Thesis
On the Möbius function and topology of the permutation poset
Downloadable Content
Download PDF Creator
 Rights statement
 Awarding institution
 University of Strathclyde
 Date of award
 2015
 Thesis identifier
 T14140
 Person Identifier (Local)
 201256929
 Qualification Level
 Qualification Name
 Department, School or Faculty
 Abstract
 A permutation is an ordering of the letters 1, . . . , n. A permutation σ occurs as a pattern in a permutation π if there is a subsequence of π whose letters appear in the same relative order of size as the letters of σ, such a subsequence is called an occurrence. The set of all permutations, ordered by pattern containment, is a poset. In this thesis we study the behaviour of the Möbius function and topology of the permutation poset. The first major result in this thesis is on the Möbius function of intervals [1,π], such that π = π₁π₂. . . πn has exactly one descent, where a descent occurs at position i if πi > π i+1. We show that the Möbius function of these intervals can be computed as a function of the positions and number of adjacencies, where an adjacency is a pair of letters in consecutive positions with consecutive increasing values. We then alter the definition of adjacencies to be a maximal sequence of letters in consecutive positions with consecutive increasing values. An occurrence is normal if it includes all letters except (possibly) the first one of each of all the adjacencies. We show that the absolute value of the Möbius function of an interval [σ, π] of permutations with a fixed number of descents equals the number of normal occurrences of σ in π. Furthermore, we show that these intervals are shellable, which implies many useful topological properties. Finally, we allow adjacencies to be increasing or decreasing and apply the same definition of normal occurrence. We present a result that shows the Möbius function of any interval of permutations equals the number of normal occurrences plus an extra term. Furthermore, we conjecture that this extra term vanishes for a significant proportion of intervals.
 Resource Type
 DOI
 Date Created
 2015
 Former identifier
 1237934
Relationships
Items
Thumbnail  Title  Date Uploaded  Visibility  Actions 

PDF of thesis T14140  20210702  Public 
