Rectifier power converter for marine applications with compensating capacitor and boost converter stage

Rights statement
Awarding institution
  • University of Strathclyde
Date of award
  • 2023
Thesis identifier
  • T16771
Person Identifier (Local)
  • 201983844
Qualification Level
Qualification Name
Department, School or Faculty
  • Environmental concerns and new emissions regulations, as well as increasing power needs for marine electrical grids, are pushing the development of more efficient power converters for shipboard power systems (SPS). The priorities for SPS design are reliability and power density especially in harsh operating conditions. Safety, space, and weight are of paramount importance requirements on a ship. One factor affecting the design of SPS is the high inductive impedance presented by ac generators, which requires high voltage ratios to compensate for. Therefore, ac-dc converters, sitting as they do between ac generators and the dc bus of the SPS, are identified as a point of potential development to improve the form factor and efficiency of SPS. A novel series capacitor compensation technique is proposed and applied to an ac-dc boost rectifier. Time-averaged equations are derived and compared to simulated waveforms generated using MATLAB/Simulink. Total harmonic distortion (THD) and power factor (PF) are calculated and measured. THD is found to be the limiting factor in designing the proposed compensator. The circuit is simulated in one and three phases, and several input-to-output voltage ratios are compared. To verify the practicality of the compensation method, a single-phase 1 kW rated prototype is implemented and practical results are presented and compared with the simulated waveforms. It is found that the compensation method can control THD to acceptable levels for a large range of inductive impedances, suggesting that this solution should be further developed and investigated for application in SPS.
Advisor / supervisor
  • Ahmed, Khaled
Resource Type