Thesis

Chemical and molecular analysis of Libyan desert plants used in camel feed

Creator
Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2016
Thesis identifier
  • T14507
Person Identifier (Local)
  • 201251360
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • Camels form an integral part of everyday life of Bedouins and other communities living in arid/desert zones. There is evidence that these communities use camel milk and urine for therapeutic purposes. The aim of this study was to determine the chemical composition of Rhanterium epapposum, Astragalus spinosus, Tamarix aphylla and Citrullus colocynthus -desert plants used commonly in camel fodder, which may be a source of therapeutically active compounds that could be transferred to camel body fluids. Plants were investigated phytochemically and a range of compounds, including phenolic compounds containing sulphur, were elucidated; one of which appears to be novel. In addition, flavonoids, isoflavonoid derivatives, cucurbitacin, and cucurbitacin glycosides were isolated from these plants. Isolated compounds produced in adequate quantities were screened in vitro for cytotoxic activity against human cancer cell lines: A375 (malignant melanoma), PANC-1 (pancreatic carcinoma), A2780 (ovarian carcinoma), ZR-75-1 (breast carcinoma), LNCaP (prostate carcinoma), and HeLa (cervical cancer) and a non-cancer (PNT2) cell line using an AlamarBlue® assay. In parallel, this study also attempted to examine miRNAs present in the plants, camel milk and urine, which might have a therapeutic role via the dietary xenomir hypothesis which suggests plant-derived small nucleic acids can be passed through the food chain to humans and potentially regulate human gene expression. In conclusion, compounds were identified for the first time from camel fodder, some of which had anti-cancer activity. In addition, to phytochemicals, preliminary data showed the possibility of miRNA molecules from these plants having an anti-cancer role to play.
Resource Type
DOI
Date Created
  • 2016
Former identifier
  • 9912542891302996

Relations

Items