Thesis

An open-source hybrid CFD-DSMC solver for high-speed flows

Creator
Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2018
Thesis identifier
  • T15150
Person Identifier (Local)
  • 201476017
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • A new open-source hybrid CFD-DSMC solver, called hyperFoam, has been implemented within the OpenFOAM framework. The capabilities of the OpenFOAM computational fluid dynamics (CFD) solver rhoCentralFoam for supersonic simulations were analysed, showing good agreement with state-of-the-art solvers such as DLR-Tau, and then enhanced, by incorporating the local time stepping (LTS) and adaptive mesh refinement (AMR) techniques. These aspects would later be used for the development of the hypersonic CFD code hy2Foam.;hyperFoam relies on hy2Foam and the direct direct simulation Monte Carlo (DSMC) code dsmcFoam to be able to resolve the flow physics while under the slip-transition regime. Using a mixture of Boyd's Gradient-Length-Local Knudsen number and a generalised modified Chapman-Enskog parameter, hyperFoam is capable of identifying the continuum and rarefied zones within the computational domain and solve each with its respective CFD or DSMC solver.;hyperFoam has been used to simulate several Couette flow with heat transfer test cases, each of different complexity. Good agreement was shown between the DSMC and hybrid results for these simulations. The hybrid code was then used to analyse a hypersonic cylinder. Reasonably similar accuracy was found between the DSMC and hybrid results for vibrationless N2 and N2-O2. However, forO2 important discrepancies were found due to an inconsistency between continuum and rarefied vibrational modelling.
Advisor / supervisor
  • Scanlon, Tom
  • Stickland, Matt
  • Brown, Richard
Resource Type
DOI
Date Created
  • 2018
Former identifier
  • 9912702390402996

Relations

Items