Thesis

Investigation of the impact of fibre impairments and SOA-based devices on 2D-WH/TS OCDMA codes

Creator
Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2022
Thesis identifier
  • T16646
Person Identifier (Local)
  • T16646
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • In seeking efficient last-mile solutions for high-capacity, optical code division multiple access (OCDMA) emerges as a promising alternative high-speed optical network that can securely support a multitude of simultaneous users without requiring extensive equipment. This multiplexing technique has recently been the subject of comprehensive research, highlighting its potential for facilitating high-bandwidth multi-access networking. When contrasted with techniques such as wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM), OCDMA offers a more effective and equitable split of available fibre bandwidth among the users. This thesis presents my research focused on the incoherent OCDMA under the influence of optical fibre impairments that uses picosecond multiwavelength pulses to form two-dimensional wavelength hopping time-spreading (2D-WH/TS) incoherent OCDMA codes.In particular, self-phase modulation, temperature induced fibre dispersion, chromatic dispersion, as well as the impact of semiconductor optical amplifier SOA devices deployment on 2D-WH/TS OCDMA code integrity were investigated. These aspects were investigated using a 17-km long bidirectional fibre link between Strathclyde and Glasgow University. In particular, I investigated the impact of temporal skewing among OCDMA code carriers and the importance of selecting small range of wavelengths as code carriers where wide range manifest high dependency on wavelength. This wavelength dependency is exploited furthermore to measure the induced temperature dispersion coefficient accurately and economically. I have conducted experiments to characterise the impact of SOA-device on 2D OCDMA code carries which is evaluated under different bias conditions. This evaluation addressed the potential challenges and ramifications of the gain recovery time of SOA and its wavelength dependency with respect to gain ratio and self-phase modulation (SPM). The OCDMA code was built using multiplexers and delay lines to create a 2D OCDMA code to allow studying the impact of deploying a SOA under different conditions on each wavelength.The concept described above is then extended to the investigation of the SOA’s impact on a 2D-WH/TS OCDMA prime code under high bias current/gain conditions. The overall performance of two different 2D-WH/TS OCDMA systems deploying the SOA was also calculated. I have also investigated the possibility of manipulating chirp in 2D-WH/TS incoherent OCDMA to counteract the self-phase modulation-induced red shift by using single mode fibre and lithium crystals. I have investigated the performance of the picosecond code based optical signal when subjected to temperature variations similar to that experience by most buried fibre systems. I have proposed and demonstrated a novel technique, which I examined analytically and experimentally, that utilises a SOA at the transmitter to create a new code with a new wavelength hopping and spreading time sequences to achieve a unique physical improved secure incoherent OCDMA communication method. A novel fully automated tuneable compensation testbed is also proposed of an autonomous dispersion management in a WH/TS incoherent OCDMA system. The system proposed manipulates the chirp of OCDMA code carriers to limit chromatic dispersion detrimental effect on transmission systems.
Advisor / supervisor
  • Andonovic, Ivan
  • Glesk, Ivan
Resource Type
DOI

Relations

Items