Expedient access to C-aryl linked saturated heterocyclic motifs

Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2018
Thesis identifier
  • T15089
Person Identifier (Local)
  • 201463888
Qualification Level
Qualification Name
Department, School or Faculty
  • Over the past decade, there has been a significant increase in the overall degree of saturation in candidate molecules. Increased sp3 character has been linked to a variety of improved physicochemical properties, including greater solubility and an improved likelihood of clinical success. Based on this, a range of methods have been developed to synthesise compounds with high saturation, particularly with respect to sp2-sp3 cross-coupling reactions. Many of these approaches suffer from severe drawbacks, such as a lack of generality and the requirement for bespoke, complex catalyst systems. After initial investigation into a Suzuki-Miyaura approach towards the molecules of interest, the development of a one-pot Suzuki-Miyaura-hydrogenation was explored. This method was found to be highly general and tolerant of a wide range of functionalities. Scheme 1: Developed Suzuki-Miyaura-hydrogenation methodology [Figure available in print copy]. Subsequently, the methodology was extended to allow for a transfer hydrogenation protocol. This process was broadly applicable to a range of synthetic methods, including an array format and the synthesis of multiple biologically active compounds. Scheme 2: Developed Suzuki-Miyaura-transfer-hydrogenation methodology [Figure available in print copy].
Advisor / supervisor
  • Jamieson, Craig
Resource Type
Date Created
  • 2018
Former identifier
  • 9912648791402996
Embargo Note
  • This thesis is restricted to Strathclyde users only until 1st March 2024.