Thesis

Design of module level converters in photovoltaic power systems

Creator
Rights statement
Awarding institution
  • University of Strathclyde.
Date of award
  • 2021
Thesis identifier
  • T15950
Person Identifier (Local)
  • 201566584
Qualification Level
Qualification Name
Department, School or Faculty
Abstract
  • The application of distributed maximum power point tracking (DMPPT) technology in solar photovoltaic (PV) systems is a hot topic in industry and academia. In the PV industry, grid integrated power systems are mainstream. The main objective for PV system design is to increase energy conversion efficiency and decrease the levelized cost of electricity of PV generators. This thesis firstly presents an extensive review of state-of-the-art PV technologies. With focus on grid integrated PV systems research, various aspects covered include PV materials, conventional full power processing DMPPT architectures, main MPPT techniques, and traditional partial power processing DMPPT architectures. The main restrictions to applying traditional DMPPT architectures in large power systems are discussed. A parallel connected partial power processing DMPPT architecture is proposed aiming to overcome existing restrictions. With flexible ‘plug-and-play’ functionality, the proposed architecture can be readily expanded to supply a downstream inverter stage or dc network. By adopting smaller module integrated converters, the proposed approach provides a possible efficiency improvement and cost reduction. The requirements for possible converter candidates and control strategies are analysed. One representative circuit scheme is presented as an example to verify the feasibility of the design. An electromagnetic transient model is built for different power scale PV systems to verify the DMPPT feasibility of the evaluated architecture in a large-scale PV power system. Voltage boosting ability is widely needed for converters in DMPPT applications. Impedance source converters (ISCs) are the main converter types with step-up ability. However, these converters have a general problem of low order distortion when applied in dc-ac applications. To solve this problem, a generic plug-in repetitive control strategy for a four-switch three-phase ISC type inverter configuration is developed. Simulation and experimental results confirm that this control strategy is suitable for many ISC converters.
Advisor / supervisor
  • Williams, Barry
  • Holliday, Derrick
Resource Type
DOI

Relations

Items