielectric barrier discharge
Downloadable Content
Download PDF- Creator
- Rights statement
- Awarding institution
- University of Strathclyde
- Date of award
- 2017
- Thesis identifier
- T14919
- Person Identifier (Local)
- 201385109
- Qualification Level
- Qualification Name
- Department, School or Faculty
- Abstract
- The aims of the research include understanding the fundamental kinetics of ozone generation using dielectric barrier discharge and investigating the potential to optimize the process to improve ozone generation efficiency.The kinetics of ozone generation and its limitations are reviewed. The discharge characteristics of single filaments are investigated by analysing its equivalent circuit and the distribution of current magnitude. The parallel-plane electrode is used for the investigation of the relationship between current distribution, reduced electric field and ozone generation efficiency. The maximum ozone efficiency of the experiment is 207 g/kWh at the reduced electric field of 120 Td. With the increase of reduced electric field from 120 Td to 280 Td, the ozone generation efficiency drops to 109 g/kWh. The meshed electrode configuration was employed to optimize the ozone efficiency. The highest ozone efficiency achieved is over 330 g/kWh at ~ 100 Td which is twice higher than the commercial ozone generator. It is found that the distribution of external current amplitude using meshed electrode is narrower compared to planar plates. To further understand ozone generation kinetics, the gas discharge is generated at cryogenic temperature of -183 °C using liquid oxygen. The liquid ozone is produced and the highest ozone efficiency achieved is ~ 460 g/kWh. The ozone dissociation reactions involving atomic oxygen and free electrons and the humidity effect at cryogenic temperature of -183 °C were effectively limited.
- Advisor / supervisor
- Wang, Tao
- Resource Type
- DOI
- Date Created
- 2017
- Former identifier
- 9912618093202996
Relations
Items
Thumbnail | Title | Date Uploaded | Visibility | Actions |
---|---|---|---|---|
PDF of Thesis T14919 | 2021-07-02 | Public | Download |