Thesis

Diamond processing for advanced photonic devices

Creator
Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2016
Thesis identifier
  • T14616
Person Identifier (Local)
  • 201260347
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • Diamond photonic devices are critical components for applications including diamond based optics, diamond Raman lasers and the building blocks of quantum information processing. In this thesis work, to achieve such novel diamond photonic devices, micro-fabrication techniques for diamond have been further developed.For making diamond optical structures such as diamond micro-lenses, the fabrication involves the definition of photoresist (PR) masks on the surface of diamond by using photolithography and the pattern transfer by using inductively coupled plasma (ICP) etching. A detailed study of the PR thermal reflow process has been carried out to control the shape of PR masks and the resulting diamond structures with spherical or aspheric features after pattern transfer. By combining PR mask shape control with the optimisation of ICP diamond etching, novel micro-lenses on single crystal diamond have been realised. In particular, diamond micro-lenses with radii of curvature larger than 13 mm have been fabricated. Based on these diamond micro-lenses, novel monolithic diamond Raman lasers were achieved.Furthermore, by using Ar/Cl2 plasma etching, a large area ultra-thin single crystal diamond membrane with a thickness less than 250 nm has been produced. By coupling the diamond membrane within an open optical Fabry-Perot cavity, the enhanced emission from the nitrogen vacancy (NV) colour centre in diamond was investigated. This approach is attractive for the scalable development of quantum computing based on diamond NV centres.
Resource Type
DOI
Date Created
  • 2016
Former identifier
  • 9912556792102996

Relations

Items